
Texts in Computer Science

Mathematical
Foundations of
Software
Engineering
A Practical Guide to Essentials

Gerard O’Regan

Texts in Computer Science

Series Editor

Orit Hazzan , Faculty of Education in Technology and Science, Technion—Israel
Institute of Technology, Haifa, Israel

https://orcid.org/0000-0002-8627-0997

Titles in this series now included in the Thomson Reuters Book Citation Index!
‘Texts in Computer Science’ (TCS) delivers high-quality instructional content

for undergraduates and graduates in all areas of computing and information
science, with a strong emphasis on core foundational and theoretical material
but inclusive of some prominent applications-related content. TCS books should
be reasonably self-contained and aim to provide students with modern and clear
accounts of topics ranging across the computing curriculum. As a result, the
books are ideal for semester courses or for individual self-study in cases where
people need to expand their knowledge. All texts are authored by established
experts in their fields, reviewed internally and by the series editors, and provide
numerous examples, problems, and other pedagogical tools; many contain fully
worked solutions.

The TCS series is comprised of high-quality, self-contained books that have
broad and comprehensive coverage and are generally in hardback format and
sometimes contain color. For undergraduate textbooks that are likely to be more
brief and modular in their approach, require only black and white, and are
under 275 pages, Springer offers the flexibly designed Undergraduate Topics in
Computer Science series, to which we refer potential authors.

Gerard O’Regan

Mathematical
Foundations of Software
Engineering
A Practical Guide to Essentials

Gerard O’Regan
Mallow, Cork, Ireland

ISSN 1868-0941 ISSN 1868-095X (electronic)
Texts in Computer Science
ISBN 978-3-031-26211-1 ISBN 978-3-031-26212-8 (eBook)
https://doi.org/10.1007/978-3-031-26212-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-26212-8

To
Present and past staff of Coláiste Chríost Rí,
Cork.

Preface

Overview

The objective of this book is to give the reader a flavour of the mathematical
foundations of software engineering. The rich applications of mathematics to soft-
ware engineering includes its applications to error detection and correcting codes
with finite field theory; the field of cryptography which uses the results of number
theory; the modelling of telecommunication networks with graph theory; the appli-
cation of discrete mathematics and proof techniques to the software correctness
field (especially safety critical systems using formal methods and model check-
ing); the application of financial mathematics to the banking and insurance fields;
and the application of calculus and vectors to traditional engineering applications.

Organization and Features

Chapter 1 introduces software engineering and discusses both traditional and
Agile software engineering. Chapter 2 examines which mathematics is needed in
software engineering, including the core mathematics that all software engineers
should be familiar with, as well as specific mathematics for the particular software
engineering domains such as the safety critical field; to traditional engineering
applications; and to the financial sector.

Chapter 3 discusses the mathematical prerequisites, and we discuss fundamental
building blocks in mathematics including sets, relations, and functions. A set is
a collection of well-defined objects, and it may be finite or infinite. A relation
between two sets A and B indicates a relationship between members of the two
sets and is a subset of the Cartesian product of the two sets. A function is a special
type of relation such that for each element in A there is at most one element in
the codomain B. We discuss the fundamentals of number theory including prime
number theory and the greatest common divisor and least common multiple of two
numbers, and we provide a short introduction to trigonometry.

Chapter 4 presents a short introduction to algorithms, where an algorithm is a
well-defined procedure for solving a problem. It consists of a sequence of steps

vii

viii Preface

that takes a set of values as input and produces a set of values as output. An
algorithm is an exact specification of how to solve the problem, and it explicitly
defines the procedure so that a computer program may implement the solution in
some programming language.

Chapter 5 discusses algebra, and we discuss simple and simultaneous equa-
tions, including the method of elimination and the method of substitution to solve
simultaneous equations. We show how quadratic equations may be solved by fac-
torization, completing the square or using the quadratic formula. We present the
laws of logarithms and indices. We discuss various structures in abstract algebra,
including monoids, groups, rings, integral domains, fields, and vector spaces.

Chapter 6 discusses mathematical induction and recursion. Induction is a com-
mon proof technique in mathematics, and there are two parts to a proof by
induction (the base case and the inductive step). We discuss strong and weak
inductions, and we discuss how recursion is used to define sets, sequences, and
functions. This leads us to structural induction, which is used to prove properties
of recursively defined structures.

Chapter 7 discusses graph theory where a graph G = (V, E) consists of vertices
and edges. It is a practical branch of mathematics that deals with the arrangements
of vertices and edges between them, and it has been applied to practical problems
such as the modelling of computer networks, determining the shortest driving route
between two cities, and the travelling salesman problem.

Chapter 8 discusses sequences and series and permutations and combinations.
Arithmetic and geometric sequences and series are discussed.

Chapter 9 presents a short history of logic, and we discuss Greek contributions
to syllogistic logic, stoic logic, fallacies, and paradoxes. Boole’s symbolic logic
and its application to digital computing are discussed, and we consider Frege’s
work on predicate logic.

Chapter 10 provides an introduction to propositional and predicate logic. Propo-
sitional logic may be used to encode simple arguments that are expressed in natural
language and to determine their validity. The nature of mathematical proof is
discussed, and we present proof by truth tables, semantic tableaux, and natural
deduction. Predicate logic allows complex facts about the world to be represented,
and new facts may be determined via deductive reasoning. Predicate calculus
includes predicates, variables, and quantifiers, and a predicate is a characteristic or
property that the subject of a statement can have.

Chapter 11 presents some advanced topics in logic including fuzzy logic, tem-
poral logic, intuitionistic logic, undefined values, and the applications of logic to
AI. Fuzzy logic is an extension of classical logic that acts as a mathematical model
for vagueness. Temporal logic is concerned with the expression of properties that
have time dependencies, and it allows temporal properties about the past, present,
and future to be expressed. Intuitionism was a controversial theory on the foun-
dations of mathematics based on a rejection of the law of the excluded middle
and an insistence on constructive existence. We discuss approaches to deal with
undefined values.

Preface ix

Chapter 12 discusses language theory and includes a discussion on grammars,
parse trees, and derivations from a grammar. The important area of program-
ming language semantics is discussed, including axiomatic, denotational, and
operational semantics.

Chapter 13 discusses automata theory, including finite-state machines, push-
down automata, and Turing machines. Finite-state machines are abstract machines
that are in only one state at a time, and the input symbol causes a transition from
the current state to the next state. Pushdown automata have greater computational
power, and they contain extra memory in the form of a stack from which symbols
may be pushed or popped. The Turing machine is the most powerful model for
computation, and this theoretical machine is equivalent to an actual computer in
the sense that it can compute exactly the same set of functions.

Chapter 14 discusses computability and decidability. The Church–Turing thesis
states that anything that is computable is computable by a Turing machine. Church
and Turing showed that mathematics is not decidable. In other words, there is no
mechanical procedure (i.e., algorithm) to determine whether an arbitrary mathe-
matical proposition is true or false, and so the only way to determine the truth or
falsity of a statement is try to solve the problem.

Chapter 15 discusses software reliability and dependability and covers topics
such as software reliability and software reliability models, the cleanroom method-
ology, system availability, safety and security critical systems, and dependability
engineering.

Chapter 16 discusses formal methods, which consist of a set of mathemati-
cal techniques to rigorously specify and derive a program from its specification.
Formal methods may be employed to rigorously state the requirements of the pro-
posed system; they may be employed to derive a program from its mathematical
specification; and they may provide a rigorous proof that the implemented program
satisfies its specification. They have been mainly applied to the safety critical field.

Chapter 17 presents the Z specification language, which is one of the most
widely used formal methods. It was developed at Oxford University in the UK.

Chapter 18 discusses model checking which is an automated technique such
that given a finite-state model of a system and a formal property, then it system-
atically checks whether the property is true of false in a given state in the model.
It is an effective technique to identify potential design errors, and it increases the
confidence in the correctness of the system design.

Chapter 19 discusses the nature of proof and theorem proving, and we discuss
automated and interactive theorem provers. We discuss the nature of mathematical
proof and formal mathematical proof.

Chapter 20 discusses cryptography, which is an important application of num-
ber theory. The codebreaking work done at Bletchley Park in England during the
Second World War is discussed, and the fundamentals of cryptography, including
private and public key cryptosystems, are discussed.

Chapter 21 presents coding theory and is concerned with error detection and
error correction codes. The underlying mathematics includes abstract mathematics
such as group theory, rings, fields, and vector spaces.

x Preface

Chapter 22 discusses statistics which is an empirical science that is con-
cerned with the collection, organization, analysis, interpretation, and presentation
of data. We discuss sampling; the average and spread of a sample; the abuse of
statistics; frequency distributions; variance and standard deviation; correlation and
regression; statistical inference and hypothesis testing.

Chapter 23 discusses probability which is a branch of mathematics that is con-
cerned with measuring uncertainty and random events. We discuss discrete and
continuous random variables; probability distributions such as the binomial and
normal distributions; variance and standard deviation; confidence intervals; tests
of significance; the central limit theorem; and Bayesian statistics.

Chapter 24 discusses data science, which is a multidisciplinary field that
extracts knowledge from data sets that consist of structured and unstructured data,
and large data sets may be analysed to extract useful information. Data science
may be regarded as a branch of statistics as it uses many concepts from the field,
and in order to prevent errors occurring during data analysis it is essential that
both the data and models are valid.

Chapter 25 provides a short introduction to calculus and provides a high-level
overview of limits, continuity, differentiation, and integration. Chapter 26 presents
applications of the calculus in determining velocity, acceleration, area, and volume,
as well as a short discussion on Fourier series, Laplace transforms, and differential
equations.

Chapter 27 discusses matrices including 2 × 2 and general n × m matrices. Var-
ious operations such as the addition and multiplication of matrices are considered,
and the determinant and inverse of a square matrix are discussed. The applica-
tion of matrices to solving a set of linear equations using Gaussian elimination is
considered.

Chapter 28 discusses complex numbers and quaternions. Complex numbers are
of the form a + bi where a and b are real numbers and i2 = –1. Quaternions
are a generalization of complex numbers to quadruples that satisfy the quaternion
formula i2 = j2 = k2 = –1. Chapter 29 discusses vectors, where a vector is repre-
sented as a directed line segment such that the length represents the magnitude of
the vector and the arrow indicates the direction of the vector.

Chapter 30 discusses basic financial mathematics, and we discuss simple and
compound interest, annuities, and mortgages. Chapter 31 discusses operations
research which is a multidisciplinary field that is concerned with the application
of mathematical and analytic techniques to assist in decision making. It employs
techniques such as mathematical modelling, statistical analysis, and mathematical
optimization as part of its goal to achieve optimal (or near optimal) solutions to
complex decision-making problems.

Finally, Chap. 32 discusses a selection of software tools to support mathematics
for software engineering, and we discuss Microsoft Excel, Minitab, Python, the R
statistical software environment, and Mathematica.

Preface xi

Audience

The audience of this book includes software engineering students who wish to
become familiar with foundation mathematics for software engineering and math-
ematicians who are curious as to how mathematics is applied in the software
engineering field. The book will also be of interest to the motivated general reader.

Mallow, Cork, Ireland Gerard O’Regan

Acknowledgments

I am deeply indebted to friends and family who supported my efforts in this
endeavour. My thanks, as always, goes to the team at Springer for their profes-
sional work. I would like to pay a special thanks to past and present staff of
Coláiste Chríost Rí, Cork, who provided a solid education to the author, and stim-
ulated his interest in mathematics, science, and the wider world. In particular,
I would like to thank Máirtín O’Fathaigh and Pádraig O’Scanlán (Irish), Cathal
O’Corcaire (French), Tony Power and Kevin Cummins (English), Mr. O’Callaghan
and Mr. O’Brien (Mathematics), Seamus Lankford (History and Céilí dancing on a
Sunday night), Mr. O’Leary (Geography), Mr. Brennan (Music), Jim Cremin (Sci-
ence and Chemistry), Noel Brett (Physics), and Mr. Desmond (Economics). Also,
my thanks goes to Br. Pius, Richard Tobin, and Br. Columcille. Ta cuid de na
daoine seo imithe at shlí na fírinne anois, ach ba mhaith liom buíochas a ghabháil
leo.

Mallow, Cork, Ireland Gerard O’Regan

xiii

Contents

1 Fundamentals of Software Engineering . 1
1.1 Introduction . 1
1.2 What Is Software Engineering? . 4
1.3 Challenges in Software Engineering . 7
1.4 Software Processes and Lifecycles . 8

1.4.1 Waterfall Lifecycle . 9
1.4.2 Spiral Lifecycles . 10
1.4.3 Rational Unified Process . 12
1.4.4 Agile Development . 13
1.4.5 Continuous Software Development 15

1.5 Activities in Software Development . 16
1.5.1 Requirements Definition . 16
1.5.2 Design . 17
1.5.3 Implementation . 18
1.5.4 Software Testing . 19
1.5.5 Support and Maintenance . 20

1.6 Software Inspections . 21
1.7 Software Project Management . 22
1.8 CMMI Maturity Model . 23
1.9 Formal Methods . 24
1.10 Review Questions . 24
1.11 Summary . 25
References . 25

2 Software Engineering Mathematics . 27
2.1 Introduction . 27
2.2 Early Software Engineering Mathematics . 29
2.3 Debate on Mathematics in Software Engineering 32
2.4 The Emergence of Formal Methods . 32
2.5 What Mathematics Do Software Engineers Need? 33
2.6 Review Questions . 35
2.7 Summary . 35
References . 36

xv

xvi Contents

3 Mathematical Prerequisites for Software Engineers 37
3.1 Introduction . 38
3.2 Set Theory . 39

3.2.1 Set Theoretical Operations . 40
3.2.2 Computer Representation of Sets . 42

3.3 Relations . 42
3.3.1 Reflexive, Symmetric and Transitive Relations 43
3.3.2 Composition of Relations . 44
3.3.3 Binary Relations . 45

3.4 Functions . 46
3.5 Arithmetic . 48

3.5.1 Fractions and Decimals . 50
3.5.2 Prime Number Theory . 51
3.5.3 Greatest Common Divisors (GCD) 52
3.5.4 Least Common Multiple (LCM) . 53
3.5.5 Ratios and Proportions . 53
3.5.6 Percentages . 55

3.6 Trigonometry . 57
3.6.1 Definition of Sine, Cosine, and Tangent 57
3.6.2 Sine and Cosine Rules . 58
3.6.3 Trigonometric Identities . 60
3.6.4 Degrees and Radians . 61
3.6.5 Periodic Functions and Sketch of Sine

and Cosine Functions . 62
3.6.6 Power Series for Sine and Cosine . 63

3.7 Cartesian Coordinates . 63
3.8 Review Questions . 65
3.9 Summary . 66
References . 67

4 Introduction to Algorithms . 69
4.1 Introduction . 69
4.2 Early Algorithms . 70

4.2.1 Greatest Common Divisors (GCD) 71
4.2.2 Euclid’s Greatest Common Divisor Algorithm 71
4.2.3 Sieve of Eratosthenes Algorithm . 73
4.2.4 Early Cipher Algorithms . 74

4.3 Sorting Algorithms . 76
4.4 Binary Trees and Graph Theory . 79
4.5 Modern Cryptographic Algorithms . 80
4.6 Algorithms in Numerical Analysis . 81
4.7 Computational Complexity . 83
4.8 Review Questions . 83
4.9 Summary . 84
References . 84

Contents xvii

5 Algebra . 85
5.1 Introduction . 85
5.2 Simplification of Algebraic Expressions . 86
5.3 Simple and Simultaneous Equations . 87

5.3.1 Simultaneous Equations . 89
5.4 Quadratic Equations . 92
5.5 Indices and Logarithms . 96
5.6 Exponentials and Natural Logarithms . 98
5.7 Horner’s Method for Polynomials . 99
5.8 Abstract Algebra . 101

5.8.1 Monoids and Groups . 101
5.8.2 Rings . 102
5.8.3 Fields . 103
5.8.4 Vector Spaces . 104

5.9 Review Questions . 106
5.10 Summary . 107

6 Mathematical Induction and Recursion . 109
6.1 Introduction . 109
6.2 Strong Induction . 112
6.3 Recursion . 114
6.4 Structural Induction . 116
6.5 Review Questions . 117
6.6 Summary . 117
Reference . 118

7 Graph Theory . 119
7.1 Introduction . 119
7.2 Undirected Graphs . 121

7.2.1 Hamiltonian Paths . 125
7.3 Trees . 126

7.3.1 Binary Trees . 127
7.4 Graph Algorithms . 128
7.5 Graph Colouring and Four-Colour Problem 128
7.6 Review Questions . 129
7.7 Summary . 130
Reference . 130

8 Sequences, Series, and Permutations and Combinations 131
8.1 Introduction . 131
8.2 Sequences and Series . 132
8.3 Arithmetic and Geometric Sequences . 133
8.4 Arithmetic and Geometric Series . 134
8.5 Permutations and Combinations . 135
8.6 Review Questions . 139
8.7 Summary . 139

xviii Contents

9 A Short History of Logic . 141
9.1 Introduction . 141
9.2 Syllogistic Logic . 142
9.3 Paradoxes and Fallacies . 144
9.4 Stoic Logic . 145
9.5 Boole’s Symbolic Logic . 147

9.5.1 Switching Circuits and Boolean Algebra 148
9.6 Frege . 149
9.7 Review Questions . 150
9.8 Summary . 150
References . 151

10 Propositional and Predicate Logic . 153
10.1 Introduction . 153
10.2 Propositional Logic . 154

10.2.1 Truth Tables . 155
10.2.2 Properties of Propositional Calculus 158
10.2.3 Proof in Propositional Calculus . 160
10.2.4 Semantic Tableaux in Propositional Logic 163
10.2.5 Natural Deduction . 165
10.2.6 Sketch of Formalization of Propositional

Calculus . 165
10.2.7 Applications of Propositional Calculus 167
10.2.8 Limitations of Propositional Calculus 169

10.3 Predicate Calculus . 169
10.3.1 Sketch of Formalization of Predicate Calculus 171
10.3.2 Interpretation and Valuation Functions 173
10.3.3 Properties of Predicate Calculus . 174
10.3.4 Applications of Predicate Calculus 174
10.3.5 Semantic Tableaux in Predicate Calculus 175

10.4 Review Questions . 177
10.5 Summary . 178
References . 179

11 Advanced Topics in Logic . 181
11.1 Introduction . 181
11.2 Fuzzy Logic . 182
11.3 Temporal Logic . 183
11.4 Intuitionist Logic . 185
11.5 Undefined Values . 186

11.5.1 Logic of Partial Functions . 187
11.5.2 Parnas Logic . 188
11.5.3 Dijkstra and Undefinedness . 190

11.6 Logic and AI . 191

Contents xix

11.7 Review Questions . 194
11.8 Summary . 195
References . 195

12 Language Theory and Semantics . 197
12.1 Introduction . 197
12.2 Alphabets and Words . 198
12.3 Grammars . 200

12.3.1 Backus Naur Form . 202
12.3.2 Parse Trees and Derivations . 203

12.4 Programming Language Semantics . 205
12.4.1 Axiomatic Semantics . 206
12.4.2 Operational Semantics . 208
12.4.3 Denotational Semantics . 209

12.5 Lambda Calculus . 210
12.6 Lattices and Order . 211

12.6.1 Partially Ordered Sets . 211
12.6.2 Lattices . 213
12.6.3 Complete Partial Orders . 215
12.6.4 Recursion . 215

12.7 Review Questions . 217
12.8 Summary . 217
References . 218

13 Automata Theory . 219
13.1 Introduction . 219
13.2 Finite-State Machines . 220
13.3 Pushdown Automata . 223
13.4 Turing Machines . 225
13.5 Review Questions . 227
13.6 Summary . 227
Reference . 228

14 Computability and Decidability . 229
14.1 Introduction . 229
14.2 Logicism and Formalism . 230
14.3 Decidability . 232
14.4 Computability . 234
14.5 Computational Complexity . 237
14.6 Review Questions . 238
14.7 Summary . 238
Reference . 239

xx Contents

15 Software Reliability and Dependability . 241
15.1 Introduction . 241
15.2 Software Reliability . 242

15.2.1 Software Reliability and Defects . 243
15.2.2 Cleanroom Methodology . 245
15.2.3 Software Reliability Models . 247

15.3 Dependability . 249
15.4 Computer Security . 251
15.5 System Availability . 252
15.6 Safety Critical Systems . 252
15.7 Review Questions . 253
15.8 Summary . 254
References . 254

16 Overview of Formal Methods . 255
16.1 Introduction . 255
16.2 Why Should We Use Formal Methods? . 257
16.3 Industrial Applications of Formal Methods 259
16.4 Industrial Tools for Formal Methods . 260
16.5 Approaches to Formal Methods . 261

16.5.1 Model-Oriented Approach . 261
16.5.2 Axiomatic Approach . 263

16.6 Proof and Formal Methods . 263
16.7 Debate on Formal Methods in Software Engineering 264
16.8 The Vienna Development Method . 265
16.9 VDM♣, the Irish School of VDM . 266
16.10 The Z Specification Language . 267
16.11 The B-Method . 268
16.12 Predicate Transformers and Weakest Preconditions 269
16.13 The Process Calculi . 270
16.14 Finite-State Machines . 271
16.15 The Parnas Way . 272
16.16 Model Checking . 272
16.17 Usability of Formal Methods . 273
16.18 Review Questions . 274
16.19 Summary . 275
References . 275

17 Z Formal Specification Language . 277
17.1 Introduction . 277
17.2 Sets . 280
17.3 Relations . 281
17.4 Functions . 282
17.5 Sequences . 284
17.6 Bags . 285
17.7 Schemas and Schema Composition . 286

Contents xxi

17.8 Reification and Decomposition . 289
17.9 Proof in Z . 291
17.10 Industrial Applications of Z . 291
17.11 Review Questions . 292
17.12 Summary . 292
Reference . 293

18 Model Checking . 295
18.1 Introduction . 295
18.2 Modelling Concurrent Systems . 299
18.3 Linear Temporal Logic . 300
18.4 Computational Tree Logic . 301
18.5 Tools for Model Checking . 302
18.6 Industrial Applications of Model Checking 302
18.7 Review Questions . 303
18.8 Summary . 303
References . 304

19 The Nature of Theorem Proving . 305
19.1 Introduction . 305
19.2 Early Automation of Proof . 308
19.3 Interactive Theorem Provers . 310
19.4 A Selection of Theorem Provers . 312
19.5 Review Questions . 312
19.6 Summary . 312
References . 314

20 Cryptography . 315
20.1 Introduction . 315
20.2 Breaking the Enigma Codes . 316
20.3 Cryptographic Systems . 320
20.4 Symmetric Key Systems . 320
20.5 Public Key Systems . 325

20.5.1 RSA Public Key Cryptosystem . 327
20.5.2 Digital Signatures . 328

20.6 Review Questions . 329
20.7 Summary . 329
References . 330

21 Coding Theory . 331
21.1 Introduction . 331
21.2 Mathematical Foundations of Coding Theory 332
21.3 Simple Channel Code . 333
21.4 Block Codes . 334

21.4.1 Error Detection and Correction . 336
21.5 Linear Block Codes . 337

21.5.1 Parity Check Matrix . 339

xxii Contents

21.5.2 Binary Hamming Code . 340
21.5.3 Binary Parity Check Code . 341

21.6 Miscellaneous Codes in Use . 341
21.7 Review Questions . 342
21.8 Summary . 342
References . 343

22 Introduction to Statistics . 345
22.1 Introduction . 345
22.2 Basic Statistics . 346

22.2.1 Abuse of Statistics . 347
22.2.2 Statistical Sampling and Data Collection 347

22.3 Frequency Distribution and Charts . 349
22.4 Statistical Measures . 352

22.4.1 Arithmetic Mean . 353
22.4.2 Mode . 353
22.4.3 Median . 354

22.5 Variance and Standard Deviation . 355
22.6 Correlation and Regression . 356

22.6.1 Regression . 359
22.7 Statistical Inference and Hypothesis Testing 360
22.8 Review Questions . 362
22.9 Summary . 362
References . 363

23 Introduction to Probability Theory . 365
23.1 Introduction . 365
23.2 Basic Probability Theory . 366

23.2.1 Laws of Probability . 367
23.2.2 Bayes’ Formula . 369

23.3 Random Variables . 370
23.4 Binomial and Poisson Distributions . 372
23.5 The Normal Distribution . 375

23.5.1 Unit Normal Distribution . 376
23.5.2 Confidence Intervals and Tests of Significance 377
23.5.3 The Central Limit Theorem . 380

23.6 Bayesian Statistics . 381
23.7 Review Questions . 383
23.8 Summary . 384
References . 384

24 Introduction to Data Science . 385
24.1 Introduction . 385
24.2 Ethics of Data Science . 387

24.2.1 Data Science and Data Scientists . 388
24.2.2 Data Science and Society . 390

Contents xxiii

24.3 What Is Data Analytics? . 391
24.3.1 Business Analytics and Business Intelligence 393
24.3.2 Big Data and Data Mining . 394
24.3.3 Data Analytics for Social Media . 394
24.3.4 Sources of Data . 395

24.4 Mathematics Used in Data Science . 396
24.5 Review Questions . 397
24.6 Summary . 397
Reference . 398

25 Calculus I . 399
25.1 Introduction . 399
25.2 Differentiation . 403

25.2.1 Rules of Differentiation . 405
25.3 Integration . 407

25.3.1 Definite Integrals . 408
25.3.2 Fundamental Theorems of Integral Calculus 411

25.4 Review Questions . 411
25.5 Summary . 412
Reference . 412

26 Calculus II . 413
26.1 Introduction . 413
26.2 Applications of Calculus . 414
26.3 Fourier Series . 420
26.4 The Laplace Transform . 421
26.5 Differential Equations . 422
26.6 Review Questions . 423
26.7 Summary . 424
Reference . 424

27 Matrix Theory . 425
27.1 Introduction . 425
27.2 Two × Two Matrices . 427
27.3 Matrix Operations . 429
27.4 Determinants . 431
27.5 Eigen Vectors and Values . 433
27.6 Gaussian Elimination . 434
27.7 Review Questions . 435
27.8 Summary . 436
Reference . 436

28 Complex Numbers and Quaternions . 437
28.1 Introduction . 437
28.2 Complex Numbers . 439
28.3 Quaternions . 446
28.4 Quaternion Algebra . 447

xxiv Contents

28.4.1 Quaternions and Rotations . 451
28.5 Review Questions . 452
28.6 Summary . 453

29 Vectors . 455
29.1 Introduction . 455
29.2 Vectors in Euclidean Space . 457

29.2.1 Dot Product . 459
29.2.2 Cross Product . 460
29.2.3 Linear Dependent and Independent Vectors 461

29.3 Review Questions . 463
29.4 Summary . 463

30 Basic Financial Mathematics . 465
30.1 Introduction . 465
30.2 Simple Interest . 466

30.2.1 Computing Future and Present Values 468
30.2.2 Computing Future Value . 468
30.2.3 Computing Present Values . 468

30.3 Compound Interest . 470
30.3.1 Present Value Under Compound Interest 473
30.3.2 Equivalent Values . 474

30.4 Basic Mathematics of Annuities . 477
30.5 Loans and Mortgages . 481
30.6 Review Questions . 484
30.7 Summary . 485

31 Introduction to Operations Research . 487
31.1 Introduction . 487
31.2 Linear Programming . 490

31.2.1 Linear Programming Example . 490
31.2.2 General Formulation of LP Problem 494

31.3 Cost Volume Profit Analysis . 495
31.4 Game Theory . 497
31.5 Review Questions . 500
31.6 Summary . 501
References . 501

32 Mathematical Software for Software Engineers . 503
32.1 Introduction . 503
32.2 Microsoft Excel . 503
32.3 Python . 505
32.4 Maple . 506
32.5 Minitab Statistical Software . 508
32.6 R Statistical Software Environment . 509
32.7 Mathematica . 510
32.8 MATLAB . 512

Contents xxv

32.9 Summary . 513

Index . 515

Abbreviations

ACL A Computational Logic
ACM Association for Computing Machinery
AES Advanced Encryption Standard
AI Artificial Intelligence
AMN Abstract Machine Notation
ATP Automated Theorem Proving
BCH Bose, Chauduri and Hocquenghem
BCS British Computer Society
BI Business Intelligence
BNF Backus Naur Form
CCS Calculus Communicating Systems
CIA Central Intelligence Agency
CICS Customer Information Control System
CMG Computer Management Group
CMM Capability Maturity Model
CMMI® Capability Maturity Model Integration
COBOL Common Business Oriented Language
COPQ Cost Of Poor Quality
COTS Customised Off The Shelf
CPO Complete Partial Order
CSP Communicating Sequential Processes
CTL Computational Tree Logic
CVPA Cost Volume Profit Analysis
DES Data Encryption Standard
DPDA Deterministic PDA
DSA Digital Signature Algorithm
DSDM Dynamic Systems Development Method
DSS Digital Signature Standard
ESA European Space Agency
FC Fixed Cost
FSM Finite State Machine
FV Future Value

xxvii

xxviii Abbreviations

GCD Greatest Common Divisor
GCHQ General Communications Headquarters
GDPR General Data Protection Regulation
GSM Global System for Mobile communications
GUI Graphical User Interface
HOL Higher Order Logic
IBM International Business Machines
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
ISO International Standards Organization
ITP Interactive Theorem Proving
JAD Joint Application Development
KLOC Thousand Lines Of Code
LCM Least Common Multiple
LEM Law of Excluded Middle
LISP List Processing
LP Linear Programming
LPF Logic of Partial Functions
LT Logic Theorist
LTL Linear Time Logic
MIT Massachusetts Institute of Technology
MOD Ministry of Defence
MSL Mars Science Laboratory
MTBF Mean time between failure
MTTF Mean time to failure
NATO North Atlantic Treaty Organization
NBS National Bureau of Standards
NFA Non deterministic Finite Automaton
NIST National Institute of Standards and Technology
NP Non Polynomial
NQTHM New Quantified Theorem Prover
NSA National Security Agency
OR Operation Research
OTTER Organized Techniques for Theorem proving and Effective Research
PDA Pushdown Automata
PL/1 Programming Language 1
PVS Prototype Verification System
RAD Rapid Application Development
RRA Royals Royce and Associates
RSA Rivest, Shamir and Adleman
RUP Rational Unified Process
SAM Semi-automated mathematics
SCAMPI Standard CMM Appraisal Method for Process Improvement
SECD Stack, Environment, Code, Dump
SEI Software Engineering Institute

Abbreviations xxix

SRI Stanford Research Institute
TC Total Cost
TDD Test Driven Development
TM Turing Machine
TPS Theorem Proving System
TR Total Revenue
TVC Total Variable Cost
UAT User Acceptance Testing
UML Unified Modelling Language
UMTS Universal Mobile Telecommunications System
VDM Vienna Development Method
VDM♣ Irish School of VDM
XOR Exclusive OR
Y2K Year 2000
ZB Zetta Byte

List of Figures

Fig. 1.1 Standish report—results of 1995 and 2009 survey 3
Fig. 1.2 Standish 1998 report—estimation accuracy 7
Fig. 1.3 Waterfall V lifecycle model . 10
Fig. 1.4 SPIRAL lifecycle model … Public Domain 11
Fig. 1.5 Rational unified process . 12
Fig. 2.1 Robert Floyd . 29
Fig. 2.2 Branch assertions in flowcharts . 30
Fig. 2.3 Assignment assertions in flowcharts . 30
Fig. 2.4 C. A. R. Hoare . 31
Fig. 3.1 Right-angled triangle . 57
Fig. 3.2 Cartesian coordinate system . 64
Fig. 3.3 Cartesian three-dimensional coordinate system 64
Fig. 4.1 Euclid of Alexandria . 72
Fig. 4.2 Primes between 1 and 50 . 74
Fig. 4.3 Caesar cipher . 75
Fig. 4.4 Insertion sort example . 76
Fig. 4.5 Merge sort example . 78
Fig. 4.6 Sorted binary tree . 79
Fig. 4.7 Bisection method . 82
Fig. 5.1 Graphical solution to simultaneous equations 91
Fig. 5.2 Graphical solution to quadratic equation . 95
Fig. 7.1 Königsberg Seven Bridges Problem . 120
Fig. 7.2 Königsberg graph . 120
Fig. 7.3 Undirected graph . 121
Fig. 7.4 Directed graph . 121
Fig. 7.5 Adjacency matrix . 122
Fig. 7.6 Incidence matrix . 123
Fig. 7.7 Travelling salesman problem . 125
Fig. 7.8 Binary tree . 127
Fig. 7.9 Determining the chromatic colour of G . 129
Fig. 7.10 Chromatic colouring of G . 129
Fig. 9.1 Zeno of Citium . 147

xxxi

xxxii List of Figures

Fig. 9.2 Gottlob Frege . 149
Fig. 10.1 Gerhard Gentzen . 165
Fig. 11.1 Conjunction and disjunction operators . 187
Fig. 11.2 Implication and equivalence operators . 188
Fig. 11.3 Negation . 188
Fig. 11.4 Finding index in array . 189
Fig. 11.5 Edsger Dijkstra. Courtesy of Brian Randell 190
Fig. 11.6 John McCarthy. Courtesy of John McCarthy 192
Fig. 12.1 Noah Chomsky. Public domain . 201
Fig. 12.2 Parse tree 5 ×3 + 1 . 204
Fig. 12.3 Parse tree 5 ×3 + 1 . 204
Fig. 12.4 Denotational semantics . 209
Fig. 12.5 Pictorial representation of a partial order . 212
Fig. 12.6 Pictorial representation of a complete lattice 214
Fig. 13.1 Finite-state machine with output . 221
Fig. 13.2 Deterministic FSM . 221
Fig. 13.3 Non-deterministic finite-state machine . 222
Fig. 13.4 Components of pushdown automata . 223
Fig. 13.5 Transition in pushdown automata . 224
Fig. 13.6 Transition function for pushdown automata M 225
Fig. 13.7 Turing machine . 226
Fig. 13.8 Transition on turing machine . 227
Fig. 14.1 David Hilbert . 231
Fig. 14.2 Kurt Gödel . 234
Fig. 14.3 Alonzo Church . 235
Fig. 17.1 Specification of positive square root . 278
Fig. 17.2 Specification of a library system . 279
Fig. 17.3 Specification of borrow operation . 279
Fig. 17.4 Specification of vending machine using bags 286
Fig. 17.5 Schema inclusion . 287
Fig. 17.6 Merging schemas (S1 ∨ S2) . 287
Fig. 17.7 Schema composition . 289
Fig. 17.8 Refinement commuting diagram . 290
Fig. 18.1 Concept of model checking . 297
Fig. 18.2 Model checking . 297
Fig. 18.3 Simple transition system . 299
Fig. 18.4 LTL operators . 301
Fig. 19.1 Idea of automated theorem proving . 307
Fig. 20.1 The Enigma machine . 317
Fig. 20.2 Bletchley park . 318
Fig. 20.3 Alan Turing . 318
Fig. 20.4 Replica of bombe . 319
Fig. 20.5 Symmetric key cryptosystem . 321
Fig. 20.6 Public key cryptosystem . 326
Fig. 21.1 Basic digital communication . 332

List of Figures xxxiii

Fig. 21.2 Encoding and decoding of an (n,k) block . 335
Fig. 21.3 Error-correcting capability sphere . 337
Fig. 21.4 Generator matrix . 338
Fig. 21.5 Generation of codewords . 339
Fig. 21.6 Identity matrix (k × k) . 339
Fig. 21.7 Hamming code B(7, 4, 3) generator matrix 340
Fig. 22.1 Raw salary data . 349
Fig. 22.2 Bar chart of salary data . 350
Fig. 22.3 Histogram test results . 351
Fig. 22.4 Pie chart test results . 351
Fig. 22.5 Monthly sales and profit . 352
Fig. 22.6 Symmetric distribution . 355
Fig. 22.7 Strong positive correlation . 357
Fig. 22.8 Strong negative correlation . 358
Fig. 22.9 Regression line . 359
Fig. 23.1 Binomial distribution . 374
Fig. 23.2 Carl Friedrich Gauss . 375
Fig. 23.3 Standard normal bell curve (Gaussian distribution) 376
Fig. 25.1 Limit of a function . 400
Fig. 25.2 Derivative as a tangent to curve . 400
Fig. 25.3 Interpretation of mean value theorem . 401
Fig. 25.4 Interpretation of intermediate value theorem 402
Fig. 25.5 Isaac Newton . 404
Fig. 25.6 Wilhelm Gottfried Leibniz . 404
Fig. 25.7 Local minima and maxima . 406
Fig. 25.8 Area under the curve . 409
Fig. 25.9 Area under the curves—lower sum . 409
Fig. 27.1 Example of a 4×4 square matrix . 426
Fig. 27.2 Multiplication of two matrices . 430
Fig. 27.3 Identity matrix In . 430
Fig. 27.4 Transpose of a matrix . 431
Fig. 27.5 Determining the (i, j) minor of A . 432
Fig. 28.1 Argand diagram . 438
Fig. 28.2 Interpretation of complex conjugate . 440
Fig. 28.3 Interpretation of Eulers’ formula . 441
Fig. 28.4 William Rowan Hamilton . 446
Fig. 28.5 Plaque at Broom’s Bridge . 446
Fig. 28.6 Quaternions and Rotations . 452
Fig. 29.1 The Vector (a,b) in Euclidean Plane . 457
Fig. 30.1 Equivalent weights . 475
Fig. 30.2 Loan or mortgage . 482
Fig. 31.1 Linear programming—developing a graphical solution 492
Fig. 31.2 Feasible region of solution . 493
Fig. 31.3 Optimal solution . 493
Fig. 31.4 Breakeven point . 496

xxxiv List of Figures

Fig. 32.1 Excel spreadsheet screenshot. Used with permission
of Microsoft . 504

Fig. 32.2 Maple user interface. Creative commons . 507
Fig. 32.3 Minitab screenshot. Created by and used with permission

of Minitab LLC . 508
Fig. 32.4 RStudio . 509
Fig. 32.5 Mathematica in operation. Provided courtesy

of Wolfram Research, Inc., the makers of Mathematica,
www.wolfram.com . 511

Fig. 32.6 Surface generated with RevolutionPlot3D. Provided
courtesy of Wolfram Research, Inc., the makers
of Mathematica, www.wolfram.com . 511

List of Tables

Table 2.1 Appropriate mathematics in software engineering 34
Table 3.1 Percentage, decimal, and fraction . 55
Table 5.1 Table of values for quadratic equation . 95
Table 9.1 Types of syllogistic premises . 143
Table 9.2 Forms of syllogistic premises . 143
Table 9.3 Fallacies in arguments . 146
Table 10.1 Truth table for formula W . 155
Table 10.2 Conjunction . 156
Table 10.3 Disjunction . 156
Table 10.4 Implication . 156
Table 10.5 Equivalence . 157
Table 10.6 Not operation . 157
Table 10.7 Truth table for W (P,Q,R) . 157
Table 10.8 Tautology B ∨ ¬B . 159
Table 10.9 Proof of argument with a truth table . 161
Table 10.10 Logical equivalence of two WFFs . 162
Table 10.11 Logical implication of two WFFs . 162
Table 10.12 Rules of semantic tableaux . 163
Table 10.13 Natural deduction rules . 166
Table 10.14 Extra rules of semantic tableaux (for predicate calculus) 176
Table 11.1 Examples of Parnas evaluation of undefinedness 189
Table 11.2 Example of undefinedness in array . 189
Table 11.3 a cand b . 190
Table 11.4 a cor b . 191
Table 12.1 Chomsky hierarchy of grammars . 201
Table 12.2 Programming language semantics . 206
Table 13.1 State transition table . 222
Table 15.1 Adam’s 1984 study of software failures of IBM

products . 244
Table 15.2 New and old version of software . 245
Table 15.3 Cleanroom results in IBM . 246
Table 15.4 Characteristics of good software reliability model 247

xxxv

xxxvi List of Tables

Table 15.5 Software reliability models . 248
Table 15.6 Dimensions of dependability . 249
Table 16.1 Criticisms of formal methods . 258
Table 16.2 Parnas’s contributions to software engineering 272
Table 17.1 Schema composition . 288
Table 18.1 Model-checking process . 296
Table 18.2 Basic temporal operators . 301
Table 18.3 CTL temporal operators . 302
Table 19.1 Selection of theorem provers . 313
Table 20.1 Notation in cryptography . 320
Table 20.2 Advantages and disadvantages of symmetric key

systems . 322
Table 20.3 DES encryption . 325
Table 20.4 Public key encryption system . 326
Table 20.5 Advantages and disadvantages of public key

cryptosystems . 327
Table 20.6 Steps for A to send secure message and signature to B 329
Table 22.1 Sampling techniques . 348
Table 22.2 Types of survey . 348
Table 22.3 Frequency table of salary data . 350
Table 22.4 Frequency table—test results . 351
Table 22.5 Monthly sales and profit . 352
Table 22.6 Cost of maintenance of printers . 358
Table 22.7 Methods to obtain regression line . 360
Table 22.8 Hypothesis testing . 360
Table 23.1 Axioms of probability . 368
Table 23.2 Probability distributions . 381
Table 23.3 Probability of survival . 382
Table 24.1 Some reasons for data collection . 389
Table 24.2 Types of data analytics . 392
Table 24.3 Sources of data . 396
Table 24.4 Mathematics in data analytics . 397
Table 25.1 Rules of differentiation . 405
Table 25.2 Rules of integration . 408
Table 25.3 Properties of definite integral . 410
Table 25.4 Fundamental theorems of integral calculus 411
Table 26.1 Orthogonality properties of sine and cosine 420
Table 28.1 Operations on Complex Numbers . 439
Table 28.2 Basic quaternion multiplication . 448
Table 30.1 Calculation of compound interest . 471
Table 30.2 Calculation of future value of annuity . 478
Table 30.3 Calculation of present value of annuity . 479
Table 31.1 Models used in operations research . 489
Table 31.2 Square deal furniture . 491
Table 31.3 Projected profit or loss per volume . 495

List of Tables xxxvii

Table 31.4 Revenue and costs . 496
Table 31.5 Network viewing figures . 498
Table 31.6 Outcomes in prisoners’ dilemma . 500
Table 32.1 Software for business mathematics . 504

1Fundamentals of Software
Engineering

Key Topics

Standish Chaos Report

Software Lifecycles

Waterfall Model

Spiral Model

Rational Unified Process

Agile Development

Software Inspections

Software Testing

Project Management

1.1 Introduction

The approach to software development in the 1950s and 1960s has been described
as the “Mongolian Hordes Approach” by Brooks [1].1 The “method” or lack of
method was applied to projects that were running late, and it involved adding
many inexperienced programmers to the project, with the expectation that this
would allow the project schedule to be recovered. However, this approach was

1 The “Mongolian Hordes” management myth is the belief that adding more programmers to a soft-
ware project that is running late will allow catch-up. In fact, as Brooks says adding people to a late
software project makes it later.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_1

2 1 Fundamentals of Software Engineering

deeply flawed as it led to programmers with inadequate knowledge of the project
attempting to solve problems, and they inevitably required significant time from
the other project team members.

This resulted in the project being delivered even later, as well as subsequent
problems with quality (i.e., the approach of throwing people at a problem does
not work). The philosophy of software development back in the 1950/60s was
characterized by:

The completed code will always be full of defects.
The coding should be finished quickly to correct these defects.
Design as you code approach.

This philosophy accepted defeat in software development, and suggested that
irrespective of a solid engineering approach, that the completed software would
always contain lots of defects, and that it therefore made sense to code as quickly
as possible, and to then identify the defects that were present, and to correct them
as quickly as possible to solve a problem.

In the late 1960s it was clear that the existing approaches to software devel-
opment were deeply flawed, and that there was an urgent need for change. The
NATO Science Committee organized two famous conferences to discuss critical
issues in software development [2]. The first conference was held at Garmisch,
Germany, in 1968, and it was followed by a second conference in Rome in 1969.
Over 50 people from 11 countries attended the Garmisch conference, including
Edsger Djkstra, who did important theoretical work on formal specification and
verification. The NATO conferences highlighted problems that existed in the soft-
ware sector in the late 1960s, and the term “software crisis” was coined to refer
to these. There were problems with budget and schedule overruns, as well as the
quality and reliability of the delivered software.

The conference led to the birth of software engineering as a discipline in its
own right, and the realization that programming is quite distinct from science and
mathematics. Programmers are like engineers in that they build software products,
and they therefore need education in traditional engineering as well as the latest
technologies. The education of a classical engineer includes product design and
mathematics. However, often computer science education places an emphasis on
the latest technologies, rather than on the important engineering foundations of
designing and building high-quality products that are safe for the public to use.

Programmers therefore need to learn the key engineering skills to enable them
to build products that are safe for the public to use. This includes a solid founda-
tion on design and on the mathematics required for building safe software products.
Mathematics plays a key role in classical engineering, and in some situations, it
may also assist software engineers in the delivery of high-quality software prod-
ucts. Several mathematical approaches to assist software engineers are described
in [3].

1.1 Introduction 3

Fig. 1.1 Standish report—results of 1995 and 2009 survey

There are parallels between the software crisis in the late 1960s, and serious
problems with bridge construction in the nineteenth century. Several bridges col-
lapsed, or were delivered late or over-budget, since people involved in their design
and construction did not have the required engineering knowledge. This led to
bridges that were poorly designed and constructed, leading to their collapse and
loss of life, as well as endangering the lives of the public.

This led to legislation requiring engineers to be licensed by the Professional
Engineering Association prior to practicing as engineers. This organization spec-
ified a core body of knowledge that the engineer is required to possess, and the
licensing body verifies that the engineer has the required qualifications and expe-
rience. This helps to ensure that only personnel competent to design and build
products do so. Engineers have a professional responsibility to ensure that the
products are properly built and are safe for the public to use.

The Standish group has conducted research (Fig. 1.1) on the extent of prob-
lems with IT projects since the mid-1990s. These studies were conducted in the
USA, but there is no reason to believe that European or Asian companies per-
form any better. The results indicate serious problems with on-time delivery of
projects, and projects being cancelled prior to completion.2 However, the compar-
ison between 1995 and 2009 suggests that there have been some improvements
with a greater percentage of projects being delivered successfully, and a reduction
in the percentage of projects being cancelled.

Fred Brooks argues that software is inherently complex, and that there is no
silver bullet that will resolve all the problems associated with software develop-
ment such as schedule or budget overruns [1, 4]. Poor software quality can lead to

2 These are IT projects covering diverse sectors including banking, telecommunications, etc., rather
than pure software companies. Software companies following maturity frameworks such as the
CMMI generally achieve more consistent results.

4 1 Fundamentals of Software Engineering

defects in the software that may adversely impact the customer, and even lead to
loss of life. It is therefore essential that software development organizations place
sufficient emphasis on quality throughout the software development process.

The Y2K problem was caused by a two-digit representation of dates, and it
required major rework to enable legacy software to function for the new millen-
nium. Clearly, well-designed programs would have hidden the representation of
the date, which would have required minimal changes for year 2000 compliance.
Instead, companies spent vast sums of money to rectify the problem.

The quality of software produced by some companies is impressive.3 These
companies employ mature software processes and are committed to continuous
improvement. There is a lot of industrial interest in software process maturity
models for software organizations, and various approaches to assess and mature
software companies are described in [5, 6].4 These models focus on improving the
effectiveness of the management, engineering and organization practices related
to software engineering, and in introducing best practice in software engineering.
The disciplined use of the mature software processes by the software engineers
enables high-quality software to be consistently produced.

1.2 What Is Software Engineering?

Software engineering involves the multiperson construction of multiversion pro-
grams. The IEEE 610.12 definition of Software Engineering is:

Software engineering is the application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software; that is, the application of
engineering to software, and the study of such approaches.

Software engineering includes:

1. Methodologies to design, develop, and test software to meet customers’ needs.
2. Software is engineered. That is, the software products are properly designed,

developed, and tested in accordance with engineering principles.
3. Quality and safety are properly addressed.
4. Mathematics may be employed to assist with the design and verification of

software products. The level of mathematics employed will depend on the safety

3 I recall projects at Motorola that regularly achieved 5.6 σ-quality in a L4 CMM environment (i.e.,
approx. 20 defects per million lines of code. This represents very high quality).
4 Approaches such as the CMM or SPICE (ISO 15504) focus mainly on the management and
organizational practices required in software engineering. The emphasis is on defining software
processes that are fit for purpose and consistently following them. The process maturity models
focus on what needs to be done rather how it should be done. This gives the organization the
freedom to choose the appropriate implementation to meet its needs. The models provide useful
information on practices to consider in the implementation.

1.2 What Is Software Engineering? 5

critical nature of the product. Systematic peer reviews and rigorous testing will
often be sufficient to build quality into the software, with heavy mathematical
techniques reserved for safety and security critical software.

5. Sound project management and quality management practices are employed.
6. Support and maintenance of the software is properly addressed.

Software engineering is not just programming. It requires the engineer to
state precisely the requirements that the software product is to satisfy, and then
to produce designs that will meet these requirements. The project needs to be
planned and delivered on time and budget. The requirements must provide a pre-
cise description of the problem to be solved, i.e., it should be evident from the
requirements what is and what is not required.

The requirements need to be rigorously reviewed to ensure that they are stated
clearly and unambiguously and reflect the customer’s needs. The next step is then
to create the design that will solve the problem, and it is essential to validate
the correctness of the design. Next, the software code to implement the design is
written, and peer reviews and software testing are employed to verify and validate
the correctness of the software.

The verification and validation of the design is rigorously performed for safety
critical systems, and it is sometimes appropriate to employ mathematical tech-
niques for these systems. However, it will usually be sufficient to employ peer
reviews or software inspections as these methodologies provide a high degree
of rigour. This may include approaches such as Fagan inspections [7], Gilb
inspections [8], or Prince 2’s approach to quality reviews [9].

The term “engineer” is a title that is awarded on merit in classical engineering.
It is generally applied only to people who have attained the necessary education
and competence to be called engineers, and who base their practice on classi-
cal engineering principles. The title places responsibilities on its holder to behave
professionally and ethically. Often in computer science the term “software engi-
neer” is employed loosely to refer to anyone who builds things, rather than to an
individual with a core set of knowledge, experience, and competence.

Several computer scientists (such as Parnas5) have argued that computer scien-
tists should be educated as engineers to enable them to apply appropriate scientific
principles to their work. They argue that computer scientists should receive a solid
foundation in mathematics and design, to enable them to have the professional
competence to perform as engineers in building high-quality products that are safe
for the public to use. The use of mathematics is an integral part of the engineer’s
work in other engineering disciplines, and so the software engineer should be able
to use mathematics to assist in the modelling or understanding of the behaviour or
properties of the proposed software system.

5 Parnas has made important contributions to computer science. He advocates a solid engineering
approach with the extensive use of classical mathematical techniques in software development. He
also introduced information hiding in the 1970s, which is now a part of object-oriented design.

6 1 Fundamentals of Software Engineering

Software engineers need education6 on specification, design, turning designs
into programs, software inspections, and testing. The education should enable the
software engineer to produce well-structured programs that are fit for purpose.

Parnas has argued that software engineers have responsibilities as professional
engineers.7 They are responsible for designing and implementing high-quality and
reliable software that is safe to use. They are also accountable for their decisions
and actions8 and have a responsibility to object to decisions that violate profes-
sional standards. Engineers are required to behave professionally and ethically with
their clients. The membership of the professional engineering body requires the
member to adhere to the code of ethics9 of the profession. Engineers in other pro-
fessions are licensed, and therefore Parnas argues that a similar licensing approach
be adopted for professional software engineers10 to provide confidence that they
are competent for the assignment. Professional software engineers are required to
follow best practice in software engineering and the defined software processes.11

Many software companies invest heavily in training, as the education and
knowledge of its staff are essential to delivering high-quality products and services.

6 Software companies that are following approaches such as the CMM or ISO 9001 consider the
education and qualification of staff prior to assigning staff to performing specific tasks. The appro-
priate qualifications and experience for the specific role are considered prior to appointing a person
to carry out the role. Many companies are committed to the education and continuous development
of their staff, and on introducing best practice in software engineering into their organization.
7 The ancient Babylonians used the concept of accountability, and they employed a code of laws
(known as the Hammurabi Code) c. 1750 B.C. It included a law that stated that if a house collapsed
and killed the owner then the builder of the house would be executed.
8 However, it is unlikely that an individual programmer would be subject to litigation in the case
of a flaw in a program causing damage or loss of life. A comprehensive disclaimer of responsibil-
ity for problems rather than a guarantee of quality accompanies most software products. Software
engineering is a team-based activity involving many engineers in various parts of the project, and
it would be potentially difficult for an outside party to prove that the cause of a particular problem
is due to the professional negligence of a particular software engineer, as there are many others
involved in the process such as reviewers of documentation and code and the various test groups.
Companies are more likely to be subject to litigation, as a company is legally responsible for the
actions of their employees in the workplace, and a company is a wealthier entity than one of its
employees. The legal aspects of licensing software may protect software companies from litiga-
tion. However, greater legal protection for the customer can be built into the contract between the
supplier and the customer for bespoke-software development.
9 Many software companies have a defined code of ethics that employees are expected to adhere.
Larger companies will wish to project a good corporate image and to be respected worldwide.
10 The British Computer Society (BCS) has introduced a qualification system for computer science
professionals that it used to show that professionals are properly qualified. The most important of
these is the BCS Information Systems Examination Board (ISEB) which allows IT professionals
to be qualified in service management, project management, software testing, and so on.
11 Software companies that are following the CMMI or ISO 9001 standards will employ audits
to verify that the processes and procedures have been followed. Auditors report their findings
to management and the findings are addressed appropriately by the project team and affected
individuals.

1.3 Challenges in Software Engineering 7

Employees receive professional training related to the roles that they are per-
forming, such as project management, software design and development, software
testing, and service management. The fact that the employees are professionally
qualified increases confidence in the ability of the company to deliver high-quality
products and services. A company that pays little attention to the competence and
continuous development of its staff will obtain poor results and suffer a loss of
reputation and market share.

1.3 Challenges in Software Engineering

The challenge in software engineering is to deliver high-quality software on time
and on budget to customers. The research done by the Standish Group was dis-
cussed earlier in this chapter, and the results of their 1998 research (Fig. 1.2) on
project cost overruns in the USA indicated that 33% of projects are between 21
and 50% overestimate, 18% are between 51 and 100% over estimate, and 11% of
projects are between 101 and 200% overestimate.

The accurate estimation of project cost, effort and schedule is a challenge in
software engineering. Therefore, project managers need to determine how good
their estimation process actually is and to make appropriate improvements. The
use of software metrics is an objective way to do this, and improvements in esti-
mation will be evident from a reduced variance between estimated and actual effort
(see Chap. 10). The project manager will determine and report the actual versus
estimated effort and schedule for the project.

Risk management is an important part of project management, and the objective
is to identify potential risks early and throughout the project, and to manage them

Fig. 1.2 Standish 1998 report—estimation accuracy

8 1 Fundamentals of Software Engineering

appropriately. The probability of each risk occurring and its impact is determined,
and the risks are managed during project execution.

Software quality needs to be properly planned to enable the project to deliver a
quality product. Flaws with poor quality software may lead to a negative perception
of the company and may potentially lead to damage to the customer relationship
with a subsequent loss of market share.

There is a strong economic case to building quality into the software, as less
time is spent in reworking defective software. The cost of poor quality (COPQ)
should be measured, and targets set for its reductions. It is important that lessons
are learned during the project and acted upon appropriately. This helps to promote
a culture of continuous improvement.

Several high-profile software failures are discussed in [6]. These include the
millennium bug (Y2K) problem; the floating-point bug in the Intel microprocessor;
the European Space Agency Ariane-5 disaster, and so on. These failures led to
embarrassment for the organizations, as well as the associated cost of replacement
and correction.

The millennium bug was due to the use of two digits to represent dates rather
than four digits. The solution involved finding and analysing all code that that
had a Y2K impact; planning and making the necessary changes; and verifying the
correctness of the changes. The worldwide cost of correcting the millennium bug
is estimated to have been in billions of dollars.

The Intel Corporation was slow to acknowledge the floating-point problem in
its Pentium microprocessor, and in providing adequate information on its impact
to its customers. It incurred a large financial cost in replacing microprocessors for
its customers. The Ariane-5 failure caused major embarrassment and damage to
the credibility of the European Space Agency (ESA). Its maiden flight ended in
failure on 4 June 1996, after a flight time of just 40s.

These failures indicate that quality needs to be carefully considered when
designing and developing software. The effect of software failure may be large
costs to correct the software, loss of credibility of the company, or even loss of
life.

1.4 Software Processes and Lifecycles

Organizations vary by size and complexity, and the processes employed will reflect
the nature of their business. The development of software involves many pro-
cesses such as those for defining requirements; processes for project estimation
and planning; processes for design, implementation, testing, and so on.

It is important that the processes employed are fit for purpose, and a key premise
in the software quality field is that the quality of the resulting software is influenced
by the quality and maturity of the underlying processes, and compliance to them.
Therefore, it is necessary to focus on the quality of the processes as well as the
quality of the resulting software.

1.4 Software Processes and Lifecycles 9

There is, of course, little point in having high-quality processes unless their
use is institutionalized in the organization. That is, all employees need to follow
the processes consistently. This requires that the employees are trained on the
processes, and that process discipline is instilled with an appropriate audit strategy
that ensures compliance to them. Data will be collected to improve the process.
The software process assets in an organization generally consist of:

• A software development policy for the organization
• Process maps that describe the flow of activities
• Procedures and guidelines that describe the processes in more detail
• Checklists to assist with the performance of the process
• Templates for the performance of specific activities (e.g., design, testing)
• Training materials.

The processes employed to develop high-quality software generally include:

• Project Management Process
• Requirements Process
• Design Process
• Coding Process
• Peer Review Process
• Testing Process
• Supplier Selection and Management processes
• Configuration Management Process
• Audit Process
• Measurement Process
• Improvement Process
• Customer Support and Maintenance processes.

The software development process has an associated lifecycle that consists of vari-
ous phases. There are several well-known lifecycles employed such as the waterfall
model [10]; the spiral model [11], the Rational Unified Process [12] and the Agile
methodology [13] which has become popular in recent years. The choice of a
particular software development lifecycle is determined from the needs of the spe-
cific project. The various lifecycles are described in more detail in the following
sections.

1.4.1 Waterfall Lifecycle

The waterfall model (Fig. 1.3) starts with requirements gathering and definition.
It is followed by the system specification (with the functional and non-functional
requirements), the design and implementation of the software, and comprehensive
testing. The testing generally includes unit, system, and user acceptance testing.

10 1 Fundamentals of Software Engineering

Fig. 1.3 Waterfall V lifecycle model

The waterfall model is employed for projects where the requirements can be
identified early in the project lifecycle or are known in advance. We are treating
the waterfall model as the “V” lifecycle model, with the left-hand side of the
“V” detailing requirements, specification, design, and coding and the right-hand
side detailing unit tests, integration tests, system tests, and acceptance testing.
Each phase has entry and exit criteria that must be satisfied before the next phase
commences. There are several variations to the waterfall model.

Many companies employ a set of templates to enable the activities in the vari-
ous phases to be consistently performed. Templates may be employed for project
planning and reporting; requirements definition; design; testing; and so on. These
templates may be based on the IEEE standards or industrial best practice.

1.4.2 Spiral Lifecycles

The spiral model (Fig. 1.4) was developed by Barry Boehm in the 1980s [11],
and it is useful for projects where the requirements are not fully known at project
initiation, or where the requirements evolve as a part of the development lifecycle.
The development proceeds in several spirals, where each spiral typically involves
objectives and an analysis of the risks, updates to the requirements, design, code,
testing, and a user review of the iteration or spiral.

The spiral is, in effect, a reusable prototype with the business analysts and the
customer reviewing the current iteration and providing feedback to the develop-
ment team. The feedback is analysed and used to plan the next iteration. This
approach is often used in joint application development, where the usability and
look and feel of the application is a key concern. This is important in web-
based development and in the development of a graphical user interface (GUI).
The implementation of part of the system helps in gaining a better understanding
of the requirements of the system, and this feeds into subsequent development

1.4 Software Processes and Lifecycles 11

Fig. 1.4 SPIRAL lifecycle model … Public Domain

cycles. The process repeats until the requirements and the software product are
fully complete.

There are several variations of the spiral model including Rapid Applica-
tion Development (RAD); Joint Application Development (JAD) models; and the
Dynamic Systems Development Method (DSDM) model. The Agile methodology
(discussed in Chap. 14) has become popular in recent years, and it employs sprints
(or iterations) of 2–4 weeks duration to implement a number of user stories. A
sample spiral model is shown in Fig. 1.4.

There are other lifecycle models such as the iterative development process that
combines the waterfall and spiral lifecycle model. An overview of Cleanroom is
presented in Chap. 11, and the methodology was developed by Harlan Mills at
IBM. It includes a phase for formal specification, and its approach to software
testing is based on the predicted usage of the software product, which allows a
software reliability measure to be calculated. The Rational Unified Process (RUP)
was developed by Rational, and it is discussed in the next section.

12 1 Fundamentals of Software Engineering

1.4.3 Rational Unified Process

The Rational Unified Process [12] was developed at the Rational Corporation (now
part of IBM) in the late 1990s. It uses the Unified Modelling Language (UML)
as a tool for specification and design, where UML is a visual modelling language
for software systems that provides a means of specifying, constructing, and docu-
menting the object-oriented system. It was developed by James Rumbaugh, Grady
Booch, and Ivar Jacobson, and it facilitates the understanding of the architecture
and complexity of the system.

RUP is use case driven, architecture centric, iterative, and incremental, and
includes cycles, phases, workflows, risk mitigation, quality control, project man-
agement, and configuration control (Fig. 1.5). Software projects may be very
complex, and there are risks that requirements may be incomplete, or that the
interpretation of a requirement may differ between the customer and the project
team. RUP is a way to reduce risk in software engineering.

Requirements are gathered as use cases, where the use cases describe the func-
tional requirements from the point of view of the user of the system. They describe
what the system will do at a high level and ensure that there is an appropriate
focus on the user when defining the scope of the project. Use cases also drive the
development process, as the developers create a series of design and implemen-
tation models that realize the use cases. The developers review each successive
model for conformance to the use-case model, and the test team verifies that the
implementation correctly implements the use cases.

The software architecture concept embodies the most significant static and
dynamic aspects of the system. The architecture grows out of the use cases and fac-
tors such as the platform that the software is to run on, deployment considerations,
legacy systems, and the non-functional requirements.

Fig. 1.5 Rational unified process

1.4 Software Processes and Lifecycles 13

RUP decomposes the work of a large project into smaller slices or mini-projects,
and each mini-project is an iteration that results in an increment to the product. The
iteration consists of one or more steps in the workflow, and generally leads to the
growth of the product. If there is a need to repeat an iteration, then all that is lost
is the misdirected effort of one iteration, rather that the entire product. Another
words, RUP is a way to mitigate risk in software engineering.

1.4.4 Agile Development

There has been a massive growth of popularity among software developers in
lightweight methodologies such as Agile. This is a software development method-
ology that is more responsive to customer needs than traditional methods such as
the waterfall model. The waterfall development model is similar to a wide and slow-
moving value stream, and halfway through the project 100% of the requirements
are typically 50% done. However, for Agile development 50% of requirements are
typically 100% done halfway through the project.

This methodology has a strong collaborative style of working and its approach
includes:

• Aims to achieve a narrow fast flowing value stream
• Feedback and adaptation employed in decision making
• User stories and sprints are employed
• Stories are either done are not done (no such thing as 50% done)
• Iterative and incremental development is employed
• A project is divided into iterations
• An iteration has a fixed length (i.e., time boxing is employed)
• Entire software development lifecycle is employed for the implementation of

each story
• Change is accepted as a normal part of life in the Agile world
• Delivery is made as early as possible
• Maintenance is seen as part of the development process
• Refactoring and evolutionary design employed
• Continuous integration is employed
• Short cycle times
• Emphasis on quality
• Stand-up meetings
• Plan regularly
• Direct interaction preferred over documentation
• Rapid conversion of requirements into working functionality
• Demonstrate value early
• Early decision making.

Ongoing changes to requirements are considered normal in the Agile world, and
it is believed to be more realistic to change requirements regularly throughout
the project rather than attempting to define all the requirements at the start of

14 1 Fundamentals of Software Engineering

the project. The methodology includes controls to manage changes to the require-
ments, and good communication and early regular feedback is an essential part of
the process.

A story may be a new feature or a modification to an existing feature. It is reduced
to the minimum scope that can deliver business value, and a feature may give rise
to several stories. Stories often build upon other stories and the entire software
development lifecycle is employed for the implementation of each story. Stories
are either done or not done, i.e., there is such thing as a story being 80% done. The
story is complete only when it passes its acceptance tests. Stories are prioritized
based on a number of factors including:

• Business value of story
• Mitigation of risk
• Dependencies on other stories.

The scrum approach is an Agile method for managing iterative development, and
it consists of an outline planning phase for the project followed by a set of sprint
cycles (where each cycle develops an increment). Sprint planning is performed
before the start of the iteration, and stories are assigned to the iteration to fill the
available time. Each scrum sprint is of a fixed length (usually 2–4 weeks), and
it develops an increment of the system. The estimates for each story and their
priority are determined, and the prioritized stories are assigned to the iteration.
A short morning stand-up meeting is held daily during the iteration, and attended
by the scrum master, the project manager,12 and the project team. It discusses the
progress made the previous day, problem reporting and tracking, and the work
planned for the day ahead. A separate meeting is held for issues that require more
detailed discussion.

Once the iteration is complete the latest product increment is demonstrated to
an audience including the product owner. This is to receive feedback and to iden-
tify new requirements. The team also conducts a retrospective meeting to identify
what went well and what went poorly during the iteration. This is for continuous
improvement of future iterations. Planning for the next sprint then commences.
The scrum master is a facilitator who arranges the daily meetings and ensures that
the scrum process is followed. The role involves removing roadblocks so that the
team can achieve their goals and communicating with other stakeholders.

Agile employs pair programming and a collaborative style of working with the
philosophy that two heads are better than one. This allows multiple perspectives in
decision making and a broader understanding of the issues.

Software testing is very important and Agile generally employs automated
testing for unit, acceptance, performance, and integration testing. Tests are run
frequently with the goal of catching programming errors early. They are generally

12 Agile teams are self-organizing, and the project manager role is generally not employed for small
projects (< 20 staff).

15

run on a separate build server to ensure that all dependencies are checked. Tests
are rerun before making a release. Agile employs test-driven development with tests
written before the code. The developers write code to make a test pass with ideally
developers only coding against failing tests. This approach forces the developer to
write testable code.

Refactoring is employed in Agile as a design and coding practice. The objective
is to change how the software is written without changing what it does. Refac-
toring is a tool for evolutionary design where the design is regularly evaluated,
and improvements are implemented as they are identified. It helps in improving
the maintainability and readability of the code and in reducing complexity. The
automated test suite is essential in showing that the integrity of the software is
maintained following refactoring.

Continuous integration allows the system to be built with every change. Early
and regular integration allows early feedback to be provided. It also allows all
of the automated tests to be run thereby identifying problems earlier. Agile is
discussed in more detail in Chap. 14 of [14].

1.4.5 Continuous Software Development

Continuous software development is in a sense the successor to Agile and involves
activities such as continuous integration, continuous delivery, continuous testing,
and continuous deployment of the software. Its objective is to enable technology
companies to accelerate the delivery of their products to their customers, thereby
delivering faster business benefits as well as reshaping relationships with their
customers.

Continuous integration is a coding philosophy with an associated set of prac-
tices where each developer submits their work as soon as it is finished, and several
builds may take place during the day in response to the addition of significant
change. The build has an associated set of unit and integration tests that are auto-
mated and are used to verify the integrity of the build, and this ensures that the
addition of the new code is of a high quality. Continuous integration ensures that
the developers receive immediate feedback on the software that they are working
on.

Continuous delivery builds on the activities in continuous integration, where
each code that is added to the build has automated unit and system tests conducted.
Automated functional tests, regression tests, and possibly acceptance tests will be
conducted, and once the automated tests pass the software is sent to a staging
environment for deployment.

Continuous testing allows the test group to continuously test the most up to date
version of the software, and it includes manual testing as well as user acceptance
testing. It differs from conventional testing as the software is expected to change
over time.

Continuous deployment allows changes to be delivered to end users quickly
without human intervention, and it requires the completion of the automated
delivery tests prior to deployment to production.

16 1 Fundamentals of Software Engineering

1.5 Activities in Software Development

There are various activities involved in software development including:

• Requirements Definition
• Design
• Implementation
• Software Testing
• Support and Maintenance

These activities are discussed in the following sections and cover both traditional
software engineering and Agile.

1.5.1 Requirements Definition

The user (business) requirements specify what the customer wants and define what
the software system is required to do (as distinct from how this is to be done). The
requirements are the foundation for the system, and if they are incorrect, then the
implemented system will be incorrect. Prototyping may be employed to assist in
the definition and validation of the requirements. The process of determining the
requirements, analysing, and validating them and managing them throughout the
project lifecycle is termed requirements engineering.

The user requirements are determined from discussions with the customer to
determine their actual needs, and they are then refined into the system requirements,
which state the functional and non-functional requirements of the system. The
specification of the user requirements needs to be unambiguous to ensure that all
parties involved in the development of the system share a common understanding
of what is to be developed and tested.

There is no requirements document as such in Agile, and the product backlog
(i.e., the prioritized list of functionality of the product to be developed) is the
closest to the idea of a requirements document in a traditional project. However,
the written part of a user story in Agile is incomplete until the discussion of that
story takes place. It is often useful to think of the written part of a story as a pointer
to the real requirement, such as a diagram showing a workflow or the formula
for a calculation. The Agile software development methodology argues that as
requirements change so quickly that a requirements document is unnecessary, since
such a document would be out of date as soon as it was written.

Requirements gathering in traditional software engineering involve meetings
with the stakeholders to gather all relevant information for the proposed product.
The stakeholders are interviewed, and requirements workshops conducted to elicit
the requirements from them. An early working system (prototype) is often used to
identify gaps and misunderstandings between developers and users. The prototype
may serve as a basis for writing the specification.

1.5 Activities in Software Development 17

The requirements workshops are used to discuss and prioritize the requirements,
as well as identifying and resolving any conflicting requirements. The collected
information is consolidated into a coherent set of requirements. Changes to the
requirements may occur during the project, and these need to be controlled. It
is essential to understand the impacts (e.g., schedule, budget, and technical) of a
proposed change to the requirements prior to its approval.

Requirements verification is concerned with ensuring that the requirements are
properly implemented (i.e., building it right) in the design and implementation.
Requirements validation is concerned with ensuring that the right requirements are
defined (building the right system), and that they are precise, complete, and reflect
the actual needs of the customer.

The requirements are validated by the stakeholders to ensure that they are those
desired, and to establish their feasibility. This may involve several reviews of the
requirements until all stakeholders are ready to approve the requirements docu-
ment. Other validation activities include reviews of the prototype and the design,
and user acceptance testing.

The requirements for a system are generally documented in a natural language
such as “English”. Other notations that are employed include the visual modelling
language UML [15], and formal specification languages such as VDM or Z for the
safety critical field.

The specification of the system requirements of the product is essentially a
statement of what the software development organization will provide to meet
the business (user) requirements. That is, the detailed business requirements are
a statement of what the customer wants, whereas the specification of the system
requirements is a statement of what will be delivered by the software development
organization.

It is essential that the system requirements are valid with respect to the user
requirements, and they are reviewed by the stakeholders to ensure their valid-
ity. Traceability may be employed to show that the business requirements are
addressed by the system requirements.

There are two categories of system requirements: namely, functional and non-
functional requirements. The functional requirements define the functionality that
is required of the system, and it may include screen shots, report layouts or desired
functionality specified as use cases. The non-functional requirements will generally
include security, reliability, availability, performance, and portability requirements,
as well as usability and maintainability requirements.

1.5.2 Design

The design of the system consists of engineering activities to describe the architec-
ture or structure of the system, as well as activities to describe the algorithms and
functions required to implement the system requirements. It is a creative process
concerned with how the system will be implemented, and its activities include
architecture design, interface design, and data structure design. There are often

18 1 Fundamentals of Software Engineering

several possible design solutions for a particular system, and the designer will
need to decide on the most appropriate solution.

Refactoring is employed in Agile as a design and coding practice. The objective
is to change how the software is written without changing what it does. Refactor-
ing is a tool for evolutionary design where the design is regularly evaluated, and
improvements are implemented as they are identified. It helps in improving the
maintainability and readability of the code and in reducing complexity. The auto-
mated test suite is essential in demonstrating that the integrity of the software is
maintained following refactoring.

The design may be specified in various ways such as graphical notations that
display the relationships between the components making up the design. The
notation may include flow charts, or various UML diagrams such as sequence
diagrams, state charts, and so on. Program description languages or pseudocode
may be employed to define the algorithms and data structures that are the basis
for implementation.

Function-oriented design is historical, and it involves starting with a high-level
view of the system and refining it into a more detailed design. The system state is
centralized and shared between the functions operating on that state.

Object-oriented design is based on the concept of information hiding devel-
oped by Parnas [16]. The system is viewed as a collection of objects rather than
functions, with each object managing its own state information. The system state
is decentralized, and an object is a member of a class. The definition of a class
includes attributes and operations on class members, and these may be inherited
from super classes. Objects communicate by exchanging messages

It is essential to verify and validate the design with respect to the system
requirements, and this may be done by traceability of the design to the system
requirements and design reviews.

1.5.3 Implementation

This phase is concerned with implementing the design in the target language and
environment (e.g., C++ or Java), and it involves writing or generating the actual
code. The development team divides up the work to be done, with each program-
mer responsible for one or more modules. The coding activities often include code
reviews or walkthroughs to ensure that quality code is produced, and to verify its
correctness. The code reviews will verify that the source code conforms to the cod-
ing standards and that maintainability issues are addressed. They will also verify
that the code produced is a valid implementation of the software design.

The development of a new feature in Agile begins with writing a suite of test
cases based on the requirements for the feature. The tests fail initially, and so the
first step is to write some code that enables the new test cases to pass. This new
code may be imperfect (it will be improved later). The next step is to ensure that
the new feature works with the existing features, and this involves executing all
new and existing test cases.

1.5 Activities in Software Development 19

This may involve modification of the source code to enable all of the tests
to pass and to ensure that all features work correctly together. The final step is
refactoring the code, and this involves cleaning up and restructuring the code,
and improving its structure and readability. The test cases are rerun during the
refactoring to ensure that the functionality is not altered in any way. The process
repeats with the addition of each new feature.

Software reuse provides a way to speed up the development process. Compo-
nents or objects that may be reused need to be identified and handled accordingly.
The implemented code may use software components that have either being devel-
oped internally or purchased off the shelf. Open-source software has become
popular in recent years, and it allows software developed by others to be used
(under an open-source license) in the development of applications.

The benefits of software reuse include increased productivity and a faster time
to market. There are inherent risks with customized-off-the shelf (COTS) software,
as the supplier may decide to no longer support the software, or there is no guar-
antee that software that has worked successfully in one domain will work correctly
in a different domain. It is therefore important to consider the risks as well as the
benefits of software reuse and open-source software.

1.5.4 Software Testing

Software testing is employed to verify that the requirements have been correctly
implemented, and that the software is fit for purpose, as well as identifying defects
present in the software. There are various types of testing that may be conducted
including unit testing, integration testing, system testing, performance testing, and
user acceptance testing. These are described below:

Unit and Integration Testing
Unit testing is performed by the programmer on the completed unit (or module)
and prior to its integration with other modules. The programmer writes these tests,
and the objective is to show that the code satisfies the design. The unit test case
is generally documented, and it should include the test objective and the expected
results.

Code coverage and branch coverage metrics are often generated to give an
indication of how comprehensive the unit testing has been. These metrics provide
visibility into the number of lines of code executed, as well as the branches cov-
ered during unit testing. The developer executes the unit tests; records the results;
corrects any identified defects, and retests the software.

Test driven development (TDD) is employed in the Agile world, and this
involves writing the unit test cases (and possibly other test cases) before the code,
and the code is then written to pass the defined test cases. These tests are automated
in the Agile world and are run with every build.

Integration testing is performed on the integrated system once all of the indi-
vidual units work correctly in isolation. The objective is to verify that all of the

20 1 Fundamentals of Software Engineering

modules and their interfaces work correctly together, and to identify and resolve
any issues. Modules that work correctly in isolation may fail when integrated with
other modules. The developers generally perform this type of testing. These tests
are automated in the Agile world.

System and Performance Testing
The purpose of system testing is to verify that the implementation is valid with
respect to the system requirements. It involves the specification of system test
cases, and the execution of the test cases will verify that the system requirements
have been correctly implemented. An independent test group generally conducts
this type of testing, and the system tests are traceable to the system requirements.

The purpose of performance testing is to ensure that the performance of the
system satisfies the non-functional requirements. It may include load performance
testing, where the system is subjected to heavy loads over a long period of time,
and stress testing, where the system is subjected to heavy loads during a short time
interval. Performance testing often involves the simulation of many users using the
system and involves measuring the response times for various activities.

Any system requirements that have been incorrectly implemented will be iden-
tified, and defects logged and reported to the developers. System testing may also
include security and usability testing. The preparation of the test environment may
involve ordering special hardware and tools, and needs to be set up early in the
project.

User Acceptance Testing
UAT testing is usually performed under controlled conditions at the customer site,
and its operation will closely resemble the real-life behaviour of the system. The
customer will see the product in operation and will judge whether the system is fit
for purpose. The objective is to demonstrate that the product satisfies the business
requirements and meets the customer expectations. Upon its successful completion
the customer is happy to accept the product.

1.5.5 Support and Maintenance

Software systems often have a long lifetime, and the software needs to be continu-
ously enhanced over its lifetime to meet the evolving needs of the customers. This
may involve regular new releases with new functionality and corrections to known
defects.

Any problems that the customer identifies with the software are reported as per
the customer support and maintenance agreement. The support issues will require
investigation, and the issue may be a defect in the software, an enhancement to the
software, or due to a misunderstanding. An appropriate solution is implemented to
resolve, and testing is conducted to verify that the solution is correct, and that the
changes made have not adversely affected other parts of the system. A postmortem

1.6 Software Inspections 21

may be conducted to learn lessons from the defect,13 and to take corrective action
to prevent a reoccurrence.

The goal of building a correct and reliable software product the first time is
difficult to achieve, and the customer is always likely to find some issues with the
released software product. It is accepted today that quality needs to be built into
each step in the development process, with the role of software inspections and
testing to identify as many defects as possible prior to release and minimize the
risk that serious defects will be found postrelease.

The effective in-phase inspections of the deliverables will influence the quality
of the resulting software and lead to a corresponding reduction in the number of
defects. The testing group plays a key role in verifying that the system is cor-
rect, and in providing confidence that the software is fit for purpose and ready to
be released. The approach to software correctness involves testing and retesting,
until the testing group believe that all defects have been eliminated. Dijkstra [17]
comments on testing are well-known:

Testing a program demonstrates that it contains errors, never that it is correct.

That is, irrespective of the amount of time spent testing, it can never be said
with absolute confidence that all defects have been found in the software. Testing
provides increased confidence that the program is correct, and statistical techniques
may be employed to give a measure of the software reliability.

Some mature organizations have a quality objective of three defects per million
lines of code, which was introduced by Motorola as part of its six-sigma (6σ) pro-
gram. It was originally applied it to its manufacturing businesses and subsequently
applied to its software organizations. The goal is to reduce variability in manufac-
turing processes and to ensure that the processes performed within strict process
control limits.

1.6 Software Inspections

Software inspections are used to build quality into software products. There are
a number of well-known approaches such as the Fagan Methodology [7]; Gilb’s
approach [8]; and Prince 2’s approach.

Fagan inspections were developed by Michael Fagan of IBM. It is a seven-step
process that identifies and removes errors in work products. The process mandates
that requirement documents, design documents, source code, and test plans are

13 This is essential for serious defects that have caused significant inconvenience to customers (e.g.,
a major telecom outage). The software development organization will wish to learn lessons to
determine what went wrong in its processes that prevented the defect from been identified during
peer reviews and testing. Actions to prevent a reoccurrence will be identified and implemented.

22 1 Fundamentals of Software Engineering

all formally inspected by experts independent of the author of the deliverable to
ensure quality.

There are various roles defined in the process including the moderator who
chairs the inspection. The reader’s responsibility is to read or paraphrase the deliv-
erable, and the author is the creator of the deliverable and has a special interest in
ensuring that it is correct. The tester role is concerned with the test viewpoint.

The inspection process will consider whether the design is correct with respect
to the requirements, and whether the source code is correct with respect to
the design. Software inspections play an important role in building quality into
software and in reducing the cost of poor quality in the organization.

1.7 Software Project Management

The timely delivery of quality software requires good management and engineering
processes. Software projects have a history of being delivered late or over budget,
and good project management practices include the following activities:

• Estimation of cost, effort, and schedule for the project
• Identifying and managing risks
• Preparing the project plan
• Preparing the initial project schedule and key milestones
• Obtaining approval for the project plan and schedule
• Staffing the project
• Monitoring progress, budget, schedule, effort, risks, issues, change requests,

and quality
• Taking corrective action
• Replanning and rescheduling
• Communicating progress to affected stakeholders
• Preparing status reports and presentations.

The project plan will contain or reference several other plans such as the project
quality plan; the communication plan; the configuration management plan; and the
test plan.

Project estimation and scheduling are difficult as often software projects are
breaking new ground and may differ from previous projects. That is, previous
estimates may often not be a good basis for estimation for the current project.
Often, unanticipated problems can arise for technically advanced projects, and the
estimates may often be optimistic. Gantt charts are often employed for project
scheduling, and these show the work breakdown for the project, as well as task
dependencies and allocation of staff to the various tasks.

1.8 CMMI Maturity Model 23

The effective management of risk during a project is essential to project suc-
cess. Risks arise due to uncertainty and the risk management cycle involves14 risk
identification; risk analysis and evaluation; identifying responses to risks; select-
ing and planning a response to the risk; and risk monitoring. The risks are logged,
and the likelihood of each risk arising, and its impact is then determined. The risk
is assigned an owner and an appropriate response to the risk determined. Project
management is discussed in more detail in Chap. 4 of [14].

1.8 CMMI Maturity Model

The CMMI is a framework to assist an organization in the implementation of best
practice in software and systems engineering. It is an internationally recognized
model for software process improvement and assessment and is used worldwide
by thousands of organizations. It provides a solid engineering approach to the
development of software, and it supports the definition of high-quality processes
for the various software engineering and management activities.

It was developed by the Software Engineering Institute (SEI) who adapted the
process improvement principles used in the manufacturing field to the software
field. They developed the original CMM model and its successor the CMMI. The
CMMI states what the organization needs to do to mature its processes rather than
how this should be done.

The CMMI consists of five maturity levels with each maturity level consist-
ing of several process areas. Each process area consists of a set of goals, and
these goals are implemented by practices related to that process area. Level two is
focused on management practices; level three is focused on engineering and orga-
nization practices; level four is concerned with ensuring that key processes are
performing within strict quantitative limits; and level five is concerned with con-
tinuous process improvement. Maturity levels may not be skipped in the staged
representation of the CMMI, as each maturity level is the foundation for the
next level. The CMMI and Agile are compatible, and CMMI v1.3 supports Agile
software development.

The CMMI allows organizations to benchmark themselves against other orga-
nizations. This is done by a formal SCAMPI appraisal conducted by an authorized
lead appraiser. The results of the appraisal are generally reported back to the SEI,
and there is a strict qualification process to become an authorized lead appraiser.
An appraisal is useful in verifying that an organization has improved, and it enables
the organization to prioritize improvements for the next improvement cycle. The
CMMI is discussed in more detail in Chap. 20 of [14].

14 These are the risk management activities in the Prince2 methodology.

24 1 Fundamentals of Software Engineering

1.9 Formal Methods

Dijkstra and Hoare have argued that the way to develop correct software is to
derive the program from its specifications using mathematics, and to employ math-
ematical proof to demonstrate its correctness with respect to the specification. This
offers a rigorous framework to develop programs adhering to the highest qual-
ity constraints. However, in practice mathematical techniques have proved to be
cumbersome to use, and their widespread use in industry is unlikely at this time.

The safety–critical area is one domain to which mathematical techniques have
been successfully applied. There is a need for extra rigour in the safety and secu-
rity critical fields, and mathematical techniques can demonstrate the presence or
absence of certain desirable or undesirable properties (e.g., “when a train is in a
level crossing, then the gate is closed”).

Spivey [18] defines a “formal specification” as the use of mathematical notation
to describe in a precise way the properties which an information system must
have, without unduly constraining the way in which these properties are achieved.
It describes what the system must do, as distinct from how it is to be done. This
abstraction away from implementation enables questions about what the system
does to be answered, independently of the detailed code. Further, the unambiguous
nature of mathematical notation avoids the problem of ambiguity in an imprecisely
worded natural language description of a system.

The formal specification thus becomes the key reference point for the differ-
ent parties concerned with the construction of the system and is a useful way of
promoting a common understanding for all those concerned with the system. The
term “formal methods” is used to describe a formal specification language, and a
method for the design and implementation of computer systems.

The specification is written precisely in a mathematical language. The deriva-
tion of an implementation from the specification may be achieved via stepwise
refinement. Each refinement step makes the specification more concrete and closer
to the actual implementation. There is an associated proof obligation that the refine-
ment be valid, and that the concrete state preserves the properties of the more
abstract state. Thus, assuming the original specification is correct and the proofs
of correctness of each refinement step are valid, then there is a very high degree
of confidence in the correctness of the implemented software.

Formal methods have been applied to a diverse range of applications, including
circuit design, artificial intelligence, specification of standards, specification and
verification of programs, etc. They are described in more detail in Chap. 16.

1.10 Review Questions

1. Discuss the research results of the Standish Group the current state of IT
project delivery?

References 25

2. What are the main challenges in software engineering?
3. Describe various software lifecycles such as the waterfall model and the

spiral model.
4. Discuss the benefits of Agile over conventional approaches. List any risks

and disadvantages?
5. Describe the purpose of the CMMI? What are the benefits?
6. Describe the main activities in software inspections.
7. Describe the main activities in software testing.
8. Describe the main activities in project management?
9. What are the advantages and disadvantages of formal methods?

1.11 Summary

The birth of software engineering was at the NATO conference held in 1968 in
Germany. This conference highlighted the problems that existed in the software
sector in the late 1960s, and the term “software crisis” was coined to refer to
these. The conference led to the realization that programming is quite distinct
from science and mathematics, and that software engineers need to be properly
trained to enable them to build high-quality products that are safe to use.

The Standish group conducts research on the extent of problems with the deliv-
ery of projects on time and budget. Their research indicates that it remains a
challenge to deliver projects on time, on budget and with the right quality.

Programmers are like engineers in the sense that they build products. Therefore,
programmers need to receive an appropriate education in engineering as part of
their training. The education of traditional engineers includes training on product
design and an appropriate level of mathematics.

Software engineering involves multiperson construction of multiversion pro-
grams. It is a systematic approach to the development and maintenance of the
software, and it requires a precise statement of the requirements of the software
product, and then the design and development of a solution to meet these require-
ments. It includes methodologies to design, develop, implement, and test software
as well as sound project management, quality management, and configuration man-
agement practices. Support and maintenance of the software need to be properly
addressed.

Software process maturity models such as the CMMI have become popular in
recent years. They place an emphasis on understanding and improving the software
process to enable software engineers to be more effective in their work.

References

1. Brooks F (1975) The mythical man month. Addison Wesley
2. Naur P, Randell B (1975) Software engineering. Petrocelli. IN. Buxton. Report on two NATO

conferences held in Garmisch, Germany (October 1968) and Rome, Italy (October 1969)

26 1 Fundamentals of Software Engineering

3. O’Regan G (2006) Mathematical approaches to software quality. Springer
4. Brooks F (1986) No silver bullet. Essence and accidents of software engineering. Information

processing. Elsevier, Amsterdam
5. O’Regan G (2010) Introduction to software process improvement. Springer
6. O’Regan G (2014) Introduction to software quality. Springer Verlag
7. Fagan M (1976) Design and code inspections to reduce errors in software development. IBM

Syst J 15(3)
8. Gilb T, Graham D (1994) Software inspections. Addison Wesley
9. (2004) Managing successful projects with PRINCE2. Office of Government Commerce, UK
10. Royce W (1970) The software lifecycle model (waterfall model). In: Proceedings of WEST-

CON
11. Boehm B (1988) A spiral model for software development and enhancement. Computer
12. Rumbaugh J et al (1999) The unified software development process. Addison Wesley
13. Alliance A, Manifesto for Agile software development. http://agilemanifesto.org
14. O’Regan G (2022) Concise guide to software engineerin (2nd edn). Springer
15. Jacobson I, Booch G, Rumbaugh J (1999) The unified software modelling language user guide.

Addison-Wesley
16. Parnas D (1972) On the criteria to be used in decomposing systems into modules. Commun

ACM 15(12).
17. Dijkstra EW (1972) Structured programming. Academic
18. Spivey JM (1992) The Z notation. A reference manual. Prentice Hall International Series in

Computer Science

http://agilemanifesto.org

2Software Engineering Mathematics

Key Topics

Software Engineering Mathematics

Floyd

Hoare

Formal Methods

2.1 Introduction

The computer sector in the 1960s was dominated by several large mainframe com-
puter manufacturers. Computers were large, expensive and difficult to use for a
non-specialist. The software used on the mainframes of the 1960s was proprietary,
and the hardware of manufacturers was generally incompatible with one another.
It was usually necessary to rewrite all existing software application programs for
a new computer if a business decided to change to a new manufacturer or upgrade
to a more powerful machine from its existing manufacturer.

Software projects tended to be written once off for specific customers, and
large projects were often characterized by under estimation and over expectations.
There was a very small independent software sector in the 1960s, with software
and training included as part of the computer hardware delivered to the customers.
IBM’s dominant position in the market led to antitrust inquiries by the US Justice
Department, and this led IBM to “unbundle” its software and services from its
hardware sales. It then began charging separately for software, training and hard-
ware, and this led to the creation of a multi-billion-dollar software industry, and
to a major growth of software suppliers.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_2

28 2 Software Engineering Mathematics

We discussed the two NATO conferences in the late 1960s that led to the birth
of software engineering as a discipline in its own right (see Chap. 1), and the
realization that programming is quite different from science and mathematics.
Mathematics may be employed to assist with the design and verification of soft-
ware products. However, the level of mathematics employed will depend on the
safety critical nature of the product, as systematic peer reviews and testing are
often sufficient.

Software engineers today work in many different domains such as telecom-
munications field; the banking and insurance fields; the general software sector;
utilities; the medical device field; and the pharmaceutical sector. There is special-
ized knowledge required for each field and the consequence of a software failure
varies between these fields (e.g., the defective software of the Therac-25 radiation
machine led to several fatalities [1]).

It is essential that the software engineer has the required education and knowl-
edge to perform his/her role effectively, and this includes knowledge of best
practice in software engineering as well as the specialized knowledge required for
the specific field that the software engineer is working in. The software engineer’s
education provides the necessary foundation in software engineering, but this will
generally be supplemented with specific training for that sector on commencing
employment.

Software engineering requires the engineer to state precisely the requirements
that the software product is to satisfy, and then to produce designs that will meet
these requirements. Engineers provide a precise description of the problem to be
solved; they then proceed to producing a design and validating its correctness;
finally, the design is implemented and testing is performed to verify the correctness
of the implementation with respect to the requirements. The software requirements
needs to be unambiguous and should clearly state what is and what is not required.

Classical engineers produce the product design and then analyse their design for
correctness. They use mathematics in their analysis, as this is the basis of confirm-
ing that the specifications are met. The level of mathematics employed will depend
on the particular application and calculations involved. The term “engineer” is
generally applied only to people who have attained the necessary education and
competence to be called engineers, and who base their practice on mathematical
and scientific principles. Often in computer science the term engineer is employed
rather loosely to refer to anyone who builds things, rather than to an individual
with a core set of knowledge, experience, and competence.

Parnas argues that computer scientists should have the right education to apply
scientific and mathematical principles to their work. This includes mathematics
and design, to enable them to be able to build high-quality and safe products.
He advocates a solid engineering approach to the teaching of mathematics with an
emphasis on its application to developing and analysing product designs. He argues
that software engineers need education on engineering mathematics; specification
and design; converting designs into programs; software inspections, and test-
ing. The education should enable the software engineer to produce well-designed
programs that will correctly implement the requirements.

2.2 Early Software Engineering Mathematics 29

Software engineers may work in domains where just basic mathematics is
required to do their work, or they may be employed in a sector where substan-
tial mathematics is required. It is important that software engineers receive the
right education in software engineering mathematics so that they have the right
tools in their toolbox to apply themselves successfully to their work.

2.2 Early Software Engineering Mathematics

Robert Floyd was born in New York in 1936, and he did pioneering work on soft-
ware engineering from the 1960s (Fig. 2.1). He made important contributions to the
theory of parsing; the semantics of programming languages; program verification;
and methodologies for the creation of efficient and reliable software.

Mathematics and Computer Science were regarded as two completely separate
disciplines in the 1960s, and software development was based on the assump-
tion that the completed code would always contain defects. It was therefore better
and more productive to write the code as quickly as possible, and to then per-
form debugging to find the defects. Programmers then corrected the defects, made
patches, and re-tested and found more defects. This continued until they could no
longer find defects. Of course, there was always the danger that defects remained
in the code that could give rise to software failures.

Floyd believed that there was a way to construct a rigorous proof of the cor-
rectness of the programs using mathematics. He showed that mathematics could
be used for program verification, and he introduced the concept of assertions that
provided a way to verify the correctness of programs.

Flowcharts were employed in the 1960s to explain the sequence of basic steps
for computer programs. Floyd’s insight was to build upon flowcharts and to apply
an invariant assertion to each branch in the flowchart. These assertions state the
essential relations that exist between the variables at that point in the flow chart.
An example relation is “R = Z > 0, X = 1, Y = 0”. He devised a general flowchart
language to apply his method to programming languages. The language essentially
contains boxes linked by flow of control arrows [2].

Fig. 2.1 Robert Floyd

30 2 Software Engineering Mathematics

Fig. 2.2 Branch assertions in
flowcharts

S(f(x,v), v)

x =f(x,v)

S(x,v)

Fig. 2.3 Assignment assertions in flowcharts

Consider the assertion Q that is true on entry to a branch where the condition
at the branch is P. Then, the assertion on exit from the branch is Q ∧ ¬P if P is
false and Q ∧ P otherwise (Fig. 2.2).

The use of assertions may be employed in an assignment statement. Suppose x
represents a variable and v represents a vector consisting of all the variables in the
program. Suppose f (x, v) represents a function or expression of x and the other
program variables represented by the vector v. Suppose the assertion S(f (x, v), v)
is true before the assignment x = f (x, v). Then the assertion S(x, v) is true after
the assignment (Fig. 2.3). This is given by:

Floyd used flowchart symbols to represent entry and exit to the flowchart.
This included entry and exit assertions to describe the program’s entry and exit
conditions.

Floyd’s technique showed how a computer program is a sequence of logical
assertions. Each assertion is true whenever control passes to it, and statements
appear between the assertions. The initial assertion states the conditions that must
be true for execution of the program to take place, and the exit assertion essentially
describes what must be true when the program terminates.

Floyd’s insight was his recognition that if it can be shown that the assertion
immediately following each step is a consequence of the assertion immediately
preceding it, then the assertion at the end of the program will be true, provided
the appropriate assertion was true at the beginning of the program.

He published an influential paper, “Assigning Meanings to Programs”, in 1967
[2], and this paper influenced Hoare’s work on preconditions and post-conditions
leading to Hoare logic [3]. Floyd’s paper also presented a formal grammar for
flowcharts, together with rigorous methods for verifying the effects of basic actions
like assignments.

2.2 Early Software Engineering Mathematics 31

Fig. 2.4 C. A. R. Hoare

Hoare logic is a formal system of logic used for programming semantics and
for program verification. It was developed by C. A. R. Hoare (Fig. 2.4) and was
originally published in Hoare’s 1969 paper “An axiomatic basis for computer pro-
gramming” [3]. Hoare and others have subsequently refined it, and it provides
a logical methodology for precise reasoning about the correctness of computer
programs.

Hoare was influenced by Floyd’s [2] paper that applied assertions to flowcharts,
and he recognized that this provided an effective method for proving the correct-
ness of programs. He built upon Floyd’s approach to cover the familiar constructs
of high-level programming languages.

This led to the axiomatic approach to defining the semantics of every statement
in a programming language, and the approach consists of axioms and proof rules.
He introduced what has become known as the Hoare triple, and this describes how
the execution of a fragment of code changes the state. A Hoare triple is of the
form:

P{Q}R
where P and R are assertions and Q is a program or command. The predicate P is
called the precondition, and the predicate R is called the postcondition.

Definition 2.1 (Partial Correctness) The meaning of the Hoare triple above is that
whenever the predicate P holds of the state before the execution of the command
or program Q, then the predicate R will hold after the execution of Q. The brackets
indicate partial correctness as if Q does not terminate then R can be any predicate. R
may be chosen to be false to express that Q does not terminate.

Total correctness requires Q to terminate, and at termination R is true. Termi-
nation needs to be proved separately. Hoare logic includes axioms and rules of
inference rules for the constructs of imperative programming language.

Hoare and Dijkstra were of the view that the starting point of a program should
always be the specification, and that the proof of the correctness of the program
should be developed along with the program itself.

32 2 Software Engineering Mathematics

That is, the starting point is the mathematical specification of what a program is
to do, and mathematical transformations are applied to the specification until it is
turned into a program that can be executed. The resulting program is then known
to be correct by construction.

2.3 Debate on Mathematics in Software Engineering

The debate concerning the level of use of mathematics in software engineering is
still ongoing. Many practitioners are against the use of mathematics and avoid its
use. They tend to employ methodologies such as software inspections and testing
to improve confidence in the correctness of the software. They argue that in the
current competitive industrial environment where time to market is a key driver
that the use of such formal mathematical techniques would seriously impact the
market opportunity. Industrialists often need to balance conflicting needs such as
quality, cost, and delivering on time. They argue that the commercial necessities
require methodologies and techniques that allow them to achieve their business
goals effectively.

The other camp argues that the use of mathematics is essential in the delivery of
high-quality and reliable software, and that if a company does not place sufficient
emphasis on quality, it will pay the price in terms of poor quality and loss of
reputation.

It is generally accepted that mathematics and formal methods must play a role
in the safety critical and security critical fields. Apart from that the extent of the
use of mathematics is a hotly disputed topic. The pace of change in the world is
extraordinary, and companies face immense competitive forces in a global market
place.

It is unrealistic to expect companies to deploy mathematical techniques unless
they have clear evidence that it will support them in delivering commercial prod-
ucts to the market place ahead of their competition, at the right price and with the
right quality. Formal methods and other mathematical techniques need to prove
that they can do this if they wish to be taken seriously in mainstream software
engineering.

2.4 The Emergence of Formal Methods

Formal methods refer to various mathematical techniques used for the formal
specification and development of software. They consist of a formal specification
language and employ a collection of tools to support the syntax checking of the
specification, as well as the proof of properties of the specification. They allow
questions to be asked about what the system does independently of the imple-
mentation. The use of mathematical notation helps in ensuring precision in the
description of a system.

2.5 What Mathematics Do Software Engineers Need? 33

The term “formal methods” is used to describe a formal specification language
and a method for the design and implementation of computer systems. They may
be employed at a number of levels starting with the formal specification only and
developing the program informally, to formal specification and refinement with
some program verification, and finally to full formal specification, refinement and
verification.

The specification is written in a mathematical language, and the implementation
may be derived from the specification via stepwise refinement. The refinement step
makes the specification more concrete and closer to the actual implementation.
There is an associated proof obligation to demonstrate that the refinement is valid,
and that the concrete state preserves the properties of the abstract state. Thus,
assuming that the original specification is correct and the proof of correctness of
each refinement step is valid, then there is a very high degree of confidence in the
correctness of the implemented software.

The mathematical analysis of the formal specification allows questions to be
asked about what the system does, and these questions may be answered indepen-
dently of the implementation. Mathematical notation is precise, and this helps to
avoid the problem of ambiguity inherent in a natural language description of a sys-
tem. The formal specification may be used to promote a common understanding
for all stakeholders.

One of the earliest formal methods was VDM which was developed at the IBM
research laboratory in Vienna in the 1970s. VDM emerged as part of their work
into the specification of the semantics of the PL/1 programming language. Over
time other formal specification languages such as Z and B were developed, as well
as a plethora of specialized calculi such as CSP, CCS, and π-calculus, and various
temporal logics and theorem provers have been developed, and the important area
of model checking emerged.

However, despite the interest in formal methods in academia the industrial take
up of formal methods has been quite limited, and they are mainly used in the safety
critical and security critical fields. Formal methods have been criticized as being
difficult to use, as being unintuitive and lacking industrial strength tool support,
and so on.

However, formal methods should be regarded as a tool in the software engi-
neer’s toolbox to be used in important domains such as the safety critical field.
They should therefore be included as part of the software engineer’s education.

2.5 What Mathematics Do Software Engineers Need?

Mathematics plays a key role in classical engineering to assist with design and
verification of products. It is therefore reasonable to apply appropriate mathemat-
ics in software engineering (especially for safety and security critical systems) to
assure that the delivered systems conform to the requirements.

The extent to which mathematics should be used is controversial with strong
views in both camps between those who advocate a solid engineering approach

34 2 Software Engineering Mathematics

with mathematical rigorous and those who argue for a lighter approach with mini-
mal mathematics (e.g., those in the Agile world). In many domains, rigorous peer
reviews and testing will be sufficient to build quality into the software product,
whereas in other more specialized areas (especially for safety and security critical
applications), it is desirable to have the extra assurance that may be provided with
mathematical techniques.

The domain in which the software engineer is working is also relevant, as spe-
cialized mathematical knowledge may be required to develop software for some
domains. For example, a software engineer who is working on financial software
engineering applications will require specialized knowledge of the calculation of
simple and compound interest, annuities and so on in the banking domain, and
knowledge of probability, statistics, calculus, and actuarial mathematics may be
required in the insurance domain. That is, there is not a one size that fits all in the
use of mathematics—the mathematics that the software engineer needs to employ
depends on the particular domain that the software engineer is working in.

However, there is a core body of mathematical knowledge that the software
engineer should possess, with more specialized mathematical knowledge required
for specific domains. The core mathematics proposed for every software engineer
includes arithmetic, algebra, logic, and trigonometry (Table 2.1).

Further, mathematics provides essential training in critical thinking and problem
solving, allows the software engineer to perform a rigorous analysis of a partic-
ular situation, and avoids an over-reliance on intuition. Mathematical modelling
provides a mathematical simplification of the real world and provides a way to
explain a system as well as providing predictions. Engineers are taught how to
apply mathematics in their work, and the emphasis is always on the application
of mathematics to solve practical problems. Mathematics may be applied to solve
practical problems and to develop products that are fit for purpose.

Table 2.1 Appropriate mathematics in software engineering

Area Description

Core mathematics (reasoning/problem
solving)

Arithmetic, algorithms, algebra, sets, relations
and functions, sequences and series,
trigonometry, coordinate systems, logic, graph
theory, language theory, automata theory

Traditional engineering applications Complex analysis, matrices, vectors, calculus,
Fourier series, Laplace transforms

Financial software engineering (banking,
insurance and business)

Simple and compound interest, probability,
statistics, operations research, linear
programming

Telecoms Cryptography, coding theory

Safety/security critical Software reliability and dependability, formal
methods, Z specification language, logic,
temporal logic, theorem provers, model checking

Robotics/computer graphics Complex numbers, quaternions, vectors, matrices

2.7 Summary 35

Classical mathematics may be applied to software engineering and specialized
mathematical methods and notations have also been developed. However, the suc-
cessful delivery of a project requires a lot more than just the use of mathematics. It
requires sound project management and quality management practices; the effec-
tive definition of the requirements; the management of changes to the requirements
throughout the project; the management of risk; and so on (see the companion book
[1]). A project that is not properly managed will suffer from schedule, budget, or
cost overruns as well as problems with quality.

2.6 Review Questions

1. Why should mathematics be part of the education of software engineers?
2. What mathematics should software engineers know?
3. What is the role of mathematics in current software engineering?
4. Discuss the contributions of Floyd and Hoare.
5. Explain the difference between partial correctness and total correctness.
6. What are formal methods ? Explain their significance.
7. Explain the levels at which formal methods may be applied.

2.7 Summary

Classical engineering has a successful track record in building high-quality prod-
ucts that are safe for the public to use. It is therefore natural to consider using
an engineering approach to developing software, and this involves identifying the
customer requirements, carrying out a rigorous design to meet the requirements,
developing and coding a solution to meet the design, and conducting appropriate
inspections and testing to verify the correctness of the solution.

Mathematics plays a key role in classical engineering to assist with the design
and verification of products. It makes sense to apply appropriate mathematics in
software engineering (especially for safety critical systems) to assure that the deliv-
ered systems conform to the requirements. The extent to which mathematics should
be used remains controversial.

There is a core body of mathematics that every software engineer should be
familiar with, including arithmetic, algebra, and logic. The domain in which the
software engineer is working is relevant, as specialized mathematical knowledge
may be required by the software engineer for specific domains.

Mathematics is a tool of thought, and it provides essential training for critical
thinking and problem solving for the modern software engineer.

36 2 Software Engineering Mathematics

References

1. O’Regan G (2022) Concise guide to software engineering, 2nd edn. Springer
2. Floyd R (1967) Assigning meanings to programs. Proc Symp Appl Math (19):19–32
3. Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–

585

3Mathematical Prerequisites
for Software Engineers

Key Topics

Sets

Relations

Functions

Natural numbers

Prime numbers

Fractions

Decimals

Percentages

Ratios

Proportions

Cartesian Coordinates

Pythagoras’s Theorem

Periodic Functions

Degrees and Radians

Sine Rule

Cosine Rule

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_3

38 3 Mathematical Prerequisites for Software Engineers

3.1 Introduction

This chapter sketches the mathematical prerequisites that software engineers
should be familiar with, and we discuss fundamental concept such as sets, relations
and functions, arithmetic, and trigonometry. Sets are collections of well-defined
objects; relations indicate relationships between members of two sets A and B;
and functions are a special type of relation where there is exactly (or at most)1

one relationship for each element a ∈ A with an element in B.
A set is a collection of well-defined objects that contains no duplicates. The

term “well defined” means that for a given value it is possible to determine whether
or not it is a member of the set. There are many examples of sets such as the set of
natural numbers N, the set of integer numbers Z, and the set of rational numbers
Q. The natural numbers N is an infinite set consisting of the numbers {1, 2, …}.
Venn diagrams may be used to represent sets pictorially.

A binary relation R (A, B) where A and B are sets is a subset of the Cartesian
product (A× B) of A and B. The domain of the relation is A and the codomain of
the relation is B. The notation aRb signifies that there is a relation between a and b
and that (a, b) ∈ R. An n-ary relation R (A1, A2, … An) is a subset of (A1 ×A2 ×
…× An). However, an n-ary relation may also be regarded as a binary relation
R(A, B) with A = A1 ×A2 × … × An−1 and B = An.

Functions may be total or partial. A total function f : A → B is a special
relation such that for each element a ∈ A there is exactly one element b ∈ B. This
is written as f (a) = b. A partial function differs from a total function in that the
function may be undefined for one or more values of A. The domain of a function
(denoted by dom f) is the set of values in A for which the partial function is
defined. The domain of the function is A if f is a total function. The codomain of
the function is B.

Arithmetic (or number theory) is the branch of mathematics that is concerned
with the study of numbers and their properties. It includes the study of the integer
numbers, and operations on them, such as addition, subtraction, multiplication, and
division.

Number theory studies various properties of integer numbers such as their parity
and divisibility; their additive and multiplicative properties; whether a number is
prime or composite; the prime factors of a number; the greatest common divisor
and least common multiple of two numbers; and so on.

The natural numbers N consist of the numbers {1, 2, 3, …}. The integer num-
bers are a superset of the set of natural numbers, and they consist of {… − 2, − 1,
0, 1, 2, …}. The rational numbers Q are a superset of the set of integer numbers,
and they consist of all numbers of the form {p/q where p and q are integers and
q /= 0}. The real numbers R is a superset of the set of rational numbers, and
they are defined to be the set of converging sequences of rational numbers. They

1 We distinguish between total and partial functions. A total function f : A → B is defined for
every element in A whereas a partial function may be undefined for one or more values in A.

3.2 Set Theory 39

contain the rational and irrational numbers. The complex numbers C consist of
all numbers of the form {a + bi where a, b ∈ R and i =

√−1}, and they are a
superset of the set of real numbers.

Number theory has many applications including cryptography and coding the-
ory in computing. For example, the RSA public key cryptographic system relies
on its security due to the infeasibility of the integer factorization problem for large
numbers.

Trigonometry is concerned with the relationships between sides and angles of
triangles, and the origin of the term is from the Greek words τρίγωνoν (trigonon)
meaning triangle and μετρoν(metron) meaning measure. The origins of the field
are from the Hellenistic world in the third century BC., but early work on angles
had been done by the Sumerians and Babylonians.

Pythagoras’s Theorem expresses the relationship between the hypotenuse of
a right-angled triangle and the other two sides, and we define sine, cosine, and
tangent for a right-angled triangle. The sine rule and cosine rule are invaluable
in solving trigonometric problems, as well as various trigonometric identities. We
discuss degrees and radians as well as sketching the curves of sine and cosine.

The Cartesian system was invented by Descartes in the seventeenth century, and
it allows geometric shapes such as curves to be described by algebraic equations.
We discuss both the two-dimensional plane and three-dimensional space.

3.2 Set Theory

A set is a fundamental building block in mathematics, and it is defined as a col-
lection of well-defined objects. The elements in a set are of the same kind, and
they are distinct with no repetition of the same element in the set.2 Most sets
encountered in computer science are finite, as computers can only deal with finite
entities. Venn diagrams3 are often employed to give a pictorial representation of a
set, and to illustrate various set operations such as set union, intersection, and set
difference.

There are many well-known examples of sets including the set of natural num-
bers denoted by N; the set of integers denoted by Z; the set of rational numbers
is denoted by Q; the set of real numbers denoted by R; and the set of complex
numbers denoted by C.

A finite set may be defined by listing all its elements. For example, the set A
= {2, 4, 6, 8, 10} is the set of all even natural numbers less than or equal to 10.
The order in which the elements are listed is not relevant, i.e., the set {2, 4, 6, 8,
10} is the same as the set {8, 4, 2, 10, 6}.

2 There are mathematical objects known as multi-sets or bags that allow duplication of elements.
For example, a bag of marbles may contain three green marbles, two blue and one red marble.
3 The British logician, John Venn, invented the Venn diagram. It provides a visual representation
of a set and the various set theoretical operations. Their use is limited to the representation of two
or three sets as they become cumbersome with a larger number of sets.

40 3 Mathematical Prerequisites for Software Engineers

Sets may be defined by using a predicate to constrain set membership. For
example, the set S = {n : N : n ≤ 10 ∧ n mod 2 = 0} also represents the set
{2, 4, 6, 8, 10}. That is, the use of a predicate allows a new set to be created
from an existing set by using the predicate to restrict membership of the set. The
set of even natural numbers may be defined by a predicate over the set of natural
numbers that restricts membership to the even numbers. It is defined by:

Evens = {x |x ∈ N ∧ even(x)}.
In this example, even(x) is a predicate that is true if x is even and false other-

wise. In general, A = {x ∈ E |P(x) } denotes a set A formed from a set E using
the predicate P to restrict membership of A to those elements of E for which the
predicate is true.

The elements of a finite set S are denoted by {x1, x2, … xn}. The expression
x ∈ S denotes that the element x is a member of the set S, whereas the expression
x /∈S indicates that x is not a member of the set S.

A set S is a subset of a set T (denoted S ⊆ T) if whenever s ∈ S then s ∈ T ,
and in this case the set T is said to be a superset of S (denoted T ⊇ S). Two sets
S and T are said to be equal if they contain identical elements, i.e., S = T if and
only if S ⊆ T and T ⊆ S. A set S is a proper subset of a set T (denoted S ⊂ T)
if S ⊆ T and S /= T . That is, every element of S is an element of T and there is
at least one element in T that is not an element of S. In this case, T is a proper
superset of S (denoted T ⊃ S).

The empty set (denoted by ∅ or {}) represents the set that has no elements.
Clearly ∅ is a subset of every set. The singleton set containing just one element x
is denoted by {x}, and clearly x ∈ {x} and x /= {x}. Clearly, y ∈ {x} if and only
if x = y.

3.2.1 Set Theoretical Operations

Several set theoretical operations are considered in this section. These include the
Cartesian product operation; the power set of a set; the set union operation; the set
intersection operation; the set difference operation; and the symmetric difference
operation.

Cartesian Product
The Cartesian product allows a new set to be created from existing sets. The Carte-
sian4 product of two sets S and T (denoted S × T) is the set of ordered pairs
{(s, t)|s ∈ S , t ∈ T }. Clearly, S × T /= T × S and so the Cartesian product of
two sets is not commutative. Two ordered pairs (s1, t1) and (s2, t2) are considered
equal if and only if s1 = s2 and t1 = t2.

4 Cartesian product is named after René Descartes who was a famous 17th French mathematician
and philosopher. He invented the Cartesian coordinates system that links geometry and algebra,
and allows geometric shapes to be defined by algebraic equations.

3.2 Set Theory 41

The Cartesian product may be extended to that of n sets S1, S2,…,
Sn. The Cartesian product S1 × S2 ×…× Sn is the set of ordered n-tuples
{(s1, s2, . . . , sn)|s1 ∈ S1 , s2 ∈ S2, . . . , sn ∈ Sn}. Two ordered n-tuples (s1, s2,…,
sn) and (s1,, s2,,…, sn,) are considered equal if and only if s1 = s1,, s2, = s2,,…,
sn = sn,.

The Cartesian product may also be applied to a single set S to create ordered
n-tuples of S, i.e., Sn = S × S × . . . × S(n times).

Power Set
The power set of a set A (denoted PA) denotes the set of subsets of A. For example,
the power set of the set A = {1, 2, 3} has eight elements and is given by:

PA = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

There are 23 = 8 elements in the power set of A = {1, 2, 3} where the
cardinality of A is 3. In general, there are 2|A| elements in the power set of A.

Union and Intersection Operations
The union of two sets A and B is denoted by A∪ B. It results in a set that contains
all of the members of A and of B and is defined by:

A ∪ B = {r |r ∈ A or r ∈ B}.

The intersection of two sets A and B is denoted by A ∩ B. It results in a set
containing the elements that A and B have in common and is defined by:

A ∩ B = {r |r ∈ A and r ∈ B}.

Union and intersection may be extended to more generalized union and
intersection operations.

Set Difference Operations
The set difference operation A \ B yields the elements in A that are not in B. It is
defined by

A\B = {a|a ∈ A and a /∈ B}

For A and B defined as A = {1, 2} and B = {2, 3} we have A \ B = {1} and B
\ A = {3}. Clearly, set difference is not commutative, i.e., A\B /= B\A. Clearly,
A\A = ∅ and A\∅ = A.

The symmetric difference of two sets A and B is denoted by AΔB and is given
by:

AΔB = A\B ∪ B\A

42 3 Mathematical Prerequisites for Software Engineers

The complement of a set A (with respect to the universal set U) is the elements
in the universal set that are not in A. It is denoted by Ac (or A,) and is defined as:

Ac = {u|u ∈ U and u /∈ A} = U\A

3.2.2 Computer Representation of Sets

Sets are fundamental building blocks in mathematics, and so the question arises
as to how is a set is stored and manipulated in a computer. The representation of
a set M on a computer requires a change from the normal view that the order of
the elements of the set is irrelevant, and we will need to assume a definite order
in the underlying universal set m from which the set M is defined.

That is, a set is defined in a computer program with respect to an underlying
universal set, and the elements in the universal set are listed in a definite order.
Any set M arising in the program that is defined with respect to this universal set
m is a subset of m. Next, we show how the set M is stored internally on the
computer.

The set M is represented in a computer as a string of binary digits b1b2 … bn
where n is the cardinality of the universal set m. The bits bi (where i ranges over
the values 1, 2, … n) are determined according to the rule:

bi = 1 if ith element of m is in M
bi = 0 if ith element of m is not in M

For example, if m = {1, 2, … 10} then the representation of M = {1, 2, 5,
8} is given by the bit string 1100100100 where this is given by looking at each
element of m in turn and writing down 1 if it is in M and 0 otherwise.

Similarly, the bit string 0100101100 represents the set M = {2, 5, 7, 8}, and this
is determined by writing down the corresponding element in m that corresponds
to a 1 in the bit string.

Clearly, there is a one-to-one correspondence between the subsets of m and
all possible n-bit strings. Further, the set theoretical operations of set union, inter-
section, and complement can be carried out directly with the bit strings (provided
that the sets involved are defined with respect to the same universal set). This
involves a bitwise “or” operation for set union; a bitwise “and” operation for set
intersection; and a bitwise “not” operation for the set complement operation.

3.3 Relations

A binary relation R(A, B) where A and B are sets is a subset of A×B, i.e., R ⊆
A × B. The domain of the relation is A, and the codomain of the relation is B. The
notation aRb signifies that (a, b) ∈ R.

3.3 Relations 43

A binary relation R(A, A) is a relation between A and A (or a relation on A).
This type of relation may always be composed with itself, and its inverse is also a
binary relation on A. The identity relation on A is defined by a iAa for all a ∈ A.

A relation R(A, B) may be represented pictorially. This is referred to as the
graph of the relation, and it is illustrated in the diagram below. An arrow from x
to y is drawn if (x, y) is in the relation. Thus for the height relation R given by
{(a, p), (a, r), (b, q)} an arrow is drawn from a to p, from a to r and from b to q
to indicate that (a, p), (a, r) and (b, q) are in the relation R.

a
b

p
q
r

A B

The pictorial representation of the relation makes it easy to see that the height
of a is greater than the height of p and r; and that the height of b is greater than
the height of q.

An n-ary relation R (A1, A2, … An) is a subset of (A1 × A2 × …× An). However,
an n-ary relation may also be regarded as a binary relation R(A, B) with A = A1 ×
A2 ×…× An−1 and B = An.

3.3.1 Reflexive, Symmetric and Transitive Relations

A binary relation on A may have additional properties such as being reflexive,
symmetric or transitive. These properties are defined as

(i) A relation on a set A is reflexive if (a, a) ∈ R for all a ∈ A.
(ii) A relation R is symmetric if whenever (a, b) ∈ R then (b, a) ∈ R.
(iii) A relation is transitive if whenever (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.

A relation that is reflexive, symmetric, and transitive is termed an equivalence
relation.

Example 3.1 (Equivalence relation) The relation on the set of integers Z defined by
(a, b) ∈ R if a – b = 2 k for some k ∈ Z is an equivalence relation, and it partitions
the set of integers into two equivalence classes, i.e., the even and odd integers.

Domain and Range of Relation
The domain of a relation R (A, B) is given by {a ∈ A|∃b ∈ B and (a, b) ∈
R}. It is denoted by dom R. The domain of the relation R =
{(a, p), (a, r), (b, q)} is {a, b}.

44 3 Mathematical Prerequisites for Software Engineers

The range of a relation R (A, B) is given by {b ∈ B|∃a ∈ A and (a, b) ∈
R}. It is denoted by rng R. The range of the relation R =
{(a, p), (a, r), (b, q)} is {p, q, r}.

Inverse of a Relation
Suppose R ⊆ A × B is a relation between A and B then the inverse relation
R−1 ⊆ B × A is defined as the relation between B and A and is given by:

bR−1a if and only if a Rb

That is,

R−1 = {(b, a) ∈ B × A : (a, b) ∈ R}

Example 3.2 Let R be the relation between Z and Z+ defined by mRn if
and only if m2 = n. Then R = {

(m, n) ∈ Z × Z+ : m2 = n
}

and R−1 ={
(n, m) ∈ Z+ × Z : m2 = n

}
.

For example, − 3 R 9, − 4 R 16, 0 R 0, 16 R−1 − 4, 9 R−1 − 3, etc.

Partitions and Equivalence Relations
An equivalence relation on A leads to a partition of A, and vice versa for every
partition of A there is a corresponding equivalence relation.

Let A be a finite set and let A1, A2, …, An be subsets of A such Ai /= ∅ for all
i, Ai ∩ A j = ∅ if i /= j and A = ∪n

i Ai = A1 ∪ A2 ∪ . . . ∪ An .
The sets Ai partition the set A, and these sets are called the classes of the

partition.

3.3.2 Composition of Relations

The composition of two relations R1(A, B) and R2(B, C) is given by R2 ◦ R1
where (a, c) ∈ R2 ◦ R1 if and only there exists b ∈ B such that (a, b) ∈ R1 and
(b, c) ∈ R2. The composition of relations is associative, i.e.,

(R3 ◦ R2) ◦ R1 = R3 ◦ (R2 ◦ R1)

The composition of S ◦ R is determined by choosing x ∈ A and y ∈ C and
checking if there is a route from x to y in the graph. If so, we join x to y in S ◦ R.

The union of two relations R1(A, B) and R2(A, B) is meaningful (as these are
both subsets of A× B). The union R1 ∪ R2 is defined as (a, b) ∈ R1 ∪ R2 if and
only if (a, b) ∈ R1 or (a, b) ∈ R2.

Similarly, the intersection of R1 and R2(R1 ∩ R2) is meaningful and is defined
as (a, b) ∈ R1 ∩ R2 if and only if (a, b) ∈ R1 and (a, b) ∈ R2. The relation R1 is
a subset of R2(R1 ⊆ R2) if whenever (a, b) ∈ R1 then (a, b) ∈ R2.

The inverse of the relation R was discussed earlier and is given by the relation
R−1 where R−1 = {(b, a)|(a, b) ∈ R}.

45

The composition of R and R−1 yields: R−1 ◦ R = {(a, a)|a ∈ dom R } = iA
and R ◦ R−1 = {

(b, b)|b ∈dom R−1
} = iB .

3.3.3 Binary Relations

A binary relation R on A is a relation between A and A, and a binary relation can
always be composed with itself. Its inverse is a binary relation on the same set.
The following are all relations on A:

R2 = R ◦ R
R3 = (R ◦ R) ◦ R
R0 = i A(identity relation)

R−2 = R−1 ◦ R−1

Example 3.3 Let R be the binary relation on the set of all people P such that (a, b) ∈
R if a is a parent of b. Then the relation Rn is interpreted as:

R is the parent relationship
R2 is the grandparent relationship
R3 is the great grandparent relationship
R−1 is the child relationship
R−2 is the grandchild relationship
R−3 is the great grandchild relationship

This can be generalized to a relation Rn on A where Rn = R ◦ R ◦ . . .◦ R(n-times).
The transitive closure of the relation R on A is given by:

R∗ =
∞⊔

i=0

Ri = R0 ∪ R1 ∪ R2 ∪ . . . Rn ∪ . . .

where R0 is the reflexive relation containing only each element in the domain of
R: i.e., R0 = iA = {(a, a)|a ∈dom R}.

The positive transitive closure is similar to the transitive closure except that it
does not contain R0. It is given by:

R+ =
∞⊔

i=1

Ri = R1 ∪ R2 ∪ . . . ∪ Rn ∪ . . .

a R+ b if and only if a Rn b for some n > 0, i.e., there exists c1, c2 … cn ∈ A such
that

aRc1, c1 Rc2, . . . , cn Rb.

46 3 Mathematical Prerequisites for Software Engineers

3.4 Functions

A function f : A → B is a special relation such that for each element a ∈ A there
is exactly (or at most)5 one element b ∈ B. This is written as f (a) = b.

A function is a relation but not every relation is a function. For example, the
relation in the diagram below is not a function since there are two arrows from the
element a ∈ A.

The domain of the function (denoted by dom f) is the set of values in A for
which the function is defined. The domain of the function is A if f is a total
function. The codomain of the function is B. The range of the function (denoted
rng f) is a subset of the codomain and consists of:

rng f = {r |r ∈ B such that f (a) = r for some a ∈ A}.

Functions may be partial or total. A partial function (or partial mapping) may
be undefined for some values of A, and partial functions arise regularly in the com-
puting field. Total functions are defined for every value in A and many functions
encountered in mathematics are total.

Example 3.4 (Functions) Functions are an essential part of mathematics and com-
puter science, and there are many well-known functions such as the trigonometric
functions sin(x), cos(x), and tan(x); the logarithmic function ln(x); the exponential
functions ex; and polynomial functions.

(i) Consider the partial function f : R → R f (x) = 1/x (where x /= 0).

Then, this partial function is defined everywhere except for x = 0.

(ii) Consider the function f : R → R where

f (x) = x2

Then this function is defined for all x ∈ R.
Partial functions often arise in computing as a program may be undefined or

fail to terminate for several values of its arguments (e.g., infinite loops). Care is
required to ensure that the partial function is defined for the argument to which it
is to be applied.

5 We distinguish between total and partial functions. A total function is defined for all elements in
the domain, whereas a partial function may be undefined for one or more elements in the domain.

3.4 Functions 47

Example 3.5 Two partial functions f and g are equal if:

1. dom f = domg
2. f (a) = g(a) for all a ∈ dom f .

A function f is less defined than a function g (f ⊆ g) if the domain of f is a
subset of the domain of g, and the functions agree for every value on the domain
of f.

1. dom f ⊆ domg
2. f (a) = g(a) for all a ∈ dom f .

The composition of functions is similar to the composition of relations. Suppose
f : A → B and g: B → C then g ◦ f : A → C is a function, and it is written as
g ◦ f (x) or g(f (x)) for x ∈ A.

The composition of functions is not commutative, and this can be seen by an
example. Consider the function f : R → R such that f (x) = x2 and the function
g: R → R such that g(x) = x + 2. Then

g ◦ f (x) = g
(
x2

) = x2 + 2.
f ◦ g(x) = f (x + 2) = (x + 2)2 = x2 + 4x + 4.

Clearly, g ◦ f(x) /= f ◦ g(x) and so composition of functions is not commutative.
The composition of functions is associative, as the composition of relations is
associative and every function is a relation. For f : A →B, g: B →C, and h: C → D
we have:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

A function f : A →B is injective (one to one) if

f (a1) = f (a2) ⇒ a1 = a2.

For example, consider the function f : R → R with f (x) = x2. Then f (3) = f (−
3) = 9 and so this function is not one to one.

A function f : A →B is surjective (onto) if given any b∈B there exists an a ∈ A
such that f (a) = b. Consider the function f : R → R with f (x) = x + 1. Clearly,
given any r ∈ R then f (r − 1) = r and so f is onto.

A function is bijective if it is one to one and onto. That is, there is a one to one
correspondence between the elements in A and B, and for each b ∈ B there is a
unique a ∈ A such that f (a) = b.

The inverse of a relation was discussed earlier and the relational inverse of a
function f : A→ B clearly exists. The relational inverse of the function may or may
not be a function.

48 3 Mathematical Prerequisites for Software Engineers

However, if the relational inverse is a function it is denoted by f −1: B → A. A
total function has an inverse if and only if it is bijective whereas a partial function
has an inverse if and only if it is injective.

The identity function 1A: A → A is a function such that 1A(a) = a for all a ∈ A.
Clearly, when the inverse of the function exists then we have that f −1 ◦ f = 1A
and f ◦ f −1 = 1B.

Theorem 3.1 (Inverse of Function) A total function has an inverse if and only if it
is bijective.

3.5 Arithmetic

The natural numbers N {1, 2, 3, …} are used for counting things starting from
the number one, and they form an ordered set 1 < 2 < 3 < … and so on. The
natural numbers are all positive (i.e., there are no negative natural numbers), and
the number zero is not usually included as a natural number. However, the set of
natural numbers including 0 is denoted by N0, and it is the set {0, 1, 2, 3, …}.

The natural numbers are an ordered set and so given any pair of natural numbers
(n, m) then either n < m, n = m or n > m. There is no largest natural number
as such, since given any natural number we can immediately determine a larger
natural number (e.g., its successor). Each natural number has a unique successor
and every natural number larger than one has a unique predecessor.

The addition of two numbers yields a new number, and the subtraction of a
smaller number from a larger number yields the difference between them. Mul-
tiplication is the mathematical operation of scaling one number by another: for
example: 3 * 4 = 4 + 4 + 4 = 12.

Peano’s axiomization of arithmetic is a formal axiomization of the natural num-
bers, and they include axioms for the successor of a natural number and the axiom
of induction. The number zero is considered to be a natural number in the Peano
system.

The natural numbers satisfy several nice algebraic properties such as closure
under addition and multiplication (i.e., a natural number results from the addition
or multiplication of two natural numbers); commutativity of addition and multi-
plication, i.e., a + b = b + a and a × b = b× a; addition and multiplication are
associative: a + (b + c) = (a + b) + c and a × (b ×c) = (a × b)× c. Further,
multiplication is distributive over addition: a × (b + c) = a×b + a× c.

A square number is an integer that is the square of another integer. For example,
the number 4 is a square number since 4 = 22. Similarly, the number 9 and the
number 16 are square numbers. A number n is a square number if and only if one
can arrange the n points in a square.

The square of an odd number is odd, whereas the square of an even number is
even. This is clear since an even number is of the form n = 2k for some k, and so
n2 = 4k2 which is even. Similarly, an odd number is of the form n = 2k + 1 and
so n2 = 4k2 + 4k + 1 which is odd.

3.5 Arithmetic 49

A rectangular number n may be represented by a vertical and horizontal rect-
angle of n points. For example, the number 6 may be represented by a rectangle
with length 3 and breadth 2, or a rectangle with length 2 and breadth 3. Similarly,
the number 12 can be represented by a 4 × 3 or a 3 × 4 rectangle.

A triangular number n may be represented by an equilateral triangle of n points.
It is the sum of k natural numbers from 1 to k. That is,

n = 1 + 2 + · · · + k

Parity of Integers
The parity of an integer refers to whether the integer is odd or even. An integer
n is odd if there is a remainder of one when it is divided by two (i.e., it is of the
form n = 2 k + 1). Otherwise, the number is even and of the form n = 2 k.

The sum of two numbers is even if both are even or both are odd. The product
of two numbers is even if at least one of the numbers is even.

Let a and b be integers with a /=0 then a is said to be a divisor of b (denoted
by a | b) if there exists an integer k such that b = ka.

A divisor of n is called a trivial divisor if it is either 1 or n itself; otherwise it
is called a non-trivial divisor. A proper divisor of n is a divisor of n other than n
itself.

Properties of Divisors

(i) a | b and a | c then a | b + c
(ii) a | b then a | bc
(iii) a | b and b | c then a | c.

A prime number is a natural number (> 1) whose only divisors are trivial. There
are an infinite number of prime numbers.

The fundamental theorem of arithmetic states that every integer number can be
factored as the product of prime numbers.

Pythagorean triples are combinations of three whole numbers that satisfy
Pythagoras’s equation x2 + y2 = z2. There are an infinite number of such triples,
and 3, 4, 5 is an example since 32 + 42 = 52.

Theorem 3.2 (Division Algorithm) For any integer a and any positive integer b
there exists unique integers q and r such that:

a = bq + r 0 ≤ r < b.

Theorem 3.3 (Irrationality of Square Root of Two) The square root of two is an
irrational number (i.e., it cannot be expressed as the quotient of two integer numbers).

50 3 Mathematical Prerequisites for Software Engineers

3.5.1 Fractions and Decimals

A simple fraction is of the form a/b where a and b are integers, with the number
a above the bar termed the numerator and the number b below the bar termed
the denominator. Each fraction may be converted to a decimal representation by
dividing the numerator by the denominator, and the decimal representation may
be to an agreed number of decimal places (as the decimal representation may not
terminate).

The reverse operation of converting a decimal number to a fraction is straight
forward, and involves determining the number of decimal places (n) of the number,
and multiplying the number by the fraction 10n/10n. The resulting fraction is then
simplified.

For example, the conversion of the decimal number 0.25 to a fraction involves
noting that we have 2 decimal places and so we multiply the decimal number
0.25 by 102/102 (i.e., 100/100). This results in the fraction 25/100 which is then
simplified to 1/4.

The addition of two fractions with the same denominator is straightforward
as all that is involved is adding the numerators of both fractions together and
simplifying. For example, 1/12 + 5/12 = (1+5)/12 = 6/12 = 1/2.

The addition of fractions with different denominators is more difficult. One way
to do this is to multiply both denominators of both fractions together to form a
common denominator and then simplify. That is,

a

m
+

b

n
=

na + mb

mn

For example, 1/2 + 1/3 = (3.1 + 2.1)/3.2 = (3 + 2)/6 = 5/6.
However, the usual approach when adding two fractions is to determine the

least common multiple of both denominators, and then to convert each fraction
into the equivalent fraction with the common LCM denominator, and then to add
both numerators together and simplify. For example, consider

3

4
+

5

6
=

First, the LCM of 4 and 6 is determined (see Sect. 3.5.4) and the LCM (4, 6) is
the smallest multiple of both 4 and 6 and this is 12. We then convert both fractions
into the equivalent fractions under the common LCM, i.e., we multiply the first
fraction 3/4 by 3/3 and the second fraction 5/6 by 2/2 and this yields:

3

4
+

5

6
=

3.3

12
+

5.2

12
=

9 + 10
12

=
19

12

The multiplication of two numbers involves multiplying the numerators together
and the denominators together and then simplifying:

a

m
×

b

n
=

ab

mn

3.5 Arithmetic 51

The division of one fraction by another involves inverting the divisor and
multiplying and simplifying. That is,

a

m
÷

b

n
=

a

m
×

n

b
=

an

mb
.

3.5.2 Prime Number Theory

A positive integer n > 1 is called prime if its only divisors are n and 1. A number
that is not a prime is called composite.

Theorem 3.4 (Fundamental Theorem of Arithmetic) Every natural number n > 1
may be written uniquely as the product of primes:

n = pα1
1 p

α2
2 p

α3
3 . . . pαk

k

There are an infinite number of primes but, most integer numbers are composite
and so a reasonable question to ask is how many primes are there less than a certain
number. The prime distribution function (denoted by π (x)) is defined by:

π(x) =
∑

p≤x

1 (where p is prime)

The prime distribution function satisfies the following properties:

(i) lim
x→∞

π(x)
x = 0

(ii) lim
x→∞

π(x) = ∞

The first property expresses the fact that most integer numbers are composite,
and the second property expresses the fact that there are an infinite number of
prime numbers.

There is an approximation of the prime distribution function in terms of the
logarithmic function (x/ ln x) as follows:

lim
x→∞

π(x)
x/ ln x

= 1 (Prime Number Theorem)

The approximation x/ln x to π(x) gives an easy way to determine the approx-
imate value of π(x) for a given value of x. This result is known as the Prime
Number Theorem, and it was originally conjectured by Gauss.

52 3 Mathematical Prerequisites for Software Engineers

3.5.3 Greatest Common Divisors (GCD)

Let a and b be integers (not both zero) then the greatest common divisor d of a
and b is a divisor of a and b (i.e., d | a and d | b), and it is the largest such divisor
(i.e., if k | a and k | b then k | d). It is denoted by gcd (a, b).

Properties of Greatest Common Divisors

(i) Let a and b be integers (not both zero) then exists integers x and y such that:

d = gcd(a, b) = ax + by

(ii) Let a and b be integers (not both zero) then the set S = {ax + by where x,
y∈ Z} is the set of all multiples of d = gcd (a, b).

Relatively Prime
Two integers a, b are relatively prime if gcd (a, b) = 1.

Properties If p is a prime and p | ab then p | a or p | b.

Euclid’s 6 algorithm is one of the oldest known algorithms, and it provides a
procedure for finding the greatest common divisor of two numbers. It is described
in Book VII of Euclid’s Elements [1] and is discussed in more detail in Chap. 4.

Lemma 3.1 Let a, b, q, and r be integers with b > 0 and 0≤ r < b such that a = bq
+ r. Then gcd (a, b) = gcd (b, r).

Theorem 3.5 (Euclid’s Algorithm) Euclid’s algorithm for finding the greatest com-
mon divisor of two positive integers a and b involves applying the division algorithm
repeatedly as follows:

a = bq0 + r1 0 < r1 < b
b = r1q1 + r2 0 < r2 < r1
r1 = r2q2 + r3 0 < r3 < r2
· · ·
· · ·
rn−2 = rn−1qn−1 + rn 0 < rn < rn−1

rn−1 = rnqn

Then rn is the greatest common divisor of a and b, i.e., gcd (a, b) = rn.

6 Euclid was a third century B.C. Hellenistic mathematician and is considered the father of geom-
etry.

3.5 Arithmetic 53

Lemma 3.2 Let n be a positive integer greater than one then the positive divisors
of n are precisely those integers of the form:

d = pβ1
1 p

β2
2 p

β3
3 . . . pβk

k (where 0 ≤ βi ≤ αi)

where the unique factorization of n is given by:

n = pα1
1 p

α2
2 p

α3
3 . . . pαk

k .

3.5.4 Least Common Multiple (LCM)

If m is a multiple of a and m is a multiple of b then it is said to be a common
multiple of a and b. The least common multiple is the smallest of the common
multiples of a and b, and it is denoted by LCM (a, b).

Properties If x is a common multiple of a and b then m | x. That is, every common
multiple of a and b is a multiple of the least common multiple m.

Example 3.6 (LCM of two numbers) The LCM of two numbers is the smallest num-
ber that can be divided by both numbers. The LCM is calculated by first determining
the prime factors of each number, and then multiplying each factor by the greatest
number of times that it occurs in either number.

The procedure may be seen more clearly with the calculation of the LCM of 8
and 12, as 8 = 23 and 12 = 22.3. Therefore, the LCM (8, 12) = 23.3 = 24, since
the greatest number of times that the factor 2 occurs is 3 and the greatest number of
times that the factor 3 occurs is once.

3.5.5 Ratios and Proportions

Ratios and proportions are used to solve business problems such as computing
inflation, currency exchange and taxation.

A ratio is a comparison of the relative values of numbers or quantities where
the quantities are expressed in the same units. Business information is often based
on a comparison of related quantities stated in the form of a ratio, and a ratio is
usually written in the form of num 1 to num 2 or num1: num2 (e.g., 3 to 4 or 3:4).

The numbers appearing in a ratio are called the terms of the ratio, and the ratio
is generally reduced to the lowest terms, e.g., the term 80:20 would generally be
reduced to the ratio 4:1 with the common factor of 20 used to reduce the terms. If
the terms contain decimals then the terms are each multiplied by the same number
to eliminate the decimals and the term is then simplified.

One application of ratios is to allocate a quantity into parts by a given ratio
(i.e., allocating a portion of a whole into parts).

54 3 Mathematical Prerequisites for Software Engineers

Example 3.7 Consider a company that makes a profit of e180,000 which is to be
divided between its three partners A, B, and C in the ratio 3:4:2. How much does
each partner receive?

Solution
The total number of parts is 3 + 4 + 2 = 9. That is, for every 9 parts A receives 3,

B receives 4 and C receives 2. That is, A receives 3/9 = 1/3 of the profits; B receives
4/9 of the profits and C receives 2/9 of the profits. That is,

A receives 1/3 × e180, 000 = e60, 000
B receives 4/9 × e180, 000 = e80, 000
C receives2/9 × e180, 000 = e40, 000

A proportion is two ratios that are equal or equivalent (i.e., they have the same
value and the same units). For example, the ratio 3:4 is the same as the ratio 6:8 and
so they are the same proportion.

Often, an unknown term arises in a proportion and in such a case the proportions
form a linear equation in one variable.

Example 3.8 Solve the proportion 2 : 5 = 8 : x
Solution

2

5
=

8

x

Cross-multiplying we get

2 × x = 8 × 5
⇒ 2x = 40
⇒ x = 20

Example 3.9 A car travels 384 km on 32 L of petrol. How far does it travel on 25 L
of petrol?

Solution
We let x represent the unknown distance that is travelled on 25 L of petrol. We

then write the two ratios as a proportion, and solve the simple equation to find the
unknown value x.

384

32
=

x

25

Cross-multiplying we get:

25 × 384 = x × 32
⇒ 32x = 9600
⇒ x = 300 km (for 25L of petrol)

3.5 Arithmetic 55

3.5.6 Percentages

Percent means “per hundred” and the symbol % indicates parts per hundred (i.e.,
a percentage is a fraction where the denominator is 100, which provides an easy
way to compare two quantities). A percentage may be represented as a decimal
or as a fraction, and Table 3.1 shows the representation of 25% as a percentage,
decimal, and fraction:

Percentages are converted to decimals by moving the decimal point two places
to the left (e.g., 25% = 0.25). Conversely, the conversion of a decimal to a per-
centage involves moving the decimal point two places to the right and adding the
percentage symbol.

A percentage is converted to a fraction by dividing it by 100 and then simplify-
ing (e.g., 25% = 25/100 = 1/4). Similarly, a fraction can be converted to a decimal
by dividing the numerator by the denominator, and then moving the decimal point
two places to the right and adding the percent symbol.

The value of the percentage of a number is calculated by multiplying the rate
by the number to yield the new value. For example, 80% of 50 is given by 0.8 ×
50 = 40. That is, the value of the new number is given by:

New number = rate × original number

The rate (or percentage) that a new number is with respect to the original
number is given by:

Rate = New Number

Original Number
× 100

For example, to determine what percentage of e120 that e15 is we apply the
formula to get:

Rate =
15

120
× 100 = 12.5%

Suppose that 30% of the original number is 15 and we wish to find the orig-
inal number. Then we let x represent the original number and we form a simple
equation with one unknown:

0.3x = 15
⇒ x = 15/0.3
⇒ x = 50

Table 3.1 Percentage,
decimal, and fraction

Percentage Decimal Fraction

25% 0.25 25/100 = 1/4

56 3 Mathematical Prerequisites for Software Engineers

In general, when we are given the rate and the new number we may determine
the original number from the formula:

Original Number =
New Number

Rate

Example 3.10 Barbara is doing renovations on her apartment. She has budgeted 25%
of the renovation costs for new furniture. The cost of the new furniture is e2200 and
determine the total cost of the renovations to her apartment.

Solution
We let x represent the unknown cost of renovation and we form the simple equation

with one unknown:

0.25x = 2200
⇒ x = e2200/0.25
⇒ x = e8800

Example 3.11 (i) What number is 25% greater than 40? (ii) What number is 20%
less than 40?

Solution
We let x represent the new number.

For the first case x = 40 + 0.25(40) = 40 + 10 = 50.
For the second case x = 40 − 0.2(40) = 40 − 8 = 32.

Often, we will wish to determine the rate of increase or decrease as in the following
example.

Example 3.12 Determine the percentage that 280 is greater than 200. (ii) Determine
the percentage that 170 is less than 40?

Solution

(i) The amount of change is 280 – 200 = 80. The rate of change is therefore 80/200
* 100 = 40% (a 40% increase).

(ii) The amount of change is 170 – 200 = − 30. The rate of change is therefore −
30/200 * 100 = − 15% (a 15% decrease).

Example 3.13 Lilly increased her loan payments by 40% and now pays e700 back
on her loan. What was her original payment?

Solution

Let the original amount be x and we form a simple equation of one unknown.

x + 0.4x = 700

3.6 Trigonometry 57

1.4x = 700
x = 700/1.4
x = 500

For more detailed information on basic arithmetic see [2].

3.6 Trigonometry

Trigonometry is the branch of mathematics that deals with the measurement of
sides and angles of triangles and their relationship with each other, and it has
many practical applications in science and engineering.

One well-known theorem from geometry is Pythagoras’s Theorem which states
that for any right-angled triangle that the square of the hypotenuse (i.e., the side
opposite the right angle) is equal to the sum of the squares of the other two sides
(Fig. 3.1).

That is:

c2 = a2 + b2

3.6.1 Definition of Sine, Cosine, and Tangent

The sine, cosine, and tangent of the angle θ in the right-angled triangle below are
defined as:

Fig. 3.1 Right-angled
triangle

Hypotenuse

A

BC

c
b

a

58 3 Mathematical Prerequisites for Software Engineers

Sin θ = opposite

hypotenuse
=

b

c

Cos θ = adjacent

hypotenuse
=

a

c

Tan θ =
opposite

adjacent
=

b

a

The secant, cosecant, and cotangent are defined in terms of sin, cos, and tan as
follows:

Csc θ = 1/ sin θ
Sec θ = 1/Cosθ
Cot θ = 1/Tanθ

The trigonometric ratios may be expressed using the unit circle centred on the
origin of the plane.

That is, every point on the unit circle is of the form (Cos θ, Sin θ) for some
angle θ, and so Cos2 θ + Sin2 θ = 1. Every point on a circle with radius r is of
the form (rCos θ, rSin θ).

3.6.2 Sine and Cosine Rules

The sine rule states that for any tringle ABC with sides a, b, c and opposite angles
A, B, and C that:

Sin A

a
=

Sin B

b
=

Sin C

c

The sine rule may be used to solve problems where:

(i) One side and any two angles are given, or

3.6 Trigonometry 59

(ii) Two sides and one angle (where angle is opposite one of the sides)

The cosine rule states that for any tringle ABC with sides a, b, c and opposite
angles A, B and C that:

a2 = b2 + c2 − 2bc Cos A

or,

b2 = a2 + c2 − 2ac Cos B

or,

c2 = a2 + b2 − 2ac Cos C

The cosine rule may be used to solve problems where:

(i) Two sides and the included angle are given, or
(ii) Three sides are given.

The area of any tringle ABC with sides a, b, c and angles A, B, and C is given by:

Area = 1/2 ab Sin C = 1/2 ac Sin B = 1/2 bc Sin A.

Example 3.14 Solve the following triangle (using the sine rule and determine its
area).

Solution

As this is an isosceles triangle we note that angle < BCA is also 65°, and so angle <
BAC = 180 – 130 = 50°. We thus have one unknown side BC (= x) and so we apply
the sine rule to get:

Sin 50

x
=

Sin 65

12

⇒
0.766

x
=

0.9063

12

60 3 Mathematical Prerequisites for Software Engineers

Thus x = 10.14 cm.
The area of the triangle is given by:

Area = 1/2 ac SinB
= 0.5 ∗ 12 ∗ 10.14 ∗ Sin 65
= 55.14 cm2.

Example 3.15 Solve the following triangle (using the cosine rule and determine its
area).

10 cm

8 cm

70o

A

CB

Solution

b2 = a2 + c2 − 2ac Cos B
b2 = 82 + 102 − 2.8.10.Cos 70

= 64 + 100 + 160 ∗ 0.342
= 164 + 54.72
= 218.72

b = 14.78 cm

The area of the triangle is then given by:

Area = 1/2 ac SinB
= 0.5 ∗ 10 ∗ 8 ∗ Sin 70
= 37.59 cm2.

3.6.3 Trigonometric Identities

There are several useful trigonometric identities including:

(i) Sin (− A) = − Sin A

3.6 Trigonometry 61

(ii) Cos (− A) = Cos A
(iii) Cos2 A + Sin2 A = 1
(iv) Sin (A + B) = Sin A Cos B + Cos A Sin B
(v) Sin (A − B) = Sin A Cos B − Cos A Sin B
(vi) Cos (A + B) = Cos A Cos B − Sin A Sin B
(vii) Cos (A − B) = Cos A Cos B + Sin A Sin B
(viii) Sin 2A = 2 Sin A Cos A
(ix) Cos 2A = Cos2 A − Sin2 A
(x) Sin A + Sin B = 2 Sin 1/2 (A + B) Cos 1/2 (A − B)
(xi) Cos A + Cos B = 2 Cos 1/2 (A + B) Cos 1/2 (A − B)
(xii) Sec2 A = 1 + Tan2 A.

3.6.4 Degrees and Radians

The sum of the angles in a triangle is 180°
The measure (in radians) of the angle at the centre of a circle with radius r is

given by the ratio of the arc s to the radius r, i.e.,

θ =
s

r

That is, the length of the arc s is given by s = rθ, and clearly when the radius
is 1 (i.e., the unit circle) then the radian measure of the angle θ is the length of
the arc s.

The length of the circumference of a circle with radius r is given by 2πr and
so the measure in radians of the angle at the centre of the circle is

2πr

r
= 2π(radians) = 360◦

That is,

2π radians = 360◦

⇒ 1 radian = 360◦/2π

62 3 Mathematical Prerequisites for Software Engineers

= 57◦17,

We have the following identities:

π(rads) = 180◦

π/2(rads) = 90◦

π/4(rads) = 45◦

π/6(rads) = 30◦.

3.6.5 Periodic Functions and Sketch of Sine and Cosine
Functions

A function f (x) is periodic with period k if f (x + k) = f (x) for all values of x.
That is, the curve of f (x) between 0 and k repeats endlessly to the left and to the
right, i.e., f (x + nk) = f (x) for n = 0, ±1,± 2, …

The sine and cosine functions are periodic functions with period 2π, and this
may be seen by:

Sin(x + 2π) = Sinx Cos2π + Cosx Sin2π = Sinx ∗ 1 + Cosx ∗ 0 = Sinx
Cos(x + 2π) = Cosx Cos2π − Sinx Sin2π = Cosx ∗ 1 − Sinx ∗ 0 = Cosx

This can be extended to

Sin(x + 2nπ) = Sinx n = 0, ±1, ±2, . . .
Cos(x + 2nπ) = Cosx n = 0, ±1, ±2, . . .

The graph of the sine function between 0 and 2π is given by:

Similarly, the graph of the cosine function between 0 and 2π is given by:

3.7 Cartesian Coordinates 63

3.6.6 Power Series for Sine and Cosine

The power series for Sin x is given by:

Sinx = x −
x3

3! +
x5

5! − · · · + (−1)n
x2n+1

(2n + 1)! + · · ·

n = 0, 1, 2, . . .

The power series for Cos x is given by:

Cosx = 1 −
x2

2! +
x4

4! − · · · + (−1)n
x2n

(2n)! + · · ·

n = 0, 1, 2, . . .

3.7 Cartesian Coordinates

The Cartesian coordinate system specifies each point uniquely in the plane by a
set of numerical coordinates, which are the signed distance of the point to two
fixed coordinate axes. The point where the two axes meet is termed the origin of
the coordinate system and has the coordinates (0, 0). The Cartesian system was
invented by Rene Descartes in the seventeenth century, and it allows geometric
shapes such as curves to be described by algebraic equations (Fig. 3.2).

There are three perpendicular axes in the three dimensional Cartesian coordinate
system, and the Cartesian coordinates (x, y, z) of a point P in place are the numbers
where the planes through P perpendicular to the three axes cut the axes (Fig. 3.3).

The points that lie on the x-axis have their y and z coordinate equal to zero, i.e.,
they are of the form (x, 0, 0), and similarly points in the y-axis have coordinates
(0, y, 0) and points in the z-axis have coordinates (0, 0, z).

The points in a plane perpendicular to the x-axis all have the same x coordinate,
and similarly the points in a plane perpendicular to the y-axis all have the same y

64 3 Mathematical Prerequisites for Software Engineers

Fig. 3.2 Cartesian
coordinate system

Fig. 3.3 Cartesian
three-dimensional coordinate
system

coordinate and the points in a plane perpendicular to the z-axis all have the same
z coordinate. It is easy to write equations for these planes as for example, the
equation x = 3 is an equation to the plane perpendicular to the x-axis at x = 3,
and similarly the equation y = 2 is an equation to the plane perpendicular to the
y-axis at y = 3 and the equation z = 4 is an equation to the plane perpendicular to
the z-axis at z = 4. The intersection of the three planes is the point (3, 2, 4).

The intersection of the planes x = 3 and y = 2 is a line that runs parallel to
the z-axis, and is given by the equations x = 3 and y = 2. The equation of the
xy-plane is z = 0; the equation of the yz-plane is x = 0; and the equation of the
xz-plane is y = 0.

The distance between any two points (x1, y1) and (x2, y2) in the two dimensional
Cartesian plane is given by:

d =
/

(x2 − x1)2 + (y2 − y1)2

65

The distance between any two points (x1, y1, z1) and (x2, y2, z2) in the three
dimensional Cartesian plane is given by:

d =
/

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

3.8 Review Questions

1. What is a set? A relation? A function?
2. Explain the difference between a partial and a total function.
3. Determine A Δ B where A = {a, b, c, d} and B = {c, d, e}.
4. What is the domain and range of R = {(a, p), (a, r), (b, q)}.
5. Determine the inverse relation R−1 where R = {(a, 2), (a, 5), (b, 3), (b,

4), (c, 1)}.
6. Determine the inverse of the function f : R × R → R defined by

f (x) =
x − 2
x − 3

(x /= 3) and f (3) = 1

7. Compute 7/8 * 5/12.
8. Find the prime factorization of 18 and 24.
9. Find the least common multiple of 18 and 24.
10. Find the greatest common divisor of 18 and 24.
11. A company makes a profit of e120,000 which is to be divided between

its three partners A, B, and C in the ratio 2:7:6. Find the amount that
each partner gets.

12. Solve the proportion 2:7 = 4:x.
13. What number is 15% greater than 140?
14. The length of the hypotenuse and one of the sides of a right-angled

triangle is 17 cm and 8 cm respectively. Find the length of the other
side.

15. Use the cosine and sine rules to find the angles of a triangle where the
sides are 17, 15 and 8. Determine its area.

16. Calculate the number of degrees of:
(a) π /6 radians
(b) 3 radians

17. What is the period of the following functions:
(a) Sin 2x
(b) Cos 3x

18. Find the distance between (0, 1, 4) and (2, 3, 1).

66 3 Mathematical Prerequisites for Software Engineers

3.9 Summary

This chapter introduced essential mathematics for computing including set theory,
relations, and functions. Sets are collections of well-defined objects; a relation
between A and B indicates relationships between members of the sets A and B;
and functions are a special type of relation where there is at most one relationship
for each element a ∈ A with an element in B.

A binary relation R (A, B) is a subset of the Cartesian product (A× B) of A and
B where A and B are sets. The domain of the relation is A and the codomain of
the relation is B. An n-ary relation R (A1, A2, … An) is a subset of (A1 × A2 × …×
An).

A total function f : A→ B is a special relation such that for each element a∈ A
there is exactly one element b ∈ B. This is written as f (a) = b. A function is a
relation but not every relation is a function.

Arithmetic is the branch of mathematics that is concerned with the study of
numbers and their properties. It includes the study of the integer numbers, and
operations on them, such as addition, subtraction, multiplication, and division.

The natural numbers consist of the numbers {1, 2, 3, …}. The integer numbers
are a superset of the set of natural numbers, and the rational numbers are a superset
of the set of integer numbers, which consist of all numbers of the form {p/q where
p and q are integers and q /= 0}. A simple fraction is of the form a/b where a
and b are integers, with the number a above the bar termed the numerator and the
number b below the bar termed the denominator.

A positive integer n > 1 is called prime if its only divisors are n and 1, and a
number that is not a prime is called composite. There are an infinite number of
prime numbers, and prime numbers are the key building blocks in number theory,
and the fundamental theorem of arithmetic states that every number may be written
uniquely as the product of factors of prime numbers.

Euclid’s algorithm is used for finding the greatest common divisor of two pos-
itive integers a and b. The least common multiple (LCM) of two numbers is the
smallest number that can be divided by both numbers.

Ratios and proportions are used to solve business problems where a ratio is a
comparison of numbers where the quantities are expressed in the same units. The
numbers appearing in a ratio are called the terms of the ratio, and the ratios are
generally reduced to the lowest terms. One application of ratios is to allocate a
quantity into parts by a given ratio (i.e., allocating a portion of a whole into parts).

Percent means “per hundred”, and the symbol % indicates parts per hundred
(i.e., a percentage is a fraction where the denominator is 100 which provides an
easy way to compare two quantities).

Trigonometry is the branch of mathematics that deals with the measurement
of sides and angles of triangles and the relationship between them. It has many
practical applications in science and engineering.

Pythagoras’s expresses the relationship between the hypotenuse and other sides
of a right-angled triangle, and the sine, cosine, and tangent of an angle can be
expressed in terms of the sides of a right-angled triangle.

References 67

The cosine rule and sine rule are used to solve a triangle with the cosine rule
applied when given two sides and the included angled or when given three sides.
The sine rule is applied when given one side and any two angles or two sides are
given and one angle where the angle is opposite one of the sides.

Angles may be measured in degrees or in radians although radians is more
common. The sine and cosine functions are trigonometric functions of an angle
and are periodic with period of 2π. They are used to model sound and light waves
in physics.

References

1. Euclid (1956) The thirteen books of the elements. Vol.1 (Trans: Sir Thomas Heath). Dover
Publications (First published in 1925)

2. O’Regan G (2021) Guide to discrete mathematics, 2nd edn. Springer

4Introduction to Algorithms

Key Topics

Euclid’s Algorithm

Sieve of Eratosthenes Algorithm

Early Ciphers

Sorting Algorithms

Insertion Sort and Merge Sort

Analysis of Algorithms

Complexity of Algorithms

NP Complete

4.1 Introduction

An algorithm is a well-defined procedure for solving a problem, and it consists
of a sequence of steps that takes a set of values as input, and produces a set of
values as output. It is an exact specification of how to solve the problem, and it
explicitly defines the procedure so that a computer program may implement the
solution. The origin of the word “algorithm” is from the name of the 9th Persian
mathematician, Mohammed Al Khwarizmi.

It is essential that the algorithm is correct, and that it terminates in a reason-
able amount of time. This may require mathematical analysis of the algorithm to
demonstrate its correctness and efficiency, and to show that termination is within
an acceptable timeframe. There may be several algorithms to solve a problem, and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_4

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_4

70 4 Introduction to Algorithms

so the choice of the best algorithm (e.g., fastest/most efficient) needs to be con-
sidered. For example, there are several well-known sorting algorithms (e.g., merge
sort and insertion sort), and the merge sort algorithm is more efficient [o(n lg n)]
than the insertion sort algorithm [o(n2)].

An algorithm may be implemented by a computer program written in some
programming language (e.g., C++ or Java). The speed of the program depends on
the algorithm employed, the input value(s), how the algorithm has been imple-
mented in the programming language, the compiler, the operating system and the
computer hardware.

An algorithm may be described in natural language (care is needed to avoid
ambiguity), but it is more common to use a more precise formalism for its descrip-
tion. These include pseudo code (an informal high-level language description);
flowcharts; a programming language such as C or Java; or a formal specifica-
tion language such as VDM or Z. We shall mainly use natural language and
pseudocode to describe an algorithm. One of the earliest algorithms developed
was Euclid’s algorithm (discussed briefly in Chap. 3) for determining the greatest
common divisor of two natural numbers, and it is described in the next section.

4.2 Early Algorithms

Euclid lived in Alexandria during the early Hellenistic period,1 and he is con-
sidered the father of geometry and the deductive method in mathematics. His
systematic treatment of geometry and number theory is published in the thir-
teen books of the Elements [1]. It starts with five axioms, five postulates and
twenty-three definitions to logically derive a comprehensive set of theorems in
geometry.

His method of proof was generally constructive, in that as well as demonstrating
the truth of the theorem, a construction of the required entity was provided. He
employed some indirect proofs, and one example was his proof that there are an
infinite number of prime numbers. The procedure is to assume the opposite of
what one wishes to prove, and to show that a contradiction results. This means
that the original assumption must be false, and the theorem is established.

1. Suppose there are a finite number of primes (say n primes).
2. Multiply all n primes together and add 1 to form N.

(N = p1 ∗ p2 ∗ . . . ∗ pn + 1)

3. N is not divisible by p1, p2, …, pn as dividing by any of these gives a remainder
of one.

1 This refers to the period following the conquests of Alexander the Great, which led to the spread
of Greek culture throughout the Middle East and Egypt.

4.2 Early Algorithms 71

4. Therefore, N must either be prime or divisible by some other prime that was
not included in the original list.

5. Therefore, there must be at least n + 1 primes.
6. This is a contradiction (it was assumed that there are exactly n primes).
7. Therefore, the assumption that there is a finite number of primes is false.
8. Therefore, there are an infinite number of primes.

His proof that there are an infinite number of primes is indirect, and he does
not present an algorithm to as such to construct the set of prime numbers. We
present the well-known Sieve of Eratosthenes algorithm for determining the prime
numbers up to a given number n later in the chapter.

The material in Euclid’s elements is a systematic development of geometry
starting from the small set of axioms, postulates, and definitions. It leads to many
well-known mathematical results such as Pythagoras’s theorem, Thales theorem,
sum of angles in a triangle, prime numbers, greatest common divisor and least
common multiple, Euclidean algorithm, areas and volumes, tangents to a point,
and algebra.

4.2.1 Greatest Common Divisors (GCD)

Let a and b be integers not both zero. The greatest common divisor d of a and b
is a divisor of a and b (i.e., d|a and d|b), and it is the largest such divisor (i.e., if
k|a and k|b then k|d). It is denoted by gcd (a, b).

Properties of Greatest Common Divisors

(i) Let a and b be integers not both zero then exists integers x and y such that:

d = gcd(a, b) = ax + by

(ii) Let a and b be integers not both zero then the set S = {ax + by where x,
y ∈ Z} is the set of all multiples of d = gcd (a, b).

4.2.2 Euclid’s Greatest Common Divisor Algorithm

Euclid’s algorithm is one of the oldest known algorithms, and it provides the pro-
cedure for finding the greatest common divisor of two numbers a and b. It appears
in Book VII of Euclid’s elements (Fig. 4.1).

The inputs for the gcd algorithm consists of two natural numbers a and b, and
the output of the algorithm is d (the greatest common divisor of a and b). It is
computed as follows:

gcd (a, b) =
{

Check if b is zero. If so, then a is the gcd .
Otherwise, the gcd(a, b) is given by gcd (b, a mod b).

72 4 Introduction to Algorithms

Fig. 4.1 Euclid of
Alexandria

It is also possible to determine integers p and q such that ap + bq = gcd(a, b).
The (informal) proof of the Euclidean algorithm is as follows. Suppose a and b

are two positive numbers whose greatest common divisor is to be determined, and
let r be the remainder when a is divided by b.

1. Clearly a = qb + r where q is the quotient of the division.
2. Any common divisor of a and b is also a divider or r (since r = a − qb).
3. Similarly, any common divisor of b and r will also divide a.
4. Therefore, the greatest common divisor of a and b is the same as the greatest

common divisor of b and r.
5. The number r is smaller than b and we will reach r = 0 in finitely many steps.
6. The process continues until r = 0.

Comment 4.1

Algorithms are fundamental in computing as they define the procedure by which
a problem is solved. A computer program implements the algorithm in some
programming language.
Next, we deal with the Euclidean algorithm more formally, and we start with a
basic lemma.

Lemma Let a, b, q, and r be integers with b > 0 and 0≤ r < b such that a = bq + r.
Then gcd(a, b) = gcd(b, r).

4.2 Early Algorithms 73

Proof Let K = gcd(a, b) and let L = gcd(b, r) then we need to show that K = L.
Suppose m is a divisor of a and b, then as a = bq + r we have m is a divisor of r and
so any common divisor of a and b is a divisor of r. Therefore, the greatest common
divisor K of a and b is a divisor of r. Similarly, any common divisor n of b and r is
a divisor of a. Therefore, the greatest common divisor L of b and r is a divisor of
a. That is, K divides L and L divides K and so L = K, and so the greatest common
divisor of a and b is equal to the greatest common divisor of b and r.

Euclid’s Algorithm (more formal proof)
Euclid’s algorithm for finding the greatest common divisor of two positive integers
a and b involves a repeated application of the division algorithm as follows:

a = bq0 + r1 0 < r1 < b

b = r1q1 + r2 0 < r2 < r1
r1 = r2q2 + r3 0 < r3 < r2
. . .

rn−2 = rn−1qn−1 + rn 0 < rn < rn−1

rn−1 = rnqn

Then rn (i.e., the last non-zero remainder) is the greatest common divisor of a
and b: i.e., gcd(a, b) = rn.

Proof It is clear from the construction that rn is a divisor of rn−1, rn−2, . . . , r3, r2, r1
and of a and b. Clearly, any common divisor of a and b will also divide rn. Using
the results from the lemma above we have:

gcd(a, b) = gcd(b, r1)
= gcd(r1r2)
= . . .
= gcd(rn−2rn−1)

= gcd(rn−1, rn)

= rn

4.2.3 Sieve of Eratosthenes Algorithm

Eratosthenes was a Hellenistic mathematician and scientist who worked in the
famous library in Alexandria. He devised a system of latitude and longitude, and
he was the first person to estimate of the size of the circumference of the earth. He
developed a famous algorithm (the well-known Sieve of Eratosthenes algorithm)
for determining the prime numbers up to a given number n.

74 4 Introduction to Algorithms

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

Fig. 4.2 Primes between 1 and 50

The algorithm involves listing all numbers from 2 up to n. The first step is to
remove all multiples of 2 up to n; the second step is to remove all multiples of 3
up to n; and so on (Fig. 4.2).

The kth step involves removing multiples of the kth prime pk up to n and the
steps in the algorithm continue while p≤√

n. The numbers remaining in the list
are the prime numbers from 2 to n.

1. List the integers from 2 to n.
2. For each prime pk up to

√
n remove all multiples of pk .

3. The numbers remaining are the prime numbers between 2 and n.

The list of primes between 1 and 50 is then given by 2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, and 47.

The steps in the algorithm may also be described as follows (in terms of two
lists):

1. Write a list of the numbers from 2 to the largest number to be tested. This first
list is called A.

2. A second list B is created to list the primes. It is initially empty.
3. The number 2 is the first prime number, and it is added to List B.
4. Strike off (or remove) all multiples of 2 from List A.
5. The first remaining number in List A is a prime number, and this prime number

is added to List B.
6. Strike off (or remove) this number and all multiples of it from List A.
7. Repeat steps 5 through 7 until no more numbers are left in List A.

4.2.4 Early Cipher Algorithms

Julius Caesar employed a substitution cipher on his military campaigns to ensure
that important messages were communicated safely (Fig. 4.3). The Caesar cipher
is a very simple encryption algorithm, and it involves the substitution of each
letter in the plaintext (i.e., the original message) by a letter a fixed number of
positions down in the alphabet. The Caesar encryption algorithm involves a shift
of 3 positions, and causes the letter B to be replaced by E, the letter C by F, and

75

Alphabet Symbol abcde fghij klmno pqrst uvwxyz
Cipher Symbol dfegh ijklm nopqr stuvw xyzabc

Fig. 4.3 Caesar cipher

so on. The Caesar cipher is easily broken, as the frequency distribution of letters
may be employed to determine the mapping. The Caesar cipher is defined as:

The process of enciphering a message (i.e., the plaintext) involves mapping
each letter in the plaintext to the corresponding cipher letter. For example, the
encryption of “summer solstice” involves:

Plaintext: summer solstice

Cipher Text vxpphu vrovwleh

The decryption involves the reverse operation, i.e., for each cipher letter the
corresponding plaintext letter is determined from the table.

Cipher Text vxpphu vrovwleh

Plaintext: summer solstice

The Caesar encryption algorithm may be expressed formally using modular
arithmetic. The numbers 0–25 represent the alphabet letters, and the algorithm is
expressed using addition (modula 26) to yield the encrypted cipher. The encoding
of the plaintext letter x is given by:

c = x + 3(mod 26)

Similarly, the decoding of a cipher letter represented by the number c is given
by:

x = c − 3(mod 26)

The emperor Augustus2 employed a similar substitution cipher (with a shift
key of 1). The Caesar cipher remained in use up to the early twentieth century.
However, by then frequency analysis techniques were available to break the cipher.
The Vignère cipher uses a Caesar cipher with a different shift at each position
in the text. The value of the shift to be employed with each plaintext letter is
defined using a repeating keyword. We shall discuss cryptography in more detail
in Chap. 20.

2 Augustus was the first Roman emperor, and his reign ushered in a period of peace and stabil-
ity following the bitter civil war that occurred after the assassination of Julius Caesar. He was the
adopted son of Julius Caesar (he was called Octavion before he became emperor). The civil war
broke out between Mark Anthony and Octavion, and Anthony and Cleopatra were defeated by
Octavion and Agrippa at the battle of Actium in 31 B.C.

76 4 Introduction to Algorithms

4.3 Sorting Algorithms

One of the most common tasks to be performed in a computer program is that of
sorting (e.g., consider the problem of sorting a list of names or numbers). This
has led to the development of many sorting algorithms (e.g., selection sort, bubble
sort, insertion sort, merge sort, and quicksort) as sorting is a fundamental task to
be performed.

For example, consider the problem of specifying the algorithm for sorting a
sequence of n numbers. Then, the input to the algorithm is ⟨x1, x2, . . . xn⟩, and
the output is

⟨
x ,
1, x

,
2, . . . x

,
n

⟩
, where x,

1 ≤x,
2 ≤…≤ x,

n. Further,
⟨
x ,
1, x

,
2, . . . x

,
n

⟩
is a

permutation of ⟨x1, x2, . . . xn⟩, i.e., the same numbers are in both sequences except
that the sorted sequence is in ascending order, whereas no order is imposed on the
original sequence.

Insertion sort is an efficient algorithm for sorting a small list of elements. It
iterates over the input sequence; examines the next input element during the itera-
tion; and builds up the sorted output sequence. During the iteration, insertion sort
removes the next element from the input data, and it then finds and inserts it into
the location where it belongs in the sorted list. This continues until there are no
more input elements to process.

We first give an example of insertion sort and then give a more formal definition
of the algorithm (Fig. 4.4). The example considered is that of the algorithm applied
to the sequence A = ⟨5, 3 1, 4⟩. The current input element for each iteration is
highlighted, and the arrow points to the location where it is inserted in the sorted
sequence. For each iteration, the elements to the left of the current element are
already in increasing order, and the operation of insertion sort is to move the
current element to the appropriate position in the ordered sequence.

We shall assume that we have an unsorted array A with n elements that we wish
to sort. The operation of insertion sort is to rearrange the elements of A within the
array, and the output is that the array A contains the sorted output sequence.

Insertion sort

for i from 2 to n do

C ← A[i]
j ← i-1
while j > 0 and A[j] > C do

A[j+1]← A[j]
j ← j-1

A[j+1] ← C

Fig. 4.4 Insertion sort
example

5 3 1 4
3 5 1 4
1 3 5 4
1 3 4 5

4.3 Sorting Algorithms 77

The analysis of an algorithm involves determining its efficiency and establishing
the resources that it requires (e.g., memory and bandwidth), as well as determining
the computational time required. The time taken by the insertion sort algorithm
depends on the size of the input sequence (clearly a large sequence will take
longer to sort than a short sequence), and on the extent to which the sequences are
already sorted. The worst-case running time for the insertion sort algorithm is of
order n2—i.e., o(n2), where n is the size of the sequence to be sorted (the average
case is also of order n2 with the best case linear).

There are a number of ways to design sorting algorithms, and the insertion sort
algorithm uses an incremental approach, with the subarray A[1 … i − 1] already
sorted and the element A[i] is then inserted into its correct place to yield the sorted
array A[1 … i].

Another approach is to employ divide and conquer techniques, and this tech-
nique is used in the merge sort algorithm. This is a more efficient algorithm, and it
involves breaking a problem down into several subproblems, and then solving each
problem separately. The problem solving may involve recursion or directly solv-
ing the subproblem (if it is small enough), and then combining the solutions to the
subproblems into the solution for the original problem. The merge sort algorithm
involves three steps (Divide, Conquer, and Combine):

1. Divide the list A (with n elements) to be sorted into two subsequences (each
with n/2 elements).

2. Sort each of the subsequences by calling merge sort recursively (Conquer)
3. Merge the two sorted subsequences to produce a single sorted list (Combine).

The recursive part of the merge sort algorithm bottoms out when the sequence
to be sorted is of length 1, as for this case the sequence is of length 1 which
is already (trivially) sorted. The key operation then (where all the work is done)
is the combine step that merges two sorted sequences to produce a single sorted
sequence. The merge sort algorithm may also be described as follows:

1. Divide the sequence (with n elements) to be sorted into n subsequences each
with 1 element (a sequence with 1 element is sorted).

2. Repeatedly merge subsequences to form new subsequences (each new sub
sequence is sorted), until there is only one remaining subsequence (the sorted
sequence).

First, we consider an example (Fig. 4.5) to illustrate how the merge sort algorithm
operates, and we then give a formal definition.

It may be seen from the example that the list is repeatedly divided into equal
halves with each iteration, until we get to the atomic values that can no longer
be divided. The lists are then combined in the order in which they were broken
down, and this involves comparing the elements of both lists and combining them
to form a sorted list. The merging continues in this way until there are no more

78 4 Introduction to Algorithms

Fig. 4.5 Merge sort example 15 7 2 12 9 3 10

15 7 2 12 9 3 10

15 7 2 12 9 3 10

15 7 2 12 9 3 10

7 15 2 12 3 9 10

2 7 12 15 3 9 10

2 3 7 9 10 12 15

6

6

6

6

6

6

6

lists to merge, and the list remaining is the sorted list. The formal definition of
merge sort is as follows:

Merge sort (A, m, n)

If m < n then

r ← (m + n) div 2

Merge Sort (A, m, r)

Merge Sort (A, r+1, n)

Merge (A, m, r, n)

The worst-case and average case running time for the merge sort algorithm is
of order n lg n—i.e., o(n lg n), where n is the size of the sequence to be sorted
(the average case and best case is also of order o(n lg n)).

The merge procedure merges two sorted lists to produce a single sorted list.
Merge (A, p, q, r) merges A[p … q] with A[q + 1 … r] to yield the sorted list A[p
… r]. We use a temporary working array B[p … r] with the same index range as
A. The indices i and j point to the current element of each subarray, and we move
the smaller element into the next position in B (indicated by index k) and then
increment either i or j. When we run out of entries in one array then we copy the
rest of the other array into B. Finally, we copy the entire contents of B back to A.

Merge (A, p, q, r)

Array B[p … r]

i ← p
k ← p
j ← q+1
while (i ≤ q ∧ j≤ r) i.e., while both subarrays are non-empty

4.4 Binary Trees and Graph Theory 79

if A[i]≤ A[j].

B[k] ← A[i]
i ← i+1

else

B[k] ← A[j]
j ← j+1
k ← k+1

while (i ≤ q) … copy any leftover to B

B[k] ← A[i]
i ← i+1
k ← k+1

while (j ≤ r) … copy any leftover to B

B[k] ← A[j]
j ← j+1
k ← k+1

for i = p to r do … copy B back to A

A[i] = B[i]

4.4 Binary Trees and Graph Theory

A binary tree (Fig. 4.6) is a tree in which each node has at most two child nodes
(termed left and right child node). A node with children is termed a parent node,
and the top node of the tree is termed the root node. Any node in the tree can
be reached by starting from the root node, and by repeatedly taking either the left
branch (left child) or right branch (right child) until the node is reached. Binary
trees are often used in computing to implement efficient searching algorithms.

The depth of a node is the length of the path (i.e., the number of edges) from
the root to the node. The depth of a tree is the length of the path from the root to
the deepest node in the tree. A balanced binary tree is a binary tree in which the
depth of the two subtrees of any node never differs by more than one.

Tree traversal is a systematic way of visiting each node in the tree exactly once,
and we distinguish between breadth first search algorithms in which every node

Fig. 4.6 Sorted binary tree M

QF

OB S

UN

80 4 Introduction to Algorithms

at a particular level is visited before going to a lower level, and depth first search
algorithms where one starts at the root and explores as far as possible along each
branch before backtracking. The traversal in depth first search may be in preorder,
inorder, or postorder.

Graph algorithms are employed to solve various problems in graph theory
including network cost minimization problems; construction of spanning trees;
shortest path algorithms; longest path algorithms; and timetable construction prob-
lems. Chapter 7 discusses graph theory in more detail, and the reader may consult
texts on graph theory (e.g., [2]) to explore many well-known graph algorithms
such as Dijkstra’s shortest path and longest path algorithms, Kruskal’s minimal
spanning tree algorithm, and Prim’s minimal spanning tree algorithms.

4.5 Modern Cryptographic Algorithms

A cryptographic system is concerned with the secure transmission of messages.
The message is encrypted prior to its transmission, and any unauthorized intercep-
tion and viewing of the message is meaningless to anyone other than the intended
recipient. The recipient uses a key to decrypt the encrypted text to retrieve the
original message.

• M represents the message (plaintext)
• C represents the encrypted message (cipher text)
• ek represents the encryption key
• dk represents the decryption key
• E represents the encryption
• D represents the decryption

There are essentially two different types of cryptographic systems, namely the
public key cryptosystems and secret key cryptosystems. A public key cryptosystem
is an asymmetric cryptosystem where two different keys are employed: one for
encryption and one for decryption. The fact that a person can encrypt a message
does not mean that the person is able to decrypt a message.

The same key is used for both encryption and decryption in a secret key
cryptosystem, and anyone who has knowledge on how to encrypt messages has suf-
ficient knowledge to decrypt messages. The encryption and decryption algorithms
satisfy the following equation:

Ddk (C) = Ddk (Eek (M)) = M

There are two different keys employed in a public key cryptosystem. These
are the encryption key ek and the decryption key dk with ek . /=dk . It is called
asymmetric as the encryption key differs from the decryption key.

A symmetric key cryptosystem (Fig. 20.5) uses the same secret key for encryp-
tion and decryption, and so the sender and the receiver first need to agree on a

4.6 Algorithms in Numerical Analysis 81

shared key prior to communication. This needs to be done over a secure channel
to ensure that the shared key remains secret. Once this has been done they can
begin to encrypt and decrypt messages using the secret key.

The encryption of a message is in effect a transformation from the space of
messages m to the space of cryptosystems C. That is, the encryption of a message
with key k is an invertible transformation f such that:

f : m k−→ C

The cipher text is given by C = Ek(M) where M ∈m and C ∈C. The legiti-
mate receiver of the message knows the secret key k (as it will have transmitted
previously over a secure channel), and so the cipher text C can be decrypted by
the inverse transformation f −1 defined by:

f −1:C k−→ m

Therefore, we have that Dk(C) = Dk (Ek(M)) = M the original plaintext
message.

A public key cryptosystem (Fig. 20.6) is an asymmetric key system where there
is a separate key ek for encryption and dk decryption with ek /=dk . The fact that a
person is able to encrypt a message does not mean that the person has sufficient
information to decrypt messages. There is a more detailed account of cryptography
in Chap. 20.

4.6 Algorithms in Numerical Analysis

Numerical analysis is concerned with devising methods for approximating solu-
tions to mathematical problems. Often an exact formula is not available for solving
a particular equation f (x) = 0, and numerical analysis provides techniques to
approximate the solution in an efficient manner.

An algorithm is devised to provide the approximate solution, and it consists of
a sequence of steps to produce the solution as efficiently as possible within defined
accuracy limits. The maximum error due to the application of the numerical meth-
ods needs to be determined. The algorithm is implemented in a programming
language such as Fortran.

There are several numerical techniques to determine the root of an equation
f (x) = 0. These include techniques such as the bisection method, which has been
used since ancient times, and the Newton–Raphson method developed by Sir Isaac
Newton.

The bisection method is employed to find a solution to f (x) = 0 for the contin-
uous function f on [a, b] where f (a) and f (b) have opposite signs (Fig. 4.7). The
method involves a repeated halving of subintervals of [a, b], with each step locat-
ing the half that contains the root. The inputs to the algorithm are the endpoints a

82 4 Introduction to Algorithms

Fig. 4.7 Bisection method

b = b1
a = a1 p1p2

y = f(x)

p

and b, the tolerance (TOL), and the maximum number of iterations N. The steps
are as follows:

1. Initialize i to 1

2. while i≤ N

i. Compute midpoint p

(p → a + (b − a) / 2)

ii. If f(p) = 0 or (b − a) / 2 < TOL

Output p and stop

iii. If f(a)f(p) > 0

Set endpoint a → p
Otherwise set b →p

iv. i→ i + 1

The Newton–Raphson method is a well-known technique to determine the roots
of a function. It uses tangent lines to approximate the graph of y = f (x) near the
points where f is zero. The procedure for Newton’s method is:

Newton’s Method

(i) Guess a first approximation to the root of the equation f (x) = 0.
(ii) Use the first approximation to get a second, third, and so on.
(iii) To go from the n-th approximation xn to the next approximation xn+1 then

use the formula:

where f,(xn) is the derivative of f at xn (the derivative is discussed in Chap. 25).

xn+1 = xn −
f (xn)

f ,(xn)

Newton’s method is very efficient for calculating roots as it converges very
quickly. However, the method may converge to a different root than expected if
the starting value is not close enough to the root sought.

The method involves computing the tangent line at (xn, f (xn)), and the
approximation xn+1 is the point where the tangent intersects the x-axis.

4.8 Review Questions 83

4.7 Computational Complexity

An algorithm is of little practical use if it takes millions of years to compute
the solution to a problem. That is, the fact that there is an algorithm to solve a
problem is not sufficient, as there is also the need to consider the efficiency of the
algorithm. The security of the RSA encryption algorithm (see Chap. 20) relies on
the fact that there is no known efficient algorithm to determine the prime factors
of a large number.

There are often slow and fast algorithms for the same problem, and a measure
of the complexity of an algorithm is the number of steps in its computation. An
algorithm is of time complexity f (n) if for all n and all inputs of length n the
execution of the algorithm takes at most f (n) steps.

An algorithm is said to be polynomially bounded if there is a polynomial p(n)
such that for all n and all inputs of length n the execution of the algorithm takes
at most p(n) steps. The notation P is used for all problems that can be solved in
polynomial time. A problem is said to be computationally intractable if it may not
be solved in polynomial time: that is, there is no known algorithm to solve the
problem in polynomial time.

A problem L is said to be in the set NP (non-deterministic polynomial time
problems) if any given solution to L can be verified quickly in polynomial time. A
problem is NP complete if it is in the set NP of non-deterministic polynomial time
problems, and it is also in the class of NP hard problems. A key characteristic
to NP complete problems is that there is no known fast solution to them, and the
time required to solve the problem using known algorithms increases quickly as
the size of the problem grows. Often, the time required to solve the problem is
in billions of years. That is, although any given solution may be verified quickly
there is no known efficient way to find a solution.

4.8 Review Questions

1. What is an algorithm?
2. Explain why the efficiency of an algorithm is important.
3. What factors should be considered in the choice of algorithm where

several algorithms exist for solving the particular problem?
4. Explain the difference between the insertion sort and merge sort algo-

rithms.
5. Investigate famous computer algorithms such as Dijkstra’s shortest path,

Prim’s algorithm, and Kruskal’s algorithm.

84 4 Introduction to Algorithms

4.9 Summary

An algorithm is a well-defined procedure for solving a problem, and it consists of
a sequence of steps that takes a set of input values and produces a set of output
values. It is an exact specification of how to solve the problem, and a computer
program implements the algorithm in some programming language. It is essential
that the algorithm is correct, and that it terminates in a reasonable period of time.
There may be several algorithms for a problem, and so the choice of the best
algorithm (e.g., fastest/most efficient) needs to be considered.

This may require mathematical analysis of the algorithm to demonstrate its
correctness and efficiency and to show that it terminates in a finite period of time.
An algorithm may be implemented by a computer program, and the speed of the
program depends on the algorithm employed, the input value(s), how the algorithm
has been implemented in the programming language, the compiler, the operating
system, and the computer hardware.

References

1. Euclid (1956) The thirteen books of the elements. Vol. 1. (Trans: Sir Thomas Heath). Dover
Publications (First published in 1925)

2. Piff M (1991) Discrete mathematics. An introduction for software engineers. Cambridge Uni-
versity Press

5Algebra

Key Topics

Simultaneous equations

Quadratic equations

Polynomials

Indices

Logs

Abstract Algebra

Groups

Rings

Fields

Vector Spaces

5.1 Introduction

Algebra is the branch of mathematics that uses letters in the place of numbers,
where the letters stand for variables or constants that are used in mathematical
expressions. It is the study of such mathematical symbols and the rules for manip-
ulating them, and it is a powerful tool for problem solving in science, engineering
and business.

The origins of algebra are in work done by Islamic mathematicians during the
Golden age in Islamic civilization, and the word “algebra” comes from the Arabic

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_5

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_5&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_5

86 5 Algebra

“al-jabr”, which appears as part of the title of a book by the Islamic mathemati-
cian, Al Khwarizmi, in the ninth century A.D. The third century A.D. Hellenistic
mathematician, Diophantus, also did early work on algebra.

Algebra covers many areas such as elementary algebra, linear algebra, and
abstract algebra. Elementary algebra includes the study of symbols and rules
for manipulating them to form valid mathematical expressions; solving simple
equations, simultaneous equations and quadratic equations; polynomials; indices
and logarithms. Linear algebra is concerned with the solution of a set of linear
equations, and the study of matrices and vectors.

We show how to solve simple equations by bringing the unknown variable to
one side of the equation and the values to the other side. We show how simultane-
ous equations are solved by the method of substitution, the method of elimination,
and graphical techniques. We show how to solve quadratic equations by factoriza-
tion, completing the square, the quadratic formula, and graphical techniques. We
show how simultaneous equations and quadratic equations may be used to solve
practical problems.

We present the laws of indices and show the relationship between indices and
logarithms. We discuss the exponential function ex and the natural logarithm logex
or ln x.

5.2 Simplification of Algebraic Expressions

An algebraic expression is a combination of letters and symbols connected through
various operations such as +, −, /,×, (, and). Arithmetic expressions are formed
from terms, and like terms (i.e., terms with the same variables and exponents) may
be added or subtracted. There are two terms in the algebraic expression below with
the terms separated by a ‘−’.

5x
(
2x2 + y

) − 4x(x + 2y − 1)
term 1 term 2

The terms may include powers of some number (e.g., x3 represents x raised to
the power of 3, and 54 represents 5 raised to the power of 4).

In algebra, the like terms may be added or subtracted by adding or subtracting
the numerical coefficients of the like terms. For example,

4x − 2x = 2x

5x2 − 2x2 = 3x2

5x − 2y + 3x − 2y = 8x − 4y

4x2 − 2y3 − 3x2 + 3y3 = x2 + y3

− (4x − 3y) = −4x + 3y

5(3x) = (5 × 3)x = 15x

5.3 Simple and Simultaneous Equations 87

5x · 2x = 10x2

Algebraic expressions may be simplified.

(ax + by)(ax − by) = aax2 + (−ab + ba)xy − bby2

= a2x2 − b2y2

Therefore,

(2x − 3y)(2x + 3y) = 22x2 − 32y2 = 4x2 − 9y2

(a + b)(a − b) = a2 − b2

Let P(x) = (ax + b) and Q(x) = (cx + d). Then P(x)Q(x) =

(ax+b) (cx+d) = (ax+b) (cx+d)

That is,

(ax + b)(cx + d) = ax(cx + d) + b(cx + d)
= axcx + axd + bcx + bd

= acx2 + (ad + bc)x + bd

A polynomial P(x) of degree n is defined as P(x) = anxn + an−s
−1 + an−2xn−2

+ · · · + a1x + a0. A polynomial may be multiplied by another, and when we
multiply two polynomials P(x) of degree n and Q(x) of degree m together, the
resulting polynomials is of degree n + m.

Example
Multiply (2a + 3b) by (a + b).

Solution
This is given by 2a2 + 2ab + 3ab + 3b2 = 2a2 + 5ab + 3b2.

5.3 Simple and Simultaneous Equations

A simple equation is an equation with one unknown, and the unknown may be on
both the left-hand side and right-hand side of the equation. The method of solving
such equations is to bring the unknowns to one side of the equation, and the values
to the other side.

Simultaneous equations are equations with two (or more) unknowns. There are
a number of methods to finding a solution to two simultaneous equations such

88 5 Algebra

as elimination, substitution, and graphical techniques. The solution of n linear
equations with n unknowns may be done using Gaussian elimination and matrix
theory.

Example 5.1 (Simple Equation) Solve the simple equation 4 − 3x = 2x − 11.

Solution (Simple Equation)

4 − 3x = 2x − 11
4 − (−11) = 2x − (3x)
4 + 11 = 2x + 3x

15 = 5x

3 = x

Example 5.2 (Simple Equation) Solve the simple equation

2y

5
+

3

4
+ 5 =

1

20
−

3y

2

Solution (Simple Equation)

The LCM of 4, 5 and 20 is 20. We multiply both sides by 20 to get:

20 ∗
2y

5
+ 20 ∗

3

4
+ 20 ∗ 5 = 20 ∗

1

20
− 20 ∗

3y

2
8y + 15 + 100 = 1 − 30y

38y = −114

y = −3

Simple equations may be used to solve practical problems where there is one
unknown value to be determined. The information in the problem is converted into
a simple equation with one unknown, and the equation is then solved.

Example 5.3 (Practical Problem—Simple Equations) The distance (in metres) trav-
elled in time t seconds is given by the formula s = ut + 1/2 at2, where u is the initial
velocity in m/s and a is the acceleration in m/s2. Find the acceleration of the body if
it travels 168 m in 6 s, with an initial velocity of 10 m/s.

Solution

Using the formula s = ut + 1/2 at2 we get:

168 = 10 ∗ 6 + 1/2a∗62

168 = 60 + 18a (simple equation)
108 = 18a

a = 6m/s2

5.3 Simple and Simultaneous Equations 89

5.3.1 Simultaneous Equations

Simultaneous equations are equations with two (or more) unknowns. There are
several methods available to find a solution to the simultaneous equations including
the method of substitution, the method of elimination, and graphical techniques.
We start with the substitution method where we express one of the unknowns in
terms of the other. The method of substitution involves expressing x in terms of y
and substituting it in the other equation (or vice versa expressing y in terms of x
and substituting it in the other equation).

Example 5.4 (Simultaneous Equation—Substitution Method) Solve the following
simultaneous equations by the method of substitution.

x + 2y = −1

4x − 3y = 18

Solution (Simultaneous Equation—Substitution Method)
For this example, we use the first equation to express x in terms of y.

x + 2y = −1

x = −1 − 2y

We then substitute for x, i.e., instead of writing x we write (− 1 − 2y) for x in the
second equation, and we get a simple equation involving just the unknown y.

4(−1 − 2y) − 3y = 18
⇒ −4 − 8y − 3y = 18
⇒ −11y = 18 + 4
⇒ −11y = 22
⇒ y = −2

We then obtain the value of x from the substitution:

x = −1 − 2y

⇒ x = −1 − 2(−2)
⇒ x = −1 + 4
⇒ x = 3

We can then verify that our solution is correct by checking our answer for both
equations.

3 + 2(−2) = −1 √

90 5 Algebra

4(3) − 3(−2) = 18 √

The approach of the method of elimination is to manipulate both equations so that
we may eliminate either x or y, and so reduce the equations to a simple equation of
one unknown value of x or y. This is best seen by an example.

Example 5.5 (Simultaneous Equation—Method of Elimination) Solve the following
simultaneous equations by the method of elimination.

3x + 4y = 5
2x − 5y = −12

Solution (Simultaneous Equation—Method of Elimination)
We will use the method of elimination in this example to eliminate x, and so we

multiply Eq. (5.1) by 2 and Eq. (5.2) by − 3, and this yields two equations which
have equal but opposite coefficients of x.

6x + 8y = 10
− 6x + 15y = 36
− − − − − − − −
0x + 23y = 46

y = 2

We then add both equations together and conclude that y = 2. We then determine
the value of x by replacing y with 2 in the first equation.

3x + 4(2) = 5
3x + 8 = 5
3x = 5 − 8
3x = −3

x = −1

We can then verify that our solution is correct as before by checking our answer
for both equations.

Each simultaneous equation represents a straight line, and so the solution to the
two simultaneous equations satisfies both equations and so is on both lines, i.e., the
solution is the point of intersection of both lines (if there is such a point). Therefore,
the solution involves drawing each line and finding the point of intersection of both
lines (Fig. 5.1).

5.3 Simple and Simultaneous Equations 91

X

Y

•
•

x +2y=-1

•

•

4x-3y=-18

solution

Fig. 5.1 Graphical solution to simultaneous equations

Example 5.6 (Simultaneous Equation—Graphical Techniques) Find the solution to
the following simultaneous equations using graphical techniques:

x + 2y = −1

4x − 3y = 18

Solution (Simultaneous Equation—Graphical Techniques)
First we find two points on line 1, e.g., (0, − 0.5) and (− 1, 0) are on line 1, since

when x = 0 we have 2y = − 1 and so y = − 0.5. Similarly, when y = 0 we have x
= − 1. Next we find two points on line 2, e.g., when x is 0 y is − 6 and when y is 0
we have x = 4.5 and so the points (0, − 6) and (4.5, 0) are on line 2.

We then draw the X-axis and the Y-axis, draw the scales on the axes, label the
axes, plot the points and draw both lines. Finally, we find the point of intersection
of both lines (if there is such a point), and this is our solution to the simultaneous
equations.

The graph shows that the two lines intersect, and so we need to determine the
point of intersection, and this involves determining the x and y coordinates of the
solution which is given by x = 3 and y =− 2. The solution using graphical techniques
requires care (as inaccuracies may be introduced from poor drawing) and graph paper
is required for accuracy.

The solution to practical problems often involves solving two simultaneous
equations.

92 5 Algebra

Example 5.7 (Simultaneous Equation—Problem Solving) Three new cars and four
new vans supplied to a dealer together cost £97,000, and five new cars and two new
vans of the same models cost £103,100. Find the cost of a car and a van.

Solution (Simultaneous Equation—Problem Solving)

We let C represent the cost of a car and V represent the cost of a van. We convert
the information provided into two equations with two unknowns and then solve for
V and C.

3C + 4V = 97,000 (5.1)

5C + 2V = 103,100 (5.2)

We multiply Eq. (5.2) by − 2 and add to Eq. (5.1) to eliminate V

3C + 4V = 97,000
− 10C − 4V = −206,200

− − − − − − − − − − − −−
− 7C = −109,200

C = £15,600

We then calculate the cost of a van by substituting the value of C in Eq. (5.2) to
reduce it to an equation of one unknown.

5C + 2V = 103,100
78,000 + 2V = 103,100
2V = 25,100
V = £12,550

Therefore, the cost of a car is £15,600, and the cost of a van is £12,550.

5.4 Quadratic Equations

A quadratic equation is an equation of the form ax2 + bx + c = 0, and solving
the quadratic equation is concerned with finding the unknown value x (roots of
the quadratic equation). There may be no solution, one solution (a double root),
or two solutions. There are several techniques for solving quadratic equations
such as factorization; completing the square; the quadratic formula; and graphical
techniques.

5.4 Quadratic Equations 93

Example 5.8 (Quadratic Equations—Factorization) Solve the quadratic Eq. 3x2

– 11x –4 = 0 by factorization.

Solution (Quadratic Equations—Factorization)

The approach taken is to find the factors of the quadratic equation. Sometimes this
is easy, but often other techniques will need to be employed. For the above quadratic
equation we note immediately that its factors are (3x + 1)(x − 4) since

(3x + 1)(x − 4)
= 3x2 − 12x + x − 4
= 3x2 − 11x − 4

Next, we note the property that if the product of two numbers A and B is 0 then
either A is 0 or B is 0. Another words, AB = 0 ⇒ A = 0 or B = 0. We conclude from
this property that as:

3x2 − 11x − 4 = 0
⇒ (3x + 1)(x − 4) = 0
⇒ (3x + 1) = 0 or (x − 4) = 0
⇒ 3x = −1 or x = 4
⇒ x = −0.33 or x = 4

Therefore, the solution (or roots) of the quadratic equation 3x2 − 11x − 4 = 0 is
x = − 0.33 or x = 4.

Example 5.9 (Quadratic Equations—Completing the Square) Solve the quadratic
equation 2x2 + 5x − 3 = 0 by completing the square.

Solution (Quadratic Equations—Completing the Square)

First we convert the quadratic equation to an equivalent quadratic with a unary
coefficient of x2. This involves division by 2. Next, we examine the coefficient of x
(in this case 5/2), and we add the square of half the coefficient of x to both sides. This
allows us to complete the square, and we then to take the square root of both sides.
Finally, we solve for x.

2x2 + 5x − 3 = 0
⇒ x2 + 5/2x − 3/2 = 0
⇒ x2 + 5/2x = 3/2
⇒ x2 + 5/2x + (5/4)2 = 3/2 + (5/4)2

⇒ (x + 5/4)2 = 3/2 + (25/16)
⇒ (x + 5/4)2 = 24/16 + (25/16)

94 5 Algebra

⇒ (x + 5/4)2 = 49/16
⇒ (x + 5/4) = ±7/4

⇒ x = −5/4 ± 7/4
⇒ x = −5/4 − 7/4 or x = −5/4 + 7/4
⇒ x = −12/4 or x = 2/4
⇒ x = −3 or x = 0.5

Example 5.10 (Quadratic Equations—Quadratic Formula) Establish the quadratic
formula for solving quadratic equations.

Solution (Quadratic Equations—Quadratic Formula)

We complete the square, and the result will follow.

ax2 + bx + c = 0
⇒ x2 + b/a x + c/a = 0
⇒ x2 + b/a x = −c/a

⇒ x2 + b/a x + (b/2a)2 = −c/a + (b/2a)2

⇒ (x + b/2a)2 = −c/a + (b/2a)2

⇒ (x + b/2a)2 =
−4ac

4a2 +
b2

4a2

⇒ (x + b/2a)2 =
b2 − 4ac

4a2

⇒ (x + b/2a) = ±
√

b2 − 4ac

2a

⇒ x =
−b ±

√
b2 − 4ac

2a
.

Example 5.11 (Quadratic Equations—Quadratic Formula) Solve the quadratic
equation 2x2 + 5x − 3 = 0 using the quadratic formula.

Solution (Quadratic Equations—Quadratic Formula)

For this example a = 2; b = 5; and c = − 3, and we put these values into the quadratic
formula.

x =
−5 ±

√
52 − 4.2.(−3)
2.2

=
−5 ± √

25 + 24
4

x =
−5 ±

√
49

4
=

−5 ± 7
4

x = 0.5 or x = −3.

5.4 Quadratic Equations 95

Table 5.1 Table of values for quadratic equation

x − 3 − 2 − 1 0 1 2 3

y = 2x2 – x − 6 15 4 − 3 − 6 − 5 0 9

Fig. 5.2 Graphical solution
to quadratic equation

X

Y

2x2 –x –6=0

Example 5.12 (Quadratic Equations—Graphical Techniques) Solve the quadratic
equation 2x2 – x − 6 = 0 using graphical techniques given that the roots of the
quadratic equation lie between x = − 3 and x = 3.

Solution (Quadratic Equations—Graphical Techniques)

The approach is first to create a table of values for the curve y = 2x2 – x – 6 (Table
5.1), and to draw the X- and Y-axis and scales, and then to plot the points from the
table of values, and to join the points together to form the curve (Fig. 5.2).

The graphical solution is to the quadratic equation is then given by the points
where the curve intersects the X-axis (i.e., y = 0 on the X-axis). There may be no
solution (i.e., the curve does not intersect the X-axis), one solution (a double root),
or two solutions.

The graph for the curve y = 2x2 – x − 6 is given in Table 5.1, and so the points
where the curve intersects the X-axis are determined. We note from the graph that
the curve intersects the X-axis at two distinct points, and we see from the graph
that the roots of the quadratic equation are given by x = − 1.5 and x = 2.

The solution to quadratic equations using graphical techniques requires care in
the plotting the points (as in determining the solution to simultaneous equations
using graphical techniques), and graph paper is required for accuracy.

Quadratic equations often arise in solving practical problems as the following
example shows.

96 5 Algebra

Example 5.13 (Quadratic Equations—Practical Problem) A shed is 7.0 m long and
5.0 m wide. A concrete path of constant width x is laid all the way around the shed,
and the area of the path is 30 m2. Calculate its width x to the nearest centimeter (and
use the quadratic formula).

Solution (Quadratic Equations—Practical Problem)

Let x be the width of the path. Then the area of the path is the difference in area
between the area of the large rectangle and the shed. We let AS denote the area of
the shed and let AS+P denote the area of the large rectangle (i.e., the area of the shed
+ the area of the path).

AS = 7 ∗ 5 = 35
AS+P = (7 + 2x)(5 + 2x)

= 35 + 14x + 10x + 4x2

= 35 + 24x + 4x2

AP = 30
= AS+P − AS

⇒ 35 + 24x + 4x2 − 35 = 30
⇒ −30 + 24x + 4x2 = 0
⇒ 4x2 + 24x − 30 = 0
⇒ x = 0.91 m (from the quadratic formula).

5.5 Indices and Logarithms

The product a.a.a.a…a (n times) is denoted by an, and the number n is the index
of a. The following are properties of indices.

a0 = 1
am+n = am · an

amn = (
am)n

5.5 Indices and Logarithms 97

a−n =
1

an

a
1
n = n

√
a

Logarithms are closely related to indices, and if the number b can be written in
the form b = ax, then we say that log to the base a of b is x, i.e., loga b = x ⇔
ax = b. Clearly, log10 100 = 2 since 102 = 100. The following are properties of
logarithms

loga AB = loga A + loga B

loga A
n = n loga A

log
A

B
= log A − log B

We will prove the first property of logarithms. Suppose logaA = x and logaB
= y. Then A = ax and B = ay and so AB = axay = ax+y and so loga AB = x + y
= logaA + logaB.

Example 5.14 Solve log21/64 without a calculator

Solution

log2 1/64 = x

⇒ 2x = 1/64
⇒ 2x = 1/4 × 4 × 4
⇒ 2x = 1/2 × 2 × 2 × 2 × 2 × 2
⇒ 2x = 1/26

⇒ 2x = 2−6

⇒ x = −6.

Example 5.15 Write log
{
16× 3

√
5

81

}
in terms of log 2, log 3, and log 5 to any base.

Solution

log

{
16 × 3

√
5

81

}

= log 16 + 1/3 log 5 − log 81
= log 24 + 1/3 log 5 − log 34

= 4 log 2 + 1/3 log 5 − 4 log 3

The law of logarithms may be used to solve certain indicial equations, and we
illustrate this with two examples.

98 5 Algebra

Example 5.16 (Indicial Equations) Solve the equation log(x − 4) + log(x + 2) =
2 log (x − 2).

Solution

log(x − 4) + log(x + 2) = 2 log(x − 2)
⇒ log(x − 4)(x + 2) = log(x − 2)2

⇒ log
(
x2 − 2x − 8

) = log
(
x2 − 4x + 4

)

⇒ x2 − 2x − 8 = x2 − 4x + 4
⇒ −2x − 8 = −4x + 4
⇒ 2x = 12
⇒ x = 6.

Example 5.17 (Indicial Equations) Solve the equation 2x = 3, correct to 4 significant
places.

Solution

2x = 3
⇒ log10 2x = log10 3
⇒ x log10 2 = log10 3

⇒ x =
log10 3

log10 2

=
0.4771

0.3010
⇒ x = 1.585.

5.6 Exponentials and Natural Logarithms

The number e is a mathematical constant that occurs frequently in mathematics
and its value is approximately equal to 2.7183 (it is an irrational number). The
exponential function ex (where e is the base and x is the exponent) is widely
used in mathematics and science, and especially in problems involving growth and
decay. The exponential function has the property that it is the unique function that
is equal to its own derivative (i.e., d/dx ex = ex). The number e is the base of the
natural logarithm, and e is sometimes called Euler’s number or Euler’s constant.

5.7 Horner’s Method for Polynomials 99

The value of the exponential function may be determined from its power series,
and the value of e0.1 may be determined by substituting 0.1 for x in the power
series. However, it is more common to determine its value by using a scientific
calculator which contains the ex function.

ex = 1 + x +
x2

2! + · · · +
xn + · · ·

n!
Logarithms to the base e are termed natural logarithms (or Napierian logs). The

natural logarithm of x is written as logex or more commonly as ln x.

Example 5.18 (Natural Logs) Solve the equation 7 = 4e−3x to find x, correct to 4
decimal places.

Solution (Natural Logs)

7 = 4e−3x

⇒ 7/4 = e−3x

⇒ ln(1.75) = ln
(
e−3x) = −3x

0.55966 = −3x

x = −0.1865.

Example 5.19 (Practical Problem) The length of a bar, l, at a temperature θ is given
by l = l0 eαθ , where l0 and α are constants. Evaluate l, correct to four significant
figures, when l0 = 2.587, θ = 321.7 and α = 1.771×10–4.

Solution (Practical Problem)

l = l0eαθ ,

= 2.587e1.771×10−4∗321.7

= 2.587 ∗ 0.56973
= 1.4739.

5.7 Horner’s Method for Polynomials

Horner’s method is a computationally efficient way to evaluate a polynomial func-
tion. It is named after William Horner who was a nineteenth century British
mathematician and schoolmaster. Chinese mathematicians were familiar with the
method in the third century A.D.

The normal method for the evaluation of a polynomial involves computing
exponentials, and this is computationally expensive. Horner’s method has the
advantage that fewer calculations are required, and it eliminates all exponentials

100 5 Algebra

by using nested multiplication and addition. It also provides a computationally
efficient way to determine the derivative of the polynomial.

Horner’s Method and Algorithm
Consider a polynomial P(x) of degree n defined by:

P(x) = an xn + an−1xn−1 + an−2xn−2 + · · · + a1x + a0

The Horner method to evaluate P(x0) essentially involves writing P(x) as:

P(x) = ((((((an x + an−1)x + an−2)x + · · · + a1)x + a0

The computation of P(x0) involves defining a set of coefficients bk such that:

bm = an

bn−1 = an−1 + bn x0
· · ·
bk = ak + bk+1x0
· · ·
b1 = a1 + b2x0
b0 = a0 + b1x0

Then the computation of P(x0) is given by:

P(x0) = b0

Further, if Q(x) = bn xn−1 + bn−1xn−2 + bn−2xn−3 + · · · + b1 then it is easy
to verify that:

P(x) = (x − x0)Q(x) + b0

This also allows the derivative of P(x) to be easily computed for x0 since:

P ,(x) = Q(x) + (x − x0)Q,(x)
P ,(x0) = Q(x0)

Algorithm (To evaluate polynomial and its derivative)

(i) Initialize y to an and z to an (Compute bn for P and bn-1 for Q)
(ii) For each j from n − 1, n − 2 to 1 compute bj for P and bj−1 for Q by

Set y to x0y + aj (i.e., bj for P) and z to x0z + y (i.e., bj−1 for Q)
(iii) Compute b0 by setting y to x0y + a0

Then P(x0) = y and P,(x0) = z.

5.8 Abstract Algebra 101

5.8 Abstract Algebra

One of the important features of modern mathematics is the power of abstraction.
This has opened up whole new areas of mathematics, and it has led to a large
body of new results and problems. The term “abstract” is subjective, as what is
abstract to one person may be quite concrete to another. We shall introduce some
important algebraic structures in this section including monoids, groups, rings,
fields, and vector spaces. Chapter 21 will show how abstract structures such as
vector spaces may be used for error correcting codes in coding theory.

5.8.1 Monoids and Groups

A non-empty set M together with a binary operation ‘*’ is called a monoid if for
all elements a, b, c∈M the following properties hold:

(1) a ∗ b ∈ M (Closure property)
(2) a ∗ (b ∗ c) = (a ∗ b) ∗ c (Associative property)
(3) ∃u ∈ M such that: a ∗ u = u ∗ a = a(∀a ∈ M) (Identity Element)

A monoid is commutative if a * b = b * a for all a, b∈M. A semi-group (M, *) is
a set with a binary operation ‘*’ such that the closure and associativity properties
hold (but it may not have an identity element).

Example 5.20 (Monoids)

(i) The set of sequences Σ* under concatenation with the empty sequence Λ the
identity element.

(ii) The set of integers under addition forms an infinite monoid in which 0 is the
identity element.

A non-empty set G together with a binary operation ‘*’ is called a group if for
all elements a, b, c∈G the following properties hold

(1) a ∗ b ∈ G (Closure property)
(2) a ∗ (b ∗ c) = (a ∗ b) ∗ c (Associative property)
(3) ∃e ∈ G such that: a ∗ e = e ∗ a = a(∀a ∈ G) (Identity Element)
(4) For every a ∈ G, ∃a−1 ∈ G , such that: a ∗ a−1 = a−1 ∗ a =

e (Inverse Element)

The identity element is unique, and the inverse a−1 of an element a is unique (see
Exercise 5). A commutative group has the additional property that a * b = b *
a for all a, b∈G. The order of a group G is the number of elements in G and is
denoted by o(G). If the order of G is finite then G is said to be a finite group.

102 5 Algebra

Example 5.21 (Groups)

(i) The set of integers under addition (Z, +) forms an infinite group in which 0 is
the identity element.

(ii) The set of integer 2 × 2 matrices under addition, where the identity element is(
0 0
0 0

)

(iii) The set of integers under multiplication (Z,×) forms an infinite monoid with 1
as the identity element.

A cyclic group is a group where all elements g∈G are obtained from the powers ai

of one element a∈ G, with a0 = e. The element ‘a’ is termed the generator of the
cyclic group G. A finite cyclic group with n elements is of the form {a0, a1, a2, …,
an−1}.

A non-empty subset H of a group G is said to be a subgroup of G if for all
a, b∈H then a * b∈H, and for any a∈H then a−1 ∈H. A subgroup N is termed
a normal subgroup of G if gng−1 ∈N for all g∈G and all n∈N. Further, if G is
a group and N is a normal subgroup of G, then the quotient group G/N may be
formed.

Lagrange’s theorem states the relationship between the order of a subgroup H
of G, and the order of G. The theorem states that if G is a finite group, and H is a
subgroup of G, then o(H) is a divisor of o(G).

We may also define mapping between similar algebraic structures termed homo-
morphism, and these mapping preserve structure. If the homomorphism is one to
one and onto it is termed an isomorphism, which means that the two structures are
identical in some sense (apart from a relabelling of elements).

5.8.2 Rings

A ring is a non-empty set R together with two binary operations ‘+’ and ‘×’
where (R, +) is a commutative group; (R,×) is a semi-group; and the left and
right distributive laws hold. Specifically, for all elements a, b, c∈R the following
properties hold:

(1) a + b ∈ R (Closure property)
(2) a + (b + c) = (a + b) + c (Associative property)
(3) ∃0 ∈ R such that ∀a ∈ R: a + 0 = 0 + a = a (Identity property)
(4) ∀a ∈ R : ∃(−a) ∈ R: a + (−a) = (−a) + a = 0 (Inverse Element)
(5) a + b = b + a (Commutativity)
(6) a × b ∈ R (Closure property)
(7) a × (b × c) = (a × b) × c (Associative property)
(8) a × (b + c) = a × b + a × c (Distributive Law)
(9) (b + c) × a = b × a + c × a (Distributive Law)

5.8 Abstract Algebra 103

The element 0 is the identity element under addition, and the additive inverse of
an element a is given by− a. If a ring (R,×, +) has a multiplicative identity 1
where a×1 = 1×a = a for all a∈R then R is termed a ring with a unit element.
If a×b = b×a for all a, b∈R then R is termed a commutative ring.

An element a /= 0 in a ring R is said to be a zero divisor if there exists b∈R,
with b /=0 such that ab = 0. A commutative ring is an integral domain if it has
no zero divisors. A ring is said to be a division ring if its nonzero elements form
a group under multiplication.

Example 5.22 (Rings)

(i) The set of integers (Z, +,×) forms an infinite commutative ring with multi-
plicative unit element 1. Further, since it has no zero divisors it is an integral
domain.

(ii) The set of integers mod 4 (i.e., Z4 where addition and multiplication is per-
formed modulo 4)1 is a finite commutative ring with unit element [1]4. Its
elements are {[0]4, [1]4, [2]4, [3]4}. It has zero divisors since [2]4[2]4 = [0]4
and so it is not an integral domain.

(iii) The quaternions (discussed in Chap. 28) are an example of a non-commutative
ring (they form a division ring).

(iv) The set of integers mod 5 (i.e., Z5 where addition and multiplication is per-
formed modulo 5) is a finite commutative division ring,2 and it has no zero
divisors.

5.8.3 Fields

A field is a non-empty set F together with two binary operation ‘+’ and ‘×’
where (F, +) is a commutative group; (F \{0},×) is a commutative group; and
the distributive properties hold. The properties of a field are:

(1) a + b ∈ F (Closure property)
(2) a + (b + c) = (a + b) + c (Associative property)
(3) ∃0 ∈ F such that ∀a ∈ F : a + 0 = 0 + a = a (Identity Element)
(4) ∀a ∈ F : ∃(−a) ∈ Fa + (−a) = (−a) + a = 0 (Inverse Element)
(5) a + b = b + a (Commutativity)
(6) a × b ∈ F (Closure property)
(7) a × (b × c) = (a × b) × c (Associative property)
(8) ∃1 ∈ F such that ∀a ∈ Fa × 1 = 1 × a = a (Identity Element)

1 Recall that Z/nZ = Zn = {[a]n : 0 ≤ a ≤ n − 1} = {[0]n , [1]n , . . . , [n − 1]n}.
2 A finite division ring is actually a field (i.e., it is commutative under multiplication), and this
classic result was proved by Wedderburn.

104 5 Algebra

(9) ∀a ∈ F\{0}∃a−1 ∈ Fa × a−1 = a−1 × a = 1 (Inverse Element)
(10) a × b = b × a (Commutativity)
(11) a × (b + c) = a × b + a × c (Distributive Law)
(12) (b + c) × a = b × a + c × a (Distributive Law)

The following are examples of fields:

Example 5.23 (Fields)

(i) The set of rational numbers (Q, +, ×) forms an infinite commutative field. The
additive identity is 0, and the multiplicative identity is 1.

(ii) The set of real numbers (R, +, ×) forms an infinite commutative field. The
additive identity is 0, and the multiplicative identity is 1.

(iii) The set of complex numbers (C, +,×) forms an infinite commutative field. The
additive identity is 0, and the multiplicative identity is 1.

(iv) The set of integers mod 7 (i.e., Z7 where addition and multiplication is
performed mod 7) is a finite field.

(v) The set of integers mod p where p is a prime (i.e., Zp where addition and
multiplication is performed mod p) is a finite field with p elements. The additive
identity is [0], and the multiplicative identity is [1].

A field is a commutative division ring but not every division ring is a field. For
example, the quaternions (discovered by Hamilton) are an example of a division
ring, which is not a field (quaternion multiplication is not commutative). If the
number of elements in the field F is finite then F is called a finite field, and F is
written as Fq where q is the number of elements in F. In fact, every finite field
has q = pk elements for some prime p, and some k ∈N and k > 0.

5.8.4 Vector Spaces

A non-empty set V is said to be a vector space over a field F if V is a commutative
group under vector addition + , and if for every α∈F, v∈V there is an element
αv in V such that the following properties hold for v, w∈ V and α, β ∈F:

1. u + v ∈ V (Closure property)
2. u + (v + w) = (u + v) + w (Associative)
3. ∃0 ∈ V such that ∀v ∈ V + 0 = 0 + v = v (Identity element)
4. ∀v ∈ V : ∃(−v) ∈ V such that v + (−v) = (−v) + v = 0 (Inverse)
5. v + w = w + v (Commutative)
6. α(v + w) = αv + αw
7. (α + β)v = αv + βv
8. α(βv) = (αβ)v
9. 1v = v

5.8 Abstract Algebra 105

The elements in V are referred to as vectors and the elements in F are referred
to as scalars. The element 1 refers to the identity element of the field F under
multiplication. A normed vector space is a vector space where a norm is defined
(the norm is similar to the distance function).

Application of Vector Spaces to Coding Theory
The representation of codewords in coding theory (discussed in Chap. 21) is by
n-dimensional vectors over the finite field Fq. A codeword vector v is represented
as the n-tuple:

v = (a0, a1, . . . , an−1)

where each ai ∈Fq. The set of all n-dimensional vectors is the n-dimensional vector
space Fn

q with qn elements. The addition of two vectors v and w, where v = (a0,
a1,… an−1) and w = (b0, b1,… bn−1) is given by:

v + w = (a0 + b0, a1 + b1, . . . , an−1bn−1)

The scalar multiplication of a vector v = (a0, a1,… an−1) ∈ Fn
q by a scalar

β ∈Fq is given by:

βv = (βa0, βa1, . . . βan−1)

The set Fn
q is called the vector space over the finite field Fq if the vector space

properties above hold. A finite set of vectors v1,v2,…vk is said to be linearly
independent if

β1v1 + β2v2 + · · · + βk vk = 0 ⇒ β1 = β2 = . . . βk = 0

Otherwise, the set of vectors v1,v2,… vk is said to be linearly dependent.
A non-empty subset W of a vector space V (W ⊆V) is said to be a subspace of

V, if W forms a vector space over F under the operations of V. This is equivalent
to W being closed under vector addition and scalar multiplication, i.e., w1, w2 ∈W,
α, β ∈F then αw1 + βw2 ∈W.

The dimension (dim W) of a subspace W ⊆V is k if there are k linearly inde-
pendent vectors in W but every k + 1 vectors are linearly dependent. A subset
of a vector space is a basis for V if it consists of linearly independent vectors,
and its linear span is V (i.e., the basis generates V). We shall employ the basis
of the vector space of codewords (see Chap. 21) to create the generator matrix to
simplify the encoding of the information words. The linear span of a set of vectors
v1,v2,…,vk is defined as β1v1 + β2v2 + · · · + βkvk .

106 5 Algebra

Example 5.24 (Vector Spaces)

(i) The real coordinate space Rn forms an n-dimensional vector space over R. The
elements of Rn are the set of all n tuples of elements of R, where an element x
in Rn is written as:

x = (x1, x2, . . . xn)

where each xi ∈R and vector addition and scalar multiplication are given by:

αx = (αx1, αx2, . . . , αxn)
x + y = (x1 + y1, x2 + y2 . . . xn + yn)

(ii) The set of m×n matrices over the real numbers forms a vector space, with vector
addition given by matrix addition, and the multiplication of a matrix by a scalar
given by the multiplication of each entry in the matrix by the scalar.

5.9 Review Questions

1. Solve the simple equation: 4(3x + 1) = 7(x + 4) − 2(x + 5)
2. Solve the following simultaneous equations by

x + 2y = −1

4x − 3y = 18

3. Solve the quadratic Eq. 3x2 + 5x − 2 = 0 given that the solution is
between x = − 3 and x = 3 by:
(a) Graphical techniques
(b) Factorization
(c) Quadratic Formula

4. Solve the following indicial equation using logarithms

2x=1 = 32x−1

5. Explain the differences between semigroups, monoids and groups.
6. Show that the following properties are true for groups.

(i) The identity element is unique in a group.
(ii) The inverse of an element is unique in a group.

7. Explain the differences between rings, commutative rings, integral
domains, division rings and fields.

8. What is a vector space?

5.10 Summary 107

9. Explain how vector spaces may be applied to coding theory (see Chap. 11
for more details).

5.10 Summary

This chapter provided a brief introduction to algebra, which is the branch of math-
ematics that studies mathematical symbols and the rules for manipulating them.
Algebra is a powerful tool for problem solving in science and engineering.

Elementary algebra includes the study of simultaneous equations (i.e., two or
more equations with two or more unknowns); the solution of quadratic equations
ax2 + bx + c = 0; and the study of polynomials, indices and logarithms. Linear
algebra is concerned with the solution of a set of linear equations, and the study
of matrices and vector spaces.

Abstract algebra is concerned with the study of abstract algebraic structures
such as monoids, groups, rings, integral domains, fields, and vector spaces. The
abstract approach in modern mathematics has opened up whole new areas of math-
ematics as well as applications in areas such as coding theory in the computing
field.

6Mathematical Induction
and Recursion

Key Topics

Mathematical Induction

Strong and weak Induction

Base Case

Inductive Step

Recursion

Recursive Definition

Structural Induction

6.1 Introduction

Mathematical induction is an important proof technique used in mathematics, and
it is often used to establish the truth of a statement for all natural numbers. There
are two parts to a proof by induction, and these are the base step and the inductive
step. The base case involves showing that the statement is true for some natural
number (usually the number 1). The second step is termed the inductive step, and
it involves showing that if the statement is true for some natural number n = k,
then the statement is true for its successor n = k + 1. This is often written as
P(k) → P(k + 1).

The statement P(k) that is assumed to be true when n = k is termed the
inductive hypothesis. From the base step and the inductive step, we infer that the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_6

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_6&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_6

110 6 Mathematical Induction and Recursion

statement is true for all natural numbers (that are greater than or equal to the num-
ber specified in the base case). Formally, the proof technique used in mathematical
induction is of the form1 :

(P(1) ∧ (P(k) → P(k + 1)) → ∀nP(n).

Mathematical induction (weak induction) may be used to prove a wide variety
of theorems and especially theorems of the form ∀nP(n). It may be used to provide
a proof of theorems about summation formulae, inequalities, set theory, and the
correctness of algorithms and computer programs. One of the earliest inductive
proofs was the sixteenth-century proof that the sum of the first n odd integers
is n2, which was proved by Francesco Maurolico in 1575. Later mathematicians
made the method of mathematical induction more precise.

We distinguish between strong induction and weak induction, where strong
induction also has a base case and an inductive step, but the inductive step is
a little different. It involves showing that if the statement is true for all natural
numbers less than or equal to an arbitrary number k, then the statement is true
for its successor k + 1. Weak induction involves showing that if the statement is
true for some natural number n = k, then the statement is true for its successor n
= k + 1. Structural induction is another form of induction, and this mathematical
technique is used to prove properties about recursively defined sets and structures.

Recursion is often used in mathematics to define functions, sequences, and sets.
However, care is required with a recursive definition to ensure that it actually
defines something, and that what is defined makes sense. Recursion defines a con-
cept in terms of itself, and we need to ensure that the definition is not circular (i.e.,
that it does not lead to a vicious circle).

Recursion and induction are closely related and are often used together. Recur-
sion is extremely useful in developing algorithms for solving complex problems,
and induction is a useful technique in verifying the correctness of such algorithms.

Example 6.1 Show that the sum of the first n natural numbers is given by the formula:

1 + 2 + 3 + · · · + n =
n(n + 1)

2

Proof
Base Case

We consider the case where n = 1 and clearly 1 = 1(1+1)
2 and so the base case P(1)

is true.

1 This definition of mathematical induction covers the base case of n = 1 and would need to be
adjusted if the number specified in the base case is higher.

6.1 Introduction 111

Inductive Step

Suppose the result is true for some number k, then we have P(k)

1 + 2 + 3 + · · · + k =
k(k + 1)

2

Then consider the sum of the first k+1 natural numbers, and we use the inductive
hypothesis to show that its sum is given by the formula.

1 + 2 + 3 + · · · + k + (k + 1)

=
k(k + 1)

2
+ (k + 1) (by inductive hypothesis)

=
k2 + k

2
+

(2k + 2)
2

=
k2 + 3k + 2

2

=
(k + 1)(k + 2)

2

Thus, we have shown that if the formula is true for an arbitrary natural number
k, then it is true for its successor k + 1. That is, P(k) → P(k+1). We have shown
that P(1) is true, and so it follows from mathematical induction that P(2), P(3), ….
are true, and so P(n) is true, for all natural numbers and the theorem is established.

Note 6.1 There are opportunities to make errors in proofs with induction, and the
most common mistakes are not to complete the base case or inductive step correctly.
These errors can lead to strange results, and so care is required. It is important to be
precise in the statements of the base case and inductive step.

Example 6.2 (Binomial Theorem) Prove the binomial theorem using induction
(permutations and combinations are discussed in Chap. 8). That is,

(1 + x)n = 1 +
(
n
1

)
x +

(
n
2

)
x2 + · · · +

(
n
r

)
xr + · · · +

(
n
n

)
xn

Proof
Base Case

We consider the case where n = 1 and clearly (1 + x)1 = (1 + x) = 1 +
(
1
1

)
x1,

and so the base case P(1) is true.

Inductive Step

112 6 Mathematical Induction and Recursion

Suppose the result is true for some number k, then we have P(k)

(1 + x)k = 1 +
(
k
1

)
x +

(
k
2

)
x2 + · · · +

(
k
r

)
xr + · · · +

(
k
k

)
xk

Then consider (1 + x)k+1 and we use the inductive hypothesis to show that it is
given by the formula.

(1 + x)k+1 = (1 + x)k (1 + x)

=
(
1 +

(
k
1

)
x +

(
k
2

)
x2 + · · · +

(
k
r

)
xr + · · · +

(
k
k

)
xk

)
(1 + x)

=
(
1 +

(
k
1

)
x +

(
k
2

)
x2 + · · · +

(
k
r

)
xr + · · · +

(
k
k

)
xk

)

+ x +
(
k
1

)
x2 + · · · +

(
k
r

)
xr+1 + · · · +

(
k
k

)
xk+1

= 1 +
(
k
1

)
x +

(
k
2

)
x2 + · · · +

(
k
r

)
xr + · · · +

(
k
k

)
xk

+
(
k
0

)
x +

(
k
1

)
x2 + · · · +

(
k

r − 1

)
xr + · · · +

(
k

k − 1

)
xk +

(
k
k

)
xk+1

= 1 +
(
k + 1
1

)
x + · · · +

(
k + 1
r

)
xr + · · · +

(
k + 1
k

)
xk +

(
k + 1
k + 1

)
xk+1

(which follows from Exercise 7 below).

Thus, we have shown that if the binomial theorem is true for an arbitrary natural
number k, then it is true for its successor k+1. That is, P(k) → P(k+1). We have
shown that P(1) is true, and so it follows from mathematical induction that P(n)
is true, for all natural numbers, and so the theorem is established.

The standard formula of the binomial theorem (x + y)n follows immediately
from the formula for (1 + x)n, by noting that (x + y)n = {x(1 + y/x)}n = xn(1 +
y/x)n.

6.2 Strong Induction

Strong induction is another form of mathematical induction, which is often
employed when we cannot prove a result with (weak) mathematical induction.
It is similar to weak induction in that there is a base step and an inductive step.
The base step is identical to weak mathematical induction, and it involves show-
ing that the statement is true for some natural number (usually the number 1). The
inductive step is a little different, and it involves showing that if the statement is

6.2 Strong Induction 113

true for all natural numbers less than or equal to an arbitrary number k, then the
statement is true for its successor k + 1. This is often written as (P(1) ∧ P(2) ∧
… ∧ P(k)) → P(k + 1).

From the base step and the inductive step, we infer that the statement is true
for all natural numbers (that are greater than or equal to the number specified in
the base case). Formally, the proof technique used in mathematical induction is of
the form2 :

(P(1) ∧ [(P(1) ∧ P(2) ∧ · · · ∧ P(k)) → P(k + 1)]) → ∀nP(n).

Strong and weak mathematical induction are equivalent in that any proof done
by weak mathematical induction may also be considered a proof using strong
induction, and a proof conducted with strong induction may also be converted into
a proof using weak induction.

Weak mathematical induction is generally employed when it is reasonably clear
how to prove P(k + 1) from P(k), with strong mathematical typically employed
where it is not so obvious. The validity of both forms of mathematical induction
follows from the well-ordering property of the natural numbers, which states that
every non-empty set has a least element.

Well-Ordering Principle
Every non-empty set of natural numbers has a least element. The well-ordering
principle is equivalent to the principle of mathematical induction.

Example 6.3 Show that every natural number greater than one is divisible by a prime
number.

Proof
Base Case

We consider the case of n = 2 which is trivially true, since 2 is a prime number and
is divisible by itself.

Inductive Step (strong induction)

Suppose that the result is true for every number less than or equal to k. Then we
consider k + 1, and there are there are two cases to consider. If k + 1 is prime, then it
is divisible by itself. Otherwise it is composite, and it may be factored as the product
of two numbers each of which is less than or equal to k. Each of these numbers
is divisible by a prime number by the strong inductive hypothesis, and so k + 1 is
divisible by a prime number.

Thus, we have shown that if all natural numbers less than or equal to k are divisible
by a prime number, then k + 1 is divisible by a prime number. We have shown that

2 As before this definition covers the base case of n = 1 and would need to be adjusted if the number
specified in the base case is higher.

114 6 Mathematical Induction and Recursion

the base case P(2) is true, and so it follows from strong mathematical induction that
every natural numbers greater than one is divisible by some prime number.

6.3 Recursion

Some functions (or objects) used in mathematics (e.g., the Fibonacci sequence)
are difficult to define explicitly and are best defined by a recurrence relation: (i.e.,
an equation that recursively defines a sequence of values, once one or more initial
values are defined). Recursion may be employed to define functions, sequences,
and sets.

There are two parts to a recursive definition, namely the base case and the
recursive step. The base case usually defines the value of the function at n = 0 or
n = 1, whereas the recursive step specifies how the application of the function to
a number may be obtained from its application to one or more smaller numbers.

It is important that care is taken with the recursive definition, to ensure that
that it is not circular, and does not lead to an infinite regress. The argument of
the function on the right-hand side of the definition in the recursive step is usu-
ally smaller than the argument on the left-hand side to ensure termination (there
are some unusual recursively defined functions such as the McCarthy 91 function
where this is not the case).

It is natural to ask when presented with a recursive definition whether it
means anything at all, and in some cases, the answer is negative. Fixed-point
theory provides the mathematical foundations for recursion and ensures that the
functions/objects are well defined.

Chapter 12 (see Sect. 12.6) discusses various mathematical structures such as
partial orders, complete partial orders, and lattices, which may be employed to
give a secure foundation for recursion. A precise mathematical meaning is given to
recursively defined functions in terms of domains and fixed-point theory, and it is
essential that the conditions in which recursion may be used safely be understood.
The reader is referred to [1] for more detailed information.

A recursive definition will include at least one non-recursive branch with every
recursive branch occurring in a context that is different from the original and brings
it closer to the non-recursive case. Recursive definitions are a powerful and elegant
way of giving the denotational semantics of language constructs.

Next, we present examples of the recursive definition of the factorial function
and Fibonacci numbers.

Example 6.4 (Recursive Definition of Functions) The factorial function n! is very
common in mathematics, and its well-known definition is n! = n(n − 1)(n −
2) … 3.2.1 and 0! = 1. The formal definition in terms of a base case and inductive
step is given as follows:

Base Step fac (0) = 1

6.3 Recursion 115

Recursive Step fac (n) = n * fac(n − 1)

This recursive definition defines the procedure by which the factorial of a num-
ber is determined from the base case, or by the product of the number by the
factorial of its predecessor. The definition of the factorial function is built up in a
sequence: fac(0), fac(1), fac(2), …

The Fibonacci sequence3 is named after the Italian mathematician Fibonacci,
who introduced it in the 13th century. It had been previously described in Indian
mathematics, and the Fibonacci numbers are the numbers in the following integer
sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34

Each Fibonacci number (apart from the first two in the sequence) is obtained
by adding the two previous Fibonacci numbers in the sequence together. Formally,
the definition is given by

Base Step F1 = 1, F2 = 1
Recursive Step Fn = Fn−1 + Fn−2 (Definition for when n > 2)

Example 6.5 (Recursive Definition of Sets and Structures) Sets and sequences may
also be defined recursively, and there are two parts to the recursive definition (as
before). The base case specifies an initial collection of elements in the set, whereas the
recursive step provides rules for adding new elements to the set based on those already
there. Properties of recursively defined sets may often be proved by a technique called
structural induction.

Consider the subset S of the natural numbers defined by

Base Step 5 ∈ S
Recursive Step For x ∈ S then x + 5 ∈ S

Then the elements in S are given by the set of all multiples of 5, as clearly 5 ∈ S;
therefore by the recursive step 5 + 5 = 10 ∈ S; 5 + 10 = 15 ∈ S, and so on.

The recursive definition of the set of strings Σ* over an alphabet Σ is given by

Base Step Λ ∈ Σ* (Λ is the empty string)
Recursive Step For σ ∈ Σ*and v ∈ Σ then σv ∈ Σ*

Clearly, the empty string is created from the base step. The recursive step states
that a new string is obtained by adding a letter from the alphabet to the end of an
existing string in Σ*. Each application of the inductive step produces a new string

3 We are taking the Fibonacci sequence as starting at 1, whereas others take it as starting at 0.

116 6 Mathematical Induction and Recursion

that contains one additional character. For example, if Σ = {0, 1}, then the strings
in Σ* are the set of bit strings Λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, etc.

We can define an operation to determine the length of a string (len: Σ*→ N)
recursively.

Base Step len (Λ) = 0
Recursive Step len (σv) = len(σ) + 1 (where σ ∈ Σ* and v ∈ Σ)

A binary tree4 is a well-known data structure in computer science, and it consists
of a root node together with a left and right binary tree. It is defined as a finite set
of nodes (starting with the root node), where each node consists of a data value
and a link to a left subtree and a right subtree. Recursion is often used to define
the structure of a binary tree.

Base Step A single node is a binary tree (root)
Recursive Step (i) Suppose X and Y are binary trees and x is a node then XxY

is a binary tree, where X is the left subtree, Y the right subtree,
and x is the new root node.

(ii) Suppose X is a binary tree and x is a node, then xX and Xx
are binary trees, which consist of the root node x and a single
child left or right subtree.

That is, a binary tree has a root node, and it may have no subtrees; it may consist
of a root node with a left subtree only; a root node with a right subtree only; or a
root node with both a left and right subtree.

6.4 Structural Induction

Structural induction is a mathematical technique that is used to prove properties
about recursively defined sets and structures. It may be used to show that all mem-
bers of a recursively defined set have a certain property, and there two parts to the
proof (as before), namely the base case and the recursive (inductive) step.

The first part of the proof is to show that the property holds for all elements
specified in the base case of the recursive definition. The second part of the proof
involves showing that if the property is true for all elements used to construct
the new elements in the recursive definition, then the property holds for the new
elements. From the base case and the recursive step we deduce that the property
holds for all elements of the set (structure).

4 We will give an alternate definition of a tree in terms of a connected acyclic graph in Chap. 7 on
graph theory.

6.6 Summary 117

Example 6.6 (Structural Induction) We gave a recursive definition of the subset S
of the natural numbers that consists of all multiples of 5. We did not prove that all
elements of the set S are divisible by 5, and we use structural induction to prove this.

Base Step 5 ∈ S (and clearly the base case is divisible by 5)
Inductive Step Suppose q ∈ S then q = 5 k for some k. From the inductive

hypothesis q + 5 ∈ S and q + 5 = 5 k + 5 = 5 (k +1) and so q
+ 5 is divisible by 5

Therefore, all elements of S are divisible by 5.

6.5 Review Questions

1. Show that 9n + 7 is always divisible by 8.
2. Show that the sum of 12 + 22 + · · · + n2 = n(n + 1)(2n + 1)/6.
3. Explain the difference between strong and weak induction.
4. What is structural induction?
5. Explain how recursion is used in mathematics.
6. Investigate the recursive definition of the McCarthy 91 function, and

explain how it differs from usual recursive definitions.

7. Show that

(
r
r

)
+

(
n

r − 1

)
=

(
n + 1
r

)

8. Determine the standard formula for the binomial theorem (x + y)n from
the formula for (1 + x)n.

6.6 Summary

Mathematical induction is an important proof technique that is used to establish
the truth of a statement for all natural numbers. There are two parts to a proof
by induction, and these are the base case and the inductive step. The base case
involves showing that the statement is true for some natural number (usually for
the number n = 1). The inductive step involves showing that if the statement is
true for some natural number n = k, then the statement is true for its successor n
= k + 1.

From the base step and the inductive step, we infer that the statement is true
for all natural numbers (that are greater than or equal to the number specified in
the base case). Mathematical induction may be used to prove a wide variety of
theorems, such as theorems about summation formulae, inequalities, set theory,
and the correctness of algorithms and computer programs.

118 6 Mathematical Induction and Recursion

Strong induction is often employed when we cannot prove a result with (weak)
mathematical induction. It also has a base case and an inductive step, where the
inductive step is a little different, and it involves showing that if the statement is
true for all natural numbers less than or equal to an arbitrary number k, then the
statement is true for its successor k + 1.

Recursion may be employed to define functions, sequences, and sets in mathe-
matics, and there are two parts to a recursive definition, namely the base case and
the recursive step. The base case usually defines the value of the function at n = 0
or n = 1, whereas the recursive step specifies how the application of the function
to a number may be obtained from its application to one or more smaller numbers.
It is important that care is taken with the recursive definition, to ensure that that it
is not circular, and does not lead to an infinite regress.

Structural induction is a mathematical technique that is used to prove proper-
ties about recursively defined sets and structures. It may be used to show that all
members of a recursively defined set have a certain property, and there are two
parts to the proof, namely the base case and the recursive (inductive) step.

Reference

1. Meyer B (1990) Introduction to the theory of programming languages. Prentice Hall

7Graph Theory

Key Topics

Directed Graphs

Adirected Graphs

Incidence Matrix

Degree of Vertex

Walks and Paths

Hamiltonian Path

Graph Algorithms

7.1 Introduction

Graph theory is a practical branch of mathematics that deals with the arrangements
of certain objects known as vertices (or nodes) and the relationships between them.
It has been applied to practical problems such as the modelling of computer net-
works, determining the shortest driving route between two cities, the link structure
of a website, the travelling salesman problem, and the four-colour problem.1

Consider a map of the London underground, which is issued to users of the
underground transport system in London. Then this map does not represent every
feature of the city of London, as it includes only material that is relevant to the

1 The four-colour theorem states that given any map it is possible to colour the regions of the map
with no more than four colours such that no two adjacent regions have the same colour. This result
was finally proved in the mid-1970s.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_7

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_7

120 7 Graph Theory

Fig. 7.1 Königsberg Seven
Bridges Problem

River
Pregel

Fig. 7.2 Königsberg graph

users of the London underground transport system. In this map the exact geo-
graphical location of the stations is unimportant, and the essential information is
how the stations are interconnected to one another, as this allows a passenger to
plan a route from one station to another. That is, the map of the London under-
ground is essentially a model of the transport system that shows how the stations
are interconnected.

The Seven Bridges of Königsberg2 (Fig. 7.1) is one of the earliest problems
in graph theory. The city was set on both sides of the Pregel River in the early
eighteenth century, and it consisted of two large islands that were connected to
each other and the mainland by seven bridges. The problem was to find a walk
through the city that would cross each bridge once and once only.

Euler showed that the problem had no solution, and his analysis helped to lay
the foundations for graph theory as a discipline. The Königsberg problem in graph
theory is concerned with the question as to whether it is possible to travel along
the edges of a graph starting from a vertex and returning to it and travelling along
each edge exactly once. An Euler Path in a graph G is a simple path containing
every edge of G.

Euler noted that a walk through a graph traversing each edge exactly once
depends on the degree of the nodes (i.e., the number of edges touching it). He
showed that a necessary and sufficient condition for the walk is that the graph is
connected and has zero or two nodes of odd degree. For the Konigsberg graph, the
four nodes (i.e., the land masses) have odd degree (Fig. 7.2).

A graph is a collection of objects that are interconnected in some way. The
objects are typically represented by vertices (or nodes), and the interconnections
between them are represented by edges (or lines). We distinguish between directed
and adirected graphs, where a directed graph is mathematically equivalent to a

2 Königsberg was founded in the thirteenth century by Teutonic knights and was one of the cities
of the Hanseatic League. It was the historical capital of East Prussia (historical part of Germany),
and it was annexed by Russia at the end of the Second World War. The German population either
fled the advancing Red army or were expelled by the Russians in 1949. The city is now called
Kaliningrad. The famous German philosopher, Immanuel Kant, spent all his life in the city and is
buried there.

7.2 Undirected Graphs 121

binary relation, and an adirected (undirected) graph is equivalent to a symmetric
binary relations.

7.2 Undirected Graphs

An undirected graph (adirected graph) (Fig. 7.3) G is a pair of finite sets (V, E)
such that E is a binary symmetric relation on V. The set of vertices (or nodes) is
denoted by V (G), and the set of edges is denoted by E(G).

A directed graph (Fig. 7.4) is a pair of finite sets (V, E) where E is a binary
relation (that may not be symmetric) on V. A directed acyclic graph (dag) is a
directed graph that has no cycles. The example below is of a directed graph with
three edges and four vertices.

An edge e∈E consists of a pair < x, y > where x, y are adjacent nodes in the
graph. The degree of x is the number of nodes that are adjacent to x. The set of
edges is denoted by E(G), and the set of vertices is denoted by V (G).

A weighted graph is a graph G = (V, E) together with a weighting function w:
E → N, which associates a weight with every edge in the graph. A weighting func-
tion may be employed in modelling computer networks: for example, the weight
of an edge may be applied to model the bandwidth of a telecommunications link
between two nodes. Another application of the weighting function is in determin-
ing the distance (or shortest path) between two nodes in the graph (where such a
path exists).

For an adirected graph the weight of the edge is the same in both directions:
i.e., w(vi, vj) = w(vj, vi) for all edges < vi, vj > in the graph G, whereas the weights
may be different for a directed graph.

Two vertices x, y are adjacent if xy∈E, and x and y are said to be incident to
the edge xy. A matrix may be employed to represent the adjacency relationship.

Fig. 7.3 Undirected graph

Fig. 7.4 Directed graph

122 7 Graph Theory

Example 7.1

Consider the graph G = (V, E) where E = {u = ab, v = cd, w = fg, x = bg, y =
af }.

An adjacency matrix (Fig. 7.5) may be employed to represent the relationship
of adjacency in the graph. Its construction involves listing the vertices in the rows
and columns, and an entry of 1 is made in the table if the two vertices are adjacent
and 0 otherwise.

Similarly, we can construct a table describing the incidence of edges and ver-
tices by constructing an incidence matrix (Fig. 7.6). This matrix lists the vertices
and edges in the rows and columns, and an entry of 1 is made if the vertex is one
of the nodes of the edge and 0 otherwise.

Two graphs G = (V, E) and G, = (V ,, E,) are said to be isomorphic if
there exists a bijection f : V →V , such that for any u, v∈V, uv∈E, f (u)f (v) ∈E,.
The mapping f is called an isomorphism. Two graphs that are isomorphic are
essentially equivalent apart from a relabelling of the nodes and edges.

Let G = (V, E) and G, = (V ,, E,) be two graphs then G, is a subgraph of G if
V , ⊆V and E, ⊆E. Given G = (V, E) and V , ⊆V then we can induce a subgraph
G, = (V ,, E,) by restricting G to V , (denoted by G|V , |). The set of edges in E, is
defined as

E , = {
e ∈ E : e = uv and u, v ∈ V ,}.

Fig. 7.5 Adjacency matrix

7.2 Undirected Graphs 123

Fig. 7.6 Incidence matrix

The degree of a vertex v is the number of distinct edges incident to v. It is denoted
by deg v where

deg v = |{e ∈ E : e = vx for some x ∈ V }|
= |{x ∈ V : vx ∈ E}|.

A vertex of degree 0 is called an isolated vertex.

Theorem 7.1 Let G = (V, E) be a graph then
Σ

v∈V

deg v = 2|E |.

Proof This result is clear since each edge contributes one to each of the vertex
degrees. The formal proof is by induction based on the number of edges in the graph,
the basis case is for a graph with no edges (i.e., where every vertex is isolated), and
the result is immediate for this case.

The inductive step (strong induction) is to assume that the result is true for all
graphs with k or fewer edges. We then consider a graph G = (V, E) with k + 1
edges.

Choose an edge e = xy∈E and consider the graph G, = (V, E,) where E, =
E\{e}. Then G, is a graph with k edges and therefore letting deg, v represent the
degree of a vertex in G, we have

Σ

v∈V

deg,v = 2
||E ,|| = 2(|E | − 1) = 2|E | − 2.

The degree of x and y are one less in G, than they are in G. That is,
Σ

v∈V

deg v − 2 =
Σ

v∈V

deg,v = 2|E | − 2

⇒
Σ

v∈V

deg v = 2|E |.

124 7 Graph Theory

A graph G = (V, E) is said to be complete if all the vertices are adjacent
: i.e., E = V ×V. A graph G = (V, E) is said to be simple graph if each edge
connects two different vertices, and no two edges connect the same pair of vertices.
Similarly, a graph that may have multiple edges between two vertices is termed a
multigraph.

A common problem encountered in graph theory is determining whether or not
there is a route from one vertex to another. Often, once a route has been identified
the problem then becomes that of finding the shortest or most efficient route to the
destination vertex. A graph is said to be connected if for any two given vertices
v1, v2 in V, there is a path from v1 to v2.

Consider a person walking in a forest from A to B where the person does not
know the way to B. Often, the route taken will involve the person wandering
around aimlessly, and often retracing parts of the route until eventually the desti-
nation B is reached. This is an example of a walk from v1 to vk where in a walk
there may be repetition of edges.

If all of the edges of a walk are distinct, then it is called a trail. A path v1, v2,
…, vk from vertex v1 to vk is of length k−1 and consists of the sequence of edges
< v1, v2 > , < v2, v3 > ,…, < vk−1, vk > where each < vi, vi+1 > is an edge in E.
The vertices in the path are all distinct apart from possibly v1 and vk.. The path is
said to be a cycle if v1 = vk.. A graph is said to be acyclic if it contains no cycles.

Theorem 7.2 Let G = (V, E) be a graph and W = v1, v2, …, vk be a walk from v1
to vk . Then there is a path from v1 to vk using only edges of W.

Proof The walk W may be reduced to a path by successively replacing redundant
parts in the walk of the form vi, vi+1 …, vj where vi = vj with vi. That is, we
successively remove cycles from the walk, and this clearly leads to a path (not
necessarily the shortest path) from v1 to vk .

Theorem 7.3 Let G = (V, E) be a graph and let u, v∈V with u /=v. Suppose that
there exists two different paths from u to v in G, then G contains a cycle.

Suppose that P = v1, v2, …, vn and Q = w1, w2, …, wm are two distinct paths
from u to v (where u /=v), and u = v1 = w1 and v = vn = wm.

7.2 Undirected Graphs 125

Fig. 7.7 Travelling salesman
problem

A

B

C
D

E

3
4

3
2

2
6 2

7
5

4

Suppose P and Q are identical for the first k vertices (k could be 1) and then
differ (i.e., vk + 1 /=wk + 1). Then Q crosses P again at vn = wm, and possibly
several times before then. Suppose the first occurrence is at vi = wj with k < i ≤n.
Then wk , wk+1, wk+2, …, wj, vi−1, vi−2, …, vk is a closed path (i.e., a cycle) since
the vertices are all distinct.

If there is a path from v1 to v2, then it is possible to define the distance between
v1 and v2. This is defined to be the total length (number of edges) of the shortest
path between v1 and v2.

7.2.1 Hamiltonian Paths

A Hamiltonian path3 in a graph G = (V, E) is a path that visits every vertex once
and once only. Other words, the length of a Hamiltonian path is |V |−1. A graph
is Hamiltonian connected if for every pair of vertices there is a Hamiltonian path
between the two vertices.

Hamiltonian paths are applicable to the travelling salesman problem, where a
salesman4 wishes to travel to k cities in the country without visiting any city more
than once. In principle, this problem may be solved by looking at all of the possible
routes between the various cities and choosing the route with the minimal distance.

For example, Fig. 7.7 shows five cities and the connections (including distance)
between them. Then, a travelling salesman starting at A would visit the cities in
the order AEDCBA (or in reverse order ABCDEA) covering a total distance of
14.

However, the problem becomes much more difficult to solve as the number of
cities increases, and there is no general algorithm for its solution. For example,
for the case of ten cities, the total number of possible routes is given by 9! =
362,880, and an exhaustive search by a computer is feasible and the solution may
be determined quite quickly. However, for 20 cities, the total number of routes
is given by 19! = 1.2 ×1017, and in this case it is no longer feasible to do an
exhaustive search by a computer.

3 These are named after Sir William Rowan Hamilton, a nineteenth-century Irish mathematician
and astronomer, who is famous for discovering quaternions discussed in a later chapter.
4 We use the term “salesman” to stand for “salesman” or “saleswoman”.

126 7 Graph Theory

There are several sufficient conditions for the existence of a Hamiltonian path,
and Theorem 7.4 describes one condition that is sufficient for its existence.

Theorem 7.4 Let G = (V, E) be a graph with |V | = n and such that deg v + deg
w≥n−1 for all non-adjacent vertices v and w. Then G possesses a Hamiltonian path.

Proof The first part of the proof involves showing that G is connected, and the second
part involves considering the largest path in G of length k−1 and assuming that k <
n. A contradiction is then derived, and it is deduced that k = n.

We assume that G, = (V ,, E,) and G,, = (V ,,, E,,) are two connected components
of G, then |V ,| + |V ,,| ≤ n and so if v∈V , and w∈V ,, then n−1 ≤ deg v + deg
w≤ |V ,|−1 + |V ,,|−1 = |V ,| + |V ,,|−2 ≤n−2 which is a contradiction, and so G
must be connected.

Let P = v1, v2, …, vk be the largest path in G and suppose k < n. From this, a
contradiction is derived, and the details for are in [1].

7.3 Trees

An acyclic graph is termed a forest, and a connected forest is termed a tree. A
graph G is a tree if and only if for each pair of vertices in G there exists a unique
path in G joining these vertices. This is since G is connected and acyclic with
the connected property giving the existence of at least one path and the acyclic
property giving uniqueness.

A spanning tree T = (V, E,) for the connected graph G = (V, E) is a tree with
the same vertex set V. It is formed from the graph by removing edges from it until
it is acyclic (while ensuring that the graph remains connected).

Theorem 7.5 Let G = (V, E) be a tree and let e∈E then G, = (V, E\{e}) is
disconnected and has two components.

Proof Let e = uv then since G is connected and acyclic uv is the unique path from
u to v, and thus G, is disconnected since there is no path from u to v in G,.

It is thus clear that there are at least two components in G, with u and v in different
components. We show that any other vertex w is connected to u or to v in G,. Since
G is connected, there is a path from w to u in G, if this path does not use e, then it is
in G, as well, and therefore u and w are in the same component of G,.

If it does use e, then e is the last edge of the graph since u cannot appear twice
in the path, and so the path is of the form w,…, v, u in G. Therefore, there is a path
from w to v in G,, and so w and v are in the same component in G,. Therefore, there
are only two components in G,.

127

Theorem 7.6 Any connected graph G = (V, E) possesses a spanning tree.

Proof This result is proved by considering all connected subgraphs of (G = V, E)
and choosing a subgraph T with |E,| as small as possible. The final step is to show
that T is the desired spanning tree, and this involves showing that T is acyclic. The
details of the proof are left to the reader.

Theorem 7.7 Let G = (V, E) be a connected graph, then G is a tree if and only if
|E| = |V |−1.

Proof This result may be proved by induction on the number of vertices |V | and the
applications of Theorems 7.5 and 7.6.

7.3.1 Binary Trees

A binary tree (Fig. 7.8) is a tree in which each node has at most two child nodes
(termed left and right child nodes). A node with children is termed a parent node,
and the top node of the tree is termed the root node. Any node in the tree can
be reached by starting from the root node and by repeatedly taking either the left
branch (left child) or right branch (right child) until the node is reached. Binary
trees are used in computing to implement efficient searching algorithms (we gave
an alternative recursive definition of a binary tree in Chap. 6).

The depth of a node is the length of the path (i.e., the number of edges) from
the root to the node. The depth of a tree is the length of the path from the root to
the deepest node in the tree. A balanced binary tree is a binary tree in which the
depth of the two subtrees of any node never differs by more than one. The root
of the binary tree in Fig. 7.8 is A, and its depth is 4. The tree is unbalanced and
unsorted.

Tree traversal is a systematic way of visiting each node in the tree exactly once,
and we distinguish between breadth first search in which every node on a particular
level is visited before going to a lower level, and depth first search where one starts
at the root and explores as far as possible along each branch before backtracking.
The traversal in depth first search may be in preorder, inorder, or postorder.

Fig. 7.8 Binary tree A

B C

D E F

HG

I

128 7 Graph Theory

7.4 Graph Algorithms

Graph algorithms are employed to solve various problems in graph theory includ-
ing network cost minimization problems; construction of spanning trees; shortest
path algorithms; longest path algorithms; and timetable construction problems.

A length function l: E → R may be defined on the edges of a connected graph
G = (V, E), and a shortest path from u to v in G is a path P with edge set E, such
that l(E,) is minimal.

The reader may consult the many texts on graph theory to explore many well-
known graph algorithms. These include Dijkstra’s shortest path algorithm and
longest path algorithm, and Kruskal’s minimal spanning tree algorithm and Prim’s
minimal spanning tree algorithms are all described in [1]. Next, we briefly discuss
graph colouring.

7.5 Graph Colouring and Four-Colour Problem

It is very common for maps to be coloured in such a way that neighbouring states
or countries are coloured differently. This allows different states or countries to be
easily distinguished as well as the borders between them. The question naturally
arises as to how many colours are needed (or determining the least number of
colours needed) to colour the entire map, as it might be expected that a large
number of colours would be needed to colour a large complicated map.

However, it may come as a surprise that in fact very few colours are required
to colour any map. A former student of the British logician, Augustus De Mor-
gan, had noticed this in the mid-1800s, and he proposed the conjecture of the
four-colour theorem. There were various attempts to prove that four colours
were sufficient from the mid-1800s onwards, and it remained a famous unsolved
problem in mathematics until the late twentieth century.

Kempe gave an erroneous proof of the four-colour problem in 1879, but his
attempt led to the proof that five colours are sufficient (which was proved by
Heawod in the late 1800s). Appel and Haken of the University of Illinois finally
provided the proof that four colours are sufficient in the mid-1970s (using over
1000 h of computer time in their proof).

Each map in the plane can be represented by a graph, with each region of the
graph represented by a vertex. Edges connect two vertices if the regions have a
common border. The colouring of a graph is the assignment of a colour to each
vertex of the graph so that no two adjacent vertices in this graph have the same
colour.

Definition Let G = (V, E) be a graph and let C be a finite set called the colours.
Then, a colouring of G is a mapping κ: V →C such that if uv∈E then κ(u) /= κ(v).

That is, the colouring of a simple graph is the assignment of a colour to each
vertex of the graph such that if two vertices are adjacent, then they are assigned a

7.6 Review Questions 129

Fig. 7.9 Determining the
chromatic colour of G

p

t

r

s

q

v

u

G

Fig. 7.10 Chromatic
colouring of G

p

t

r

s

q

v

u

red red

green

green

blue

blue
red

different colour. The chromatic number of a graph is the least number of colours
needed for a colouring of the graph. It is denoted by χ(G).

Example 7.2 Show that the chromatic colour of the graph G in Fig. 7.9 is 3.

Solution
The chromatic colour of G must be at least 3 since vertices p, q, and r must have
different colours, and so we need to show that three colours are in fact sufficient
to colour G. We assign the colours red, blue, and green to p, q, and r, respectively.
We immediately deduce that the colour of s must be red (as adjacent to q and r).
From this, we deduce that t is coloured green (as adjacent to q and s) and u is
coloured blue (as adjacent to s and t). Finally, v must be coloured red (as adjacent
to u and t). This leads to the colouring of the graph G in Fig. 7.10.

Theorem 7.8 (Four-Colour Theorem) The chromatic number of a planar graph G
is less than or equal to 4.

7.6 Review Questions

1. What is a graph and explain the difference between an adirected graph
and a directed graph.

2. Determine the adjacency and incidence matrices of the following graph
where V = {a, b, c, d, e} and E = {ab, bc, ae, cd, bd}.

130 7 Graph Theory

3. Determine if the two graphs G and G’ defined below are isomorphic.

G = (V , E), V = {a, b, c, d, e, f , g} and E

= {ab, ad, ae, bd, ce, c f , dg, f g, b f }

G , = (
V ,, E ,), V , = {a, b, c, d, e, f , g} and E ,

= {ab, bc, cd, de, e f , f g, ga, ac, be}

4. What is a binary tree? Describe applications of binary trees.
5. Describe the travelling salesman problem and its applications.
6. Explain the difference between a walk, trail, and path.
7. What is a connected graph?
8. Explain the difference between an incidence matrix and an adjacency

matrix.
9. Describe the four-colour problem and its applications.

7.7 Summary

Graph theory is a practical branch of mathematics that deals with the arrangements
of vertices and the edges between them. It has been applied to practical problems
such as the modelling of computer networks, determining the shortest driving route
between two cities, and the travelling salesman problem.

An undirected graph G is a pair of finite sets (V, E) such that E is a binary
symmetric relation on V, whereas a directed graph is a binary relation that is not
symmetric. An adjacency matrix is used to represent whether two vertices are
adjacent to each other, whereas an incidence matrix indicates whether a vertex is
part of a particular edge.

A Hamiltonian path in a graph is a path that visits every vertex once and once
only. Hamiltonian paths are applicable to the travelling salesman problem, where a
salesman wishes to travel to k cities in the country without visiting any city more
than once.

Graph colouring arose to answer the question as to how many colours are
needed to colour an entire map. It may be expected that many colours would
be required, but the four-colour theorem demonstrates that in fact four colours are
sufficient to colour a planar graph.

A tree is a connected and acyclic graph, and a binary tree is a tree in which
each node has at most two child nodes.

Reference

1. Piff M (1991) Discrete mathematics. An introduction for software engineers. Cambridge Uni-
versity Press

8Sequences, Series, and Permutations
and Combinations

Key Topics

Arithmetic Sequence

Arithmetic Series

Geometric Sequence

Geometric Series

Permutations and Combinations

Counting Principle

Sum and Product Rule

Pigeonhole Principle

8.1 Introduction

The goal of this chapter is to give an introduction to sequences and series, includ-
ing arithmetic and geometric sequences, and arithmetic and geometric series. We
derive formulae for the sum of an arithmetic series and geometric series, and we
discuss the convergence of a geometric series when |r| < 1, and the limit of its sum
as n gets larger and larger.

We consider the counting principle where one operation has m possible out-
comes and a second operation has n possible outcomes. We determine that the
total number of outcomes after performing the first operation followed by the
second operation to be m × n, whereas the total number of outcomes from per-
forming the first operation or the second operation is given by m + n. We discuss

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_8

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_8&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_8

132 8 Sequences, Series, and Permutations and Combinations

the pigeonhole principle which states that if n items are placed into m containers
(with n > m), then at least one container must contain more than one item.

A permutation is an arrangement of a given number of objects, by taking
some or all of them at a time. The order of the arrangement is important, as
the arrangement “abc” is different from “cba”.

A combination is a selection of a number of objects in any order, where the
order of the selection is unimportant. That is, the selection “abc” is the same as
the selection “cba”.

8.2 Sequences and Series

A sequence a1, a2, … an … is any succession of terms (usually numbers). For
example, each term in the Fibonacci sequence (apart from the first two terms) is
obtained from the sum of the previous two terms in the sequence (see Sect. 6.3
for a formal definition of the Fibonacci sequence).

1, 1, 2, 3, 5, 8, 13, 21,

A sequence may be finite (with a fixed number of terms) or infinite. The Fibonacci
sequence is infinite, whereas the sequence 2, 4, 6, 8, 10 is finite. We distin-
guish between convergent and divergent sequences, where a convergent sequence
approaches a certain value as n gets larger and larger. That is, we say that n→∞lim
an exists (i.e., the limit of an exists), and otherwise, the sequence is said to be
divergent.

Often, there is a mathematical expression for the nth term of a sequence (e.g.,
for the sequence of even integers 2, 4, 6, 8, … the general expression for an is
given by an = 2n). Clearly, the sequence of the even integers is divergent, as it
does not approach a particular value, as n gets larger and larger. Consider the
following sequence

1, −1, 1, −1, 1, −1 . . .

Then this sequence is divergent since it does not approach a certain value, as
n gets larger and larger, since it continues to alternate between 1 and −1. The
formula for the nth term in the sequence may be given by

(−1)n+1

The sequence 1, 1/2, 1/3, 1/4, … 1/n … is convergent, and it converges to 0.
The nth term in the sequence is given by 1/n, and as n gets larger and larger, it
gets closer and closer to 0.

A series is the sum of the terms in a sequence, and the sum of the first n terms
of the sequence a1, a2, … an … is given by a1 + a2+ · · · + an which is denoted

133

by

n∑

k=1

ak

A series is convergent if its sum approaches a certain value S as n gets larger
and larger, and this is written formally as

lim
n→∞

n∑

k=1

ak = S

Otherwise, the series is said to be divergent.

8.3 Arithmetic and Geometric Sequences

Consider the sequence 1, 4, 7, 10, …, where each term is obtained from the pre-
vious term by adding the constant value 3. This is an example of an arithmetic
sequence, and there is a difference of 3 between any term and the previous one.
The general form of a term in this sequence is an = 3n−2.

The general form of an arithmetic sequence is given by

a, a + d, a + 2d, a + 3d, . . . a + (n − 1)d,

The value a is the initial term in the sequence, and the value d is the constant
difference between a term and its successor. For the sequence, 1, 4, 7, …, we
have a =1 and d = 3, and the sequence is not convergent. In fact, all arithmetic
sequences (apart from the constant sequence a, a, …. a which converges to a) are
divergent.

Consider the sequence 1, 3, 9, 27, 81, …, where each term is achieved from
the previous term by multiplying by the constant value 3. This is an example of a
geometric sequence, and the general form of a geometric sequence is given by

a, ar , ar2, ar3, . . . , arn−1.

The first term in the geometric sequence is a and r is the common ratio. Each
term is obtained from the previous one by multiplying by the common ratio r. For
the sequence 1, 3, 9, 27 the value of a is 1 and r is 3.

A geometric sequence is convergent if r < 1, and for this case it converges to 0.
It is also convergent if r = 1, as for this case it is simply the constant sequence a,
a, a, …, which converges to a. For the case where r > 1 the sequence is divergent.

134 8 Sequences, Series, and Permutations and Combinations

8.4 Arithmetic and Geometric Series

An arithmetic series is the sum of the terms in an arithmetic sequence, and a
geometric sequence is the sum of the terms in a geometric sequence. It is possible
to derive a simple formula for the sum of the first n terms in an arithmetic and
geometric series.

Arithmetic Series
We write the series two ways: first the normal left to right addition and then the
reverse, and then we add both series together.

Sn = a + (a + d) + (a + 2d) + (a + 3d) + · · · + (a + (n − 1))d
Sn = a + (n − 1)d + a + (n − 2)d + · · · + +(a + d) + a
−
2Sn = [2a + (n − 1)d] + [2a + (n − 1)d] + · · · + [2a + (n − 1)d] (n times)

2Sn = n × [2a + (n − 1)d]
Therefore, we conclude that

Sn =
n

2
[2a + (n − 1)d]

Example 8.1 (Arithmetic Series) Find the sum of the first n terms in the following
arithmetic series 1, 3, 5, 7, 9, ….

Solution
Clearly, a = 1 and d = 2. Therefore, applying the formula we get

Sn =
n

2
[2.1 + (n − 1)2] =

2n2

2
= n2

Geometric Series
For a geometric series we have

Sn = a + ar + ar2 + ar3 + · · · + arn−1

⇒ r Sn = ar + ar2 + ar3 + · · · + arn−1 + arn

−
⇒ r Sn − Sn = arn − a

= a
(
rn − 1

)

⇒ (r − 1)Sn = a
(
rn − 1

)
.

Therefore, we conclude that (where r /= 1) that

Sn =
a(rn − 1)
r − 1

=
a(1 − rn)
1 − r

8.5 Permutations and Combinations 135

The case of when r = 1 corresponds to the arithmetic series a + a + · · · + a,
and the sum of this series is simply na. The geometric series converges when |r| <
1 as rn → 0 as n → ∞, and so

Sn →
a

1 − r
as n → ∞

Example 8.2 (Geometric Series) Find the sum of the first n terms in the following
geometric series 1, 1/2, 1/4, 1/8, …. What is the sum of the series?

Solution
Clearly, a = 1 and r = 1/2. Therefore, applying the formula we get

Sn =
1(1 − 1/2n)
1 − 1/2

=
(1 − 1/2n)
1 − 1/2

= 2
(
1 − 1/2n

)

The sum of the series is the limit of the sum of the first n terms as n approaches
infinity. This is given by

lim
n→∞

Sn = lim
n→∞

2
(
1 − 1/2n

) = 2

8.5 Permutations and Combinations

A permutation is an arrangement of a given number of objects, by taking some or
all of them at a time. A combination is a selection of a number of objects where the
order of the selection is unimportant. Permutations and combinations are defined
in terms of the factorial function, which is defined as:

n! = n(n − 1) . . . 3.2.1.

Principles of Counting

(a) Suppose one operation has m possible outcomes and a second operation has n
possible outcomes, then the total number of possible outcomes when perform-
ing the first operation followed by the second operation is m × n. (Product
Rule).

(b) Suppose one operation has m possible outcomes and a second operation has
n possible outcomes then the possible outcomes of the first operation or the
second operation is given by m + n. (Sum Rule).

Example 8.3 (Counting Principle (a)) Suppose a dice is thrown and a coin is then
tossed. How many different outcomes are there and what are they?

136 8 Sequences, Series, and Permutations and Combinations

Solution
There are six possible outcomes from a throw of the dice: 1, 2, 3, 4, 5, or 6, and
two possible outcomes from the toss of a coin: H or T. Therefore, the total number
of outcomes is determined from the product rule as 6 × 2 = 12. The outcomes are
given by

(1, H), (2, H), (3, H), (4, H), (5, H), (6, H), (1, T), (2, T),

(3, T), (4, T), (5, T), (6, T).

Example 8.4 (Counting Principle (b)) Suppose a dice is thrown and if the number
is even a coin is tossed and if it is odd then there is a second throw of the dice. How
many different outcomes are there?

Solution
There are two experiments involved with the first experiment involving an even

number and a toss of a coin. There are three possible outcomes that result in an even
number and two outcomes from the toss of a coin. Therefore, there are 3 × 2 = 6
outcomes from the first experiment.

The second experiment involves an odd number from the throw of a dice and the
further throw of the dice. There are three possible outcomes that result in an odd
number and six outcomes from the throw of a dice. Therefore, there are 3 × 6 = 18
outcomes from the second experiment.

Finally, there are six outcomes from the first experiment and 18 outcomes from
the second experiment, and so from the sum rule there are a total of 6 + 18 = 24
outcomes.

Pigeonhole Principle
The pigeonhole principle states that if n items are placed into m containers (with
n > m), then at least one container must contain more than one item.

Example 8.5 (Pigeonhole Principle)

(a) Suppose there is a group of 367 people, then there must be at least two people
with the same birthday.
This is clear as there are 365 days in a year (with 366 days in a leap year), and
so as there are at most 366 possible birthdays in a year. The group size is 367
people, and so there must be at least two people with the same birthday.1

(b) Suppose that a class of 102 students are assessed in an examination (the outcome
from the exam is a mark between 0 and 100). Then, there are at least two students
who receive the same mark.

1 The birthday paradox is the unintuitive result that in a group as small as 23 people the probability
that there is a pair of people with the same birthday is above 0.5 (over 50%).

8.5 Permutations and Combinations 137

This is clear as there are 101 possible outcomes from the test (as the mark that
a student may achieve is between 0 and 100), and as there are 102 students in
the class and 101 possible outcomes from the test, then there must be at least two
students who receive the same mark.

Permutations
A permutation is an arrangement of a number of objects in a definite order.

Consider the three letters A, B, and C. If these letters are written in a row, then
there are six possible arrangements

ABC ACB BAC BCA CAB CBA.

There is a choice of three letters for the first place, then there is a choice of
two letters for the second place, and there is only one choice for the third place.
Therefore, there are 3 × 2 × 1 = 6 arrangements.

If there are n different objects to arrange, then the total number of arrangements
(permutations) of n objects is given by n! = n(n−1)(n−2) … 3.2.1.

Consider the four letters A, B, C, and D. How many arrangements (taking two
letters at a time with no repetition) of these letters can be made?

There are four choices for the first letter and three choices for the second letter,
and so there are 12 possible arrangements. These are given by:

AB AC AD BA BC BD CA CB CD DA DB DC.

The total number of arrangements of n different objects taking r at a time (r ≤
n) is given by nPr = n(n−1)(n−2) … (n−r+1). It may also be written as:

n Pr =
n!

(n − r)!

Example 8.6 (Permutations) Suppose A, B, C, D, E, and F are six students. How
many ways can they be seated in a row if:

(i) There is no restriction on the seating.
(ii) A and B must sit next to one another.
(iii) A and B must not sit next to one another.

Solution
For unrestricted seating the number of arrangements is given by 6.5.4.3.2.1 = 6! =
720.

For the case where A and B must be seated next to one another, then consider
A and B as one person, and then the five people may be arranged in 5! = 120
ways. There are 2! = 2 ways in which AB may be arranged, and so there are 2!
× 5! = 240 arrangements.

138 8 Sequences, Series, and Permutations and Combinations

AB C D E F

For the case where A and B must not be seated next to one another, then this is
given by the difference between the total number of arrangements and the number
of arrangements with A and B together: i.e., 720 − 240 = 480.

Combintations
A combination is a selection of a number of objects in any order, and the order of
the selection is unimportant, in that both AB and BA represent the same selection.

The total number of arrangements of n different objects taking r at a time
is given by nPr , and the number of ways that r objects can be selected from
n different objects may be determined from this, since each selection may be
permuted r! times.

That is, the total number of arrangements is r! × total number of combinations.
That is, nPr = r! × nCr , and we may also write this as:

(
n
r

)
= n!

r !(n − r)! =
n(n − 1) . . . (n − r + 1)

r !
It is clear from the definition that

(
n
r

)
=

(
n

n − r

)

Example 8.7 (Combinations) How many ways are there to choose a team of 11
players from a panel of 15 players?

Solution

Clearly, the number of ways is given by

(
15
11

)
=

(
15
4

)

That is, 15.14.13.12/4.3.2.1 = 1365.

Example 8.8 (Combinations) How many ways can a committee of four people be
chosen from a panel of ten people where

(i) There is no restriction on membership of the panel.
(ii) A certain person must be a member.
(iii) A certain person must not be a member.

Solution
For (i) with no restrictions on membership the number of selections of a committee

of four people from a panel of ten people is given by:

(
10
4

)
= 210.

8.7 Summary 139

For (ii) where one person must be a member of the committee then this involves

choosing three people from a panel of nine people and is given by:

(
9
3

)
= 84.

For (iii) where one person must not be a member of the committee then this

involves choosing four people from a panel of nine people and is given by:

(
9
4

)
=

126.

8.6 Review Questions

1. Determine the formula for the general term and the sum of the following
arithmetic sequence

1, 4, 7, 10,

2. Write down the formula for the nth term in the following sequence

1/4, 1/12, 1/36, 1/108,

3. Find the sum of the following geometric sequence

1/3, 1/6, 1/12, 1/24,

4. How many different five-digit numbers can be formed from the digits 1,
2, 3, 4, 5 where:
(i) No restrictions on digits and repetitions allowed.
(ii) The number is odd and no repetitions are allowed.
(iii) The number is even and repetitions are allowed.

5.
(i) How many ways can a group of five people be selected from nine

people?
(ii) How many ways can a group be selected if two particular people are

always included?
(iii) How many ways can a group be selected if two particular people are

always excluded?

8.7 Summary

This chapter provided a brief introduction to sequences and series, including arith-
metic and geometric sequences, and arithmetic series and geometric series. We

140 8 Sequences, Series, and Permutations and Combinations

derived formulae for the sum of an arithmetic series and geometric series, and we
discussed the convergence of a geometric series when |r| < 1.

We considered counting principles including the product and sum rules. The
product rule is concerned with where one operation has m possible outcomes and
a second operation has n possible outcomes then the total number of possible
outcomes when performing the first operation followed by the second operation is
m × n.

We discussed the pigeonhole principle, which states that if n items are placed
into m containers (with n > m), then at least one container must contain more than
one item. We discussed permutations and combinations where permutations are an
arrangement of a given number of objects, by taking some or all of them at a time.
A combination is a selection of a number of objects in any order, and the order of
the selection is unimportant.

9A Short History of Logic

Key Topics

Syllogistic Logic

Fallacies

Paradoxes

Stoic Logic

Boole’s Symbolic Logic

Digital Computing

Propositional Logic

Predicate Logic

Universal and Existential Quantifiers

9.1 Introduction

Logic is concerned with reasoning and with establishing the validity of arguments.
It allows conclusions to be deduced from premises according to logical rules,
and the logical argument establishes the truth of the conclusion provided that the
premises are true.

The origins of logic are with the Greeks who were interested in the nature of
truth. The sophists (e.g., Protagoras and Gorgias) were teachers of rhetoric, who
taught their pupils techniques in winning an argument and convincing an audience.
Plato explores the nature of truth in some of his dialogues, and he is critical of
the position of the sophists who argue that there is no absolute truth and that truth

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_9

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_9

142 9 A Short History of Logic

instead is always relative to some frame of reference. The classic sophist position
is stated by Protagoras “Man is the measure of all things: of things which are, that
they are, and of things which are not, that they are not.” Other words, what is true
for you is true for you, and what is true for me is true for me.

Socrates had a reputation for demolishing an opponents position, and the
Socratean enquiry consisted of questions and answers in which the opponent
would be led to a conclusion incompatible with his original position. The approach
was similar to a reductio ad absurdum argument, although Socrates was a moral
philosopher who did no theoretical work on logic.

Aristotle did important work on logic, and he developed a system of logic,
called syllogistic logic, that remained in use up to the nineteenth century. Syllo-
gistic logic is a ‘term-logic’, with letters used to stand for the individual terms.
A syllogism consists of two premises and a conclusion, where the conclusion is
a valid deduction from the two premises. Aristotle also did some early work on
modal logic.

The Stoics developed an early form of propositional logic, where the assertable
(propositions) have a truth-value such that at any time they are either true or
false. The assertable may be simple or non-simple, and various connectives such
as conjunctions, disjunctions, and implication are used in forming more complex
assertables.

George Boole developed his symbolic logic in the mid-1800s, and it later
formed the foundation for digital computing. Boole argued that logic should be
considered as a separate branch of mathematics, rather than a part of philosophy.
He argued that there are mathematical laws to express the operation of reason-
ing in the human mind, and he showed how Aristotle’s syllogistic logic could be
reduced to a set of algebraic equations.

Frege is considered (along with Boole) to be one of the founders of modern
logic. He also made important contributions to the foundations of mathematics,
and he attempted to show that all of the basic truths of mathematics (or at least of
arithmetic) could be derived from a limited set of logical axioms.

Logic plays a key role in reasoning and deduction in mathematics, but it is
considered a separate discipline to mathematics. There were attempts in the early
twentieth century to show that all mathematics can be derived from formal logic,
and that the formal system of mathematics would be complete, with all the truths of
mathematics provable in the system (see Chap. 14). However, this program failed
when the Austrian logician, Kurt Goedel, showed that the first-order arithmetic is
incomplete.

9.2 Syllogistic Logic

Early work on logic was done by Aristotle in the fourth century B.C. in the
Organon [1]. Aristotle regarded logic as a useful tool of enquiry into any sub-
ject, and his syllogistic logic provides more rigour in reasoning. This is a form of
reasoning in which a conclusion is drawn from two premises, where each premise

9.2 Syllogistic Logic 143

is in a subject-predicate form. A common or middle term is present in each of the
two premises but not in the conclusion. For example:

All Greeks are mortal.
Socrates is a Greek

− − − − − − − −
Therefore Socrates is mortal

The common (or middle) term in this example is ‘Greek’. It occurs in both
premises but not in the conclusion. The above argument is valid, and Aristotle
studied and classified the various types of syllogistic arguments to determine those
that were valid or invalid. Each premise contains a subject and a predicate, and
the middle term may act as subject or a predicate. Each premise is a positive
or negative affirmation, and an affirmation may be universal or particular. The
universal and particular affirmations and negatives are described in Table 9.1.

This leads to four basic forms of syllogistic arguments (Table 9.2) where the
middle is the subject of both premises; the predicate of both premises; and the
subject of one premise and the predicate of the other premise.

There are four types of premises (A, E, I, O) and therefore sixteen sets of
premise pairs for each of the forms above. However, only some of these premise
pairs will yield a valid conclusion. Aristotle went through every possible premise
pair to determine if a valid argument may be derived. The syllogistic argument
above is of form (iv) and is valid

G A M

S I G

− −−
S I M.

Table 9.1 Types of
syllogistic premises

Type Symbol Example

Universal affirmative G A M All Greeks are mortal

Universal negative G E M No Greek is mortal

Particular affirmative G I M Some Greek is mortal

Particular negative G O M Some Greek is not mortal

Table 9.2 Forms of syllogistic premises

Form (i) Form (ii) Form (iii) Form (iv)

Premise 1 M P P M P M M P

Premise 2 M S S M M S S M

Conclusion S P S P S P S P

144 9 A Short History of Logic

Syllogistic logic is a ‘term-logic’ with letters used to stand for the individual
terms. Syllogistic logic was the first attempt at a science of logic, and it remained
in use up to the nineteenth century. There are many limitations to what it may
express and on its suitability as a representation of how the mind works.

9.3 Paradoxes and Fallacies

A paradox is a statement that apparently contradicts itself, and it presents a situ-
ation that appears to defy logic. Some logical paradoxes have a solution, whereas
others are contradictions or invalid arguments. There are many examples of para-
doxes, and they often arise due to self-reference in which one or more statements
refer to each other. We discuss several paradoxes such as the liar paradox and
the sorites paradox, which were invented by Eubulides of Miletus, and the barber
paradox, which was introduced by Russell to explain the contradictions in naïve
set theory.

An example of the liar paradox is the statement “Everything that I say is false”,
which is made by the liar. This looks like a normal sentence, but it is also saying
something about itself as a sentence. If the statement is true, then the statement
must be false, since the meaning of the sentence is that every statement (including
the current statement) made by the liar is false. If the current statement is false,
then the statement that everything that I say is false is false, and so this must be a
true statement.

The Epimenides paradox is a variant of the liar paradox. Epimenides was a
Cretan who allegedly stated “All Cretans are liars”. If the statement is true, then
since Epimenides is Cretan, he must be a liar, and so the statement is false and we
have a contradiction. However, if we assume that the statement is false and that
Epimenides is lying about all Cretan being liars, then we may deduce (without
contradiction) that there is at least one Cretan who is truthful. So in this case the
paradox can be avoided.

The sorites paradox (paradox of the heap) involves a heap of sand in which
grains are individually removed. It is assumed that removing a single grain of
sand does not turn a heap into a non-heap, and the paradox is to consider what
happens after when the process is repeated often enough. Is a single remaining
grain a heap? When does it change from being a heap to a non-heap? This paradox
may be avoided by specifying a fixed boundary of the number of grains of sand
required to form a heap, or to define a heap as a collection of multiple grains (≥
2 grains). Then any collection of grains of sand less than this boundary is not a
heap.

The barber paradox is a variant of Russell’s paradox (a contradiction in naïve
set theory). In a village there is a barber who shaves everyone who does not shave
himself, and no one else. Who shaves the barber? The answer to this question
results in a contradiction, as the barber cannot shave himself, since he shaves only
those who do not shave themselves. Further, as the barber does not shave himself,

9.4 Stoic Logic 145

then he falls into the group of people who would be shaved by the barber (himself).
Therefore, we conclude that there is no such barber (or that the barber has a beard).

The purpose of a debate is to convince an audience of the correctness of your
position and to challenge and undermine your opponent’s position. Often, the
arguments made are factual, but occasionally individuals skilled in rhetoric and
persuasion introduce bad arguments as a way to persuade the audience. Aristotle
studied and classified bad arguments (known as fallacies), and these include falla-
cies such as the ad hominem argument; the appeal to authority argument; and the
straw man argument. The fallacies are described in more detail in Table 9.3.

9.4 Stoic Logic

The Stoic school1 was founded in the Hellenistic period by Zeno of Citium (in
Cyprus) in the late 4th/early third century B.C. The school presented its philosophy
as a way of life, and it emphasized ethics as the main focus of human knowledge.
The Stoics stressed the importance of living a good life in harmony with nature
(Fig. 9.1).

The Stoics recognized the importance of reason and logic, and Chrysippus, the
head of the Stoics in the third century B.C., developed an early version of propo-
sitional logic. This was a system of deduction in which the smallest unanalyzed
expressions are assertables (the Stoic equivalent of propositions). The asserta-
bles have a truth-value such that at any moment of time they are either true or
false. True assertables are viewed as facts in the Stoic system of logic, and false
assertables are defined as the contradictories of true ones.

Truth is temporal, and assertions may change their truth-value over time. The
assertables may be simple or non-simple (more than one assertible), and there may
be present tense, past tense, and future tense assertables. Chrysippus distinguished
between simple and compound propositions, and he introduced a set of logical
connectives for conjunction, disjunction, and implication that are used to form
non-simple assertables from existing assertables.

The conjunction connective is of the form ‘both .. and ..’, and it has two con-
juncts. The disjunction connective is of the form ‘either .. or .. or ..’, and it consists
of two or more disjuncts. Conditionals are formed from the connective ‘if .., ..’ and
they consist of an antecedent and a consequence.

His deductive system included various logical argument forms such as modus
ponens and modus tollens.2 His propositional logic differed from syllogistic logic,
in that the Stoic logic was based on propositions (or statements) as distinct from

1 The origin of the word Stoic is from the Stoa Poikile (Στoα Poιλικη), which was a covered
walkway in the Agora of Athens. Zeno taught his philosophy in a public space at this location, and
his followers became known as Stoics.
2 Modus ponens is a rule of inference where from P and P→Q we can deduce Q, whereas modus
tollens is a rule of inference where from P→Q and ¬Q we can deduce ¬P.

146 9 A Short History of Logic

Table 9.3 Fallacies in arguments

Fallacy Description/Example

Hasty/accident generalization This is a bad argument that involves a generalization
that disregards exceptions

Slippery slope This argument outlines a chain reaction leading to a
highly undesirable situation that will occur if a
certain situation is allowed. The claim is that even if
one step is taken onto the slippery slope, then we will
fall all the way down to the bottom

Against the person
Ad Hominem

The focus of this argument is to attack the person
rather than the argument that the person has made

Appeal to people
Ad Populum

This argument involves an appeal to popular belief to
support an argument, with a claim that the majority of
the population supports this argument. However,
popular opinion is not always correct

Appeal to authority (Ad Verecundiam) This argument is when an appeal is made to an
authoritative figure to support an argument and where
the authority is not an expert in this area

Appeal to pity (Ad Misericordiam) This is where the arguer tries to get people to accept a
conclusion by making them feel sorry for someone

Appeal to ignorance The arguer makes the case that there is no conclusive
evidence on the issue at hand and that therefore his
conclusion should be accepted

Straw man argument The arguer sets up a version of an opponent’s position
of his argument and defeats this watered down version
of his opponent’s position rather than the real subject
of the argument

Begging the question
(Petitio Principii)

This is a circular argument where the arguer relies on a
premise that says the same thing as the conclusion and
without providing any real evidence for the conclusion

Red herring The arguer goes off on a tangent that has nothing to do
with the argument in question

False dichotomy The arguer presents the case that there are only two
possible outcomes (often there are more). One of the
possible outcomes is then eliminated leading to the
desired outcome. The argument suggests that there is
only one outcome

Aristotle’s term-logic. However, he could express the universal affirmation in syl-
logistic logic (e.g., All As are B) by rephrasing it as a conditional statement that if
something is A then it is B.

9.5 Boole’s Symbolic Logic 147

Fig. 9.1 Zeno of Citium

Chrysippus’s propositional logic did not replace Aristotle’s syllogistic logic,
and syllogistic logic remained in use up to the mid-nineteenth century. George
Boole developed his symbolic logic in the mid-1800s, and this logic is discussed
in the next section.

9.5 Boole’s Symbolic Logic

George Boole was born in Lincoln, England, in 1815. His father (a cobbler who
was interested in mathematics and optical instruments) taught him mathematics
and showed him how to make optical instruments. Boole inherited his father’s
interest in knowledge, and he was self-taught in mathematics and Greek. He taught
at various schools near Lincoln, and he developed his mathematical knowledge by
working his way through Newton’s Principia, as well as applying himself to the
work of mathematicians such as Laplace and Lagrange.

He developed his symbolic algebra, which is the foundation for modern com-
puting, and he is considered (along with Babbage) to be one of the grandfathers
of computing. His work was theoretical, and he never actually built a computer or
calculating machine. However, Boole’s symbolic logic was the perfect mathematical
model for switching theory and for the design of digital circuits.

Boole published a pamphlet titled “Mathematical Analysis of Logic” in 1847
[2]. This short book developed novel ideas on a logical method, and he argued that
logic should be considered as a separate branch of mathematics, rather than a part
of philosophy. He argued that there are mathematical laws to express the operation
of reasoning in the human mind, and he showed how Aristotle’s syllogistic logic
could be reduced to a set of algebraic equations. He corresponded regularly on
logic with Augustus De Morgan.3

3 De Morgan was a 19th British mathematician based at University College London. De Morgan’s
laws in Set Theory and Logic state that: (A ∪ B)c = Ac ∩ Bc and ¬ (A ∨ B) ≡ ¬A ∧ ¬B.

148 9 A Short History of Logic

He introduced two quantities “0” and “1” with the quantity 1 used to represent
the universe of thinkable objects (i.e., the universal set), and the quantity 0 repre-
sents the absence of any objects (i.e., the empty set). He then employed symbols
such as x, y, z, etc., to represent collections or classes of objects given by the
meaning attached to adjectives and nouns. Next, he introduced three operators (+,
−, and ×) that combined classes of objects.

He showed that these symbols obeyed a rich collection of algebraic laws and
could be added, multiplied, etc., in a manner that is similar to real numbers. These
symbols may be used to reduce propositions to equations, and algebraic rules may
be employed to solve the equations.

Boole applied the symbols to encode Aristotle’s syllogistic logic, and he showed
how the syllogisms could be reduced to equations. This allowed conclusions to be
derived from premises by eliminating the middle term in the syllogism. He refined
his ideas on logic further in his book “An Investigation of the Laws of Thought”
[3]. This book aimed to identify the fundamental laws underlying reasoning in the
human mind and to give expression to these laws in the symbolic language of a
calculus.

He considered the equation x2 = x to be a fundamental laws of thought. It
allows the principle of contradiction to be expressed (i.e., for an entity to possess
an attribute and at the same time not to possess it: i.e., x − x2 = 0 or equivalently
x(1 − x) = 0).

Boole’s logic appeared to have no practical use, but this changed with Claude
Shannon’s 1937 Master’s Thesis, which showed its applicability to switching
theory and to the design of digital circuits.

9.5.1 Switching Circuits and Boolean Algebra

Claude Shannon showed in his famous Master’s Thesis (“A Symbolic Analysis
of Relay and Switching Circuits)” [4] that Boole’s symbolic algebra provided the
perfect mathematical model for switching theory and for the design of digital cir-
cuits. He realized that you could combine switches in circuits in such a manner as
to carry out symbolic logic operations. This allowed binary arithmetic and more
complex mathematical operations to be performed by relay circuits. He designed a
circuit, which could add binary numbers, and he later designed circuits that could
make comparisons and thus be capable of performing a conditional statement. This
was the birth of digital logic and the digital computing age.

He showed that the binary digits (i.e., 0 and 1) can be represented by electrical
switches. The implications of this were enormous, as it allowed binary arithmetic
and more complex mathematical operations to be performed by relay circuits. This
provided electronics engineers with the mathematical tool they needed to design
digital electronic circuits and provided the foundation of digital electronic design.

His Master’s Thesis is a key milestone in computing, and it shows how to lay out
circuits according to Boolean principles. It provides the theoretical foundation of

9.6 Frege 149

switching circuits, and his insight of using the properties of electrical switches to do
Boolean logic is the basic concept that underlies all electronic digital computers.

The use of the properties of electrical switches to process logic is the basic
concept that underlies all modern electronic digital computers. Digital computers
use the binary digits 0 and 1, and Boolean logical operations may be implemented
by electronic AND, OR, and NOT gates. More complex circuits (e.g., arithmetic)
may be designed from these fundamental building blocks.

9.6 Frege

Gottlob Frege (Fig. 9.2) was a German mathematician and logician who is consid-
ered (along with Boole) to be one of the founders of modern logic. He also made
important contributions to the foundations of mathematics, and he attempted to
show that all of the basic truths of mathematics (or at least of arithmetic) could be
derived from a limited set of logical axioms (this approach is known as logicism).

He invented predicate logic and the universal and existential quantifiers, and
predicate logic was a significant advance on Aristotle’s syllogistic logic. Predicate
logic is described in more detail in the next chapter.

Frege’s first logical system contained nine axioms and one rule of inference.
It was the first axiomization of logic, and it was complete in its treatment of
propositional logic and first-order predicate logic. He published several important
books on logic, including Begriffsschrift (term writing) in 1879; Die Grundlagen
der Arithmetik (The Foundations of Arithmetic) in 1884; and the two-volume work
Grundgesetze der Arithmetik (Basic Laws of Arithmetic), which were published in
1893 and 1903. These books described his invention of axiomatic predicate logic;
the use of quantified variables; and the application of his logic to the foundations
of arithmetic.

Fig. 9.2 Gottlob Frege

150 9 A Short History of Logic

Frege presented his predicate logic in his books, and he began to use it to
define the natural numbers and their properties. He had intended producing three
volumes of the Basic Laws of Arithmetic, with the later volumes dealing with
the real numbers and their properties. However, Bertrand Russell discovered a
contradiction in Frege’s system, which he communicated to Frege shortly before
the publication of the second volume. Frege was astounded by the contradiction
and he struggled to find a satisfactory solution, and Russell later introduced the
theory of types in the Principia Mathematica as a solution.

9.7 Review Questions

1. What is logic?
2. What is a fallacy?
3. Give examples of fallacies in arguments in natural language (e.g., in

politics, marketing, debates).
4. Investigate some of the early paradoxes (e.g., the Tortoise and Achilles

paradox or the arrow in flight paradox) and give your interpretation of the
paradox.

5. What is syllogistic logic and explain its relevance.
6. What is stoic logic and explain its relevance.
7. Explain the significance of the equation x2 = x in Boole’s symbolic logic.
8. Describe how Boole’s symbolic logic provided the foundation for digital

computing.
9. Describe Frege’s contributions to logic.

9.8 Summary

This chapter gave a short introduction to logic, and logic is concerned with rea-
soning and with establishing the validity of arguments. It allows conclusions to
be deduced from premises according to logical rules, and the logical argument
establishes the truth of the conclusion provided that the premises are true.

The origins of logic are with the Greeks who were interested in the nature of
truth. Aristotle did important work on logic, and he developed a system of logic,
syllogistic logic, that remained in use up to the nineteenth century. Syllogistic
logic is a ‘term-logic’, with letters used to stand for the individual terms. A syl-
logism consists of two premises and a conclusion, where the conclusion is a valid
deduction from the two premises. He also did some early work on modal logic.

The Stoics developed an early form of propositional logic, where the assertables
(propositions) have a truth-value such that at any time they are either true or false.

George Boole developed his symbolic logic in the mid-1800s, and it later
formed the foundation for digital computing. Boole argued that logic should be

References 151

considered as a separate branch of mathematics, rather than a part of philosophy.
He argued that there are mathematical laws to express the operation of reason-
ing in the human mind, and he showed how Aristotle’s syllogistic logic could be
reduced to a set of algebraic equations.

Gottlob Frege made important contributions to logic and to the foundations of
mathematics. He attempted to show that all of the basic truths of mathematics (or
at least of arithmetic) could be derived from a limited set of logical axioms (this
approach is known as logicism). He invented predicate logic and the universal and
existential quantifiers, and predicate logic was a significant advance on Aristotle’s
syllogistic logic.

References

1. Ackrill JL (1994) Aristotle the philosopher. Clarendon Press Oxford
2. Boole G (1848) The calculus of logic. Camb Dublin Math J 3:183–198
3. Boole G (1958) An investigation into the laws of thought. Dover Publications (First published

in 1854)
4. Shannon C (1937) A symbolic analysis of relay and switching circuits. Masters Thesis, Mas-

sachusetts Institute of Technology

10Propositional and Predicate Logic

Key Topics

Propositions

Truth Tables

Semantic Tableaux

Natural Deduction

Proof

Predicates

Universal Quantifiers

Existential Quantifiers

10.1 Introduction

Logic is the study of reasoning and the validity of arguments, and it is concerned
with the truth of statements (propositions) and the nature of truth. Formal logic is
concerned with the form of arguments and the principles of valid inference. Valid
arguments are truth preserving, and for a valid deductive argument the conclusion
will always be true if the premises are true.

Propositional logic is the study of propositions, where a proposition is a
statement that is either true or false. Propositions may be combined with other
propositions (with a logical connective) to form compound propositions. Truth
tables are used to give operational definitions of the most important logical con-
nectives, and they provide a mechanism to determine the truth-values of more
complicated logical expressions.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_10

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_10&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_10

154 10 Propositional and Predicate Logic

Propositional logic may be used to encode simple arguments that are expressed
in natural language and to determine their validity. The validity of an argument
may be determined from truth tables, or using the inference rules such as modus
ponens to establish the conclusion via deductive steps.

Predicate logic is richer and more expressive than propositional logic, and it
allows complex facts about the world to be represented, with new facts deter-
mined via deductive reasoning. Predicate calculus includes predicates, variables,
and quantifiers, and a predicate is a characteristic or property that the subject
of a statement can have. A predicate may include variables, and statements with
variables become propositions once the variables are assigned values.

The universal quantifier is used to express a statement such as that all members
of the domain of discourse have property P. This is written as (∀x) P(x), and it
expresses the statement that the property.

P(x) is true for all x.
The existential quantifier states that there is at least one member of the domain

of discourse that has property P. This is written as (∃x)P(x).

10.2 Propositional Logic

Propositional logic is the study of propositions where a proposition is a statement
that is either true or false. There are many examples of propositions such as “1 +
1 = 2” which is a true proposition, and the statement that ‘Today is Wednesday’
which is true if today is Wednesday and false otherwise. The statement x > 0 is not
a proposition as it contains a variable x, and it is only meaningful to consider its
truth or falsity only when a value is assigned to x. Once the variable x is assigned
a value, it becomes a proposition. The statement “This sentence is false” is not
a proposition as it contains a self-reference that contradicts itself. Clearly, if the
statement is true, it is false, and if is false, it is true.

A propositional variable may be used to stand for a proposition (e.g., let the
variable P stand for the proposition ‘2 + 2 = 4’ which is a true proposition). A
propositional variable takes the value true or false. The negation of a proposition
P (denoted ¬P) is the proposition that is true if and only if P is false, and is false
if and only if P is true.

A well-formed formula (wff) in propositional logic is a syntactically correct
formula created according to the syntactic rules of the underlying calculus. A well-
formed formula is built up from variables, constants, terms, and logical connectives
such as conjunction (and), disjunction (or), implication (if.. then..), equivalence (if
and only if), and negation. A distinguished subset of these well-formed formulae
is the axioms of the calculus, and there are rules of inference that allow the truth of
new formulae to be derived from the axioms and from formulae that have already
demonstrated to be true in the calculus.

A formula in propositional calculus may contain several propositional variables,
and the truth or falsity of the individual variables needs to be known prior to
determining the truth or falsity of the logical formula.

10.2 Propositional Logic 155

Table 10.1 Truth table for
formula W

A B W (A,B)

T T T

T F F

F T F

F F T

Each propositional variable has two possible values, and a formula with n-
propositional variables has 2n values associated with the n-propositional variables.
The set of values associated with the n variables may be used to derive a truth
table with 2n rows and n + 1 columns. Each row gives each of the 2n truth-values
that the n variables may take, and column n + 1 gives the result of the logical
expression for that set of values of the propositional variables. For example, the
propositional formula W defined in the truth table above has two propositional
variables A and B, with 22 = 4 rows for each of the values that the two propo-
sitional variables may take. There are 2 + 1 = 3 columns with W defined in the
third column (Table 10.1).

A rich set of connectives is employed in the calculus to combine propositions
and to build up the well-formed formulae. This includes the conjunction of two
propositions (A ∧ B); the disjunction of two propositions (A ∨ B); and the implica-
tion of two propositions (A→B). These connectives allow compound propositions
to be formed, and the truth of the compound propositions is determined from the
truth-values of its constituent propositions and the rules associated with the logical
connective. The meaning of the logical connectives is given by truth tables.1

Logic involves proceeding in a methodical way from the axioms and rules of
inference to derive further truths. A valid argument is truth preserving: i.e., for a
valid logical argument if the set of premises is true, then the conclusion (i.e., the
deduced proposition) will also be true. The rules of inference include rules such
as modus ponens, which states that given the truth of the proposition A, and the
proposition A→B, then the truth of proposition B may be deduced.

10.2.1 Truth Tables

Truth tables give operational definitions of the most important logical connectives,
and they provide a mechanism to determine the truth-values of more complicated
compound expressions. Compound expressions are formed from propositions and
connectives, and the truth-values of a compound expression containing several
propositional variables are determined from the underlying propositional variables
and the logical connectives.

1 Basic truth tables were first used by Frege and developed further by Post and Wittgenstein.

156 10 Propositional and Predicate Logic

Table 10.2 Conjunction A B A ∧ B

T T T

T F F

F T F

F F F

Table 10.3 Disjunction A B A ∨ B

T T T

T F T

F T T

F F F

The conjunction of A and B (denoted A ∧ B) is true if and only if both A
and B are true and is false in all other cases (Table 10.2). The disjunction of two
propositions A and B (denoted A ∨ B) is true if at least one of A and B are true
and false in all other cases (Table 10.3). The disjunction operator is known as the
‘inclusive or’ operator, and there is also an exclusive or operator that is true exactly
when one of A or B is true and is false otherwise.

Example 10.1

Consider proposition A given by “An orange is a fruit” and the proposition B given
by “2 + 2 = 5” then A is true and B is false. Therefore,

(i) A ∧ B (i.e., An orange is a fruit and 2 + 2 = 5) is false.
(ii) A ∨ B (i.e., An orange is a fruit or 2 + 2 = 5) is true.

The implication operation (A→B) is true if whenever A is true means that B is
also true and also whenever A is false (Table 10.4). It is equivalent (as shown by a
truth table) to ¬A ∨ B. The equivalence operation (A↔B) is true whenever both
A and B are true or whenever both A and B are false (Table 10.5).

The not operator (¬) is a unary operator (i.e., it has one argument) such that
¬A is true when A is false and is false when A is true (Table 10.6).

Table 10.4 Implication A B A→B

T T T

T F F

F T T

F F T

10.2 Propositional Logic 157

Table 10.5 Equivalence A B A↔B

T T T

T F F

F T F

F F T

Table 10.6 Not operation A ¬A

T F

F T

Example 10.2

Consider proposition A given by “Jaffa cakes are biscuits” and the proposition B
given by “2 + 2 = 5” then A is true and B is false. Therefore,

(i) A→B (i.e., Jaffa cakes are biscuits implies 2 + 2 = 5) is false.
(ii) A↔B (i.e., Jaffa cakes are biscuits is equivalent to 2 + 2 = 5) is false.
(iii) ¬B (i.e., 2 + 2 /=5) is true.

Creating a Truth Table
The truth table for a well-formed formula W (P1, P2, …, Pn) is a table with 2n

rows and n + 1 columns. Each row lists a different combination of truth-values of
the propositions P1, P2, …, Pn followed by the corresponding truth-value of W.

The example above (Table 10.7) gives the truth table for a formula W with three
propositional variables (meaning that there are 23 = 8 rows in the truth table).

Table 10.7 Truth table for
W (P, Q, R)

P Q R W (P, Q, R)

T T T F

T T F F

T F T F

T F F T

F T T T

F T F F

F F T F

F F F T

158 10 Propositional and Predicate Logic

10.2.2 Properties of Propositional Calculus

There are many well-known properties of the propositional calculus such as the
commutative, associative, and distributive properties. These ease the evaluation of
complex expressions and allow logical expressions to be simplified.

The commutative property holds for the conjunction and disjunction operators,
and it states that the order of evaluation of the two propositions may be reversed
without affecting the resulting truth-value: i.e.,

A ∧ B = B ∧ A
A ∨ B = B ∨ A.

The associative property holds for the conjunction and disjunction operators.
This means that order of evaluation of a subexpression does not affect the resulting
truth-value: i.e.,

(A ∧ B) ∧ C = A ∧ (B ∧ C)
(A ∨ B) ∨ C = A ∨ (B ∨ C).

The conjunction operator distributes over the disjunction operator and vice
versa.

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)
A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)

The result of the logical conjunction of two propositions is false if one of the
propositions is false (irrespective of the value of the other proposition).

A ∧ F = F ∧ A = F

The result of the logical disjunction of two propositions is true if one of the
propositions is true (irrespective of the value of the other proposition).

A ∨ T = T ∨ A = T

The result of the logical disjunction of two propositions, where one of the
propositions is known to be false, is given by the truth-value of the other propo-
sition. That is, the Boolean value ‘F’ acts as the identity for the disjunction
operation.

A ∨ F = A = F ∨ A

10.2 Propositional Logic 159

The result of the logical conjunction of two propositions, where one of the
propositions is known to be true, is given by the truth-value of the other propo-
sition. That is, the Boolean value ‘T’ acts as the identity for the conjunction
operation.

A ∧ T = A = T ∧ A

The ∧ and ∨ operators are idempotent. That is, when the arguments of the
conjunction or disjunction operator are the same proposition A, the result is A. The
idempotent property allows expressions to be simplified.

A ∧ A = A

A ∨ A = A

The law of the excluded middle is a fundamental property of the propositional
calculus. It states that a proposition A is either true or false: i.e., there is no third
logical value.

A ∨ ¬A

We mentioned earlier that A→B is logically equivalent to ¬A ∨ B (same truth
table), and clearly ¬A ∨ B is the same as ¬A ∨ ¬¬B = ¬¬B ∨ ¬A which is
logically equivalent to ¬B→¬A. Another word, A→B, is logically equivalent to
¬B→¬A (this is known as the contrapositive).

De Morgan was a contemporary of Boole in the nineteenth century, and the
following law is known as De Morgan’s law.

¬(A ∧ B) ≡ ¬A ∨ ¬B

¬(A ∨ B) ≡ ¬A ∧ ¬B

Certain well-formed formulae are true for all values of their constituent vari-
ables. This can be seen from the truth table when the last column of the truth table
consists entirely of true values.

A proposition that is true for all values of its constituent propositional variables
is known as a tautology. An example of a tautology is the proposition A ∨ ¬A
(Table 10.8).

A proposition that is false for all values of its constituent propositional variables
is known as a contradiction. An example of a contradiction is the proposition A ∧
¬A.

Table 10.8 Tautology B ∨ ¬B

B ¬B B ∨ ¬B

T F T

F T T

160 10 Propositional and Predicate Logic

10.2.3 Proof in Propositional Calculus

Logic enables further truths to be derived from existing truths by rules of inference
that are truth preserving. Propositional calculus is both complete and consistent.
The completeness property means that all true propositions are deducible in the
calculus, and the consistency property means that there is no formula A such that
both A and ¬A are deducible in the calculus.

An argument in propositional logic consists of a sequence of formulae that are
the premises of the argument and a further formula that is the conclusion of the
argument. One elementary way to see if the argument is valid is to produce a truth
table to determine if the conclusion is true whenever all of the premises are true.

Consider a set of premises P1, P2, … Pn and conclusion Q. Then to determine
if the argument is valid using a truth table involves adding a column in the truth
table for each premise P1, P2, … Pn, and then to identify the rows in the truth
table for which these premises are all true. The truth-value of the conclusion Q is
examined in each of these rows, and if Q is true for each case for which P1, P2,
… Pn are all true then the argument is valid. This is equivalent to P1 ∧ P2 ∧… ∧
Pn →Q is a tautology.

An alternate approach to proof with truth tables is to assume the negation of
the desired conclusion (i.e., ¬Q) and to show that the premises and the negation
of the conclusion result in a contradiction (i.e., P1 ∧ P2 ∧… ∧ Pn ∧ ¬Q) are a
contradiction.

The use of truth tables becomes cumbersome when there are a large number of
variables involved, as there are 2n truth table entries for n-propositional variables.

Procedure for Proof by Truth Table

(i) Consider argument P1, P2, …, Pn with conclusion Q.
(ii) Draw truth table with column in truth table for each premise P1, P2, …, Pn.
(iii) Identify rows in truth table for when these premises are all true.
(iv) Examine truth-value of Q for these rows.
(v) If Q is true for each case that P1, P2, … Pn are true, then the argument is

valid.
(vi) That is P1 ∧ P2 ∧… ∧ Pn →Q is a tautology.

Example 10.3 (Truth Tables)

Consider the argument adapted from [1] and determine if it is valid.
If the pianist plays the concerto, then crowds will come if the prices are not too
high.
If the pianist plays the concerto, then the prices will not be too high.
Therefore, if the pianist plays the concerto, then crowds will come.

10.2 Propositional Logic 161

Table 10.9 Proof of argument with a truth table

P C H ¬H ¬H →C P → (¬H →C) P →¬H P →C ¬(P →C) *

T T T F T T F T F F

T T F T T T T T F F

T F T F T T F F T F

T F F T F F T F T F

F T T F T T T T F F

F T F T T T T T F F

F F T F T T T T F F

F F F T F T T T F F

Solution

We will adopt a common proof technique that involves showing that the negation
of the conclusion is incompatible (inconsistent) with the premises, and from this we
deduce the conclusion must be true. First, we encode the argument in propositional
logic:

Let P stand for “The pianist plays the concerto”; C stands for “Crowds will
come”; and H stands for “Prices are too high”. Then the argument may be expressed
in propositional logic as

P → (¬H → C)
P → ¬H

P → C .

Then we negate the conclusion P →C and check the consistency of
P → (¬H →C) ∧ (P →¬H) ∧ ¬ (P →C)* using a truth table (Table 10.9).

It can be seen from the last column in the truth table that the negation of the
conclusion is incompatible with the premises, and therefore it cannot be the case
that the premises are true and the conclusion false. Therefore, the conclusion must
be true whenever the premises are true, and we conclude that the argument is valid.

Logical Equivalence and Logical Implication
The laws of mathematical reasoning are truth preserving and are concerned with
deriving further truths from existing truths. Logical reasoning is concerned with
moving from one line in mathematical argument to another and involves deducing
the truth of another statement Q from the truth of P.

The statement Q may be in some sense be logically equivalent to P, and this
allows the truth of Q to be immediately deduced. In other cases the truth of P is
sufficiently strong to deduce the truth of Q; in other words P logically implies Q.
This leads naturally to a discussion of the concepts of logical equivalence (W1 ≡
W2) and logical implication (W1 ├ W2).

162 10 Propositional and Predicate Logic

Table 10.10 Logical equivalence of two WFFs

P Q P ∧ Q ¬P ¬Q ¬P ∨ ¬Q ¬(¬P ∨¬Q)

T T T F F F T

T F F F T T F

F T F T F T F

F F F T T T F

Logical Equivalence
Two well-formed formulae W1 and W2 with the same propositional variables
(P,Q,R …) are logically equivalent (W1 ≡ W2) if they are always simultaneously
true or false for any given truth-values of the propositional variables.

If two well-formed formulae are logically equivalent, then it does not matter
which of W1 and W2 is used and W1 ↔W2 is a tautology. In Table 10.10, we see
that P ∧ Q is logically equivalent to ¬(¬P ∨ ¬Q).

Logical Implication
For two well-formed formulae W1 and W2 with the same propositional variables
(P,Q,R …), W1 logically implies W2 (W1 ├ W2) if any assignment to the propo-
sitional variables which makes W1 true also makes W2 true. That is, W1 →W2 is
a tautology.

Example 10.4

Show by truth tables that (P ∧ Q) ∨ (Q ∧ ¬R) ├ (Q ∨ R).

The formula (P ∧ Q) ∨ (Q ∧ ¬R) is true on rows 1, 2, and 6, and formula (Q
∨ R) is also true on these rows (Table 10.11). Therefore, (P ∧ Q) ∨ (Q ∧ ¬R) ├
(Q ∨ R).

Table 10.11 Logical implication of two WFFs

P Q R (P∧Q) ∨ (Q∧¬R) Q ∨ R

T T T T T

T T F T T

T F T F T

T F F F F

F T T F T

F T F T T

F F T F T

F F F F F

10.2 Propositional Logic 163

10.2.4 Semantic Tableaux in Propositional Logic

We showed in Example 10.3 how truth tables may be used to demonstrate the
validity of a logical argument. However, the problem with truth tables is that they
can get extremely large very quickly (as the size of the table is 2n where n is
the number of propositional variables), and so in this section we will consider an
alternate approach known as semantic tableaux.

The basic idea of semantic tableaux is to determine if it is possible for a con-
clusion to be false when all of the premises are true. If this is not possible, then
the conclusion must be true when the premises are true, and so the conclusion
is semantically entailed by the premises. The method of semantic tableaux is a
technique to expose inconsistencies in a set of logical formulae, by identifying
conflicting logical expressions.

We present a short summary of the rules of semantic tableaux in Table 10.12,
and we then proceed to provide a proof for Example 10.3 using semantic tableaux
instead of a truth table.

Table 10.12 Rules of semantic tableaux

Rule No. Definition Description

1 A ∧ B
A
B

If A ∧ B is true, then both A and B are true and may be added
to the branch containing A ∧ B

2 If A ∨ B is true, then either A or B is true, and we add two
new branches to the tableaux, one containing A and one
containing B

3 If A→B is true, then either ¬A or B is true, and we add two
new branches to the tableaux, one containing ¬A and one
containing B

4 If A↔B is true, then either A ∧ B or ¬A ∧ ¬B is true, and we
add two new branches, one containing A ∧ B and one
containing ¬A ∧ ¬B

5 ¬¬A
A

If ¬¬A is true, then A may be added to the branch containing
¬¬A

6 If ¬(A ∧ B) is true, then either ¬A or ¬B is true, and we add
two new branches to the tableaux, one containing ¬A and one
containing ¬B

7 ¬(A ∨ B)
¬A
¬B

If ¬(A ∨ B) is true, then both ¬A and ¬B are true, and may be
added to the branch containing ¬(A ∨ B)

8 ¬(A→B)
A
¬B

If ¬(A→B) is true, then both A and ¬B are true and may be
added to the branch containing ¬(A→B)

164 10 Propositional and Predicate Logic

Whenever a logical expression A and its negation ¬A appear in a branch of the
tableau, then an inconsistency has been identified in that branch, and the branch is
said to be closed. If all of the branches of the semantic tableaux are closed, then the
logical propositions from which the tableau was formed are mutually inconsistent
and cannot be true together.

The method of proof with semantic tableaux is to negate the conclusion and
to show that all branches in the semantic tableau are closed, and thus it is not
possible for the premises of the argument to be true and for the conclusion to
be false. Therefore, the argument is valid and the conclusion follows from the
premises.

Example 10.5 (Semantic Tableaux) Perform the proof for Example 10.3 using
semantic tableaux.

Solution

We formalized the argument previously as

(Premise 1) P → (¬H → C)
(Premise 2) P → ¬H
(Conclusion) P → C .

We negate the conclusion to get ¬(P →C), and we show that all branches in the
semantic tableau are closed, and that therefore it is not possible for the premises of
the argument to be true and for the conclusion false. Therefore, the argument is valid,
and the truth of the conclusion follows from the truth of the premises.

10.2 Propositional Logic 165

Fig. 10.1 Gerhard Gentzen

We have showed that all branches in the semantic tableau are closed, and that
therefore it is not possible for the premises of the argument to be true and for the
conclusion to be false. Therefore, the argument is valid as required.

10.2.5 Natural Deduction

The German mathematician, Gerhard Gentzen (Fig. 10.1), developed a method for
logical deduction known as ‘Natural Deduction’, and this formal approach aims
to be as close as possible to natural reasoning. Gentzen worked as an assistant to
David Hilbert (Hilbert’s program is discussed in Chap. 14) at the University of
Göttingen, and he died of malnutrition in Prague at the end of the Second World
War.

Natural deduction includes rules for ∧, ∨,→ introduction and elimination and
also for reductio ab absurdum. There are ten inference rules in the system, and
they include two inference rules for each of the five logical operators ∧, ∨, ¬, →,
and ↔. There are two inference rules per operator (an introduction rule and an
elimination rule), and the rules are defined in Table 10.13.

Natural deduction may be employed in logical reasoning, and it is described in
detail in [1, 2].

10.2.6 Sketch of Formalization of Propositional Calculus

Truth tables provide an informal approach to proof, and the proof is provided in
terms of the meanings of the propositions and logical connectives. The formaliza-
tion of propositional logic includes the definition of an alphabet of symbols and
well-formed formulae of the calculus, the axioms of the calculus, and rules of
inference for logical deduction.

The deduction of a new formulae Q is via a sequence of well-formed formulae
P1, P2, … Pn (where Pn = Q) such that each Pi is either an axiom, a hypothesis,
or deducible from an earlier pair of formula Pj, Pk , (where Pk is of the form Pj ⇒

166 10 Propositional and Predicate Logic

Table 10.13 Natural deduction rules

Rule Definition Description

∧ I P1,P2,...Pn
P1∧P2∧...∧Pn

Given the truth of propositions P1, P2, … Pn, then the truth of
the conjunction P1 ∧ P2 ∧ …∧ Pn follows. This rule shows
how conjunction can be introduced

∧ E P1∧P2∧...∧Pn
Pi

where i ∈ {1,…,n}

Given the truth the conjunction P1 ∧ P2 ∧ …∧ Pn, then the
truth of proposition Pi (1 ≤ i ≤n) follows. This rule shows how
a conjunction can be eliminated

∨ I Pi
P1∨P2∨...∨Pn

Given the truth of propositions Pi, then the truth of the
disjunction P1 ∨ P2 ∨ …∨ Pn follows. This rule shows how a
disjunction can be introduced

∨ E P1∨...∨Pn ,P1→E,...Pn→E
E Given the truth of the disjunction P1 ∨ P2 ∨ …∨ Pn, and that

each disjunct implies E, then the truth of E follows. This rule
shows how a disjunction can be eliminated

→ I From P1,P2,...Pn infer P
(P1∧P2∧...∧Pn)→P This rule states that if we have a theorem that allows P to be

inferred from the truth of premises P1, P2, … Pn (or previously
proved), then we can deduce (P1 ∧ P2 ∧ …∧ Pn) →P. This is
known as the deduction theorem

→E
Pi →Pj ,Pi

Pj
This rule is known as modus ponens. The consequence of an
implication follows if the antecedent is true (or has been
previously proved)

≡ I Pi →Pj ,Pj →Pi
Pi ↔Pj

If proposition Pi implies proposition Pj and vice versa, then
they are equivalent (i.e., Pi ↔ Pj)

≡ E
Pi ↔Pj

Pi →Pj ,Pj →Pi
If proposition Pi is equivalent to proposition Pj, then
proposition Pi implies proposition Pj and vice versa

¬ I From P infer P1∧¬P1 ¬P If the proposition P allows a contradiction to be derived, then
¬P is deduced. This is an example of a proof by contradiction

¬ E From ¬P infer P1∧¬P1
P If the proposition ¬P allows a contradiction to be derived, then

P is deduced. This is an example of a proof by contradiction

Pi) and modus ponens. Modus ponens is a rule of inference that states that given
propositions A, and A ⇒ B then proposition B may be deduced. The deduction of
a formula Q from a set of hypothesis H is denoted by H ├ Q, and where Q is
deducible from the axioms alone this is denoted by ├ Q.

The deduction theorem of propositional logic states that if H ∪ {P} ├ Q, then
H ├ P →Q, and the converse of the theorem is also true: i.e., if H ├ P →Q,
then H ∪ {P} ├ Q. Formalism (this approach was developed by the German math-
ematician, David Hilbert) allows reasoning about symbols according to rules and
to derive theorems from formulae irrespective of the meanings of the symbols and
formulae.

Propositional calculus is sound; i.e., any theorem derived using the Hilbert
approach is true. Further, the calculus is also complete, and every tautology has a

10.2 Propositional Logic 167

proof (i.e., is a theorem in the formal system). The propositional calculus is con-
sistent: (i.e., it is not possible that both the well-formed formula A and ¬A are
deducible in the calculus).

Propositional calculus is decidable: i.e., there is an algorithm (truth table) to
determine for any well-formed formula A whether A is a theorem of the formal
system. The Hilbert style system is slightly cumbersome in conducting proof and
is quite different from the normal use of logic in mathematical deduction.

10.2.7 Applications of Propositional Calculus

Propositional calculus may be employed in reasoning with arguments in natural
language. First, the premises and conclusion of the argument are identified and
formalized into propositions. Propositional logic is then employed to determine if
the conclusion is a valid deduction from the premises.

Consider, for example, the following argument that aims to prove that Superman
does not exist.

If Superman were able and willing to prevent evil, he would do so. If Superman were unable
to prevent evil he would be impotent; if he were unwilling to prevent evil he would be
malevolent; Superman does not prevent evil. If superman exists he is neither malevolent nor
impotent; therefore Superman does not exist.

First, letters are employed to represent the propositions as follows:

a: Superman is able to prevent evil
w: Superman is willing to prevent evil
i: Superman is impotent
m: Superman is malevolent
p: Superman prevents evil
e: Superman exists.

Then, the argument above is formalized in propositional logic as follows:

Premises
P1 (a ∧ w) → p
P2 (¬a → i) ∧ (¬w → m)
P3 ¬p
P4 e → ¬i ∧ ¬m

− − − − − − − − − − − − − − − − −−
Conclusion P1 ∧ P2 ∧ P3 ∧ P4 ⇒ ¬e

168 10 Propositional and Predicate Logic

Proof that Superman does not exist

1. a ∧ w→p Premise 1

2. (¬ a→ i) ∧ (¬ w→m) Premise 2

3. ¬p Premise 3

4. e→ (¬ i ∧ ¬ m) Premise 4

5. ¬p→¬(a ∧ w) 1, Contrapositive

6. ¬(a ∧ w) 3,5 Modus Ponens

7. ¬a ∨ ¬w 6, De Morgan’s Law

8. ¬ (¬ i ∧ ¬ m)→¬e 4, Contrapositive

9. i ∨ m→¬e 8, De Morgan’s Law

10. (¬ a→ i) 2, ∧ Elimination

9. (¬ w→m) 2, ∧ Elimination

12. ¬¬a ∨ i 10, A →B equivalent to ¬A∨ B
13. ¬¬a ∨ i ∨ m 11, ∨ Introduction
14. ¬¬a ∨ (i ∨ m)

15. ¬a→ (i ∨ m) 14, A →B equivalent to ¬A∨ B
16. ¬¬w ∨ m 11, A →B equivalent to ¬A∨ B
17. ¬¬w ∨ (i ∨ m)

18. ¬w→ (i ∨ m) 17, A →B equivalent to ¬A∨ B
19. (i ∨ m) 7, 15, 18 ∨Elimination

20. ¬e 9, 19 Modus Ponens

Second Proof

1. ¬p P3

2. ¬(a ∧w) ∨ p P1 (A→B ≡ ¬A ∨ B)
3. ¬(a ∧w) 1, 2 A ∨ B, ¬B ├ A

4. ¬a ∨ ¬w 3, De Morgan’s Law

5. (¬a→ i) P2 (∧-Elimination)

6. ¬a→ i ∨ m 5, x →y ├ x →y ∨ z

7. (¬w→m) P2 (∧-Elimination)

8. ¬w→ i ∨ m 7, x →y ├ x →y ∨ z

9. (¬a ∨ ¬w)→ (i ∨ m) 8, x → z, y→ z ├ x ∨ y→ z

10. (i ∨ m) 4, 9 Modus Ponens

9. e→¬(i ∨ m) P4 (De Morgan’s Law)

12. ¬e ∨ ¬ (i ∨ m) 11, (A→ B ≡ ¬A ∨ B)
13. ¬e 10, 12 A ∨ B, ¬B ├ A

Therefore, the conclusion that Superman does not exist is a valid deduction
from the given premises.

10.3 Predicate Calculus 169

10.2.8 Limitations of Propositional Calculus

The propositional calculus deals with propositions only. It is incapable of dealing
with the syllogism ‘All Greeks are mortal; Socrates is a Greek; therefore Socrates
is mortal’. This would be expressed in propositional calculus as three proposi-
tions A, B therefore C, where A stands for ‘All Greeks are mortal’, B stands for
‘Socrates is a Greek’, and C stands for ‘Socrates is mortal’. Propositional logic
does not allow the conclusion that all Greeks are mortal to be derived from the
two premises.

Predicate calculus deals with these limitations by employing variables and
terms and using universal and existential quantification to express that a particular
property is true of all (or at least one) value(s) of a variable.

10.3 Predicate Calculus

Predicate logic is a richer system than propositional logic, and it allows complex
facts about the world to be represented. It allows new facts about the world to
be derived in a way that guarantees that if the initial premises are true, then the
conclusions are true. Predicate calculus includes predicates, variables, constants,
and quantifiers.

A predicate is a characteristic or property that an object can have, and we
are predicating some property of the object. For example, “Socrates is a Greek”
could be expressed as G(s), with capital letters standing for predicates and small
letters standing for objects. A predicate may include variables, and a statement
with a variable becomes a proposition once the variables are assigned values. For
example, G(x) states that the variable x is a Greek, whereas G(s) is an assignment
of values to x. The set of values that the variables may take is termed the universe
of discourse (the variables take values from this set).

Predicate calculus employs quantifiers to express properties such as all members
of the domain have a particular property: e.g., (∀x)P(x), or that there is at least
one member that has a particular property: e.g., (∃x)P(x). These are referred to as
the universal and existential quantifiers.

The syllogism ‘All Greeks are mortal; Socrates is a Greek; therefore Socrates
is mortal’ may be easily expressed in predicate calculus by

(∀x)(G(x) → M(x))
G(s)
− − − − − −−
M(s).

In this example, the predicate G(x) stands for x is a Greek and the predicate
M(x) stands for x is mortal. The formula G(x)→M(x) states that if x is a Greek,
then x is mortal, and the formula (∀x)(G(x)→M(x)) states for any x that if x is a

170 10 Propositional and Predicate Logic

Greek, then x is mortal. The formula G(s) states that Socrates is a Greek, and the
formula M(s) states that Socrates is mortal.

Example 10.6 (Predicates) A predicate may have one or more variables. A predicate
that has only one variable (i.e., a unary or 1-place predicate) is often related to sets; a
predicate with two variables (a 2-place predicate) is a relation; and a predicate with n
variables (an-place predicate) is an-ary relation. Propositions do not contain variables
and so they are 0-place predicates. The following are examples of predicates:

i. The predicate Prime(x) states that x is a prime number (with the natural numbers
being the universe of discourse).

ii. Lawyer(a) may stand for a is a lawyer.
iii. Mean(m,x,y) states that m is the mean of x and y: i.e., m = ½(x + y).
iv. LT(x,6) states that x is less than 6.
v. G(x, π) states that x is greater than π (where π is the constant 3.14159)
vi. G(x,y) states that x is greater than y.
vii. EQ(x, y) states that x is equal to y.
viii. LE(x,y) states that x is less than or equal to y.
ix. Real(x) states that x is a real number.
x. Father(x,y) states that x is the father of y.
xi. ¬(∃x)(Prime(x) ∧ B(x,32,36)) states that there is no prime number between 32

and 36.

Universal and Existential Quantification
The universal quantifier is used to express a statement such as that all members of
the domain have property P. This is written as (∀x)P(x) and expresses the statement
that the property.

P(x) is true for all x. Similarly, (∀x1, x2, …, xn) P(x1, x2, …, xn) states that prop-
erty P(x1, x2, …, xn) is true for all x1, x2, …, xn. Clearly, the predicate (∀x) P(a,b)
is identical to P(a,b) since it contains no variables, and the predicate (∀y∈N)
(x ≤y) is true if x = 1 and false otherwise.

The existential quantifier states that there is at least one member in the domain
of discourse that has property P. This is written as (∃x)P(x), and the predicate
(∃x1, x2, …, xn) P(x1, x2, …, xn) states that there is at least one value of (x1, x2,
…, xn) such that P(x1, x2, …, xn) is true.

Example 10.7 (Quantifiers)

(i) (∃p) (Prime(p) ∧ p > 1,000,000) is true

It expresses the fact that there is at least one prime number greater than a million,
which is true as there are an infinite number of primes.

(ii) (∀x) (∃y) x < y is true

10.3 Predicate Calculus 171

This predicate expresses the fact that given any number x we can always find a
larger number: e.g., take y = x + 1.

(iii) (∃y) (∀x) x < y is false

This predicate expresses the statement that there is a natural number y such that
all natural numbers are less than y. Clearly, this statement is false since there is
no largest natural number, and so the predicate (∃y) (∀x) x < y is false.

Comment 10.1

It is important to be careful with the order in which quantifiers are written, as the
meaning of a statement may be completely changed by the simple transposition of
two quantifiers.

The well-formed formulae in the predicate calculus are built from terms
and predicates, and the rules for building the formulae are described briefly in
Sect. 10.3.1. Examples of well-formed formulae include

(∀x)(x > 2)
(∃x)x2 = 2
(∀x)(x > 2 ∧ x < 10)
(∀x)(∃y)x2 = y
(∀x)(∃y) Love (y, x) (everyone is loved by someone)
(∃y)(∀x) Love (y, x) (someone loves everyone)

The formula (∀x)(x > 2) states that every x is greater than the constant 2; (∃x)
x2 = 2 states that there is an x that is the square root of 2; (∀x) (∃y) x2 = y states
that for every x there is a y such that the square of x is y.

10.3.1 Sketch of Formalization of Predicate Calculus

The formalization of predicate calculus includes the definition of an alphabet of
symbols (including constants and variables), the definition of function and predi-
cate letters, logical connectives, and quantifiers. This leads to the definitions of the
terms and well-formed formulae of the calculus.

The predicate calculus is built from an alphabet of constants, variables, function
letters, predicate letters, and logical connectives (including the logical connectives
discussed earlier in propositional logic and universal and existential quantifiers).

The definition of terms and well-formed formulae specifies the syntax of the
predicate calculus, and the set of well-formed formulae gives the language of the
predicate calculus. The terms and well-formed formulae are built from the sym-
bols, and these symbols are not given meaning in the formal definition of the
syntax.

172 10 Propositional and Predicate Logic

The language defined by the calculus needs to be given an interpretation in
order to give a meaning to the terms and formulae of the calculus. The interpreta-
tion needs to define the domain of values of the constants and variables and provide
meaning to the function letters, the predicate letters, and the logical connectives.

Terms are built from constants, variables, and function letters. A constant or
variable is a term, and if t1, t2, …, tk are terms, then f i k(t1, t2, …, tk) is a term
(where f i k is a k-ary function letter). Examples of terms include.

x2 where x is a variable and square is a 1-ary function letter.

x2 + y2
where x2 + y2 is shorthand for the function add (square(x), square(y))
where add is a 2-ary function letter and square is a 1-ary function

letter.

The well-formed formulae are built from terms as follows. If Pi
k is a k-ary

predicate letter, t1, t2, …, tk are terms, then Pi
k(t1, t2, …, tk) is a well-formed

formula. If A and B are well-formed formulae, then so are ¬A, A ∧ B, A ∨ B,
A→B, A↔B, (∀x)A, and (∃x)A.

There is a set of axioms for predicate calculus and two rules of inference
used for the deduction of new formulae from the existing axioms and previously
deduced formulae. The deduction of a new formula Q is via a sequence of well-
formed formulae P1, P2, … Pn (where Pn = Q) such that each Pi is either an
axiom, a hypothesis, or deducible from one or more of the earlier formulae in the
sequence.

The two rules of inference are modus ponens and generalization. Modus ponens
is a rule of inference that states that given predicate formulae A, and A→B, then
the predicate formula B may be deduced. Generalization is a rule of inference that
states that given predicate formula A, then the formula (∀x)A may be deduced
where x is any variable.

The deduction of a formula Q from a set of hypothesis H is denoted by H ├
Q, and where Q is deducible from the axioms alone this is denoted by ├ Q. The
deduction theorem states that if H ∪ {P} ├ Q, then H ├ P →Q2 and the converse
of the theorem is also true: i.e., if H ├ P →Q, then H ∪{P} ├ Q.

The approach allows reasoning about symbols according to rules and to derive
theorems from formulae irrespective of the meanings of the symbols and formulae.
Predicate calculus is sound: i.e., any theorem derived using the approach is true,
and the calculus is also complete.

Scope of Quantifiers
The scope of the quantifier (∀x) in the well-formed formula (∀x)A is A. Similarly,
the scope of the quantifier (∃x) in the well-formed formula (∃x)B is B. The variable

2 This is stated more formally that if H ∪ {P} ├ Q by a deduction containing no application of
generalization to a variable that occurs free in P, then H ├ P → Q.

10.3 Predicate Calculus 173

x that occurs within the scope of the quantifier is said to be a bound variable. If a
variable is not within the scope of a quantifier, it is free.

Example 10.8 (Scope of Quantifiers)

(i) x is free in the well-formed formula ∀y (x2 + y > 5).
(ii) x is bound in the well-formed formula ∀x (x2 > 2).

A well-formed formula is closed if it has no free variables. The substitution of
a term t for x in A can only take place only when no free variable in t will become
bound by a quantifier in A through the substitution. Otherwise, the interpretation
of A would be altered by the substitution.

A term t is free for x in A if no free occurrence of x occurs within the scope
of a quantifier (∀y) or (∃y) where y is free in t. This means that the term t may be
substituted for x without altering the interpretation of the well-formed formula A.

For example, suppose A is ∀y (x2 + y2 > 2) and the term t is y, then t is not
free for x in A as the substitution of t for x in A will cause the free variable y in
t to become bound by the quantifier ∀y in A, thereby altering the meaning of the
formula to ∀y (y2 + y2 > 2).

10.3.2 Interpretation and Valuation Functions

An interpretation gives meaning to a formula, and it consists of a domain of
discourse and a valuation function. If the formula is a sentence (i.e., does not
contain any free variables), then the given interpretation of the formula is either
true or false. If a formula has free variables, then the truth or falsity of the formula
depends on the values given to the free variables. A formula with free variables
essentially describes a relation say, R(x1, x2,.… xn) such that R(x1, x2,.… xn) is
true if (x1, x2, … xn) is in relation R. If the formula is true irrespective of the
values given to the free variables, then the formula is true in the interpretation.

A valuation (meaning) function gives meaning to the logical symbols and con-
nectives. Thus associated with each constant c is a constant cΣ in some universe
of values Σ; with each function symbol f of arity k, we have a function symbol
f Σ in Σ and f Σ : Σk →Σ; and for each predicate symbol P of arity k a relation
PΣ ⊆Σk. The valuation function, in effect, gives the semantics of the language of
the predicate calculus L.

The truth of a predicate P is then defined in terms of the meanings of the terms,
the meanings of the functions, predicate symbols, and the normal meanings of the
connectives.

Mendelson [3] provides a technical definition of truth in terms of satisfaction
(with respect to an interpretation M). Intuitively a formula F is satisfiable if it
is true (in the intuitive sense) for some assignment of the free variables in the
formula F. If a formula F is satisfied for every possible assignment to the free

174 10 Propositional and Predicate Logic

variables in F, then it is true (in the technical sense) for the interpretation M. An
analogous definition is provided for false in the interpretation M.

A formula is valid if it is true in every interpretation; however, as there may
be an uncountable number of interpretations, it may not be possible to check this
requirement in practice. M is said to be a model for a set of formulae if and only
if every formula is true in M.

There is a distinction between proof theoretic and model theoretic approaches
in predicate calculus. Proof theoretic is essentially syntactic, and there is a list of
axioms with rules of inference. The theorems of the calculus are logically derived
(i.e., ├ A), and the logical truths are as a result of the syntax or form of the
formulae, rather than the meaning of the formulae. Model theoretical, in contrast,
is essentially semantic. The truth derives from the meaning of the symbols and
connectives, rather than the logical structure of the formulae. This is written as ├
M A.

A calculus is sound if all of the logically valid theorems are true in the inter-
pretation, i.e., proof theoretic ⇒ model theoretic. A calculus is complete if all
the truths in an interpretation are provable in the calculus, i.e., model theoretic ⇒
proof theoretic. A calculus is consistent if there is no formula A such that ├ A
and ├ ¬A.

The predicate calculus is sound, complete, and consistent. Predicate calculus is
not decidable: i.e., there is no algorithm to determine for any well-formed formula
A whether A is a theorem of the formal system. The undecidability of the pred-
icate calculus may be demonstrated by showing that if the predicate calculus is
decidable, then the halting problem (of Turing machines) is solvable. The halting
problem is discussed in Chap. 14.

10.3.3 Properties of Predicate Calculus

The following are properties of the predicate calculus.

(i) (∀x) P(x) ≡ (∀y) P(y)
(ii) (∀x) P(x) ≡ ¬ (∃x) ¬ P(x)
(iii) (∃x)P(x) ≡ ¬ (∀x) ¬ P(x)
(iv) (∃x)P(x) ≡ (∃y)P(y)
(v) (∀x) (∀y) P(x,y) ≡ (∀y) (∀x) P(x,y)
(vi) (∃x)(P(x) ∨ Q(x)) ≡ (∃x)P(x) ∨ (∃y)Q(y)
(vii) (∀x) (P(x) ∧ Q(x)) ≡ (∀x) P(x) ∧ (∀y) Q(y)

10.3.4 Applications of Predicate Calculus

The predicate calculus may be employed to formally state the system requirements
of a proposed system. It may be used to conduct formal proof to verify the presence
or absence of certain properties in a specification.

10.3 Predicate Calculus 175

It may also be employed to define piecewise defined functions such as f (x,y)
where f (x,y) is defined by

f (x, y) = x2 − y2 where x ≤ 0 ∧ y < 0;
f (x, y) = x2 + y2 where x > 0 ∧ y < 0;
f (x, y) = x + y where x ≥ 0 ∧ y = 0;
f (x, y) = x − y where x < 0 ∧ y = 0;
f (x, y) = x + y where x ≤ 0 ∧ y > 0;
f (x, y) = x2 + y2 where x > 0 ∧ y > 0

The predicate calculus may be employed for program verification and to show
that a code fragment satisfies its specification. The statement that a program F is
correct with respect to its precondition P and postcondition Q is written as P{F}Q.
The objective of program verification is to show that if the precondition is true
before execution of the code fragment, then this implies that the postcondition is
true after execution of the code fragment.

A program fragment a is partially correct for precondition P and postcondition
Q if and only if whenever a is executed in any state in which P is satisfied and exe-
cution terminates, then the resulting state satisfies Q. Partial correctness is denoted
by P{F}Q, and Hoare’s axiomatic semantics is based on partial correctness. It
requires proof that the postcondition is satisfied if the program terminates.

A program fragment a is totally correct for precondition P and postcondition Q,
if and only if whenever a is executed in any state in which P is satisfied, then the
execution terminates and the resulting state satisfies Q. It is denoted by {P}F{Q},
and Dijkstra’s calculus of weakest preconditions is based on total correctness [2,
4]. It is required to prove that if the precondition is satisfied, then the program
terminates and the postcondition is satisfied

10.3.5 Semantic Tableaux in Predicate Calculus

We discussed the use of semantic tableaux for determining the validity of argu-
ments in propositional logic earlier in this chapter, and its approach is to negate
the conclusion of an argument and to show that this results in inconsistency with
the premises of the argument.

The use of semantic tableaux is similar with predicate logic, except that there
are some additional rules to consider. As before, if all branches of a seman-
tic tableau are closed, then the premises and the negation of the conclusion are
mutually inconsistent. From this, we deduce that the conclusion must be true.

The rules of semantic tableaux for propositional logic were presented in Table
10.12, and the additional rules specific to predicate logic are detailed in Table
10.14.

176 10 Propositional and Predicate Logic

Table 10.14 Extra rules of semantic tableaux (for predicate calculus)

Rule No Definition Description

1 (∀x) A(x)
A(t) where t is a term

Universal instantiation

2 (∃x) A(x)
A(t) where t is a term that has not been
used in the derivation so far

Rule of existential instantiation. The term
“t” is often a constant “a”

3 ¬(∀x) A(x)
(∃x) ¬A(x)

4 ¬(∃x) A(x)
(∀x)¬A(x)

Example 10.9 (Semantic Tableaux) Show that the syllogism ‘All Greeks are mortal;
Socrates is a Greek; therefore Socrates is mortal’ is a valid argument in predicate
calculus.

Solution

We expressed this argument previously as (∀x)(G(x) →M(x));G(s); M(s). Therefore,
we negate the conclusion (i.e., ¬M(s)) and try to construct a closed tableau.

Therefore, as the tableau is closed we deduce that the negation of the conclusion
is inconsistent with the premises, and that therefore the conclusion follows from the
premises.

Example 10.10 (Semantic Tableaux) Determine whether the following argument is
valid.

All lecturers are motivated.
Anyone who is motivated and clever will teach well.
Joanne is a clever lecturer.
Therefore, Joanne will teach well.

10.4 Review Questions 177

Solution

We encode the argument as follows:

L(x) stands for ‘x is a lecturer’.
M(x) stands for ‘x is motivated’.
C(x) stands for ‘x is clever’.
W (x) stands for ‘x will teach well’.

We therefore wish to show that
(∀x)(L(x) →M(x)) ∧ (∀x)((M(x) ∧ C(x)) →W (x)) ∧ L(joanne) ∧ C(joanne) |=

W (joanne)
Therefore, we negate the conclusion (i.e., ¬W (joanne)) and try to construct a

closed tableau.

Therefore, since the tableau is closed we deduce that the argument is valid.

10.4 Review Questions

1. Draw a truth table to show that ¬ (P → Q) ≡ P ∧¬ Q.
2. Translate the sentence “Execution of program P begun with x < 0 will

not terminate” into propositional form.

178 10 Propositional and Predicate Logic

3. Prove the following theorems using the inference rules of natural deduc-
tion.
(a) From b, infer b ∨¬c.
(b) From b ⇒ (c ∧ d), b, infer d.

4. Explain the difference between the universal and the existential quantifier.
5. Express the following statements in the predicate calculus.

(a) All natural numbers are greater than 10.
(b) There is at least one natural number between 5 and 10.
(c) There is a prime number between 100 and 200.

6. Which of the following predicates are true?
(a) ∀i ∈ {10, …,50}. i2 < 2000 ∧ i < 100
(b) ∃ i ∈ N. i > 5 ∧ i2 = 25
(c) ∃ i ∈ N. i2 = 25

7. Use semantic tableaux to show that (A→A) ∨ (B ∧ ¬B) is true.
8. Determine if the following argument is valid.

If Pilar lives in Cork, she lives in Ireland. Pilar lives in Cork. Therefore,
Pilar lives in Ireland.

10.5 Summary

Propositional logic is the study of propositions, and a proposition is a statement
that is either true or false. A formula may contain several variables and a rich set
of connectives is employed to combine propositions to build up the well-formed
formulae of the calculus. This allows compound propositions to be formed, and the
truth of these is determined from the truth-values of the constituent propositions
and the rules associated with the logical connectives.

Propositional calculus is both complete and consistent with all true propositions
deducible in the calculus, and there is no formula A such that both A and ¬A are
deducible in the calculus.

An argument in propositional logic consists of a sequence of formulae that are
the premises of the argument and a formula that is the conclusion of the argument.
One elementary way to see if the argument is valid is to produce a truth table to
determine if the conclusion is true whenever all of the premises are true.

Predicates are statements involving variables, and these statements become
propositions once the variables are assigned values. Predicate calculus allows
expressions such as all members of the domain have a particular property or that
there is at least one member that has a particular property.

Predicate calculus may be employed to specify the requirements of a pro-
posed system and to give the definition of a piecewise defined function. Semantic
tableaux may be used for determining the validity of arguments in propositional
or predicate logic, and its approach is to negate the conclusion of an argument and
to show that this results in inconsistency with the premises of the argument.

References 179

References

1. Kelly J (1997) The essence of logic. Prentice Hall
2. Gries D (1981) The science of programming. Springer. Berlin
3. Mendelson E (1987) Introduction to mathematical logic. Wadsworth and Cole/Brook, Advanced

Books & Software
4. Dijkstra EW (1976) A disciple of programming. Prentice Hall

11Advanced Topics in Logic

Key Topics

Fuzzy Logic

Intuitionist Logic

Temporal Logic

Undefined Values

Logic of Partial Functions

Logic and AI

11.1 Introduction

In this chapter we consider some advanced topics in logic including fuzzy logic,
temporal logic, intuitionist logic, approaches that deal with undefined values, and
logic and AI. Fuzzy logic is an extension of classical logic that acts as a math-
ematical model for vagueness, and it handles the concept of partial truth where
truth-values lie between completely true and completely false. Temporal logic is
concerned with the expression of properties that have time dependencies, and it
allows temporal properties about the past, present, and future to be expressed.

Brouwer and others developed intuitionist logic which provided a controver-
sial theory on the foundations of mathematics based on a rejection of the law
of the excluded middle and an insistence on constructive existence. Martin Löf
successfully applied intuitionist logic to type theory in the 1970s.

Partial functions arise naturally in computer science, and such functions may
fail to be defined for one or more values in their domain. One approach to dealing
with partial functions is to employ a precondition, which restricts the application

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_11

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_11&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_11

182 11 Advanced Topics in Logic

of the function to values where it is defined. We consider three approaches to deal
with undefined values, including the logic of partial functions; Dijkstra’s approach
with his cand and cor operators; and Parnas’s approach which preserves a classical
two-valued logic.

We examine the contribution of logic to the AI field, with a short discussion of
the work of John McCarthy and the Prolog logic programming language.

11.2 Fuzzy Logic

Fuzzy logic is a branch of many-valued logic that allows inferences to be made
when dealing with vagueness, and it can handle problems with imprecise or incom-
plete data. It differs from classical two-valued propositional logic; in that it is
based on degrees of truth, rather than on the standard binary truth-values of “true
or false” (1 or 0) of propositional logic. That is, while statements made in propo-
sitional logic are either true or false (1 or 0), the truth-value of a statement made
in fuzzy logic is a value between 0 and 1. Its value expresses the extent to which
the statement is true, with a value of 1 expressing absolute truth and a value of 0
expressing absolute falsity.

Fuzzy logic uses degrees of truth as a mathematical model for vagueness, and
this is useful since statements made in natural language are often vague and have
a certain (rather than an absolute) degree of truth. It is an extension of classical
logic to deal with the concept of partial truth, where the truth-value lies between
completely true and completely false. Lofti Zadeh developed fuzzy logic at Berkley
in the 1960s, and it has been successfully applied to expert systems and other areas
of artificial intelligence.

For example, consider the statement “John is tall”. If John is six feet, four
inches, then we would say that this is a true statement (with a truth-value of 1)
since John is well above average height. However, if John is five feet, nine inches
tall (around average height) then this statement has a degree of truth, and this
could be indicated by a fuzzy truth-value of 0.6. Finally, if John’s height is four
feet, ten inches then we would say that this is a false statement with truth-value 0.
Similarly, the statement that today is sunny may be assigned a truth-value of 1 if
there are no clouds, 0.8 if there are a small number of clouds, and 0 if it is raining
all day.

Propositions in fuzzy logic may be combined together to form compound
propositions. Suppose X and Y are propositions in fuzzy logic, then compound
propositions may be formed from the conjunction, disjunction, and implication
operators. The usual definition in fuzzy logic of the truth-values of the compound
propositions formed from X and Y is given by:

Truth(¬X) = 1 − Truth(X)
Truth(X and Y) = min(Truth(X), Truth(Y))
Truth(X or Y) = max(Truth(X), Truth(Y))
Truth(X → Y) = Truth(¬X or Y))

11.3 Temporal Logic 183

Another way in which the operators may be defined is in terms of multiplica-
tion:

Truth(X and Y) = Truth(X) ∗ Truth(Y)
Truth(X or Y) = 1 − (1 − Truth(X))∗(1 − Truth(Y))
Truth(X → Y) = max{z|Truth(X) ∗ z ≤ Truth(Y)} where 0 ≤ z ≤ 1

Under these definitions, fuzzy logic is an extension of classical two-valued
logic, which preserves the usual meaning of the logical connectives of proposi-
tional logic when the fuzzy values are just {0, 1}.

Fuzzy logic has been very useful in expert system and artificial intelligence
applications. The first fuzzy logic controller was developed in England in the mid-
1970s. Fuzzy logic has also been applied to the aerospace and automotive sectors
and the medical, robotics, and transport sectors.

11.3 Temporal Logic

Temporal logic is concerned with the expression of properties that have time
dependencies, and the various temporal logics can express facts about the past,
present, and future. Temporal logic has been applied to specify temporal prop-
erties of natural language, artificial intelligence as well as the specification and
verification of program and system behaviour. It provides a language to encode
temporal properties in artificial intelligence applications, and it plays a useful role
in the formal specification and verification of temporal properties (e.g., liveness
and fairness) in safety critical systems.

The statements made in temporal logic can have a truth-value that varies over
time. Another words, sometimes the statement is true and sometimes it is false, but
it is never true or false at the same time. The two main types of temporal logics
are linear time logics (reason about a single timeline) and branching time logics
(reason about multiple timelines).

The roots of temporal logic lie in work done by Aristotle in the fourth century
B.C., when he considered whether a truth-value should be given to a statement
about a future event that may or may not occur. For example, what truth-value (if
any) should be given to the statement that “There will be a sea battle tomorrow”?
Aristotle argued against assigning a truth-value to such statements in the present
time.

Newtonian mechanics assumes an absolute concept of time independent of
space, and this viewpoint remained dominant until the development of the theory
of relativity in the early twentieth century (when space–time became the dominant
paradigm).

Arthur Prior began analysing and formalizing the truth-values of statements
concerning future events in the 1950s, and he introduced tense logic (a temporal
logic) in the early 1960s. Tense logic contains four modal operators (strong and
weak) that express events in future or in the past:

184 11 Advanced Topics in Logic

• P (it has at some time been the case that)
• F (it will be at some time be the case that)
• H (it has always been the case that)
• G (it will always be the case that).

The P and F operators are known as weak tense operators, while the H and G
operators are known as strong tense operators. The two pairs of operators are
interdefinable via the equivalences:

Pφ ∼= ¬H¬φ
H φ, ∼= ¬P¬φ
Fφ ∼= ¬G¬φ

Gφ, ∼= ¬F¬φ

The set of formulae in Prior’s temporal logic may be defined recursively, and
they include the connectives used in classical logic (e.g., ¬, ∧, ∨,→, ↔). We can
express a property φ that is always true as Aφ ∼=Hφ ∧ φ ∧ Gφ and a property that
is sometimes true as Eφ ∼=Pφ ∨ φ ∨ Fφ. Various extensions of Prior’s tense logic
have been proposed to enhance its expressiveness. These include the binary since
temporal operator “S” and the binary until temporal operator “U”. For example,
the meaning of φSψ is that φ has been true since a time when ψ was true.

Temporal logics are applicable in the specification of computer systems, as a
specification may require safety, fairness, and liveness properties to be expressed.
For example, a fairness property may state that it will always be the case that
a certain property will hold sometime in future. The specification of temporal
properties often involves the use of special temporal operators.

The common temporal operators that may be used include an operator to
express properties that will always be true; properties that will eventually be true;
and a property that will be true in the next time instance. For example,

�P P is always true
♦P P will be true sometime in future
©P P is true in the next time instant (discrete time)

Linear temporal logic (LTL) was introduced by Pnueli in the late 1970s and is
useful in expressing safety and liveness properties. Branching time logics assume
a non-deterministic branching future for time (with a deterministic, linear past).
Computation tree logics (CTL and CTL*) were introduced in the early 1980s by
Emerson and others.

It is also possible to express temporal operations directly in classical mathe-
matics, and Parnas prefers this approach. He is critical of computer scientists for
introducing unnecessary formalisms when classical mathematics has the ability to
do this. For example, the value of a function f at a time instance prior to the

11.4 Intuitionist Logic 185

current time t is defined as:

Prior(f , t) = lim
ε→0

f (t − ε)

For more detailed information on temporal logic the reader is referred to the
excellent article in [1].

11.4 Intuitionist Logic

The school of intuitionist mathematics was founded by the Dutch mathematician,
L. E. J. Brouwer, who was a famous topologist and well known for his fixpoint
theorem in topology. Brouwer’s constructive approach to mathematics proved to be
highly controversial, as its acceptance as a foundation of mathematics would have
led to the rejection of many accepted theorems in classical mathematics (including
his own fixed-point theorem).

Brouwer was deeply interested in the foundations of mathematics and the prob-
lems arising from the paradoxes of set theory. He was determined to provide a
secure foundation, and his view was that an existence theorem that demonstrates
the proof of a mathematical object has no validity, unless the proof is constructive
and accompanied by a procedure to construct the object. He therefore rejected
indirect proof and the law of the excluded middle (P ∨ ¬P) or equivalently
(¬¬P →P), and he insisted on an explicit construction of the mathematical object.

The problem with the law of the excluded middle (LEM) arises in dealing with
properties of infinite sets. For finite sets, one can decide if all elements of the set
possess a certain property P by testing each one. However, this procedure is no
longer possible for infinite sets. We may know that a certain element of the infinite
set does not possess the property, or it may be the actual method of construction
of the set allows us to prove that every element has the property. However, the
application of the law of the excluded middle is invalid for infinite sets, as we
cannot conclude from the situation where not all elements of an infinite set possess
a property P that there exists at least one element which does not have the property
P. Another words, the law of the excluded middle may only be applied in cases
where the conclusion can be reached in a finite number of steps.

Consequently, if the Brouwer view of the world were accepted then many
of the classical theorems of mathematics (including his own well-known results
in topology) could no longer be said to be true. His approach to the founda-
tions of mathematics hardly made him popular with contemporary mathematicians
(the differences were so fundamental that it was more like a civil war), and
intuitionism never became mainstream in mathematics. It led to deep and bit-
ter divisions between Hilbert1 and Brouwer, with Hilbert accusing Brouwer (and

1 David Hilbert was a famous German mathematician, and Hilbert’s program is discussed in
Chap. 14.

186 11 Advanced Topics in Logic

Weyl) of trying to overthrow everything that did not suit them in mathematics,
and that intuitionism was treason to science. Hilbert argued that a suitable foun-
dation for mathematics should aim to preserve most of mathematics. Brouwer
described Hilbert’s formalist program as a false theory that would produce nothing
of mathematical value.

For Brouwer, “to exist” is synonymous with “constructive existence”, and con-
structive mathematics is relevant to computer science, as a program may be viewed
as the result obtained from a constructive proof of its specification. Brouwer devel-
oped one of the more unusual logics that have been invented (intuitionist logic),
in which many of the results of classical mathematics were no longer true. Intu-
itionist logic may be considered the logical basis of constructive mathematics, and
formal systems for intuitionist propositional and predicate logic were developed
by Heyting and others [2].

Consider a hypothetical mathematical property P(x) of which there is no known
proof (i.e., it is unknown whether P(x) is true or false for arbitrary x where x
ranges over the natural numbers). Therefore, the statement ∀x (P(x) ∨ ¬P(x))
cannot be asserted with the present state of knowledge, as neither P(x) nor ¬P(x)
has been proved. That is, unproved statements in intuitionist logic are not given
an intermediate truth-value, and they remain of an unknown truth-value until they
have been either proved or disproved.

The intuitionist interpretation of the logical connectives is different from clas-
sical propositional logic. A sentence of the form A ∨ B asserts that either a proof
of A or a proof of B has been constructed, and A ∨ B is not equivalent to ¬ (¬A
∧ ¬B). Similarly, a proof of A ∧ B is a pair whose first component is a proof of
A and whose second component is a proof of B. The statement ∀x ¬P(x) is not
equivalent to ∃x P(x) in intuitionist logic.

Intuitionist logic was applied to type theory by Martin Löf in the 1970s [3].
Intuitionist type theory is based on an analogy between propositions and types,
where A ∧ B is identified with A×B, the Cartesian product of A and B. The ele-
ments in the set A×B are of the form (a, b) where a∈A and b∈B. The expression
A ∨ B is identified with A + B, the disjoint union of A and B. The elements in the
set A + B are got from tagging elements from A and B, and they are of the form
inl(a) for a∈A and inr(b) for b∈B. The left and right injections are denoted by inl
and inr.

11.5 Undefined Values

Total functions f : X →Y are functions that are defined for every element in their
domain, and total functions are widely used in mathematics. However, partial func-
tions may be undefined for one or more elements in their domain, and one example
is the function y = 1/x which is undefined at x = 0.

Partial functions arise naturally in computer science, and such functions may
fail to be defined for one or more values in their domain. One approach to dealing
with partial functions is to employ a precondition, which restricts the application

11.5 Undefined Values 187

Fig. 11.1 Conjunction and disjunction operators

of the function to where it is defined. This makes it possible to define a new set (a
proper subset of the domain of the function) for which the function is total over
the new set.

Undefined terms often arise2 and need to be dealt with. Consider the example
of the square root function

√
x taken from [4]. The domain of this function is the

positive real numbers, and the following expression is undefined:

((x > 0) ∧ (y =
√

x)) ∨ ((x ≤ 0) ∧ (y =
√ − x))

The reason this is undefined is since the usual rules for evaluating such an
expression involve evaluating each subexpression and then performing the Boolean
operations. However, when x < 0 the subexpression y =

√
x is undefined, whereas

when x > 0 the subexpression y =
√−x is undefined. Clearly, it is desirable that

such expressions be handled, and that for the example above, the expression would
evaluate to true.

Classical two-valued logic does not handle this situation adequately, and there
have been several proposals to deal with undefined values. Dijkstra’s approach is
to use the cand and cor operators in which the value of the left-hand operand
determines whether the right-hand operand expression is evaluated or not. Jones
logic of partial functions [5] uses a three-valued logic,3 and Parnas’s4 approach is
an extension to the predicate calculus to deal with partial functions that preserve
the two-valued logic.

11.5.1 Logic of Partial Functions

Jones [5] has proposed the logic of partial functions (LPFs) as an approach to deal
with terms that may be undefined. This is a three-valued logic, and a logical term
may be true, false, or undefined (denoted ⊥). The truth tables for conjunction and
disjunction are defined in Fig. 11.1.

The conjunction of P and Q is true when both P and Q are true; false if one
of P or Q is false; and undefined otherwise. The operation is commutative. The

2 It is best to avoid undefinedness by taking care with the definitions of terms and expressions.
3 The above expression would evaluate to true under Jones three-valued logic of partial functions.
4 The above expression evaluates to true for Parnas logic (a two-valued logic).

188 11 Advanced Topics in Logic

Fig. 11.2 Implication and equivalence operators

Fig. 11.3 Negation

disjunction of P and Q (P ∨ Q) is true if one of P or Q is true; false if both P
and Q are false; and undefined otherwise. The implication operation (P →Q) is
true when P is false or when Q is true; false when P is true and Q is false; and
undefined otherwise. The equivalence operation (P ↔Q) is true when both P and
Q are true or false; it is false when P is true and Q is false (and vice versa); and
it is undefined otherwise (Fig. 11.2).

The not operator (¬) is a unary operator; such ¬A is true when A is false, false
when A is true, and undefined when A is undefined (Fig. 11.3).

The result of an operation may be known immediately after knowing the value
of one of the operands (e.g., disjunction is true if P is true irrespective of the value
of Q). The law of the excluded middle and several other well-known laws do not
hold in the three-valued logic. Jones [5] argues that this is reasonable as one would
not expect the following to be true:

(1/0 = 1) ∨ (1/0 �= 1)

11.5.2 Parnas Logic

Parnas’s approach is based on classical two-valued logic with the philosophy that
truth-values should be true or false only. His system is an extension to predicate
calculus to deal with partial functions. The evaluation of a logical expression yields
the value ‘true’ or ‘false’ irrespective of the assignment of values to the variables
in the expression. This allows the expression: ((x > 0) ∧ (y =

√
x)) ∨ ((x ≤0) ∧

(y =
√−x)) that is undefined in classical logic to yield the value true.5

The advantages of his approach are that no new symbols are introduced into the
logic, and that the logical connectives retain their traditional meaning. This makes

5 It seems strange to assign the value false to the primitive predicate calculus expression y = 1/ 0.

11.5 Undefined Values 189

Table 11.1 Examples of
Parnas evaluation of
undefinedness

Expression x < 0 x ≥ 0

y =
√

x False True if y =
√

x, False otherwise

y = 1/0 False False

y = x2 +
√

x False True if y = x2 +
√

x, False otherwise

Table 11.2 Example of undefinedness in array

Expression i ∈{1…N} i /∈ {1…N}

B[i] = x True if B[i] = x False

∃i, B[i] = x True if B[i] = x for some i, False otherwise False

Fig. 11.4 Finding index in array

it easier for engineers and computer scientists to understand, as it is closer to their
intuitive understanding of logic.

The meaning of predicate expressions is given by first defining the meaning
of the primitive expressions. These are used as the building bocks for predicate
expressions. The evaluation of a primitive expression Rj(V) (where V is a comma
that separated set of terms with some elements of V involving the application of
partial functions) is false if the value of an argument of a function used in one
of the terms of V is not in the domain of that function.6 The following examples
(Tables 11.1 and 11.2) should make this clearer.

These primitive expressions are used to build the predicate expressions, and
the standard logical connectives are used to yield truth-values for the predicate
expression. Parnas logic is defined in detail in [4].

The power of Parnas logic may be seen by considering a tabular expressions
example. The table below specifies the behaviour of a program that searches the
array B for the value x. It describes the properties of the values of j’ and present’.
There are two cases to consider (Fig. 11.4):

Clearly, from the example above the predicate expressions ∃i, B[i] = x, and
¬(∃i, B[i] = x) are defined. One disadvantage of the Parnas’s approach is that some
common relational operators (e.g., >, ≥, ≤, and <) are not primitive in the logic.
However, these relational operators are then constructed from primitive operators.
Further, the axiom of reflection does not hold in the logic.

6 The approach avoids the undefined logical value (⊥) and preserves the two-valued logic.

190 11 Advanced Topics in Logic

Fig. 11.5 Edsger Dijkstra.
Courtesy of Brian Randell

11.5.3 Dijkstra and Undefinedness

The cand and cor operators were introduced by Dijkstra (Fig. 11.5) to deal with
undefined values. These are non-commutative operators that allow the evaluation
of predicates that contain undefined values.

Consider the following expression:

y = 0 ∨ (x/y = 2)

Then this expression is undefined when y = 0 as x/y is undefined, since the
logical disjunction operation is not defined when one of its operands is undefined.
However, there is a case for giving meaning to such an expression when y = 0,
since in that case the first operand of the logical or operation is true. Further, the
logical disjunction operation is defined to be true if either of its operands is true.
This motivates the introduction of the cand and cor operators. These operators are
associative, and their truth tables are defined in Tables 11.3 and 11.4.

The order of the evaluation of the operands for the cand operation is to evaluate
the first operand; if the first operand is true then the result of the operation is the

Table 11.3 a cand b a b a cand b

T T T

T F F

T U U

F T F

F F F

F U F

U T U

U F U

U U U

11.6 Logic and AI 191

Table 11.4 a cor b a b a cor b

T T T

T F T

T U T

F T T

F F F

F U U

U T U

U F U

U U U

second operand; otherwise the result is false. The expression a cand b is equivalent
to:

a cand b ∼= if a then b else F

The order of the evaluation of the operands for the cor operation is to evaluate
the first operand. If the first operand is true then the result of the operation is true;
otherwise the result of the operation is the second operand. The expression a cor
b is equivalent to:

a cor b ∼= if a then T else b

11.6 Logic and AI

Artificial intelligence is a young field, and the term was coined at the Dartmouth
conference in 1956. John McCarthy7 has long advocated the use of logic in AI
to formalize knowledge and to guide the design of mechanized reasoning systems
(Fig. 11.6). Logic has been used as an analytic tool, as a knowledge representation
formalism, and as a programming language.

McCarthy’s goal was to formalize common-sense reasoning: i.e., the normal
reasoning that is employed in problem solving and dealing with normal events
in the real world. McCarthy [6] argues that it is reasonable for logic to play a
key role in the formalization of common-sense knowledge, and this includes the
formalization of basic facts about actions and their effects; facts about beliefs and
desires; and facts about knowledge and how it is obtained. His approach allows
common-sense problems to be solved by logical reasoning (Fig. 11.5).

7 John McCarthy received the Turing Award in 1971 for his contributions to artificial intelligence.
He also developed the programming language LISP.

192 11 Advanced Topics in Logic

Fig. 11.6 John McCarthy.
Courtesy of John McCarthy

Its formalization requires sufficient understanding of the common-sense world,
and often the relevant facts to solve a particular problem are unknown. It may be
that knowledge thought to be relevant is irrelevant and vice versa. A computer may
have millions of facts stored in its memory, and the problem is how to determine
which of these should be chosen from its memory to serve as premises in logical
deduction.

McCarthy’s influential 1959 paper discusses various common-sense problems
such as getting home from the airport. Mathematical logic is the standard approach
to express premises, and it includes rules of inferences that are used to deduce valid
conclusions from a set of premises. Its rigorous deductive reasoning shows how
new formulae may be logically deduced from a set or premises.

McCarthy’s approach to programs with common sense has been criticized by
Bar-Hillel and others on the grounds that common sense is fairly elusive and the
difficulty that a machine would have in determining which facts are relevant to a
particular deduction from its known set of facts. However, McCarthy’s approach
has showed how logical techniques can contribute to the solution of specific AI
problems.

Artificial intelligence influenced the development of logic programming, and
logic programming languages describe what is to be done, rather than how it
should be done. These languages are concerned with the statement of the prob-
lem to be solved, rather than how the problem will be solved. These languages use
mathematical logic as a tool in the statement of the problem definition.

Logic is a useful tool in developing a body of knowledge (or theory), and it
allows rigorous mathematical deduction to derive further truths from the existing
set of truths. The theory is built up from a small set of axioms or postulates, and
rules of inference derive further truths logically.

Many problems are naturally expressed as a theory, and the statement of a
problem to be solved is often equivalent to determining if a new hypothesis is
consistent with an existing theory. Logic provides a rigorous way to determine
this, as it includes a rigorous process for conducting proof.

11.6 Logic and AI 193

Computation in logic programming is essentially logical deduction, and logic
programming languages use first-order8 predicate calculus. They employ theorem
proving to derive a desired truth from an initial set of axioms. These proofs are
constructive9 ; in that an actual object that satisfies the constraints is produced
rather than a pure existence theorem. Logic programming specifies the objects, the
relationships between them, and the constraints to be satisfied for the problem.

– The set of objects involved in the computation
– The relationships that hold between the objects
– The constraints of the particular problem.

The language interpreter decides how to satisfy the particular constraints. The
first logic programming language was Planner developed by Carl Hewitt at MIT
in 1969. It uses a procedural approach for knowledge representation rather than
McCarthy’s declarative approach.

The best-known logic programming language is Prolog, which was developed
in the early 1970s by Alain Colmerauer and Robert Kowalski. It stands for pro-
gramming in logic. It is a goal-oriented language that is based on predicate logic.
Prolog became an ISO standard in 1995. The language attempts to solve a goal by
tackling the subgoals that the goal consists of:

goal : − subgoal1, . . . , subgoaln .

That is, in order to prove a particular goal it is sufficient to prove subgoal1
through subgoaln. Each line of a Prolog program consists of a rule or a fact,
and the language specifies what exists rather than how. The following program
fragment has one rule and two facts:

grandmother(G, S) : − parent(P, S), mother(G, P).
mother(sarah, isaac).
parent(isaac, jacob).

The first line in the program fragment is a rule that states that G is the grand-
mother of S if there is a parent P of S and G is the mother of P. The next two
statements are facts stating that Isaac is a parent of Jacob, and that Sarah is the
mother of Isaac. A particular goal clause is true if all of its subclauses are true:

goalclause
(
Vg

) : − clause1(V1), . . . , clausem (Vm)

8 First-order logic allows quantification over objects but not functions or relations. Higher-order
logics allow quantification of functions and relations.
9 For example, the statement ∃x such that x =

√
4 states that there is an x such that x is the square

root of 4, and the constructive existence yields that the answer is that x = 2 or x =−2; i.e., construc-
tive existence provides more the truth of the statement of existence, and an actual object satisfying
the existence criteria is explicitly produced.

194 11 Advanced Topics in Logic

A Horn clause consists of a goal clause and a set of clauses that must be proven
separately. Prolog finds solutions by unification: i.e., by binding a variable to a
value. For an implication to succeed, all goal variables Vg on the left side of:-
must find a solution by binding variables from the clauses which are activated on
the right side. When all clauses are examined and all variables in Vg are bound,
the goal succeeds. But if a variable cannot be bound for a given clause, then that
clause fails. Following the failure, Prolog backtracks, and this involves going back
to the left to previous clauses to continue trying to unify with alternative bindings.
Backtracking gives Prolog the ability to find multiple solutions to a given query
or goal.

Logic programming languages generally use a simple searching strategy to
consider alternatives:

• If a goal succeeds and there are more goals to achieve, then remember any
untried alternatives and go on to the next goal.

• If a goal is achieved and there are no more goals to achieve then stop with
success.

• If a goal fails and there are alternative ways to solve it then try the next one.
• If a goal fails and there are no alternate ways to solve it, and there is a previous

goal, then go back to the previous goal.
• If a goal fails and there are no alternate ways to solve it, and no previous goal,

then stop with failure.

Constraint programming is a programming paradigm where relations between vari-
ables can be stated in the form of constraints. Constraints specify the properties
of the solution and differ from the imperative programming languages in that they
do not specify the sequence of steps to execute.

11.7 Review Questions

1. What is fuzzy logic?
2. What is intuitionist logic and how is it different from classical logic?
3. Discuss the problem of undefinedness and the advantages and disadvan-

tages of three-valued logics. Describe the approaches of Parnas, Dijkstra,
and Jones.

4. What is temporal logic?
5. Show how the temporal operators may be expressed in classical mathe-

matics. Discuss the merits of temporal operators.
6. Discuss the applications of logic to AI.

References 195

11.8 Summary

We discussed some advanced topics in logic in this chapter, including fuzzy logic,
temporal logic, intuitionist logic, undefined values, logic and AI, and theorem
provers. Fuzzy logic is an extension of classical logic that acts as a mathematical
model for vagueness, whereas temporal logic is concerned with the expression of
properties that have time dependencies.

Intuitionism was a controversial school of mathematics that aimed to provide
a solid foundation for mathematics. Its adherents rejected the law of the excluded
middle and insisted that for an entity to exist that there must be a constructive
proof of its existence.

Partial functions arise naturally in computer science, and such functions may
fail to be defined for one or more values in their domain. There are a number of
approaches to deal with undefined values, including the logic of partial functions;
Dijkstra’s approach with his cand and cor operators; and Parnas’s approach which
preserves a classical two-valued logic.

We discussed temporal logic and its applications to the specification of proper-
ties with time dependencies. We discussed the application of logic to the AI field,
where logic has been used to formalize knowledge in AI systems.

References

1. Temporal logic. Stanford enclyopedia of philosophy. http://plato.stanford.edu/entries/logic-tem
poral/

2. Heyting A (1966) Intuitionist logic. An introduction. North-Holland Publishing
3. Löf PM. Intuitionist type theory. Notes by Giovanni Savin of lectures given
4. Parnas DL (1993) Predicate calculus for software engineering. IEEE Trans Softw Eng 19(9)
5. Jones C (1986) Systematic software development using VDM. Prentice Hall International
6. McCarthy J (1959) Programs with common sense. In: Proceedings of the Teddington conference

on the mechanization of thought processes

http://plato.stanford.edu/entries/logic-temporal/
http://plato.stanford.edu/entries/logic-temporal/

12Language Theory and Semantics

Key Topics

Alphabets

Grammars and Parse Trees

Axiomatic Semantics

Operational Semantics

Denotational Semantics

Lambda Calculus

Lattices and Partial Orders

Complete Partial Orders

Fixpoint Theory

12.1 Introduction

There are two key parts to any programming language, and these are its syntax and
semantics. The syntax is the grammar of the language, and a program needs to be
syntactically correct with respect to its grammar. The semantics of the language is
deeper and determines the meaning of what has been written by the programmer.

The difference between syntax and semantics may be illustrated by an example
in a natural language. A sentence may be syntactically correct but semantically
meaningless, or a sentence may have semantic meaning but be syntactically
incorrect. For example, consider the sentence:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_12

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_12&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_12

198 12 Language Theory and Semantics

I will go to Dublin yesterday.

Then this sentence is syntactically valid but semantically meaningless. Similarly,
if a speaker utters the sentence “Me Dublin yesterday” we would deduce that
the speaker had visited Dublin the previous day even though the sentence is
syntactically incorrect.

The semantics of a programming language determines what a syntactically valid
program will compute. A programming language is therefore given by:

Programming Language = Syntax + Semantics

Many programming languages have been developed since the birth of digital com-
puting including Plankalkül which was developed by Zuse in the 1940s; Fortran
developed by IBM in the 1950s; COBOL was developed by a committee in the
late 1950s; ALGOL 60 and ALGOL 68 were developed by an international com-
mittee in the 1960s; Pascal was developed by Wirth in the early 1970s; Ada was
developed for the US military in the late 1970s; the C language was developed
by Richie and Thompson at Bell Labs in the early 1970s; C ++ was developed by
Stroustrup at Bell Labs in the early 1980s; and Java developed by Gosling at Sun
Microsystems in the mid-1990s. A short description of a selection of programming
languages in use is in [1].

A programming language needs to have a well-defined syntax and semantics,
and the compiler preserves the semantics of the language (rather than giving the
semantics of a language). Compilers are programs that translate a program that is
written in some programming language into another form. It involves syntax anal-
ysis and parsing to check the syntactic validity of the program; semantic analysis
to determine what the program should do; optimization to improve the speed and
performance; and code generation in some target language.

Alphabets are a fundamental building block in language theory, as words and
language are generated from alphabets. They are discussed in the next section.

12.2 Alphabets and Words

An alphabet is a finite non-empty set A, and the elements of A are called letters.
For example, consider the set A which consists of the letters a to z.

Words are finite strings of letters, and a set of words is generated from the
alphabet. For example, the alphabet A = {a, b} generates the following set of
words1 :

{ε, a, b, aa, ab, bb, ba, aaa, bbb . . .}

1 ε denotes the empty word.

12.2 Alphabets and Words 199

Each word consists of an ordered list of one or more letters, and the set of
words of length two consists of all ordered lists of two letters. It is given by

A2 = {aa, ab, bb, ba}
Similarly, the set of words of length three is given by:

A3 = {aaa, aab, abb, aba, baa, bab, bbb, bba}
The set of all words over the alphabet A is given by the positive closure A+,

and it is defined by:

A+ = A ∪ A2 ∪ A3 ∪ . . . =
∞⊔

n=1

An

Given any two words w1 = a1, a2 … ak and w2 = b1, b2 … br then the
concatenation of w1 and w2 is given by:

w = w1w2 = a1a2 . . . akb1b2 . . . br

The empty word is a word of length zero and is denoted by ε. Clearly, εw = wε
= w for all w, and so ε is the identity element under the concatenation operation.
A0 is used to denote the set containing the empty word {ε}, and the closure A* (=
A+ ∪{ε}) denotes the infinite set of all words over A (including empty words). It
is defined as:

A∗ =
∞⊔

n=0

An

The mathematical structure (A*, ^, ε) forms a monoid,2 where ^ is the concate-
nation operator for words and the identity element is ε. The length of a word w is
denoted by |w|, and the length of the empty word is zero: i.e., |ε| = 0.

A subset L of A* is termed a formal language over A. Given two languages L1,
L2 then the concatenation (or product) of L1 and L2 is defined by:

L1L2 = {w|w = w1w2 where w1 ∈ L1 and w2 ∈ L2}
The positive closure of L and the closure of L may also be defined as:

L+ =
∞⊔

n=1

Ln L∗ =
∞⊔

n=0

Ln

2 Recall from Chap. 5 (see Sect. 5.8) that a monoid (M, *, e) is a structure that is closed and
associative under the binary operation “*”, and it has an identity element “e”.

200 12 Language Theory and Semantics

12.3 Grammars

A formal grammar describes the syntax of a language, and we distinguish between
concrete and abstract syntaxes. Concrete syntax describes the external appearance
of programs as seen by the programmer, whereas abstract syntax aims to describe
the essential structure of programs rather than its external form. In other words,
abstract syntax aims to give the components of each language structure while
leaving out the representation details (e.g., syntactic sugar). Backus Naur Form
(BNF) notation is often used to specify the concrete syntax of a language. A
grammar consists of

• A finite set of terminal symbols
• A finite set of non-terminal symbols
• A set of production rules
• A start symbol.

A formal grammar generates a formal language, which is set of finite length
sequences of symbols created by applying the production rules of the grammar.
The application of a production rule involves replacing symbols at the left-hand
side of the rule with the symbols on the right-hand side of the rule. The formal lan-
guage then consists of all words consisting of terminal symbols that are reached
by a derivation (i.e., the application of production rules) starting from the start
symbol of the grammar.

A construct that appears on the left-hand side of a production rule is termed
a non-terminal, whereas a construct that only appears on the right-hand side of a
production rule is termed a terminal. The set of non-terminals N is disjoint from
the set of terminals A.

The theory of the syntax of programming languages is well established, and pro-
gramming languages have a well-defined grammar that allows syntactically valid
programs to be derived from the grammars.

Chomsky3 (Fig. 12.1) is a famous linguist who classified a number of differ-
ent types of grammar that occur. The Chomsky hierarchy (Table 12.1) consists of
four levels including regular grammars; context-free grammars; context-sensitive
grammars; and unrestricted grammars. The grammars are distinguished by the
production rules, which determine the type of language that is generated.

Regular grammars are used to generate the words that may appear in a program-
ming language. This includes the identifiers (e.g., names for variables, functions,
and procedures); special symbols (e.g., addition, multiplication, etc.); and the
reserved words of the language.

A rewriting system for context-free grammars is a finite relation between N and
(A ∪ N)*: i.e., a subset of N × (A∪ N)*: A production rule <N> →w is one element

3 Chomsky made important contributions to linguistics and the theory of grammars. He is more
widely known today as a critic of US foreign policy.

12.3 Grammars 201

Fig. 12.1 Noah Chomsky.
Public domain

Table 12.1 Chomsky hierarchy of grammars

Grammar type Description

Type 0 grammar Type 0 grammars include all formal grammars. They have production
rules of the form α → β where α and β are strings of terminals and
non-terminals. They generate all languages that can be recognized by a
turing machine (see Chap. 13)

Type 1 grammar
(context sensitive)

These grammars generate the context-sensitive languages. They have
production rules of the form αAβ →αγ β where A is a non-terminal and
α, β, and γ are strings of terminals and non-terminals. They generate all
languages that can be recognized by a linear bounded automaton4

Type 2 grammar
(context free)

These grammars generate the context-free languages. These are defined by
rules of the form A→ γ where A is a non-terminal and γ is a string of
terminals and non-terminals. These languages are recognized by a
pushdown automaton5 and are used to define the syntax of most
programming languages

Type 3 grammar
(regular grammars)

These grammars generate the regular languages (or regular expressions).
These are defined by rules of the form A→ a or A→aB where A and B
are non-terminals and a is a single terminal. A finite-state automaton
recognizes these languages (see Chap. 13), and regular expressions are
used to define the lexical structure of programming languages

of this relation and is an ordered pair (<N>, w) where w is a word consisting
of zero or more terminal and non-terminal letters. This production rule means
that <N> may be replaced by w.

4 A linear bounded automaton is a restricted form of a non-deterministic Turing machine in which
a limited finite portion of the tape (a function of the length of the input) may be accessed.
5 A pushdown automaton is a finite automaton that can make use of a stack containing data, and it
is discussed in Chap. 13.

202 12 Language Theory and Semantics

12.3.1 Backus Naur Form

Backus Naur Form6 (BNF) provides an elegant means of specifying the syntax of
programming languages. It was originally employed to define the grammar for the
ALGOL 60 programming language [2], and a variant was used by Wirth to specify
the syntax of the Pascal programming language. BNF is widely used to specify the
syntax of programming languages.

BNF specifications essentially describe the external appearance of programs as
seen by the programmer. The grammar of a context-free grammar may then be
input into a parser (e.g., Yacc), and the parser is used to determine if a program is
syntactically correct or not.

A BNF specification consists of a set of production rules with each production
rule describing the form of a class of language elements such as expressions and
statements. A production rule is of the form:

<symbol> ::= <expression with symbols>

where < symbol> is a non-terminal, and the expression consists of a sequence of
terminal and non-terminal symbols. A construct that has alternate forms appears
more than once, and this is expressed by sequences separated by the vertical bar
“|” (which indicates a choice). In other words, there is more than one possible
substitution for the symbol on the left-hand side of the rule. Symbols that never
appear on the left-hand side of a production rule are called terminals.

The following example defines the syntax of various statements in a sample
programming language:

<loop statement> ::= <while loop>|<for loop>
<while loop> ::= while(<condition>)<statement>
<for loop> ::= for (<expression>) < statement>
<statement> ::= <assignment statement>|<loop statement>
<assignment statement> ::= <variable> := <expression>

This is a partial definition of the syntax of various statements in the language.
It includes various non-terminals such as < loop statement>, <while loop> . The
terminals include “while”, “for”, “: = ”, “(”, and “)”. The production rules for <
condition> and <expression > are not included.

The grammar of a context-free language (e.g., LL(1), LL(k), LR(1), LR(k))
grammar expressed in BNF notation may be translated by a parser into a parse
table. The parse table may then be employed to determine whether a particular
program is valid with respect to its grammar.

6 Backus Naur Form is named after John Backus and Peter Naur. It was created as part of the design
of the ALGOL 60 programming language and is used to define the syntax rules of the language.

12.3 Grammars 203

Example 12.1 (Context-Free Grammar) The example considered is that of paren-
thesis matching in which there are two terminal symbols and one non-terminal
symbol

S → SS
S → (S)
S → ()

Then by starting with S and applying the rules we can construct:

S → SS → (S)S → (())S → (())()

Example 12.2 (Context-Free Grammar) The example considered is that of expres-
sions in a programming language. The definition is ambiguous as there is more
than one derivation tree for some expressions (e.g., there are two parse trees for the
expression 5× 3 + 1 discussed below).

<expr> ::= <numeral>|(<expr>)
|(< expr >< operator >< expr >)

< operator > ::= +| − | × |/
< digit > ::= 0|1| . . . |9

< numeral > ::= < digit >|< digit >< numeral >

Example 12.3 (Regular Grammar) The definition of an identifier in most program-
ming languages is similar to:

<identifier> ::= <let><letdig>
<letdig> ::= <let>|<dig>|ε
<letdig> ::= <let><letdig>|<dig><letdig>

<let> ::= a|b|c| . . . |z
<dig> ::= 0|1||9

12.3.2 Parse Trees and Derivations

Let A and N be the terminal and non-terminal alphabet of a rewriting system and
let <X>→ w be a production. Let x be a word in (A ∪ N)* with x = u <X> v for
some words u, v ∈ (A∪ N)*. Then x is said to directly yield uwv, and this is written
as x ⇒ uwv.

This single substitution (⇒) can be extended by a finite number of productions
(⇒*), and this gives the set of words that can be obtained from a given word. This

204 12 Language Theory and Semantics

derivation is achieved by applying several production rules (one production rule is
applied at a time) in the grammar.

That is, given x, y∈ (A ∪N)* then x yields y (or y is a derivation of x) if x = y,
or there exists a sequence of words w1, w2, … wn ∈ (A ∪ N)* such that x = w1, y
= wn and wi ⇒ wi+1 for 1≤ i≤ n − 1. This is written as x ⇒* y.

The expression grammar presented in Example 12.2 is ambiguous, and this
means that an expression such as 5 × 3 + 1 has more than one interpretation.
(Figs. 12.2 and 12.3). It is not clear from the grammar whether multiplication is
performed first and then addition, or whether addition is performed first and then
multiplication.

The interpretation of the parse tree in Fig. 12.2 is that multiplication is per-
formed first and then addition (this is the normal interpretation of such expressions
in programming languages as multiplication is a higher precedence operator than
addition).

The interpretation of the second parse tree is that addition is performed first and
then multiplication (Fig. 12.3). It may seem a little strange that one expression has
two parse trees and it shows that the grammar is ambiguous. This means that there
is a choice for the compiler in evaluating the expression, and the compiler needs

Fig. 12.2 Parse tree 5 × 3 +
1

Fig. 12.3 Parse tree 5×3 +
1

12.4 Programming Language Semantics 205

to assign the right meaning to the expression. For the expression grammar one
solution would be for the language designer to alter the definition of the grammar
to remove the ambiguity.

12.4 Programming Language Semantics

The formal semantics of a programming language is concerned with defining the
actual meaning of a language. Language semantics is deeper than syntax, and the
theory of the syntax of programming languages is well established. A programmer
writes a program according to the rules of the language. The compiler first checks
the program for syntactic correctness: i.e., it determines whether the program as
written is valid according to the rules of the grammar of the language. If the
program is syntactically correct, then the compiler determines the meaning of what
has been written and generates the corresponding machine code.7

The compiler must preserve the semantics of the language: i.e., the semantics is
not defined by the compiler, but rather the function of the compiler is to preserve
the semantics of the language. Therefore, there is a need to have an unambiguous
definition of the meaning of the language independently of the compiler, and the
meaning is then preserved by the compiler.

A program’s syntax8 gives no information as to the meaning of the pro-
gram, and therefore there is a need to supplement the syntactic description of
the language with a formal unambiguous definition of its semantics.

We mentioned that it is possible to utter syntactically correct but semantically
meaningless sentences in a natural language. Similarly, it is possible to write syn-
tactically correct programs that behave in quite a different way from the intention
of the programmer.

The formal semantics of a language is given by a mathematical model
that describes the possible computations described by the language. There are
three main approaches to programming language semantics, namely axiomatic
semantics, operational semantics, and denotational semantics (Table 12.2).

There are several applications of programming language semantics including
language design, program verification, compiler writing, and language standard-
ization. The three main approaches to semantics are described in more detail
below.

7 It is possible that what the programmer has written is not be what the programmer had intended.
8 There are attribute (or affix) grammars that extend the syntactic description of the language with
supplementary elements covering the semantics. The process of adding semantics to the syntactic
description is termed decoration.

206 12 Language Theory and Semantics

Table 12.2 Programming language semantics

Approach Description

Axiomatic semantics This involves giving meaning to phrases of the language using logical
axioms
It employs pre- and postcondition assertions to specify what happens
when the statement executes. The relationship between the initial
assertion and the final assertion essentially gives the semantics of the
code

Operational semantics This approach describes how a valid program is interpreted as
sequences of computational steps. These sequences then define the
meaning of the program
An abstract machine (SECD machine) may be defined to give
meaning to phrases, and this is done by describing the transitions they
induce on states of the machine

Denotational semantics This approach provides meaning to programs in terms of
mathematical objects such as integers, tuples, and functions
Each phrase in the language is translated into a mathematical object
that is the denotation of the phrase

12.4.1 Axiomatic Semantics

Axiomatic semantics gives meaning to phrases of the language by describing the
logical axioms that apply to them. It was developed by C.A.R. Hoare9 in a famous
paper “An axiomatic basis for computer programming” [3]. His axiomatic theory
consists of syntactic elements, axioms, and rules of inference.

The well-formed formulae that are of interest in axiomatic semantics are pre-
and postassertion formulae of the form P{a}Q, where a is an instruction in the
language and P and Q are assertions: i.e., properties of the program objects that
may be true or false.

An assertion is essentially a predicate that may be true in some states and false
in other states. For example, the assertion (x − y > 5) is true in the state in which
the values of x and y are 7 and 1, respectively, and false in the state where x and
y have values 4 and 2.

The pre- and postcondition assertions are employed to specify what hap-
pens when the statement executes. The relationship between the initial assertion
and the final assertion gives the semantics of the code statement. The pre- and
postcondition assertions are of the form:

P{a}Q
The precondition P is a predicate (input assertion), and the postcondition Q is

a predicate (output assertion). The braces separate the assertions from the program

9 Hoare was influenced by earlier work by Floyd on assigning meanings to programs using
flowcharts [8].

12.4 Programming Language Semantics 207

fragment. The well-formed formula P{a}Q is itself a predicate that is either true
or false.

This notation expresses the partial correctness10 of a with respect to P and Q,
and its meaning is that if statement a is executed in a state in which the predicate
P is true and execution terminates, then it will result in a state in which assertion
Q is satisfied.

The axiomatic semantics approach is described in more detail in [4], and the
axiomatic semantics of a selection of statements is presented below.

• Skip
The skip statement does nothing, and whatever condition is true on entry to

the command is true on exit from the command. Its meaning is given by:

P{skip}P
• Assignment

The meaning of the assignment statement is given by the axiom:

Px
e {x := e}P

The meaning of the assignment statement is that P will be true after execu-
tion of the assignment statement if and only if the predicate Px

e with the value
of x replaced by e in P is true before execution (since x will contain the value
of e after execution).

The notation Px
e denotes the expression obtained by substituting e for all

free occurrences of x in P.
• Compound

The meaning of the conditional command is:

P{S1}Q, Q{S2}R
P{S1; S2}R

The compound statement involves the execution of S1 followed by the exe-
cution of S2. The meaning of the compound statement is that R will be true
after the execution of the compound statement S1; S2 provided that P is true, if
it is established that Q will be true after the execution of S1 provided that P is
true, and that R is true after the execution of S2 provided Q is true.

There needs to be at least one rule associated with every construct in the
language in order to give its axiomatic semantics. The semantics of other
programming language statements such as the “while” statement and the “if”
statement is described in [4].

10 Total correctness is expressed using {P}a{Q}, and program fragment a is totally correct for pre-
condition P and postcondition Q if and only if whenever a is executed in any state in which P is
satisfied then execution terminates, and the resulting state satisfies Q.

208 12 Language Theory and Semantics

12.4.2 Operational Semantics

The operational semantics definition is similar to that of an interpreter, where
the semantics of the programming language is expressed using a mechanism that
makes it possible to determine the effect of any program written in the language.
The meaning of a program is given by the evaluation history that an interpreter pro-
duces when it interprets the program. The interpreter may be close to an executable
programming language, or it may be a mathematical language.

The operational semantics for a programming language describes how a valid
program is interpreted as sequences of computational steps. The evaluation history
defines the meaning of the program, and this is a sequence of internal interpreter
configurations.

John McCarthy did early work on operational semantics in the late 1950s with
his work on the semantics of LISP in terms of the lambda calculus. The use
of lambda calculus allows the meaning of a program to be expressed using a
mathematical interpreter, which gives precision through the use of mathematics.

The meaning of a program may be given in terms of a hypothetical or virtual
machine that performs the set of actions that corresponds to the program. An
abstract machine (SECD machine11) may be defined to give meaning to phrases
in the language, and this is done by describing the transitions that they induce on
states of the machine.

Operational semantics gives an intuitive description of the programming lan-
guage being studied, and its descriptions are close to real programs. It can play a
useful role as a testing tool during the design of new languages, as it is relatively
easy to design an interpreter to execute the description of example programs. This
allows the effects of new languages or new language features to be simulated
and studied through actual execution of the semantic descriptions prior to writ-
ing a compiler for the language. Another words, operational semantics can play a
role in rapid prototyping during language design and to get early feedback on the
suitability of the language.

One disadvantage of the operational approach is that the meaning of the
language is understood in terms of execution: i.e., in terms of interpreter configura-
tions, rather than in an explicit machine independent specification. An operational
description is just one way to execute programs. Another disadvantage is that the
interpreters for non-trivial languages often tend to be large and complex. A more
detailed account of operational semantics is in [5, 6].

11 The stack, environment, code, and dump (SECD) virtual stack-based machine was originally
designed by Peter Landin (a British computer scientist) to evaluate lambda calculus expressions,
and it has since been used as a target for several compilers. Landin was influenced by McCarthy’s
LISP.

209

Fig. 12.4 Denotational
semantics Program

Mathematical
Denotation

Meaning Function

12.4.3 Denotational Semantics

Denotational semantics expresses the semantics of a programming language by a
translation schema that associates a meaning (denotation) with each program in
the language [6]. It maps a program directly to its meaning, and it was originally
called mathematical semantics as it provides meaning to programs in terms of
mathematical values such as integers, tuples, and functions. That is, the meaning
of a program is a mathematical object, and an interpreter is not employed. Instead,
a valuation function is employed to map a program directly to its meaning, and the
denotational description of a programming language is given by a set of meaning
functions M associated with the constructs of the language (Fig. 12.4).

Each meaning function is of the form MT : T →DT where T is some construct
in the language and DT is some semantic domain. Many of the meaning func-
tions will be “higher order”: i.e., functions that yield functions as results. The
signature of the meaning function is from syntactic domains (i.e., T) to semantic
domains (i.e., DT). A valuation map VT : T → B may be employed to check the
static semantics prior to giving a meaning of the language construct.12

A denotational definition is more abstract than an operational definition. It does
not specify the computational steps, and its exclusive focus is on the programs
to the exclusion of the state and other data elements. The state is less visible in
denotational specifications.

It was developed by Christopher Strachey and Dana Scott at the Program-
ming Research Group at Oxford, England, in the mid-1960s, and their approach to
semantics is known as the Scott–Strachey approach [7]. It provides a mathematical
foundation for the semantics of programming languages.

Dana Scott’s contributions included the formulation of domain theory, which
allows programs containing recursive functions and loops to be given a precise
semantics. Each phrase in the language is translated into a mathematical object
that is the denotation of the phrase. Denotational semantics has been applied to
language design and implementation.

12 This is similar to what a compiler does in that if errors are found during the compilation phase,
the compiler halts and displays the errors and does not continue with code generation.

210 12 Language Theory and Semantics

12.5 Lambda Calculus

Functions are an essential part of mathematics, and they play a key role in specify-
ing the semantics of programming language constructs. We discussed partial and
total functions in Chap. 3, and a function was defined as a special type of relation,
and simple finite functions may be defined as an explicit set of pairs: e.g.,

fΔ{(a, 1), (b, 2), (c, 3)}
However, for more complex functions there is a need to define the function

more abstractly, rather than listing all of its member pairs. This may be done
in a similar manner to set comprehension, where a set is defined in terms of a
characteristic property of its members.

Functions may be defined (by comprehension) through a powerful abstract nota-
tion known as lambda calculus. This notation was introduced by Alonzo Church
in the 1930s to study computability (discussed in Chap. 14), and lambda cal-
culus provides an abstract framework for describing mathematical functions and
their evaluation. It may be used to study function definition, function application,
parameter passing, and recursion.

Any computable function can be expressed and evaluated using lambda calculus
or Turing machines, as these are equivalent formalisms. Lambda calculus uses a
small set of transformation rules, and these include:

• Alpha-conversion rule (α-conversion)13

• Beta-reduction rule (β-reduction)14

• Eta-conversion (η-conversion).15

Every expression in the λ-calculus stands for a function with a single argument.
The argument of the function is itself a function with a single argument, and so
on. The definition of a function is anonymous in the calculus. For example, the
function that adds one to its argument is usually defined as f (x) = x + 1. However,
in λ-calculus the function is defined as:

succ Δ λx · x + 1

The name of the formal argument x is irrelevant, and an equivalent definition
of the function is λ z. z + 1. The evaluation of a function f with respect to an
argument (e.g., 3) is usually expressed by f (3). In λ-calculus this would be written
as (λ x. x + 1) 3, and this evaluates to 3 + 1 = 4. Function application is left
associative: i.e., f x y = (f x) y. A function of two variables is expressed in lambda

13 This essentially expresses that the names of bound variables are unimportant.
14 This essentially expresses the idea of function application.
15 This essentially expresses the idea that two functions are equal if and only if they give the same
results for all arguments.

12.6 Lattices and Order 211

calculus as a function of one argument, which returns a function of one argument.
This is known as currying: e.g., the function f (x, y) = x + y is written as λ x. λ
y. x + y. This is often abbreviated to λ xy. x + y.

λ-calculus is a simple mathematical system, and its syntax is defined as follows:

< exp > ::= < identifier> |
˘< identifier>.< exp > | - - abstraction

< exp >< exp > | - - application

(< exp>)

λ-calculus’s four lines of syntax plus conversion rules are sufficient to define
Booleans, integers, data structures, and computations on them. It inspired LISP and
modern functional programming languages. The original calculus was untyped,
but typed lambda calculi were later introduced. The typed lambda calculus allows
the sets to which the function arguments apply to be specified. For example, the
definition of the plus function is given as:

plusΔλa, b : N · a + b

The lambda calculus makes it possible to express properties of the function
without reference to members of the base sets on which the function operates.
It allows functional operations such as function composition to be applied, and
one key benefit is that the calculus provides powerful support for higher-order
functions. This is important in the expression of the denotational semantics of the
constructs of programming languages.

12.6 Lattices and Order

This section considers some the mathematical structures used in the definition of
the semantic domains used in denotational semantics. These mathematical struc-
tures may also be employed to give a secure foundation for recursion (discussed
in Chap. 6), and it is essential that the conditions in which recursion may be used
safely be understood.

It is natural to ask when presented with a recursive definition whether it means
anything at all, and in some cases the answer is negative. Recursive definitions
are a powerful and elegant way of giving the denotational semantics of language
constructs. The mathematical structures considered in this section include partial
orders, total orders, lattices, complete lattices, and complete partial orders.

12.6.1 Partially Ordered Sets

A partial order ≤on a set P is a binary relation such that for all x, y, z∈ P the
following properties hold (Fig. 12.5):

212 12 Language Theory and Semantics

Fig. 12.5 Pictorial
representation of a partial
order

(i) x≤ x (reflexivity)
(ii) x≤ y and y ≤ x ⇒ x = y (anti-isymmetry)
(iii) x≤ y and y ≤ z ⇒ x≤ z (transitivity)

A set P with an order relation≤ is said to be a partially ordered set.

Example 12.4 Consider the power set PX, which consists of all the subsets of the
set X with the ordering defined by set inclusion. That is, A≤B if and only if A⊆ B
then ⊆ is a partial order on PX.

A partially ordered set is a totally ordered set (also called chain) if for all x, y ∈P
then either x ≤y or y ≤x. That is, any two elements of P are directly comparable.

A partially ordered set P is an anti-chain if for any x, y in P then x≤ y only if
x = y. That is, the only elements in P that are comparable to a particular element
are the element itself.

Maps between Ordered Sets
Let P and Q be partially ordered sets then a map φ from P to Q may preserve the
order in P and Q. We distinguish among order preserving, order embedding, and
order isomorphism. These terms are defined as follows:

Order Preserving (or Monotonic Increasing Function)

A mapping φ: P →Q is said to be order preserving if

x ≤ y ⇒ φ(x) ≤ φ(y)

Order Embedding
A mapping φ: P →Q is said to be an order embedding if

x ≤y in P if and only if φ(x)≤φ(y) in Q.

Order Isomorphism
The mapping φ: P→ Q is an order isomorphism if and only if it is an order
embedding mapping onto Q.

12.6 Lattices and Order 213

Dual of a Partially Ordered Set
The dual of a partially ordered set P (denoted P∂) is a new partially ordered set
formed from P where x≤y holds in P∂ if and only if y≤x holds in P (i.e., P∂ is
obtained by reversing the order on P).

For each statement about P there is a corresponding statement about P∂ . Given
any statement Φ about a partially ordered set, then the dual statement Φ∂ is
obtained by replacing each occurrence of≤ by ≥and vice versa.

Duality Principle
Given that statement Φ is true of a partially ordered set P, then the statement Φ∂

is true of P∂ .

Maximal and Minimum Elements
Let P be a partially ordered set and let Q ⊆ P then

(i) a∈ Q is a maximal element of Q if a ≤ x∈ Q ⇒ a = x.
(ii) a∈ Q is the greatest (or maximum) element of Q if a ≥ x for every x∈Q, and

in that case we write a = max Q.

A minimal element of Q and the least (or minimum) are defined dually by reversing
the order. The greatest element (if it exists) is called the top element and is denoted
by T. The least element (if it exists) is called the bottom element and is denoted
by ⊥.

Example 12.5 Let X be a set and consider PX the set of all subsets of X with the
ordering defined by set inclusion. The top element T is given by X, and the bottom
element ⊥ is given by ∅.

A finite totally ordered set always has top and bottom elements, but an infinite
chain need not have.

12.6.2 Lattices

Let P be a partially ordered set and let S ⊆ P. An element x∈P is an upper bound
of S if s≤ x for all s∈ S. A lower bound is defined similarly.

The set of all upper bounds for S is denoted by Su, and the set of all lower
bounds for S is denoted by Sl.

Su = {x ∈ P | (∀s ∈ S) s ≤ x}
Sl = {x ∈ P | (∀s ∈ S) s ≥ x}

If Su has a least element x then x is called the least upper bound of S. Similarly,
if Sl has a greatest element x then x is called the greatest lower bound of S.

Another words, x is the least upper bound of S if.

214 12 Language Theory and Semantics

(i) x is an upper bound of S.
(ii) x≤y for all upper bounds y of S.

The least upper bound of S is also called the supremum of S denoted (sup S), and
the greatest lower bound is also called the infimum of S and is denoted by inf S.

Join and Meet Operations
The join of x and y (denoted by x ∨ y) is given by sup{x, y} when it exists. The
meet of x and y (denoted by x ∧ y) is given by inf{x, y} when it exists.

The supremum of S is denoted by
V
S, and the infimum of S is denoted by

Δ
S.

Definition Let P be a non-empty partially ordered set then

(i) If x ∨ y and x ∧ y exist for all x, y∈ P then P is called a lattice.
(ii) If

V
S and

Δ
S exist for all S ⊆ P then P is called a complete lattice.

Every non-empty finite subset of a lattice has a meet and a join (inductive
argument can be used), and every finite lattice is a complete lattice. Further, any
complete lattice is bounded: i.e., it has top and bottom elements (Fig. 12.6).

Example 12.6 Let X be a set, and consider PX the set of all subsets of X with the
ordering defined by set inclusion. Then PX is a complete lattice in which

∨ {Ai |i ∈ I } = ∪Ai

∧ {Ai |i ∈ I } = ∩Ai

Consider the set of natural numbers N and consider the usual ordering of <. Then
N is a lattice with the join and meet operations defined as:

x ∨ y = max(x, y)

Fig. 12.6 Pictorial
representation of a complete
lattice

12.6 Lattices and Order 215

x ∧ y = min(x, y)

Another possible definition of the meet and join operations are in terms of the
greatest common multiple and lease common divisor.

x ∨ y = lcm(x, y)
x ∧ y = gcd(x, y)

12.6.3 Complete Partial Orders

Let S be a non-empty subset of a partially ordered set P. Then

(i) S is said to be a directed set if for every finite subset F of S there exists z∈S
such that z∈Fu.

(ii) S is said to be consistent if for every finite subset F of S there exists z ∈ P
such that z∈ Fu.

A partially ordered set P is a complete partial order (CPO) if:

(i) P has a bottom element ⊥.
(ii)

V
D exists for each directed subset D of P.

The simplest example of a directed set is a chain, and we note that any complete
lattice is a complete partial order, and that any finite lattice is a complete lattice.

12.6.4 Recursion

Recursive definitions arise frequently in programs and offer an elegant way to
define routines and data types. A recursive routine contains a direct or indirect
call to itself, and a recursive data type contains a direct or indirect reference to
specimens of the same type. Recursion needs to be used with care, as there is
always a danger that the recursive definition may be circular (i.e., defines nothing).
It is therefore important to investigate when a recursive definition may be used
safely and to give a mathematical definition of recursion.

The control flow in a recursive routine must contain at least one non-recursive
branch since if all possible branches included a recursive form the routine could
never terminate. The value of at least one argument in the recursive call is different
from the initial value of the formal argument as otherwise the recursive call would
result in the same sequence of events and therefore would never terminate.

The mathematical meaning of recursion is defined in terms of fixed-point theory,
which is concerned with determining solutions to equations of the form x = τ (x),
where the function τ is of the form τ: X → X.

216 12 Language Theory and Semantics

A recursive definition may be interpreted as a fixpoint equation of the form f
= Φ(f); i.e., the fixpoint of a high-level functional Φ that takes a function as an
argument. For example, consider the functional Φ defined as follows:

ΦΔ λ f λn · if n = 0 then 1 else n ∗ f (n − 1)

Then a fixpoint of Φ is a function f such that f = Φ(f) or another words

f = λn · if n = 0 then 1 else n ∗ f (n − 1)

Clearly, the factorial function is a fixpoint of Φ, and it is the only total function
that is a fixpoint. The solution of the equation f = Φ(f) (where Φ has a fixpoint)
is determined as the limit f of the sequence of functions f 0, f 1, f 2, …, where the
f i is defined inductively as:

f0 Δ∅ (the empty partial function)

fi Δ Φ(fi−1)

Each f i may be viewed as a successive approximation to the true solution f
of the fixpoint equation, with each f i bringing a little more information on the
solution than its predecessor f i−1.

The function f i is defined for one more value than f i−1 and gives the same
result for any value for which they are both defined. The definition of the factorial
function is thus built up as follows:

f0Δ∅ (the empty partial function)
f1Δ{0 → 1}
f2Δ{0 → 1, 1 → 1}
f3Δ{0 → 1, 1 → 1, 2 → 2}
f4Δ{0 → 1, 1 → 1, 2 → 2, 3 → 6}

For every i, the domain of f i is the interval 1, 2, … i−1 and f i(n) = n! for any n in
this interval. Another words f i is the factorial function restricted to the interval 1,
2, … i−1. The sequence of f i may be viewed as successive approximations of the
true solution of the fixpoint equation (which is the factorial function), with each f i
bringing defined for one more value that is its predecessor f i−1 and defining the
same result for any value for which they are both defined.

The candidate fixpoint f ∞ is the limit of the sequence of functions f i, and is
the union of all the elements in the sequence. It may be written as follows:

f∞ Δ∅ ∪ Φ(∅) ∪ Φ(Φ(∅)) ∪ . . . = ∪i :N fi

where the sequence f i is defined inductively as

f0 Δ∅ (the empty partial function)

12.8 Summary 217

fi+1 Δ fi ∪ Φ(fi)

This forms a subset chain where each element is a subset of the next, and it
follows by induction that:

fi+1 = ∪ j :0...iΦ(fi)

A general technique for solving fixpoint equations of the form h = τ (h) for
some functional τ is to start with the least defined function ∅ and iterate with τ .
The union of all the functions obtained as successive sequence elements is the
fixpoint.

The condition in which f ∞ is a fixpoint of Φ is the requirement for Φ(f ∞) =
f ∞. This is equivalent to:

Φ(∪i :N fi) = ∪i :N fi
Φ(∪i :N fi) = ∪i :NΦ(fi)

A sufficient point for Φ to have a fixpoint is that the property Φ(∪i:N f i) =
∪ i:NΦ(f i) holds for any subset chain f i.

A more detailed account on the mathematics of recursion is in Chap. 8 of [6].

12.7 Review Questions

1. Explain the difference between syntax and semantics.
2. Describe the Chomsky hierarchy of grammars and give examples of each

type.
3. Show that a grammar may be ambiguous leading to two difference parse

trees. What problems does this create and how should it be dealt with?
4. Describe axiomatic semantics, operation semantics, and denotational

semantics and explain the differences between them.
5. Explain partial orders, lattices, and complete partial orders. Give exam-

ples of each.
6. Show how the meaning of recursion is defined with fixpoint theory.

12.8 Summary

This chapter considered the syntax and semantics of programming languages. The
syntax of the language is concerned with the production of grammatically correct
programs in the language, whereas the semantics of the language is deeper and is
concerned with the meaning of what has been written by the programmer.

218 12 Language Theory and Semantics

The semantics of programming languages may be given by axiomatic, opera-
tional, and denotational semantics. Axiomatic semantics is concerned with defining
properties of the language in terms of axioms; operational semantics is concerned
with defining the meaning of the language in terms of an interpreter; and deno-
tational semantics is concerned with defining the meaning of the phrases in a
language by the denotation or mathematical meaning of the phrase.

Compilers are programs that translate a program that is written in some pro-
gramming language into another form. It involves syntax analysis and parsing to
check the syntactic validity of the program; semantic analysis to determine what
the program should do; optimization to improve the speed and performance of the
compiler; and code generation in some target language.

Various mathematical structures including partial orders, total orders, lattices,
and complete partial orders were considered. These are useful in the defini-
tion of the denotational semantics of a language and in giving a mathematical
interpretation of recursion.

References

1. O’Regan G (2016) Introduction to the history of computing. Springer
2. Naur P (ed) (1960) Report on the algorithmic language, ALGOL 60. Commun ACM 3(5):299–

314
3. Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–

585
4. O’Regan G (2006) Mathematical approaches to software quality. Springer
5. Plotkin G (1981) A structural approach to operational semantics. Technical Report DAIM FN-

19. Computer Science Department. Aarhus University, Denmark
6. Meyer B (1990) Introduction to the theory of programming languages. Prentice Hall
7. Stoy J (1977) Denotational semantics. The Scott-Strachey approach to programming language

theory. MIT Press
8. Floyd R (1967) Assigning meanings to programs. In: Proceedings of symposia in applied math-

ematics, vol 19, pp 19–32

13Automata Theory

Key Topics

Finite-State Automata

State Transition Table

Deterministic FSA

Non-deterministic FSA

Pushdown Automata

Turing Machine

13.1 Introduction

Automata theory is the branch of computer science that is concerned with the study
of abstract machines and automata. These include finite-state machines, pushdown
automata, and Turing machines. Finite-state machines are abstract machines that
may be in one of a finite number of states. These machines are in only one state
at a time (current state), and the input symbol causes a transition from the current
state to the next state. Finite-state machines have limited computational power due
to memory and state constraints, but they have been applied to a number of fields
including communication protocols, neurological systems, and linguistics.

Pushdown automata have greater computational power than finite-state
machines, and they contain extra memory in the form of a stack from which sym-
bols may be pushed or popped. The state transition is determined from the current
state of the machine, the input symbol, and the element on the top of the stack.
The action may be to change the state and/or push/pop an element from the stack.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_13

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_13&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_13

220 13 Automata Theory

The Turing machine is the most powerful model for computation, and this theo-
retical machine is equivalent to an actual computer in the sense that it can compute
exactly the same set of functions. The memory of the Turing machine is a tape
that consists of a potentially infinite number of one-dimensional cells. It provides a
mathematical abstraction of computer execution and storage, as well as providing
a mathematical definition of an algorithm. However, Turing machines are not suit-
able for programming, and therefore they do not provide a good basis for studying
programming and programming languages.

13.2 Finite-State Machines

Warren McCulloch and Walter Pitts (two neurophysiologists) published early work
on finite-state automata in 1943. They were interested in modelling the thought
process for humans and machines. Moore and Mealy developed this work further
in the mid-1950s, and their finite-state machines are referred to as the “Mealy
machine” and the “Moore machine”. The Mealy machine determines its outputs
from the current state and the input, whereas the output of Moore’s machine is
based upon the current state alone.

Definition 13.1 (Finite-State Machine) A finite-state machine (FSM) is an abstract
mathematical machine that consists of a finite number of states. It includes a start
state q0 in which the machine is in initially; a finite set of states Q; an input alphabet
Σ; a state transition function δ; and a set of final accepting states F (where F⊆ , Q).

The state transition function δ takes the current state and an input symbol and
returns the next state. That is, the transition function is of the form:

δ : Q × Σ → Q

The transition function provides rules that define the action of the machine
for each input symbol, and its definition may be extended to provide output as
well as a transition of the state. State diagrams are used to represent finite-state
machines, and each state accepts a finite number of inputs. A finite-state machine
(Fig. 13.1) may be deterministic or non-deterministic, and a deterministic machine
changes to exactly (or at most)1 one state for each input transition, whereas a non-
deterministic machine may have a choice of states to move to for a particular input
symbol.

Finite-state automata can compute only very primitive functions, and so they
are not adequate as a model for computing. There are more powerful automata
such as the Turing machine that is essentially a finite automaton with a potentially

1 The transition function may be undefined for a particular input symbol and state.

13.2 Finite-State Machines 221

Fig. 13.1 Finite-state
machine with output

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

Fig. 13.2 Deterministic
FSM

A B C

0 0

1 1

infinite storage (memory). Anything that is computable is computable by a Turing
machine.

A finite-state machine can model a system that has a finite number of states
and a finite number of inputs/events that trigger transitions between states. The
behaviour of the system at a point in time is determined from its current state and
input, with behaviour defined for the possible input to that state. The system starts
in the initial state.

A finite-state machine (also known as finite-state automata) is a quintuple (Σ,
Q, δ, q0, F). The alphabet of the FSM is given by Σ; the set of states is given by
Q; the transition function is defined by δ: Q ×Σ →Q; the initial state is given by
q0; and the set of accepting states is given by F (where F is a subset of Q). A
string is given by a sequence of alphabet symbols: i.e., s ∈Σ*, and the transition
function δ can be extended to δ*: Q×Σ*→ Q.

A string s ∈Σ* is accepted by the finite-state machine if δ*(q0, s) = qf where
qf ∈F, and the set of all strings accepted by a finite-state machine is the lan-
guage generated by the machine. A finite-state machine is termed deterministic
(Fig. 13.2) if the transition function δ is a function,2 and otherwise (where it is a
relation) it is said to be non-deterministic. A non-deterministic automaton is one
for which the next state is not uniquely determined from the present state and input
symbol, and the transition may be to a set of states rather than to a single state.

For the example above the input alphabet is given by Σ = {0,1}; the set of
states by {A, B, C}; the start state by A; the accepting states by {C}; and the
transition function is given by the state transition table below (Table 13.1). The
language accepted by the automata is the set of all binary strings that end with a
one that contain exactly two ones.

2 It may be a total or a partial function (as discussed in Chap. 3).

222 13 Automata Theory

Table 13.1 State transition
table

State 0 1

A A B

B B C

C – –

Fig. 13.3 Non-deterministic
finite-state machine

A non-deterministic automaton (NFA) or non-deterministic finite-state machine
is a finite-state machine where from each state of the machine and any given input,
the machine may go to several possible next states. However, a non-deterministic
automaton (Fig. 13.3) is equivalent to a deterministic automaton, in that they
both recognize the same formal language (i.e., regular languages as defined in
Chomsky’s classification in Chap. 12). For any non-deterministic automaton, it
is possible to construct the equivalent deterministic automaton using power set
construction.

NFAs were introduced by Scott and Rabin in 1959, and a NFA is defined for-
mally as a 5-tuple (Q, Σ, δ, qo, F) as in the definition of a deterministic automaton,
and the only difference is in the transition function δ.

δ : Q × Σ → PQ

The non-deterministic finite-state machine M1 = (Q, Σ, δ, qo, F) may be
converted to the equivalent deterministic machine M2 = (Q’, Σ, δ’, qo’, F’) where:

Q, = PQ (the set of all subsets of Q)
q ,
o = {qo}
F , = {

q ∈ Q, and q ∩ F /= ∅}

δ,(q, σ) = ∪p∈q δ(p, σ) for each state q ∈ Q, and σ ∈ Σ.

The set of strings (or language) accepted by an automaton M is denoted L(M).
That is, L(M) = {s: | δ*(q0, s) = qf for some qf ∈ F}. A language is termed regular
if it is accepted by some finite-state machine. Regular sets are closed under union,
intersection, concatenation, complement, and transitive closure. That is, for regular
sets A, B⊆Σ* then:

• A∪B and A∩ B are regular.
• Σ* \ A (i.e., Ac) is regular.

13.3 Pushdown Automata 223

• AB and A* is regular.

The proof of these properties is demonstrated by constructing finite-state machines
to accept these languages. The proof for A∩ B is to construct a machine MA ∩B
that mimics the execution of MA and MB and is in a final state if and only if
both MA and MB are in a final state. Finite-state machines are useful in designing
systems that process sequences of data.

13.3 Pushdown Automata

A pushdown automaton (PDA) is essentially a finite-state machine with a stack,
and its three components (Fig. 13.4) are an input tape; a control unit; and a poten-
tially infinite stack. The stack head scans the top symbol of the stack, and two
operations (push or pop) may be performed on the stack. The push operation adds
a new symbol to the top of the stack, whereas the pop operation reads and removes
an element from the top of the stack.

A pushdown automaton may remember a potentially infinite amount of infor-
mation, whereas a finite-state automaton remembers only a finite amount of
information. A PDA also differs from a FSM in that it may use the top of the stack
to decide on which transition to take, and it may manipulate the stack as part of
performing a transition. The input and current state determine the transition of a
finite-state machine, and the FSM has no stack to work with.

A pushdown automaton is defined formally as a 7-tuple (Σ, Q, ⎡, δ, q0, Z, F).
The set Σ is a finite set which is called the input alphabet; the set Q is a finite set
of states; ⎡ is the set of stack symbols; δ, is the transition function which maps

Stack

Stack head
Finite
Control
Unit

Takes input

Input Tape

Push/pop

Fig. 13.4 Components of pushdown automata

224 13 Automata Theory

Fig. 13.5 Transition in
pushdown automata

q1 q2
a, b c

Input symbol
Top stack
symbol Push symbol

Q×{Σ ∪ {ε}}3 ×⎡ into finite subsets of Q×⎡*4 ; q0 is the initial state; Z is the
initial stack top symbol on the stack (i.e., Z ∈⎡); and F is the set of accepting
states (i.e., F ⊆ Q).

Fig. 13.5 shows a transition from state q1 to q2, which is labelled as a, b→c.
This means that if the input symbol a occurs in state q1, and the symbol on the
top of the stack is b, then b is popped from the stack and c is pushed onto the
stack. The new state is then q2.

In general, a pushdown automaton has several transitions for a given input
symbol, and so pushdown automata are mainly non-deterministic. If a pushdown
automaton has at most one transition for the same combination of state, input sym-
bol, and top of stack symbol it is said to be a deterministic PDA (DPDA). The set
of strings (or language) accepted by a pushdown automaton M is denoted L(M).

The class of languages accepted by pushdown automata is the context-free lan-
guages, and every context-free grammar can be transformed into an equivalent
non-deterministic pushdown automaton. We discussed the Chomsky classification
of grammars in Chap. 12.

Example (Pushdown Automata)
Construct a non-deterministic pushdown automaton which recognizes the language
{0n1n | n ≥ 0}.

Solution
We construct a pushdown automaton M = (Σ, Q, ⎡, δ, q0, Z, F) where Σ = {0, 1};
Q = {q0, q1, qf }; ⎡ = {A, Z}; q0 is the start state; the start stack symbol is Z; and
the set of accepting states is given by {qf }:. The transition function (relation) δ is
defined by:

The transition function (Fig. 13.6) essentially says that whenever the value 0
occurs in state q0 then A is pushed onto the stack. Parts (3) and (4) of the transition
function essentially state that the automaton may move from state q0 to state q1 at
any moment. Part (5) states when the input symbol is 1 in state q1 then one symbol A
is popped from the stack. Finally, part (6) states the automaton may move from state

3 The use of {Σ∪{ε}} is to formalize that the PDA can either read a letter from the input or proceed
leaving the input untouched.
4 This could also be written as δ : Q × {Σ ∪ {ε}} ×⎡ → P(Q × ⎡∗) . It may also be described as
a transition relation.

13.4 Turing Machines 225

Fig. 13.6 Transition
function for pushdown
automata M

q1 to the accepting state qf only when the stack consists of the single stack symbol
Z.

For example, it is easy to see that the string 0011 is accepted by the automaton,
and the sequence of transitions is given by:

(q0, 0011, Z)⊦(q0, 011, AZ)⊦(q0, 11, AAZ)
⊦(q1, 11, AAZ)⊦(q1, 1, AZ)⊦(q1, ε, Z)⊦(qf, Z).

13.4 Turing Machines

Turing introduced the theoretical Turing machine (TM) in 1936, and this abstract
mathematical machine consists of a head and a potentially infinite tape that is
divided into frames (Fig. 13.7). Each frame may be either blank or printed with a
symbol from a finite alphabet of symbols. The input tape may initially be blank
or have a finite number of frames containing symbols. At any step, the head can
read the contents of a frame; the head may erase a symbol on the tape, leave it
unchanged, or replace it with another symbol. It may then move one position to
the right, one position to the left, or not at all. If the frame is blank, the head can
either leave the frame blank or print one of the symbols.

Turing believed that a human with finite equipment and with an unlimited sup-
ply of paper to write on could do every calculation. The unlimited supply of paper
is formalized in the Turing machine by a paper tape marked off in squares, and the
tape is potentially infinite in both directions. The tape may be used for intermedi-
ate calculations as well as input and output. The finite number of configurations of
the Turing machine was intended to represent the finite states of mind of a human
calculator.

226 13 Automata Theory

Tape Head (move left or right)

Control
Unit

Potentially Infinite Tape

Transition Function
Finite Set of States

Fig. 13.7 Turing machine

The transition function determines for each state and the tape symbol what the
next state to move to and what should be written on the tape, and where to move
the tape head. The Turing machine is defined formally as follows:

Definition 13.2 (Turing Machine) A Turing machine M = (Q, ⎡, b, Σ, δ, q0, F) is
a 7-tuple is defined as follows in [1]:

• Q is a finite set of states.
• ⎡ is a finite set of the tape alphabet/symbols.
• b∈⎡ is the blank symbol (This is the only symbol that is allowed to occur infinitely

often on the tape during each step of the computation).
• Σ is the set of input symbols and is a subset of ⎡ (i.e., ⎡ = Σ ∪ {b}).
• δ: Q×⎡ →Q×⎡ × {L, R}5 is the transition function. This is a partial function

where L is left shift and R is right shift.
• q0 ∈Q is the initial state.
• F ⊆ Q is the set of final or accepting states.

The Turing machine is a simple machine that is equivalent to an actual physical
computer in the sense that it can compute exactly the same set of functions. It is much
easier to analyse and prove things about than a real computer, but it is not suitable
for programming and does not provide a good basis for studying programming and
programming languages.

Fig. 13.8 illustrates the behaviour when the machine is in state q1 and the
symbol under the tape head is a, where b is written to the tape and the tape head
moves to the left and the state changes to q2.

A Turing machine is essentially a finite-state machine (FSM) with an
unbounded tape. The tape is potentially infinite and unbounded, whereas real com-
puters have a large but finite store. The machine may read from and write to
the tape. The FSM is essentially the control unit of the machine, and the tape is

5 We may also allow no movement of the tape head to be represented by adding the symbol “N”
to the set.

13.6 Summary 227

Fig. 13.8 Transition on
turing machine q1 q2

a / b L

essentially the store. However, the store in a real computer may be extended with
backing tapes and discs and in a sense may be regarded as unbounded. However,
the maximum amount of tape that may be read or written within n steps is n.

A Turing machine has an associated set of rules that defines its behaviour. Its
actions are defined by the transition function. It may be programmed to solve any
problem for which there is an algorithm. However, if the problem is unsolvable
then the machine will either stop or compute forever. The solvability of a problem
may not be determined beforehand. There is, of course, some answer (i.e., either
the machine halts or it computes forever). The applications of the Turing machine
to computability and decidability are discussed in Chap. 14.

Turing also introduced the concept of a Universal Turing Machine, and
this machine is able to simulate any other Turing machine. For more detailed
information on automata theory see [1].

13.5 Review Questions

1. What is a finite-state machine?
2. Explain the difference between the deterministic and non-deterministic

finite-state machines.
3. Show how to convert the non-deterministic finite-state automaton in

Fig. 7.3 to a deterministic automaton.
4. What is a pushdown automaton?
5. What is a Turing machine?
6. Explain what is meant by the language accepted by an automaton.
7. Give an example of a language accepted by a pushdown automaton but

not by a finite-state machine.
8. Describe the applications of the Turing machine to computability and

decidability.

13.6 Summary

Automata theory is concerned with the study of abstract machines and automata.
These include finite-state machines, pushdown automata, and Turing machines.
Finite-state machines are abstract machines that may be in one of a finite num-
ber of states. These machines are in only one state at a time (current state), and
the state transition function determines the new state from the current state and

228 13 Automata Theory

the input symbol. Finite-state machines have limited computational power due to
memory and state constraints, but they have been applied to a number of fields
including communication protocols and linguistics.

Pushdown automata have greater computational power than finite-state
machines, and they contain extra memory in the form of a stack from which sym-
bols may be pushed or popped. The state transition is determined from the current
state of the machine, the input symbol, and the element on the top of the stack.
The action may be to change the state and/or push/pop an element from the stack.

The Turing machine is the most powerful model for computation, and it is
equivalent to an actual computer in the sense that it can compute exactly the same
set of functions. The Turing machine provides a mathematical abstraction of com-
puter execution and storage, as well as providing a mathematical definition of an
algorithm.

Reference

1. Hopcroft JE, Ullman, JD (1979) Introduction to automata theory, languages and computation.
Addison-Wesley, Boston

14Computability and Decidability

Key Topics

Computability

Completeness

Decidability

Formalism

Logicism

14.1 Introduction

It is impossible for a human or machine to write out all of the members of an
infinite countable set, such as the set of natural numbers N. However, humans can
do something quite useful in the case of certain enumerable infinite sets: they can
give explicit instructions (that may be followed by a machine or another human)
to produce the nth member of the set for an arbitrary finite n. The problem remains
that for all but a finite number of values of n it will be physically impossible for
any human or machine to actually carry out the computation, due to the limitations
on the time available for computation, the speed at which the individual steps in
the computation may be carried out, and due to finite materials.

The intuitive meaning of computability is in terms of an algorithm (or effec-
tive procedure) that specifies a set of instructions to be followed to complete the
task. Another words, a function f is computable if there exists an algorithm that
produces the value of f correctly for each possible argument of f . The compu-
tation of f for a particular argument x just involves following the instructions in
the algorithm, and it produces the result f (x) in a finite number of steps if x is in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_14

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_14&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_14

230 14 Computability and Decidability

the domain of f . If x is not in the domain of f then the algorithm may produce
an answer saying so or it might run forever never halting. A computer program
implements an algorithm.

The concept of computability may be made precise in several equivalent ways
such as Church’s lambda calculus, recursive function theory, or by the theoretical
Turing machines.1 These are all equivalent, and perhaps the most well known
is the Turing machine (discussed in Chap. 13). This is a mathematical machine
with a potentially infinite tape divided into frames (or cells) in which very basic
operations can be carried out. The set of functions that are computable are those
that are computable by a Turing machine.

Decidability is an important topic in contemporary mathematics. Church and
Turing independently showed in 1936 that mathematics is not decidable. In other
words, there is no mechanical procedure (i.e., algorithm) to determine whether
an arbitrary mathematical proposition is true or false, and so the only way to
determine the truth or falsity of a statement is try to solve the problem. That is,
it is impossible to of prove or disprove certain statements within a formal system,
and there is no a general method to solve all instances of a specific problem.

14.2 Logicism and Formalism

Gottlob Frege (Fig. 9.2) was a 19th-century German mathematician and logician
who invented a formal system which is the basis of modern predicate logic. It
included axioms, definitions, universal and existential quantification, and formal-
ization of proof. His objective was to show that mathematics was reducible to logic
(logicism) but his project failed, and one of the axioms that he had added to his
system led to inconsistency.

The inconsistency was pointed out by Bertrand Russell, and it is known as
Russell’s paradox.2 Russell later introduced his theory of types to deal with the
paradox, and he jointly published Principia Mathematica with Alfred North White-
head as an attempt to derive the truths of arithmetic from a set of logical axioms
and rules of inference.

The sentences of Frege’s logical system denote the truth-values of true or false.
The sentences may include expressions such as equality (x = y), and this returns
true if x is the same as y and false otherwise. Similarly, a more complex expression
such as f (x,y,z) = w is true if f (x,y,z) is identical with w and false otherwise. Frege
represented statements such as “5 is a prime” by “P(5)” where P() is termed a
concept. The statement P(x) returns true if x is prime and false otherwise. His
approach was to represent a predicate as a function of one variable which returns
a Boolean value of true or false.

1 The Church–Turing thesis states that anything that is computable is computable by a Turing
machine.
2 Russell’s paradox considers the question as to whether the set of all sets that contain themselves
as members is a set. In either case there is a contradiction.

14.2 Logicism and Formalism 231

Fig. 14.1 David Hilbert

Formalism was proposed by Hilbert (Fig. 14.1) as a foundation for mathemat-
ics in the early twentieth century. The motivation for the program was to provide
a secure foundations for mathematics and to resolve the contradictions in the
formalization of set theory identified by Russell’s paradox. The presence of a
contradiction in a theory means the collapse of the whole theory, and so it was
seen as essential that there be a proof of the consistency of the formal system.
The methods of proof in mathematics are formalized with axioms and rules of
inference.

Formalism is a formal system that contains meaningless symbols together with
rules for manipulating them. The individual formulae are certain finite sequences
of symbols obeying the syntactic rules of the formal language. A formal system
consists of:

• A formal language
• A set of axioms
• Rules of inference.

The expressions in a formal system are terms, and a term may be simple or com-
plex. A simple term may be an object such as a number, and a complex term may
be an arithmetic expression such as 43 + 1. A complex term is formed via func-
tions, and the expression above uses two functions, namely the cube function with
argument 4 and the plus function with two arguments.

A formal system is generally intended to represent some aspect of the real
world. A rule of inference relates a set of formulae (P1,P2,….Pk) called the
premises to the consequence formula P called the conclusion. For each rule of
inference there is a finite procedure for determining whether a given formula Q
is an immediate consequence of the rule from the given formulae (P1,P2,….Pk).
A proof in a formal system consists of a finite sequence of formulae, where each
formula is either an axiom or derived from one or more preceding formulae in the
sequence by one of the rules of inference.

Hilbert’s program was concerned with the formalization of mathematics (i.e.,
the axiomatization of mathematics) together with a proof that the axiomatization

232 14 Computability and Decidability

is consistent (i.e., there is no formula A such that both A and ¬A are deducible in
the calculus). Its specific objectives were to:

• Provide a formalism of mathematics.
• Show that the formalization of mathematics is complete: i.e., all mathematical

truths can be proved in the formal system.
• Provide a proof that the formal system is consistent (i.e., that no contradictions

may be derived).
• Show that mathematics is decidable: i.e., there is an algorithm to determine the

truth of falsity of any mathematical statement.

The formalist movement in mathematics led to the formalization of large parts
of mathematics, where theorems could be proved using just a few mechanical
rules. The two most comprehensive formal systems developed were Principia
Mathematica by Russell and Whitehead and the axiomatization of set theory by
Zermelo-Fraenkel (subsequently developed further by von Neumann).

Principia Mathematica is a comprehensive three-volume work on the logical
foundations of mathematics written by Bertrand Russel and Alfred Whitehead
between 1910 and 1913. Its goal was to show that all of the concepts of math-
ematics can be expressed in logic, and that all of the theorems of mathematics can
be proved using only the logical axioms and rules of inference of logic. It covered
set theory, ordinal numbers, and real numbers, and it showed that in principle that
large parts of mathematics could be developed using logicism.

It avoided the problems with contradictions that arose with Frege’s system by
introducing the theory of types in the system. The theory of types meant that
one could no longer speak of the set of all sets, as a set of elements is of a
different type from that of each of its elements, and so Russell’s paradox was
avoided. It remained an open question at the time as to whether the Principia was
consistent and complete. That is, is it possible to derive all the truths of arith-
metic in the system and is it possible to derive a contradiction from the Principia’s
axioms? However, it was clear from the three-volume work that the development
of mathematics using the approach of the Principia was extremely lengthy and
time-consuming.

14.3 Decidability

The question remained whether these axioms and rules of inference are sufficient
to decide any mathematical question that can be expressed in these systems. Hilbert
believed that every mathematical problem could be solved, and that the truth or
falsity of any mathematical proposition could be determined in a finite number of
steps. He outlined twenty-three key problems in 1900 that needed to be solved by
mathematicians in the twentieth century.

He believed that the formalism of mathematics would allow a mechanical pro-
cedure (or algorithm) to determine whether a particular statement was true or false.

14.3 Decidability 233

The problem of the decidability of mathematics is known as the decision problem
(Entscheidungsproblem).

The question of the decidability of mathematics had been considered by Leib-
nitz in the seventeenth century. He had constructed a mechanical calculating
machine and wondered if a machine could be built that could determine whether
particular mathematical statements are true or false.

Definition 14.1 (Decidability) Mathematics is decidable if the truth or falsity of any
mathematical proposition may be determined by an algorithm.

Church and Turing independently showed this to be impossible in 1936. Church
developed the lambda calculus in the 1930s as a tool to study computability,3 and
he showed that anything that is computable is computable by the lambda calculus.
Turing showed that decidability was related to the halting problem for Turing
machines, and that therefore if first-order logic were decidable then the halting
problem for Turing machines could be solved. However, he had already proved
that there was no general algorithm to determine whether a given Turing machine
halts. Therefore, first-order logic is undecidable.

The question as to whether a given Turing machine halts or not can be formu-
lated as a first-order statement. If a general decision procedure exists for first-order
logic, then the statement of whether a given Turing machine halts or not is within
the scope of the decision algorithm. However, Turing had already proved that the
halting problem for Turing machines is not computable: i.e., it is not possible algo-
rithmically to decide whether or not any given Turing machine will halt or not.
Therefore, since there is no general algorithm that can decide whether any given
Turing machine halts, there is no general decision procedure for first-order logic.
The only way to determine whether a statement is true or false is to try to solve
it. However, if one tries but does not succeed this does not prove that an answer
does not exist.

There are first-order theories that are decidable. However, first-order logic that
includes Peano’s axioms of arithmetic (or any formal system that includes addition
and multiplication) cannot be decided by an algorithm. That is, there is no algo-
rithm to determine whether an arbitrary mathematical proposition is true or false.
Propositional logic is decidable as there is a procedure (e.g., using a truth table)
to determine whether an arbitrary formula is valid4 in the calculus.

Gödel (Fig. 14.2) proved that first-order predicate calculus is complete; i.e., all
truths in the predicate calculus can be proved in the language of the calculus.

3 The Church–Turing thesis states that anytime that is computable is computable by lambda calcu-
lus or equivalently by a Turing machine.
4 A well-formed formula is valid if it follows from the axioms of first-order logic. A formula is
valid if and only if it is true in every interpretation of the formula in the model.

234 14 Computability and Decidability

Fig. 14.2 Kurt Gödel

Definition 14.2 (Completeness) A formal system is complete if all the truths in the
system can be derived from the axioms and rules of inference.

Gödel’s first incompleteness theorem showed that first-order arithmetic is incom-
plete; i.e., there are truths in first-order arithmetic that cannot be proved in the
language of the axiomatization of first-order arithmetic. Gödel’s second incom-
pleteness theorem showed that any formal system extending basic arithmetic
cannot prove its own consistency within the formal system.

Definition 14.3 (Consistency) A formal system is consistent if there is no formula
A such that A and ¬A are provable in the system (i.e., there are no contradictions in
the system).

14.4 Computability

Alonzo Church (Fig. 14.3) developed the lambda calculus in the mid-1930s, as
part of his work into the foundations of mathematics. Turing published a key
paper on computability in 1936, which introduced the theoretical machine known
as the Turing machine. This machine is computationally equivalent to the lambda
calculus and is capable of performing any conceivable mathematical problem that
has an algorithm.

Definition 14.4 (Algorithm) An algorithm (or effective procedure) is a finite set of
unambiguous instructions to perform a specific task.

A function is computable if there is an effective procedure or algorithm to
compute f for each value of its domain. The algorithm is finite in length and
sufficiently detailed so that a person can execute the instructions in the algorithm.
The execution of the algorithm will halt in a finite number of steps to produce the
value of f (x) for all x in the domain of f . However, if x is not in the domain of

14.4 Computability 235

Fig. 14.3 Alonzo Church

f then the algorithm may produce an answer saying so, or it may get stuck, or it
may run forever never halting.

The Church–Turing thesis states that any computable function may be computed
by a Turing machine. There is overwhelming evidence in support in support of
this thesis, including the fact that alternative formalizations of computability in
terms of lambda calculus, recursive function theory, and Post systems have all
been shown to be equivalent to Turing machines.

A Turing machine consists of a head and a potentially infinite tape that is
divided into cells. Each cell on the tape may be either blank or printed with a
symbol from a finite alphabet of symbols. The input tape may initially be blank or
have a finite number of cells containing symbols.

At any step, the head can read the contents of a frame. The head may erase
a symbol on the tape, leave it unchanged, or replace it with another symbol. It
may then move one position to the right, one position to the left, or not at all. If
the frame is blank, the head can either leave the frame blank or print one of the
symbols.

Turing believed that a human with finite equipment and with an unlimited
supply of paper could do every calculation. The unlimited supply of paper is
formalized in the Turing machine by a tape marked off in cells.

The Turing machine is a simple theoretical machine, but it is equivalent to an
actual physical computer in the sense that they both compute exactly the same set
of functions. A Turing machine is easier to analyse and prove things about than a
real computer. The formal definition of a Turing machine as a 7-tuple M = (Q, ⎡,
b, Σ, δ, q0, F) is given in Chap. 13.

A Turing machine is essentially a finite state machine (FSM) with an unbounded
tape. The machine may read from and write to the tape, and the tape provides
memory and acts as the store. The finite state machine is essentially the control

236 14 Computability and Decidability

unit of the machine, whereas the tape is a potentially infinite and unbounded store.
A real computer has a large but finite store, whereas the store in a Turing machine
is potentially infinite. However, the store in a real computer may be extended
with backing tapes and discs and in a sense may be regarded as unbounded. The
maximum amount of tape that may be read or written within n steps is n.

A Turing machine has an associated set of rules that defines its behaviour. These
rules are defined by the transition function that specify the actions that a machine
will perform with respect to a particular input. The behaviour will depend on the
current state of the machine and the contents of the tape.

A Turing machine may be programmed to solve any problem for which there is
an algorithm. However, if the problem is unsolvable then the machine will either
stop in a non-accepting state or compute forever. The solvability of a problem may
not be determined beforehand, but there is, of course, some answer (i.e., either the
machine either halts or computes forever).

Turing showed that there was no solution to the decision problem (Entschei-
dungsproblem) posed by Hilbert. Hilbert believed that the truth or falsity of a
mathematical problem may always be determined by a mechanical procedure, and
he believed that first-order logic is decidable: i.e., there is a decision procedure to
determine if an arbitrary formula is a theorem of the logical system.

Turing also introduced the concept of a Universal Turing Machine, and this
machine is able to simulate any other Turing machine. Turing’s results on com-
putability were proved independently of Church’s lambda calculus equivalent
results in computability. Turing’s studied at Princeton University in 1937 and 1938
and was awarded a PhD from the university in 1938. His research supervisor was
Alonzo Church.5

Question 14.1 (Halting Problem)
Given an arbitrary program is there an algorithm to decide whether the program will
finish running or will it continue running forever? Another words, given a program
and an input will the program eventually halt and produce an output or will it run
forever?

Note (Halting Problem)
The halting problem was one of the first problems that was shown to be undecidable:
i.e., there is no general decision procedure or algorithm that may be applied to an
arbitrary program and input to decide whether the program halts or not when run
with that input.

5 Alonzo Church was a famous American mathematician and logician who developed the lambda
calculus. He also showed that Peano arithmetic and first-order logic were undecidable. Lambda cal-
culus is equivalent to Turing machines and whatever may be computed is computable by Lambda
calculus or a Turing machine.

14.5 Computational Complexity 237

Proof We assume that there is an algorithm (i.e., a computable function H(i, j)) that
takes any program i (program i refers to the ith program in the enumeration of all
the programs) and arbitrary input j to the program such that:

H(i, j) =
{
1 If program i halts on input j .
0 otherwise

We then employ a diagonalization argument6 to show that every computable total
function f with two arguments differs from the desired functionH. First, we construct
a partial function g from any computable function f with two arguments such that g
is computable by some program e.

g(i) =
{
0 if f (i , i) = 0
undefined otherwise

There is a program e that computes g and this program is one of the programs
in which the halting problem is defined. One of the following two cases must hold:

g(e) = f (e, e) = 0 (14.1)

In this case H(e, e) = 1 because e halts on input e.

g(e) is undefined and f (e, e) /= 0. (14.2)

In this case H(e, e) = 0 because the program e does not halt on input e.
In either cases, f is not the same function as H. Further, since f was an arbi-

trary total computable function all such functions must differ from H. Hence, the
function H is not computable, and there is no such algorithm to determine whether
an arbitrary Turing machine halts for an input x. Therefore, the halting problem is
not decidable.

14.5 Computational Complexity

An algorithm is of little practical use if it takes millions of years to compute
particular instances. There is a need to consider the efficiency of the algorithm
due to practical considerations. Chapter 20 discusses cryptography and the RSA
algorithm, and the security of the RSA encryption algorithm is due to the fact that
there is no known efficient algorithm to determine the prime factors of a large
number.

6 This is similar to Cantor’s diagonalization argument that shows that the real numbers are uncount-
able. This argument assumes that it is possible to enumerate all real numbers between 0 and 1,
and it then constructs a number whose nth decimal differs from the nth decimal position in the nth
number in the enumeration. If this holds for all n then the newly defined number is not among the
enumerated numbers.

238 14 Computability and Decidability

There are often slow and fast algorithms for the same problem, and a measure
of complexity is the number of steps in a computation. An algorithm is of time
complexity f (n) if for all n and all inputs of length n the execution of the algorithm
takes at most f (n) steps.

An algorithm is said to be polynomially bounded if there is a polynomial p(n)
such that for all n and all inputs of length n the execution of the algorithm takes
at most p(n) steps. The notation P is used for all problems that can be solved in
polynomial time.

A problem is said to be computationally intractable if it may not be solved
in polynomial time—that is, there is no known algorithm to solve the problem in
polynomial time.

A problem L is said to be in the set NP (non-deterministic polynomial time
problems) if any given solution to L can be verified quickly in polynomial time. A
problem is NP complete if it is in the set NP of non-deterministic polynomial time
problems, and it is also in the class of NP hard problems. A key characteristic
to NP complete problems is that there is no known fast solution to them, and the
time required to solve the problem using known algorithms increases quickly as
the size of the problem grows. Often, the time required to solve the problem is in
billions or trillions of years. Although any given solution can be verified quickly
there is no known efficient way to find a solution.

14.6 Review Questions

1. Explain computability and decidability.
2. What were the goals of logicism and formalism and how successful were

these movement in mathematics?
3. What is a formal system?
4. Explain the difference among consistency, completeness, and decidability.
5. Describe a Turing machine and explain its significance in computability.
6. Describe the halting problem and show that it is undecidable.
7. Discuss the complexity of an algorithm and explain terms such as “poly-

nomial bounded”, “computationally intractable”, and “NP complete”.

14.7 Summary

This chapter provided an introduction to computability and decidability. The intu-
itive meaning of computability is that in terms of an algorithm (or effective
procedure) that specifies a set of instructions to be followed to solve the prob-
lem. Another words, a function f is computable if there exists an algorithm that
produces the value of f correctly for each possible argument of f . The computa-
tion of f for a particular argument x just involves following the instructions in the
algorithm, and it produces the result f (x) in a finite number of steps if x is in the
domain of f .

Reference 239

The concept of computability may be made precise in several equivalent ways
such as Church’s lambda calculus, recursive function theory, or by the theoretical
Turing machines. The Turing machine is a mathematical machine with a poten-
tially infinite tape divided into frames (or cells) in which very basic operations
can be carried out. The set of functions that are computable are those that are
computable by a Turing machine.

A formal system contains meaningless symbols together with rules for manip-
ulating them and is generally intended to represent some aspect of the real world.
The individual formulae are certain finite sequences of symbols obeying the syn-
tactic rules of the formal language. A formal system consists of a formal language,
a set of axioms, and rules of inference.

Church and Turing independently showed in 1936 that mathematics is not
decidable. In other words it is not possible to determine the truth or falsity of
any mathematical proposition by an algorithm.

Turing had already proved that the halting problem for Turing machines is not
computable: i.e., it is not possible algorithmically to decide whether a given Turing
machine will halt or not. He then applied this result to first-order logic to show
that it is undecidable. That is, the only way to determine whether a statement is
true or false is to try to solve it.

The complexity of an algorithm was discussed, and it was noted that an algo-
rithm is of little practical use if it takes millions of years to compute the solution.
There is a need to consider the efficiency of the algorithm due to practical con-
siderations. The class of polynomial time bound problems and non-deterministic
polynomial time problems were considered, and it was noted that the security of
various cryptographic algorithms is due to the fact that there are no time-efficient
algorithms to determine the prime factors of large integers.

The reader is referred to [1] for a more detailed account of decidability and
computability.

Reference

1. Rozenberg G, Salomaa A (1994) Cornerstones of undecideability. Prentice Hall

15Software Reliability
and Dependability

Key Topics

Software reliability

Software reliability model

System availability

Dependability

Computer Security

Safety critical systems

Cleanroom

15.1 Introduction

This chapter gives an introduction to the important area of software reliabil-
ity and dependability, and it discusses important topics in software engineering
such as software reliability; software availability; software reliability models;
the Cleanroom methodology; dependability and its various dimensions; security
engineering; and safety critical systems.

Software reliability is the probability that the program works without failure
for a period of time, and it is usually expressed as the mean time to failure. It
is different from hardware reliability, which is characterized by components that
physically wear out over time, whereas software is intangible and software failures
are due to design and implementation errors. In other words, software is either
correct or incorrect when it is designed and developed, and it does not physically
deteriorate with time.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_15

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_15&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_15

242 15 Software Reliability and Dependability

Harlan Mills and others at IBM developed the Cleanroom approach to soft-
ware development, and the process is described in [1]. It involves the application
of statistical techniques to calculate a software reliability measure based on the
expected usage of the software.1 This involves executing tests chosen from the
population of all possible uses of the software in accordance with the probability
of its expected use. Statistical usage testing has been shown to be more effective
in finding defects that lead to failure than coverage testing.

Models are simplifications of the reality, and a good model allows accurate
predictions of future behaviour to be made. A model is judged effective if there
is good empirical evidence to support it, and a good software reliability model
will have good theoretical foundations and realistic assumptions. The extent to
which the software reliability model can be trusted depends on the accuracy of its
predictions, and empirical data will need to be gathered to judge its accuracy. A
good software reliability model will give good predictions of the reliability of the
software.

It is essential that software that is widely used is dependable, which means that
the software is available whenever required, and that it operates safely and reliably
without any adverse side effects (e.g., the software problems with the Therac-
25 radiography machine led to several patients receiving massive overdoses in
radiation in the mid-1980s leading to serious injury and death of several patients
as discussed in [2]).

Today, billions of computers are connected to the Internet, and this has led to a
growth in attacks on computers. It is essential that computer security is carefully
considered, and developers need to be aware of the threats facing a system and
techniques to eliminate them. The developers need to be able to develop secure
systems that are able to deal with and recover from external attacks.

15.2 Software Reliability

The design and development of high-quality software has become increasingly
important for society. The hardware field has been very successful in developing
sound reliability models, which allow useful predictions of how long a hardware
component (or product) will function to be provided. This has led to a growing
interest in the software field in the development of a sound software reliability
model. Such a model would provide a sound mechanism to predict the reliability
of the software prior to its deployment at the customer site, as well as confidence
that the software is fit for purpose and safe to use.

Definition 15.1 (Software reliability) It is the probability that the program works
without failure for a specified length of time, and it is a statement of the future

1 The expected usage of the software (or operational profile) is a quantitative characterization
(usually based on probability) of how the system will be used.

15.2 Software Reliability 243

behaviour of the software. It is generally expressed in terms of the mean time to
failure (MTTF) or the mean time between failure (MTBF).

Statistical sampling techniques are often employed to predict the reliability
of hardware, as it is not feasible to test all items in a production environment.
The quality of the sample is then used to make inferences on the quality of the
entire population, and this approach is effective in manufacturing environments
where variations in the manufacturing process often lead to defects in the physical
products.

There are similarities and differences between hardware and software reliability.
A hardware failure generally arises due to a component wearing out due to its age,
and often a replacement component is required. Many hardware components are
expected to last for a certain period of time, and the variation in the failure rate of a
hardware component is often due to variations in the manufacturing process and to
the operating environment of the component. Good hardware reliability predictors
have been developed, and each hardware component has an expected mean time
to failure. The reliability of a product may then be determined from the reliability
of the individual components.

Software is an intellectual undertaking involving a team of designers and pro-
grammers. It does not physically wear out as such, and software failures manifest
themselves from particular user inputs. Each copy of the software code is identi-
cal, and the software code is either correct or incorrect. That is, software failures
are due to design and implementation errors, rather than to the software physically
wearing out over time. The software community has not yet developed a sound
software reliability predictor model.

The software population to be sampled consists of all possible execution paths
of the software, and since this is potentially infinite it is generally not possible to
perform exhaustive testing. The way in which the software is used (i.e., the inputs
entered by the users) will impact upon its perceived reliability. Let If represent the
fault set of inputs (i.e., if ∈ If and only if the input of if by the user leads to failure).
The randomness of the time to software failure is due to the unpredictability in the
selection of an input if ∈ If . It may be that the elements in If are inputs that are
rarely used, and therefore the software will be perceived as reliable.

Statistical usage testing may be used to make predictions on the future per-
formance and reliability of the software. This requires an understanding of the
expected usage profile of the system, as well as the population of all possible
usages of the software. The sampling is done in accordance with the expected
usage profile, and a software reliability measure is calculated.

15.2.1 Software Reliability and Defects

The release of an unreliable software product may result in damage to property
or injury (including loss of life) to a third party. Consequently, companies need to
be confident that their software products are fit for use prior to their release. The

244 15 Software Reliability and Dependability

Table 15.1 Adam’s 1984 study of software failures of IBM products

Rare Frequent

1 2 3 4 5 6 7 8

MTTF (years) 5000 1580 500 158 50 15.8 5 1.58

Avg % fixes 33.4 28.2 18.7 10.6 5.2 2.5 1.0 0.4

Prob failure 0.008 0.021 0.044 0.079 0.123 0.187 0.237 0.300

project team needs to conduct extensive inspections and testing of the software, as
well as considering all associated risks prior to its release.

Objective product quality criteria may be set (e.g., 100% of tests performed and
passed) that must be satisfied prior to the release of the product. This provides a
degree of confidence that the software has the desired quality, and is fit for purpose.
However, these results are historical in the sense that they are a statement of past
and present quality. The question is whether the past behaviour and performance
provide a sound indication of future behaviour.

Software reliability models are an attempt to predict the future reliability of the
software and to assist in deciding on whether the software is ready for release.
A defect does not always result in a failure, as it may occur on a rarely used
execution path. Studies indicate that many observed failures arise from a small
proportion of the existing defects.

Adam’s 1984 case study of defects in IBM software [3] indicates that over
33% of the defects led to an observed failure with mean time to failure greater
than 5000 years, whereas less than 2% of defects led to an observed failure with a
mean time to failure of less than five years. This suggests that a small proportion
of defects often lead to almost all of the observed failures (Table 15.1).

The analysis shows that 61.6% of all fixes (Group 1 and 2) were for failures
that will be observed less than once in 1580 years of expected use, and that these
constitute only 2.9% of the failures observed by typical users. On the other hand,
groups 7 and 8 constitute 53.7% of the failures observed by typical users and only
1.4% of fixes.

This case study indicates that coverage testing is not cost effective in increasing
MTTF. Usage testing, in contrast, would allocate 53.7% of the test effort to fixes
that will occur 53.7% of the time for a typical user. Harlan Mills has argued [4]
that the data in the table shows that usage testing is 21 times more effective than
coverage testing.

There is a need to be careful with reliability growth models, as there is no
tangible growth in reliability unless the corrected defects are likely to manifest
themselves as a failure.2 Many existing software reliability growth models assume
that all remaining defects in the software have an equal probability of failure and

2 We are assuming that the defect has been corrected perfectly with no new defects introduced by
the changes made.

15.2 Software Reliability 245

Table 15.2 New and old version of software

Similarities and differences between new/old version

• The new version of the software is identical to the previous version except that the identified
defects have been corrected

• The new version of the software is identical to the previous version, except that the identified
defects have been corrected, but the developers have introduced some new defects

• No assumptions can be made about the behaviour of the new version of the software until
further data is obtained

that the correction of a defect leads to an increase in software reliability. These
assumptions are questionable.

The defect count and defect density may be poor predictors of operational reli-
ability, and an emphasis on removing a large number of defects from the software
may not be sufficient to achieve high reliability.

The correction of defects in the software leads to a newer version of the soft-
ware, and many software reliability models assume reliability growth: i.e., the new
version is more reliable than the older version as several identified defects have
been corrected. However, in some sectors such as the safety critical field the view
is that the new version of a program is a new entity and that no inferences may
be drawn until further investigation has been done. There are a number of ways
to interpret the relationship between the new version of the software and the older
version (Table 15.2).

The safety critical industry (e.g., the nuclear power industry) takes the conser-
vative viewpoint that any change to a program creates a new program. The new
program is therefore required to demonstrate its reliability, and so extensive testing
needs to be performed.

15.2.2 Cleanroom Methodology

Harlan Mills and others at IBM developed the Cleanroom methodology as a way
to develop high-quality software [4]. Cleanroom helps to ensure that the software
is released only when it has achieved the desired quality level, and the probability
of zero defects is very high.

The way in which the software is used will impact on its perceived quality and
reliability. Failures will manifest themselves on certain input sequences, and as the
input sequences will vary among users, the result will be different perceptions of
the reliability of the software among the users. The knowledge of how the software
will be used allows the software testing to focus on verifying the correctness of
common everyday tasks carried out by users.

Therefore, it is important to determine the operational profile of the users to
enable effective software testing to be performed. This may be difficult to deter-
mine and could change over time, as users may potentially change their behaviour

246 15 Software Reliability and Dependability

as their needs evolve. The determination of the operational profile involves iden-
tifying the common operations to be performed, and the probability of each
operation being performed.

Cleanroom employs statistical usage testing rather than coverage testing, and
this involves executing tests chosen from the population of all possible uses of
the software in accordance with the probability of its expected use. The software
reliability measure is calculated by statistical techniques based on the expected
usage of the software, and Cleanroom provides a certified mean time to failure of
the software.

Coverage testing involves designing tests that cover every path through the pro-
gram, and this type of testing is as likely to find a rare execution failure as well as
a frequent execution failure. However, it is essential to find failures that occur on
frequently used parts of the system.

The advantage of usage testing (that matches the actual execution profile of the
software) is that it has a better chance of finding execution failures on frequently
used parts of the system. This helps to maximize the expected mean time to failure
of the software.

The Cleanroom software development process and calculation of the software
reliability measure are described in [1], and the Cleanroom development process
enables engineers to deliver high-quality software on time and on budget. Some of
the benefits of the use of Cleanroom on projects at IBM are described in [4] and
summarized in Table 15.3.

Table 15.3 Cleanroom
results in IBM

Project Results

Flight control project (1987)
33KLOC

Completed ahead of schedule
Error-fix effort reduced by
factor of five
2.5 errors KLOC before any
execution

Commercial product (1988) Deployment failures of
0.1/KLOC
Certification testing failures
3.4/KLOC
Productivity 740 LOC/month

Satellite control (1989) 80
KLOC
(Partial cleanroom)

50% improvement in quality
Certification testing failures of
3.3/KLOC
Productivity 780 LOC/month
80% improvement in
productivity

Research project (1990) 12
KLOC

Certified to 0.9978 with 989
test cases

15.2 Software Reliability 247

Table 15.4 Characteristics
of good software reliability
model

Characteristics of good software reliability model

Good theoretical foundation

Realistic assumptions

Good empirical support

As simple as possible (Ockham’s Razor)

Trustworthy and accurate

15.2.3 Software Reliability Models

Models are simplifications of the reality, and a good model allows accurate pre-
dictions of future behaviour to be made. It is important to determine the adequacy
of the model, and this is done by model exploration, and determining the extent
to which it explains the actual manifested behaviour, as well as the accuracy of its
predictions.

A model is judged effective if it has accurate predictions and has good empirical
evidence to support it, and more accurate models are sought to replace inadequate
models. Models are often modified (or replaced) over time, as further facts and
observations lead to aberrations that cannot be explained with the current model.
A good software reliability model will have the following characteristics (Table
15.4).

The underlying mathematics used in the calculation of software reliability (i.e.,
probability and statistics) is discussed in Chaps. 22 and 23. There are several
existing software reliability predictor models employed (Table 15.5) with vary-
ing degrees of success. Some of these models just compute defect counts rather
than estimating software reliability in terms of mean time to failure. They may be
categorized into:

• Size and Complexity Metrics
These are used to predict the number of defects that a system will reveal in

operation or testing.
• Operational Usage Profile

These predict failure rates based on the expected operational usage profile of
the system. The number of failures encountered is determined, and the software
reliability is predicted (e.g., Cleanroom and its prediction of the MTTF).

• Quality of the Development Process
These predict failure rates based on the process maturity of the software

development process in the organization (e.g., CMMI maturity).

The extent to which the software reliability model can be trusted depends on the
accuracy of its predictions, and empirical data will need to be gathered to make a
judgement. It may be acceptable to have a little inaccuracy during the early stages
of prediction, provided the predictions of operational reliability are close to the

248 15 Software Reliability and Dependability

Table 15.5 Software reliability models

Model Description Comments

Jelinski/Moranda model The failure rate is a Poisson
processa and is proportional to
the current defect content of
program. The initial defect
count is N; the initial failure
rate is Nϕ; it decreases to
(N−1)ϕ after the first fault is
detected and eliminated, and so
on. The constant ϕ is termed
the proportionality constant

Assumes defects are corrected
perfectly and no new defects are
introduced
Assumes each fault contributes
the same amount to failure rate

Littlewood/Verrall model Successive execution time
between failures is independent
exponentially distributed
random variables.b Software
failures are the result of the
particular inputs and faults
introduced from the correction
of defects

Does not assume perfect
correction of defects

Seeding and tagging This is analogous to estimating
the fish population of a lake
(Mills). A known number of
defects are inserted into a
software program, and the
proportion of these identified
during testing determined
Another approach (Hyman) is
to regard the defects found by
one tester as tagged, and then
to determine the proportion of
tagged defects found by a 2nd
independent tester

Estimate of the total number of
defects in the software but not a
not s/w reliability predictor
Assumes all faults equally likely
to be found and introduced
faults representative of existing

Generalized poisson model The number of failures
observed in ith time interval τ i
has a Poisson distribution with
mean φ(N−Mi-1) τ i α where N
is the initial number of faults;
Mi−1 is the total number of
faults removed up to the end of
the (i−1)th time interval; and φ
is the proportionality constant

Assumes faults are removed
perfectly at end of time interval

aThe Poisson process is a widely used counting process, and especially in counting the occurrence
of certain events that appear to happen at a certain rate but at random. A Poisson random variable
is of the form P{X = i} = e−λ λi / i!.
bThe exponential distribution is used to model the time between the occurrence of events in an
interval of time. The density function is given by f (x) = λe−λx.

15.3 Dependability 249

observations. A model that gives overly optimistic results is termed ‘optimistic’,
whereas a model that gives overly pessimistic results is termed ‘pessimistic’.

The assumptions in the reliability model need to be examined to determine
whether they are realistic. Several software reliability models have questionable
assumptions such as:

• All defects are corrected perfectly.
• Defects are independent of one another.
• Failure rate decreases as defects are corrected.
• Each fault contributes the same amount to the failure rate.

15.3 Dependability

Software is ubiquitous and is important to all sections of society, and so it is
essential that widely used software is dependable (or trustworthy). In other words,
the software should be available whenever required, as well as operating properly,
safely and reliably, without any adverse side effects or security concerns. It is
essential that the software used in systems in the safety critical and security critical
fields is dependable, as the consequence of failure (e.g., the failure of a nuclear
power plant) could be massive damage leading to loss of life or endangering the
lives of the public.

Dependability engineering is concerned with techniques to improve the depend-
ability of systems, and it involves the use of a rigorous design and development
process to minimize the number of defects in the software. A dependable sys-
tem is generally designed for fault tolerance, where the system can deal with (and
recover from) faults that occur during software execution. Such a system needs to
be secure and able to protect itself from accidental or deliberate external attacks.
Table 15.6 lists several dimensions of dependability.

Modern software systems are subject to attack by malicious software such as
viruses that change the behaviour of the software, or corrupt data causing the
system to become unreliable. Other malicious attacks include a denial-of-service
attack that negatively impacts the system’s availability.

Table 15.6 Dimensions of
dependability

Dimension Description

Availability System is available for use at any time

Reliability The system operates correctly and is trustworthy

Safety The system does not injure people or damage the
environment

Security The system prevents unauthorized intrusions

250 15 Software Reliability and Dependability

The design and development of dependable software needs to include protection
measures that protect against external attacks that could compromise the avail-
ability and security of the system. Further, a dependable system needs to include
recovery mechanisms to enable normal service to be restored as quickly as possible
following an attack.

Dependability engineering is concerned with techniques to improve the depend-
ability of systems, and in designing dependable systems. A dependable system
will generally be developed using an explicitly defined repeatable process, and it
may employ redundancy (spare capacity) and diversity (different types) to achieve
reliability.

There is a trade-off between dependability and the performance of the system,
as dependable systems often need to carry out extra checks to monitor them-
selves and to check for erroneous states, and to recover from faults before failure
occurs. This inevitably leads to increased costs in the design and development of
dependable systems.

Software availability is the percentage of the time that the software system is
running, and is a measure of the uptime/downtime of the software during a par-
ticular time period. The downtime refers to a period of time when the software is
unavailable for use (including planned and unplanned outages), and many compa-
nies aim to develop software that is available for use 99.999% of the time in the
year (i.e., a downtime of less than five minutes per annum). This goal is known as
five nines, and it is a common goal in the telecommunications sector.

Safety critical systems are systems where it is essential that the system is safe
for the public and that people or the environment are not harmed in the event of
system failure. These include aircraft control systems and process control systems
for chemical and nuclear power plants. The failure of a safety critical system could
in some situations lead to loss of life or serious economic damage.

Formal methods are discussed in Chap. 16, and they provide a precise way
of specifying the requirements of the proposed system, and demonstrating (using
mathematics) that key properties are satisfied in the formal specification. Further,
they may be used to show that the implemented program satisfies its specifica-
tion. The use of formal methods generally leads to increased confidence in the
correctness of safety critical and security critical systems.

The security of the system refers to its ability to protect itself from accidental
or deliberate external attacks, which are common today since most computers are
networked and connected to the Internet. There are various security threats in
any networked system including threats to the confidentiality and integrity of the
system and its data, and threats to the availability of the system.

Therefore, controls are required to enhance security and to ensure that attacks
are unsuccessful. Encryption is one way to reduce system vulnerability, as
encrypted data is unreadable to the attacker. There may be controls that detect
and repel attacks, and these controls are used to monitor the system and to take
action to shut down parts of the system or restrict access in the event of an attack.
There may be controls that limit exposure (e.g., insurance policies and automated
backup strategies) that allow recovery from the problems introduced.

15.4 Computer Security 251

It is important to have a reasonable level of security as otherwise all of the other
dimensions of dependability (reliability, availability, and safety) are compromised.
Security loopholes may be introduced in the development of the system, and so
care needs to be taken to prevent hackers from exploiting security vulnerabilities.

Risk analysis plays a key role in the specification of security and dependability
requirements, and this involves identifying risks that can result in serious incidents.
This leads to the generation of specific security requirements as part of the system
requirements to ensure that these risks do not materialize, or if they do materialize
then serious incidents will not materialize.

15.4 Computer Security

The introduction of the World Wide Web in the early 1990s transformed the world
of computing, and it led inexorably to more and more computers being connected
to the Internet. This has subsequently led to an explosive growth in attacks on
computers and systems, as hackers and malicious software seek to exploit known
security vulnerabilities. It is therefore essential to develop secure systems that can
deal with and recover from such external attacks.

Hackers will often attempt to steal confidential data and to disrupt the services
being offered by a system. Security engineering is concerned with the develop-
ment of systems that can prevent such malicious attacks and recover from them.
It has become an important part of software and system engineering, and software
developers need to be aware of the threats facing a system and develop solutions
to eliminate them.

Hackers may probe parts of the system for weaknesses, and system vulnera-
bilities may lead to attackers gaining unauthorized access to the system. There
is a need to conduct a risk assessment of the security threats facing a system
early in the software development process, and this will lead to several security
requirements for the system.

The system needs to be designed for security, as it is difficult to add security
after it has been implemented. Security loopholes may be introduced in the devel-
opment of the system, and so care needs to be taken to prevent these as well as
prevent hackers from exploiting security vulnerabilities. There may be controls
that detect and repel attacks, and these monitor the system and take appropriate
action to restrict access in the event of an attack.

The choice of architecture and how the system is organized are fundamental
to the security of the system, and different types of systems will require different
technical solutions to provide an acceptable level of security to its users. There
following guidelines for designing secure systems are described in [5]:

• Security decisions should be based on the security policy.
• A security critical system should fail securely.
• A secure system should be designed for recoverability.
• A balance is needed between security and usability.

252 15 Software Reliability and Dependability

• A single point of failure should be avoided.
• A log of user actions should be maintained.
• Redundancy and diversity should be employed.
• Organization information in system into compartments.

It is important to have a reasonable level of security, as otherwise all of the other
dimensions of dependability are compromised.

15.5 System Availability

System availability is the percentage of time that the software system is running
without downtime, and robust systems will generally aim to achieve 5-nines avail-
ability (i.e., 99.999% availability). This is equivalent to approximately five minutes
of downtime (including planned / unplanned outages) per year. The availability of
a system is measured by its performance when a subsystem fails, and its ability to
resume service in a state close to the original state. A fault-tolerant system contin-
ues to operate correctly (possibly at a reduced level) after some part of the system
fails, and it aims to achieve 100% availability.

System availability and software reliability are related, with availability measur-
ing the percentage of time that the system is operational, and reliability measuring
the probability of failure-free operation over a period of time. The consequence
of a system failure may be to freeze or crash the system, and system availability
is measured by how long it takes to recover and restart after a failure. A system
may be unreliable and yet have good availability metrics (fast restart after failure),
or it may be highly reliable with poor availability metrics (taking a long time to
recover after a failure).

Software that satisfies strict availability constraints is usually reliable. The
downtime generally includes the time needed for activities such as rebooting a
machine, upgrading to a new version of software, planned and unplanned outages.
It is theoretically possible for software to be highly unreliable but yet to have good
availability metrics or for software that is highly reliable to have poor availabil-
ity metrics. Consequently, care is required before drawing conclusions between
software reliability and software availability metrics.

15.6 Safety Critical Systems

A safety critical system is a system whose failure could result in significant eco-
nomic damage or loss of life. There are many examples of safety critical systems
including aircraft flight control systems and missile systems. It is therefore essen-
tial to employ rigorous processes in their design and development, and testing
alone is usually insufficient to verifying the correctness of a safety critical system.

15.7 Review Questions 253

The safety critical industry takes the view that any change to safety critical
software creates a new program. The new program is therefore required to demon-
strate that it is reliable and safe to the public, and so extensive testing needs to be
performed. Other techniques such as formal verification and model checking may
be employed to provide an extra level of assurance in the correctness of the safety
critical system.

Safety critical systems need to be dependable and available for use whenever
required. Safety critical software must operate correctly and reliably without any
adverse side effects. The consequence of failure (e.g., the failure of a weapons
system) could be massive damage, leading to loss of life or endangering the lives
of the public.

Safety critical systems are generally designed for fault tolerance, where the
system can deal with (and recover from) faults that occur during execution. Fault
tolerance is achieved by anticipating exceptional events and designing the system
to handle them. A fault-tolerant system is designed to fail safely, and programs are
designed to continue working (possibly at a reduced level of performance) rather
than crashing after the occurrence of an error or exception. Many fault-tolerant
systems mirror all operations, where each operation is performed on two or more
duplicate systems, and so if one fails then the other system can take over.

The development of a safety critical system needs to be rigorous, and subject to
strict quality assurance to ensure that the system is safe to use and that the public
will not be in danger. This involves rigorous design and development processes to
minimize the number of defects in the software, as well as comprehensive testing
to verify its correctness. Formal methods are often employed in the development
of safety critical systems (Chap. 16).

15.7 Review Questions

1. Explain the difference between software reliability and system availabil-
ity.

2. What is software dependability?
3. Explain the significance of Adam’s 1984 study of failures at IBM.
4. Describe the Cleanroom methodology.
5. Describe the characteristics of a good software reliability model.
6. Explain the relevance of security engineering.
7. What is a safety critical system?

254 15 Software Reliability and Dependability

15.8 Summary

This chapter gave an introduction to some important topics in software engineer-
ing including software reliability and the Cleanroom methodology; dependability;
availability; security; and safety critical systems.

Software reliability is the probability that the program works without failure for
a period of time, and it is usually expressed as the mean time to failure. Cleanroom
involves the application of statistical techniques to calculate software reliability,
and it is based on the expected usage of the software.

It is essential that software used in the safety and security critical fields is
dependable, with the software available when required, as well as operating safely
and reliably without any adverse side effects. Many of these systems are fault
tolerant and are designed to deal with (and recover) from faults that occur during
execution.

Such a system needs to be secure and able to protect itself from external attacks
and needs to include recovery mechanisms to enable normal service to be restored
as quickly as possible. In other words, it is essential that if the system fails then it
fails safely.

Today, billions of computers are connected to the Internet, and this has led to
a growth in attacks on computers. It is essential that developers are aware of the
threats facing a system and are familiar with techniques to eliminate them.

References

1. O’Regan G (2006) Mathematical approaches to software quality. Springer
2. O’Regan G (2022) Concise guide to software engineering, 2nd edn. Springer
3. Adams E (1984) Optimizing preventive service of software products. IBM Res J 28(1):2–14
4. Cobb RH, Mills HD (1990) Engineering software under statistical quality control. IEEE Soft-

ware
5. Sommerville I (2011) Software engineering, 9th edn. Pearson

16Overview of Formal Methods

Key Topics

Formal Specification

Vienna Development Method

Z Specification Language

B Method

Model-oriented approach

Axiomatic approach

Process Calculus

Refinement

Finite State Machines

Model Checking

Usability of Formal Methods

16.1 Introduction

The term “formal methods” refer to various mathematical techniques used for the
formal specification and development of software. They consist of a formal speci-
fication language and employ a collection of tools to support the syntax checking
of the specification, as well as the proof of properties of the specification. They
allow questions to be asked about what the system does independently of the
implementation.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_16

255

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_16

256 16 Overview of Formal Methods

The use of mathematical notation avoids speculation about the meaning of
phrases in an imprecisely worded natural language description of a system. Nat-
ural language is inherently ambiguous, whereas mathematics employs a precise
rigorous notation. Spivey [1] defines formal specification as:

Definition 16.1 (Formal Specification) Formal specification is the use of mathe-
matical notation to describe in a precise way the properties that an information
system must have, without unduly constraining the way in which these properties
are achieved.

The formal specification thus becomes the key reference point for the different
parties involved in the construction of the system. It may be used as the reference
point for the requirements, program implementation, testing, and program docu-
mentation. It thus promotes a common understanding for all those concerned with
the system. The term “formal methods” is used to describe a formal specification
language and a method for the design and implementation of a computer system.
Formal methods may be employed at a number of levels:

• Formal specification only (program developed informally)
• Formal specification, refinement, and verification (some proofs)
• Formal specification, refinement, and verification (with extensive theorem

proving).

The specification is written in a mathematical language, and the implementation
may be derived from the specification via stepwise refinement.1 The refinement
step makes the specification more concrete and closer to the actual implementation.
There is an associated proof obligation to demonstrate that the refinement is valid
and that the concrete state preserves the properties of the abstract state. Thus,
assuming that the original specification is correct and the proof of correctness of
each refinement step is valid, then there is a very high degree of confidence in the
correctness of the implemented software.

Stepwise refinement is illustrated as follows: the initial specification S is the
initial model M0; it is then refined into the more concrete model M1, and M1
is then refined into M2, and so on until the eventual implementation Mn = E is
produced.

S = M0 ⊑ M1 ⊑ M2 ⊑ M3 ⊑ . . . ⊑ Mn = E

1 It is questionable whether stepwise refinement is cost effective in mainstream software engi-
neering, as it involves rewriting a specification ad nauseum. It is time-consuming to proceed in
refinement steps with significant time also required to prove that the refinement step is valid. It is
more relevant to the safety critical field. Others in the formal methods field may disagree with this
position.

16.2 Why Should We Use Formal Methods? 257

Requirements are the foundation of the system to be built, and irrespective
of the best design and development practices, the product will be incorrect if
the requirements are incorrect. The objective of requirements validation is to
ensure that the requirements reflect what is actually required by the customer (in
order to build the right system). Formal methods may be employed to model the
requirements, and the model exploration yields further desirable or undesirable
properties.

Formal methods provide the facility to prove that certain properties are true
of the specification, and this is valuable, especially in safety critical and security
critical applications. The properties are a logical consequence of the mathemat-
ical definition, and the requirements may be amended where appropriate. Thus,
formal methods may be employed in a sense to debug the requirements during
requirements validation.

The use of formal methods generally leads to more robust software and
increased confidence in its correctness. Formal methods may be employed at dif-
ferent levels (e.g., just for specification with the program developed informally).
The challenges involved in the deployment of formal methods in an organiza-
tion include the education of staff in formal specification, as the use of these
mathematical techniques may be a culture shock to many staff.

Formal methods have been applied to a diverse range of applications, including
the safety and security critical fields to develop dependable software. The appli-
cations include the railway sector, microprocessor verification, the specification of
standards, and the specification and verification of programs. Parnas and others
have criticized formal methods (Table 16.1)

However, formal methods are potentially quite useful and reasonably easy to
use. The use of a formal method such as Z or VDM forces the software engineer
to be precise and helps to avoid ambiguities present in natural language. Clearly, a
formal specification should be subject to peer review to provide confidence in its
correctness. New formalisms need to be intuitive to be usable by practitioners, and
an advantage of the use of classical mathematics is that it is familiar to students.

16.2 Why Should We Use Formal Methods?

There is a strong motivation to use best practice in software engineering in order
to produce software adhering to high-quality standards. Quality problems with
software may cause minor irritations or major damage to a customer’s business
including loss of life. Formal methods are a leading-edge technology that may be
of benefit to companies in reducing the occurrence of defects in software products.
Brown [2] argues that for the safety critical field that:

Comment 16.1 (Missile Safety)
Missile systems must be presumed dangerous until shown to be safe and that the
absence of evidence for the existence of dangerous errors does not amount to evidence
for the absence of danger.

258 16 Overview of Formal Methods

Table 16.1 Criticisms of formal methods

No. Criticism

1 Often the formal specification is as difficult to read as the programa

2 Many formal specifications are wrongb

3 Formal methods are strong on syntax but provide little assistance in deciding on what
technical information should be recorded using the syntaxc

4 Formal specifications provide a model of the proposed system. However, a precise
unambiguous mathematical statement of the requirements is what is neededd

5 Stepwise refinement is unrealistice. It is like, for example, deriving a bridge from the
description of a river and the expected traffic on the bridge. There is always a need for
the creative step in design

6 Many unnecessary mathematical formalisms have been developed rather than using
the available classical mathematicsf

a Of course, others might reply by saying that some of Parnas’s tables are not exactly intuitive and
that the notation he employs in some of his tables is quite unfriendly. The usability of all of the
mathematical approaches needs to be enhanced if they are to be taken seriously by industrialists
b Obviously, the formal specification must be analysed using mathematical reasoning and tools to
provide confidence in its correctness. The validation of a formal specification can be carried out
using mathematical proof of key properties of the specification; software inspections; or specifica-
tion animation
c Approaches such as VDM include a method for software development as well as the specification
language
d Models are extremely valuable as they allow simplification of the reality. A mathematical study
of the model demonstrates whether it is a suitable representation of the system. Models allow
properties of the proposed requirements to be studied prior to implementation
e Stepwise refinement involves rewriting a specification with each refinement step producing a
more concrete specification (that includes code and formal specification) until eventually the
detailed code is produced. It is difficult and time-consuming but tool support may make refinement
easier
f Approaches such as VDM or Z are useful in that they add greater rigour to the software develop-
ment process. They are reasonably easy to learn, and there have been some good results obtained
by their use. Classical mathematics is familiar to students, and therefore it is desirable that new
formalisms are introduced only where absolutely necessary

This suggests that companies in the safety critical field will need to demonstrate
that every reasonable practice was taken to prevent the occurrence of defects. One
such practice is the use of formal methods, and its exclusion may need to be
justified in some domains. It is quite possible that a software company may be
sued for software which injures a third party, and this suggests that companies
will need a rigorous quality assurance system to prevent the occurrence of defects.

There is some evidence to suggest that the use of formal methods provides
savings in the cost of the project. For example, a 9% cost saving is attributed to
the use of formal methods during the CICS project; the T800 project attributes
a 12-month reduction in testing time to the use of formal methods. These are
discussed in more detail in chapter one of [3].

The use of formal methods is mandatory in certain circumstances. The Ministry
of Defence (MOD) in the United Kingdom issued two safety critical standards in

16.3 Industrial Applications of Formal Methods 259

the early 1990s related to the use of formal methods in the software development
lifecycle.

The first is Defence Standard 00-55, “The Procurement of safety critical software
in defense equipment” [4] which makes it mandatory to employ formal methods
in the development of safety critical software in the UK. The standard mandates
the use of formal proof that the most crucial programs correctly implement their
specifications.

The other is Def. Stan 00-56 “Hazard analysis and safety classification of the
computer and programmable electronic system elements of defense equipment” [5].
The objective of this standard is to provide guidance to identify which systems or
parts of systems being developed are safety critical and thereby require the use of
formal methods. This proposed system is subject to an initial hazard analysis to
determine whether there are safety critical parts.

The reaction to these defence standards 00-55 and 00-56 was quite hostile ini-
tially, as most suppliers were unlikely to meet the technical and organizational
requirements of the standard [6]. The U.K. Defence Standards 0055 and 0056
were later revised to be less prescriptive on the use of formal methods.

16.3 Industrial Applications of Formal Methods

Formal methods have been employed in several domains such as the transport
sector, the nuclear sector, the space sector, the defence sector, the semiconductor
sector, the financial sector, and the telecoms sector. The extent of the application
of formal methods has varied from formal specification only, to specification with
inspections, to proofs, to refinement, to test generation, and to model checking.
Formal methods are applicable to the regulated sector, and it has been applied to
real-time applications in the nuclear industry, the aerospace industry, the security
technology area, and the railroad domain. These sectors are subject to stringent
regulatory controls to ensure that safety and security are properly addressed.

Several organizations have piloted formal methods with varying degrees of suc-
cess. IBM developed the VDM specification language at its laboratory in Vienna,
and it piloted the Z and B formal specification languages on the CICS (Customer
Information Control System) project at its plant in Hursley, England.

The mathematical techniques developed by Parnas (i.e., his requirements model
and tabular expressions) were employed to specify the requirements of the A-7
aircraft (as part of a research project for the US Navy).2 Tabular expressions were
also employed for the software inspection of the automated shutdown software of

2 However, the resulting software was never actually deployed on the A-7 aircraft.

260 16 Overview of Formal Methods

the Darlington Nuclear power plant in Canada.3 These are two successful uses of
mathematical techniques in software engineering.

There are examples of the use of formal methods in the railway domain, with
GEC Alstom and RATP using B for the formal specification and verification of the
computerized signalling system on the Paris Metro. Several examples dealing with
the modelling and verification of a railroad gate controller and railway signalling
are described in [3]. Clearly, it is essential to verify safety critical properties such
as “when the train goes through the level crossing then the gate is closed”.

PVS is a mechanized environment for formal specification and verification,
and it was developed at SRI in California. It includes a specification language
integrated with support tools and an interactive theorem prover. The specifica-
tion language is based on higher-order logic, and the theorem prover is guided
by the user in conducting proof. It has been applied to the verification of hard-
ware and software, and PVS has been used for the formal specification and partial
verification of the micro-code of the AAMP5 microprocessor.

A selection of applications of formal methods to industry is presented in [8].

16.4 Industrial Tools for Formal Methods

Formal methods have been criticized for the limited availability of tools to support
the software engineer in writing the formal specification and in conducting proof.
Many of the early tools were criticized as not being of industrial strength. However,
in recent years more advanced tools have become available to support the software
engineer’s work in formal specification and formal proof, and this is likely to
continue in the coming years.

The tools include syntax checkers that determine whether the specification is
syntactically correct; specialized editors which ensure that the written specification
is syntactically correct; tools to support refinement; automated code generators
that generate a high-level language corresponding to the specification; theorem
provers to demonstrate the correctness of refinement steps and to identify and
resolve proof obligations, as well proving the presence or absence of key proper-
ties; and specification animation tools where the execution of the specification can
be simulated.

The B-Toolkit4 from B-Core is an integrated set of tools that supports the
B-Method. It provides functionality for syntax and type checking, specification
animation, proof obligation generator, an auto-prover, a proof assistor, and code
generation. This, in theory, allows the complete formal development from the ini-
tial specification to the final implementation, with every proof obligation justified,

3 This was an impressive use of mathematical techniques, and it has been acknowledged that formal
methods must play an important role in future developments at Darlington. However, given the
time and cost involved in the software inspection of the shutdown software some managers have
less enthusiasm in shifting from hardware to software controllers [7].
4 The source code for the B-Toolkit is now available.

16.5 Approaches to Formal Methods 261

leading to a provably correct program. There is also the Atelier B tool to support
formal specification and development in B.

The IFAD Toolbox5 is a support tool for the VDM-SL specification language,
and it provides support for syntax and type checking, an interpreter and debugger
to execute and debug the specification, and a code generator to convert from VDM-
SL to C++. The Overture Integrated Development Environment (IDE) is an open-
source tool for formal modelling and analysis of VDM-SL specifications.

There are various tools for model checking including Spin, Bandera, SMV, and
UppAal. These tools perform a systematic check on property P in all states and
are applicable if the system generates a finite behavioural model. Spin is an open-
source tool, and it checks finite-state systems with properties specified by linear
temporal logic. It generates a counterexample trace if determines that a property
is violated.

There are tools to support theorem provers (see Chap. 19) such as the Boyer-
Moore Theorem prover (NQTHM) which was developed at the University of Texas
in the late 1970s. It is far more automated than many other interactive theorem
provers, but it requires detailed human guidance (with suggested lemmas) for dif-
ficult proofs. The user therefore needs to understand the proof being sought and the
internals of the theorem prover. Many mathematical theorems have been proved
including Gödel’s incompleteness theorem.

The HOL system was developed at the University of Cambridge, and it is an
environment for interactive theorem proving in a higher-order logic. It requires
skilled human guidance and has been used for the verification of microprocessor
design. It is a widely used theorem prover.

16.5 Approaches to Formal Methods

There are two key approaches to formal methods: namely the model-oriented
approach of VDM or Z, and the algebraic or axiomatic approach of the pro-
cess calculi such as the calculus communicating systems (CCS) or communicating
sequential processes (CSP).

16.5.1 Model-Oriented Approach

The model-oriented approach to specification is based on mathematical models,
where a model is a simplification or abstraction of the real world that contains
only the essential details. For example, the model of an aircraft will not include
the colour of the aircraft, and the objective may be to model the aerodynamics

5 The IFAD Toolbox has been renamed to VDMTools as IFAD sold the VDM Tools to CSK in
Japan. The CSK VDM tools are available for worldwide use.

262 16 Overview of Formal Methods

of the aircraft. There are many models employed in the physical world, such as
meteorological models that allow weather forecasts to be made.

The importance of models is that they serve to explain the behaviour of a par-
ticular entity and may also be used to predict future behaviour. Different models
may vary in their ability to explain aspects of the entity under study. One model
may be good at explaining some aspects of the behaviour, whereas another model
might be good at explaining other aspects. The adequacy of a model is a key con-
cept in modelling and reflects the effectiveness of the model in representing the
underlying behaviour, and in its ability to predict future behaviour. Model explo-
ration consists of asking questions, and determining whether the model is able to
give an effective answer to the particular question. A good model is chosen as a
representation of the real world and is referred to whenever there are questions in
relation to the aspect of the real world.

It is fundamental to explore the model to determine its adequacy, and to deter-
mine the extent to which it explains the underlying physical behaviour, and allows
accurate predictions of future behaviour to be made. There may be more than one
possible model of a particular entity, for example, the Ptolemaic model and the
Copernican model are different models of the solar system. This leads to the ques-
tion as to which is the best or most appropriate model to use, and on the criteria
to use to determine the most suitable model. The ability of the model to explain
the behaviour, its simplicity, and its elegance will be part of the criteria. The prin-
ciple of “Ockham’s Razor” (law of parsimony) is often used in modelling, and it
suggests that the simplest model with the least number of assumptions required
should be selected.

The adequacy of the model will determine its acceptability as a representation
of the physical world. Models that are ineffective will be replaced with models that
offer a better explanation of the manifested physical behaviour. There are many
examples in science of the replacement of one theory by a newer one. For example,
the Copernican model of the universe replaced the older Ptolemaic model, and
Newtonian physics was replaced by Einstein’s theories of relativity. The structure
of the revolutions that take place in science is described in [9].

Modelling can play a key role in computer science, as computer systems tend to
be highly complex, whereas a model allows simplification or an abstraction of the
underlying complexity, and it enables a richer understanding of the underlying real-
ity to be gained. The model-oriented approach to software development involves
defining an abstract model of the proposed software system, and the model is then
explored to determine its suitability as a representation of the system. This takes
the form of model interrogation, i.e., asking questions, and determining the extent
to which the model can answer the questions. The modelling in formal methods
is typically performed via elementary discrete mathematics, including set theory,
sequences, functions, and relations.

Various models have been applied to assist with the complexities in software
development. These include the Capability Maturity Model (CMM), which is
employed as a framework to enhance the capability of the organization in software
development; UML, which has various graphical diagrams that are employed to
model the requirements and design; and mathematical models that are employed
for formal specification.

16.6 Proof and Formal Methods 263

VDM and Z are model-oriented approaches to formal methods. VDM arose
from work done at the IBM laboratory in Vienna in formalizing the semantics for
the PL/1 compiler in the early 1970s, and it was later applied to the specification
of software systems. The origin of the Z specification language is in work done at
Oxford University in the early 1980s.

16.5.2 Axiomatic Approach

The axiomatic approach focuses on the properties that the proposed system is
to satisfy, and there is no intention to produce an abstract model of the system.
The required properties and behaviour of the system are stated in mathematical
notation. The difference between the axiomatic specification and a model-based
approach may be seen in the example of a stack.

The stack includes operators for pushing an element onto the stack and popping
an element from the stack. The properties of pop and push are explicitly defined in
the axiomatic approach. The model-oriented approach constructs an explicit model
of the stack, and the operations are defined in terms of the effect that they have on
the model. The axiomatic specification of the pop operation on a stack is given by
properties, for example, pop(push(s, x)) = s.

Comment 16.2 (Axiomatic Approach)
The property-oriented approach has the advantage that the implementer is not con-
strained to a particular choice of implementation, and the only constraint is that the
implementation must satisfy the stipulated properties.

The emphasis is on specifying the required properties of the system, and
implementation issues are avoided. The properties are typically stated using mathe-
matical logic or higher-order logics. Mechanized theorem-proving techniques may
be employed to prove results.

One potential problem with the axiomatic approach is that the properties spec-
ified may not be satisfied in any implementation. Thus, whenever a “formal
axiomatic theory” is developed a corresponding “model” of the theory must be
identified, in order to ensure that the properties may be realized in practice. That
is, when proposing a system that is to satisfy some set of properties, there is a need
to prove that there is at least one system that will satisfy the set of properties.

16.6 Proof and Formal Methods

The nature of theorem proving is discussed in Chap. 19. A mathematical proof
typically includes natural language and mathematical symbols, and often many of
the tedious details of the proof are omitted. The proof may employ a “divide and
conquer” technique; i.e., breaking the conjecture down into sub-goals and then
attempting to prove each of the sub-goals.

264 16 Overview of Formal Methods

Many proofs in formal methods are concerned with crosschecking the details
of the specification, checking the validity of the refinement steps, or checking
that certain properties are satisfied by the specification. There are often many
tedious lemmas to be proved, and theorem provers6 play a key role in dealing
with them. Machine proof is explicit, and reliance on some brilliant insight is
avoided. Proofs by hand are notorious for containing errors or jumps in reasoning,
while machine proofs are explicit but are often extremely lengthy and unreadable.
The infamous machine proof of the correctness of the VIPER microprocessor7

consisted of several million formulae [6].
A formal mathematical proof consists of a sequence of formulae, where each

element is either an axiom or derived from a previous element in the series by
applying a fixed set of mechanical rules.

The application of formal methods in an industrial environment requires the
use of machine-assisted proof, since thousands of proof obligations arise from a
formal specification, and mechanized theorem provers are essential in resolving
these efficiently. Automated theorem proving is difficult, as often mathematicians
prove a theorem with an initial intuitive feeling that the theorem is true. Human
intervention to provide guidance or intuition improves the effectiveness of the
theorem prover.

The proof of various properties about a program increases confidence in its cor-
rectness. However, an absolute proof of correctness8 is unlikely except for the most
trivial of programs. A program may consist of legacy software that is assumed to
work; a compiler that is assumed to work correctly creates it. Theorem provers
are programs that are assumed to function correctly. The best that formal methods
can claim is increased confidence in correctness of the software, rather than an
absolute proof of correctness.

16.7 Debate on Formal Methods in Software Engineering

The debate concerning the level of use of formal methods in software engineer-
ing is still ongoing. Many practitioners are against the use of mathematics and
avoid its use. They argue that in the current competitive industrial environment
where time to market is a key driver that the use of such formal techniques would

6 Most existing theorem provers are difficult to use and are for specialist use only. There is a need
to improve the usability of theorem provers.
7 This verification was controversial with RSRE and Charter overselling VIPER as a chip design
that conforms to its formal specification.
8 This position is controversial with others arguing that if correctness is defined mathematically
then the mathematical definition (i.e., formal specification) is a theorem, and the task is to prove
that the program satisfies the theorem. They argue that the proofs for nontrivial programs exist and
that the reason why there are not many examples of such proofs is due to a lack of mathematical
specifications.

16.8 The Vienna Development Method 265

seriously impact the market opportunity. Industrialists often need to balance con-
flicting needs such as quality, cost, and delivering on time. They argue that the
commercial necessities require methodologies and techniques that allow them to
achieve their business goals effectively.

The other camp argues that the use of mathematics is essential in the delivery of
high-quality and reliable software and that if a company does not place sufficient
emphasis on quality it will pay the price in terms of poor quality and loss of
reputation.

It is unrealistic to expect companies to deploy formal methods unless they have
clear evidence that it will support them in delivering commercial products to the
marketplace ahead of their competition, at the right price and with the right quality.
Formal methods need to prove that it can do this if it wishes to be taken seriously
in mainstream software engineering.

16.8 The Vienna Development Method

VDM was developed by a research team at the IBM research laboratory in Vienna
in the early 1970s. This group9 was specifying the semantics of the PL/1 program-
ming language using an operational semantic approach. That is, the semantics of
the language were defined in terms of a hypothetical machine which interprets
the programs of that language [10, 11]. Later work led to the Vienna Development
Method (VDM) with its specification language, Meta IV. This was used to give the
denotational semantics of programming languages; i.e., a mathematical object (set,
function, etc.) is associated with each phrase of the language. The mathematical
object is termed the denotation of the phrase.

VDM is a model-oriented approach and this means that an explicit model of
the state of an abstract machine is given, and operations are defined in terms of
the state. Operations may act on the system state, taking inputs, and producing
outputs as well as a new system state. Operations are defined in a precondition and
postcondition style. Each operation has an associated proof obligation to ensure
that if the precondition is true, then the operation preserves the system invariant.
The initial state itself is, of course, required to satisfy the system invariant.

VDM uses keywords to distinguish different parts of the specification, e.g.,
preconditions, postconditions, as introduced by the keywords pre and post, respec-
tively. In keeping with the philosophy that formal methods specify what a system
does as distinct from how, VDM employs postconditions to stipulate the effect of
the operation on the state. The previous state is then distinguished by employing
hooked variables, e.g., v↼and the postcondition specifies the new state which is
defined by a logical predicate relating the pre-state to the poststate.

9 The IBM research laboratory was set up by Dr. Heinz Zamenek, and its members included Peter
Lucas, Cliff Jones, Dines Bjørner, and others.

266 16 Overview of Formal Methods

VDM is more than its specification language VDM-SL and is, in fact, a software
development method, with rules to verify the steps of development. The rules
enable the executable specification, i.e., the detailed code, to be obtained from the
initial specification via refinement steps. Thus, we have a sequence S = S0, S1,
…, Sn = E of specifications, where S is the initial specification, and E is the final
(executable) specification.

Retrieval functions enable a return from a more concrete specification to the
more abstract specification. The initial specification consists of an initial state, a
system state, and a set of operations. The system state is a particular domain, where
a domain is built out of primitive domains such as the set of natural numbers and
integers or constructed from primitive domains using domain constructors such as
Cartesian product and disjoint union. A domain-invariant predicate may further
constrain the domain, and a type in VDM reflects a domain obtained in this way.
Thus, a type in VDM is more specific than the signature of the type and thus
represents values in the domain defined by the signature, which satisfy the domain
invariant. In view of this approach to types, it is clear that VDM types may not be
“statically type checked”.

VDM specifications are structured into modules, with a module containing the
module name, parameters, types, operations, etc. Partial functions occur frequently
in computer science as many functions, may be undefined, or fail to terminate for
some arguments in their domain. VDM addresses partial functions by employing
non-standard logical operators, namely the logic of partial functions (LPFs), which
was discussed in Chap. 11.

VDM has been used in industrial projects, and its tool support includes the
IFAD Toolbox.10 VDM is described in more detail in [12]. There are several vari-
ants of VDM, including VDM++, the object-oriented extension of VDM, and the
Irish school of the VDM, which is discussed in the next section.

16.9 VDM♣, the Irish School of VDM

The Irish School of VDM is a variant of standard VDM and is characterized by
its constructive approach, classical mathematical style, and its terse notation [13].
This method aims to combine the what and how of formal methods in that its
terse specification style stipulates in concise form what the system should do;
furthermore, the fact that its specifications are constructive (or functional) means
that the how is included with the what.

However, it is important to qualify this by stating that the how as presented by
VDM♣ is not directly executable, as several of its mathematical data types have
no corresponding structure in high-level programming languages or functional lan-
guages. Thus, a conversion or reification of the specification into a functional

10 The VDM Tools are now available from the CSK Group in Japan.

16.10 The Z Specification Language 267

or higher-level language must take place to ensure a successful execution. Fur-
ther, the fact that a specification is constructive is no guarantee that it is a good
implementation strategy, if the construction itself is naive.

The Irish school follows a similar development methodology as in standard
VDM, and it is a model-oriented approach. The initial specification is pre-
sented, with the initial state and operations defined. The operations are presented
with preconditions; however, no postcondition is necessary as the operation is
“functionally” (i.e., explicitly) constructed.

There are proof obligations to demonstrate that the operations preserve the
invariant. That is, if the precondition for the operation is true, and the operation
is performed, then the system invariant remains true after the operation. The phi-
losophy is to exhibit existence constructively rather than providing a theoretical
proof of existence that demonstrates the existence of a solution without presenting
an algorithm to construct the solution.

The school avoids the existential quantifier of predicate calculus, and reliance
on logic in proof is kept to a minimum, with emphasis instead placed on equational
reasoning. Structures with nice algebraic properties are sought, and one nice alge-
braic structure employed is the monoid, which has closure, associative, and a unit
element. The concept of isomorphism is powerful, reflecting that two structures
are essentially identical, and thus we may choose to work with either, depending
on which is more convenient for the task in hand.

The school has been influenced by the work of Polya and Lakatos. The for-
mer [14] advocated a style of problem-solving characterized by first considering
an easier sub-problem and considering several examples. This generally leads to
a clearer insight into solving the main problem. Lakatos’s approach to mathemat-
ical discovery [15] is characterized by heuristic methods. A primitive conjecture
is proposed and if global counterexamples to the statement of the conjecture are
discovered, then the corresponding hidden lemma for which this global counterex-
ample is a local counterexample is identified and added to the statement of the
primitive conjecture. The process repeats, until no more global counterexamples
are found. A sceptical view of absolute truth or certainty is inherent in this.

Partial functions are the norm in VDM♣, and as in standard VDM, the problem
is that functions may be undefined or fail to terminate for several of the argu-
ments in their domain. The logic of partial functions (LPFs) is avoided, and instead
care is taken with recursive definitions to ensure termination is achieved for each
argument. Academic and industrial projects have been conducted using VDM, but
tool support is limited. The Irish School of VDM is discussed in more detail in
[ORg17b].

16.10 The Z Specification Language

Z is a formal specification language founded on Zermelo set theory, and it was
developed by Abrial at Oxford University in the early 1980s. It is used for the
formal specification of software and is a model-oriented approach. An explicit

268 16 Overview of Formal Methods

model of the state of an abstract machine is given, and the operations are defined
in terms of the effect on the state. It includes a mathematical notation that is similar
to VDM and the visually striking schema calculus. The latter consists essentially
of boxes (or schemas), and these are used to describe operations and states. The
schema calculus enables schemas to be used as building blocks and combined with
other schemas. The Z specification language was published as an ISO standard
(ISO/IEC 13568:2002) in 2002.

The schema calculus is a powerful means of decomposing a specification into
smaller pieces or schemas. This helps to make Z specification highly readable, as
each individual schema is small in size and self-contained. Exception handling is
done by defining schemas for the exception cases, and these are then combined
with the original operation schema. Mathematical data types are used to model the
data in a system, and these data types obey mathematical laws. These laws enable
simplification of expressions and are useful with proofs.

Operations are defined in a precondition/postcondition style. However, the pre-
condition is implicitly defined within the operation; i.e., it is not separated out as
in standard VDM. Each operation has an associated proof obligation to ensure that
if the precondition is true, then the operation preserves the system invariant. The
initial state itself is, of course, required to satisfy the system invariant. Postcon-
ditions employ a logical predicate which relates the pre-state to the poststate, and
the poststate of a variable v is given by priming, e.g., v,. Various conventions are
employed, e.g., v? indicates that v is an input variable and v! indicates that v is an
output variable. The symbol Op operation indicates that this operation does not
affect the state, whereas Δ Op indicates that this operation affects the state.

Many data types employed in Z have no counterpart in standard program-
ming languages. It is therefore important to identify and describe the concrete
data structures that will ultimately represent the abstract mathematical structures.
The operations on the abstract data structures may need to be refined to yield
operations on the concrete data structure that yield equivalent results. For simple
systems, direct refinement (i.e., one step from abstract specification to implementa-
tion) may be possible; in more complex systems, deferred refinement is employed,
where a sequence of increasingly concrete specifications is produced to eventually
yield the executable specification.

Z has been successfully applied in industry, and one of its well-known successes
is the CICS project at IBM Hursley in England. Z is described in more detail in
Chap. 17.

16.11 The B-Method

The B-Technologies [16] consist of three components: a method for software devel-
opment, namely the B-Method; a supporting set of tools, namely the B-Toolkit; and
a generic program for symbol manipulation, namely the B-Tool (from which the
B-Toolkit is derived). The B-Method is a model-oriented approach and is closely

16.12 Predicate Transformers and Weakest Preconditions 269

related to the Z specification language. Abrial developed the B specification lan-
guage, and every construct in the language has a set theoretic counterpart, and
the method is founded on Zermelo set theory. Each operation has an explicit
precondition.

A key role of the abstract machine in the B-Method is to provide encapsulation
of variables representing the state of the machine and operations that manipulate
the state. Machines may refer to other machines, and a machine may be intro-
duced as a refinement of another machine. The abstract machines are specification
machines, refinement machines, or implementable machines. The B-Method adopts
a layered approach to design where the design is gradually made more concrete by
a sequence of design layers. Each design layer is a refinement that involves a more
detailed implementation in terms of the abstract machines of the previous layer.
The design refinement ends when the final layer is implemented purely in terms
of library machines. Any refinement of a machine by another has associated proof
obligations, and proof is required to verify the validity of the refinement step.

Specification animation of the Abstract Machine Notation (AMN) specifica-
tion is possible with the B-Toolkit, and this enables typical usage scenarios to be
explored for requirements validation. This is, in effect, an early form of testing,
and it may be used to demonstrate the presence or absence of desirable or unde-
sirable behaviour. Verification takes the form of a proof to demonstrate that the
invariant is preserved when the operation is executed within its precondition, and
this is performed on the AMN specification with the B-Toolkit.

The B-Toolkit provides several tools that support the B-Method, and these
include syntax and type checking; specification animation, proof obligation gener-
ator, auto-prover, proof assistor, and code generation. Thus, in theory, a complete
formal development from initial specification to final implementation may be
achieved, with every proof obligation justified, leading to a provably correct
program.

The B-Method and toolkit have been successfully applied in industrial applica-
tions, including the CICS project at IBM Hursley in the United Kingdom [17]. The
automated support provided has been cited as a major benefit of the application of
the B-Method and the B-Toolkit.

16.12 Predicate Transformers and Weakest Preconditions

The precondition of a program S is a predicate, i.e., a statement that may be true
or false, and it is usually required to prove that if the precondition Q is true then
execution of S is guaranteed to terminate in a finite amount of time in a state
satisfying R. This is written as {Q} S {R}.

The weakest precondition of a command S with respect to a postcondition R
[18] represents the set of all states such that if execution begins in any one of these
states, then execution will terminate in a finite amount of time in a state with R
true. These set of states may be represented by a predicate Q’, so that wp(S,R) =
wpS (R) = Q’, and so wpS is a predicate transformer: i.e., it may be regarded as

270 16 Overview of Formal Methods

a function on predicates. The weakest precondition is the precondition that places
the fewest constraints on the state than all of the other preconditions of (S,R). That
is, all of the other preconditions are stronger than the weakest precondition.

The notation Q{S}R is used to denote partial correctness and indicates that if
execution of S commences in any state satisfying Q, and if execution terminates,
then the final state will satisfy R. Often, a predicate Q which is stronger than the
weakest precondition wp(S, R) is employed, especially where the calculation of
the weakest precondition is non-trivial. Thus, a stronger predicate Q such that Q
⇒ wp(S,R) is often employed.

There are many properties associated with the weakest preconditions, and these
may be used to simplify expressions involving weakest preconditions, and in
determining the weakest preconditions of various program commands such as
assignments and iterations. Weakest preconditions may be used in developing a
proof of correctness of a program in parallel with its development [19].

An imperative program may be regarded as a predicate transformer. This is
since a predicate P characterizes the set of states in which the predicate P is
true, and an imperative program may be regarded as a binary relation on states,
which leads to the Hoare triple P{F}Q. That is, the program F acts as a predicate
transformer with the predicate P regarded as an input assertion, i.e., a Boolean
expression that must be true before the program F is executed, and the predicate
Q is the output assertion, which is true if the program F terminates (where F
commenced in a state satisfying P).

16.13 The Process Calculi

The objectives of the process calculi [20] are to provide mathematical models
which provide insight into the diverse issues involved in the specification, design,
and implementation of computer systems which continuously act and interact
with their environment. These systems may be decomposed into sub-systems that
interact with each other and their environment.

The basic building block is the process, which is a mathematical abstraction of
the interactions between a system and its environment. A process that lasts indef-
initely may be specified recursively. Processes may be assembled into systems;
they may execute concurrently or communicate with each other. Process commu-
nication may be synchronized, and this takes the form of one process outputting
a message simultaneously to another process inputting a message. Resources may
be shared among several processes. Process calculi such as CSP [20] and CCS
[21] have been developed and they enrich the understanding of communication
and concurrency, and they obey several mathematical laws.

The expression (a ? P) in CSP describes a process which first engages in event
a, and then behaves as process P. A recursive definition is written as (μX)•F(X)
and an example of a simple chocolate vending machine is:

VMS = μX : {coin, choc} • (coin ? (choc ? X))

16.14 Finite-State Machines 271

The simple vending machine has an alphabet of two symbols, namely coin and
choc. The behaviour of the machine is that a coin is entered into the machine, and
then a chocolate is selected and provided, and the machine is ready for further use.
CSP processes use channels to communicate values with their environment, and
input on channel c is denoted by (c?.x Px). This describes a process that accepts
any value x on channel c and then behaves as process Px. In contrast, (c!e P)
defines a process which outputs the expression e on channel c and then behaves
as process P.

The π-calculus is a process calculus based on names. Communication between
processes takes place between known channels, and the name of a channel may
be passed over a channel. There is no distinction between channel names and data
values in the π-calculus. The output of a value v on channel a is given by āv; i.e.,
output is a negative prefix. Input on a channel a is given by a(x) and is a positive
prefix. Private links or restrictions are denoted by (x)P.

16.14 Finite-State Machines

Warren McCulloch and Walter Pitts published early work on finite-state automata
in 1943. Moore and Mealy developed this work further, and these machines are
referred to as the “Moore machine” and the “Mealy machine”.

A finite-state machine (FSM) is an abstract mathematical machine that consists
of a finite number of states. It includes a start state q0 in which the machine is in
initially; a finite set of states Q; an input alphabet Σ; a state transition function δ;
and a set of final accepting states F (where F ⊆ , Q).

The state transition function takes the current state and an input and returns the
next state. It provides rules that define the action of the machine for each input, and
it may be extended to provide output as well as a state transition. State diagrams
are used to represent finite-state machines, and each state accepts a finite number
of inputs.

A deterministic machine changes to exactly one state for each input transition,
whereas a non-deterministic machine may have a choice of states to move to for a
particular input.

Finite-state automata compute very primitive functions and are not an ade-
quate model for computing. There are more powerful automata such as the Turing
machine that is essentially a finite automaton with an infinite storage (memory).
Anything that is computable is computable by a Turing machine. The Turing
machine provides a mathematical abstraction of computer execution and storage,
as well as providing a mathematical definition of an algorithm. Automata theory
was discussed in Chap. 13.

272 16 Overview of Formal Methods

Table 16.2 Parnas’s contributions to software engineering

Area Contribution

Tabular expressions These are mathematical tables for specifying requirements and
enable complex predicate logic expressions to be represented in
a simpler form

Mathematical documentation He advocates the use of precise mathematical documentation for
requirements and design

Requirements specification He advocates the use of mathematical relations to specify the
requirements precisely

Software design He developed information hiding that is used in object-oriented
designa and allows software to be designed for change

Software inspections His approach requires the reviewers to take an active part in the
inspection. They are provided with a list of questions by the
author and their analysis involves the production of
mathematical table to justify the answers

Predicate logic He developed an extension of the predicate calculus to deal with
partial functions, and it preserves the classical two-valued logic
when dealing with undefined values

a It is surprising that many in the object-oriented world seem unaware that information hiding goes
back to the early 1970s and many have never heard of Parnas.

16.15 The Parnas Way

Parnas has been influential in the computing field, and his ideas on the spec-
ification, design, implementation, maintenance, and documentation of computer
software remain important. He advocates a solid engineering approach and argues
that the role of the engineer is to apply scientific principles and mathematics to
design and develop products. He argues that computer scientists need to be edu-
cated as engineers to ensure that they have the appropriate background to build
software correctly.

His tabular expressions were used for the specification of the requirements of
the A-7 aircraft for the US Navy, and his mathematical inspections were used to
verify the correctness of the shutdown software at the Darlington Nuclear power
plant in Canada. His contributions to software engineering include (Table 16.2).

16.16 Model Checking

Model checking is an automated technique such that given a finite-state model of a
system and a formal property, (expressed in temporal logic) then it systematically
checks whether the property is true or false in a given state in the model. It is an
effective technique to identify potential design errors, and it increases the confi-
dence in the correctness of the system design. Model checking is a highly effective
verification technology and is widely used in the hardware and software fields. It

16.17 Usability of Formal Methods 273

has been employed in the verification of microprocessors; in security protocols; in
the transportation sector (trains); and in the verification of software in the space
sector.

Model checking is a formal verification technique based on graph algorithms
and formal logic. It allows the desired behaviour (specification) of a system to be
verified, and its approach is to employ a suitable model of the system and to carry
out a systematic and exhaustive inspection of all states of the model to verify that
the desired properties are satisfied. These properties are generally safety proper-
ties such as the absence of deadlock, request-response properties, and invariants.
Its systematic search determines whether a given system model truly satisfies a
particular property or not. Model checking is discussed in more detail in Chap. 18.

16.17 Usability of Formal Methods

There are practical difficulties associated with the industrial use of formal methods.
It seems to be assumed that programmers and customers are willing to become
familiar with the mathematics used in formal methods, but this is true in only
some domains.11 It is usually possible to get a developer to learn a formal method,
as a programmer has some experience of mathematics and logic. However, it is
more difficult to get a customer to learn a formal method, and this makes it more
difficult to perform a rigorous validation of the formal specification.

This often means that often a formal specification of the requirements and an
informal definition of the requirements using a natural language are maintained. It
is essential that both of these are consistent and that there is a rigorous validation
of the formal specification. Otherwise, if the programmer proves the correctness
of the code with respect to the formal specification, and the formal specification
is incorrect, then the formal development of the software will be incorrect. There
are several techniques to validate a formal specification including:

• Proof that the formal specification satisfies key properties
• Software inspections to compare formal specification and informal set of

requirements
• Specification animation to validate the formal specification.

Formal methods are perceived as being difficult to use, and of providing lim-
ited value in mainstream software engineering. Programmers receive education in
mathematics as part of their studies, but many never use formal methods again
once they take an industrial position. Some of the reasons for this are:

11 The domain in which the software is being used will influence the willingness or otherwise of
the customers to become familiar with the mathematics required. There appears to be little inter-
est in mainstream software engineering, and their perception is that formal methods are unusable.
However, there is a greater interest in the mathematical approach in the safety critical field.

274 16 Overview of Formal Methods

• The notation is not intuitive.
• It is difficult to write a formal specification.
• Validation of a formal specification is difficult.
• Refinement and proof are difficult.
• Limited tool support.

It is important to investigate ways by which formal methods can be made more
usable to software engineers and to design more usable notations and better tools
to support the process. Practical training and coaching to employees can help.
Some of the characteristics of a usable formal method are:

• A formal method should be intuitive.
• It should have tool support.
• A formal method should be teachable.
• It should be able to adapt to change.
• The technology transfer path should be defined.
• A formal method should be cost-effective.

16.18 Review Questions

1. What are formal methods and describe their potential benefits? How
essential is tool support?

2. What is stepwise refinement and how realistic is it in mainstream
software engineering?

3. Discuss Parnas’s criticisms of formal methods and discuss whether his
views are valid.

4. Discuss the industrial applications of formal methods and which areas
have benefited most from their use? What problems have arisen?

5. Describe a technology transfer path for the deployment of formal
methods in an organization.

6. Explain the difference between the model-oriented approach and the
axiomatic approach.

7. Discuss the nature of proof in formal methods and tools to support proof.
8. Discuss the Vienna Development Method and explain the difference

between standard VDM and VDM♣.
9. Discuss Z and B. Describe the tools in the B-Toolkit.
10. Discuss process calculi such as CSP, CCS, or π–calculus.

References 275

16.19 Summary

Formal methods provide a mathematical approach to the development of high-
quality software. They consist of a formal specification language; a methodology
for formal software development; and a set of tools to support the syntax checking
of the specification, as well as the proof of properties of the specification.

The model-oriented approach includes formal methods such as VDM, Z, and
B, and the axiomatic approach includes the process calculi such as CSP, CCS, and
the π calculus. VDM was developed at the IBM lab in Vienna and has been used
in academia and industry.

Formal methods allow questions to be asked and answered about what the
system does independently of the implementation. They offer a way to debug
the requirements and to show that certain desirable properties are true of the
specification, whereas certain undesirable properties are absent.

The use of formal methods generally leads to increased confidence in its cor-
rectness. There are challenges involved in the deployment of formal methods, as
mathematical techniques may be a culture shock to staff. The usability of existing
formal methods was considered, and reasons for their perceived difficulty were
considered. The characteristics of a usable formal method were explored.

There are various tools to support formal methods including syntax checkers;
specialized editors; tools to support refinement; automated code generators to gen-
erate a high-level language corresponding to the specification; theorem provers;
and specification animation tools for simulation of the specification.

References

1. Spivey JM (1992) The Z notation. A reference manual. Prentice Hall International Series in
Computer Science

2. Brown (1990) Rational for the development of the U.K. defence standards for safety critical
software. Compass Conference

3. Hinchey M, Bowen J (eds) (1995) Applications of formal methods. Prentice Hall International
Series in Computer Science

4. Ministry of Defence (1991) 00-55 (Part 1)/Issue 1 The procurement of safety critical software
in defence equipment. Part 1: requirements. Interim Defence Standard. UK

5. Ministry of Defence (1991) 00-55 (Part 2)/Issue 1 The procurement of safety critical software
in defence equipment. Part 2: guidance. Interim Defence Standard. UK

6. Tierney M (1991) The evolution of Def Stan 00-55 and 00-56. In: An intensification of the for-
mal methods debate in the UK. Research Centre for Social Sciences. University of Edinburgh

7. Gerhart S, Craigen D, Ralston T. (1994). Experience with formal methods in critical systems.
IEEE Softw

8. Woodcock J, Larsen PG, Bicarregui J, Fitzgerald J (2009) Formal methods: practice and
experience. ACM Comput Surv

9. Kuhn T (1970) The structure of scientific revolutions. University of Chicago Press
10. Bjørner D, Jones C (1978) The vienna development method. The meta language. In: Lecture

notes in computer science, vol 61. Springer
11. Bjørner D, Jones C (1982) Formal specification and software development. Prentice Hall

International Series in Computer Science

276 16 Overview of Formal Methods

12. O’Regan G (2017) Concise guide to formal methods. Springer
13. Mac An Airchinnigh M (1990) Computation models and computing. PhD Thesis. Department

of Computer Science. Trinity College Dublin
14. Polya G (1957) How to solve it. A new aspect of mathematical method. Princeton University

Press
15. Lakatos I (1976) Proof and refutations. The logic of mathematical discovery. Cambridge Uni-

versity Press
16. McDonnell E (1994) MSc. Thesis. Department of Computer Science. Trinity College Dublin
17. Hoare JP (1995) Application of the B method to CICS. Appl Formal Methods. Prentice Hall

International Series in Computer Science
18. Gries D (1981) The science of programming. Springer, Berlin
19. O’Regan G (2006) Mathematical approaches to software quality. Springer
20. Hoare CAR (1985) Communicating sequential processes. Prentice Hall International Series in

Computer Science
21. Robin Milner et al (1989) A Calculus of Mobile Processes. Part 1. LFCS Report Series. ECS-

LFCS-89-85. Department of Computer Science. University of Edinburgh

17Z Formal Specification Language

Key Topics

Sets, relations and functions

Bags and sequences

Data Reification

Refinement

Schema Calculus

Proof in Z

17.1 Introduction

Z is a formal specification language based on Zermelo set theory. It was devel-
oped at the Programming Research Group at Oxford University in the early 1980s
[1] and became an ISO standard in 2002. Z specifications are mathematical and
employ a classical two-valued logic. The use of mathematics ensures precision
and allows inconsistencies and gaps in the specification to be identified. Theorem
provers may be employed to demonstrate that the software implementation meets
its specification.

Z is a ‘model-oriented’ approach with an explicit model of the state of an
abstract machine given, and operations are defined in terms of this state. Its math-
ematical notation is used for formal specification, and the schema calculus is used
to structure the specifications. The schema calculus is visually striking and con-
sists essentially of boxes, with these boxes or schemas used to describe operations
and states. The schemas may be used as building blocks and combined with other

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_17

277

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_17&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_17

278 17 Z Formal Specification Language

Fig. 17.1 Specification of
positive square root

schemas. The simple schema below (Fig. 17.1) is the specification of the positive
square root of a real number.

The schema calculus is a powerful means of decomposing a specification into
smaller pieces or schemas. This helps to make Z specifications highly readable, as
each individual schema is small in size and self-contained. Exception handling is
addressed by defining schemas for the exception cases. These are then combined
with the original operation schema. Mathematical data types are used to model
the data in a system, these data types obey mathematical laws. These laws enable
simplification of expressions and are useful with proofs.

Operations are defined in a precondition/postcondition style. A precondition
must be true before the operation is executed, and the postcondition must be true
after the operation has been executed. The precondition is implicitly defined within
the operation. Each operation has an associated proof obligation to ensure that if
the precondition is true, then the operation preserves the system invariant. The
system invariant is a property of the system that must be true at all times. The
initial state itself is, of course, required to satisfy the system invariant.

The precondition for the specification of the square root function above is that
num?≥0; i.e., the function SqRoot may be applied to positive real numbers only.
The postcondition for the square root function is root!2 = num? and root!≥ 0.
That is, the square root of a number is positive and its square gives the number.
Postconditions employ a logical predicate which relates the pre-state to the post-
state, with the poststate of a variable being distinguished by priming the variable,
e.g., v,.

Z is a typed language and whenever a variable is introduced its type must be
given. A type is simply a collection of objects, and there are several standard types
in Z. These include the natural numbers N, the integers Z, and the real numbers
R. The declaration of a variable x of type X is written x: X. It is also possible to
create your own types in Z.

Various conventions are employed within Z specification, for example v? indi-
cates that v is an input variable; v! indicates that v is an output variable. The
variable num? is an input variable, and root! is an output variable for the square
root example above. The notation in a schema indicates that the operation Op
does not affect the state; whereas the notation ∆ in the schema indicates that Op
is an operation that affects the state.

Many of the data types employed in Z have no counterpart in standard program-
ming languages. It is therefore important to identify and describe the concrete data
structures that ultimately will represent the abstract mathematical structures. As
the concrete structures may differ from the abstract, the operations on the abstract

17.1 Introduction 279

Fig. 17.2 Specification of a
library system

Fig. 17.3 Specification of
borrow operation

data structures may need to be refined to yield operations on the concrete data
that yield equivalent results. For simple systems, direct refinement (i.e., one step
from abstract specification to implementation) may be possible; in more complex
systems, deferred refinement1 is employed, where a sequence of increasingly con-
crete specifications is produced to yield the executable specification. The schema
calculus is employed for combining schemas to make larger specifications and is
discussed later in the chapter.

Example 17.1 The following is a Z specification to borrow a book from a library
system. The library is made up of books that are on the shelf; books that are borrowed;
and books that are missing (Fig. 17.2). The specification models a library with sets
representing books on the shelf, on loan or missing. These are three mutually disjoint
subsets of the set of books Bkd-Id.

The system state is defined in the Library schema below, and operations such
as Borrow and Return affect the state. The Borrow operation is specified below
(Fig. 17.3).

The notation PBkd-Id is used to represent the power set of Bkd-Id (i.e., the set
of all subsets of Bkd-Id). The disjointness condition for the library is expressed
by the requirement that the pairwise intersection of the subsets on-shelf, borrowed,
missing is the empty set.

The precondition for the Borrow operation is that the book must be available
on the shelf to borrow. The postcondition is that the borrowed book is added to
the set of borrowed books and is removed from the books on the shelf.

1 Step-wise refinement involves producing a sequence of increasingly more concrete specifica-
tions until eventually the executable code is produced. Each refinement step has associated proof
obligations to prove that it is valid.

280 17 Z Formal Specification Language

Z has been successfully applied in industry including the CICS project at IBM
Hursley in the UK.2 Next, we describe key parts of Z including sets, relations,
functions, sequences, and bags.

17.2 Sets

Sets were discussed in Chap. 3, and this section focuses on their use in Z. Sets
may be enumerated by listing all of their elements. Thus, the set of all even natural
numbers less than or equal to 10 is:

{2, 4, 6, 8, 10}

Sets may be created from other sets using set comprehension: i.e., stating the
properties that its members must satisfy. For example, the set of even natural
numbers less than 10 is given by set comprehension as:

{n : N|n /= 0 ∧ n < 10 ∧ n mod 2 = 0 · n}

There are three main parts to the set comprehension above. The first part is the
signature of the set and this is given by n: N above. The first part is separated
from the second part by a vertical line. The second part is given by a predicate,
and for this example the predicate is n /= 0 ∧ n < 10 ∧ n mod 2 = 0. The second
part is separated from the third part by a bullet. The third part is a term, and for
this example it is simply n. The term is often a more complex expression: e.g.,
log(n2).

In mathematics, there is just one empty set. However, since Z is a typed set
theory, there is an empty set for each type of set. Hence, there are an infinite
number of empty sets in Z. The empty set is written as ∅ [X] where X is the type
of the empty set. In practice, X is omitted when the type is clear.

Various operations on sets such as union, intersection, set difference, and sym-
metric difference are employed in Z. The power set of a set X is the set of all
subsets of X and is denoted by P X. The set of non-empty subsets of X is denoted
by P1X where

P1 X == {U : P X |U /= ∅ [X]}

A finite set of elements of type X (denoted by F X) is a subset of X that cannot
be put into a one-to-one correspondence with a proper subset of itself. This is
defined formally as:

FX == {U : P X |¬∃V : P U · V /= U ∧ (∃ f : V↢U)}

2 This project claimed a 9% increase in productivity attributed to the use of formal methods.

17.3 Relations 281

The expression f : V ↢ U denotes that f is a bijection from U to V and injective,
surjective, and bijective functions were discussed in Chap. 3.

The fact that Z is a typed language means that whenever a variable is introduced
(e.g., in quantification with ∀ and ∃) it is first declared. For example, ∀j: J • P ⇒
Q. There is also the unique existential quantifier ∃1 j: J | P which states that there
is exactly one j of type J that has property P.

17.3 Relations

Relations were discussed in Chap. 3 and are used extensively in Z. A relation R
between X and Y is any subset of the Cartesian product of X and Y; i.e., R⊆ (X ×
Y), and a relation in Z is denoted by R: X ↔Y. The notation x |→ y indicates that
the pair (x,y) ∈R.

Consider, the relation home owner: Person↔Home that exists between people
and their homes. An entry daphne |→ mandalay ∈home owner if daphne is the
owner of mandalay. It is possible for a person to own more than one home:

rebecca |→ nirvana ∈ home_owner

rebecca |→ tr i voli ∈ home_owner

It is possible for two people to share ownership of a home:

rebecca |→ nir vana ∈ home_owner

lawrence |→ nir vana ∈ home_owner

There may be some people who do not own a home, and there is no entry for
these people in the relation home owner. The type Person includes every possi-
ble person, and the type Home includes every possible home. The domain of the
relation home owner is given by:

x ∈ dom home_owner ⇔ ∃h : Home • x |→ h ∈ home_owner .

The range of the relation home owner is given by:

h ∈ ran home_owner ⇔ ∃h : Person • x |→ h ∈ home_owner .

The composition of two relations home owner: Person ↔ Home and
home value: Home ↔Value yields the relation owner wealth: Person ↔ Value and
is given by the relational composition home owner; home value where:

p |→ v ∈ home_owner; home_value ⇔

(∃h : Home • p |→ h ∈ home_owner ∧ h |→ v ∈ home_value)

282 17 Z Formal Specification Language

The relational composition may also be expressed as:

owner_wealth = home_value o home_owner

The union of two relations often arises in practice. Suppose a new entry aisling
|→ muckross is to be added. Then this is given by

home_owner , = home_owner ∪ {aisling |→ muckross}

Suppose that we are interested in knowing all females who are house own-
ers. Then we restrict the relation home owner so that the first element of
all ordered pairs have to be female. Consider female: P Person with {aisling,
rebecca} ⊆ female.

home_owner = {aisling |→ muckross, rebecca |→ nir vana,
lawrence |→ nirvana}

f emale ⊲ home_owner = {aisling |→ muckross, rebecca |→ nir vana}

That is, female ▷ home owner is a relation that is a subset of home owner,
and the first element of each ordered pair in the relation is female. The operation
▷ is termed domain restriction, and its fundamental property is:

x |→ y ∈ U ⊲ R ⇔ (x ∈ U ∧ x |→ y ∈ R}

where R: X ↔ Y and U: P X.
There is also a domain anti-restriction (subtraction) operation, and its funda-

mental property is:

x |→ y ∈ U --⊲ R ⇔ (x /∈ U ∧ x |→ y ∈ R}

where R: X ↔ Y and U: PX.
There are also range restriction (the ▷ operator) and the range anti-restriction

operator (the --▷ operator). These are discussed in [1].

17.4 Functions

A function [1] is an association between objects of some type X and objects of
another type Y such that given an object of type X, there exists only one object in
Y associated with that object. A function is a set of ordered pairs where the first
element of the ordered pair has at most one element associated with it. A function
is therefore a special type of relation, and a function may be total or partial.

A total function has exactly one element in Y associated with each element of
X, whereas a partial function has at most one element of Y associated with each

17.4 Functions 283

element of X (there may be elements of X that have no element of Y associated
with them).

A partial function from X to Y (f : X↛Y) is a relation f : X ↔Y such that:

∀x : X; y, z : Y · (x |→ y ∈ f ∧ x |→ z ∈ f ⇒ y = z)

The association between x and y is denoted by f (x) = y, and this indicates that
the value of the partial function f at x is y. A total function from X to Y (denoted f :
X → Y) is a partial function such that every element in X is associated with some
value of Y.

f : X → Y ⇔ f : X↛Y ∧ dom f = X

Clearly, every total function is a partial function but not vice versa.
One operation that arises quite frequently in specifications is the function

override operation. Consider the following specification of a temperature map:

| − T empMap − − − −
|CityList : PCity
|temp : City↛Z

| − −−
|dom temp = CityList
| − − − − − − − −

Suppose the temperature map is given by temp = {Cork |→ 17, Dublin |→ 19,
London |→ 15}. Then consider the problem of updating the temperature map if
a new temperature reading is made in Cork: e.g., {Cork |→ 18}. Then the new
temperature chart is obtained from the old temperature chart by function override
to yield {Cork |→ 18, Dublin |→ 19, London |→ 15}. This is written as:

temp, = temp ⊕ {Cork |→ 18}
The function override operation combines two functions of the same type to

give a new function of the same type. The effect of the override operation is that
the entry {Cork |→ 17} is removed from the temperature chart and replaced with
the entry {Cork |→ 18}.

Suppose f , g: X↛ Y are partial functions then f ⊕ g is defined and indicates
that f is overridden by g. It is defined as follows:

(f ⊕ g)(x) = g(x) where x ∈ dom g

(f ⊕ g)(x) = f (x) where x /∈ dom g ∧ x ∈ dom f

This may also be expressed (using domain anti-restriction) as:

f ⊕ g = ((dom g) --⊲ f) ∪ g

284 17 Z Formal Specification Language

There is notation in Z for injective, surjective, and bijective functions. An
injective function is one to one: i.e.,

f (x) = f (y) ⇒ x = y.

A surjective function is onto: i.e.,

Given y ∈ Y , ∃x ∈ X such that f (x) = y

A bijective function is one to one and onto, and it indicates that the sets X and
Y can be put into one-to-one correspondence with one another. Z includes lambda
calculus notation to define functions (λ-calculus was discussed in Chap. 12). For
example, the function cube == λx: N·x * x * x. Function composition f ; g is similar
to relational composition.

17.5 Sequences

The type of all sequences of elements drawn from a set X is denoted by seq X.
Sequences are written as ⟨x1, x2,xn⟩, and the empty sequence is denoted by ⟨⟩
. Sequences may be used to specify the changing state of a variable over time, with
each element of the sequence representing the value of the variable at a discrete
time instance.

Sequences are functions and a sequence of elements drawn from a set X is a
finite function from the set of natural numbers to X. A partial finite function f from
X to Y is denoted by f : X −→|| Y. A finite sequence of elements of X is given by a
finite function f : N −→|| X, and the domain of the function consists of all numbers
between 1 and # f (where #f is the cardinality of f). It is defined formally as:

seq X == { f : N −→|| X | dom f = 1..# f · f }

The sequence ⟨x1, x2,xn⟩ above is given by:

{1 |→ x1, 2 |→ x2, . . . n |→ xn}

There are various functions to manipulate sequences. These include the
sequence concatenation operation. Suppose σ = ⟨x1, x2, . . . xn⟩ and τ =
⟨y1, y2, . . . ym⟩ then:

σ ∩τ = ⟨x1, x2, . . . xn, y1, y2, . . . ym⟩

The head of a non-empty sequence gives the first element of the sequence.

head σ = head⟨x1, x2,xn⟩ = x1

17.6 Bags 285

The tail of a non-empty sequence is the same sequence except that the first
element of the sequence is removed.

tail σ = tail⟨x1, x2, . . . xn⟩ = ⟨x2, . . . xn⟩

Suppose f : X → Y and a sequence σ: seq X then the function map applies f to
each element of σ:

map f σ = map ⟨x1, x2, . . . xn⟩ = ⟨ f (x1), f (x2), . . . f (xn)⟩

The map function may also be expressed via function composition as:

map f σ = σ; f

The reverse order of a sequence is given by the rev function:

rev σ = rev⟨x1, x2, . . . xn⟩ = ⟨xn, . . . x2, x1⟩

17.6 Bags

A bag is similar to a set except that there may be multiple occurrences of each
element in the bag. A bag of elements of type X is defined as a partial function
from the type of the elements of the bag to positive whole numbers. The definition
of a bag of type X is:

bag X == X↛N1.

For example, a bag of marbles may contain 3 blue marbles, 2 red marbles, and 1
green marble. This is denoted by B = [b, b, b, g, , r, r]. The bag of marbles is thus
denoted by:

bag Marble == Marble↛N1.

The function count determines the number of occurrences of an element in a
bag. For the example above, count Marble b = 3, and count Marble y = 0 since
there are no yellow marbles in the bag. This is defined formally as:

count bag X y = 0 y /∈ bag X
count bag X y = (bag X)(y) y ∈ bag X

An element y is in bag X if and only if y is in the domain of bag X.

y in bag X ⇔ y ∈ dom (bag X)

286 17 Z Formal Specification Language

Fig. 17.4 Specification of
vending machine using bags

The union of two bags of marbles B1 = [b, b, b, g, , r, r] and B2 = [b, g, , r,
y] is given by B1 ⊎ B2 [b, b ,b, b, g, g, r, r, r, y]. It is defined formally as:

(B1⊎B2)(y) = B2(y) y /∈ domB1 ∧ y ∈ domB2

(B1⊎B2)(y) = B1(y) y ∈ dom B1 ∧ y /∈ domB2

(B1⊎B2)(y) = B1(y) + B2(y) y ∈ domB1 ∧ y ∈ domB2

A bag may be used to record the number of occurrences of each product in
a warehouse as part of an inventory system. It may model the number of items
remaining for each product in a vending machine (Fig. 17.4).

The operation of a vending machine would require other operations such as
identifying the set of acceptable coins, checking that the customer has entered
sufficient coins to cover the cost of the good, returning change to the customer,
and updating the quantity on hand of each good after a purchase (see [1]).

17.7 Schemas and Schema Composition

The schemas in Z are visually striking, and the specification is presented in
two-dimensional graphic boxes. Schemas are used for specifying states and state
transitions, and they employ notation to represent the before and after state (e.g.,
s and s, where s, represents the after state of s). The schemas group all relevant
information that belongs to a state description.

There are a number of useful schema operations such as schema inclusion,
schema composition, and the use of propositional connectives to link schemas
together. The ∆ convention indicates that the operation affects the state, whereas
the convention indicates that the state is not affected. These operations and
conventions allow complex operations to be specified concisely and assist with
the readability of the specification. Schema composition is analogous to relational
composition and allows new schemas to be derived from existing schemas.

A schema name S1 may be included in the declaration part of another schema
S2. The effect of the inclusion is that the declarations in S1 are now part of S2, and
the predicates of S1 are S2 are joined together by conjunction. If the same variable

17.7 Schemas and Schema Composition 287

is defined in both S1 and S2, then it must be of the same type.

| − S1 − −−
|x, y : N
| − −
|x + y > 2
| − −−

| − S2 − −−
|S1, z : N
| − −
|z = x + y
| − −−

The result is that S2 includes the declarations and predicates of S1 (Fig. 17.5).
Two schemas may be linked by propositional connectives such as S1 ∧ S2, S1

∨ S2, S1 → S2, and S1 ↔ S2. The schema S1 ∨ S2 is formed by merging the
declaration parts of S1 and S2, and then combining their predicates by the logical
∨ operator. For example, S = S1 ∨ S2 yields (Fig. 17.6).

Schema inclusion and the linking of schemas use normalization to convert sub-
types to maximal types, and predicates are employed to restrict the maximal type
to the sub-type. This involves replacing declarations of variables (e.g., u : 1..35
with u : Z and adding the predicate u > 0 and u < 36 to the predicate part of the
schema).

The ∆ and conventions are used extensively, and the notation ∆ TempMap
is used in the specification of schemas that involve a change of state. The notation

Fig. 17.5 Schema inclusion

Fig. 17.6 Merging schemas
(S1 ∨ S2)

288 17 Z Formal Specification Language

∆ TempMap represents:

∆ T empMap = T empMap ∧ T empMap,

The longer form of ∆ TempMap is written as:

| − ∆T empMap
|CityList, CityList , : P City
|temp, temp, : City↛Z
| − −−
|dom temp = CityList
|dom temp, = CityList ,
| − − − − − − − −−

The notation TempMap is used in the specification of operations that do not
involve a change to the state.

| − T empMap − − − −
|∆T empMap
| − −−
|CityList = CityList ,
|temp = temp,
| − − − − − − − −−

Schema composition is analogous to relational composition, and it allows new
specifications to be built from existing ones. It allows the after-state variables
of one schema to be related with the before variables of another schema. The
composition of two schemas S and T (S; T) is described in detail in [1] and
involves four steps (Table 17.1).

Table 17.1 Schema composition

Step Procedure

1 Rename all after-state variables in S to something new:
S[s+/s,]

2 Rename all before state variables in T to the same new thing: i.e.,
T [s+/s]

3 Form the conjunction of the two new schemas:
S[s+/s’]∧T [s+/s]

4 Hide the variable introduced in steps 1 and 2
S; T = (S[s+/s’]∧T [s+/s])\(s+)

17.8 Reification and Decomposition 289

Fig. 17.7 Schema composition

The example below should make schema composition clearer. Consider the
composition of S and T where S and T are defined as follows:

| − S − −−
|x, x ,, y? : N
| − −−
|x , = y? − 2
| − −−

| − T − −−
|x, x , : N
| − −−
|x , = x + 1
| − −−

| − S1 − −−
|x, x+, y? : N
| − −−
|x+ = y? − 2
| − −−

| − T1 − −−
|x+, x , : N
| − −−
|x , = x+ + 1
| − −−

S1 and T1 represent the results of step 1 and step 2, with x’ renamed to x+ in
S, and x renamed to x+ in T. Step 3 and step 4 yield (Fig. 17.7).

Schema composition is useful as it allows new specifications to be created from
existing ones.

17.8 Reification and Decomposition

A Z specification involves defining the state of the system and then specifying
the required operations. The Z specification language employs many constructs
that are not part of conventional programming languages, and a Z specification
is therefore not directly executable on a computer. A programmer implements the
formal specification, and mathematical proof may be employed to prove that a
program meets its specification.

290 17 Z Formal Specification Language

Often, there is a need to write an intermediate specification that is between the
original Z specification and the eventual program code. This intermediate specifi-
cation is more algorithmic and uses less abstract data types than the Z specification.
The intermediate specification is termed the design and the design needs to be
correct with respect to the specification, and the program needs to be correct with
respect to the design. The design is a refinement (reification) of the state of the
specification, and the operations of the specification have been decomposed into
those of the design.

The representation of an abstract data type such as a set by a sequence is termed
data reification, and data reification is concerned with the process of transforming
an abstract data type into a concrete data type. The abstract and concrete data types
are related by the retrieve function, and the retrieve function maps the concrete data
type to the abstract data type. There are typically several possible concrete data
types for a particular abstract data type (i.e., refinement is a relation), whereas
there is one abstract data type for a concrete data type (i.e., retrieval is a function).
For example, sets are often reified to unique sequences; and clearly more than one
unique sequence can represent a set, whereas a unique sequence represents exactly
one set.

The operations defined on the concrete data type are related to the operations
defined on the abstract data type. That is, the commuting diagram property is
required to hold (Fig. 17.8). That is, for an operation ⊡ on the concrete data
type to correctly model the operation ⨀ on the abstract data type the diagram
must commute, and the commuting diagram property requires proof. That is, it is
required to prove that:

ret (σ ⊡ τ) = (ret σ) ⨀ (ret τ)

In Z, the refinement and decomposition are done with schemas. It is required
to prove that the concrete schema is a valid refinement of the abstract schema,
and this gives rise to a number of proof obligations. It needs to be proved that
the initial states correspond to one another and that each operation in the concrete
schema is correct with respect to the operation in the abstract schema, and also
that it is applicable (i.e., whenever the abstract operation may be performed the
concrete operation may also be performed).

Fig. 17.8 Refinement
commuting diagram

291

17.9 Proof in Z

We discuss the nature of theorem proving in Chap. 19. Mathematicians perform
rigorous proof of theorems using technical and natural language, whereas logicians
employ formal proofs using propositional and predicate calculus. Formal proofs
generally involve a long chain of reasoning with every step of the proof justified,
whereas rigorous mathematical proofs involve precise reasoning using a mixture
of natural and mathematical language. Rigorous proofs [1] have been described as
being analogous to high-level programming languages, whereas formal proofs are
analogous to machine language.

A mathematical proof includes natural language and mathematical symbols,
and often many of the tedious details of the proof are omitted. Many proofs in
formal methods such as Z are concerned with crosschecking on the details of
the specification, or on the validity of the refinement step, or proofs that certain
properties are satisfied by the specification. There are often many tedious lemmas
to be proved, and tool support is essential as proof by hand often contains errors or
jumps in reasoning. Machine proofs provide extra confidence as every step in the
proof is justified, and the proof of various properties about the programs increases
confidence in its correctness.

17.10 Industrial Applications of Z

The Z specification language is one of the more popular formal methods, and it
has been employed for the formal specification and verification of safety critical
software. IBM piloted the Z formal specification language on the CICS (Customer
Information Control System) project at its plant in Hursley, England.

Rolls Royce and Associates (RRA) developed a lifecycle suitable for the devel-
opment of safety critical software, and the safety critical lifecycle used Z for the
formal specification and the CADiZ tool provided support for specification, and
Ada was the target implementation language.

Logica employed Z for the formal verification of a smartcard-based electronic
cash system (the Mondex smartcard) in the early 1990s. The smartcard had an
8-bit microprocessor, and the objective was to formally specify both the high-level
abstract security policy model and the lower-level concrete architectural design in
Z, and to provide a formal proof of correspondence between the two.

Computer Management Group (CMG) employed Z for modelling data and oper-
ations as part of the formal specification of a movable barrier (the MaeslantKering)
in the mid-1990s, which is used to protect the port of Rotterdam from flooding.
The decisions on opening and closing of the barrier are based on meteorologi-
cal data provided by the computer system, and the focus of the application of
formal methods was to the decision-making subsystem and its interfaces to the
environment.

292 17 Z Formal Specification Language

17.11 Review Questions

1. Describe the main features of the Z specification language.
2. Explain the difference between P1 X, P X and FX.
3. Give an example of a set derived from another set using set com-

prehension. Explain the three main parts of set comprehension in
Z.

4. Discuss the applications of Z and which areas have benefited most from
their use? What problems have arisen?

5. Give examples to illustrate the use of domain and range restriction oper-
ators and domain and range anti-restriction operators with relations in
Z.

6. Give examples to illustrate relational composition.
7. Explain the difference between a partial and total function and give

examples to illustrate function override.
8. Give examples to illustrate the various operations on sequences includ-

ing concatenation, head, tail, map and reverse operations.
9. Give examples to illustrate the various operations on bags.
10. Discuss the nature of proof in Z and tools to support proof.
11. Explain the process of refining an abstract schema to a more con-

crete representation, the proof obligations that are generated, and the
commuting diagram property.

17.12 Summary

Z is a formal specification language that was developed in the early 1980s
at Oxford University in England. It has been employed in both industry and
academia, and it was used successfully on the IBM’s CICS project. Its specifi-
cations are mathematical, and this leads to more rigorous software development.
Its mathematical approach allows properties to be proved about the specification,
and any gaps or inconsistencies in the specification may be identified.

Z is a ‘model-oriented’ approach and an explicit model of the state of an
abstract machine is given, and the operations are defined in terms of their effect
on the state. Its main features include a mathematical notation that is similar to
VDM, and the schema calculus. The latter consists essentially of boxes and is used
to describe operations and states.

The schema calculus enables schemas to be used as building blocks to form
larger specifications. It is a powerful means of decomposing a specification into
smaller pieces and helps with the readability of Z specifications, as each schema
is small in size and self-contained.

Reference 293

Z is a highly expressive specification language, and it includes notation for
sets, functions, relations, bags, sequences, predicate calculus, and schema calcu-
lus. Z specifications are not directly executable as many of its data types and
constructs are not part of modern programming languages. Therefore, there is a
need to refine the Z specification into a more concrete representation and prove
that the refinement is valid.

Reference

1. Diller A (1990) An introduction to formal methods. Wiley, England

18Model Checking

Key Topics

Concurrent Systems

Temporal Logic

State Explosion

Safety and Liveness Properties

Fairness Properties

Linear Temporal Logic

Computational Tree Logic

18.1 Introduction

Model checking is an automated technique such that given a finite-state model of a
system and a formal property (expressed in temporal logic), then it systematically
checks whether the property is true or false in a given state in the model. It is an
effective technique to identify potential design errors, and it increases confidence
in the correctness of the system design. Model checking is a highly effective veri-
fication technology and is widely used in the hardware and software fields. It has
been employed in the verification of microprocessors; in security protocols; in the
transportation sector (trains); and in the verification of software in the space sector.

Early work on model checking commenced in the early 1980s (especially in
checking the presence of properties such as mutual exclusion and the absence of
deadlocks), and the term “model checking” was coined by Clarke and Emerson
in the early 1980s [1], when they combined the state exploration approach and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_18

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_18&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_18

296 18 Model Checking

Table 18.1 Model-checking process

Phase Description

Modelling phase Model the system under consideration
Formalize the property to be checked

Running phase Run the model checker to determine the validity of the property in the model

Analysis phase Is the property satisfied? If applicable, check next property
If the property is violated then

1. Analyse generated counterexample
2. Refine model, design, or property

If out of space try alternative approach (e.g., abstraction of system model)

temporal logic in an efficient manner. Clarke and Emerson received the ACM
Turing Award in 2007 for their role in developing model checking into a highly
effective verification technology.

Model checking is a formal verification technique based on graph algorithms
and formal logic. It allows the desired behaviour (specification) of a system to be
verified, and its approach is to employ a suitable model of the system and to carry
out a systematic and exhaustive inspection of all states of the model to verify that
the desired properties are satisfied. These properties are generally safety properties
such as the absence of deadlock, request-response properties, and invariants. The
systematic search shows whether a given system model truly satisfies a particular
property or not.

The phases in the model-checking process include the modelling, running, and
analysis phases (Table 18.1).

The model-based techniques use mathematical models to describe the required
system behaviour in precise mathematical language, and the system models have
associated algorithms that allow all states of the model to be systematically
explored. Model checking is used for formally verifying finite-state concurrent
systems (typically modelled by automata), where the specification of the system
is expressed in temporal logic, and efficient algorithms are used to traverse the
model defined by the system (in its entirety) to check if the specification holds or
not. Of course, any verification using model-based techniques is only as good as the
underlying model of the system.

Model checking is an automated technique such that given a finite-state model
of a system and a formal property, then a systematic search may be conducted to
determine whether the property holds for a given state in the model. The set of all
possible states is called the model’s state space, and when a system has a finite-
state space it is then feasible to apply model-checking algorithms to automate the
demonstration of properties, with a counterexample exhibited if the property is not
valid.

The properties to be validated are generally obtained from the system specifi-
cation, and they may be quite elementary: e.g., a deadlock scenario should never
arise (i.e., the system should never be able to reach a situation where no further
progress is possible). The formal specification describes what the system should

18.1 Introduction 297

do, whereas the model description (often automatically generated) is an accurate
and unambiguous description of how the system actually behaves. The model is
often expressed in a finite-state machine consisting of a finite set of states and a
finite set of transitions.

Figure 18.1 shows the structure of a typical model-checking system where a
preprocessor extracts a state transition graph from a program or circuit. The model-
checking engine then takes the state transition graph and a temporal formula P and
determines whether the formula is true or not in the model.

The properties need to be expressed precisely and unambiguously (usually
in temporal logic) to enable rigorous verification to take place. Model checking
extracts a finite model from a system and then checks some property of that model.
The model checker performs an exhaustive state search, which involves checking
all system states to determine whether they satisfy the desired property or not
(Fig. 18.2).

If a state that violates the desired property is determined (i.e., a defect has
been found once it is shown that the system does not fulfil one of its specified
properties), then the model checker provides a counterexample indicating how the
model can reach this undesired state. The system is considered to be correct if
it satisfies all of the specified properties. In the cases of where the model is too

Fig. 18.1 Concept of model
checking Preprocessor Model Checker

Program /
Circuit

True /
False

Formula P

Fig. 18.2 Model checking Requirements

Formal
Specification

Actual System

System
Model

modellingformalizing

Model
Checking

satisfied counter example

298 18 Model Checking

large to fit within the physical memory of the computer (state explosion problem),
then other approaches such as abstraction of the system model or probabilistic
verification may be employed.

There may be several causes of a state violating the desired property. It may be
due to a modelling error (i.e., the model does not reflect the design of the system,
and the model may need to be corrected and the model checking restarted). Alter-
natively, it may be due to a design error with improvements needed to the design,
or it may be due to an error in the statement of the property with a modification
to the property required and the model checking needs to be restarted.

Model checking is expressed formally by showing that a desired property P
(expressed as a temporal logic formula) and a model M with initial state s, that P
is always true in any state derivable from s (i.e., M, s |= P). We discussed tempo-
ral logic briefly in Chap. 11, and model checking is concerned with verifying that
linear time properties such as safety, liveness, and fairness properties are always
satisfied, and it employs linear temporal logic and branching temporal logic. Com-
putational tree logic is a branching temporal logic where the model of time is a
tree-like structure, with many different paths in future, one of which might be an
actual path which is realized.

One problem with model checking is the state space explosion problem, where
the transition graph grows exponentially on the size of the system, which makes
the exploration of the state space difficult or impractical. Abstraction is one tech-
nique that aims to deal with the state explosion problem, and it involves creating
a simplified version of the model (the abstract model). The abstract model may be
explored in a reasonable period of time, and the abstract model must respect the
original model with respect to key properties such that if the property is valid in
the abstract model it is valid in the original model.

Model checking has been applied to areas such as the verification of hard-
ware designs, embedded systems, protocol verification, and software engineering.
Its algorithms have improved over the years, and today model checking is a
mature technology for verification and debugging with many successful industrial
applications.

The advantages of model theory include the fact that the user of the model
checker does not need to construct a correctness proof (as in automated theorem
proving or proof checking). Essentially, all the user needs to do is to input a
description of the program or circuit to be verified and the specification to be
checked, and to then press the return key. The checking process is then automatic
and fast, and it provides a counterexample if the specification is not satisfied. One
weakness of model checking is that it verifies an actual model rather than the
actual system, and so its results are only as good as the underlying model. Model
checking is described in detail in [2].

18.2 Modelling Concurrent Systems 299

18.2 Modelling Concurrent Systems

Concurrency is a form of computing in which multiple computations (processes)
are executed during the same period of time. Parallel computing allows execu-
tion to occur in the same time instant (on separate processors of a multiprocessor
machine), whereas concurrent computing consists of process lifetimes overlapping
and where execution need not happen at the same time instant.

Concurrency employs interleaving where the execution steps of each process
employ time-sharing slices so that only one process runs at a time, and if it does
not complete within its time slice it is paused; another process begins or resumes;
and then later the original process is resumed. In other words, only one process
is running at a given time instant, whereas multiple processes are part of the way
through execution.

It is important to identify concurrency-specific errors such as deadlock and
livelock. A deadlock is a situation in which the system has reached a state in which
no further progress can be made, and at least one process needs to complete its
tasks. Livelock refers to a situation where the processes in a system are stuck in a
repetitive task and are making no progress towards their functional goals.

It is essential that safety properties such as mutual exclusion (at most one pro-
cess is in its critical section at any given time) are not violated. In other words,
something bad (e.g., a deadlock situation) should never happen; liveness properties
(a desired event or something good eventually happens) are satisfied; and invari-
ants (properties that are true all the time) are never violated. These behaviour errors
may be mechanically detected if the systems are properly modelled and analysed.

Transition systems (Fig. 18.3) are often used as models to describe the
behaviour of systems, and these are directed graphs with nodes representing states
and edges representing state transitions. A state describes information about a sys-
tem at a certain moment of time. For example, the state of a sequential computer
consists of the values of all program variables and the current value of the program
counter (pointer to next program instruction to be executed).

A transition describes the conditions under which a system moves from one
state to another. Transition systems are expressive in that programs are transition
systems; communicating processes are transition systems; and hardware circuits
are transition systems.

Fig. 18.3 Simple transition system

300 18 Model Checking

The transitions are associated with action labels that indicate the actions that
cause the transition. For example, in Fig. 18.3 the Insert coin is a user action,
whereas the Get coke and Get choc are actions that are performed by the machine.
The activity τ represents an internal activity of the vending machine that is not of
interest to the modeller. Formally, a transition system TS is a tuple (S, Act, → , I,
AP, L) such that:

S is the set of states
Act is the set of actions
→S ×Act ×S is the transition relation (source state, action and target state)
I ⊆S is the set of initial states
AP is a set of atomic propositions
L: S →P AP (power set of AP) is a labelling function

The transition (s, a, s ′) is written as s a−→ s′
L(s) are the atomic propositions in AP that are satisfied in state s.
A concurrent system consists of multiple processes executing concurrently. If

a concurrent system consists of n processes where each process proci is modelled
by a transition system TSi, then the concurrent system may be modelled by a
transition system (|| is the parallel composition operator):

TS = TS1||TS2|| . . . ||TSn
There are various operators used in modelling concurrency with transition sys-

tems, including operators for interleaving, communication via shared variables,
handshaking, and channel systems.

18.3 Linear Temporal Logic

Temporal logic was discussed in Chap. 11 and is concerned with the expression of
properties that have time dependencies. The existing temporal logics allow facts
about the past, present, and future to be expressed. Temporal logic has been applied
to specify temporal properties of natural language, as well as the specification and
verification of program and system behaviour. It provides a language to encode
temporal knowledge in artificial intelligence applications, and it plays a useful role
in the formal specification and verification of temporal properties (e.g., liveness
and fairness) in safety critical systems.

The statements made in temporal logic can have a truth value that varies over
time. In other words, sometimes the statement is true and sometimes it is false, but
it is never true or false at the same time. The two main types of temporal logics
are linear time logics (reason about a single timeline) and branching time logics
(reason about multiple timelines).

Linear temporal logic (LTL) is a modal temporal logic that can encode formu-
lae about the future of paths (e.g., a condition that will eventually be true). The

18.4 Computational Tree Logic 301

Table 18.2 Basic temporal
operators

Operator Description

Fp p holds sometime in future

Gp p holds globally in future

Xp p holds in next time instant

pUq p holds until q is true

Fig. 18.4 LTL operators

ppppp p
. . .

p
. . .

qppp p
. . .

G p

F p

p U q

basic linear temporal operators that are often employed (p is an atomic proposition
below) are listed in Table 18.2 and illustrated in Fig. 18.4.

For example, consider how the sentence “This microwave does not heat up until
the door is closed” is expressed in temporal logic. This is naturally expressed with
the until operator pUq as follows:

¬HeatupUDoorClosed

18.4 Computational Tree Logic

In linear logic we look at the execution paths individually, whereas in branching
time logics we view the computation as a tree. Computational tree logic (CTL) is
a branching time logic, which means that its model of time is a tree-like structure
in which the future is not determined, and so there are many paths in future such
that any of them could be an actual path that is realized. CTL was first proposed
by Clark and Emerson in the early 1980s.

Computational tree logic can express many properties of finite-state concurrent
systems. Each operator of the logic has two parts namely the path quantifier (A—
“every path”, E—“there exists a path”), and the state quantifier (F, P, X, U as
explained in Table 18.3). The operators in CTL logic are given by:

For example, the following is a valid CTL formula that states that it is always
possible to get to the restart state from any state:

AG(EF restart)

302 18 Model Checking

Table 18.3 CTL temporal
operators

Operator Description

Aϕ (all) ϕ holds on all paths starting from the
current state

Eϕ (exists) ϕ holds on at least one path starting from
the current state

Xϕ (next) ϕ holds in the next state
Gϕ (global) ϕ has to hold on the entire subsequent

path

Fϕ (finally) ϕ eventually has to hold (somewhere on
the subsequent path)

ϕUψ (until) ϕ has to hold until at some position ψ
holds

ϕWψ (weak until) ϕ has to hold until ψ holds (no guarantee
ψ will ever hold)

18.5 Tools for Model Checking

There are various tools for model checking including Spin, Bandera, SMV, and
UppAal. These tools perform a systematic check on property P in all states and
are applicable if the system generates a finite behavioural model. Model-checking
tools use a model-based approach rather than a proof rule-based approach, and
the goal is to determine whether the concurrent program satisfies a given logical
property.

Spin is a popular open-source tool that is used for the verification of dis-
tributed software systems (especially concurrent protocols), and it checks finite-
state systems with properties specified by linear temporal logic. It generates a
counterexample trace if determines that a property is violated.

Spin has its own input specification language (PROMELA), and so the system
to be verified needs to be translated into the language of the model checker. The
properties are specified using LTL.

Bandera is a tool for model-checking Java source code, and it automates the
extraction of a finite-state model from the Java source code. It then translates
into an existing model checker’s input language. The properties to be verified are
specified in the Bandera Specification Language (BSL), which supports pre- and
postconditions and temporal properties.

18.6 Industrial Applications of Model Checking

There are many applications of model checking in the hardware and software
fields, including the verification of microprocessors and security protocols, as well
as applications in the transportation sector (trains) and in the space sector.

The Mars Science Laboratory (MSL) mission used model checking as part
of the verification of the critical software for the landing of Curiosity (a large

18.8 Summary 303

rover) on its mission to Mars. The hardware and software of a spacecraft must
be designed for a high degree of reliability, as an error can lead to a loss of the
mission. The Spin model checker was employed for the model verification, and
the rover was launched in November 2011 and landed safely on Mars in August
2012.

CMG employed formal methods as part of the specification and verification of
the software for a movable flood barrier in the mid-1990s. This is used to protect
the port of Rotterdam from flooding, Z was employed for modelling data and
operations, and Spin/Promela was used for model checking.

Lucent’s Pathstar Access Server was developed in the late 1990s, and this
system is capable of sending voice and data over the Internet. The automated
verification techniques applied to Pathstar consist of generating an abstract model
from the implemented C code, and then defining the formal requirements that
the application is satisfy. Finally, the model checker is employed to perform the
verification.

18.7 Review Questions

1. What is model checking?
2. Explain the state explosion problem.
3. Explain the difference between parallel processing and concurrency.
4. Describe the basic temporal operators.
5. Describe the temporal operators in CTL.
6. Explain the difference between liveness and fairness properties.
7. What is a transition system?
8. Explain the difference between linear temporal logic and branching

temporal logic.
9. Investigate tools to support model checking.

18.8 Summary

Model checking is a formal verification technique which allows the desired
behaviours of a system to be verified. Its approach is to employ a suitable model
of the system and to carry out a systematic inspection of all states of the model to
verify the required properties are satisfied in each state. The properties to be val-
idated are generally obtained from the system specification, and a defect is found
once it is shown that the system does not fulfil one of its specified properties. The
system is considered to be correct if it satisfies all of the specified properties.

The desired behaviour (specification) of the system is verified by employing
a suitable model of the system and then carrying out a systematic exhaustive

304 18 Model Checking

inspection of all states of the model to verify that the desired properties are sat-
isfied. These properties are generally properties such as the absence of deadlock
and invariants. The systematic search shows whether a given system model truly
satisfies a particular property or not.

The model-based techniques use mathematical models to describe the required
system behaviour in precise mathematical language, and the system models have
associated algorithms that allow all states of the model to be systematically
explored. The specification of the system is expressed in temporal logic, and
efficient algorithms are used to traverse the model defined by the system (in its
entirety) to check if the specification holds or not. Model-based techniques are
only as good as the underlying model of the system.

References

1. Clarke EM, Emerson EA (1981) Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Logic of programs: work-shop, Yorktown heights, NY, May
1981, vol 131 of LNCS. Springer

2. Baier C, Katoen JP (2008) Principles of model checking. MIT Press, Cambridge

19The Nature of Theorem Proving

Key Topics

Mathematical Proof

Formal Proof

Automated Theorem Prover

Interactive Theorem Prover

Logic Theorist

Resolution

Proof Checker

19.1 Introduction

The word “proof ” is generally interpreted as facts or evidence that support a par-
ticular proposition or belief, and such proofs are generally conducted in natural
language. Several premises (which are self-evident or already established) are pre-
sented, and from these premises (via deductive or inductive reasoning) further
propositions are established, until finally the conclusion is established.

The proof of a theorem in mathematics requires additional rigour, and such
proofs consist of a mixture of natural language and mathematical argument. It is
common to skip over the trivial steps in the proof, and independent mathematicians
conduct peer reviews to provide additional confidence in the correctness of the
proof and to ensure that no unwarranted assumptions or errors in reasoning have

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_19

305

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_19&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_19

306 19 The Nature of Theorem Proving

been made. Proofs conducted in logic are extremely rigorous with every step in
the proof is explicit.1

Mathematical proof dates back to the Greeks, and many students are famil-
iar with Euclid’s work (The Elements) in geometry, where from a small set of
axioms and postulates and definitions he derived many of the well-known theo-
rems of geometry. Euclid was a Hellenistic mathematician based in Alexandria
around 300BC, and his style of proof was mainly constructive: i.e., in addition to
the proof of the existence of an object, he actually constructed the object in the
proof. Euclidean geometry remained unchallenged for over 2000 years, until the
development of the non-Euclidean geometries in the nineteenth century, and these
geometries were based on a rejection of Euclid’s controversial 5th postulate (the
parallels postulate).

Mathematical proof may employ a “divide and conquer” technique; i.e., break-
ing the conjecture down into subgoals and then attempting to prove each of the
subgoals. Another common proof technique is indirect proof where we assume the
opposite of what we wish to prove, and we show that this results in a contradiction
(e.g., see the proof in Chap. 4 that there are an infinite number of primes or the
proof that there is no rational number whose square is 2). Other proof techniques
used are the method of mathematical induction, where involves a proof of the base
case and inductive step (see Chap. 6).

Aristotle developed syllogistic logic in the fourth century BC, and the rules of
reasoning with valid syllogisms remained dominant in logic up to the nineteenth
century. Boole develop his mathematical logic in the mid-nineteenth century, and
he aimed to develop a calculus of reasoning to verify the correctness of arguments
using logical connectives. Predicate logic (including universal and existential quan-
tifiers) was introduced by Frege in the late nineteenth century as part of his efforts
to derive mathematics from purely logical principles. Russell and Whitehead con-
tinued this attempt in Principia Mathematica, and Russell introduced the theory
of types to deal with the paradoxes in set theory, which he identified in Frege’s
system.

The formalists introduced extensive axioms in addition to logical principles,
and Hilbert’s program led to the definition of a formal mathematical proof as a
sequence of formulae, where each element is either an axiom or derived from a
previous element in the series by applying a fixed set of mechanical rules (e.g.,
modus ponens). The last line in the proof is the theorem to be proved, and the
formal proof is essentially syntactic following rules with the formulae simply a
string of symbols and the meaning of the symbols is unimportant.

The formalists later ran into problems in trying to prove that a formal system
powerful enough to include arithmetic was both complete and consistent, and the
results of Gödel showed that such a system would be incomplete (and one of the

1 Perhaps a good analogy might be that a mathematical proof is like a program written in a high-
level language such as C, whereas a formal mathematical proof in logic is like a program written
in assembly language.

19.1 Introduction 307

Fig. 19.1 Idea of automated
theorem proving

Problem /
Axioms

Proof

Yes

No Timeout

ATP (Automated
Theorem Prover)

propositions without a proof is that of its own consistency). Turing later showed
(with his Turing machine) that mathematics is undecidable: i.e., there is no algo-
rithm or mechanical procedure that may be applied in a finite number of steps to
determine if an arbitrary mathematical proposition is true or false.

The proofs employed in mathematics are rarely formal (in the sense of Hilbert’s
program), and whereas they involve deductions from a set of axioms, these
deductions are rarely expressed as the application of individual rules of logical
inference.

The application of formal methods in an industrial environment requires the use
of machine-assisted proof, since thousands of proof obligations arise from a for-
mal specification, and theorem provers are essential in resolving these efficiently.
Many proofs in formal methods are concerned with crosschecking the details of
the specification, checking the validity of the refinement steps, or checking that
certain properties are satisfied by the specification. There are often many tedious
lemmas to be proved, and theorem provers2 are essential in dealing with these.
Machine proof is explicit, and reliance on some brilliant insight is avoided. Proofs
by hand in formal methods are notorious for containing errors or jumps in rea-
soning, whereas machine proofs are explicit but are often extremely lengthy and
essentially unreadable.

Automated theorem proving (ATP) is difficult, as often mathematicians prove a
theorem with an initial intuitive feeling that the theorem is true (Fig. 19.1). Human
intervention to provide guidance or intuition improves the effectiveness of the
theorem prover. There are several tools available to support theorem proving, and
these include the Boyer-Moore theorem prover (known as NQTHM); the Isabelle
theorem prover; and the HOL system.

The proof of various properties about a program increases confidence in its cor-
rectness. However, an absolute proof of correctness3 is unlikely except for the most

2 Most existing theorem provers are difficult to use and are for specialist use only. There is a need
to improve the usability of theorem provers.
3 This position is controversial with others arguing that if correctness is defined mathematically
then the mathematical definition (i.e., formal specification) is a theorem, and the task is to prove
that the program satisfies the theorem. They argue that the proofs for non-trivial programs exist and

308 19 The Nature of Theorem Proving

trivial of programs. A program may consist of legacy software that is assumed to
work; a compiler that is assumed to work correctly creates it. Theorem provers
are programs that are assumed to function correctly. The best that mathematical
proof in formal methods can claim is increased confidence in the correctness of
the software, rather than an absolute proof of correctness.

19.2 Early Automation of Proof

Early work on the automation of proof began in the 1950s with the beginning
of work in the Artificial Intelligence field, where the early AI practitioners were
trying to develop a “thinking machine”. One of the earliest programs developed
was the Logic Theorist (LT), which was presented at the Dartmouth conference on
Artificial Intelligence in 1956 [1].

It was developed by Allen Newell and Herbert Simon, and it could prove 38 of
the first 52 theorems from Russell and Whitehead’s Principia Mathematica [2].4

Russell and Whitehead had attempted to derive all mathematics from axioms and
the inference rules of logic, and the LT program conducted proof from a small
set of propositional axioms and deduction rules. Its approach was to start with the
theorem to be proved, and to then search for relevant axioms and operators to prove
the theorem. The Logic Theorist proved theorems in the propositional calculus, but
it did not support predicate calculus. It used the five basic axioms of propositional
logic and three rules of inference from the Principii to prove theorems.5

LT demonstrated that computers had the ability to encode knowledge and
information, and to perform intelligent operations such as solving theorems in
mathematics. The heuristic approach of the LT program tried to emulate human
mathematicians but could not guarantee that a proof could be found for every valid
theorem.

If no immediate one-step proof could be found, then a set of subgoals was
generated (these are formulae from which the theorem may be proved in one step)
and proofs of these were then searched for, and so on. The program could use
previously proved theorems while developing a proof of a new theorem. Newell
and Simon were hoping that the Logic Theorist would do more than just prove
theorems in logic, and their goal was that it would attempt to prove theorems in a
human-like way and especially with a selective search.

that the reason why there are not many examples of such proofs is due to a lack of mathematical
specifications.
4 Russell is said to have remarked that he was delighted to see that the Principia Mathematica could
be done by machine, and that if he and Whitehead had known this in advance that they would not
have wasted 10 years doing this work by hand in the early twentieth century.
5 Another possibility (though an inefficient and poor simulation of human intelligence) would be
to start with the five axioms of the Principia, and to apply the three rules of inference to logically
derive all possible sequences of valid deductions. This is known as the British Museum algorithm
(as sensible as putting monkeys in front of typewriters to reproduce all of the books of the British
Museum).

19.2 Early Automation of Proof 309

However, in practice, the Logic Theorist search was not very selective in its
approach, and the subproblems were considered in the order in which they were
generated, and so there was no actual heuristic procedure (as in human problem
solving) to guess at which subproblem was most likely to yield an actual proof.
This meant that the Logic Theorist could, in practice, find only very short proofs,
since as the number of steps in the proof increased, the amount of search required
to find the proof exploded.

The Geometry Machine was developed by Herbert Gelerner at the IBM
Research Centre in New York in the late 1950s, with the goal of developing intel-
ligent behaviour in machines. It differed from the Logic Theorist in that it selected
only the valid subgoals (i.e., it ignored the invalid ones) and attempted to find a
proof of these. The Geometry Machine was successful in finding the solution to
a large number of geometry problems taken from high-school text books in plane
geometry.

The logicians Hao Wang and Evert Beth (the inventor of semantic tableaux
which was discussed in Chap. 10) were critical of the approaches of the AI pio-
neers and believed that mathematical logic could do a lot more. Wang and others
developed a theorem prover for first-order predicate calculus in 1960, but it had
serious limitations due to the combinatorial explosion.

Alan Robinson’s work on theorem provers in the early 1960s led to a proof
procedure termed “resolution”, which appeared to provide a breakthrough in the
automation of predicate calculus theorem provers. A resolution theorem prover
is essentially provided with the axioms of the field of mathematics in question,
and the negation of the conjecture whose proof is sought. It then proceeds until a
contradiction is reached, where there is no possible way for the axioms to be true
and for the conjecture to be false.

The initial success of resolution led to excitement in the AI field where pio-
neers such as John McCarthy (see Chap. 11) believed that human knowledge could
be expressed in predicate calculus,6 and that therefore if resolution was indeed
successful for efficient automated theorem provers, then the general problem of
Artificial Intelligence was well on the way to a solution. However, while resolu-
tion led to improvements with the state explosion problem, it did not eliminate the
problem.

This led to a falloff in research into resolution-based approaches to theorem
proving, and other heuristic-based techniques were investigated by Bledsoe in the
late 1970s. The field of logic programming began in the early 1970s with the
development of the Prolog programming language (see Chap. 11). Prolog is in a
sense an application of automated theorem proving, where problems are stated in
the form of goals (or theorems) that the system tries to prove using a resolution

6 McCarthy’s viewpoint that predicate logic was the solution for the AI field was disputed by
Minsksy and others (resulting in a civil war between the logicists and the proceduralists). The pro-
ceduralists argued that formal logic was an inadequate representation of knowledge for AI and that
predicate calculus was an overly rigid and inadequate framework. They argued that an alternative
approach such as the procedural representation of knowledge was required.

310 19 The Nature of Theorem Proving

theorem prover. The theorem prover generally does not need to be very powerful
as many Prolog programs require only a very limited search, and a depth-first
search from the goal backwards to the hypotheses is conducted.

The Argonne Laboratory (based in Chicago in the United States) developed the
Aura System in the early 1980s (it was later replaced by Otter), as an improved
resolution-based automated theorem prover, and this led to renewed interest in
resolution-based approaches to theorem proving. There is a more detailed account
of the nature of proof and theorem proving in [1].

19.3 Interactive Theorem Provers

The challenges in developing efficient automated theorem provers led researchers
to question whether an effective fully automated theorem prover was possible, and
if it made more sense to develop a theorem prover that could be guided by a human
in its search for a proof. This led to the concept of Interactive theorem proving
(ITP) which involves developing formal proofs by man-machine collaboration and
is (in a sense) a new way of doing mathematics in front of a computer.

Such a system is potentially useful in mathematical research in formalizing
and checking proofs, and it allows the user to concentrate on the creative parts of
the proof and relieves the user of the need of carrying out the trivial steps in the
proof. It is also a useful way of verifying the correctness of published mathematical
proofs by acting as a proof checker, where the ITP is provided with a formal proof
constructed by a human, which may then be checked for correctness.7 Such a
system is important in program verification in showing that the program satisfies
its specification, and especially in the safety/security critical field.

A group at Princeton developed a series of systems called Semi-automated
mathematics (SAM) in the late 1960s, which combined logic routines with human
guidance and control. Their approach placed the mathematician at the heart of
the theorem proving, and it was a departure from the existing theorem proving
approaches where the computer attempted to find proofs unaided. SAM provided
a proof of an unproven conjecture in lattice theory (SAM’s lemma), and this is
regarded as the first contribution of automated reasoning systems to mathematics
[1].

De Bruijn and others at the Technische Hogeschool in Eindhoven in the Nether-
lands commenced development of the Automath system in the late 1960s. This
was a large-scale project for the automated verification of mathematics, and it was
tested by treating a full text book. Automath systematically checked the proofs
from Landau’s text Grundlagen der Analysis (this foundations of analysis text was
first published in 1930).

7 A formal mathematical proof (of a normal proof) is difficult to write down and can be lengthy.
Mathematicians were not really interested in these proof checkers.

19.3 Interactive Theorem Provers 311

The typical components of an Interactive Theorem Prover include an interactive
proof editor to allow editing of proofs, formulae and terms in a formal theory of
mathematics, and a large library of results which is essential for achieving complex
results.

The Gypsy verification environment and its associated theorem prover was
developed at the University of Texas in the 1980s, and it achieved early success
in program verification with its verification of the encrypted packet interface pro-
gram (a 4200 line program). It supports the development of software systems and
formal mathematical proof of their behaviour.

The Boyer-Moore Theorem prover (NQTHM) was developed in the
1970s/1980s at the University of Texas by Boyer and Moore [3]. It was improved
and became known as NQTHM (it has been superseded by ACL2 available from
the University of Texas). It supports mathematical induction as a rule of infer-
ence, and induction is a useful technique in proving properties of programs. The
axioms of Peano arithmetic are built into the theorem prover, and new axioms
added to the system need to pass a “correctness test” to prevent the introduction
of inconsistencies.

It is far more automated than many other interactive theorem provers, but it
requires detailed human guidance (with suggested lemmas) for difficult proofs.
The user therefore needs to understand the proof being sought and the internals of
the theorem prover.

It has been effective in proving well-known theorems such as Gödel’s Incom-
pleteness Theorem, the insolvability of the Halting problem, a formalization of the
Motorola MC 68,020 Microprocessor, and many more.

Computational Logic Inc. was a company founded by Boyer and Moore in 1983
to share the benefits of a formal approach to software development with the wider
computing community. It was based in Austin, Texas, and provided services in the
mathematical modelling of hardware and software systems. This involved the use
of mathematics and logic to formally specify microprocessors and other systems.
The use of its theorem prover was to formally verify that the implementation meets
its specification: i.e., to prove that the microprocessor or other system satisfies its
specification.

The HOL system was developed by Michael Gordon and others at Cambridge
University in the UK, and it is an environment for interactive theorem proving in a
higher-order logic. It has been applied to the formalization of mathematics and to
the verification of hardware (including the verification of microprocessor design).
It requires skilled human guidance and is one of the most widely used theorem
provers. It was originally developed in the early 1980s, and HOL 4 is the latest
version. It is an open-source project and is used by academia and industry.

Isabelle is a theorem proving environment developed at Cambridge University
by Larry Paulson and Tobias Nipkow of the Technical University of Munich. It
allows mathematical formulae to be expressed in a formal language and provides
tools for proving those formulae. The main application is the formalization of

312 19 The Nature of Theorem Proving

mathematical proof and proving the correctness of computer hardware or software
with respect to its specification and proving properties of computer languages and
protocols.

Isabelle is a generic theorem prover in the sense that it has the capacity to accept
a variety of formal calculi, whereas most other theorem provers are specific to a
specific formal calculus. Isabelle is available free of charge under an open-source
licence.

There is a steep learning curve with the theorem provers above, and it generally
takes a couple of months for users to become familiar with them. However, auto-
mated theorem proving has become a useful tool in the verification of integrated
circuit design. Several semiconductor companies use automated theorem proving
to demonstrate the correctness of division and other operators on their processors.
We present a selection of theorem provers in the next section.

19.4 A Selection of Theorem Provers

Table 19.1 presents a small selection of the available automated and interactive
theorem provers.

19.5 Review Questions

1. What is a mathematical proof?
2. What is a formal mathematical proof?
3. What approaches are used to prove a theorem?
4. What is a theorem prover?
5. What role can theorem provers play in software development?
6. What is the difference between an automated theorem prover and an

interactive theorem prover?
7. Investigate and give a detailed description of one of the theorem provers

in Table 19.1.

19.6 Summary

A mathematical proof includes natural language and mathematical symbols, and
often many of the tedious details of the proof are omitted. The proofs in math-
ematics are rarely formal as such, and many proofs in formal methods are
concerned with crosschecking the details of the specification, checking the valid-
ity of the refinement steps, or checking that certain properties are satisfied by the
specification.

19.6 Summary 313

Table 19.1 Selection of theorem provers

Theorem prover Description

ACL2 A Computational Logic for Applicative Common Lisp
(ACL2) is part of the Boyer-Moore family of theorem
provers. It is a software system consisting of a programming
language (LISP) and an interactive theorem prover. It was
developed in the mid-1990s as an industrial strength
successor to the Boyer-Moore Theorem prover (NQTHM). It
is used in the verification of safety critical hardware and
software, and in industrial applications such as the
verification of the floating-point module of a microprocessor

OTTER OTTER is a resolution-style theorem prover for first-order
logic developed at the Argonne Laboratory at the University
of Chicago (it was the successor to Aura). It has been mainly
applied to abstract algebra and formal logic

PVS The Prototype Verification System (PVS) is a mechanized
environment for formal specification and verification. It
includes a specification language integrated with support
tools and an interactive theorem prover. It was developed by
John Rushby and others at SRI in California. The
specification language is based on higher-order logic, and the
theorem prover is guided by the user in conducting proof. It
has been applied to the verification of hardware and software

Theorem Proving System (TPS) TPS is an automated theorem prover for first-order and
higher-order logic (it can also prove theorems interactively).
It was developed at Carnegie Mellon University and is used
for hardware and software verification

HOL and Isabelle HOL and Isabelle were developed by the Automated
Reasoning Group at the University of Cambridge. The HOL
system is an environment for interactive theorem proving in a
higher-order logic, and it has been applied to hardware
verification. Isabelle is a generic proof assistant which allows
mathematical formulae to be expressed in a formal language,
and it provides tools for proving those formulae in a logical
calculus

Boyer-Moore The Boyer-Moore Theorem prover (NQTHM) was developed
at the University of Texas in the 1970s with the goal of
checking the correctness of computer systems. It has been
used to verify the correctness of microprocessors, and it has
been superseded by ACL2

Machine proof is explicit, and reliance on some brilliant insight is avoided.
Proofs by hand often contain errors or jumps in reasoning, while machine proofs
are often extremely lengthy and unreadable. The application of formal methods in
an industrial environment requires the use of machine-assisted proof, since thou-
sands of proof obligations arise from a formal specification, and theorem provers
are essential in resolving these efficiently. The proof of various properties about

314 19 The Nature of Theorem Proving

a program increases confidence in its correctness. However, an absolute proof of
correctness is unlikely except for the most trivial of programs.

Automated theorem proving is difficult, as often mathematicians prove a theo-
rem with an initial intuitive feeling that the theorem is true. Human intervention
to provide guidance or intuition improves the effectiveness of the theorem prover.
Early work on the automation of proof began in the 1950s with the beginning of
work in the Artificial Intelligence field, and one of the earliest programs devel-
oped was the Logic Theorist, which was presented at the Dartmouth conference
on Artificial Intelligence in 1956.

The challenges in developing effective automated theorem provers led
researchers to investigate whether it made more sense to develop a theorem prover
that could be guided by a human in its search for a proof. This led to the develop-
ment of Interactive theorem proving which involved developing formal proofs by
man-machine collaboration.

The typical components of an interactive Theorem Prover include an interactive
proof editor to allow editing of proofs, formulae, and terms in a formal theory of
mathematics, and a large library of results which is essential for achieving complex
results.

An interactive theorem prover allows the user to concentrate on the creative
parts of the proof and relieves the user of the need to carry out and verify the
trivial steps in the proof. It is also a useful way of verifying the correctness of
published mathematical proofs by acting as a proof checker and is also useful in
program verification in showing that the program satisfies its specification, and
especially in the safety/security critical fields.

References

1. MacKensie D (1995) The automation of proof. IEEE a historical and sociological exploration.
Ann Hist Comput 17(3):7–29

2. Russell B, Whitehead AN (1910) Principia Mathematica. Cambridge University Press, Cam-
bridge

3. Boyer R, Moore JS (1979) A computational logic. The Boyer Moore theorem prover. Academic
Press, Cambridge

20Cryptography

Key Topics

Caesar Cipher

Enigma Codes

Bletchley Park

Turing

Public and Private Keys

Symmetric Keys

Block Ciphers

RSA

20.1 Introduction

Cryptography was originally employed to protect communication of private infor-
mation between individuals. Today, it consists of mathematical techniques that
provide secrecy in the transmission of messages between computers, and its
objective is to solve security problems such as privacy and authentication over
a communications channel.

It involves enciphering and deciphering messages, and it employs theoretical
results from number theory (see Chap. 3) to convert the original message (or plain-
text) into cipher text that is then transmitted over a secure channel to the intended
recipient. The cipher text is meaningless to anyone other than the intended recipi-
ent, and the recipient uses a key to decrypt the received cipher text and to read the
original message.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_20

315

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_20&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_20

316 20 Cryptography

The origin of the word “cryptography” is from the Greek ‘kryptos’ meaning
hidden, and ‘graphein’ meaning to write. The field of cryptography is concerned
with techniques by which information may be concealed in cipher texts and made
unintelligible to all but the intended recipient. This ensures the privacy of the
information sent, as any information intercepted will be meaningless to anyone
other than the authorized recipient.

Julius Caesar developed one of the earliest ciphers on his military campaigns in
Gaul (see Chap. 4). His objective was to communicate important messages safely
to his generals. His solution is one of the simplest and widely known encryption
techniques, and it involves the substitution of each letter in the plaintext (i.e., the
original message) by a letter a fixed number of positions down in the alphabet.
The Caesar cipher involves a shift of three positions, and this leads to the letter B
being replaced by E, the letter C by F, and so on.

The Caesar cipher is easily broken, as the frequency distribution of letters may
be employed to determine the mapping. However, the Gaulish tribes were mainly
illiterate, and so it is highly likely that the cipher provided good security. The
translation of the Roman letters by the Caesar cipher (with a shift key of 3) can
be seen in Fig. 4.3.

The process of enciphering a message (i.e., the plaintext) simply involves going
through each letter in the plaintext and writing down the corresponding cipher
letter, with the reverse process employed in deciphering a cipher message. The
encryption and decryption may also be done using modular arithmetic, with the
numbers 0–25 used to represent the alphabet letters, and the encryption of a letter
x is given by x + 3 (mod 26) and decryption of a letter y is given by y − 3 (mod
26).

The Caesar cipher was still in use up to the early twentieth century. However,
by then frequency analysis techniques were available to break the cipher. The
Vigenère cipher uses a Caesar cipher with a different shift at each position in the
text. The value of the shift to be employed with each plaintext letter is defined
using a repeating keyword.

20.2 Breaking the Enigma Codes

The Enigma codes were used by the Germans during the Second World War for
the secure transmission of naval messages to their submarines. These messages
contained top-secret information on German submarine and naval activities in the
Atlantic and the threat that they posed to British and Allied shipping.

The codes allowed messages to be passed secretly using encryption, and this
meant that any unauthorized interception was meaningless to the Allies. The plain-
text (i.e., the original message) was converted by the Enigma machine (Fig. 20.1)
into the encrypted text, and these messages were then transmitted by the German
military to their submarines in the Atlantic, or to their bases throughout Europe.

The Enigma cipher was invented in 1918, and the Germans believed it to
be unbreakable. A letter was typed in German into the machine, and electrical

20.2 Breaking the Enigma Codes 317

Fig. 20.1 The Enigma
machine

impulses through a series of rotating wheels and wires produced the encrypted
letter which was lit up on a panel above the keyboard. The recipient typed the
received message into his machine, and the decrypted message was lit up letter by
letter above the keyboard. The rotors and wires of the machine could be configured
in many different ways, and during the war, the cipher settings were changed at
least once a day. The odds against anyone breaking the Enigma machine without
knowing the setting were 150×1018 to 1.

The British code and cipher school was relocated from London to Bletchley
Park at the start of the Second World War (Fig. 20.2). It was located in the town
of Bletchley (near Milton Keynes about fifty miles northwest of London). It was
commanded by Alistair Dennison and was known as Station X, and several thou-
sands were working there during the second world war. The team at Bletchley Park
broke the Enigma codes and therefore made vital contributions to the British and
Allied war effort.

Polish cryptanalysts did important work in breaking the Enigma machine in
the early 1930s, and they constructed a replica of the machine. They passed their
knowledge on to the British and gave them the replica just prior to the German
invasion of Poland. The team at Bletchley built upon the Polish work, and the team
included Alan Turing1 (Fig. 20.3), Gordan Welchman,2 and other mathematicians.

1 Turing made fundamental contributions to computing, including the theoretical Turing machine.
2 Gordon Welchman was the head of Hut 6 at Bletchley Park, and he made important contribu-
tions to code breaking. He invented a method to reduce the time to find the settings of the Enigma
machine from days to hours. He also invented a technique known as traffic analysis (later called
network analysis/metadata analysis which collected and analysed German messages to determined
where and when they were sent.

318 20 Cryptography

Fig. 20.2 Bletchley park

Fig. 20.3 Alan Turing

The code-breaking teams worked in various huts in Bletchley park. Hut 6
focussed on air force and army ciphers, and hut 8 focussed on naval ciphers. The
deciphered messages were then converted into intelligence reports, with air force
and army intelligence reports produced by the team in hut 3, and naval intelli-
gence reports produced by the team in hut 4. The raw material (i.e., the encrypted
messages) to be deciphered came from wireless intercept stations dotted around
Britain, and from various countries overseas. These stations listened to German
radio messages and sent them to Bletchley park to be deciphered and analysed.

Turing devised a machine to assist with breaking the codes (an idea that was
originally proposed by the Polish cryptanalysts). This electromechanical machine
was known as the bombe (Fig. 20.4), and its goal was to find the right settings
of the Enigma machine for that particular day. The machine greatly reduced the
odds and the time required to determine the settings on the Enigma machine, and
it became the main tool for reading the Enigma traffic during the war. The bombe
was first installed in early 1940, and it weighed over a tonne. It was named after a
cryptological device designed in 1938 by the Polish cryptologist, Marian Rejewski.

A standard Enigma machine employed a set of rotors, and each rotor could be
in any of 26 positions. The bombe tried each possible rotor position and applied
a test. The test eliminated almost all of the positions and left a smaller number of

20.2 Breaking the Enigma Codes 319

Fig. 20.4 Replica of bombe

cases to be dealt with. The test required the cryptologist to have a suitable “crib”:
i.e., a section of ciphertext for which he could guess the corresponding plaintext.

For each possible setting of the rotors, the bombe employed the crib to per-
form a chain of logical deductions. The bombe detected when a contradiction had
occurred, and it then ruled out that setting and moved onto the next. Most of the
possible settings would lead to contradictions and could then be discarded. This
would leave only a few settings to be investigated in detail.

The Government Communication Headquarters (GCHQ) was the successor of
Bletchley Park, and it relocated to Cheltenham after the war. The site at Bletchley
park was then used for training purposes.

The codebreakers who worked at Bletchley Park were required to remain silent
about their achievements until the mid-1970s when the wartime information was
declassified.3 The link between British Intelligence and Bletchley Park came to an
end in the mid-1980s.

It was decided in the mid-1990s to restore Bletchley Park, and today it is run
as a museum by the Bletchley Park Trust.

3 Gordan Welchman published his book ‘The Hut Six Story’ in 1982 (in the US and UK) describing
his wartime experience at Bletchley Park. However, the security services disapproved of its publi-
cation and his security clearance was revoked. He was forbidden to speak of his book and wartime
work.

320 20 Cryptography

Table 20.1 Notation in
cryptography

Symbol Description

M Represents the message (plaintext)

C Represents the encrypted message (cipher text)

ek Represents the encryption key

dk Represents the decryption key

E Represents the encryption process

D Represents the decryption process

20.3 Cryptographic Systems

A cryptographic system is a computer system that is concerned with the secure
transmission of messages. The message is encrypted prior to its transmission,
which ensures that any unauthorized interception and viewing of the message is
meaningless to anyone other than the intended recipient. The recipient uses a key
to decrypt the cipher text and to retrieve the original message.

There are essentially two different types of cryptographic systems employed,
and these are public key cryptosystems and secret key cryptosystems. A public
key cryptosystem is an asymmetric cryptosystem where two different keys are
employed: one for encryption and one for decryption. The fact that a person is
able to encrypt a message does not mean that the person is able to decrypt a
message.

In a secret key cryptosystem, the same key is used for both encryption and
decryption. Anyone who has knowledge on how to encrypt messages has sufficient
knowledge to decrypt messages, and the sender and receiver need to agree on a
shared key prior to any communication. The following notation is employed (Table
20.1).

The encryption and decryption algorithms satisfy the following equation:

Ddk (C) = Ddk
(
Eek (M)

) = M

There are two different keys employed in a public key cryptosystem. These
are the encryption key ek and the decryption key dk with ek /= dk . It is called
asymmetric since the encryption key differs from the decryption key.

There is just one key employed in a secret key cryptosystem, with the same
key ek is used for both encryption and decryption. It is called symmetric since the
encryption key is the same as the decryption key: i.e., ek = dk .

20.4 Symmetric Key Systems

A symmetric key cryptosystem (Fig. 20.5) uses the same secret key for encryption
and decryption. The sender and the receiver first need to agree a shared key prior
to communication. This needs to be done over a secure channel to ensure that the

20.4 Symmetric Key Systems 321

shared key remains secret. Once this has been done they can begin to encrypt and
decrypt messages using the secret key. Anyone who is able to encrypt a message
has sufficient information to decrypt the message.

The encryption of a message is in effect a transformation from the space of
messages m to the space of cryptosystems C. That is, the encryption of a message
with key k is an invertible transformation f such that:

f : m k−→ C

The cipher text is given by C = Ek(M) where M ∈ m and C ∈ C. The legitimate
receiver of the message knows the secret key k (as it will have been transmitted
previously over a secure channel), and so the cipher text C can be decrypted by
the inverse transformation f −1 defined by:

f −1: C k−→ m

Therefore, we have that Dk(C) = Dk(Ek(M)) = M the original plaintext
message.

The advantages and disadvantages of symmetric key systems include (Table
20.2).

Examples of Symmetric Key Systems

(i) Caesar Cipher

The Caesar cipher may be defined using modular arithmetic. It involves a shift
of three places for each letter in the plaintext, and the alphabetic letters are rep-
resented by the numbers 0–25. The encryption is carried out by addition (module

Message
M

Encryption
C = Ek(M)

Decryption
M= Dk(C)

Message
M

Secret Key
(k)

Public Channel
(Insecure)

Hostile Attack
(Enemy)

Secure Channel

Fig. 20.5 Symmetric key cryptosystem

322 20 Cryptography

Table 20.2 Advantages and disadvantages of symmetric key systems

Advantages Disadvantages

Encryption process is simple (as the same key
is used for encryption and decryption)

A shared key must be agreed between two
parties

It is faster than public key systems Key exchange is difficult as there needs to be a
secure channel between the two parties (to
ensure that the key remains secret)

It uses less computer resources than public key
systems

If a user has n trading partners then n secret
keys must be maintained (one for each partner)

It uses a different key for communication with
every different party

There are problems with the management and
security of all of these keys (due to volume of
keys that need to be maintained)

Authenticity of origin or receipt cannot be
proved (as key is shared)

26). The encryption of a plaintext letter x to a cipher letter c is given by4 :

c = x + 3(mod 26)

Similarly, the decryption of a cipher letter c is given by:

x = c − 3(mod 26)

(ii) Generalized Caesar Cipher

This is a generalization of the Caesar cipher to a shift of k (the standard Caesar
cipher involves a shift of three). This is given by:

fk = Ek (x) ≡ x + k(mod 26) 0 ≤ k ≤ 25
f −1
k = Dk (c) ≡ c − k(mod 26) 0 ≤ k ≤ 25

(iii) Affine Transformation

This is a more general transformation and is defined by:

f(a,b) = E(a,b)(x) ≡ ax + b(mod 26) 0 ≤ a, b, x ≤ 25 and gcd(a, 26) = 1
f −1
(a,b) = D(a,b)(c) ≡ a−1(c − b)(mod 26) a−1 is the inverse of a mod 26

4 Here x and c are variables rather than the alphabetic characters ‘x’ and ‘c’.

20.4 Symmetric Key Systems 323

(iv) Block Ciphers

Stream ciphers encrypt a single letter at a time and are easy to break. Block
ciphers offer greater security, the plaintext is split into groups of letters, and the
encryption is performed on the block of letters rather than on a single letter.

The message is split into blocks of n-letters: M1, M2, … Mk where each Mi

(1≤ i ≤ k) is a block n-letters. The letters in the message are translated into their
numerical equivalents, and the cipher text is formed as follows:

Ci ≡ AMi + B(mod N) i = 1, 2, . . . k
⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
an1 an2 an3 · · · ann

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

m1

m2

m3

· · ·
· · ·
mn

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

b1
b2
b3
· · ·
· · ·
bn

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

c1
c2
c3
· · ·
· · ·
cn

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

where (A, B) is the key, A is an invertible n× n matrix with gcd(det(A), N) =
1,5 Mi = (m1, m2, … mn)T, B = (b1, b2, … bn)T, Ci = (c1, c2, …, cn)T. The
decryption is performed by:

Mi ≡ A−1(Ci − B)(mod N) i = 1, 2, . . . k
⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

m1

m2

m3

· · ·
· · ·
mn

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
. . . · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
an1 an2 an3 · · · ann

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

−1 ⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

c1 − b1
c2 − b2
c3 − b3

· · ·
. . .

cn − bn

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

(v) Exponential Ciphers

Pohlig and Hellman [1] invented the exponential cipher in 1976. This cipher is
less vulnerable to frequency analysis than block ciphers.

Let p be a prime number and let M be the numerical representation of the
plaintext, with each letter of the plaintext replaced with its two-digit representation
(00–25). That is, A = 00, B = 01, …, Z = 25.

M is divided into blocks Mi (these are equal size blocks of m letters where the
block size is approximately the same number of digits as p). The number of letters

5 This requirement is to ensure that the matrix A is invertible. Matrices are discussed in Chap. 27.

324 20 Cryptography

m per block is chosen such that:

2525 . . . 25︸ ︷︷ ︸
m times

< p < 2525 . . . 25︸ ︷︷ ︸
m+1 times

For example, for the prime 8191 a block size of m = 2 letters (4 digits) is
chosen since:

2525 < 8191 < 252,525

The secret encryption key is chosen to be an integer k such that 0 < k < p and
gcd(k, p − 1) = 1. Then the encryption of the block Mi is defined by:

Ci = Ek (Mi) ≡ Mk
i (mod p)

The cipher text Ci is an integer such that 0 ≤ Ci < p.
The decryption of Ci involves first determining the inverse k−1 of the key k

(mod p − 1), i.e., we determine k−1 such that k.k−1 ≡ 1 (mod p − 1). The secret
key k was chosen so that (k, p − 1) = 1, and this means that there are integers d
and n such that kd = 1 + n(p − 1), and so k−1 is d and kk−1 = 1 + n(p − 1).
Therefore,

Dk−1 (Ci) ≡ Ck−1

i ≡
(
Mk

i

)k−1

≡ M1+n(p−1)
i ≡ Mi (mod p)

The fact that M1+n(p−1)
i ≡ Mi (mod p) follows from Euler’s Theorem and

Fermat’s Little Theorem (Theorem 3.7 and 3.8), which are discussed in Chap. 3
of [2]. Euler’s Theorem states that for two positive integers a and n with gcd(a,n)
= 1 that aφ(n) ≡ 1 (mod n).

Clearly, for a prime p we have that φ(p) = p − 1. This allows us to deduce
that:

M1+n(p−1)
i ≡ M1

i M
n(p−1)
i ≡ Mi

(
M (p−1)

i

)n ≡ Mi (1)
n ≡ Mi (mod p)

(vi) Data Encryption Standard (DES)

DES is a popular cryptographic system [3] used by governments and private
companies around the world. It is based on a symmetric key algorithm and uses a
shared secret key that is known only to the sender and receiver. It was designed
by IBM and approved by the National Bureau of Standards (NBS6) in 1976. It is

6 The NBS is now known as the National Institute of Standards and Technology (NIST).

20.4 Symmetric Key Systems 325

a block cipher, and a message is split into 64-bit message blocks. The algorithm
is employed in reverse to decrypt each cipher text block.

Today, DES is considered to be insecure for many applications as its key size
(56 bits) is viewed as being too small, and the cipher has been broken in less
than 24 h. This has led to it being withdrawn as a standard and replaced by the
Advanced Encryption Standard (AES), which uses a larger key of 128 bits or 256
bits.

The DES algorithm uses the same secret 56-bit key for encryption and decryp-
tion. The key consists of 56 bits taken from a 64-bit key that includes 8 parity bits.
The parity bits are at position 8, 16, …, 64, and so every 8th bit of the 64-bit key
is discarded leaving behind only the 56-bit key.

The algorithm is then applied to each 64-bit message block, and the plaintext
message block is converted into a 64-bit cipher text block. An initial permutation
is first applied to M to create M ,, and M , is divided into a 32-bit left half L0 and a
32-bit right half R0. There are then 16 iterations, with the iterations having a left
half and a right half:

Li = Ri−1

Ri = Li−1 ⊕ f (Ri−1, Ki)

The function f is a function that takes a 32-bit right half and a 48-bit round key
Ki (each Ki contains a different subset of the 56-bit key) and produces a 32-bit
output. Finally, the pre-cipher text (R16, L16) is permuted to yield the final cipher
text C. The function f operates on half a message block (Table 20.3) and involves:

The decryption of the cipher text is similar to the encryption, and it involves
running the algorithm in reverse.

DES has been implemented on a microchip. However, it has been superseded
in recent years by AES due to security concerns with its small 56-bit key size. The
AES uses a key size of 128 bits or 256 bits.

Table 20.3 DES encryption

Step Description

1 Expansion of the 32-bit half block to 48 bits (by duplicating half of the bits)

2 The 48-bit result is combined with a 48-bit subkey of the secret key using an XOR
operation

3 The 48-bit result is broken into 8 * 6 bits and passed through 8 substitution boxes to
yield 8 * 4 = 32 bits
(This is the core part of the encryption algorithm.)

4 The 32-bit output is re-arranged according to a fixed permutation

326 20 Cryptography

20.5 Public Key Systems

A public key cryptosystem (Fig. 20.6) is an asymmetric key system where there is
a separate key ek for encryption and dk decryption with ek /=dk . Martin Hellman
and Whitfield Diffie invented it in 1976. The fact that a person is able to encrypt
a message does not mean that the person has sufficient information to decrypt
messages.

The public key cryptosystem is based on the following (Table 20.4).
The advantages and disadvantages of public key cryptosystems include (Table

20.5).
The implementation of public key cryptosystems is based on trapdoor one-way

functions. A function f : X → Y is a trapdoor one-way function if

• f is easy to computer
• f −1 is difficult to compute
• f −1 is easy to compute if a trapdoor (secret information associated with the

function) becomes available.

A function satisfying just the first two conditions above is termed a one-way
function.

Message
M

Encryption
C = Eek(M)

Decryption
M= Ddk(C)

Message
M

Public Channel
(Insecure)

Hostile Attack
(Enemy)

Decryption Key
(Private)

Encryption Key
(Public)

Fig. 20.6 Public key cryptosystem

Table 20.4 Public key encryption system

Item Description

1 It uses the concept of a key pair (ek , dk)

2 One half of the pair can encrypt messages and the other half can decrypt messages

3 One key is private, and one key is public

4 The private key is kept secret, and the public key is published (but associated with
trading partner)

5 The key pair is associated with exactly one trading partner

20.5 Public Key Systems 327

Table 20.5 Advantages and disadvantages of public key cryptosystems

Advantages Disadvantages

Only the private key needs to be kept secret Public keys must be authenticated

The distribution of keys for encryption is
convenient as everyone publishes their public
key and the private key is kept private

It is slow and uses more computer resources

It provides message authentication as it allows
the use of digital signatures (which enables the
recipient to verify that the message is really
from the particular sender)

Security compromise is possible (if private
key compromised)

The sender encodes with the private key that is
known only to sender. The receiver decodes
with the public key and therefore knows that
the message is from the sender

Loss of private key may be irreparable (unable
to decrypt messages)

Detection of tampering (digital signatures
enable the receiver to detect whether message
was altered in transit)

Provides for non-repudiation

Examples of Trapdoor and One-way Functions

(i) The function f : pq → n (where p and q are primes) is a one-way function
since it is easy to compute. However, the inverse function f −1 is difficult to
compute problem for large n since there is no efficient algorithm to factorize
a large integer into its prime factors (integer factorization problem).

(ii) The function f g, N : x → gx (mod N) is a one-way function since it is easy to
compute. However, the inverse function f −1 is difficult to compute as there
is no efficient method to determine x from the knowledge of gx (mod N) and
g and N (the discrete logarithm problem).

(iii) The function f k, N : x →xk (mod N) (where N = pq and p and q are primes)
and kk, ≡ 1 (mod ϕ(n)) is a trapdoor function. It is easy to compute but the
inverse of f (the kth root modulo N) is difficult to compute. However, if the
trapdoor k, is given then f can easily be inverted as (xk)k, ≡ x (mod N).

20.5.1 RSA Public Key Cryptosystem

Rivest, Shamir, and Adleman proposed a practical public key cryptosystem (RSA)
based on primality testing and integer factorization in the late 1970s. The RSA
algorithm was filed as a patent (Patent No. 4405, 829) at the U.S. Patent Office
in December 1977. The RSA public key cryptosystem is based on the following
assumptions:

328 20 Cryptography

• It is straightforward to find two large prime numbers.
• The integer factorization problem is infeasible for large numbers.

The algorithm is based on mod-n arithmetic where n is a product of two large
prime numbers.

The encryption of a plaintext message M to produce the cipher text C is given
by:

C ≡ Me(mod n)

where e is the public encryption key, M is the plaintext, C is the cipher text, and
n is the product of two large primes p and q. Both e and n are made public, and
e is chosen such that 1 < e < φ(n), where φ(n) is the number of positive integers
that are relatively prime to n.

The cipher text C is decrypted by

M ≡ Cd (mod n)

where d is the private decryption key that is known only to the receiver, and ed ≡
1 (mod φ(n)) and d and φ(n) are kept private.

The calculation of φ(n) is easy if both p and q are known, as it is given by φ
(n) = (p − 1)(q − 1). However, its calculation for large n is infeasible if p and q
are unknown.

ed ≡ 1(mod φ(n))

⇒ ed = 1 + kφ(n) for some k ∈ Z

Euler’s Theorem is discussed in Chap. 3 of [2], and this result states that if a
and n are positive integers with gcd(a, n) = 1 then aφ(n) ≡ 1 (mod n). Therefore,
Mφ(n) ≡ 1 (mod n) and Mkφ(n) ≡ 1 (mod n). The decryption of the cipher text is
given by:

Cd (mod n) ≡ Med(mod n)

≡ M1+kφ(n) (mod n)

≡ M1Mkφ(n) (mod n)

≡ M · 1(mod n)

≡ M(mod n)

20.7 Summary 329

Table 20.6 Steps for A to
send secure message and
signature to B

Step Description

1 A uses B’s public key to encrypt the message

2 A uses its private key to encrypt its signature

3 A sends the message and signature to B

4 B uses A’s public key to decrypt A’s signature

5 B uses its private key to decrypt A’s message

20.5.2 Digital Signatures

The RSA public key cryptography may also be employed to obtain digital sig-
natures. Suppose A wishes to send a secure message to B as well as a digital
signature. This involves signature generation using the private key, and signature
verification using the public key. The steps involved are (Table 20.6).

The National Institute of Standards and Technology (NIST) proposed an algo-
rithm for digital signatures in 1991. The algorithm is known as the Digital
Signature Algorithm (DSA) and later became the Digital Signature Standard
(DSS).

20.6 Review Questions

1. Discuss the Caesar cipher.
2. Describe how the team at Bletchley Park cracked the German Enigma

codes.
3. Explain the differences between a public key cryptosystem and a private

key cryptosystem.
4. Describe the advantages/disadvantages of symmetric key cryptosystems.
5. Describe the various types of symmetric key systems.
6. What are the advantages and disadvantages of public key cryptosystems?
7. Describe public key cryptosystems.
8. Describe how digital signatures may be generated.

20.7 Summary

Cryptography is the study of mathematical techniques that provide secrecy in the
transmission of messages between computers. It was originally employed to pro-
tect communication between individuals, and today it is employed to solve security
problems such as privacy and authentication over a communications channel.

It involves enciphering and deciphering messages and uses theoretical results
from number theory to convert the original messages (or plaintext) into cipher text

330 20 Cryptography

that is then transmitted over a secure channel to the intended recipient. The cipher
text is meaningless to anyone other than the intended recipient, and the received
cipher text is then decrypted to allow the recipient to read the message.

A public key cryptosystem is an asymmetric cryptosystem. It has two different
encryption and decryption keys, and the fact that a person has knowledge on how
to encrypt messages does not mean that the person has sufficient information to
decrypt messages.

In a secret key cryptosystem, the same key is used for both encryption and
decryption. Anyone who has knowledge on how to encrypt messages has suffi-
cient knowledge to decrypt messages, and it is essential that the key is kept secret
between the two parties.

References

1. Pohlig S, Hellman M (1978) An improved algorithm for computing algorithms over GF(p) and
its cryptographic significance. IEEE Trans Inf Theory 24:106–110

2. O’Regan G (2021) Guide to discrete mathematics, 2nd edn. Springer, Berlin
3. National Bureau of Standards (1977) Data encryption standard. FIPS-Pub 46. U.S. Department

of Commerce

Coding Theory 21

Key Topics

Groups, Rings and Fields

Block Codes

Error Detection and Correction

Generation Matrix

Hamming Codes

21.1 Introduction

Coding theory is a practical branch of mathematics concerned with the reliable
transmission of information over communication channels. It allows errors to be
detected and corrected, which is essential when messages are transmitted through
a noisy communication channel. The channel could be a telephone line, radio link,
or satellite link, and coding theory is applicable to mobile communications and
satellite communications. It is also applicable to storing information on storage
systems such as the compact disc.

It includes theory and practical algorithms for error detection and correction,
and it plays an important role in modern communication systems that require
reliable and efficient transmission of information.

An error correcting code encodes the data by adding a certain amount of redun-
dancy to the message. This enables the original message to be recovered if a small
number of errors have occurred. The extra symbols added are also subject to errors,
as accurate transmission cannot be guaranteed in a noisy channel.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_21

331

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_21&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_21

332 21 Coding Theory

Source
Encoder

Channel
Encoder Modulator Source

Decoder
Channel
DecoderDemodulator

Channelu b r û

Fig. 21.1 Basic digital communication

The basic structure of a digital communication system is shown in Fig. 21.1. It
includes transmission tasks such as source encoding, channel encoding and mod-
ulation; and receiving tasks such as demodulation, channel decoding, and source
decoding.

The modulator generates the signal that is used to transmit the sequence of
symbols b across the channel. The transmitted signal may be altered due to the
fact that there is noise in the channel, and the signal received is demodulated to
yield the sequence of received symbols r.

The received symbol sequence r may differ from the transmitted symbol
sequence b due to the noise in the channel, and therefore a channel code is
employed to enable errors to be detected and corrected. The channel encoder intro-
duces redundancy into the information sequence u, and the channel decoder uses
the redundancy for error detection and correction. This enables the transmitted
symbol sequence û to be estimated.

Shannon [1] showed that it is theoretically possible to produce an information
transmission system with an error probability as small as required provided that
the information rate is smaller than the channel capacity.

Coding theory uses several results from pure mathematics, and we discussed
several abstract mathematical structures that are used in coding theory in Chap. 5.
We briefly discuss its mathematical foundations in the next section.

21.2 Mathematical Foundations of Coding Theory

Coding theory is built from the results of modern algebra, and it uses abstract
algebraic structures such as groups, rings, fields, and vector spaces. These abstract
structures provide a solid foundation for the discipline, and the main abstract struc-
tures used include vector spaces and fields. A group is a non-empty set with a
single binary operation, whereas rings and fields are algebraic structures with two
binary operations satisfying various laws. A vector space consists of vectors over
a field.

The representation of codewords is by n-dimensional vectors over the finite
field Fq. A codeword vector v is represented as the n-tuple:

v = (a0, a, . . . , an−1)

where each ai ∈Fq. The set of all n-dimensional vectors is the n-dimensional vector
space Fn

q with qn elements. The addition of two vectors v and w, where v = (a0,

21.3 Simple Channel Code 333

a1, …, an−1) and w = (b0, b1, …, bn−1) is given by:

v + w = (a0 + b0, a1 + b1, . . . , an−1 + bn−1)

The scalar multiplication of a vector v = (a0, a1, … an−1)∈Fn
q by a scalar

β ∈Fq is given by:

βv = (βa0, βa1, . . . , βan−1)

The set Fn
q is called the vector space over the finite field Fq if the vector

space properties hold. A finite set of vectors v1, v2, …, vk is said to be linearly
independent if:

β1v1 + β2v2 + · · · + βk vk = 0 ⇒ β1 = β2 = · · · βk = 0

Otherwise, the set of vectors v1, v2, … vk is said to be linearly dependent.
The dimension (dim W) of a subspace W ⊆V is k if there are k linearly inde-

pendent vectors in W but every k + 1 vectors are linearly dependent. A subset of
a vector space is a basis for V if it consists of linearly independent vectors, and
its linear span is V (i.e., the basis generates V).

We shall employ the basis of the vector space of codewords to create the gen-
erator matrix to simplify the encoding of the information words. The linear span
of a set of vectors v1, v2, …, vk is defined as β1v1 + β2v2 + · · · + βk vk .

21.3 Simple Channel Code

We present a simple example to illustrate the concept of an error correcting code,
and the example code presented is able to correct a single transmitted error only.

We consider the transmission of binary information over a noisy channel that
leads to differences between the transmitted sequence and the received sequence.
The differences between the transmitted and received sequence are illustrated by
underlining the relevant digits in the example.

Sent 00101110

Received 00000110

Initially, it is assumed that the transmission is done without channel codes as
follows:

00101110
Channel−→ 00000110

334 21 Coding Theory

Next, the use of an encoder is considered and a triple repetition-encoding
scheme is employed. That is, the binary symbol 0 is represented by the code word
000, and the binary symbol 1 is represented by the code word 111.

00101110 → Encoder → 000000111000111111111000

Other words, if the symbol 0 is to be transmitted then the encoder emits the
codeword 000, and similarly the encoder emits 111 if the symbol 1 is to be trans-
mitted. Assuming that on average one symbol in four is incorrectly transmitted,
then transmission with binary triple repetition may result in a received sequence
such as:

000000111000111111111000 → Channel → 010000011010111010111010

The decoder tries to estimate the original sequence by using a majority decision
on each 3-bit word. Any 3-bit word that contains more zeros than ones is decoded
to 0, and similarly if it contains more ones than zero it is decoded to 1. The
decoding algorithm yields:

0100000110100111010111010 → Decoder → 00101010

In this example, the binary triple repetition code is able to correct a single error
within a code word (as the majority decision is two to one). This helps to reduce
the number of errors transmitted compared to unprotected transmission. In the first
case where an encoder is not employed there are two errors, whereas there is just
one error when the encoder is used.

However, there are disadvantages with this approach in that the transmission
bandwidth has been significantly reduced. It now takes three times as long to
transmit an information symbol with the triple replication code than with standard
transmission. Therefore, it is desirable to find more efficient coding schemes.

21.4 Block Codes

There were two code words employed in the simple example above: namely 000
and 111. This is an example of a (n, k) code where the code words are of length n
= 3, and the information words are of length k = 1 (as we were just encoding a
single symbol 0 or 1). This is an example of a (3, 1) block code, and the objective
of this section is to generalize the simple coding scheme to more efficient and
powerful channel codes.

The fundamentals of the q-nary (n, k) block codes (where q is the number of
elements in the finite field Fq) involve converting an information block of length
k to a codeword of length n. Consider an information sequence u0, u1, u2, …
of discrete information symbols where ui ∈ {0, 1, …, q − 1} = Fq. The normal

21.4 Block Codes 335

class of channel codes is when we are dealing with binary codes, i.e., q = 2. The
information sequence is then grouped into blocks of length k as follows:

u0u1u2 . . . uk−1
︸ ︷︷ ︸

ukuk+1uk+2 . . . u2k−1
︸ ︷︷ ︸

u2ku2k+1u2k+2 . . . u3k−1 . . .
︸ ︷︷ ︸

Each block is of length k (i.e., the information words are of length k), and it is
then encoded separately into codewords of length n. For example, the information
word u0u1u2 . . . uk−1 is uniquely mapped to a code word b0b1b2 . . . bn−1 of length
n where bi ∈Fq. Similarly, the information word ukuk+1uk+2 . . . u2k−1 is encoded
to the code word bnbn+1bn+2 . . . b2n−1 of length n where bi ∈Fq. That is,

(u0u1u2 . . . uk−1) → Encoder → (b0b1b2 . . . bn−1)

These code words are then transmitted across the communication channel, and
the received words are then decoded. The received word r = (r0r1r2 . . . rn−1) is
decoded into the information word û = (

û0 û1 û2 . . . ̂uk−1
)

(r0r1r2 . . . rn−1) → Decoder → (

û0 û1 û2 . . . ̂uk−1
)

Strictly speaking the decoding is done in two steps with the received n-block
word r first decoded to the n-block codeword b*. This is then decoded into the
k-block information word û. The encoding, transmission, and decoding of an (n,
k) block may be summarized as follows (Fig. 21.2).

A lookup table may be employed for the encoding to determine the code word
b for each information word u. However, the size of the table grows exponentially
with increasing information word length k, and so this is inefficient due to the
large memory size required. We shall discuss later how a generator matrix may be
used to provide an efficient encoding and decoding mechanism.

Notes

(i) The codeword is of length n.
(ii) The information word is of length k.
(iii) The codeword length n is larger than the information word length k.
(iv) A block (n, k) code is a code in which all codewords are of length n and all

information words are of length k.

Channel
Encoder Modulator Channel

DecoderDemodulator
Channelu b

(r0r1r2 …rn-1) (û0û1û2 …ûk-1)(u0u1u2 …uk-1) (b0b1b2 …bn-1)

r û

Fig. 21.2 Encoding and decoding of an (n, k) block

336 21 Coding Theory

(v) The number of possible information words is given by M = qk (where each
information symbol can take one of q possible values and the length of the
information word is k).

(vi) The code rate R in which information is transmitted across the channel is
given by:

R =
k

n

(vii) The weight of a codeword is b = (b0b1b2 . . . bn−1) which is given by the
number of non-zero components of b. That is,

wt(b) = |{i : bi /= 0, 0 ≤ i < n}|

(viii) The distance between two codewords b = (b0b1b2 . . . bn−1) and b, =
(

b,
0b,

1b,
2 . . . b,

n−1

)

measures how close the codewords b and b, are to each
other. It is given by the Hamming distance:

dist
(

b, b,) = ∣

∣

{

i : bi /= b,
i , 0 ≤ i < n

}∣

∣

(ix) The minimum Hamming distance for a code B consisting of M codewords
b1, …, bM is given by:

d = min
{

dist
(

b, b,): where b /= b,}

(x) The (n, k) block code B = {b1, …, bM} with M (= qk) codewords of length
n and minimum Hamming distance d is denoted by B(n, k, d).

21.4.1 Error Detection and Correction

The minimum Hamming distance offers a way to assess the error detection and
correction capability of a channel code. Consider two codewords b and b, of an
(n, k) block code B(n, k, d).

Then, the distance between these two codewords is greater than or equal to
the minimum Hamming distance d, and so errors can be detected as long as the
erroneously received word is not equal to a codeword different from the transmitted
code word.

That is, the error detection capability is guaranteed as long as the number
of errors is less than the minimum Hamming distance d, and so the number of
detectable errors is d − 1.

21.5 Linear Block Codes 337

Fig. 21.3 Error-correcting
capability sphere b b’

p p
r

Any two codewords are of distance at least d and so if the number of errors is
less than d /2 then the received word can be properly decoded to the codeword b.
That is, the error correction capability is given by:

Ecor =
d − 1
2

An error-correcting sphere (Fig. 21.3) may be employed to illustrate the error
correction of a received word to the correct codeword b. This may be done when
all received words are within the error-correcting sphere with radius p (< d /2).

If the received word r is different from b in less than d /2 positions, then it
is decoded to b as it is more than d /2 positions from the next closest codeword.
That is, b is the closest codeword to the received word r (provided that the error-
correcting radius is less than d /2).

21.5 Linear Block Codes

Linear block codes have nice algebraic properties and the codewords in a linear
block code are considered to be vectors in the finite vector space Fn

q. The repre-
sentation of codewords by vectors allows the nice algebraic properties of vector
spaces to be used, and this simplifies the encoding of information words as a
generator matrix may be employed to create the codewords.

An (n, k) block code B(n, k, d) with minimum Hamming distance d over the
finite field Fq is called linear if B(n, k, d) is a subspace of the vector space Fn

q

of dimension k. The number of codewords is then given by:

M = qk

The rate of information (R) through the channel is given by:

R =
k

n

Clearly, since B(n, k, d) is a subspace of Fn
q any linear combination of the

codewords (vectors) will be a codeword. That is, for the codewords b1, b2, …, br

we have that:

α1b1 + α2b2 + · · · + αr br ∈ B(n, k, d)

where α1, α2, … , αr ∈ Fq and b1, b2, …, br ∈B(n, k, d).

338 21 Coding Theory

Clearly, the n-dimensional zero row vector (0, 0, …, 0) is always a codeword,
and so (0, 0, …, 0)∈ B(n, k, d). The minimum Hamming distance of a linear
block code B(n, k, d) is equal to the minimum weight of the nonzero codewords:
That is,

d = min
∀b /=b,

{

dist
(

b,b,)} = min∀b /=0
wt(b)

In summary, an (n, k) linear block code B(n, k, d) is:

1. A subspace of Fn
q.

2. The number of codewords is M = qk .
3. The minimum Hamming distance d is the minimum weigh of the non-zero

codewords.

The encoding of a specific k-dimensional information word u = (u0, u1, …, uk−1)
to a n-dimensional codeword b = (b0, b1, …, bn−1) may be done efficiently with
a generator matrix (matrices are discussed in Chap. 27). First, a basis {g0, g1,
… gk−1} of the k-dimensional subspace spanned by the linear block code is cho-
sen, and this consists of k linearly independent n-dimensional vectors. Each basis
element gi (where 0 ≤ i ≤k−1) is a n-dimensional vector:

gi =
(

gi,0, gi ,1, . . . , gi ,n−1
)

The corresponding codeword b = (b0, b1, …, bn−1) is then a linear combination
of the information word with the basis elements. That is,

b = u0g0 + u1g1 + · · · + uk−1gk−1

where each information symbol ui ∈Fq. The generator matrix G is then con-
structed from the k linearly independent basis vectors as follows (Fig. 21.4).

The encoding of the k-dimensional information word u to the n-dimensional
codeword b involves matrix multiplication (Fig. 21.5).

This may also be written as:

b = uG

Fig. 21.4 Generator matrix g0,n-1….g0,2g0,1g0,0

gk-1,n-1….gk-1,2gk-1,1gk-1,0

g2,n-1….g2,2g2,1g2,0

g1,n-1….g1,2g1,1g1,0

….….….….…

….

…. ….….….…

….….….…

g0,n-1….g0,2g0,1g0,0

gk-1,n-1….gk-1,2gk-1,1gk-1,0

g2,n-1….g2,2g2,1g2,0

g1,n-1….g1,2g1,1g1,0

….….….….…

….

…. ….….….…

….….….…

gk-1

….

….

….

g2,

g1,

g0,

gk-1

….

….

….

g2,

g1,

g0,

=G =

21.5 Linear Block Codes 339

Fig. 21.5 Generation of
codewords

g0,n-1….g0,2g0,1g0,0

gk-1,n-1….gk-1,2gk-1,1gk-1,0

g2,n-1….g2,2g2,1g2,0

g1,n-1….g1,2g1,1g1,0

….….….….…

….

…. ….….….…

….….….…

g0,n-1….g0,2g0,1g0,0

gk-1,n-1….gk-1,2gk-1,1gk-1,0

g2,n-1….g2,2g2,1g2,0

g1,n-1….g1,2g1,1g1,0

….….….….…

….

…. ….….….…

….….….…

= (b0, b1,…., bn-1)(u0, u1,…., uk-1)

Fig. 21.6 Identity matrix
(k ×k)

Clearly, all M = qk codewords b∈B(n, k, d) can be generated according to
this rule, and so the matrix G is called the generator matrix. The generator matrix
defines the linear block code B(n, k, d). There is an equivalent k ×n generator
matrix for B(n, k, d) defined as:

G = Ik
∣

∣Ak,n−k

where Ik is the k ×k identity matrix (Fig. 21.6).
The encoding of the information word u yields the codeword b such that the

first k symbols bi of b are the same as the information symbols ui 0≤ i ≤k.

b = uG = (

u
∣

∣u Ak,n−k
)

The remaining m = n − k symbols are generated from uAk,n−k and the last m
symbols are the m parity check symbols. These are attached to the information
vector u for the purpose of error detection and correction.

21.5.1 Parity Check Matrix

The linear block code B(n, k, d) with generator matrix G = (Ik | Ak,n−k) may be
defined equivalently by the (n − k) ×n parity check matrix H, where this matrix
is defined as:

H =
(

−AT
k,n−k |In−k

)

The generator matrix G and the parity check matrix H are orthogonal, i.e.,

H GT = 0n−k,k

340 21 Coding Theory

The parity check orthogonality property holds if and only if the vector belongs
to the linear block code. That is, for each code vector in b∈ B(n, k, d) we have

HbT = 0n−k,1

and vice versa whenever the property holds for a vector r, then r is a valid
codeword in B(n, k, d). We present an example of a parity check matrix in Example
21.1 below.

21.5.2 Binary Hamming Code

The Hamming code is a linear code that has been employed in dynamic random
access memory to detect and correct deteriorated data in memory. The generator
matrix for the B(7, 4, 3) binary Hamming code is given by (Fig. 21.7).

The information words are of length k = 4 and the codewords are of length n
= 7. For example, it can be verified by matrix multiplication that the information
word (0, 0, 1, 1) is encoded into the codeword (0, 0, 1, 1, 0, 0, 1).

That is, three parity bits 001 have been added to the information word (0, 0, 1,
1) to yield the codeword (0, 0, 1, 1, 0, 0, 1).

The minimum Hamming distance is d = 3, and the Hamming code can detect
up to two errors, and it can correct one error.

Example 21.1 (Parity Check Matrix—Hamming Code) The objective of this example
is to construct the parity check matrix of the binary Hamming code (7, 4, 3) and to
show an example of the parity check orthogonality property.

First, we construct the parity check matrix H which is given by H = (−AT
k, n−k

| In−k) or another words H = (−AT
4,3 | I3). We first note that

A4,3 =

⎡

⎢
⎢
⎣

0 1 1
1 0 1
1 1 0
1 1 1

⎤

⎥
⎥
⎦ AT

4,3 =

⎡

⎣
0 1 1 1
1 0 1 1
1 1 0 1

⎤

⎦

Therefore, H is given by:

H =

⎡

⎣
0 −1 −1 −1 1 0 0

−1 0 −1 −1 0 1 0
−1 −1 0 −1 0 0 1

⎤

⎦

Fig. 21.7 Hamming code
B(7, 4, 3) generator matrix

21.6 Miscellaneous Codes in Use 341

We noted that the encoding of the information word u = (0011) yields the code-
word b = (0011001). Therefore, the calculation of HbT yields (recalling that addition
is modulo two):

HbT =

⎡

⎣
0 −1 −1 −1 1 0 0

−1 0 −1 −1 0 1 0
−1 −1 0 −1 0 0 1

⎞

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
1
0
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎝
0
0
0

⎞

⎠

21.5.3 Binary Parity Check Code

The binary parity check code is a linear block code over the finite field F2. The
code takes a k-dimensional information word u = (u0, u1, …, uk−1) and generates
the codeword b = (b0, b1, …, bk−1, bk) where ui = bi (0 ≤ i ≤k−1) and bk is the
parity bit chosen so that the resulting codeword is of even parity. That is,

bk = u0 + u1 + · · · + uk−1 =
k−1
∑

i=0

ui

21.6 Miscellaneous Codes in Use

There are many examples of codes in use such as repetition codes (such as the
triple replication code considered earlier in Sect. 21.3); parity check codes where
a parity symbol is attached such as the binary parity check code; Hamming codes
such as the (7, 4) code that was discussed in Sect. 21.5.2, which has been applied
for error correction of faulty memory.

The Reed–Muller codes form a class of error correcting codes that can correct
more than one error. Cyclic codes are special linear block codes with efficient
algebraic decoding algorithms. The BCH codes are an important class of cyclic
codes, and the Reed–Solomon codes are an example of a BCH code.

Convolution codes have been applied in the telecommunications field, for exam-
ple, in GSM, UMTS, and in satellite communications. They belong to the class of
linear codes, but also employ a memory so that the output depends on the current
input symbols and previous input. For more detailed information on coding theory
see [2].

342 21 Coding Theory

21.7 Review Questions

1. Describe the basic structure of a digital communication system.
2. Describe the mathematical structure known as the field. Give examples of

fields.
3. Describe the mathematical structure known as the ring and give examples

of rings. Give examples of zero divisors in rings.
4. Describe the mathematical structure known as the vector space and give

examples
5. Explain the terms linear independence and linear dependence and a basis.
6. Describe the encoding and decoding of an (n, k) block code where an

information word of length k is converted to a codeword of length n.
7. Show how the minimum Hamming distance may be employed for error

detection and error correction.
8. Describe linear block codes and show how a generator matrix may be

employed to generate the codewords from the information words.

21.8 Summary

Coding theory is the branch of mathematics that is concerned with the reliable
transmission of information over communication channels. It allows errors to be
detected and corrected, and this is extremely useful when messages are transmit-
ted through a noisy communication channel. This branch of mathematics includes
theory and practical algorithms for error detection and correction.

The theoretical foundations of coding theory were considered, and its founda-
tions lie in abstract algebra including group theory, ring theory, fields, and vector
spaces. The codewords are represented by n-dimensional vectors over a finite field
Fq.

An error-correcting code encodes the data by adding a certain amount of redun-
dancy to the message so that the original message can be recovered if a small
number of errors have occurred.

The fundamentals of block codes were discussed where an information word is
of length k and a codeword is of length n. This led to the linear block codes B(n,
k, d) and a discussion on error detection and error correction capabilities of the
codes.

The goal of this chapter was to give a flavour of coding theory, and the reader
is referred to more specialized texts (e.g., [2]) for more detailed information.

References 343

References

1. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423
2. Neubauer A, Freunderberger J, Kühn V (2007) Coding theory. Algorithms, architectures and

applications. Wiley, New York

22Introduction to Statistics

Key Topics

Random Sample

Sampling Techniques

Frequency Distribution

Arithmetic Mean, Mode and Median

Bar Chart, Histogram, and Trend Chart

Variance

Standard Deviation

Correlation and Regression

Statistical Inference

Hypothesis Testing

22.1 Introduction

Statistics is an empirical science that is concerned with the collection, organization,
analysis, interpretation, and presentation of data. The data collection needs to be
planned and this may include surveys and experiments. Statistics are widely used
by government and industrial organizations, and they are employed for forecasting
as well as for presenting trends. They allow the behaviour of a population to be
studied and inferences to be made about the population. These inferences may be
tested (hypothesis testing) to ensure their validity.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_22

345

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_22&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_22

346 22 Introduction to Statistics

The analysis of statistical data allows an organization to understand its perfor-
mance in key areas and to identify problematic areas. Organizations will often
examine performance trends over time and will devise appropriate plans and
actions to address problematic areas. The effectiveness of the actions taken will be
judged by improvements in performance trends over time.

It is often not possible to study the entire population, and instead a representa-
tive subset or sample of the population is chosen. This random sample is used to
make inferences regarding the entire population, and it is essential that the sample
chosen is indeed random and representative of the entire population. Otherwise,
the inferences made regarding the entire population will be invalid, as a selec-
tion bias has occurred. Clearly, a census where every member of the population is
sampled is not subject to this type of bias.

A statistical experiment is a causality study that aims to draw a conclusion
between the values of a predictor variable(s) and a response variable(s). For exam-
ple, a statistical experiment in the medical field may be conducted to determine if
there is a causal relationship between the use of a particular drug and the treat-
ment of a medical condition such as lowering of cholesterol in the population. A
statistical experiment involves:

• Planning the research
• Designing the experiment
• Performing the experiment
• Analysing the results
• Presenting the results.

22.2 Basic Statistics

The field of statistics is concerned with summarizing, digesting, and extracting
information from large quantities of data. It provides a collection of methods for
planning an experiment and analysing data to draw accurate conclusions from the
experiment. We distinguish between descriptive statistics and inferential statistics:

Descriptive Statistics
This is concerned with describing the information in a set of data elements in
graphical format, or by describing its distribution.

Inferential Statistics
This is concerned with making inferences with respect to the population by using
information gathered in the sample.

22.2 Basic Statistics 347

22.2.1 Abuse of Statistics

Statistics are extremely useful in drawing conclusions about a population. How-
ever, it is essential that the random sample chosen is actually random, and that
the experiment is properly conducted to ensure that valid conclusions are inferred.
Some examples of the abuse of statistics include:

• The sample size may be too small to draw conclusions
• It may not be a genuine random sample of the population
• There may be bias introduced from poorly worded questions
• Graphs may be drawn to exaggerate small differences
• Area may be misused in representing proportions
• Misleading percentages may be used.

The quantitative data used in statistics may be discrete or continuous. Discrete
data is numerical data that has a finite or countable number of possible values, and
continuous data is numerical data that has an infinite number of possible values.

22.2.2 Statistical Sampling and Data Collection

Statistical sampling is concerned with the methodology for choosing a random
sample of a population and the study of the sample with the goal of drawing valid
conclusions about the entire population. If a genuine representative random sample
of the population is chosen, then a detailed study of the sample will provide insight
into the whole population. This helps to avoid a lengthy expensive (and potentially
infeasible) study of the entire population.

The sample chosen must be truly random and the sample size sufficiently large
to enable valid conclusions to be drawn for the entire population. The probability
of being chosen for the random sample should be the same for each member of
the population.

Random Sample
A random sample is a sample of the population such that each member of the
population has an equal chance of being chosen.

A large sample size gives more precise the information about the popula-
tion. However, little extra information is gained from increasing the sample size
above a certain level, and the sample size chosen will depend on factors such as
money and time available, the aims of the survey, the degree of precision required,
and the number of subsamples required. Table 22.1 summarizes several ways for
generating a random sample from the population:

Once the sample is chosen, the next step is to obtain the required information
from the sample. The data collection may be done by interviewing each member
in the sample; conducting a telephone interview with each member; conducting a
postal questionnaire survey, and so on (Table 22.2).

348 22 Introduction to Statistics

Table 22.1 Sampling techniques

Sampling technique Description

Systematic sampling The population is listed and every kth member of the population is
sampled. For example, to choose a 2% (1 in 50) sample then every
50th member of the population would be sampled

Stratified sampling The population is divided into two or more strata and each
subpopulation (stratum) is then sampled. Each element in the
subpopulation shares the same characteristics (e.g., age groups,
gender). The results from the various strata are then combined

Multistage sampling This approach may be used when the population is spread over a wide
geographical area. The area is split up into a number of regions, and a
small number of the regions are randomly selected. Each selected
region is then sampled. It requires less effort and time, but it may
introduce bias if a small number of regions are selected, as it is not a
truly random sample

Cluster sampling A population is divided into clusters, and a few of these clusters are
exhaustively sampled (i.e., every element in the cluster is considered).
This approach may lead to significant selection bias, as the sampling is
not random

Convenience sampling Sampling is done as convenient, and in this case each person selected
may decide whether to participate or not in the sample

Table 22.2 Types of survey

Survey type Description

Personal interview Interviews are expensive and time consuming, but allow detailed
and accurate information to be collected. Questionnaires are often
employed and the interviewers need to be trained in interview
techniques. Interviews need to be planned and scheduled, and they
are useful in dealing with issues that may arise (e.g., a respondent
not fully understanding a question)

Phone survey This is a reasonably efficient and cost-effective way to gather data.
However, refusals or hang-ups may affect the outcome. It also has
an in-built bias as only those people with telephones may be
contacted and interviewed

Mail questionnaire survey This involves sending postal questionnaire survey to the
participants. The questionnaire needs to be well designed to ensure
the respondents understand the questions and answer them
correctly. There is a danger of a low response rate that may
invalidate the findings

Direct measurement This may involve a direct measurement of all those in the sample
(e.g., the height of all students in a class)

Direct observational study An observational study allows individuals to be studied, and the
variables of interest to be measured

Experiment An experiment imposes some treatment on individuals in order to
study the response

22.3 Frequency Distribution and Charts 349

The design of the questionnaire requires careful consideration as a poorly
designed questionnaire may lead to invalid results. The questionnaire should be
as short as possible, and the questions should be simple and unambiguous. Closed
questions where the respondent chooses from simple categories are useful. It is
best to pilot the questionnaire prior to carrying out the survey.

22.3 Frequency Distribution and Charts

The data gathered from a statistical study is often raw and may yield little infor-
mation as it stands. Therefore, the way the data is presented is important, and it
is useful to present the information in pictorial form. The advantage of a pictorial
presentation is that it allows the data to be presented in an attractive and colourful
way, and the reader is not overwhelmed with excessive detail. This enables anal-
ysis and conclusions to be drawn. There are several types of charts or graphs that
are often employed in the presentation of the data including:

• Bar chart
• Histogram
• Pie chart
• Trend graph.

A frequency table is often used to present and summarize data, where a simple
frequency distribution consists of a set of data values and the number of items that
have that value (i.e., a set of data values and their frequency). The information is
then presented pictorially in a bar chart.

The general frequency distribution is employed when dealing with a larger num-
ber of data values (e.g., > 20 data values). It involves dividing the data into a set
of data classes, and listing the data classes in one column and the frequency of
data values in that category in another column. The information is then presented
pictorially in a bar chart or histogram.

Figure 22.1 presents the raw data of salaries earned by different people in a
company, and Table 22.3 presents the raw data in table format using a frequency
table of salaries. Figure 22.2 presents a bar chart of the salary data in pictorial
form, and it is much easier to read than the raw data presented in Fig. 22.1.

A histogram is a way of representing data in bar chart format, and it shows the
frequency or relative frequency of various data values or ranges of data values. It
is usually employed when there are a large number of data values, and it gives a
crisp picture of the spread of the data values, and the centring and variance of the
data values from the mean.

Fig. 22.1 Raw salary data 90,000 50,000 50,000 65,000 65,000 45,000 50,000
50,000 50,000 65,000 50,000 50,000 45,000 50,000
65,000

350 22 Introduction to Statistics

Table 22.3 Frequency table
of salary data

Salary Frequency

45,000 2

50,000 8

65,000 4

90,000 1

Frequency Distribution - Salary

0
2
4
6
8

10

45k 50k 65k 90k

Salary

Fr
eq

ue
nc

y

Frequency

Fig. 22.2 Bar chart of salary data

The data is divided into disjoint intervals where an interval is a certain range of
values. The horizontal axis of the histogram contains the intervals (also known as
buckets), and the vertical axis shows the frequency (or relative frequency) of each
interval.

The bars represent the frequency, and there is no space between the bars. The
histogram has an associated shape, e.g., it may be a normal distribution, a bimodal
or multimodal distribution, and it may be positively or negatively skewed. The
variation and centring refer to the spread of data, and the spread of the data is
important as it may indicate whether the entity under study (e.g., a process) is too
variable, or whether it is performing within the requirements.

The histogram is termed process centred if its centre coincides with the cus-
tomer requirements; otherwise, the process is too high or too low. A histogram
allows predictions of future performance to be made, where it can be assumed that
the future will resemble the past.

The construction of a histogram first requires that a frequency table be con-
structed, and this requires that the range of the data values be determined. The
data are divided into a number of classes (or data buckets), where a bucket is a
particular range of data values, and the relative frequency of each bucket is dis-
played in bar format. The number of class intervals or buckets is determined, and
the class intervals are defined. The class intervals are mutually disjoint and span
the range of the data values. Each data value belongs to exactly one class interval,
and the frequency of each class interval is determined.

22.3 Frequency Distribution and Charts 351

Table 22.4 Frequency
table—test results

Mark Frequency

0–24 3

25–49 10

50–74 15

75–100 2

The results of a class test in mathematics are summarized in Table 22.4. There
are 30 students in the class, and each student achieves a score somewhere between
0 and 100. There are four data intervals between 0 and 100 employed to summa-
rize the scores, and the result of each student belongs to exactly one interval.
Figure 22.3 is the associated histogram for the frequency data, and it gives a
pictorial representation of the marks for the class test.

We may also employ a pie chart as an alternate way to present the class marks.
The frequency table is constructed as before, and a visual representation of the
percentage in each data class (i.e., the relative frequency) is provided with the pie
chart. Each portion of the pie chart represents the percentage of the data values in
that interval (Fig. 22.4).

0

5

10

15

Frequency

0 - 24 25 - 49 50 - 74 75 - 100

Marks

Histogram for Class Marks

Frequency

Fig. 22.3 Histogram test results

Frequency

10%

33%
50%

7%

0 - 24
25 - 49
50 - 74
75 - 100

Fig. 22.4 Pie chart test results

352 22 Introduction to Statistics

Table 22.5 Monthly sales
and profit

Sales Profit

Jan 5500 200

Feb 3000 −400

Mar 3500 200

Apr 3000 600

May 4500 −100

Jun 6200 1200

Jul 7350 3200

Aug 4100 100

Sep 9000 3300

Oct 2000 −500

Nov 1100 −800

Dec 3000 300

Annual Sales / Profit

-5000

0

5000

10000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

Sa
le

s/
Pr

of
it

Sales
Profit

Fig. 22.5 Monthly sales and profit

We present the monthly sales and profit figures for a company in Table 22.5,
and Fig. 22.5 gives a pictorial representation of the data in the form of a time
series (or trend chart).

22.4 Statistical Measures

Statistical measures are concerned with the basic analysis of the data to determine
the average of the data as well as how spread out the data is. The term “average”
generally refers to the arithmetic mean of a sample, but it may also refer to the
statistical mode or median of the sample. We first discuss the arithmetic mean as
it is the mathematical average of the data and is representative of the data. The
arithmetic mean is the most widely used average in statistics.

22.4 Statistical Measures 353

22.4.1 Arithmetic Mean

The arithmetic mean (or just mean) of a set of n numbers is defined to be the sum
of the data values divided by the number of values. That is, the arithmetic mean
of a set of data values x1, x2, …, xn (where the sample size is n) is given by:

x =
Σn

i=1 xi
n

The arithmetic mean is representative of the data as all values are used in its
calculation. The mean of the set of values 5, 11, 9, 4, 16, 9 is given by:

m = 5+11+9+4+16+9/6 = 54/6 = 9.

The formula for the arithmetic mean of a set of data values given by a frequency
table needs to be adjusted.

x1 x2 … … xn

f 1 f 2 f n

x =
Σn

i=1 fi xiΣn
i=1 fi

The arithmetic mean for the following frequency distribution is calculated by:

x 2 5 7 10 12

f x 2 4 7 4 2

The mean is given by:
m = (2∗2+5∗4+7∗7+10∗4+12∗2)/(2+4+7+4+2)

= (4+20+49+40+24)/19 = 137/19 = 7.2
.

The actual mean of the population is denoted by μ, and it may differ from the
sample mean m.

22.4.2 Mode

The mode is the most popular element in the sample, i.e., it is the data element
that occurs most frequency in the sample. For example, consider a shop that sells
mobile phones, then the mode of the annual sales of phones is the most popular
phone sold. The mode of the list [1, 4, 1, 2, 7, 4, 3, 2, 4] is 4, whereas the there
is no unique mode in the sample [1, 1, 3, 3, 4], and it is said to be bimodal.

The mode of the following frequency distribution is 7, since it occurs the most
times in the sample.

354 22 Introduction to Statistics

x 2 5 7 10 12

f x 2 4 7 4 2

It is possible that the mode is not unique (i.e., there are at least two elements
that occur with the equal highest frequency in the sample), and if this is the case
then we are dealing with a bimodal or possibly a multimodel distribution (where
there are more than two elements that occur most frequently in the sample).

22.4.3 Median

The median of a set of data is the value of the data item that is exactly half
way along the set of items, where the data set is arranged in increasing order of
magnitude.

If there are an odd number of elements in the sample the median is the middle
element. Otherwise, the median is the arithmetic mean of the two middle elements.

The median of 34, 21, 38, 11, 74, 90, 7 is determined by first ordering the set
as 7, 11, 21, 34, 38, 74, 90, and the median is then given by the value of the 4th
item in the list which is 34.

The median of the list 2, 4, 8, 12, 20, 30 is the mean of the middle two items
(as there are an even number of elements and the set is ordered), and so it is given
by the arithmetic mean of the 3rd and 4th elements, i.e., 8+12/2 = 10.

The calculation of the median of a frequency distribution first requires the cal-
culation of the total number of data elements (i.e., this is given by N = Σf), and
then determining the value of the middle element in the table, which is the N+1/2
element.

The median for the following frequency distribution is calculated by:

x 2 5 7 10 12

f x 2 4 7 4 2

The number of elements is given by N = Σf = 2 + 4 + 7 + 4 + 2 = 19 and
so the middle element is given by the value of the N+1/2 element, i.e., the 19+1/2
= the 10th element. From an examination of the table it is clear that the value of
the 10th element is 7 and so the median of the frequency distribution is 7.

The final average that we consider is the midrange of the data in the sample,
and this is given by the arithmetic mean of the highest and lowest data elements
in the sample. That is, mmid = (xmax + xmin)/2.

The mean, mode, and median coincide for symmetric frequency distributions
but differ for left or right skewed distributions (Fig. 22.6). Skewness describes how
non-symmetric the data is.

Dispersion indicates how spread out or scattered the data is, and there are sev-
eral ways of measuring dispersion including how skewed the distribution is, the
range of the data, variance, and the standard deviation.

22.5 Variance and Standard Deviation 355

Fig. 22.6 Symmetric distribution

22.5 Variance and Standard Deviation

An important characteristic of a sample is its distribution, and the spread of each
element from some measure of central tendency (e.g., the mean). One elementary
measure of dispersion is that of the sample range, which is defined to be the
difference between the maximum and minimum value in the sample. That is, the
sample range is defined to be:

range = xmax − xmin

The sample range is not a reliable measure of dispersion as just two elements
in the sample are used, and so extreme values in the sample may distort the range
and make it very large even if most of the elements are quite close to one another.

The standard deviation is the most common way to measure dispersion, and
it gives the average distance of each element in the sample from the arithmetic
mean. The sample standard deviation of a sample x1, x2, … xn is denoted by s,
and its calculation first requires the calculation of the sample mean. It is defined
by:

s =
/

Σ
(xi − x)2

n − 1
=

/Σ
x2 i − nx2

n − 1

The population standard deviation is denoted by σ and is defined by:

σ =
/

Σ
(xi − μ)2

n
=

/
Σ

x2 i − nμ2

n

Variance is another measure of dispersion, and it is defined as the square of the
standard deviation. The sample variance s2 is given by:

s2 =
Σ

(xi − x)2

n − 1
=

Σ
x2 i − nx2

n − 1

356 22 Introduction to Statistics

The population variance σ 2 is given by:

σ 2 =
Σ

(xi − μ)2

n
=

Σ
x2 i − nμ2

n

Example 22.1 (Standard Deviation) Calculate the standard deviation of the sample
2, 4, 6, 8.

Solution (Standard Deviation)
The sample mean is given by m = 2 + 4 + 6 + 8/4 = 5.

The sample variance is given by:

s2 = (2 − 5)2 + (4 − 5)2 + (6 − 5)2 + (8 − 5)2/4 − 1
= 9 + 1 + 1 + 9/3
= 20/3
= 6.66

The sample standard deviation is given by the square root of the variance and
so it is given by:

s = √
6.66

= 2.58

The formula for the standard deviation and variance may be adjusted for fre-
quency distributions. The standard deviation and mean often go hand in hand, and
for normal distributions 68% of the data lies within one standard deviation of the
mean; 95% of the data lies within two standard deviations of the mean; and the
vast majority (99.7%) of the data lies within three standard deviations of the mean.
All data values are used in the calculation of the mean and standard deviation, and
so these measures are truly representative of the data.

22.6 Correlation and Regression

The two most common techniques for exploring the relationship between two
variables are correlation and linear regression. Correlation is concerned with quan-
tifying the strength of the relationship between two variables by measuring the
degree of “scatter” of the data values, whereas regression expresses the relationship
between the variable in the form of an equation (usually a linear equation).

Correlation quantifies the strength and direction of the relationship between
two numeric variables X and Y, and the correlation coefficient may be positive or
negative and it lies between − 1 and + 1. If the correlation is positive, then as
the value of one variable increases the value of the other variable increases (i.e.,
the variables move together in the same direction), whereas if the correlation is

22.6 Correlation and Regression 357

negative then as the value of one variable increases the value of the other vari-
able decreases (i.e., the variables move together in the opposite directions). The
correlation coefficient r is given by the formula:

Corr(X .Y) =
XY − X Y

Std(X)Std(Y)
= nΣXi Yi − ΣXiΣYi

/
nΣX2

i − (ΣXi)
2
/
nΣY 2 i − (ΣYi)2

The sign of the correlation coefficient indicates the direction of the relationship
between the two variables. A correlation of r = +1 indicates perfect positive cor-
relation, whereas a correlation of r = − 1 indicates perfect negative correlation. A
correlation close to zero indicates no relationship between the two variables; a cor-
relation of r = − 0.3 indicates a weak negative relationship; whereas a correlation
of r = 0.85 indicates a strong positive relationship. The extent of the relationship
between the two variables may be seen from the following:

• A change in the value of X leads to a change in the value of Y.
• A change in the value of Y leads to a change in the value of X.
• Changes in another variable lead to changes in both X and Y.
• There is no relationship (or correlation) between X and Y.

The relationship (if any) between the two variables can be seen by plotting the
values of X and Y in a scatter graph as in Figs. 22.7 and 22.8. The correlation
coefficient identifies linear relationships between X and Y, but it does not detect
non-linear relationships. It is possible for correlation to exist between two variables
but for no causal relationship to exist, i.e., correlation is not the same as causation.

Example 22.2 (Correlation) The data in Table 22.6 is a summary of the cost of
maintenance of eight printers, and it is intended to explore the extent to which the
age of the machine is related to the cost of maintenance. It is required to calculate
the correlation coefficient.

Y

0
5

10
15
20
25

0 2 4 6 8 10 12 14

X

Y

Fig. 22.7 Strong positive correlation

358 22 Introduction to Statistics

Y

0
5

10
15
20
25

0 2 4 6 8 10 12 14

X

Y

Fig. 22.8 Strong negative correlation

Table 22.6 Cost of maintenance of printers

X (Age) Y (Cost) XY X2 Y 2

5 50 250 25 2500

12 135 1620 144 18,225

4 60 240 16 3600

20 300 6000 400 90,000

2 25 50 4 625

10 80 800 100 6400

15 200 3000 225 40,000

8 90 720 64 8100

76 940 12,680 978 169,450

Solution (Correlation)
For this example, n = 8 (as there are 8 printers) and ΣXi, ΣYi, ΣXiY i, ΣXi

2,
ΣYi

2 are computed in the last row of the table and so:

ΣXi = 76
ΣYi = 940

ΣXi Yi = 12,680
ΣX2

i = 978
ΣY 2 i = 169,450

We input these values into the correlation formula and get:

r = 8 ∗ 12,680 − 76 ∗ 940 √
8 ∗ 978 − 762

√
8 ∗ 169,450 − 9402

= 30,000 √
2048

√
472,000

22.6 Correlation and Regression 359

= 30,000

45.25 ∗ 687.02

=
30,000

31,087
= 0.96

Therefore, r = 0.96 and so there is strong correlation between the age of the
machine and the cost of maintenance of the machine.

22.6.1 Regression

Regression is used to study the relationship (if any) between dependent and inde-
pendent variables and to predict the dependent variable when the independent
variable is known. The prediction capability of regression makes it a more pow-
erful tool than correlation, and regression is useful in identifying which factors
impact upon a desired outcome variable.

There are several types of regression that may be employed such as linear or
polynomial regression, and this section is concerned with linear regression where
the relationship between the dependent and independent variables is expressed by
a straight line. More advanced statistical analysis may be conducted with multiple
regression models, where there are several independent variables that are believed
to affect the value of another variable.

Regression analysis first involves data gathering and plotting the data on a scat-
ter graph. The regression line is the line that best fits the data on the scatter graph
(Fig. 22.9), and it is usually determined using the method of least squares or one
of the methods summarized in Table 22.7. The regression line is a plot of the
expected values of the dependent variable for all values of the independent vari-
able, and the formula (or equation) of the regression line is of the form y = mx +
b, where the coefficients of a and b are determined.

Y

0
5

10
15
20
25
30

0 2 4 6 8 10 12 14

X

Y

Regression Line

Fig. 22.9 Regression line

360 22 Introduction to Statistics

Table 22.7 Methods to obtain regression line

Methods Description

Inspection This is the simplest method and involves plotting the data in a scatter graph and
then drawing a line that best suits the data. (this is subjective and so it is best to
draw the mean point, and ensure the regression line passes through this point)

Semi-averages This involves splitting the data into two equal groups, then finding and drawing
the mean point in each group, and joining these points with a straight line (i.e.,
the regression line)

Least squares The method of least squares is a mathematical and involves obtaining a
regression line where the sum of the squares of the vertical deviations of all the
points from the line is minimal

Table 22.8 Hypothesis
testing

Action H0 true, H1 false H0 false, H1 true

Fail to reject H0 Correct False positive—type
2 error
P (accept H0 | H0
false) = β

Reject H0 False negative—type
1 error
P (reject H0 | H0
true) = α

Correct

The regression line then acts as a model that describes the relationship between
the two variables, and the value of the dependent variable may be predicted from
the value of the independent variable using the regression line.

22.7 Statistical Inference and Hypothesis Testing

Inferential statistics is concerned with statistical techniques to infer properties of
a population from samples taken from the population. Often, it is infeasible or
inconvenient to study all members of a population, and so the properties of a
representative sample are studied and statistical techniques are used to generalize
these properties to the population. A statistical experiment is carried out to gain
information from the sample, and it may be repeated as many times as required to
gain the desired information. Statistical experiments may be simple or complex.

There are two main types of inferential statistics, and these are estimating
parameters and hypothesis testing. Estimating parameters is concerned taking a
statistic from the sample (e.g., the sample mean or variance) and using it to make
a statement about the population parameter (i.e., the population mean or variance).
Hypothesis testing is concerned with using the sample data to answer research
questions such as whether a new drug is effective in the treatment of a partic-
ular disease. A sample is not expected to perfectly represent the population, as
sampling errors will naturally occur.

22.7 Statistical Inference and Hypothesis Testing 361

A hypothesis is a statement about a particular population whose truth or falsity
is unknown. Hypothesis testing is concerned with determining whether the values
of the random sample from the population are consistent with the hypothesis.
There are two mutually exclusive hypotheses: one of these is the null hypothesis
H0 and the other is the alternate research hypothesis H1. The null hypothesis H0
is what the researcher is hoping to reject, and the research hypothesis H1 is what
the researcher is hoping to accept.

Statistical testing is employed to test the hypothesis, and the result of the test
is that we either reject the null hypothesis (and therefore accept the alternative
hypothesis), or that we fail to reject it (i.e., we accept) the null hypothesis. The
rejection of the null hypothesis means that the null hypothesis is highly unlikely
to be true, and that the research hypothesis should be accepted.

Statistical testing is conducted at a certain level of significance, with the prob-
ability of the null hypothesis H0 being rejected when it is true never greater than
α. The value α is called the level of significance of the test, with α usually being
0.1, 0.05, or 0.005. A significance level β may also be applied to with respect to
accepting the null hypothesis H0 when H0 is false. The objective of a statistical
test is not to determine whether or not H0 is actually true, but rather to determine
whether its validity is consistent with the observed data. That is, H0 should only
be rejected if the resultant data is very unlikely if H0 is true (Table 22.8).

The errors that can occur with hypothesis testing include type 1 and type 2
errors. Type 1 errors occur when we reject the null hypothesis when the null
hypothesis is actually true. Type 2 errors occur when we accept the null hypothesis
when the null hypothesis is false (Fig. 22.7).

For example, an example of a false positive is where the results of a blood test
come back positive to indicate that a person has a particular disease when in fact
the person does not have the disease. Similarly, an example of a false negative is
where a blood test is negative indicating that a person does not have a particular
disease when in fact the person does.

Both errors are potentially very serious, with a false positive generating major
stress and distress to the recipient, until further tests are done that show that the
person does not have the disease. A false negative is potentially even more serious,
as early detection of a serious disease is essential to its treatment, and so a false
negative means that valuable time is lost in its detection, which could be very
serious.

The terms α and β represent the level of significance that will be accepted, and
α may or may not be equal to β. In other words, α is the probability that we will
reject the null hypothesis when the null hypothesis is true, and β is the probability
that we will accept the null hypothesis when the null hypothesis is false.

Testing a hypothesis at the α = 0.05 level is equivalent to establishing a
95% confidence interval. For 99% confidence α will be 0.01, and for 99.999%
confidence then α will be 0.00001.

The hypothesis may be concerned with testing a specific statement about the
value of an unknown parameter θ of the population. This test is to be done at a
certain level of significance, and the unknown parameter may, for example, be the

362 22 Introduction to Statistics

mean or variance of the population. An estimator for the unknown parameter is
determined, and the hypothesis that this is an accurate estimate is rejected if the
random sample is not consistent with it. Otherwise, it is accepted.

The steps involved in hypothesis testing include:

1. Establish the null and alternative hypothesis
2. Establish error levels (significance)
3. Compute the test statistics (often a t-test)
4. Decide on whether to accept or reject the null hypothesis.

The difference between the observed and expected test statistic and whether the
difference could be accounted for by normal sampling fluctuations is the key to
the acceptance or rejection of the null hypothesis. For more detailed information
on statistics see [1, 2].

22.8 Review Questions

1. What is statistics?
2. Explain how statistics may be abused.
3. What is a random sample? How may it be generated?
4. Describe the charts available for the presentation of statistical data.
5. Explain how the average of a sample may be determined.
6. Explain sample variance and sample standard deviation.
7. Explain the difference between correlation and regression.
8. Explain the methods for obtaining the regression line from data.
9. What is hypothesis testing?

22.9 Summary

Statistics is an empirical science that is concerned with the collection, organiza-
tion, analysis, interpretation, and presentation of data. Statistics are widely used
for forecasting as well as for presenting trends. They allow the behaviour of a
population to be studied and inferences to be made about the population. These
inferences may be tested to ensure their validity.

It is often not possible to study the entire population, and instead a representa-
tive subset or sample of the population is chosen. This random sample is used to
make inferences regarding the entire population, and it is essential that the sample
chosen is indeed random and representative of the entire population. Otherwise,
the inferences made regarding the entire population will be invalid due to the
introduction of a selection bias.

References 363

The data gathered from a statistical study is often raw, and, the way the data is
presented is important. It is useful to present the information in pictorial form,
as this enables analysis to be done and conclusions to be drawn. Bar charts,
histograms, pie chart, and trend graphs may be employed.

Statistical measures are concerned with the basic analysis of the data to deter-
mine the average of the data, as well as how spread out the data is. The term
“average” generally refers to the arithmetic mean of a sample, but it may also
refer to the statistical mode or median of the sample.

An important characteristic of a sample is its distribution and the spread of each
element from some measure of central tendency (e.g., the mean). The standard
deviation is the most common way to measure dispersion, and it gives the average
distance of each element in the sample from the arithmetic mean.

Correlation and linear regression are techniques for exploring the relationship
between two variables. Correlation is concerned with quantifying the strength
of the relationship between two variables, whereas regression expresses the
relationship between the variable in the form of an equation.

Inferential statistics is concerned with statistical techniques to infer properties of
a population from samples taken from the population. A hypothesis is a statement
about a particular population whose truth or falsity is unknown. Hypothesis testing
is concerned with determining whether the values of the random sample from the
population are consistent with the hypothesis.

References

1. Dekking FM et al (2010) A modern introduction to probability and statistics. Springer, Berlin
2. Ross SM (1987) Introduction to probability and statistics for engineers and scientists. Wiley

Publications, New York

23Introduction to Probability Theory

Key Topics

Random Variables

Expectation and Variance

Bayes’ Formula

Normal Distributions

Binomial Distribution

Poisson Distribution

Unit Normal Distribution

Confidence Intervals and Tests of Significance

23.1 Introduction

Probability is a branch of mathematics that is concerned with measuring uncer-
tainty and random events, and it provides a precise way of expressing the
likelihood of a particular event occurring. Probability is also used as part of every-
day speech in expressions such as “It is likely to rain in the afternoon”, where the
corresponding statement expressed mathematically might be “The probability that
it will rain in the afternoon is 0.7”.

The modern theory of probability theory has its origins in work done on the
analysis of games of chance by Cardano in the sixteenth century, and it was devel-
oped further in in the seventeenth century by Fermat and Pascal, and refined in the
eighteenth century by Laplace. It led to the classical definition of the probability

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_23

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_23&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_23

366 23 Introduction to Probability Theory

of an event being:

P(Event) =
#Favourable Outcomes

#Possible Outcomes

There are several definitions of probability such as the frequency interpretation
and the subjective interpretation of probability. For example, if a geologist sates
that “there is a 70% chance of finding gas in a certain region” then this statement
is usually interpreted in two ways:

• The geologist is of the view that over the long run 70% of the regions whose
environment conditions are very similar to the region under consideration have
gas. [Frequency Interpretation].

• The geologist is of the view that it is likely that the region contains gas,
and that 0.7 is a measure of the geologist’s belief in this hypothesis. [Belief
Interpretation].

That is, according to the frequency interpretation the probability of an event is
equal to the long-term frequency of the event’s occurrence when the same process
is repeated many times.

According to the belief interpretation probability measures the degree of belief
about the occurrence of an event or in the truth of a proposition, with a probability
of 1 representing the certain belief that something is true and a probability of 0
representing the certain belief that something is false, with a value in between
reflecting uncertainty about the belief.

Probabilities may be updated by Bayes’ theorem (see Sect. 23.2.2), where the
initial belief is the prior probability for the event, and this may be updated to
a posterior probability with availability of new information (see Sect. 23.6 for a
short account of Bayesian statistics).

23.2 Basic Probability Theory

Probability theory provides a mathematical indication of the likelihood of an event
occurring, and the probability lies between 0 and 1. A probability of 0 indicates
that the event cannot occur, whereas a probability of 1 indicates that the event
is guaranteed to occur. If the probability of an event is greater than 0.5 then this
indicates that the event is more likely to occur than not to occur.

A statistical experiment is conducted to gain certain desired information, and
the sample space is the set of all possible outcomes of an experiment. The out-
comes are all equally likely if no one outcome is more likely to occur than another.
An event E is a subset of the sample space, and the event is said to have occurred
if the outcome of the experiment is in the event E.

For example, the sample space for the experiment of tossing a coin is the set
of all possible outcomes of this experiment, i.e., head or tails. The event that the

23.2 Basic Probability Theory 367

toss results a tail is a subset of the sample space.

S = {h, t} E = {t}

Similarly, the sample space for the gender of a newborn baby is the set of
outcomes, i.e., the newborn baby is a boy or a girl. The event that the baby is a
girl is a subset of the sample space.

S = {b, g} E = {g}

For any two events E and F of a sample space S we can also consider the union
and intersection of these events. That is,

• E ∪F consists of all outcomes that are in E or F or both.
• E ∩F (usually written as EF) consists of all outcomes that are in both E and

F.
• Ec denotes the complement of E with respect to S, and represents the outcomes

of S that are not in E.

If EF = ∅ then there are no outcomes in both E and F, and so the two events E
and F are mutually exclusive. Events that are mutually exclusive cannot occur at
the same time (i.e., they cannot occur together).

Two events are said to be independent if the occurrence (or not) of one of the
events does not affect the occurrence (or not) of the other. Two mutually exclusive
events cannot be independent, since the occurrence of one excludes the occurrence
of the other.

The union and intersection of two events can be extended to the union and
intersection of a family of events E1, E2, … En (i.e., ∪n

i=1Ei and ∩n
i=1Ei Ei).

23.2.1 Laws of Probability

The probability of an event E occurring is given by:

P(E) =
Outcomes in Event E

Total Outcomes (in S)

The laws of probability essentially state that the probability of an event is
between 0 and 1, and that the probability of the union of a mutually disjoint set
of events is the sum of their individual probabilities. The probability of an event
E is zero if E is an impossible event, and the probability of an event E is one if it
is a certain event (Table 23.1).

The probability of the union of two events (not necessarily disjoint) is given
by:

P(E ∪ F) = P(E) + P(F) − P(E F)

368 23 Introduction to Probability Theory

Table 23.1 Axioms of probability

Axiom Description

1 P(S) = 1
2 P(∅) = 0
3 0≤P(E) ≤ 1
4 For any sequence of mutually exclusive events E1, E2, …. En. (i.e., Ei Ej = ∅ where

i /= j) then the probability of the union of these events is the sum of their individual
probabilities: i.e.,
P(∪n

i=1Ei) = Σn
i=1P(Ei)

The complement of an event E is denoted by Ec and denotes that event E does
not occur. Clearly, S = E ∪Ec and E and Ec are disjoint and so:

P(S) = P
(
E ∪ Ec) = P(E) + P

(
Ec) = 1

⇒ P
(
Ec) = 1 − P(E)

The probability of an event E occurring given that an event F has occurred is
termed the conditional probability (denoted by P(E |F)) and is given by:

P(E |F) =
P(E F)
P(F)

where P(F) > 0

This formula allows us to deduce that:

P(E F) = P(E |F)P(F)

Example 23.1 (Conditional Probability) A family has two children. Find the
probability that they are both girls given that they have at least one girl.

Solution (Conditional Probability)
The sample space for a family of two children is S = {(g, g), (g, b), b, g), (b, b)}.
The event E where is at least one girl in the family is given by E = {(g, g), (g, b),
(b, g)}, and the event that G both are girls is G = {(g, g)}, so we will determine
the conditional probability P(G|E) that both children are girls given that there is
at least one girl in the family:

P(EG) = P(G) = P(g, g) = 1/4
P(E) = 3/4

P(G|E) =
P(EG)
P(E)

=
1/4

3/4
= 1/3

23.2 Basic Probability Theory 369

Two events E, F are independent if knowledge that F has occurred does not
change the probability that E has occurred. That is, P(E|F) = P(E) and since
P(E|F) = P(EF)/P(F) we have that two events E, F are independent if:

P(E F) = P(E)P(F)

Two events E and F that are not independent are said to be dependent.

23.2.2 Bayes’ Formula

Bayes formula enables the probability of an event E to be determined by a weighted
average of the conditional probability of E given that the event F has occurred and
the conditional probability of E given that F has not occurred:

E = E ∩ S = E ∩ (
F ∪ Fc)

= E F ∪ E Fc

P(E) = P(E F) + P(E Fc) (since E F ∩ E Fc = ∅)
= P(E |F)P(F) + P(E |Fc)P(Fc)
= P(E |F)P(F) + P(E |Fc)(1 − P(F))

We may also get another expression of Bayes’ formula from noting that:

P(F |E) =
P(F E)
P(E)

=
P(E F)
P(E)

Therefore, P(EF) = P(F|E)P(E) = P(E|F)P(F)

P(E |F) =
P(F |E)P(E)

P(F)

This version of Bayes’ formula allows the probability to be updated where the
initial or preconceived belief (i.e., P(E)) is the prior probability for the event,
and this may be updated to a posterior probability (i.e., P(E|F is the updated
probability), with the new information or evidence (i.e., P(F)) and the likelihood
that the new information leads to the event (i.e., P(F|E)).

Example 23.2 (Bayes’ Formula) A medical lab is 99% effective in detecting a certain
disease when it is actually present, and it yields a false positive for 1% of healthy peo-
ple tested. If 0.25% of the population actually have the disease what is the probability
that a person has the disease if the patient’s blood test is positive.

370 23 Introduction to Probability Theory

Solution (Bayes’ Formula)
Let T be the event that that the patient’s test result is positive, and D the event that
the tested person has the disease. Then the desired probability is P(D|T) and is
given by:

P(D|T) =
P(DT)
P(T)

= P(T |D)P(D)
P(T |D)P(D) + P(T |Dc)P(Dc)

= 0.99 ∗ 0.0025
0.99 ∗ 0.0025 + 0.01 ∗ 0.9975

= 0.1988

The reason that only approximately 20% of the population whose test results
are positive actually have the disease may seem surprising, but is explained by the
low incidence of the disease, just one person out of every 400 tested will have the
disease and the test will correctly confirm that 0.99 have the disease, but the test
will also state that 399 * 0.01 = 3.99 have the disease and so the proportion of
time that the test is correct is 0.99/0.99+3.99 = 0.1988.

23.3 Random Variables

Often, some numerical quantity determined by the result of the experiment is of
interest rather than the result of the experiment itself. These numerical quantities
are termed random variables. A random variable is termed discrete if it can take
on a finite or countable number of values, and otherwise it is termed continuous.

The distribution function (denoted by F(x)) of a random variable is the prob-
ability that the random variable X takes on a value less than or equal to x. It is
given by:

F(x) = P{X ≤ x}

All probability questions about X can be answered in terms of its distribution
function F. For example, the computation of P {a < X < b} is given by:

P{a < X < b} = P{X ≤ b} − P{X ≤ a}
= F(b) − F(a)

The probability mass function for a discrete random variable X (denoted by
p(a)) is the probability that the random variable is a certain value. It is given by:

p(a) = P{X = a}

Further, F(a) can also be expressed in terms of the probability mass function

F(a) = P{X ≤ a} =
Σ

∀x≤a

p(x)

23.3 Random Variables 371

X is a continuous random variable if there exists a non-negative function f (x)
(termed the probability density function) defined for all x ∈ (− ∝,∝) such that

P{X ∈ B} =
∫

B

f (x)dx

All probability statements about X can be answered in terms of its density
function f (x). For example:

P{a ≤ X ≤ b} =
b∫

a

f (x)dx

P{X ∈ (− ∝, ∝)} = 1 =
∞∫

−∞

f (x)dx

The function f (x) is termed the probability density function, and the probability
distribution function F(a) is defined by:

F(a) = P{X ≤ a} =
a∫

−∞

f (x)dx

Further, the first derivative of the probability distribution function yields the
probability density function. That is,

d/da F(a) = f (a).

The expected value (i.e., the mean) of a discrete random variable X (denoted
E[X]) is given by the weighted average of the possible values of X:

E[X] =

⎧
⎨

⎩

Σ
i xi P{X = xi } Discrete Random variable

∞∫
−∞

x f (x)dx Continuous Random variable

Further, the expected value of a function of a random variable is given by
E[g(X)] and is defined for the discrete and continuous case respectively.

E[g(X)] =

⎧
⎨

⎩

Σi g(xi)P{X = xi } Discrete Random variable
∞∫

−∞
g(x) f (x)dx Continuous Random variable

372 23 Introduction to Probability Theory

The variance of a random variable is a measure of the spread of values from
the mean and is defined by:

Var(X) = E
[
X2] − (E[X])2

The standard deviation σ is given by the square root of the variance. That is,

σ =
√
Var(X)

The covariance of two random variables is a measure of the relationship
between two random variables X and Y, and indicates the extent to which they
both change (in either similar or opposite ways) together. It is defined by:

Cov(X , Y) = E[XY] − E[X].E[Y].

It follows that the covariance of two independent random variables is zero. Vari-
ance is a special case of covariance (when the two random variables are identical).
This follows since Cov(X, X) = E[X.X] − (E[X])(E[X]) = E[X2] − (E[X])2 =
Var(X).

A positive covariance (Cov(X, Y) ≥ 0) indicates that Y tends to increase as
X does, whereas a negative covariance indicates that Y tends to decrease as X
increases.

The correlation of two random variables is an indication of the relation-
ship between two variables X and Y (we discussed correlation and regression in
Sect. 22.6). If the correlation is negative and close to –1 then Y tends to decrease
as X increases, and if it is positive and close to 1 then Y tends to increase as
X increases. A correlation close to zero indicates no relationship between the two
variables; a correlation of r = –0.4 indicates a weak negative relationship; whereas
a correlation of r = 0.8 indicates a strong positive relationship. The correlation
coefficient is between ± 1 and is defined by:

Corr(X , Y) =
Cov(X , Y) √
Var(X)Var(Y)

Once the correlation between two variables has been calculated the probability
that the observed correlation was due to chance can be computed. This is to ensure
that the observed correlation is a real one and not due to a chance occurrence.

23.4 Binomial and Poisson Distributions

The binomial and Poisson distributions are two important distributions in statistics,
and the Poisson distribution may be used as an approximation for the bino-
mial. The binomial distribution was first used in games of chance, and it has the
following characteristics:

23.4 Binomial and Poisson Distributions 373

• The existence of a trial of an experiment, which is, defined in terms of two
states namely success or failure.

• The identical trials may be repeated a number of times yielding several
successes and failures.

• The probability of success (or failure) is the same for each trial.

A Bernoulli trial is where there are just two possible outcomes of an experiment,
i.e., success or failure. The probability of success and failure is given by:

P{X = 1} = p

P{X = 0} = 1 − p

The mean of the Bernoulli distribution is given by p (since E[X] = 1.p + 0.(1 −
p) = p), and the variance is given by p(1 − p) (since E[X2] − E[X]2 = p − p2 =
p(1 − p)).

The Binomial distribution involves n Bernoulli trials, where each trial is
independent and results in either success (with probability p) or failure (with prob-
ability 1 − p). The binomial random variable X with parameters n and p represents
the number of successes in n independent trials, where Xi is the result of the ith
trial and X is represented as:

X =
nΣ

i=1

Xi

Xi =
{
1 if the i th trial is a success
0 otherwise

The probability of i successes from n independent trials is then given by the
binomial theorem:

P{X = i} = (n
i
)

pi (1 − p)n−i i = 0, 1, . . . n

Clearly, E[Xi] = p and Var(Xi) = p(1 − p) (since Xi is an independent Bernoulli
random variable). The mean of the binomial distribution E[X] is the sum of the
mean of the E[Xi], i.e., Σ1

n E[Xi] = np, and the variance Var(X) is the sum of the
Var(Xi) (since the Xi are independent random variables) and so Var (X) = np(1 −
p). The binomial distribution is symmetric when p = 0.5, and the distribution is
skewed to the left or right when p /= 0.5 (Fig. 23.1).

Example 23.3 (Binomial Distribution) The probability that a printer will need cor-
recting adjustments during a day is 0.2. If there are five printers running on a particular
day determine the probability of:

1. No printers need correcting
2. One printer needs correcting

374 23 Introduction to Probability Theory

Binomial Distribution (n=10, p=0.5)

0 1 2 3 4 5 6 7 8 9 10
X (Number of Successes)

Series1

Fig. 23.1 Binomial distribution

3. Two printers require correcting
4. More than two printers require adjusting.

Solution (Binomial Distribution)
There are five trials (with n = 5, p = 0.2, and the success of a trial is a printer
needing adjustments). And so,

(1) This is given by P(X = 0) = (5 0) 0.20 * 0.85 = 0.3277
(2) This is given by P(X = 1) = (5 1) 0.21 * 0.84 = 0.4096
(3) This is given by P(X = 2) = (5 2) 0.22 * 0.83 = 0.205
(4) This is given by 1 − P(2 or fewer printers need correcting)

= 1 − [P(X = 0) + P(X = 1) + P(X = 2)
= 1 − [0.3277 + 0.4096 + 0.205]
= 1 − 0.9423
= 0.0577

The Poisson distribution may be used as an approximation to the binomial distribu-
tion when n is large (e.g., n > 30) and p is small (e.g., p < 0.1). The characteristics
of the Poisson distribution are:

• The existence of events that occur at random and may be rare (e.g., road
accidents).

• An interval of time is defined in which events may occur.

The probability of i successes (where i = 0, 1, 2 …) is given by:

P(X = i) =
e−λ λi

i !
The mean and variance of the Poisson distribution are given by λ.

23.5 The Normal Distribution 375

Example 23.4 (Poisson Distribution) Customers arrive randomly at a supermarket
at an average rate of 2.5 customers per minute, where the customer arrivals form a
Poisson distribution. Determine the probability that:

1. No customers arrive in any particular minute
2. Exactly one customer arrives in any particular minute
3. Two or more customers arrive in any particular minute
4. One or more customers arrive in any 30 s period.

Solution (Poisson Distribution)
The mean λ is 2.5/min for parts 1–3, and λ is 1.25 for part 4.

1. P(X = 0) = e−2.5*2.50/0! = 0.0821
2. P(X = 1) = e−2.5*2.51/1! = 0.2052
3. P(2 or more) = 1 − P(X = 0 or X = 1)] = 1 − [P(X = 0) + P(X = 1)] =

0.7127
4. P(1 or more) = 1 − P(X = 0) = 1 − e−1.25*1.250/0! = 1 − 0.2865 = 0.7134.

23.5 The Normal Distribution

The normal distribution is the most important distribution in statistics, and it occurs
frequently in practice. It is shaped like a bell, and it is popularly known as the
bell-shaped distribution, and the curve is symmetric about the mean of the distribu-
tion. The empirical frequencies of many populations naturally exhibit a bell-shaped
(normal) curve, such as the frequencies of the height and weight of people. The
largest frequencies cluster around the mean and taper away symmetrically on either
side of the mean. The German mathematician, Gauss (Fig. 23.2), originally studied
the normal distribution, and it is also known as the Gaussian distribution.

The normal distribution is a continuous distribution, and it has two parameters,
namely the mean μ and the standard deviation σ . It is a continuous distribution,

Fig. 23.2 Carl Friedrich
Gauss

376 23 Introduction to Probability Theory

Fig. 23.3 Standard normal
bell curve (Gaussian
distribution)

and so it is not possible to find the probability of individual values, and thus it
is only possible to find the probabilities of ranges of values. The normal distribu-
tion has the important properties that 68.2% of the values lie within one standard
deviation of the mean, with 95% of the values within two standard deviations; and
99.7% of values are within three standard deviations of the mean. Another words,
the value of the normal distribution is practically zero when the value of x is more
than three standard deviations from the mean. The shaded area under the curve in
Fig. 23.3 represents two standard deviations of the mean and comprises 95% of
the population.

The normal distribution N has mean μ and standard deviation σ . Its density
function f (x) where (where − ∞ < x < ∞) is given by:

f (x) = 1 √
2πσ

e−(x−μ)2/2σ 2

23.5.1 Unit Normal Distribution

The unit (or standard) normal distribution Z(0,1) has mean 0 and standard
deviation of 1. Every normal distribution may be converted to the unit normal
distribution by Z = (X − μ)/σ , and every probability statement about X has an
equivalent probability statement about Z. The unit normal density function is given
by:

f (y) =
1 √
2π

e− 1
2 y

2

23.5 The Normal Distribution 377

The standard normal distribution is symmetric about 0 (as the mean is zero),
and the process of converting a normal distribution with mean μ and standard
deviation σ is termed standardizing the x-value. There are tables of values that
give the probability of a Z score between zero and the one specified.

Example 23.5 (Normal Distribution) Weights of bags of oranges are normally dis-
tributed with mean 3 lbs and standard deviation 0.2 lb. The delivery to a supermarket
is 350 bags at a time. Determine the following:

1. Standardize to a unit normal distribution.
2. What is the probability that a standard bag will weigh more than 3.5 lbs?
3. How many bags from a single delivery would be expected to weigh more than

3.5 lbs.

Solution (Normal Distribution)

1. Z = X − μ/σ = X − 3/0.2.
2. Therefore, when X = 3.5 we have Z = 3.5 − 3/0.2 = 2.5.

For Z = 2.5 we have from the unit normal tables that

P(Z ≤ 2.50) = 0.9938 = P(X ≤ 3.5)

Therefore, P(X > 3.5) = 1 − P(X ≤ 3.5) = 1 − 0.9938 = 0.0062

3. The proportion of all bags that have a weight greater than 3.5 lbs is 0.0062, and
so it would be expected that there are 350 * 0.0062 = 2.17 bags with a weight
> 3.5, and so in practical terms we would expect two bags to weigh more than
3.5 lbs.

The normal distribution may be used as an approximation to the binomial when n
is large (e.g., n > 30), and when p is not too small or large. This is discussed in
the next section, where the mean of the normal distribution is np and the standard
deviation is

√
np(1 − p).

23.5.2 Confidence Intervals and Tests of Significance

The study of normal distributions helps in the process of estimating or specifying a
range of values, where certain population parameters (such as the mean) lie from
the results of small samples. Further, the estimate may be stated with a certain
degree of confidence, such as there is 95% or 99% confidence that the mean value
lies between 4.5 and 5.5. That is, confidence intervals (also known as confidence
limits) specify a range of values within which some unknown population parameter
lies with a stated degree of confidence, and it is based on the results of the sample.

378 23 Introduction to Probability Theory

The confidence interval for an unknown population mean where the sample
mean, sample variance, the sample size, and desired confidence level are known is
given by:

x ± z
s √
n

In the formula x is the sample mean, s is the sample standard deviation, n is
the sample size, and z is the confidence factor (for a 90% confidence interval z =
1.64, for the more common 95% confidence interval z = 1.96, and z = 2.58 for
the 99% confidence interval).

Example 23.6 (Confidence Intervals) Suppose a new motor fuel has been tested on
30 similar cars, and the fuel consumption was 44.1 mpg with a standard deviation of
2.9 mpg. Calculate a 95% confidence interval for the fuel consumption of this model
of car.

Solution (Confidence Intervals)

The sample mean is 44.1, the sample standard deviation is 2.9, the sample size is 30,
and the confidence factor is 1.96, and so the 95% confidence interval is:

x ± z
s √
n

= 44.1 ± 1.96 ∗
2.9 √
30

= 44.1 ± 1.96 ∗ 0.5295
= 44.1 ± 1.0378
= (43.0622, 45.1378)

That is, we can say with 95% confidence that the fuel consumption for this
model of car is between 43.0 and 45.1 mpg.

The confidence interval for an unknown population mean where the sample
proportion and sample size are known is given by:

p ± z

/
p(1 − p)

n

In the formula p is the sample proportion, n is the sample size, and z is the
confidence factor.

Example 23.7 (Confidence Intervals) Suppose 3 faulty components are identified in
a random sample of 20 products taken from a production line. What statement can
be made about the defect rate of all finished products?

23.5 The Normal Distribution 379

Solution (Confidence Intervals)
The proportion of defective products in the sample is p = 3/20 = 0.15, and the
sample size is n = 20. Therefore, the 95% confidence interval for the population
mean is given by:

p ± z

/
p(1 − p)

n
= 0.15 ± 1.96

/
0.15(1 − 0.15)

20
= 0.15 ± 1.96 ∗ 0.0798
= 0.15 ± 0.1565
= (−0.0065, 0.3065)

That is, we can say with 95% confidence that the defective rate of finished
products lies between 0 and 0.3065.

Tests of Significance for the Mean
Tests of significance are related to confidence intervals and use the concepts from
the normal distribution. To test whether a sample of size n, with sample mean x
and sample standard deviation s could be considered as having been drawn from
a population with mean μ the test statistic must lie in the range − 1.96 to 1.96.

z =
x − μ
[

s √
n

]

That is, the test is looking for evidence of a significant difference between the
sample mean x and the population mean μ, and evidence is found if z lies outside
of the stated limits, whereas if z lies within the limits then there is no evidence
that the sample mean is different from the population mean.

Example 23.8 (Tests of Significance) A new machine has been introduced, and
management is questioning whether it is more productive than the previous one.
Management takes 15 samples of this week’s hourly output to test whether it is
less productive, and the average production per hour is 1250 items with a standard
deviation of 50. The output per hour of the previous machine was 1275 items per hour.
Determine with a test of significance whether the new machine is less productive.

Solution (Tests of Significance)
The sample mean is 1250, the population mean is 1275, the sample standard
deviation is 50, and the sample size is 15.

z =
x − μ
[

s √
n

] =
1250 − 1275

[
50 √
15

] =
−25

12.91
= −0.1936

This lies within the range − 1.96 to 1.96 and so there is no evidence of any
significant difference between the sample mean and the population mean, and so
management is unable to make any statement on differences in productivity.

380 23 Introduction to Probability Theory

23.5.3 The Central Limit Theorem

A fundamental result in probability theory is the central limit theorem, which
essentially states that the sum of a large number of independent and identically
distributed random variables has a distribution that is approximately normal. That
is, suppose X1, X2, …, Xn is a sequence of independent random variables each
with mean μ and variance σ 2. Then for large n the distribution of

X1 + X2 + · · · + Xn − nμ
σ
√

n

is approximately that of a unit normal variable Z. One application of the central
limit theorem is in relation to the binomial random variables, where a binomial
random variable with parameters (n, p) represents the number of successes of n
independent trials, where each trial has a probability of p of success. This may be
expressed as:

X = X1 + X2 + · · · + Xn

where Xi = 1 if the ith trial is a success and is 0 otherwise. The mean of the
Bernoulli trial E(Xi) = p, and its variance is Var(Xi) = p(1 − p). (The mean of
the Binomial distribution with n Bernoulli trials is np and the variance is np(1 −
p)). By applying the central limit theorem it follows that for large n that

X − np √
np(1 − p)

will be approximately a unit normal variable (which becomes more normal as n
becomes larger).

The sum of independent normal random variables is normally distributed, and
it can be shown that the sample average of X1, X2, … Xn is normal, with a mean
equal to the population mean but with a variance reduced by a factor of 1/n.

E(X) =
nΣ

i=1

E(Xi)
n

= μ

Var(X) =
1

n2

nΣ

i=1

Var(Xi) =
σ 2

n

It follows that from this that the following is a unit normal random variable.

√
n
(X − μ)

σ

The term six-sigma (6σ) is a methodology concerned with continuous process
improvement to improve business performance, and it aims to develop very high

23.6 Bayesian Statistics 381

Table 23.2 Probability distributions

Distribution name Density function Mean/variance

Hypergeometric P{X = i} = (N
i) (M

n − i)/(N
n
+M) nN /N + M, np(1 − p)[1 − (n − 1)/N

+ M − 1]
Uniform f (x) = 1/(β − α) α ≤x ≤ β, 0 (α + β)/2, (β − α)2/12
Exponential f (x) = λe−λx 1/λ, 1/λ2

Gamma f (x) = λe−λx(λx)α−1/⎡(α) α/λ, α/λ2

quality close to perfection. It was developed by Bill Smith at Motorola in the early
1980s, and it was later used by leading companies such as General Electric. A 6σ
process is one in which 99.9996% of the products are expected to be free from
defects (3.4 defects per million) [1].

There are many other well-known distributions such as the hypergeometric dis-
tribution that describes the probability of i successes in n draws from a finite
population without replacement; the uniform distribution; the exponential distribu-
tion; and the gamma distribution. The mean and variance of these distributions are
summarized in Table 23.2.

23.6 Bayesian Statistics

Bayesian statistics is named after Thomas Bayes who was an 18th-century English
theologian and statistician, and it differs from the frequency interpretation of prob-
ability in that it considers the probability of an event to be a measure of one’s
personal belief in the event. According to the frequentist approach only repeatable
events such as the result from flipping a coin have probabilities, where the prob-
ability of an event is the long-term frequency of its occurrence. Bayesians view
probability in a more general way and probabilities may be used to represent the
uncertainty of an event or hypothesis. It is perfectly acceptable in the Bayesian
view of the world to assign probabilities to non-repeatable events, whereas a strict
frequentist would claim that such probabilities do not make sense, as they are not
repeatable.

Bayesian thinking provides a way of dealing rationally with randomness and
risk in daily life, and it is very useful when the more common frequency inter-
pretation is unavailable or has limited information. It interprets probability as a
measure of one’s personal belief in a proposition or outcome, and it is essential to
first use all your available prior knowledge to form an initial estimate of the prob-
ability of the event or hypothesis. Further, when reliable frequency data becomes
available the measure of personal belief would be updated accordingly to equal the
probability calculated by the frequency calculation. Further, the probabilities must
be updated in the light of new information that becomes available, as probabilities
may change significantly from new information and knowledge. Finally, no matter

382 23 Introduction to Probability Theory

how much the odds move in your favour there is eventually one final outcome
(which may or may not be the desired event).

Often, in an unreliable and uncertain world we base our decision-making on
a mixture of reflection and our gut instinct (which can be wrong). Often, we
encounter several constantly changing random events and so it is natural to won-
der on the extent to which rational methods may be applied to risk assessment and
decision making in an uncertain world.

An initial estimate is made of the belief in the proposition, and if you always
rely on the most reliable and objective probability estimates while keeping track
of possible uncertainties and updating probabilities in line with new data then the
final probability number computed will be the best possible.

We illustrate the idea of probabilities being updated with an adapted excerpt
from a children’s story called “Fortunately”, which was written by Remy Charlip
in the 1960s [2]:

• A lady went on a hot air balloon trip
• Unfortunately she fell out
• Fortunately she had a parachute on
• Unfortunately the parachute did not open
• Fortunately there was a haystack directly below
• Unfortunately there was a pitchfork sticking out at the top of haystack
• Fortunately she missed the pitchforks
• Unfortunately she missed the haystack.

The story illustrates how probabilities can change dramatically based on new infor-
mation, and despite all the changes to the probabilities during the fall the final
outcome is a single result (i.e., either life or death). Let p be the probability of
survival then the value of p changes as she falls through sky based on new infor-
mation at each step. Table 23.3 illustrates an estimate of what the probabilities
might be:

Table 23.3 Probability of survival

Step Prob. survival

A lady went on a hot air balloon trip p = 0.999998
Unfortunately she fell out p = 0.000001
Fortunately she had a parachute on p = 0.999999
Unfortunately the parachute did not open p = 0.000001
Fortunately there was a haystack directly below p = 0.5
Unfortunately there was a pitchfork sticking out at the top of haystack p = 0. 000,001
Fortunately she missed the pitchforks p = 0.5
Unfortunately she missed the haystack p = 0.000001

23.7 Review Questions 383

However, even if probability calculations become irrelevant after the event they
still give the best chances over the long term. Over our lives we make many thou-
sands of decisions about where and how to travel, what diet we should have and so
on, and though the impact of each of these decisions on our life expectancy is very
small, their combined effect is potentially significant. Clearly, careful analysis is
needed for major decisions rather than just deciding based on gut instinct.

For the example above we could estimate probabilities for the various steps
based on the expectation of probability of survival on falling without a parachute,
the expectation of probability of survival on falling onto a haystack without a
parachute and we would see wildly changing probabilities from the changing
circumstances.

We discussed Bayes’ formula in Sect. 22.2.2, which allows the probability to be
updated where the initial or preconceived belief (i.e., P(E) is the prior probability
for the event), and this may be updated to a posterior probability (i.e., P(E|F is
the updated probability), with the new information or evidence (i.e., P(F)) and the
likelihood that the new information leads to the event (i.e., P(F|E)). The reader is
referred to [3] for a more detailed account of probability and statistics.

23.7 Review Questions

1. What is probability?
2. Explain the laws of probability.
3. What is a sample space? What is an event?
4. Prove Boole’s inequality P(∪n

i=1Ei) ≤ Σn
i=1P(Ei) where the Ei are not

necessarily disjoint.
5. A couple has 2 children. What is the probability that both are girls if the

eldest is a girl?
6. What is a random variable?
7. Explain the difference between the probability mass function and the

probability density function (for both discrete and continuous random
variables).

8. Explain variance, covariance, and correlation.
9. What is the binomial distribution and what is its mean and variance?
10. What is the Poisson distribution and what is its mean and variance?
11. What is the normal distribution and what is its mean and variance?
12. What is the unit normal distribution and what is its mean and variance?
13. Explain the significance of the central limit theorem.
14. What is Bayes’ theorem? Explain the importance of Bayesian thinking.

384 23 Introduction to Probability Theory

23.8 Summary

Probability is a branch of mathematics that is concerned with measuring uncer-
tainty and random events, and it provides a precise way of expressing the
likelihood of a particular event occurring, and the probability is a numerical value
between 0 and 1. A probability of 0 indicates that the event cannot occur, whereas
a probability of 1 indicates that the event is guaranteed to occur. If the probability
of an event is greater than 0.5, then this indicates that the event is more likely to
occur than not.

A sample space is the set of all possible outcomes of an experiment, and an
event E is a subset of the sample space, and the event is said to have occurred if the
outcome of the experiment is in the event E. Bayes formula enables the probability
of an event E to be determined by a weighted average of the conditional probability
of E given that the event F occurred and the conditional probability of E given
that F has not occurred.

Often, some numerical quantity from an experiment is of interest rather than
the result of the experiment itself. These numerical quantities are termed random
variables. The distribution function of a random variable is the probability that the
random variable X takes on a value less than or equal to x.

The binomial and Poisson distributions are important distributions in statistics,
and the Poisson distribution may be used as an approximation for the binomial.
The Binomial distribution involves n Bernoulli trials, where each trial is indepen-
dent and results in either success or failure. The mean of the Bernoulli distribution
is given by p and the variance by p(1 − p).

The normal distribution is popularly known as the bell-shaped distribution. It
is a continuous distribution, and the curve is symmetric about the mean of the
distribution. It has two parameters, namely the mean μ and the standard deviation
σ . Every normal distribution may be converted to the unit normal distribution
by Z= (X − μ)/σ , and every probability statement about X has an equivalent
probability statement about the unit distribution Z.

The central limit theorem essentially states that the sum of a large number of
independent and identically distributed random variables has a distribution that
is approximately normal. Bayesian statistics provides a way of dealing rationally
with randomness and risk in daily life, and it interprets probability as a measure
of one’s personal belief in a proposition or outcome.

References

1. O’Regan G (2014) Introduction to software quality. Springer, Berlin
2. Charlip R (1993) Fortunately. Simon and Schuster, New York
3. Dekking FM et al (2010) A modern introduction to probability and statistics. Springer, Berlin

24Introduction to Data Science

Key Topics

Data Science

Data Scientist

GDPR

Privacy

Security

AI

Internet of Things

Social Media

24.1 Introduction

Information is power in the digital age, and the collection, processing, and use of
information need to be regulated. Data science involves the extraction of knowl-
edge from data sets that consist of structured and unstructured data, and data
scientists have a responsibility to ensure that this knowledge is used wisely and not
abused. Data science may be regarded as a branch of statistics as it uses many con-
cepts from the field, and in order to prevent errors occurring during data analysis
it is essential that both the data and models are valid.

The question of ownership of the data is important; as if, for example, I take
a picture of another individual does the picture belong to me (as owner of the
camera and the collector of the data)? Or does it belong to the individual who is
the subject of the image? Most reasonable people would say that the image is my

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_24

385

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_24&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_24

386 24 Introduction to Data Science

property, and, if so, what responsibilities or obligations do I have (if any) to the
other individual? That is, although I may technically be the owner of the image,
the fact that it contains the personal data (or image) of another should indicate that
I have an ethical responsibility or obligation to ensure that the image (or personal
data) is not misused in any way to harm that individual. Further, if I misuse the
image in any way then I may be open to a lawsuit from the individual.

Personal data is collected about individuals from their use of computer
resources such as their use of email, their Google searches, their Internet, and
social media use to build up revealing profiles of the user that may be targeted
to advertisers. Modern technology has allowed governments to conduct mass
surveillance on its citizens, with face recognition software allowing citizens to
be recognized at demonstrations or other mass assemblies.

Further, smartphones provide location data that allows the location of the user to
be tracked and may be used for mass surveillance. Many online service providers
give customer data to the security and intelligence agencies (e.g., NSA and CIA),
and these agencies often have the ability to hack into electronic devices. It is
important that such surveillance technologies are regulated and not abused by the
state. Privacy has become more important in the information age, and it is the
way in which we separate ourselves from other people and is the right to be left
alone. The European GDPR law has become an important protector of privacy and
personal data, and it has been adopted by many countries around the world.

Companies collect lots of personal data about individuals, and so the question is
how should a company respond to a request for personal information on particular
users? Does it have a policy to deal with that situation? What happens to the
personal data that a bankrupt company has gathered? Is the personal data part
of the assets of the bankrupt company and sold on with the remainder of the
company? How does this affect privacy information agreements and compliance
to them or does the agreement cease on termination of business activities?

The consequence of an error in data collection or processing could result in
harm to an individual, and so the data collection and processing needs to be accu-
rate. Decisions may be made on the basis of public and private data, and often
individuals are unaware as to what data was collected about them, whether the
data is accurate, and whether it is possible to correct errors in the data.

Further, the conclusions from the analysis may be invalid due to errors in
incorrect or biased algorithms, and so a reasonable question is how to keep
algorithmically driven systems from harming people? Data scientists have a
responsibility to ensure that the algorithm is fit for purpose and uses the right train-
ing data, and as far as practical to detect and eliminate unintentional discrimination
in algorithms against individuals or groups.

That is, problems may arise when the algorithm uses criteria tuned to fit the
majority, as this may be unfair to minorities. Another words, the results are cor-
rect, but presented in an over simplistic manner. This could involve presenting the
correct aggregate outcome but ignoring the differences within the population, and
so leading to the suppression of diversity, and discriminating against the minority

24.2 Ethics of Data Science 387

group. Another problem is where the data may be correct but presented in a mis-
leading way (e.g., the scales of the axis may be used to present the results visually
in an exaggerated way).

24.2 Ethics of Data Science

There has been a phenomenal growth in the use of digital data in information
technology, with vast amounts of data collected, processed, and used, and so the
ethics of data science has become important. There are social consequences to the
use of data, and the ethics of data science aims to investigate what is fair and
ethical in data science, and what should or should not be done with data.

A fundamental principle of ethics in data science refers to informed consent,
and this has its origins in the ethics of medical experiments on individuals. The
concept of informed consent in medical ethics is where the individual is informed
about the experiment and gives their consent voluntarily. The individual has the
right to withdraw consent at any time during the experiment. Such experiments
are generally conducted to benefit society, and often there is a board that approves
the study and oversees it to ensure that all participants have given their informed
consent, and attempts to balance the benefits to society with any potential harm
to individuals. Once individuals have given their informed consent data may be
collected about them.

The principle of informed consent is part of information technology, in the
sense that individuals accept the terms and conditions before they may use soft-
ware applications, and these terms state that data may be collected, processed, and
shared. However, it is important to note that generally users do not give informed
consent in the sense of medical experiments, as the details of the data collection
and processing is hidden in the small print of the terms and condition, and this
is generally a long and largely unreadable document. Further, the consent is not
given voluntarily, in the sense that if a user wishes to use the software, then he or
she has no choice but to click acceptance of the terms and conditions of use for
the site. Otherwise, they are unable to access the site, and so for many software
applications (apps) consent is essentially coerced rather than freely given.

There was some early research done on user behaviour by Facebook in 2012,
where they conducted an experiment to determine if they could influence the mood
of users by posing happy or sad stories to their news feed. The experiment was
done without the consent of the users, and while the study indicated that happy or
sad stories did influence the user’s mood and postings, it led to controversy and
major dissatisfaction with Facebook when users became aware that they were the
subject of a psychological experiment without their consent.

The dating site OKCupid uses an algorithm to find compatibility matches for
its users based on their profiles, and two people are assigned a match rating based
on the extent to which the algorithm judges them to be compatible. OKCupid
conducted psychological experiments on its users without their knowledge, with

388 24 Introduction to Data Science

the first experiment being a “love is blind” day where all images were removed
from the site, and so compatibilities were determined without the use of images.

Another experiment was very controversial and unethical, as the site lied to the
users on their match ratings (e.g., two people with a compatibility rating of 90%
were given a rating of 30%, and vice versa). The site was trying to determine
the extent that two people would get along irrespective of the rating that they
were given, and it showed that two people talked more when falsely told that the
algorithm matched them, and vice versa. The controversy arose once users became
aware of the deception by the company, and it provides a case study on the socially
unacceptable manipulation of user data by an Internet company.

Data collection is not a new phenomenon as devices such as cameras and tele-
phones have been around for some time. People have reasonable expectations on
privacy and do not expect their phone calls to be monitored and eavesdropped on
by others, or they do not expect to be recorded in a changing room or in their
home. Individuals will wish to avoid the harm that could occur due to data about
them being collected, processed, and shared. The question is whether reasonable
rules can be defined and agreed, and whether tradeoffs may be made to balance the
conflicting rights and to protect the individual as far as is possible. Some relevant
questions on data collection and ownership are considered in Table 24.1.

24.2.1 Data Science and Data Scientists

Data science is a multidisciplinary field that extracts knowledge from data sets
that consist of structured and unstructured data, and large data sets (big data1)
may be analysed to extract useful information. The field has great power to harm
and to help, and data scientists have a responsibility to use this power wisely. Data
science may be regarded as a branch of statistics as it uses many concepts from the
field, and in order to prevent errors occurring during data analysis it is essential
that both the data and models are valid.

The consequence of an error in the data analysis or with the analysis method
could result in harm to the individual. There are many sources of error such as the
sample chosen, which may not be representative of the entire population. Other
problems arise with knowledge acquisition by machine learning, where the learn-
ing algorithm has used incomplete training data for pattern (or other knowledge)
recognition. Training data may also be incomplete if the future population differs
from the past population.

The data collection needs to decide on the data and attributes to be collected,
and often the attributes chosen are limited to what is available, and the data scien-
tist will also need to decide what to do with missing attributes. Often errors arise
in data processing tasks such as analysing text information or recognizing faces

1 Big data involves combining data from lots of sources such as bar codes, cctv, shopping data,
driver’s license, and so on.

24.2 Ethics of Data Science 389

Table 24.1 Some reasons for data collection

Question Answers

Who owns the data? A user’s personal information may legally
belong to the data collector, but the data subject
may have some control as the data is about
him/her
– The author of the biography of an individual
owns the copyright not the individual

– The photographer of a (legally taken) photo
owns the image not the subject

– Recording of audio/video is similar
– May be a need to acknowledge copyright (if
applicable)

– May be limits in rights as to how data is
collected and used (e.g., privacy of phone
calls)

– The data subject may have some control of
the data collected

What are the expected responsibilities of the
collector

The collector of the data is expected to:
– Collect only required data
– Collect legal and ethical data only
– Preserve confidentiality/integrity of collected
personal data

– Not misuse the data (e.g., alter image)
– Use data only for purpose gathered
– Share data only with user consent

What is the purpose of the data collection? The purpose may be to:
– Carry out service for a user
– Improve user experience
– Understand users
– Build up profile of user behaviour
– Exploit user data for commercial purposes

How is user consent to data collection given? User consent may be given in various ways
– User informed of purpose of data collection
– User consents to use of data
– May be hidden in terms and conditions of site

User control This refers to the ability of the user to control
the way that their personal data is being
collected/used:
– Ability of user to modify their personal data
– Ability of user to delete their personal data

from photos. There may be human errors in the data (e.g., spelling errors or where
the data field was misunderstood), and errors may lead to poor results and possible
harm to the user. The problem with such errors is that often decisions are made on
the basis of public and private data, and often individuals are unaware as to what
data was collected and whether there is a method to correct it.

Even with perfect data the conclusions from the analysis may be invalid due to
errors in the model, and there are many ways in which the model may be incorrect.

390 24 Introduction to Data Science

Many machine-learning algorithms just estimate parameters to fit a pre-determined
model, without knowing whether the model is appropriate or not (e.g., the model
may be attempting to fit a linear model to a non-linear reality). This becomes
problematic when estimating (or extrapolating) values outside of the given data
unless there is confidence in the correctness of the model.

Further, care is required before assigning results to an individual from an anal-
ysis of group data, as there may be other explanations (e.g., Simpson’s paradox in
probability/statistics is where a trend that appears in several groups of data disap-
pears or reverses when these groups are combined). It is important to think about
the population that you are studying, and to make sure that you are collecting data
on the right population, and whether to segment it into population groups, as well
as how best to do the segmentation.

It may seem reasonable to assume that data-driven analysis is fair and neutral,
but unfortunately the problem is that humans may unintentionally introduce bias,
as they set the boundary conditions. The bias may be through their choice of the
model, the use of training data that may not be representative of the population, or
the past population may not be representative of the future population, and so on.
This may potentially lead to algorithmic decisions that are unfair (e.g., the case
of the Amazon hiring algorithm that was biased towards the hiring of males), and
so the question is how to be confident that the algorithms are fair and unbiased.
Data scientists have a responsibility to ensure that the algorithm is fit for purpose
and uses the right training data, and as far as practical to detect and eliminate
unintentional discrimination (individual or target group).

Another problem that may arise is data that is correct but presented in a mis-
leading way. One simple way to do this is to manipulate the scales of the axis
to present the results visually in an exaggerated way. Another example is where
the results are correct, but presented in an over simplistic manner (e.g., there may
be two or more groups in the population with distinct behaviour where one group
is the dominant), where the correct aggregate outcome is presented but this is
misleading due to the differences within the population, and by suppressing diver-
sity there may be discrimination against the minority group. In other words, the
algorithm may use criteria tuned to fit the majority and may be unfair to minorities.

Exploration is the first phase in data analysis, and a hypothesis may be devised
to fit the observed data (this is the opposite of traditional approaches where the
starting point is the hypothesis, and the data is used to confirm or reject the hypoth-
esis based on the data from the control and target groups, and so this approach
needs to be used carefully to ensure the validity of the results).

24.2.2 Data Science and Society

Data science has consequences for society with one problem being that algorithms
tend to learn and codify the current state of the world, and it is therefore harder
to change the algorithm to reflect the reality of a changing world. The impact of
innovative technologies affects the different cohorts and social groups in society

24.3 What Is Data Analytics? 391

in different ways, and there may also be differences between how different groups
view privacy. Data scientists tend to be focused on getting the algorithm to perform
correctly to do the right processing, and so often may not consider the wide societal
impacts of the technology.

Algorithms may be unfair to individuals in that an individual may be classi-
fied as being a member of a group in view of the value of a particular attribute,
and so the individual could be typecast due to their perceived membership of the
group. Another words, the individual may be assigned opinions or properties of the
group, and this means that there is a danger of developing a stereotype view of the
individual. Further, it may be difficult for individuals to break out of these stereo-
types, as these biases become embedded within the algorithm thereby helping to
maintain the status quo.

There are further dangers when predications are made, as predictions are prob-
abilistic and may be wrong, and only suggest a greater likelihood of occurrence of
an event. Predictive techniques have been applied to predictive policing and to the
prediction of uprisings, but there are dangers of false positives and false negatives
(see type I and type II errors in probability/statistics in Chap. 9).

It is important that the societal consequences of algorithms are fully considered
by companies, in order to ensure that the benefits of data science are achieved, and
harm to individuals is avoided.

24.3 What Is Data Analytics?

Data analytics is the science of handling data collection by computer-driven sys-
tems, where the goal is to generate insights that will improve decision making.
It involves the overlap of several disciplines such as statistics, information tech-
nology, and domain knowledge. It is widely used in social media, e-commerce,
the Internet of Things, recommendation engines, gaming, and may potentially be
applied to other fields such as information security, logistics, and so on.

Data analytics involves the analysis of data to create structure, order, meaning,
and patterns from the data. It uses the collected data to produce information as
well as generating insights from the data for decision makers. This is essential
in making informed decisions to meet current and future business needs. Data
analytics may involve machine learning, or it could be quick and simple if the
data set is ready, and the goal is to perform just simple descriptive analysis. There
are four types of data analytics (Table 24.2).

Descriptive analysis is a data analysis method that is used to give summary
of what is going on and nothing more. It provides information as to what hap-
pened, and it allows the data collected by the system to be used to identify what
went wrong. This type of data is often used to summarize large data sets, and to
describe a summary of the outcomes to the stakeholders. The most relevant metrics
produced include the key performance indicators (KPIs).

392 24 Introduction to Data Science

Table 24.2 Types of data analytics

Type Description

Descriptive These metrics describe what happened in the past and gives a summary of what
is going on

Diagnostic These are concerned with why it happened and involve analysis to determine
why something has happened

Predictive These are concerned with what is likely to happen in the future

Prescriptive These are concerned with analysis to make better decisions, and it may involve
considering several factors to suggest a course of action for the business. It may
involve the use of AI techniques such as machine learning, and the goal is to
make progress and avoid problems in the future

Diagnostic analysis is concerned with the analysis of the descriptive metrics
to solve problems, and to identify what the issue could potentially be, and to
understand why something has happened.

Predictive analysis involves predicting what is likely to happen in the future
based on data from the past, i.e., it is attempting to predict the future based on
actions in the past, and it may involve the use of statistics and modeling to pre-
dict future performance, based on current and historical data. Other techniques
employed include neural networks, regression, and decision trees.

Prescriptive analysis is used to help business to make better decisions through
the analysis of data and is effective when the organization knows the right ques-
tions to ask and responds appropriately to the answers. It often uses AI techniques
such as machine learning to process a vast amount of data, to find patterns, and
to recommend a course of action that will resolve or improve the situation. The
recommended course of action is based on past events and outcomes, and the use
of machine learning strategies builds upon the predictive analysis of what is likely
to happen to recommend a future course of action.

Prescriptive analytics may be used to automate prices based on several fac-
tors such as demand, weather, and commodity prices. These algorithms may
automatically raise or lower prices at a much faster rate than human intervention.

Companies may use data analytics to create and sell useful products by drilling
down into customer data to determine what they are looking for. This includes
understanding the features desired of the product and the price that they are willing
to pay, and so data analytics has a role to play in new product design. They may be
used by the business to improve customer loyalty and retention, and this may be
done by gathering data (e.g., the opinions of customers from social media, email,
and phone calls) to ensure that the voice of the customer is heard and acted upon
appropriately.

Marketing groups often use data analytics to determine how successful their
marketing campaign has been and to make changes where required. The mar-
keting team may use the analytics to run targeted marketing and advertisement
campaigns to segmented audiences (i.e., subsets of the population based on their

24.3 What Is Data Analytics? 393

unique characteristics such as demographics, interests, needs, and location). Mar-
ket segmentation is useful in getting to know the customers, and determining what
is needed in their market segment, and to determine how best to meet their needs.

Big data analytics may be used for targeted advertisements. For example, Net-
flix collects data on its customers including their searches and viewing history, and
this data provides an insight into the specific interests of the customer, which is
then used to send suggestions to the customer on the next movie that they should
watch.

Big data analytics involves examining large amounts of data to identify the
hidden patterns and correlations, and to give insights to enable the right business
decisions to be made. Big data analytics is often done with sophisticated software
systems that provide fast analytic procedures, where the use of big data allows
the business to identify patterns and trends. It enables the business to collect as
much data it requires to understand the customers and to derive critical insights to
maintain customers.

24.3.1 Business Analytics and Business Intelligence

Business analytics involves converting business data into useful business informa-
tion through the use of statistical techniques and advanced software. It includes
a set of analytical methods for solving problems and assisting decision making,
especially in the context of vast quantities of data. The combination of analysis
with intuition allows useful insights into business organizations to be provided and
helps them to achieve their objectives. Many organizations use the principles and
practice of business analytics.

Business intelligence (BI) processes all the data generated by a business, and
uses it to generate clear reports (e.g., a dashboard report of the key metrics),
as well as the key trends and performance measures that are used by manage-
ment in decision making. That is, business intelligence is data analytics with
insight that allows managers to make informed decisions, and so it is focused
on the decision-making part of the process. It may employ data mining, perfor-
mance benchmarking, process analysis, and descriptive analytics. That is, business
analytics allows management issues to be explored and solved.

The effectiveness of management decision making is influenced by the accuracy
and completeness of the information that managers have, with inaccurate or incom-
plete information leading to poorer decisions. Companies often have data that is
unstructured or in diverse formats, and such data is generally more difficult to
gather and analyse. This has led software firms to offer business intelligence solu-
tions to organizations that wish to make better use of their data, and to optimize
the information gathered from the data. There are several software applications
designed to unify a company’s data and analytics.

394 24 Introduction to Data Science

24.3.2 Big Data and Data Mining

The term “Big data” refers to the large, diverse sets of data that arrives at ever-
increasing rates and volumes. It encompasses the volume of data, the velocity or
speed at which it is created and collected, and the variety or scope of the data
points being covered (these are generally referred to as the three V’s of big data).
There has been an explosion in the volume of big data with approximately 40
zettabytes2 (ZB) of data employed globally.

Big data often comes from data mining, where data mining involves exploring
and analysing large blocks of data to gather meaningful patterns and trends. Data
is gathered and loaded into data warehouses by organizations (i.e., the data is
centralized into a single database or program), and then stored either on in-house
servers or on the cloud. The user decides how to organize the data, and application
software sorts the data accordingly, and the data is presented in an easy-to-read
format such as a graph or report.

The data may be internal or external. It may be structured or unstructured,
where structured data is often already managed in the organization’s databases or
spreadsheets and may be numeric and easily formatted. Unstructured data uses data
that may be unformatted, and so it does not fall into a predetermined format (i.e.,
it is free form), and it may come from search engines or from forum discussions
on social media.

Big data may be collected in various ways such as from publicly shared com-
ments on social media, or gathered from personal electronics or apps, through
questionnaires, product purchases, and so on. Big data is generally stored in
databases and is analysed with software that is designed to handle large and
complex data sets (usually software as a service, SaaS).

24.3.3 Data Analytics for Social Media

Data analytics provides a quantitative insight into human behaviour on a social
media website and is a way to understand users and how to communicate with
them better. It enables the business to understand its audience better, to improve
the user experience, and to create content that will be of interest to them. Data
analytics consist of a collection of data that says something about the social media
conversation, and it involves the collection, monitoring, analysis, summarization,
and a graph to visualize the behaviour of users.

Another words, data analytics involves learning to read a social media com-
munity through data, and the interpretations of the quantifiable data (or metrics)
gives information on the activities, events, and conversations. This includes what
users like when they are online, but other important information such as their

2 A zettabyte is 1 sextillion bytes = 270 bytes (approximately a billion terabytes or 1000 exabytes
or a trillion gigabytes).

24.3 What Is Data Analytics? 395

opinions and emotions need to be gathered through social listening. Social listen-
ing involves monitoring keywords and mentions in social media conversations in
the target audience and industry, to understand and analyse what the audience is
saying about the business and allows the business to engage with its audience.

Social media companies use data analytics to gain an insight into customers,
and elementary data such as the number of likes, the number of followers, the
number of times a video is played on YouTube, and so on are gathered to obtained
a quantified understanding of a conversation. This data is valuable in judging the
effectiveness of a social media campaign, where the focus is to determine how
effective the campaign has been in meeting its goals. The goals may be to increase
the number of users or to build a brand, and data analytics combined with social
listening help in understanding how people are interacting, as well as what they
are interacting about and how successful the interactions has been.

Facebook and Twitter maintain a comprehensive set of measurements for data
analytics, with Facebook maintaining several metrics such as the number of page
views and the number of likes and reach of posts (i.e., the number of people
who saw posts at least once). Twitter includes a dashboard view to summarize
how successful tweet activity has been, as well as the interests and locations of
the user’s followers. Social listening considers user opinions, emotions, views,
evaluations, and attitude, and social media data contains rich collection of human
emotions.

The design of a social media campaign is often an iterative process, with the
first step being to determine the objective of the campaign and designing the cam-
paign to meet the requirements. The effectiveness of a campaign is judged by
a combination of social media analytics and social listening, with the campaign
refined appropriately to meet its goals and the cycle repeating. The key perfor-
mance indicators (KPI) may include increased followers/subscribers or an increase
in the content shared, and so on.

24.3.4 Sources of Data

The collected data is commercially valuable, especially when data about individ-
uals are linked from several sources. Data brokers are companies that aggregate
and link information from multiple sources to create more complete and valuable
information products (i.e., profiles of individuals) that may then be sold on to inter-
ested parties. Meta data (i.e., data about the data such as the time of a phone call
or who the call is made to) also provides useful information that may be collected
and shared (Table 24.3).

For example, suppose the probability of an individual buying a pair of hiking
books is very low (say 1 in 5000 probability). Next, that individual starts scanning
a website (say Amazon) for boots then that individual is now viewed as being more
likely to buy a pair of hiking boots (say a 1 in 100 probability). This large increase
in probability will mean that the individual is now of interest to advertisers and
sellers, and various targeted (popup) advertisements will appear to the individual

396 24 Introduction to Data Science

Table 24.3 Sources of data

Source Answers

Data collected by merchants and service
providers

This includes personal data entered for the
purchase of products and services such as name,
address, date of birth, products and services
purchased, etc.

Activity tracking This involves monitoring the user’s activity on the
site (or app), and recording the user’s searches,
and the products browsed and purchased
It may involve recording the user’s interests, their
activities, and their interactions and
communications with others on the site

Search profile The history of a person’s searches over a period
of time on a search engine such as Google reveals
information about the individual and their
interests

Sensors from devices There are many sensors in the world around us
such as personal devices as part of the Internet of
Things that may record information such as
health data or what the individual is eating.
Third-party devices such as security cameras may
be conducting public or private surveillance. GPS
technology on smart phones may be tracking the
user’s location

advertising different hiking boots. This may become quite tedious and annoying
to the individual, who may have been just browsing, and is now subject to an
invasion of advertisements, but many apps are free and often the source of their
revenue is from advertisements, and so they gather data about the user that is then
sold on to advertisers.

Users should be in control of how their data is used, and most user agreements
are “all-or-nothing” in the sense that a user must give up control of their data to
use the application, and so essentially the user has no control. That is, a user must
click acceptance of the terms and conditions in order to use the services of a web
application. Clearly, users would be happier and feel that they are in control if they
were offered graduated choices by the vendor, to allow them to make tradeoffs,
and to choose a level of privacy that they are comfortable with.

24.4 Mathematics Used in Data Science

Mathematics is employed in data science and analytics and includes areas such as
(Table 24.4).

Other areas of mathematics that may arise in data analytics include graph theory
(see Chap. 7), operations research (see Chap. 31), and discrete mathematics (see
[1]).

24.6 Summary 397

Table 24.4 Mathematics in data analytics

Type Description

Probability An introduction to some of the concepts in probability theory such as basic
probability, expectation, conditional probability, Bayes’ theorem, and
probability density functions was discussed in Chap. 23

Statistics Statistics is a vast area and an introduction to some of the important concepts
in the field including descriptive statistics; measures of central tendency such
as the mean, mode and median, variance and covariance, and correlation was
discussed in Chap. 22

Linear algebra This includes topics such as matrix theory and Gaussian elimination as
discussed in Chap. 27, as well as basic algebra as discussed in Chap. 5

Calculus This includes the study of differentiation and integration and includes topics
such as limits, continuity, rules of differentiation, Taylor’s series, and area and
volume as discussed in Chaps. 25 and 26

24.5 Review Questions

1. What is data science?
2. What is the role of the data scientist?
3. What are the main sources of personal data collected on line?
4. What are the main risks to an individual using social media?
6. What mathematics are employed in data science?
7. What is data analytics?

24.6 Summary

Companies collect lots of personal data about individuals from their use of com-
puter resources such as email, search engines, their Internet, and social media use,
and the data is processed to build up revealing profiles of the user that may be tar-
geted to advertisers. Modern technology allows mass surveillance to be conducted
by governments on its citizens, with face recognition software allowing citizens to
be recognized at demonstrations or other mass assemblies.

Modern technology allows the location of the user to be tracked, and privacy is
important in the information age, and it is the way in which we separate ourselves
from other people, and is the right to be left alone. The European GDPR law has
become an important protector of privacy and personal data, and both European
and other countries have adapted it.

Data analytics is the science of handling data collection by computer-driven
systems, where the goal is to generate insights that will improve decision making.
It involves the overlap of several disciplines such as statistics, information tech-
nology, and domain knowledge. It is widely used in social media, e-commerce,

398 24 Introduction to Data Science

the Internet of Things, recommendation engines, gaming, and may potentially be
applied to other fields such as information security, logistics, and so on.

Reference

1. O’Regan G (2021) Guide to discrete mathematics, 2nd edn. Springer, Berlin

25Calculus I

Key Topics

Limit of a function

Continuity

Mean value theorem

Taylor’s theorem

Differentiation

Maxima and minima

Integration

25.1 Introduction

Newton and Leibniz independently developed calculus in the late seventeenth cen-
tury.1 Calculus plays a key role in describing how rapidly things change, and it
may be employed to determine the velocity and acceleration of moving bodies as
well as calculating the area of a region under a curve or between two curves. It
may be used to determine the volumes of solids, computing the length of a curve,

1 The question of who invented the calculus led to a bitter controversy between Newton and Leib-
niz with the latter accused of plagiarising Newton’s work. Newton, an English mathematician and
physicist was the giant of the late seventeenth century, and Leibnitz was a German mathematician
and philosopher. Today, both Newton and Leibniz are credited with the independent development
of the calculus.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_25

399

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_25&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_25

400 25 Calculus I

a - , x 0 a +

l
l -

l +

f

Fig. 25.1 Limit of a function

and in finding the tangent to a curve. It is an important branch of mathematics
concerned with limits, continuity, derivatives, and integrals of functions.

The concept of a limit is fundamental in the calculus. Let f be a function defined
on the set of real numbers, then the limit of f at a is l (written as limx→a f (x) =
l) if given any real number ε > 0 then there exists a real number δ > 0 such that
|f (x) − l| < ε whenever |x − a| < δ. The idea of a limit can be seen in Fig. 25.1.

The function f defined on the real numbers is continuous at a if limx→a f (x) =
f (a). The set of all continuous functions on the closed interval [a, b] is denoted by
C[a, b].

If f is a function defined on an open interval containing x0 then f is said to be
differentiable at x0 if the limit

lim
x→x0

f (x) − f (x0)
x − x0

exists. Whenever this limit exists it is denoted by f,(x0) and is called the derivative
of f at x0. Differential calculus is concerned with the properties of the derivative
of a function. The derivative of f at x0 is the slope of the tangent line to the graph
of f at (x0, f (x0)) (Fig. 25.2).

It is easy to see that if a function f is differentiable at x0 then f is continuous
at x0.

Fig. 25.2 Derivative as a
tangent to curve

x0

f(x0)

y = f(x)

Tangent line, Slope f’(x)

25.1 Introduction 401

Rolle’s Theorem
Suppose f ∈ C[a, b] and f is differentiable on (a, b). If f (a) = f (b) then there exists
c such that a < c < b with f,(c) = 0.

Mean Value Theorem
Suppose f ∈C[a, b] and f is differentiable on (a, b). Then there exists c such that a
< c < b with

f ,(c) =
f (b) − f (a)

b − a

Proof The mean value theorem is a special case of Rolle’s theorem, and the proof
involves defining the function g(x) = f (x) − rx where r = (f (b) − f (a))/(b − a).

It is easy to verify that g(a) = g(b). Clearly, g is differentiable on (a, b) and so
by Rolle’s theorem there is a c in (a, b) such that g,(c) = 0. Therefore, f,(c) − r
= 0 and so f ,(c) = r = f (b) − f (a)/(b − a) as required.

Interpretation of the Mean Value Theorem
The mean value theorem essentially states that there is at least one point c on the
curve f ,(x) between a and b such that slope of the chord is the same as the tangent
f (c) (Fig. 25.3).

Intermediate Value Theorem
Suppose f ∈ C[a, b] and K is any real number between f (a) and f (b). Then there
exists c in (a, b) for which f (c) = K.

Fig. 25.3 Interpretation of
mean value theorem

a b

f(a)

y = f(x)

Slope chord is

f(b)

f(b) – f(a)

b – a

Slope tangent f’(c)

402 25 Calculus I

Fig. 25.4 Interpretation of
intermediate value theorem

a

f(b) y = f(x)

f(a)

b

K

c

Proof The proof of this relies on the completeness property of the real numbers. It
involves considering the set S in [a, b] such that f (x)≤K and noting that this set is
non-empty since a∈S and bounded above by b. Therefore the supremum2 sup S =
c exists, and it is straightforward to show (using ε and δ arguments and the fact that
f is continuous) that f (c) = K (Fig. 25.4).

L’Hôpital’s Rule
Suppose that f (a) = g(a) = 0 and that f ,(a) and g,(a) exist and that g,a) /= 0. Then
L’Hopital’s rule states that:

lim
x→a

f (x)
g(x)

=
f ,(a)
g,(a)

Proof
lim
x→a

f (x)
g(x)

= lim
x→a

f (x) − f (a)
g(x) − g(a)

= lim
x→a

f (x)− f (a)
x−a

g(x)−g(a)
x−a

=
lim
x→a

f (x)− f (a)
x−a

lim
x→a

g(x)−g(a)
x−a

=
f ,(a)
g,(a)

Taylor’s Theorem
The Taylor series is concerned with the approximation to values of the function f
near x0. The approximation employs a polynomial (or power series) in powers of (x
− x0) as well as the derivatives of f at x = x0. There is an error term (or remainder)
associated with the approximation.

2 The supremum is the least upper bound and the infimum is the greatest lower bound.

25.2 Differentiation 403

Suppose f ∈ Cn[a, b] and f n+1 exists on (a, b). Let x0 ∈ (a, b) then for every x ∈ (a,
b) there exists ξ (x) between x0 and x with

f (x) = Pn(x) + Rn(x)

where Pn(x) is the nth Taylor polynomial for f about x0 and Rn(x) is the called the
remainder term associated with Pn(x). The infinite series obtained by taking the limit
of Pn(x) as n→∞ is termed the Taylor series for f about x0.

Pn(x) = f (x0) + f ,(x0)(x − x0) +
f ,,(x0)
2! (x − x0)2 + · · · +

f n(x0)
n! (x − x0)n

The remainder term is given by:

Rn(x) =
f n+1(ξ(x))(x − x0)n+1

(n + 1)!

25.2 Differentiation

Mathematicians of the seventeenth century were working on various problems con-
cerned with motion. These included problems such as determining the motion or
velocity of objects on or near the earth, as well as the motion of the planets. They
were also interested in changes of motion, i.e., in the acceleration of these moving
bodies.

Velocity is the rate at which distance changes with respect to time, and the
average speed during a journey is the distance travelled divided by the elapsed
time. However, since the speed of an object may be variable over a period of time,
there is a need to be able to determine its velocity at a specific time instance. That
is, there is a need to determine the rate of change of distance with respect to time
at any time instant.

The direction in which an object is moving at any instant of its flight was
also studied. For example, the direction in which a projectile is fired determines
the horizontal and vertical components of its velocity. The direction in which an
object is moving can vary from one instant to another.

The problem of finding the maximum and minimum values of a function was
also studied, e.g., the problem of determining the maximum height that a bullet
reaches when it is fired. Other problems studied include problems to determine the
lengths of paths, the areas of figures, and the volume of objects.

Newton and Leibnitz (Figs. 25.5 and 25.6) showed that these problems could
be solved by means of the concept of the derivative of a function, i.e., the rate of
change of one variable with respect to another.

404 25 Calculus I

Fig. 25.5 Isaac Newton

Fig. 25.6 Wilhelm Gottfried
Leibniz

Rate of Change
The average rate of change and instantaneous rate of change are of practical interest.
For example, if a motorist drives 200 miles in four hours, then the average speed is
50 miles per hour, i.e., the distance travelled divided by the elapsed time. The actual
speed during the journey may vary as if the driver stops for lunch, then the actual
speed is zero for the duration of lunch.

The actual speed is the instantaneous rate of change of distance with respect to
time. This has practical implications as motorists are required to observe speed limits,
and a speed camera may record the actual speed of a vehicle with the driver subject
to a fine if the permitted speed limit has been exceeded. The actual speed is relevant
in a car crash as speed is a major factor in road fatalities.

In calculus, the term ∆x means a change in x and ∆y means the corresponding
change in y. The derivative of f at x is the instantaneous rate of change of f , and f is
said to be differentiable at x. It is defined as:

dy

dx
= lim

∆x→0

∆y

∆x
= lim

∆x→0

f (x + ∆x) − f (x)
∆x

In the formula, ∆y is the increment f (x + ∆x) − f (x)

25.2 Differentiation 405

The average velocity of a body moving along a line in the time interval t to t +
∆t where the body moves from position s = f (t) to position s + ∆s is given by:

Vav =
displacement

Time travelled
= ∆s

∆t
=

f (t + ∆t) − f (t)
∆t

The instantaneous velocity of a body moving along a line is the derivative of its
position s = f (t) with respect to t. It is given by:

v =
ds

dt
= lim

∆t→0

∆s

∆t
= f ,(t)

25.2.1 Rules of Differentiation

Table 25.1 presents several rules of differentiation.

Derivatives of Well-Known Functions
The following are the derivatives of some well-known functions including basic
trigonometric functions, the exponential function, and the natural logarithm function.

(i) d/dxSinx = Cosx

Table 25.1 Rules of differentiation

No. Rule Definition

1 Constant The derivative of a constant is 0. That is, for y = f (x) = c (a constant value)
we have dy/dx = 0

2 Sum d/dx (f + g) = df /dx + dg/dx
3 Power The derivative of y = f(x) = xn is given by dy/dx = nxn−1

4 Scalar If c is a constant and u is a differentiable function of x then dy/dx = c d u/dx
where y = cu(x)

5 Product The product of two differentiable functions u and v is differentiable and
d
dx (uv) = v du dx + u dv

dx

6 Quotient The quotient of two differentiable functions u, v is differentiable (where
v /= 0) and
d
dx

[u
v

] = v du dx −u dv
dx

v2

7 Chain rule Chain Rule. Suppose h = g ◦ f is the composite of two differentiable
functions y = g(x) and x = f (t). Then h is a differentiable function of t whose
derivative at each value of t is:
h,(t) = (g ◦ f),(t) = g,(f (t)) f ,(t)
This may also be written as:
dy
dt = dy dx

dx
dt

406 25 Calculus I

(ii) d/dxCosx = −Sinx
(iii) d/dxTanx = Sec2x
(iv) d/dxex = ex
(v) d/dx ln x = 1/x (where x > 0)
(vi) d/dxax = ln(a)ax

(vii) d/dx loga x = 1/x ln(a)
(viii) d/dx arcsin x = 1/

/(
1 − x2

)

(ix) d/dx arccos x = −1/
/(

1 − x2
)

(x) d/dx arctan x = 1/
(
1 + x2

)

Increasing and Decreasing Functions
Suppose that a function f has a derivative at every point x of an interval I. Then

(i) f increases on I if f ,(x) > 0 for all x in I.
(ii) f decreases on I if f ,(x) < 0 for all x in I.

The geometric interpretation of the first derivative test is that it states that differen-
tiable functions increase on intervals where their graphs have positive slopes and
decrease on intervals where their graphs have negative slopes.

If f , changes from positive to negative values as x passes from left to right through
point c then the value of f at c is a local maximum value of f . Similarly, if f, changes
from negative to positive values as x passes from left to right through point c then
the value of f at c is a local minimum value of f (Fig. 25.7).

The graph of a differentiable function y = f (x) is concave down in an interval
where f , decreases and concave up in an interval where f , increases. This may be
defined by the second interval test for concavity. Other words the graph of y = f (x)
are concave down in an interval where f ,, < 0 and concave up in an interval where
f ,, > 0.

A point on the curve where the concavity changes from concave up to concave
down or vice versa is termed a point of inflection. That is, at a point of inflection c
we have that f , is positive on one side and negative on the other side. At the point of
inflection c we have the value of the second derivative is zero, i.e., f ,,(c) = 0, or in
other words f , goes through a local maximum or minimum.

Fig. 25.7 Local minima and
maxima

y = f(x)

Local Maximum

Local Minimum

Point of Inflection

25.3 Integration 407

25.3 Integration

The derivative is a functional operator that takes a function as an argument and
returns a function as a result. The inverse operation involves determining the orig-
inal function from the known derivative, and integral calculus is the branch of the
calculus concerned with this problem. The integral of a function consists of all
those functions that have it as a derivative.

Integration is applicable to problems involving area and volume. It is the math-
ematical process that allows the area of a region with curved boundaries to be
determined, and it also allows the volume of a solid to be determined.

The problem of finding functions whose derivatives is known involves finding
a function y = F(x) whose derivative is given by the differential equation:

dy

dx
= f (x)

The solution to this differentiable equation over the interval I is F if F is
differentiable at every point of I and for every x in I we have:

d

dx
F(x) = f (x)

Clearly, if F(x) is a particular solution to d/dx F(x) = f (x) then the general
solution is given by:

y =
∫

f (x)dx = F(x) + k

since
d
dx (F(x) + k) = f (x) + 0 = f (x).

Rules of Integration
The following are rules of integration as well as the integrals of some well-known
functions such as basic trigonometric functions and the exponential function. Table
25.2 presents several rules of integration.

It is easy to check that the integration has been carried out correctly. This is
done by computing the derivative of the function obtained and checking that it is
the same as the function to be integrated.

Often, the goal may be to determine a particular solution satisfying certain
conditions rather than the general solution. The general solution is first determined,
and then the constant k that satisfies the particular solution is calculated.

The substitution method is a useful method that is often employed in performing
integration, and its effect is to potentially change an unfamiliar integral into one
that is easier to evaluate. The procedure to evaluate

∫
f (g(x))g,(x)dx where f ,, g,

are continuous functions is as follows:

408 25 Calculus I

Table 25.2 Rules of integration

No. Rule Definition

1 Constant
∫
u,(x)dx = u(x) + k

2 Sum
∫

(u(x) + v(x))dx = ∫
u(x)dx + ∫

v(x)dx

3 Scalar
∫
au(x)dx = a

∫
u(x)dx (where a is a constant)

4 Power
∫
xndx = xn+1

n+1 + k (where n /= −1)

5 Cos
∫
cosxdx = sin x + k

6 Sin
∫
sinxdx = − cos x + k

7 sec2 x
∫
sec2xdx = tan x + k

8 ex
∫
ex dx = ex + k

9 Logarithm
∫
1/xdx = ln x + k

1. Substitute u = g(x) and du = g,(x)dx to obtain
∫
f (u)du

2. Integrate with respect to u.
3. Replace u by g(x) in the result.

The method of integration by parts is a rule of integration that transforms the
integral of a product of functions into simpler integrals. It is a consequence of the
product rule for differentiation.

∫
udv = uv −

∫
vdu

∫
f (x)g,(x)dx = f (x)g(x) −

∫
f ,(x)g(x)dx

25.3.1 Definite Integrals

A definite integral defines the area under the curve y = f (x), and the area of the
region between the graph of a non-negative continuous function y = f (x) for the
interval a≤ x≤ b of the x-axis is given by the definite integral.

The sum of the area of the rectangles approximates the area under the curve
and the more rectangles that are used the better the approximation (Fig. 25.8).

The definition of the area of the region beneath the graph of y = f (x) from
a to b is defined to be the limit of the sum of the rectangle areas as the width
of the rectangles become smaller and smaller, and the number of rectangles used
approaches infinity. The limit of the sum of the rectangle areas exists for any
continuous function.

The approximation of the area under the graph y = f (x) between x = a and x =
b is done by dividing the region into n strips with each strip of uniform width given
by ∆x = (b − a)/n and drawing lines perpendicular to the x-axis (Fig. 25.9). Each

25.3 Integration 409

Fig. 25.8 Area under the
curve

ba

strip is approximated with an inscribed rectangle where the base of the rectangle is
on the x-axis to the to the lowest point on the curve above (lower Riemann sum).
We let ck be a point in which f takes on its minimum value in the interval from
xk−1 to xk and the height of the rectangle is f (ck). The sum of these areas is the
approximation of the area under the curve and is given by:

Sn = f (c1)∆x + f (c2)∆x + · · · + f (cn)∆x

The area under the graph of a nonnegative continuous function f over the inter-
val [a, b] is the limit of the sums of the areas of inscribed rectangles of equal base
length as n approaches infinity.

A = lim
n→∞

Sn

= lim
n→∞

f (c1)∆x + f (c2)∆x + · · · + f (cn)∆x

= lim
n→∞

n∑

k=1

f (ck)∆x

It is not essential that the division of [a, b] into a, x1, x2, …. xn−1, b gives
equal subintervals ∆x1 = x1 − a, ∆x2 = x2 − x1, … ∆xn = b − xn−1. The norm
of the subdivision is the largest interval length.

Fig. 25.9 Area under the
curves—lower sum

a x1 x2 xn-1 b

410 25 Calculus I

The lower Riemann sum L and the upper sum U may be formed, and the more
finely divided that [a, b] is the closer the values of the lower and upper sum U and
L. The upper and lower sums may be written as:

L = min
1

∆x1 + min
2

∆x2 + · · · + min
n

∆xn

U = max
1

∆x1 + max
2

∆x2 + · · · + max
n

∆xn

lim
normx→0

U − L = 0 (i.e., lim
norm→0

U = lim
norm →0

L)

Further, if S = Σ f (ck)∆xk (where ck is any point in the subinterval and
mink ≤ f (ck) ≤maxk) we have:

lim
norm →0

L = lim
norm →0

S = lim
norm →0

U

Integral Existence Theorem (Riemann Integral)
If f is continuous on [a, b] then.

b∫

a

f (x)dx = lim
norm→0

∑
f (cx)∆xk

exists and is the same number for any choice of the numbers ck.

Properties of Definite Integrals
Table 25.3 presents some algebraic properties of the definite integral.

Table 25.3 Properties of
definite integral

Properties of definite integral

(i)
∫ a
a f (x)dx = 0

(ii)
∫ a
b f (x)dx = − ∫ b

a f (x)dx

(iii)
∫ b
a k f (x)dx = k

∫ b
a f (x)dx

(iv)
∫ b
a f (x)dx ≥ 0 if f (x) ≥ 0 on [a, b]

(v)

∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx

if f (x) ≤ g(x) on [a, b]

(vi)
∫ b
a f (x)dx +

∫ c
b f (x)dx =

∫ c
a f (x)dx

(vii)
∫ b
a { f (x) + g(x)}dx = ∫ b

a f (x)dx +
∫ b
a g(x)dx

(viii)
∫ b
a { f (x) − g(x)}dx = ∫ b

a f (x)dx −
∫ b
a g(x)dx

25.4 Review Questions 411

Table 25.4 Fundamental
theorems of integral calculus

Theorem

First fundamental theorem: (existence of anti-derivative)
If f is continuous on [a, b] then F(x) is differentiable at every
point x in [a, b] where F(x) is given by:

F(x) = ∫ x
a f (t)at

If f is continuous on [a, b] then there exists a function F(x)
whose derivative on [a, b] is f
dF
dx = d

dx

∫ x
a f (t)dt = f (x)

Second fundamental theorem: (integral evaluation theorem)
If f is continuous on [a, b] and F is any anti-derivative of f on
[a, b] then:
∫ b
a f (x)dx = F(b) − F(a)

25.3.2 Fundamental Theorems of Integral Calculus

Table 25.4 presents two fundamental theorems of integral calculus.
That is, the procedure to calculate the definite integral of f over [a, b] involves

just two steps:

(i) Find an antiderivative F of f
(ii) Calculate F(b) − F(a)

For a more detailed account of integral and differential calculus the reader is
referred to Finney [1].

25.4 Review Questions

1. Explain the concept of the limit of a function.
2. Explain the concept of continuity.
3. Explain the difference between average velocity and instantaneous veloc-

ity, and explain the concept of the derivative of a function.
4. Determine the following

a. limx→0 Sin x
b. limx→0 × Cos x
c. limx→-∝ |x|

5. Determine the derivative of the following functions
a. y = x3 + 2x + 1
b. y = x2 + 1, x = (t + 1)2
c. y = Cos x2

6. Determine the integral of the following functions
a.

∫
(x2 − 6x) dx

412 25 Calculus I

b.
∫ √

(x − 6) dx
c.

∫
(x2 − 4)2 3x3dx

7. Explain the significance of the fundamental theorems of the calculus.

25.5 Summary

This chapter provided a brief introduction to the calculus including limits, conti-
nuity, differentiation, and integration. Newton and Leibniz developed the calculus
independently in the late seventeenth century. It plays a key role in describing
how rapidly things change and may be employed to calculate areas of regions
under curves, volumes of figures, and in finding tangents to curves.

In calculus, the term ∆x means a small change in x and ∆y means the corre-
sponding change in y. The derivative of f at x is the instantaneous rate of change
of f , and is defined as

dy

dx
= lim

∆x→0

∆y

∆x
= lim

∆x→0

f (x + ∆x) − f (x)
∆x

Integration is the inverse operation of differentiation and involves determining
the original function from the known derivative. The integral of a function consists
of all those functions that have the function as a derivative.

Integration is applicable to problems involving area and volume, and it allows
the area of a region with curved boundaries to be determined.

Reference

1. Finney T (1988) Calculus and analytic geometry, 7th edn. Addison Wesleys, Boston

26Calculus II

Key Topics

Applications of calculus

Velocity and acceleration

Area and volume

Length of curve

Trapezoidal rule

Simpsons rule

Fourier series

Laplace transforms

Differential equations

26.1 Introduction

This chapter considers several applications of calculus including the use of dif-
ferentiation to deal with problems involving the rate of change, and we show
how velocity, speed, and acceleration may be determined, as well as solving max-
ima/minima problems. We show how integration may be used to solve problems
involving area, volume, and length of a curve.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_26

413

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_26&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_26

414 26 Calculus II

The definite integral may be used to determine the area under a curve as well as
computing the area bounded by two curves. We show how the volume of a solid
of known cross-sectional area may be determined and show how to compute the
volume of a solid generated by rotating a region around the x- or y-axis.

We show how the length of a curve may be determined, and we present the for-
mulae for the Trapezoidal Rule and Simpson’s Rule which are used to approximate
definite integrals.

Finally, we introduce Fourier series, Laplace transforms, and differential equa-
tions. A Fourier series consists of the sum of a possibly infinite set of sine and
cosine functions. The Laplace transform is an integral transform which takes a
function f and transforms it to another function F by means of an integral. An
equation that contains one or more derivatives of an unknown function is termed
a differential equation, and many important problems in engineering and physics
involve determining a solution to these equations.

26.2 Applications of Calculus

There are rich applications of the calculus in science and engineering, and we
consider several applications of differentiation and integration. This includes a
discussion of problems involving velocity and acceleration of moving objects,
problems to determine the rate at which one variable changes from the rate at
which another variable is known to change, and maxima and minima problems
that are solved with differentiation. We then solve problems involving area and
volume that are solved by integration.

Differentiation may be used to determine the speed, velocity, and acceleration
of bodies. Velocity is the rate of change of position with respect to time, and
acceleration is given by the rate of change of velocity with respect to time. The
speed is the magnitude of the velocity. This is expressed mathematically by letting
s(t) be a function giving the position of an object at time t, and the velocity, speed,
and acceleration are then given by:

Velocity of object at time t = y(t) = s,(t)
Acceleration of object at time t = a(t) = v,(t) = s,,(t)
Speed of object at time t = |v(t)|

Example 26.1 A ball is dropped from a height of 64 ft (Imperial system), and its
height above the ground after t seconds is given by the equation s(t) = − 16t2 + 64.
Determine.

(a) The velocity when it hits the ground.
(b) The average velocity during its fall.

26.2 Applications of Calculus 415

Solution

The ball hits the ground when s(t) = 0: i.e.,

0 = −16t2 + 64
16t2 = 64
t2 = 4
t = 2

The velocity is given by s,(t) = −32t. and so the velocity when the ball hits
the ground is equal to −32 * 2 = − 64 ft/s.

The average velocity is given by distance travelled/time = (s(2) − s(0))/2 − 0
= −64/2 = −32 ft/s.

Occasionally, problems arise where one variable is known to change at a certain
rate and the problem is to determine the rate of change on another variable. For
example, how fast does the height of the water level drop when a cylindrical tank
is drained at a certain rate.

Example 26.2 How fast does the water level in a cylindrical tank drop when water
is removed at the rate of 3 L/s?

Solution
The radius of the tank is r (a constant) and the height is h and the volume of water
V (which are both changing over time and so V and h are considered differentiable
functions of time).

dV/dt = −3 (3 L/sec.is being removed)

We wish to determine dh/dt and we can determine this using the formula for the
volume of a cylinder.

V = πr2h

Then

dV /dt = πr2 dh/dt = −3 (since r is a constant)
dh/dt = −3/πr2

That is, the water level is dropping at the constant rate of 3/πr2 L/s.

416 26 Calculus II

Maxima and minima problems refer to problems where the goal is to maximize
or minimize a function on a particular interval, where the function is continuous
and differentiable on the interval, and the function does not attain its maximum
or minimum at the endpoints of the interval. Then we know that the maximum or
minimum is at an interior point of the interval where the derivative is zero.

Example 26.3 Find two positive integers whose sum is 20 and whose product is as
large as possible.

Solution
Let x be one of the numbers then the other number is 20 – x and so the product
of both numbers is given by:

f (x) = x(20 − x) = 20x − x2

The objective is to determine the value of x that will maximize the product
(i.e., the value of f (x) in the interval 0 ≤ x ≤ 20). The function f (x) is continuous
and differentiable and attains a local maximum where its derivative is zero. The
derivative is given by:

f ,(x) = 20 − 2x

The derivative is 0 when 20 – 2x = 0 or when x = 10, and the maximum value
of f (x) is 200 – 100 = 100.

Problems involving area and volume may be solved with integration. The defi-
nite integral may be applied to problems to determine the area below the curve as
may be seen in the following example:

Example 26.4 Find the area under the curve x2 − 4 and the x-axis from x = −2 to
x = 2.

Solution
The area under the curve y = f (x) between x = a and x = b is given by:

A =
b∫

a

f (x)dx

And so the area of the curve is y = f (x) between x = − 2 to x = 2 is given by:

2∫

−2

(
x2 − 4

)
dx

=
x3

3
− 4x |2−2

26.2 Applications of Calculus 417

=
[
8

3
− 8

]
−

[−8

3
+ 8

]

= −
32

3

The area between two curves y = f (x) and y = g(x) where f (x) ≥ g(x) on the
interval [a, b] is given by:

A =
b∫

a

(f (x) − g(x))dx

Example 26.5 Find the area of the region bounded by the curve y = 2 − x2 and the
line y = −x on the interval [− 1, 2].

Solution
We take f (x) = 2 − x2 and g(x) = -x, and it can be seen by drawing both curves
that f (x) ≥ g(x) on the interval [− 1, 2]. Therefore, the area between both curves
is given by:

A =
2∫

−1

((
2 − x2

) − (−x)
)
dx

=
∫ 2

−1

((
2 + x − x2

)
dx

= 2x + 1/2x2 − 1/ 3x3
||2 − 1

= 10/3 + 7/6
= 27/6
= 4.5

The volume of a solid of known cross functional area A(x) from x = a to x =
b is given by:

V =
∫ b

a
A(x)dx

Example 26.6 Find the volume of the pyramid that has a square base that is 3 m on
a side and is 3 m high. The area of a cross section of the pyramid is given by A(x) =
x2. Find the volume of the pyramid.

418 26 Calculus II

Solution
The volume is given by:

V =
3∫

0

x2dx

= 1/ 3x3
||3 0

= 9m2

The volume of a solid created by revolving the region bounded by y = f (x) and
x = a to x = b about the x-axis is given by:

V =
b∫

a

π(f (x))2dx

Example 26.7 Find the volume of the sphere generated by rotating the semi-circle
y =

√
(a2 − x2) about the x-axis (between x =-a and x = a).

Solution
The volume is given by:

V =
a∫

−a

π(a2 − x2)dx

= π
(
a2x − x3/3

)||a −a

= 4/3πa3

The length of a curve y = f (x) from x = a to x = b is given by:

L =
b∫

a

/
1 + (f ,(x))2dx

Example 26.8

Find the length of the curve y = f (x) = x3/2 from (0, 0) to (4, 8).

Solution
The derivative f ,(x) is given by: f ,(x) = 3/2 x1/2 and so (f ,(x))2 = 9/4 x

419

The length is then given by:

L =
4∫

0

√
1 + 9/4x dx

= 2/3 4/ 9(1 + 9/4x)3/2
||4
0

= 8/27
(
103/2 − 1

)

There are various rules for approximating definite integrals including the
Trapezoidal Rule and Simpson’s Rule. The Trapezoidal Rule approximates short
stretches of the curve with line segments, and the sum of the areas of the trape-
zoids under the curve is calculated and used as the approximate to the definite
integral. Simpson’s Rule approximates short stretches of the curve with parabolas,
and the sum of the areas under the parabolic arcs is calculated and used as the
approximate to the definite integral.

The approximation of the Trapezoidal rule to the definite integral is given by
the formula:

b∫

a

f (x)dx ≈
h

2
(y0 + 2y1 + 2y2 + · · · + 2yn−1 + yn)

where there are n subintervals and h = (b – a)/n.

Example 26.9 Determine an approximation to the definite integral
∫

2
1 x2 dx using

the Trapezoidal rule with n = 4 and compare to the exact value of the integral.

Solution
The approximate value is given by:

1/4/2(1 + 2 ∗ 1.5625 + 2 ∗ 2.25 + 2 ∗ 3.0625 + 4)
= 1/8, (18.75)
= 2.34

The exact value is given by

x3/ 3|2 1 = 2.33

The approximation of Simpson’s rule to the definite integral is given by the
formula:

b∫

a

f (x)dx ≈
h

3
(y0 + 4y1 + 2y2 + 4y3 . . . + 2yn−2 + 4yn−1 + yn)

where there are n subintervals (n is even) and h = (b – a)/n.

420 26 Calculus II

26.3 Fourier Series

Fourier series are named after Joseph Fourier, a 19th-century French mathemati-
cian, and are used to solve practical problems in physics. A Fourier series consists
of the sum of a possibly infinite set of sine and cosine functions. The Fourier series
for f on the interval 0 ≤ x ≤ l defines a function f whose value at each point is
the sum of the series for that value of x.

f (x) =
a0
2

+
∞Σ

m=1

[
am cos

mπ x
l

+ bm sin
mπ x
l

]

The sine and cosine functions are periodic functions

Note 1: (Period of Function)
A function f is periodic with period T > 0 if f (x + T) = f (x) for every value of x.
The sine and cosine functions are periodic with period 2π: i.e., sin(x + 2π) = sin(x)
and cos(x + 2π) = cos(x). The functions sin mπ x/l and cos mπ x/l have period T =
2l/m.

Note 2: (Orthogonality)
Two functions f and g are said to be orthogonal on a ≤ x ≤ b if:

b∫

a

f (x)g(x)dx = 0

A set of functions is said to be mutually orthogonal if each distinct pair in the
set is orthogonal. The functions sin mπx/l and cos mπx/l where m = 1, 2, … form
a mutually orthogonal set of functions on the interval –l ≤ x ≤ l, and they satisfy
the following orthogonal relations as specified in Table 26.1.

The orthogonality property of the set of sine and cosine functions allows the
coefficients of the Fourier series to be determined. Thus, the coefficients an, bn for

Table 26.1 Orthogonality
properties of sine and cosine

Orthogonality properties of sine and cosine∫ l
−l cos

mπ x
l sin nπ x

l dx = 0 all m, n

∫ l
−l cos

mπ x
l cos nπ x

l dx =
{
0 m /= n
l m = n

∫ l
−l sin

mπ x
l sin nπ x

l dx =
{
0 m /= n
l m = n

26.4 The Laplace Transform 421

the convergent Fourier series f (x) are given by:

an =
1

l

l∫

−l

f (x) cos
nπ x
l

dx n = 0, 1, 2, . . .

bn =
1

l

l∫

−l

f (x) sin
nπ x
l

dx n = 1, 2,

The values of the coefficients an and bn are determined from the integrals, and
the ease of computation depends on the particular function f involved.

f (x) =
a0
2

+
∞Σ

m=1

[
am cos

mπ x
l

+ bm sin
mπ x
l

]

The values of an and bn depend only on the value of f (x) in the interval −l ≤
x ≤ l. The terms in the Fourier series are periodic with period 2l, and the function
converges for all x whenever it converges on −l ≤ x ≤ l. Further, its sum is a
periodic function with period 2l, and therefore, f (x) is determined for all x by its
values in the interval −l ≤ x ≤ l.

26.4 The Laplace Transform

An integral transform takes a function f and transforms it to another function F
by means of an integral. Often, the objective is to transform a problem for f into
a simpler problem and then to recover the desired function from its transform
F. Integral transforms are useful in solving differential equations, and an integral
transform is a relation of the form:

F(s) =
β∫

α

K (s, t) f (t)dt

The function F is said to be the transform of f , and the function K is called the
kernel of the transformation.

The Laplace transform is named after the well-known 18th-century French
mathematician and astronomer, Pierre Laplace. The Laplace transform of f
(denoted by L {f (t)} or F(s)) is given by:

L{ f (t)} = F(s) =
∞∫

0

e−st f (t)dt

422 26 Calculus II

The kernel K(s, t) of the transformation is e−st , and the Laplace transform is
defined over an integral from zero to infinity. This is defined as a limit of integrals
over finite intervals as follows:

∞∫

a

f (t)dt = lim
A→∞

A∫

a

f (t)dt

Theorem (Sufficient Condition for Existence of Laplace Transform)
Suppose that f is a piecewise continuous function on the interval 0 ≤ x ≤ A for any
positive A and |f (t)| ≤ Keat when t ≥ M where a, K, and M are constants and K, M
> 0 then the Laplace transform L {f (t)} = F(s) exists for s > a.

The following examples are Laplace transforms of some well-known elementary
functions.

L{1} =
∞∫

0

e−st dt =
1

s
, s > 0

L{
eat

} =
∞∫

0

e−st eatdt = 1

s − a
s > a

L{sin at} =
∞∫

0

e−st sin at dt =
a

s2 + a2
s > 0

26.5 Differential Equations

Many important problems in engineering and physics involve determining a solu-
tion to an equation that contains one or more derivatives of the unknown function.
Such an equation is termed a differential equation, and the study of these equations
began with the development of the calculus by Newton and Leibnitz.

Differential equations are classified as ordinary or partial based on whether the
unknown function depends on a single independent variable or on several indepen-
dent variables. In the first case only ordinary derivatives appear in the differential
equation and it is said to be an ordinary differential equation. In the second case
the derivatives are partial, and the equation is termed a partial differential equation.

For example, Newton’s second law of motion (F = ma) expresses the relation-
ship between the force exerted on an object of mass m and the acceleration of the
object. The force vector is in the same direction as the acceleration vector. It is
given by the ordinary differential equation:

m
d2x(t)
dt2

= F(x(t))

26.6 Review Questions 423

The next example is that of a second-order partial differential equation. It is
the wave equation and is used for the description of waves (e.g., sound, light, and
water waves) as they occur in physics. It is given by:

a2
∂2u(x, t)

∂x2
=

∂2u(x, t)
∂t2

There are several fundamental questions with respect to a given differential
equation. First, there is the question as to the existence of a solution to the differ-
ential equation. Second, if it does have a solution then is this solution unique. A
third question is to how to determine a solution to a particular differential equation.

Differential equations are classified as to whether they are linear or nonlinear.
The ordinary differential equation F(x, y, y,, … , y(n)) = 0 is said to be linear if F
is a linear function of the variables y, y,, …, y(n). The general ordinary differential
equation is of the form:

a0(x)y
(n) + a1(x)y(n−1) + . . . an(x)y = g(x)

A similar definition applies to partial differential equations, and an equation is
nonlinear if it is not linear.

26.6 Review Questions

1. What is the difference between velocity and acceleration?
2. How fast does the radius of a spherical soap bubble change when air is

blown into it at the rate of 10 cm3/s?
3. Find the area under the curve y = x3 − 4x and the x-axis between x = −

2 to 0.
4. Find the area between the curves y = x − 2x and y = x1/2 between x =

2 to 4.
5. Determine the volume of the figure generated by revolving the line x +

y = 2 about the x-axis bounded by x = 0 and y = 0.
6. Determine the length of the curve y = 1/3 (x2 + 2)3/2 from x = 0 to x =

3.
7. What is a periodic function and give examples?
8. Describe applications of Fourier series, Laplace transforms, and differen-

tial equations.

424 26 Calculus II

26.7 Summary

This chapter provided a short account of applications of the calculus to calculating
the velocity and acceleration of moving bodies and problems involving rates of
change and maxima/minima problems.

We showed that integration allows the area under a curve to be calculated and
the area of the region between two curves to be computed to numerical analysis,
Fourier series, Laplace transforms, and differential equations.

Numerical analysis is concerned with devising methods for approximating solu-
tions to mathematical problems. Often an exact formula is not available for solving
a particular problem, numerical analysis provides techniques to approximate the
solution in an efficient manner. We discussed the Trapezoidal and Simpson’s rule
which provide an approximation to the definite integral.

A Fourier series consists of the sum of a possibly infinite set of sine and
cosine functions. A differential equation is an equation that contains one or more
derivatives of the unknown function.

This chapter has sketched some important results in the calculus, and the reader
is referred to Finney [1] for more detailed information.

Reference

1. Finney T (1988) Calculus and analytic geometry, 7th edn. Addison Wesley, Boston

27Matrix Theory

Key Topics

Matrix

Matrix operations

Inverse of a matrix

Determinant

Eigen vectors and values

Cayley Hamilton theorem

Cramer’s rule

27.1 Introduction

A matrix is a rectangular array of numbers that consists of horizontal rows and
vertical columns. A matrix with m rows and n columns is termed an m× n matrix,
where m and n are its dimensions. A matrix with an equal number of rows and
columns (e.g., n rows and n columns) is termed a square matrix. Figure 27.1 is an
example of a square matrix with four rows and four columns.

The entry in the ith row and the jth column of a matrix A is denoted by A[i, j],
Ai,j, or aij, and the matrix A may be denoted by the formula for its (i, j)th entry:
i.e., (aij) where i ranges from 1 to m and j ranges from 1 to n.

An m× 1 matrix is termed a column vector, and a 1× n matrix is termed a row
vector. Any row or column of a m ×n matrix determines a row or column vector
which is obtained by removing the other rows (respectively columns) from the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_27

425

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_27&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_27

426 27 Matrix Theory

Fig. 27.1 Example of a 4 ×
4 square matrix

matrix. For example, the row vector (11, −5, 5, 3) is obtained from the matrix
example by removing rows 1, 2, and 4 of the matrix.

Two matrices A and B are equal if they are both of the same dimensions, and
if aij = bij for each i = 1, 2…, m and each j = 1, 2, …., n.

Matrices be added and multiplied (provided certain conditions are satisfied).
There are identity matrices under the addition and multiplication binary oper-
ations such that the addition of the (additive) identity matrix to any matrix A
yields A and similarly for the multiplicative identity. Square matrices have inverses
(provided that their determinant is nonzero), and every square matrix satisfies its
characteristic polynomial.

It is possible to consider matrices with infinite rows and columns, and although
it is not possible to write down such matrices explicitly, it is still possible to add,
subtract, and multiply by a scalar provided; there is a well-defined entry in each
(i, j)th element of the matrix.

Matrices are an example of an algebraic structure known as an algebra.
Chapter 5 discussed several algebraic structures such as groups, rings, fields, and
vector spaces. The matrix algebra for m × n matrices A, B, C and scalars λ, μ
satisfies the following properties (there are additional multiplicative properties for
square matrices).

1. A + B = B + A
2. A + (B + C) = (A + B) + C
3. A + 0 = 0 + A = A
4. A + (−A) = (−A) + A = 0
5. λ(A + B) = λA + λB
6. (λ + μ) A = λ A + μB
7. λ(μ A) = (λμ)A
8. 1A = A

Matrices have many applications including their use in graph theory to keep track
of the distance between pairs of vertices in the graph; a rotation matrix may be
employed to represent the rotation of a vector in three-dimensional space. The
product of two matrices represents the composition of two linear transformations,
and matrices may be employed to determine the solution to a set of linear equa-
tions. They also arise in computer graphics and may be employed to project a
three-dimensional image onto a two-dimensional screen. It is essential to employ
efficient algorithms for matrix computation, and this is an active area of research
in the field of numerical analysis.

27.2 Two × Two Matrices 427

27.2 Two × Two Matrices

Matrices arose in practice as a means of solving a set of linear equations. One of
the earliest examples of their use is in a Chinese text dating from between 300BC
and 200AD. The Chinese text showed how matrices could be employed to solve
simultaneous equations. Consider the set of equations:

ax + by = r
cx + dy = s

Then the coefficients of the linear equations in x and y above may be represented
by the matrix A, where A is given by:

A =
[
a b
c d

]

The linear equations may be represented as the multiplication of the matrix A and
a vector x resulting in a vector v:

Ax = v.

The matrix representation of the linear equations and its solution are as follows:

[
a b
c d

][
x
y

]
=

[
r
s

]

The vector x may be calculated by determining the inverse of the matrix A
(provided that its inverse exists). The vector x is then given by:

x = A−1v

The solution to the set of linear equations is then given by:

[
x
y

]
=

[
a b
c d

]−1[
r
s

]

The inverse of a matrix A exists if and only if its determinant is nonzero, and if
this is the case the vector x is given by:

[
x
y

]
= 1

det A

[
d −b

−c a

][
r
s

]

428 27 Matrix Theory

The determinant of a 2× 2 matrix A is given by:

det A = ad − cb.

The determinant of a 2× 2 matrix is denoted by:

||||a b
c d

||||

A key property of determinants is that

det(AB) = det(A). det(B)

The transpose of a 2× 2 matrix A (denoted by AT) involves exchanging rows
and columns and is given by:

AT =
[
a c
b d

]

The inverse of the matrix A (denoted by A−1) is given by:

A−1 = 1
det A

[
d −b

−c a

]

Further, A · A−1 = A−1 · A = I where I is the identity matrix of the algebra of
2 ×2 matrices under multiplication. That is:

AA−1 = A−1 A =
[
1 0
0 1

]

The addition of two 2 × 2 matrices A and B is given by a matrix whose entries
are the addition of the individual components of A and B. The addition of two
matrices is commutative and we have:

A + B = B + A =
[
a + p b + q
c + r d + s

]

where A and B are given by:

A =
[
a b
c d

]
B =

[
p q
r s

]

27.3 Matrix Operations 429

The identity matrix under addition is given by the matrix whose entries are all
0, and it has the property that A + 0 = 0 + A = A.

[
0 0
0 0

]

The multiplication of two 2 × 2 matrices is given by:

AB =
[
ap + br aq + bs
cp + dr cq + ds

]

The multiplication of matrices is not commutative: i.e., AB /=BA. The multi-
plicative identity matrix I has the property that A · I = I · A = A, and it is given
by:

I =
[
1 0
0 1

]

A matrix A may be multiplied by a scalar λ, and this yields the matrix λA where
each entry in A is multiplied by the scalar λ. That is the entries in the matrix λA
are λaij.

27.3 Matrix Operations

More general sets of linear equations may be solved with m× n matrices (i.e., a
matrix with m rows and n columns) or square n ×n matrices. In this section, we
consider several matrix operations including addition, subtraction, multiplication
of matrices, scalar multiplication, and the transpose of a matrix.

The addition and subtraction of two matrices A and B are meaningful if and
only if A and B have the same dimensions: i.e., they are both m × n matrices. In
this case, A + B is defined by adding the corresponding entries:

(A + B)i j = Ai j + Bi j

The additive identity matrix for the square n× n matrices is denoted by 0, where
0 is a n× n matrix whose entries are zero: i.e., rij = 0 for all i, j where 1≤ i ≤ n
and 1 ≤ j≤n.

The scalar multiplication of a matrix A by a scalar k is meaningful and the
resulting matrix kA is given by:

(k A)i j = k Ai j

The multiplication of two matrices A and B is meaningful if and only if the
number of columns of A is equal to the number of rows of B (Fig. 27.2): i.e., A

430 27 Matrix Theory

Fig. 27.2 Multiplication of two matrices

is an m × n matrix and B is a n ×p matrix and the resulting matrix AB is a m× p
matrix.

Let A = (aij) where i ranges from 1 to m and j ranges from 1 to n, and let B
= (bjl) where j ranges from 1 to n and l ranges from 1 to p. Then AB is given by
(cil) where i ranges from 1 to m and l ranges from 1 top with cil given by:

cil =
nΣ

k=1

aikbkl .

That is, the entry (cil) is given by multiplying the ith row in A by the lth
column in B followed by a summation. Matrix multiplication is not commutative:
i.e., AB /=BA.

The identity matrix I is a n×n matrix and the entries are given by rij where rii
= 1 and rij = 0 where i /= j (Fig. 27.3). A matrix that has nonzero entries only on
the diagonal is termed a diagonal matrix. A triangular matrix is a square matrix
in which all the entries above or below the main diagonal are zero. A matrix is an
upper triangular matrix if all entries below the main diagonal are zero and lower
triangular if all of the entries above the main diagonal are zero. Upper triangular
and lower triangular matrices form a sub-algebra of the algebra of square matrices.

Fig. 27.3 Identity matrix In

27.4 Determinants 431

Fig. 27.4 Transpose of a matrix

A key property of the identity matrix is that for all n×n matrices A we have:

AI = I A = A

The inverse of a n ×n matrix A is a matrix A−1 such that:

AA−1 = A−1 A = I

The inverse A−1 exists if and only if the determinant of A is nonzero.
The transpose of a matrix A = (aij) involves changing the rows to columns and

vice versa to form the transpose matrix AT. The result of the operation is that the
m ×n matrix A is converted to the n× m matrix AT (Fig. 27.4). It is defined by:

(
AT)

i j =
(
A ji

)
1 ≤ j ≤ n and 1 ≤ i ≤ m

A matrix is symmetric if it is equal to its transpose: i.e., A = AT.

27.4 Determinants

The determinant is a function defined on square matrices, and its value is a scalar.
A key property of determinants is that a matrix is invertible if and only if its
determinant is nonzero. The determinant of a 2 × 2 matrix is given by:

||||a b
c d

|||| = ad − bc

432 27 Matrix Theory

Fig. 27.5 Determining the
(i, j) minor of A

The determinant of a 3×3 matrix is given by:

||||||
a b c
d e f
g h i

|||||| = aei + b f g + cdh − a f h − bdi − ceg

Cofactors
Let A be an n × n matrix. For 1≤ i, j≤ n, the (i, j) minor of A is defined to be the (n −
1)× (n− 1) matrix obtained by deleting the ith row and jth column of A (Fig. 27.5).

The shaded row is the ith row, and the shaded column is the jth column. These
are both deleted from A to form the (i, j) minor of A, and this is a (n− 1)× (n− 1)
matrix.

The (i, j) cofactor of A is defined to be (−1)i+j times the determinant of the (i, j)
minor. The (i, j) cofactor of A is denoted by Ki j(A).

The cofactor matrix Cof A is formed in this way where the (i, j)th element in the
cofactor matrix is the (i, j) cofactor of A.

Definition of Determinant
The determinant of a matrix is defined as:

det A =
nΣ
j=1

Ai j Ki j

In other words the determinant of A is determined by taking any row of A and
multiplying each element by the corresponding cofactor and adding the results. The
determinant of the product of two matrices is the product of their determinants.

det(AB) = det A × det B

Definition The adjugate of A is the n× n matrix Adj(A) whose (i, j) entry is the (j, i)
cofactor Kji(A) of A. That is, the adjugate of A is the transpose of the cofactor matrix
of A.

27.5 Eigen Vectors and Values 433

Inverse of A
The inverse of A is determined from the determinant of A and the adjugate of A. That
is,

A−1 = 1
det A

Adj A = 1
det A

(Cof A)T

A matrix is invertible if and only if its determinant is nonzero: i.e., A is invertible
if and only if det(A) /=0.

Cramer’s Rule
Cramer’s rule is a theorem that expresses the solution to a system of linear equations
with several unknowns using the determinant of a matrix. There is a unique solution
if the determinant of the matrix is nonzero.

For a system of linear equations of the Ax = v where x and v are n-dimensional
column vectors, then if det A /= 0 then the unique solution for each xi is

xi =
det Ui

det A

where Ui is the matrix obtained from A by replacing the ith column in A by the
v-column.

Characteristic Equation
For every n × n matrix A there is a polynomial equation of degree n satisfied by A.
The characteristic polynomial of A is a polynomial in x of degree n. It is given by:

cA(x) = det(x I − A).

Cayley-Hamilton Theorem
Every matrix A satisfies its characteristic polynomial: i.e., p(A) = 0 where p(x) is the
characteristic polynomial of A.

27.5 Eigen Vectors and Values

A number λ is an eigenvalue of a n × n matrix A if there is a nonzero vector v
such that the following equation holds:

Av = λv

The vector v is termed an eigenvector and the equation is equivalent to:

(A − λI)v = 0

434 27 Matrix Theory

This means that (A − λI) is a zero divisor, and hence, it is not an invertible
matrix. Therefore,

det(A − λI) = 0

The polynomial function p(λ) = det (A − λI) is called the characteristic poly-
nomial of A, and it is of degree n. The characteristic equation is p(λ) = 0 and
as the polynomial is of degree n there are at most n roots of the characteristic
equation, and so there at most n eigenvalues.

The Cayley-Hamilton theorem states that every matrix satisfies its characteristic
equation: i.e., the application of the characteristic polynomial to the matrix A yields
the zero matrix.

p(A) = 0

27.6 Gaussian Elimination

Gaussian elimination with backward substitution is an important method used in
solving a set of linear equations. A matrix is used to represent the set of linear
equations, and Gaussian elimination reduces the matrix to a triangular or reduced
form, which may then be solved by backward substitution.

This allows the set of n linear equations (E1–En) defined below to be solved
by applying operations to the equations to reduce the matrix to triangular form.
This reduced form is easier to solve and it provides exactly the same solution as
the original set of equations. The set of equations is defined as:

E1 : a11x1 + a12x2 + · · · + a1nxn = b1
E2 : a21x1 + a22x2 + · · · + a2nxn = b2
: : : : :

En : an1x1 + an2x2 + · · · + annxn = bn

Three operations are permitted on the equations, and these operations transform
the linear system into a reduced form. They are:

(a) Any equation may be multiplied by a nonzero constant.
(b) An equation Ei may be multiplied by a constant and added to another equation

Ej, with the resulting equation replacing Ej

(c) Equations Ei and Ej may be transposed with Ej replacing Ei and vice versa.

This method for solving a set of linear equations is best illustrated by an example,
and we consider an example taken from [1]. Then the solution to a set of linear
equations with four unknowns may be determined as follows:

E1 : x1 + x2 + 3x4 = 4
E2 : 2x1 + x2 − x3 + x4 = 1

27.7 Review Questions 435

E3 : 3x1 − x2 − x3 + 2x4 = −3

E4 : −x1 + 2x2 + 3x3 − x4 = 4

First, the unknown x1 is eliminated from E2, E3, and E4 and this is done by
replacing E2 with E2 − 2E1; replacing E3 with E3 – 3E1; and replacing E4 with
E4 + E1. The resulting system is

E1 : x1 + x2 + 3x4 = 4
E2 : −x2 − x3 − −5x4 = −7
E3 : −4x2 − x3 − 7x4 = −15
E4 : 3x2 + 3x3 + 2x4 = 8

The next step is then to eliminate x2 from E3 and E4. This is done by replacing
E3 with E3 – 4E2 and replacing E4 with E4 + 3E2. The resulting system is now
in triangular form, and the unknown variable may be solved easily by backward
substitution. That is, we first use equation E4 to find the solution to x4 and then
we use equation E3 to find the solution to x3. We then use equations E2 and E1
to find the solutions to x2 and x1.

E1 :
E2 :
E3 :
E4 :

x1 + x2 + 3x4 = 4
−x2 − x3 − 5x4 = −7

3x3 + 13x4 = 13
−13x4 = −13

The usual approach to Gaussian elimination is to do it with an augmented
matrix. That is, the set of equations is a n×n matrix and it is augmented by
the column vector to form the augmented n ×n + 1 matrix. Gaussian elimination
is then applied to the matrix to put it into triangular form, and it is then easy to
solve the unknowns.

The other common approach to solving a set of linear equation is to employ
Cramer’s rule, which was discussed in Sect. 27.4. Finally, another possible (but
computationally expensive) approach is to compute the determinant and inverse of
A and to then compute x = A−1v.

27.7 Review Questions

1. Show how 2×2 matrices may be added and multiplied.
2. What is the additive identity for 2×2 matrices? The multiplicative

identity?
3. What is the determinant of a 2×2 matrix?
4. Show that a 2× 2 matrix is invertible if its determinant is nonzero.
5. Describe general matrix algebra including addition and multiplication,

determining the determinant and inverse of a matrix.

436 27 Matrix Theory

6. What is Cramer’s rule?
7. Show how Gaussian elimination may be used to solve a set of linear

equations.
8. Write a program to find the inverse of a 3× 3 and then a (n × n) matrix.

27.8 Summary

A matrix is a rectangular array of numbers that consists of horizontal rows and
vertical columns. A matrix with m rows and n columns is termed an m× n matrix,
where m and n are its dimensions. A matrix with an equal number of rows and
columns (e.g., n rows and n columns) is termed a square matrix.

Matrices arose in practice as a means of solving a set of linear equations, and
matrices of the same dimensions may be added, subtracted, and multiplied by
a scalar. Two matrices A and B may be multiplied provided that the number of
columns of A equals the number of rows in B.

Matrices have an identity matrix under addition and multiplication, and a square
matrix has an inverse provided that its determinant is nonzero. The inverse of a
matrix involves determining its determinant, constructing the cofactor matrix, and
transposing the cofactor matrix.

The solution to a set of linear equations may be determined by Gaussian
elimination to convert the matrix to upper triangular form and then employing
backward substitution. Another approach is to use Cramer’s rule. Eigenvalues and
eigenvectors lead to the characteristic polynomial and every matrix satisfies its
characteristic polynomial.

Reference

1. Burden RL, Faires JD (1989) Numerical analysis, 4th edn. PWS Kent

28Complex Numbers and Quaternions

Key Topics

Complex numbers

Argand diagram

Polar representation

De Moivre’s theorem

Complex conjugate

Quaternions

28.1 Introduction

A complex number z is a number of the form a + bi where a and b are real num-
bers and i2 = − 1. Cardona, who was a sixteenth century Italian mathematician,
introduced complex numbers, and he used them to solve cubic equations. The set
of complex numbers is denoted by C, and each complex number has two parts
namely the real part Re(z) = a, and the imaginary part Im(z) = b. The set of com-
plex numbers is an extension of the set of real numbers, and this is clear since
every real number is a complex number with an imaginary part of zero. A com-
plex number with a real part of zero (i.e., a = 0) is termed an imaginary number.
Complex numbers have many applications in physics, engineering, and applied
mathematics.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_28

437

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_28&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_28

438 28 Complex Numbers and Quaternions

Fig. 28.1 Argand diagram

X Axis
(Real)

Y Axis
(Imaginary)

a

b
z = a+bi

r

0

A complex number may be viewed as a point in a two-dimensional Carte-
sian coordinate system (called the complex plane or Argand diagram), where the
complex number a + bi is represented by the point (a, b) on the complex plane
(Fig. 28.1). The real part of the complex number is the horizontal component, and
the imaginary part is the vertical component.

Quaternions are an extension of complex numbers. A quaternion number is a
quadruple of the form (a + bi + cj + dk) where i2 = j2 = k2 = ijk = − 1.
The set of quaternions is denoted by H, and the quaternions form an algebraic
system known as a division ring. The multiplication of two quaternions is not
commutative: i.e., given q1, q2 ∈ H then q1, q2 /=q2, q1. Quaternions were one
the first non-commutative algebraic structures to be discovered (as matrix algebra
came later).

The Irish mathematician, Sir William Rowan Hamilton,1 discovered quater-
nions. Hamilton was trying to generalize complex numbers to triples without
success. He had a moment of inspiration along the banks of the Royal Canal in
Dublin, and he realized that if he used quadruples instead of triples that a general-
ization from the complex numbers was possible. He was so overcome with emotion
at his discovery that he traced the famous quaternion formula2 on Brooms Bridge
in Dublin. This formula is given by:

i2 = j2 = k2 = i jk = −1

1 There is a possibility that the German mathematician, Gauss, discovered quaternions earlier, but
he did not publish his results.
2 Eamonn DeValera (a former taoiseach and president of Ireland) was previously a mathemat-
ics teacher, and his interests included maths physics and quaternions. He carved the quaternion
formula on the door of his prison cell in Lincoln Jail, England, during the Irish struggle for
independence. He escaped from Lincoln Jail in February 1919.

28.2 Complex Numbers 439

Quaternions have many applications in physics and quantum mechanics and
are applicable to the computing field. They are useful and efficient in describing
rotations and are therefore applicable to computer graphics, computer vision, and
robotics.

28.2 Complex Numbers

There are several operations on complex numbers such as addition, subtraction,
multiplication, division, and so on (Table 28.1). Consider two complex numbers
z1 = a + bi and z2 = c + di. Then,

Properties of Complex Numbers
The absolute value of a complex number z is denoted by |z| =

√
(a2 + b2) and is just

its distance from the origin. It has the following properties:

(i) |z| ≥ 0 and |z| = 0 if and only if z = 0.
(ii) |z| = |z* |
(iii) |z1 + z2| ≤ |z1| + |z2| (This is known as the triangle inequality)
(iv) |z1z2| = |z1| |z2|
(v) |1/z|= 1/ |z|
(vi) | z1/z|2 = |z1|/ |z2|

Table 28.1 Operations on Complex Numbers

Operation Definition

Addition z1 + z2 = (a + bi) + (c + di) = (a + c) + (b + d)i
The addition of two complex numbers may be interpreted as the addition of
two vectors

Subtraction z1 − z2 = (a + bi) − (c + di) = (a − c) + (b − d)i
Multiplication z1 z2 = (a + bi) · (c + di) = (ac − bd) + (ad + cb)i
Division This operation is defined for z2 /= 0

z1
z2

= a+bi
c+di = ac+bd

c2+d2
+ bc−ad

c2+d2
i

Conjugate The conjugate of a complex number z = a + bi is given by z* = a − bi
Clearly, z** = z and (z1 + z2)* = z1 * + z2 * Further, Re(z) = z + z*/ 2 and
Im(z) = z − z*/ 2i

Absolute value The absolute value or modulus of a complex number z = a + bi is given by |z|
=

√
(a2 + b2). Clearly, z. z* = |z|2

Reciprocal The reciprocal of a complex number z is defined for z /= 0 and is given by:
1
z = 1

a+bi = a−bi
a2+b2

= z∗

|z|2

440 28 Complex Numbers and Quaternions

Fig. 28.2 Interpretation of
complex conjugate

Y Axis

a

b z = a+bi
r

-b
r

z* = a - bi

-0
X Axis

Proof (iii)

|z1 + z2|2 = (z1 + z2)(z1 + z2)∗

= (z1 + z2)
(
z∗1 + z∗2

)

= z1z∗1 + z1z∗2 + z2z∗1 + z2z∗2
= |z1|2 + z1z∗2 + z2z∗1 + |z2|2
= |z1|2 + z1z∗2 +

(
z1z

∗
2

)∗ + |z2|2
= |z1|2 + 2Re

(
z1z

∗
2

) + |z2|2
≤ |z1|2 + 2

||z1z∗2
|| + |z2|2

= |z1|2 + 2|z1|
||z∗2

|| + |z2|2
= |z1|2 + 2|z1||z2| + |z2|2
= (|z1| + |z2|)2

Therefore, |z1 + z2| ≤ |z1|+ |z2 and so the triangle inequality is proved.
The modulus of z is used to define a distance function between two complex

numbers, and d(z1, z2) = |z1 − z2|. This turns the complex numbers into a metric
space.3

Interpretation of Complex Conjugate
The complex conjugate of the complex number z = a + bi is defined as z* = a −
bi, and this is the reflection of z about the real axis in Fig. 28.2.

The modulus |z| of the complex number z is the distance of the point z from the
origin.

3 A non-empty set X with a distance function d is a metric space if

(i) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y
(ii) d(z,y) = d(y,x)
(iii) d(x, y) ≤ d(x, z) + d(z, y)

28.2 Complex Numbers 441

Polar Representation of Complex Numbers
The complex number z = a + bi may also be represented in polar form (r, θ) in terms
of its modulus |z| and the argument θ.

cos θ = a √
a2 + b2

=
a

|z|

sin θ = b √
a2 + b2

=
b

|z|

Let r denote the modulus of z: i.e., r = |z|. Then, z may be represented by z =
(r cos θ + ir sin θ) = r (cos θ + i sin θ). Clearly, Re(z) = r cos θ and Im(z) =
r sin θ. Euler’s formula (discussed below) states that reiθ = r (cos θ + i sin θ).

Each real number θ for which z = |z| (cos θ + i sin θ) is said to be an argument
of z (denoted by arg z). There is, of course, more than one argument θ that will
satisfy z = r (cos θ + i sin θ), and the full set of arguments is given by arg z =
θ + 2kπ, where k ∈Z and satisfies z = rei(θ + 2kπ).

The principle argument of z (denoted by Arg z = θ) is the unique real number
chosen so that θ ∈ (− π, π]. That is, arg z denotes a set of arguments, whereas
Arg z denotes a unique argument. The following are properties of arg z:

arg
(
z−1) = − arg z

arg(zw) = arg z + arg w

Euler’s Formula
Euler’s remarkable formula expresses the relationship between the exponential
function for complex numbers and trigonometric functions. It is named after the
eighteenth century Swiss mathematician, Euler.

It may be interpreted as the function eiθ traces out the unit circle in the complex
plane as the angle θ ranges through the real numbers (Fig. 28.3). Euler’s formula
provides a way to convert between Cartesian coordinates and polar coordinates (r,
θ). It states that:

ei θ = cos θ + i sin θ.

Fig. 28.3 Interpretation of
Eulers’ formula

1

i

cos
sin

ei =cos + isin

442 28 Complex Numbers and Quaternions

Further, the complex number z = a + bi may be represented in polar
coordinates as z = r(cos θ + i sin θ) = reiθ .

Next, we prove Euler’s formula: i.e., eiθ = cos θ + i sin θ.

Proof Recall the exponential expansion for ex:

ex = 1 + x + x2/2! + x3/3! + · · · + xr /r ! +

The expansion of eiθ is then given by:

ei θ = 1 + i θ +
(iθ)2

2! +
(i θ)3

3! + · · · +
(iθ)r

r ! +

= 1 + iθ −
θ 2

2! −
i θ 3

3! +
θ 4

4! +
i θ 5

5! + . . .
(iθ)r

r ! + . . .

=
[
1 −

θ 2

2! +
θ 4

4! −
θ 6

6! + . . .
]

+ i

[

θ −
θ 3

3! +
θ 5

5! −
θ 7

7! + . . .

]

= cos θ + i sin θ

(This follows from the Taylor Series expansion of sin θ and cos θ).

Euler’s Identity
This remarkable identity follows immediately and is stated as:

ei π = −1 (it is also written as ei π + 1 = 0)

De Moivre’s Theorem

(cos θ + i sin θ)n = (cos nθ + i sin nθ) (where n ∈ Z)

Proof This result is proved by mathematical induction, and the result is clearly true
for the base case n = 1.

Inductive Step:

The inductive step is to assume that the theorem is true for n = k and to then show
that it is true for n = k + 1. That is, we assume that

(cos θ + i sin θ)k = (cos kθ + i sin kθ) (for some k > 1)

We next show that the result is true for n = k + 1:

(cos θ + i sin θ)k+1 =

28.2 Complex Numbers 443

= (cos θ + i sin θ)k (cos θ + i sin θ)
= (cos kθ + i sin kθ)(cos θ + i sin θ) (from inductive step)
= (cos kθ cos θ − sin kθ sin θ) + i(cos kθ sin θ + sin kθ cos θ)
= cos(kθ + θ) + i sin(kθ + θ)
= cos(k + 1)θ + i sin(k + 1)θ

Therefore, we have shown that if the result is true for some value of n say n =
k, then the result is true for n = k + 1. We have shown that the base case of n =
1 is true, and it therefore follows that the result is true for n = 2, 3, … and for all
natural numbers. The result may also be shown to be true for the integers.

Complex Roots
Suppose that z is a nonzero complex number and that n is a positive integer. Then z
has exactly n distinct complex nth roots and these roots are given in polar form by:

n
√ |z|

[
cos

{
Arg z + 2kπ

n

}
+ i sin

{
Arg z + 2kπ

n

}]

for k = 0, 1, 2, …. , n − 1

Proof The objective is to find all complex numbers w such that wn = z where w =
|w|(cos Φ + i sin Φ). Using De Moivre’s Theorem this results in:

|w|n(cos nΦ + i sin nΦ) = |z|(cos θ + i sin θ)

Therefore, |w| = n
√
|z| and nΦ = θ + 2kπ for some k. That is,

Φ = (θ + 2kπ)/n = (Arg z + 2kπ)/n

The choices k = 0, 1, …, n − 1 produce the distinct nth roots of z.
The principle nth root of z (denoted by n

√
z) is obtained by taking k = 0.

Fundamental Theorem of Algebra
Every polynomial equation with complex coefficients has complex solutions, and
the roots of a complex polynomial of degree n exist, and the n roots are all complex
numbers.

Example Describe the set S of complex numbers that satisfy |z − 1| = 2|z + 1|.

Solution

Let z = x + iy then we note that z ∈S.

⇨ |z − 1| = 2|z + 1|

444 28 Complex Numbers and Quaternions

⇨ |z − 1|2 = 4|z + 1|2
⇨ |z|2 − 2Re(z) + 1 = 4(|z|2 + 2Re(z) + 1)
⇨ |z|2 − 2Re(z) + 1 = 4|z|2 + 8Re(z) + 4
⇨ 3|z|2 + 10Re(z) + 3 = 0
⇨ 3(x2 + y2) + 10x = − 3
⇨ x2 + y2 + 10/3x = − 1
⇨ x2 + 10/3x + (5/3)2 + y2 = − 1 + (5/3)2…………(completing the square)
⇨ (x + 5/3)2 + y2 = (16/9)
⇨ (x + 5/3)2 + y2 = (4/3)2

This is the formula for a circle with radius 4/3 and centre (−5/3, 0).

Exponentials and Logarithms of Complex Numbers
We discussed Euler’s formula and noted that any complex number z = x + iy may
be written as z = r (cos θ + i sin θ) = reiθ . This leads naturally

exp(z) = ez = ex+iy = ex eiy = ex (cos y + i sin y) where z = x + iy.

There are several properties of exponentials:

(i) e0 = 1
(ii) ew = 1 ⇔ w = 2kπ i k k = 0,±1,±2,…..
(iii) |ez | = eRe z
(iv) arg (ez) = Im (z)
(v) (ez)n = ezn
(vi) (ez)−1 = e−z

(vii) ezew = ez+w
(viii) ez = ew ⇔ w = z + 2kπ i

We say that w is a logarithm of z (there are an infinite number of them) if

ln z = w ⇔ ew = z

The principal logarithm of z (denoted by Log z) is given by:

Log z = w = ln|z| + i Arg z

ew = eln|z|+i Arg z

= eln|z|ei Arg z

= |z|(Cosθ + iSinθ)
= z

28.2 Complex Numbers 445

Further, the complete set of logarithms of z may be determined since any logarithm
w of z (log z) satisfies:

ew = eLog z

⇨ w = Log z + 2kπ i
⇨ w = ln |z| + iArg z + 2kπ i
⇨ w = ln |z| + i(Arg z + 2kπ)

Raising Complex Numbers to Complex Powers
The value of xt may be determined by the exponential and logarithm functions for
real numbers

ln xt = t ln x
x t = et ln x

The principal λ power of z is defined in terms of the principal logarithm as follows:

zλ = eλ Log z

The general λ power of z is of the form:

zλe2kπλi

Complex Derivatives
A function f : A→ C is said to be differentiable at a point z0 if f is continuous at z0

f ,(z0) = lim
z→z0

f (z) − f (z0)
z − z0

and if the limit below exists. The derivative at z0 is denoted by f ,(z0).
It is often written as

f ,(z0) = lim
h→0

f (z0 + h) − f (z0)
h

446 28 Complex Numbers and Quaternions

28.3 Quaternions

The Irish mathematician, Sir William Rowan Hamilton, discovered quaternions
in the nineteenth century (Fig. 28.4). Hamilton was born in Dublin in 1805 and
attended Trinity College, Dublin. He was appointed professor of astronomy in
1827 while still an undergraduate. He made important contributions to optics,
classical mechanics, and mathematics.

Hamilton had been trying to generalize complex numbers to triples without
success. However, he had a sudden flash of inspiration on the idea of quaternion
algebra at Broom’s Bridge in 1843 while he was walking with his wife from his
home at Dunsink Observatory to the Royal Irish Academy in Dublin. This route
followed the towpath of the Royal Canal, and Hamilton was so overcome with
emotion at his discovery of quaternions that he carved the quaternion formula
into the stone on the bridge. Today, there is a plaque at Broom’s Bridge that
commemorates Hamilton’s discovery (Fig. 28.5).

i2 = j2 = k2 = i jk = −1

Quaternions are an extension of complex numbers, and Hamilton had been try-
ing to extend complex numbers to three-dimensional space without success from

Fig. 28.4 William Rowan
Hamilton

Fig. 28.5 Plaque at Broom’s
Bridge

28.4 Quaternion Algebra 447

the 1830s. Complex numbers are numbers of the form (a + bi) where i2 = − 1
and may be regarded as points on a 2-dimensional plane. A quaternion number is
of the form (a + bi + cj + dk) where i2 = j2 = k2 = ijk = − 1 and may be
regarded as points in 4-dimensional space.

The set of quaternions is denoted H by and the quaternions form an algebraic
system known as a division ring. The multiplication of two quaternions is not
commutative: i.e., given q1, q2 ∈H then q1q2 /= q2q1. Quaternions were the first
non-commutative algebraic structure to be discovered, and other non-commutative
algebras (e.g., matrix algebra) were discovered in later years.

Quaternions have applications in physics, quantum mechanics, and theoretical
and applied mathematics. Gibbs and Heaviside later developed the vector analysis
field from quaternions (see Chap. 29), and vector analysis replaced quaternions
from the 1880s. Quaternions have become important in computing in recent years,
as they are useful and efficient in describing rotations. They are applicable to
computer graphics, computer vision, and robotics.

28.4 Quaternion Algebra

Hamilton had been trying to extend the 2-dimensional space of the complex num-
bers to a 3-dimensional space of triples. He wanted to be able to add, multiply,
and divide triples of numbers but he was unable to make progress on the problem
of the division of two triples.

The generalization of complex numbers to the 4-dimensional quaternions rather
than triples allows the division of two quaternions to take place. The quaternion is
a number of the form (a + bi + cj + dk) where 1, i, j, k are the basis elements
(where 1 is the identity) and satisfy the following properties:

i2 = j2 = k2 = i jk = −1 (Quaternion Formula)

This formula leads to the following properties:

i j = k = − j i
jk = i = −k j

ki = j = −ik

These properties can be easily derived from the quaternion formula. For example:

i jk = −1
⇒ i jkk = −k (Right multiplying by k)
⇒ i j (−1) = −k (since k2 = −1)
⇒ i j = k

448 28 Complex Numbers and Quaternions

Table 28.2 Basic quaternion multiplication

× 1 i j k

1 1 i j k

i i − 1 k − j
j j − k − 1 i

k k j − i − 1

Similarly, from

i j = k
⇒ i2 j = ik (Left multiplying by i)
⇒ − j = ik (since i2 = −1)
⇒ j = −ik

Table 28.2 represents the properties of quaternions under multiplication.
Hamilton saw that the i, j, k terms could represent the three Cartesian unit

vectors i, j, k. The quaternions (H) are a 4-dimensional vector space over the
real numbers with three operations: addition, scalar multiplication, and quaternion
multiplication.

Addition and Subtraction of Quaternions
The addition of two quaternions q1 = (a1 + b1i + c1j + d1k) and q2 = (a2 + b2i +
c2j + d2k) is given by

q1 + q2 = (a1 + a2) + (b1 + b2)i + (c1 + c2) j + (d1 + d2)k
q1 − q2 = (a1 − a2) + (b1 − b2)i + (c1 − c2) j + (d1 − d2)k

Identity Element
The addition identity is given by the quaternion (0 + 0i + 0j + 0k), and the
multiplicative identity is given by (1 + 0i + 0j + 0k).

Multiplication of Quaternions
The multiplication of two quaternions q1 and q2 is determined by the product of
the basis elements and the distributive law. It yields (after a long calculation that
may be simplified with a representation of 2 ×2 matrices over Complex Numbers as
described later in the chapter):

q1.q2 = a1a2 + a1b2i + a1c2 j + a1d2k
+ b1a2i + b1b2i i + b1c2i j + b1d2ik
+ c1a2 j + c1b2 j i + c1c2 j j + c1d2 jk
+ d1a2k + d1b2ki + d1c2k j + d1d2kk

28.4 Quaternion Algebra 449

This may then be simplified to:

q1.q2 = a1a2 − b1b2 − c1c2 − d1d2
+ (a1b2 + b1a2 + c1d2 − d1c2)i
+ (a1c2 − b1d2 + c1a2 + d1b2) j
+ (a1d2 + b1c2 − c1b2 + d1a2)k

The multiplication of two quaternions may be defined in terms of matrix multi-
plication. It is easy to see that the product of the two quaternions above is equivalent
to:

q1q2 =

⎛

⎜
⎜
⎝

a1 −b1 −c1 −d1
b1 a1 −d1 c1
c1 d1 a1 −b1
d1 −c1 b1 a1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

a2
b2
c2
d2

⎞

⎟
⎟
⎠

This may also be written as:

(a2b2c2d2)

⎛

⎜
⎜
⎝

a1 b1 c1 d1
−b1 a1 d1 −c1
−c1 −d1 a1 b1
−d1 c1 −b1 a1

⎞

⎟
⎟
⎠ = q1q2

Property of Quaternions Under Multiplication
The quaternions are not commutative under multiplication. That is,

q1q2 /= q2q1

The quaternions are associative under multiplication. That is,

q1(q2q3) = (q1q2)q3

Conjugation
The conjugation of a quaternion is analogous to the conjugation of a complex number.
The conjugate of a complex number z = (a + bi) is given by z* = (a − bi). Similarly,
the conjugate of a quaternion is determined by reversing the sign of the vector part
of the quaternion. That is, the conjugate of q = (a + bi + cj + dk) (denoted by q*)
is given by q* = (a − bi − cj − dk). Similarly, q** = q.

Scalar and Vector Parts of Quaternion
A quaternion (a + bi + cj + dk) consists of a scalar part a, and a vector part bi +
cj + dk. The scalar part is always real, and the vector part is imaginary. That is, the
quaternion q may be represented q = (s, v) where s is the scalar part and v is the

450 28 Complex Numbers and Quaternions

vector part. The scaler part of a quaternion is given by s = (q + q*)/2, and the vector
part is given by v = (q − q*)/2.

The vector part of a quaternion may be regarded as a coordinate vector in
three-dimensional space R3, and the algebraic operations of quaternions reflect the
geometry of three-dimensional space. The elements i, j, k represents imaginary basis
vectors of the quaternions and the basis elements in R3.

The norm of a quaternion q (denoted by q) is given by:

||q|| =
√
qq∗ =

√
q∗q =

√
a2 + b2 + c2 + d2

A quaternion of norm one is termed a unit quaternion (i.e., u = 1). Any quater-
nion u where u is defined by u = q/ q is a unit quaternion. Unit quaternions may
be identified with rotations in R3. Given α ∈ R then αq = |α| q .

The product of two quaternions may also be given in terms of the scalar and vector
parts. That is, if q1 = (s1, v1) and q2 = (s2, v2) then the product of q1 and q2 is given
by:

q1q2 = (s1s2 − v1.v2, s1v2 + s2.v1 + v1 × v2)

where “.” is the dot product and “ ×” is the cross product as defined in Chap. 29.

Inverse of a Quaternion
The inverse of a quaternion q is given by q−1 where

q−1 = q∗/||q||2

and qq−1 = q−1q = 1
Given two quaternions p and q we have:

||pq|| = ||p||||q||

The norm is used to define the distance between two quaternions, and the distance
between two quaternions p and q (denoted by d(p, q)) is given by:

||p − q||

Representing Quaternions with 2×2 Matrices Over Complex Numbers
The quaternions have an interpretation under the 2 × 2 matrices where the basis
elements i, j, k may be interpreted as matrices. Recall, that the multiplicative identity
for 2 × 2 matrices is

1 =
[
1 0
0 1

]
− 1 =

[−1 0
0 −1

]

28.4 Quaternion Algebra 451

Consider then the quaternion basis elements defined as follows:

i =
[

0 1
−1 0

]
j =

[
0 i
i 0

]
k =

[
i 0
0 −i

]

Then a simple calculation shows that:

i2 = j2 = k2 = i jk =
[−1 0

0 −1

]
= −1

Then the quaternion q = (a + bi + cj + dk) may also be defined as

a

[
1 0
0 1

]
+ b

[
0 1

−1 0

]
+ c

[
0 i
i 0

]
+ d

[
i 0
0 −i

]

This may be simplified to the complex matrix

q =
[
a + di b + ci
−b + ci a − di

]

and this is equivalent to:

q =
[
u v
−v∗ u∗

]

where u = a + di and v = b + ci.
The addition and multiplication of quaternions are then just the usual matrix

addition and multiplication. Quaternions may also be represented by 4× 4 real
matrices.

28.4.1 Quaternions and Rotations

Quaternions may be applied to computer graphics; computer vision, and robotics,
and unit quaternions provide an efficient mathematical way to represent rotations
in three dimensions (Fig. 28.6). They offer an alternative to Euler angles and
matrices.

The unit quaternion q = (s, v) that computes the rotation about the unit vector
u by an angle θ is given by:

(Cos(θ/2), u Sin(θ/2))

The scalar part is given by s = Cos(θ /2), and the vector part is given by v = u
Sin(θ /2).

452 28 Complex Numbers and Quaternions

Fig. 28.6 Quaternions and
Rotations

A point p in space is represented by the quaternion P = (0, p). The result of
the rotation of p is given by:

Pq = qPq−1

The norm of q is 1, and so q−1 is given by (Cos(θ /2), − u Sin(θ /2)).
Suppose we have two rotations represented by the unit quaternions q1 and q2,

and that we first wish to perform q1 followed by the rotation q2. Then, the com-
position of the two relations is given by applying q2 to the result of applying q1.
This is given by the following:

P(q◦
2 q1) = q2

(
q1 Pq

−1
1

)
q−1
2

= q2 q1 Pq−1
1 q

−1
2

= (q2 q1)P(q2 q1)
−1

28.5 Review Questions

1. What is a complex number?
2. Show how a complex number may be represented as a point in the

complex plane.
3. Show that |z1z2| = |z1| |z2|.
4. Evaluate the following

(a) (–1)1/4

(b) 11/5

5. What is the fundamental theorem of algebra?
6. Show that d/dz zn = nzn−1.
7. What is a quaternion?

28.6 Summary 453

8. Investigate the application of quaternions to computer graphics, computer
vision, and robotics.

28.6 Summary

A complex number z is a number of the form a + bi where a and b are real num-
bers and i2 = − 1. The set of complex numbers is denoted by C, and a complex
number has two parts namely its real part a and imaginary part b. The complex
numbers are an extension of the set of real numbers, and complex numbers with
a real part a = 0 are termed imaginary numbers. Complex numbers have many
applications in physics, engineering, and applied mathematics.

The Irish mathematician, Sir William Rowan Hamilton, discovered quaternions.
Hamilton had been trying to extend the 2-dimensional space of the complex num-
bers to a 3-dimensional space of triples. He wanted to be able to add, multiply, and
divide triples of numbers, but he was unable to make progress on the problem of
the division of two triples. His insight was that if he considered quadruples rather
than triples that this structure would give him the desired mathematical properties.
Hamilton also made important contributions to optics, classical mechanics, and
mathematics.

The generalization of complex numbers to the 4-dimensional quaternions rather
than triples allows the division of two quaternions to take place. The quaternion is
a number of the form (a + bi + cj + dk) where 1, i, j, k are the basis elements
(where 1 is the identity) and satisfy the quaternion formula:

i2 = j2 = k2 = i jk = −1

29Vectors

Key Topics

Addition and subtraction of vectors

Scalar multiplication

Dot product

Cross product

29.1 Introduction

A vector is an object that has magnitude and direction, and the origin of the term
is from the Latin word ‘vehere’ meaning to carry or to convey. Vectors arose
out of Hamilton’s discovery of quaternions in 1843, and quaternions arose from
Hamilton’s attempts to generalize complex numbers to triples, where a quaternion
consists of a scalar part and a vector part (see Chap. 28). They were subsequently
refined by Gibbs who treated the vector part of a quaternion as an independent
object in its own right. Gibbs defined the scalar and dot product of vectors using
the relevant part of quaternion algebra, and his approach led to the new disci-
pline of vector analysis. Gibbs’s vector notation became dominant with quaternion
algebra fading into obscurity until more recent times.

A vector is represented as a directed line segment such that the length represents
the magnitude of the vector, and the arrow indicates the direction of the vector. It
is clear that velocity is a vector in the example of a jogger running at 9 km/h in a
westerly direction, whereas speed is not a vector since the direction is not specified
when we state that a runner travelled 6 km at an average speed of 9 km/h. The
magnitude of the velocity vector (9 km/h) indicates how large it is and the direction
is 270° (the direction is usually given by a unit vector).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_29

455

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_29&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_29

456 29 Vectors

magnitude

direction

Vector
v

The magnitude of a vector v is denoted by ||v||, and all vectors (apart from the
zero vector 0 which has magnitude 0 and does not point in any particular direction)
have a positive magnitude. The vector - v represents the same vector as v except
that it points in the opposite direction. The unit vector u has a magnitude of 1.
Two vectors are equal if they have the same magnitude and direction.

The addition of two vectors a and b may be seen visually below (triangle law),
and the addition of two vectors is commutative with a + b = b + a (parallelogram
law). Similarly, vectors may be subtracted with a − b = a + (-b).

a
b

a+b

The multiplication of a vector by a scalar changes its magnitude (length) but
not its direction, except that the multiplication by a negative scalar reverses the
direction of the vector. For example, the multiplication of a vector by 0.5 results
in a vector half as large in the same direction, whereas multiplication by –2 results
in a vector twice as large pointing in the opposite direction.

There are two ways of multiplying two vectors v and w together namely the
cross product (v× w) and the dot product (v · w). The cross product (or vector
product) is given by the formula v ×w = ||v|| ||w|| Sin θ n, where θ is the angle
between v and w, and n is the unit vector perpendicular to the plane containing v
and w. The cross product is anti-commutative: i.e., v × w = - w × v.

The dot product (or scalar product) of two vectors is given by the formula v.w
= ||v|| ||w|| Cos θ, where θ is the angle between v and w. The dot product is
often employed to find the angle between the two vectors, and the dot product is
commutative with v.w = w.v.

Example 29.1 An aircraft can fly at 300 and a 40 kph wind is blowing in a south
easterly direction. The aircraft sets off due north. What is its velocity with respect to
the ground?

Solution
The aircraft is flying at 300 kph N and the wind is blowing at 40 kph SE and so
the resulting velocity is the vector v.

29.2 Vectors in Euclidean Space 457

The magnitude of v is given from the cosine rule:

||v||2 = 3002 + 402 − 2 ∗ 300 ∗ 40Cos45◦

||v|| = 213.2 kph

The direction of v is given by the angle ϕ which is determined from the sine
rule.

Sin45

273.2
=

Sinϕ
40

0.1035 = Sinϕ
ϕ = 5.96◦

Thus the velocity of the aircraft is 273.2 kph in the direction of (90 − 5.96) =
84.04°.

29.2 Vectors in Euclidean Space

A vector in Euclidean space is represented as an ordered pair (tuple) in R2, an
ordered triplet (3-tuple) of numbers in R3, and an ordered n-tuple in Rn. For
example, the point (a, b) is a vector in two-dimensional space and the triple (a, b,
c) is a vector in three-dimensional space. The vector is drawn by joining an arrow
from the origin to the point (in 2-dimensional or 3-dimensional space) (Fig. 29.1)

The addition and subtraction of two vectors v = (a, b, c) and w = (x, y, z) are
given by:

v + w = (a + x, b + y, c + z)

Fig. 29.1 The Vector (a,b) in
Euclidean Plane

a

b (a, b)

458 29 Vectors

v − w = (a − x, b − y, c − z)

The multiplication of a vector v by a scalar k is given by:

kv = (ka, kb, kc)

For any vector v = (a, b) in 2-dimensional space then from Pythagoras’s Theorem
we have that the magnitude of v is given by:

||v|| = √(
a2 + b2

)
.

Similarly, for any vector v = (a, b, c) in 3-dimensional space then from
Pythagoras’s Theorem we have:

||v|| = √(
a2 + b2 + c2

)
.

We can create the unit vector along v in 2-dimensional space by:

v
||v|| =

(
a

||v|| ,
b

||v||
)

The zero vector 0 is (0, 0) in 2-dimensional space and (0, 0, 0) in 3-dimensional
space.

The standard basis for three-dimensional space is i = (1, 0, 0), j = (0, 1, 0),
and k = (0, 0, 1), and any vector v = (a, b, c) may be expressed as a linear
combination of the basis elements:

v = ai + bj + ck

Example 29.2 Calculate the magnitude of v where v is (2,3,1). Determine the unit
vector along v.
Solution
The magnitude of v (or ||v||) is given by:

||v|| = √(
a2 + b2 + c2

)

= √(
22 + 32 + 12

)

= √14

= 3.74

The unit vector along v is given by:

v
||v|| =

(
a

||v|| ,
b

||v|| ,
c

||v||
)

=
(
2/
3.74, 3

/
3.74, 1

/
3.74

)

= (0.53, 0.8, 0.27)

29.2 Vectors in Euclidean Space 459

29.2.1 Dot Product

The result of the dot product (also called scalar product) of two vectors is a scalar,
and the dot product of two vectors v = (a, b, c) and w = (x, y, z) is given by:

v · w = ax + by + cz

We previously defined the dot product as.

v · w = ||v||||w|| Cos θ

where θ is the angle between v and w
The dot product of the basis elements is given by

i · j = 1.1.Cos π/2 = 0
j · k = 1.1.Cos π/2 = 0
k · i = 1.1.Cos π/2 = 0

The two expressions for the calculation of the dot product allow the angle
between v and w to be determined:

||v||||w||Cosθ = ax + by + cz

Cosθ =
ax + by + cz

||v||||w||
θ = Cos−1

(
ax + by + cz

||v||||w||
)

Example 29.3 Calculate the dot product of v and w where v is (2,3,1) and w is
(3,4,1). Determine the angle between v and w.
Solution
The dot products of v and w are given by:

v · w = ax + by + cz
= 2.3 + 3.4 + 1.1
= 19

The magnitudes of v and w are given by:

||v|| = √(
a2 + b2 + c2

) == √(
22 + 32 + 12

) = 3.74
||w|| = √(

x2 + y2 + z2
) == √(

32 + 42 + 12
) = √26 = 5.1

||v|| ||w|| Cosθ = ax + by + cz

⇨ 3.74 * 5.1 Cosθ = 19

460 29 Vectors

⇨ 19.07 Cosθ = 19
⇨ Cosθ = 0.9963
⇨ θ = 4.92°

29.2.2 Cross Product

The result of the cross product (also called vector product) of two vectors v and w
is another vector that is perpendicular to both v and w. The cross product of the
vectors v = (a, b, c) and w = (x, y, z) is given by:

v × w = (bz − cy, cx − az, ay − bx)

The cross product is also defined by:

v × w = ||v||||w|| Sin θ n

θ is the angle between v and w
n is the unit vector perpendicular to the plane containing v and w.

The cross product is anti-commutative

v × w = −w × v

The cross product of the basis elements is given by

i × j = k
j × k = i
k × i = j

The cross product may also be expressed as the determinant of a 3-dimensional
matrix which has the basis elements on the first row, and the vectors in the
remaining rows. This is seen as follows:

v × w =
|
|
|
|
||

i j k
a b c
x y z

|
|
|
|
||

The magnitude of v× w may be interpreted as the area of a parallelogram
having v and w as sides.

29.2 Vectors in Euclidean Space 461

Example 29.4 Calculate the cross product of v and w where v is (2,3,1) and w
is (3,4,1). Show that its cross product is anti-commutative. Show that v× w is
perpendicular to v and w.

Solution
The cross product of v and w is given by:

v × w =
|
|
|
||
|

i j k
2 3 1
3 4 1

|
|
|
||
|

= (3 − 4)i − (2 − 3)j + (8 − 9)k
= −i + j − k
= (−1, 1, −1)

The cross product of w and v is given by:

w × v =
||
|
|
|
|

i j k
3 4 1
2 3 1

||
|
|
|
|

= (4 − 3)i − (3 − 2)j + (9 − 8)k
= i − j + k
= (1, −1, 1)
= −v × w

Finally, to show that v×w is perpendicular to both v and w we compute the
dot product of v × w with v and w (if they are perpendicular the dot product will
be zero) and we get:

(v × w) · v = (−1, 1, −1) · (2, 3, 1) = −2 + 3 − 1 = 0
(v × w) · w = (−1, 1, −1) · (3, 4, 1) = −3 + 4 − 1 = 0

29.2.3 Linear Dependent and Independent Vectors

A set of vectors v1,v2,… vn in a vector space V are said to be linearly dependent
if there is a set of values λ1, λ2,… λn (where not all of the λi are zero) and

λ1v1 + λ2v2 + · · · + λnvnλ = 0

A set of vectors v1,v2,… vn in a vector space V are said to be linearly inde-
pendent if whenever λ1v1 + λ2v2 + · · · + λn vnλ = 0 then λ1 = λ2 = … = λn
= 0.

462 29 Vectors

Example 29.5 Determine whether the following pairs of vectors are linearly
independent or linearly dependent.

(i) v is (1, 2, 3) and w is (2,4,6).
(ii) v is (2,3,1) and w is (3,4,1).

Solution

(i) We are seeking λ1 and λ2 such that λ1v + λ2w = 0.

λ1v + λ2w
= λ1(1, 2, 3) + λ2(2, 4, 6)
= (λ1 + 2λ2, 2λ1 + 4λ2, 3λ1 + 6λ2)

Thus when λ1v + λ2w = 0 we have:
λ1 + 2λ2 = 0, 2λ1 + 4λ2 = 0 and 3λ1 + 6λ2 = 0.
That is, λ1 + 2λ2 = 0 or λ1 = -2λ2 and so we may take λ1 = 2, λ2 = -1.
That is, v is (1, 2, 3) and w is (2,4,6) are linearly dependent.

(ii) λ1v + λ2w
= λ1(2, 3, 1) + λ2(3, 4, 1).
= (2λ1 + 3λ2, 3λ1 + 4λ2, λ1 + λ2).

Thus when λ1v + λ2w = 0 we have three equations with two unknowns and so
we solve for λ1 and λ2:

a. 2λ1 + 3λ2 = 0
b. 3λ1 + 4λ2 = 0
c. λ1 + λ2 = 0

We deduce λ1 = −λ2 from equation (c) and we substitute for λ1 in equation (a)
to get:

2(−λ2) + 3λ2 = 0.
⇨ λ2 = 0
⇨ λ1 = 0

That is, v = (2, 3, 1) and w = (3, 4, 1) are linearly independent.

29.4 Summary 463

29.3 Review Questions

1. What is a vector?
2. Explain the triangle and parallelogram laws.
3. An aircraft is capable of flying at 500 kph and a 60 kph wind is blowing

in a south westerly direction. The aircraft sets off due north. What is its
velocity with respect to the ground?

4. Determine the dot product of u and v where u = (3, 1, 5) and v = (2, 4,
3).

5. Determine the angle between u and v where u = (3, 1, 5) and v = (2, 4,
3).

6. Determine the cross product of u and v where u = (2, 1, 4) and v = (1,
3, 3).

7. Determine if the vectors u and v are linearly independent.

29.4 Summary

A vector is an object that has magnitude and direction, and it is represented as a
directed line segment such that the length represents the magnitude of the vector
and the arrow indicates the direction of the vector. A vector in Euclidean space is
represented as an ordered pair in R2, an ordered triplet of numbers in R3, and an
ordered n-tuple in Rn.

The dot product of two vectors is a scalar, whereas the cross product of two
vectors v and w results in another vector that is perpendicular to both v and w.

A set of vectors v1,v2,… vn in a vector space V are said to be linearly dependent
if there is a set of values λ1, λ2,… λn (where not all of the λi are zero) and λ1v1
+ λ2v2 + · · · + λn vnλ = 0. Otherwise, they are said to be linearly independent.

30Basic Financial Mathematics

Key Topics

Simple interest

Compound interest

Treasury bills

Promissory notes

Annuities

Present and future values

Equivalent values

30.1 Introduction

Banks are at the heart of the financial system, and they play a key role in facili-
tating the flow of money throughout the economy. Banks provide a service where
those with excess funds (i.e., the savers) may lend to those who need funds (i.e.,
the borrowers). Banks pay interest to its savers1 and earn interest from its borrow-
ers, and the spread between the interest rate given to savers and the interest rate
charged to borrowers provides banks with the revenue to provide service to their
clients, and to earn a profit from the provision of the services.

1 We are assuming that the country is not in a cycle of negative interest rates where investors are
essentially charged to place their funds on deposit with the bank.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_30

465

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_30&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_30

466 30 Basic Financial Mathematics

We distinguish between simple and compound interest, with simple interest cal-
culated on the principal only, whereas compound interest is calculated on both the
principal and the accumulated interest of previous compounding periods. That is,
simple interest is always calculated on the original principal, whereas for com-
pound interest, the interest is added to the principal sum, so that interest is also
earned on the added interest for the next compounding period.

The future value is what the principal will amount to in future at a given rate
of interest, whereas the present value of an amount to be received in future is the
principal that would grow to that amount at a given rate of interest.

An annuity is a sequence of fixed equal payments made over a period of time,
and it is usually paid at the end of the payment interval. For example, for a hire
purchase contract the buyer makes an initial deposit for an item and then pays an
equal amount per month (the payment is generally at the end of the month) up to
a fixed end date. Personal loans from banks are paid back in a similar manner but
without an initial deposit.

An interest-bearing debt is amortized if both the principal and interest are repaid
by a series of equal payments (except for possibly the last payment) made at
equal intervals of time. The debt is repaid by an amortization annuity, where each
payment consists of both the repayment of the capital borrowed and the interest
due on the capital for that time interval.

30.2 Simple Interest

Savers receive interest for placing deposits at the bank for a period of time,
whereas lenders pay interest on their loans to the bank. Simple interest is gen-
erally paid on term deposits (these are usually short-term fixed-term deposits for
3, 6, or 12 months) or short-term investments or loans. The interest earned on a
savings account depends on the principal amount placed on deposit at the bank,
the period of time that it will remain on deposit, and the specified rate of interest
for the period.

For example, if Euro 1000 is placed on deposit at a bank with an interest rate
of 10% per annum for two years, then it will earn a total of Euro 200 in simple
interest for the period. The interest amount is calculated by

1000 ∗ 10 ∗ 2

100
= EURO 200

The general formula for calculating the amount of simple interest A due for
placing principal P on deposit at a rate r of interest (where r is expressed as a
percentage) for a period of time T (in years) is given by:

I =
P × r × t

100

30.2 Simple Interest 467

If the rate of interest r is expressed as a decimal then the formula for the interest
earned is simply:

I = P × r × t

It is essential in using the interest rate formula that the units for time and rate
of interest are the same:

Example 30.1 (Simple Interest) Calculate the simple interest payable for the
following short-term investments.

1. £5000 placed on deposit for six months (1/2 year) at an interest rate of 4%.
2. £3000 placed on deposit for one month (1/12 year) at an interest rate of 5%.
3. £10,000 placed on deposit for one day (1/365 year) at an interest rate of 7%.

Solution (Simple Interest)

1. A= 5000 * 0.04 * 0.5 = £100
2. A = 3000 * 0.05 * 0.08333 = £12.50
3. A = 10000 * 0.07 * 0.00274 = £1.92

We may derive various formulae from the simple interest formula A = P× r ×T.

P =
I

r t
r =

I

Pt
t =

I

Pr

Example 30.2 (Finding the Principal, Rate or Time) Find the value of the principal
or rate or time in the following.

1. What principal will earn interest of e24.00 at 4.00% in eight months?
2. Find the annual rate of interest for a principal of e800 to earn e50 in interest in

nine months.
3. Determine the number of months required for a principal of e2000 to earn e22

in interest at a rate of 5%.

Solution

We use the formulae derived from the simple interest formula to determine these.

1. P = I
r t = 24

0.04×0.6666 = e900
2. r = I

Pt = 50
800×0.75 = 0.0833 = 8.33%

3. t = I
Pr = 22

2000×0.05 = 0.22 years = 2.64 months

468 30 Basic Financial Mathematics

30.2.1 Computing Future and Present Values

The future value is what the principal will amount to in future at a given rate of
interest, whereas the present value of an amount to be received in future is the
principal that would grow to that amount at a given rate of interest.

30.2.2 Computing Future Value

A fixed-term account is an account that is opened for a fixed period of time (typi-
cally 3, 6, or 12 months). The interest rate is fixed during the term, and thus, the
interest due at the maturity date is known in advance. That is, the customer knows
what the future value (FV) of the investment will be and knows what is due on the
maturity date of the account (this is termed the maturity value).

On the maturity date both the interest due and the principal are paid to the
customer, and the account is generally closed on this date. In some cases, the
customer may agree to roll over the principal, or the principal and interest for a
further fixed period of time, but there is no obligation on the customer to do so.
The account is said to mature on the maturity date, and the maturity value (MV)
or future value (FV) is given by the sum of the principal and interest:

MV = FV = P + I

Further, since I = Prt we can write this as MV = P + Prt or

FV = MV = P(1 + r t)

Example 30.3 (Computing Maturity Value) Jo invests e10,000 in a short-term
investment for three months at an interest rate of 9%. What is the maturity value of
her investment?

Solution (Computing Maturity Value)

MV = P(1 + r t)
= 10,000(1 + 0.09 ∗ 0.25)

= e10,225

30.2.3 Computing Present Values

The present value of an amount to be received at a given date in future is the
principal that will grow to that amount at a given rate of interest over that period
of time. We computed the maturity value of a given principal at a given rate of
interest r over a period of time t as:

MV = P(1 + r t)

30.2 Simple Interest 469

Therefore, the present value (PV = P) of an amount V to be received t years
in future at an interest rate r (simple interest) is given by:

PV = P = V

(1 + r t)

Example 30.4 (Computing Present Value) Compute the present value of an invest-
ment eight months prior to the maturity date, where the investment earns interest of
7% per annum and has a maturity value of e920.

Solution (Computing Present Value)

V = 920, r = 0.07, t = 8/12 = 0.66

PV = P = V

(1 + r t)
= 920

(1 + 0.07 ∗ 0.66)
= e879.37

Example 30.5 (Equivalent Values) Compute the payment due for the following:

1. A payment of $2000 is due in one year. It has been decided to repay early and
payment is to be made today. What is the equivalent payment that should be made
given that the interest rate is 10%?

2. A payment of $2000 is due today. It has been agreed that payment will instead be
made six months later. What is the equivalent payment that will be made at that
time given that the interest rate is 10%?

Solution (Equivalent Values)

1. The original payment date is 12 months from today and is now being made
12 months earlier than the original date. Therefore, we compute the present value
of $2000 for 12 months at an interest rate of 10%.

PV = P = V

(1 + r t)
= 2000

(1 + 0.1 ∗ 1)
= e1818.18

2. The original payment date is today but has been changed to six months later, and
so we compute the future value of $2000 for six months at an interest rate of 10%.

FV = P(1 + r t) = 2000(1 + 0.1 ∗ 0.5) = 2000(1.05) = $2100

Example 30.6 (Equivalent Values) A payment of e5000 that is due today is to be
replaced by two equal payments (we call the unknown payments value x) due in four
and eight months, where the interest rate is 10%. Find the value of the replacement
payments.

470 30 Basic Financial Mathematics

Solution (Equivalent Values)

The sum of the present value of the two (equal but unknown) payments is e5000.

The present value of x (received in four months) is

PV = P = V

(1 + r t)
= x

(1 + 0.1 ∗ 0.33)
= x

1.033
= 0.9678x

The present value of x (received in eight months) is

PV = P = V

(1 + r t)
= x

(1 + 0.1 ∗ 0.66)
= x

1.066
= 0.9375x

Therefore,

0.9678x + 0.9375x = e5000
⇒ 1.9053x = e5000
⇒ x = e2624.26

30.3 Compound Interest

The calculation of compound interest is more complicated as may be seen from
the following example:

Example 30.7 (Compound Interest) Calculate the interest earned and what the new
principal will be on Euro 1000, which is placed on deposit at a bank, with an interest
rate of 10% per annum (compound) for three years.

Solution
At the end of year 1, Euro 100 of interest is earned, and this is added to the existing
principal making the new principal (at the start of year 2) e1000 + e100 = Euro
1100. At the end of year 2, Euro 110 is earned in interest, and this is added to the
principal making the new principal (at the start of year 3) e1100 + e110 = Euro
1210. Finally, at the end of year 3 a further Euro 121 is earned in interest, and
so the new principal is Euro 1331 and the total interest earned for the three years
is the sum of the interest earned for each year (i.e., Euro 331). This may be seen
from Table 30.1.

The new principal each year is given by a geometric sequence (recall a geometric
sequence is a sequence in the form a, ar, ar2, … arn). For this example, we have a
= 1000, and as the interest rate is 10% = 1/10 = 0.1 we have r = (1 + 0.1), and so
the sequence is:

1000, 1000(1.1), 1000(1.1)2, 1000(1.1)3 . . .

30.3 Compound Interest 471

Table 30.1 Calculation of
compound interest

Year Principal Interest earned New principal

1 e1000 e100 e1100

2 e1100 e110 e1210

3 e1210 e121 e1331

That is, if a principal amount P is invested for n years at a rate r of interest (r is
expressed as a decimal) then it will amount to:

A = FV = P(1 + r)n

For our example above, A = 1000, t = 3 and r = 0.1 Therefore,

A = 1000(1.1)3

= e1331 (as before)

A principal amount P invested for n years at a rate r of simple interest (r is
expressed as a decimal) will amount to:

A = FV = P(1 + r t)

The principal e1000 invested for three years at a rate of interest of 10% (simple
interest) will amount to:

A = 1000
(
1 + 0.1∗3

) = 1000(1.3) = e1300

There are variants of the compound interest formula to cover situations where
there are m-compounding periods per year. For example, interest may be compounded
annually, semi-annually (with two compounding periods per year), quarterly (with
four compounding periods per year), monthly (with 12 compounding periods per
year), or daily (with 365 compounding periods per year).

The periodic rate of interest (i) per compound period is given by the nominal
annual rate of interest (r) divided by the number of compounding periods (m) per
year:

i = Nominal Rate

compounding periods
=

r

m

For example, if the nominal annual rate is 10% and interest is compounded quar-
terly then the period rate of interest per quarter is 10/4 = 2.5%. That is, a compound
interest of 2.5% is calculated at the end of each quarter and applied to the account.

The number of compounding periods for the total term of a loan or investment is
given by the number of compounding periods per year (m) multiplied by the number
of years of the investment or loan.

n = #years × m

472 30 Basic Financial Mathematics

Example 30.8 (Compound Interest—Multiple Compounding Periods) An investor
places £10,000 on a term deposit that earns interest at 8% per annum compounded
quarterly for three years and nine months. At the end of the term the interest rate
changes to 6% compounded monthly and it is invested for a further term of two years
and three months.

1. How many compounding periods are there for three years and nine months?
2. What is the value of the investment at the end of three years and nine months?
3. How many compounding periods are there for two years and three months?
4. What is the final value of the investment at the end of the six years?

Solution (Compound Interest—Multiple Compounding Periods)

1. The initial term is for three years and nine months (i.e., 3.75 years), and so the
total number of compounding periods is given by n = #years * m, where #years
= 3.75 and m = 4. Therefore, n = 3.75 * 4 = 15.

2. The nominal rate of interest r is 8% = 0.08, and so the interest rate i per quarterly
compounding period is 0.08/4 = 0.02.

Therefore at the end of the term the principal amounts to:

A = FV1 = P(1 + i)n

= 10,000(1 + 0.02)15

= 10,000(1.02)15

= 10,000(1.3458)
= £13,458

3. The term is for two years and three months (i.e., 2.25 years), and so the total
number of compounding periods is given by n = #years * m, where #years =
2.25 and m = 12. Therefore, n = 2.25 * 12 = 27.

4. The new nominal interest rate is 6% = 0.06 and so the interest rate i per com-
pounding period is 0.06/12 = 0.005. Therefore at the end of the term the principal
amounts to:

A = FV2 = FV1(1 + i)n

= 13,458(1 + 0.005)27

= 13,458(1.005)27

= 13,458 ∗ 1.14415
= £15,398

30.3 Compound Interest 473

30.3.1 Present Value Under Compound Interest

The time value of money is the concept that the earlier that cash is received the
greater its value to the recipient. Similarly, the later that a cash payment is made,
the lower its value to the payee, and the lower its cost to the payer.

This is clear if we consider the example of a person who receives $1000 now
and a person who receives $1000 five years from now. The person who receives
$1000 now is able to invest it and to receive compound interest on the principal,
whereas the other person who receives $1000 in five years earns no interest during
the period. Further, inflation during the period means that the purchasing power of
$1000 is less in five years’ time than it is today.

We presented the general formula for what the future value of a principal
P invested for n compounding periods at a compound rate r of interest per
compounding period as:

A = P(1 + r)n

The present value of a given amount A that will be received in future is the
principal (P = PV) that will grow to that amount where there are n compounding
periods and the rate of interest is r for each compounding period. The present
value of an amount A received in n compounding periods at an interest rate r for
the compounding period is given by:

P = A

(1 + r)n

We can write also write the present value formula as PV = P = A (1 + r)−n.

Example 30.9 (Present Value) Find the principal that will amount to $10,000 in five
years at 8% per annum compounded quarterly.

Solution (Present Value)

The term is five years = 5 * 4 = 20 compounding period. The nominal rate of interest
is 8% = 0.08 and so the interest rate i per compounding period is 0.08/4 = 0.02. The
present value is then given by:

PV = A(1 + i)−n = FV(1 + i)−n

= 10,000(1.02)−20

= $6729.71

The difference between the known future value of $10,000, and the computed
present value (i.e., the principal of $6729.71) is termed the compound discount and

474 30 Basic Financial Mathematics

represents the compound interest that accumulates on the principal over the period
of time. It is given by:

Compound Discount = FV − PV

For this example the compound discount is $10,000 − 6729.71 = $3270.29.

Example 30.10 (Present Value) Elodie is planning to buy a home entertainment
system for her apartment. She can pay £1500 now or pay £250 now and £1600 in two
years’ time. Which option is better if the nominal rate of interest is 9% compounded
monthly?

Solution (Present Value)

There are 2 * 12 = 24 compounding periods and the interest rate i for the compound-
ing period is 0.09/12 = 0.0075. The present value of £1600 in two years time at an
interest rate of 9% compounded monthly is:

PV = FV(1 + i)−n

= 1600(1.0075)−24

= 1600/1.1964

= £1337.33

The total cost of the second option is £250 + 1337.33 = £1587.33.
Therefore, Elodie should choose the first option since it is cheaper by £87.33 (i.e.,

£1587.33 − 1500).

30.3.2 Equivalent Values

When two sums of money are to be paid/received at different times they are not
directly comparable as such, and a point in time (the focal date) must be chosen
to make the comparison (Fig. 30.1).

The choice of focal date determines whether the present value or future value
formula will be used. That is, when computing equivalent values we first determine
the focal date, and then depending on whether the payment date is before or after
this reference date we apply the present value or future value formula.

If the due date of the payment is before the focal date then we apply the future
value FV formula:

FV = P(1 + i)n

If the due date of the payment is after the focal date then we apply the present
value PV formula:

PV = FV(1 + i)−n

30.3 Compound Interest 475

Fig. 30.1 Equivalent
weights

Example 30.11 (Equivalent Values) A debt value of e1000 that was due three
months ago, e2000 that is due today, and e1500 that is due in 18 months are to be
combined into one payment due six months from today at 8% compounded monthly.
Determine the amount of the single payment.

Solution (Equivalent Values)

The focal date is six months from today and so we need to determine the equivalent
value E1, E2, and E3 of the three payments on this date, and we then replace the three
payments with one single payment E = E1 + E2 + E3 that is payable six months
from today.

The equivalent value E1 of e1000 which was due three months ago in six months
from today is determined from the future value formula where the number of interest
periods n = 6 + 3 = 9. The interest rate per period is 8%/12 = 0.66% = 0.00667.

FV = P(1 + i)n

= 1000(1 + 0.00667)9

= 1000(1.00667)9

= 1000 ∗ 1.0616

= e1061.60

The equivalent value E2 of e2000 which is due today in six months is determined
from the future value formula, where the number of interest periods n = 6. The
interest rate per period is = 0.00667.

FV = P(1 + i)n

476 30 Basic Financial Mathematics

= 2000(1 + 0.00667)6

= 2000(1.00667)6

= 2000 ∗ 1.0407

= e2081.40

The equivalent value E3 of e1500 which is due in 18 months from today is
determined from the present value formula, where the number of interest periods n
= 18 − 6 = 12. The interest rate per period is = 0.00667.

PV = FV(1 + i)−n

= 1500(1 + 0.0067)−12

= 1500(1.0067)−12

= e1384.49

E = E1 + E2 + E3

= 1061.60 + 2081.40 + 1384.49
= e4527.49

Example 30.12 (Equivalent Values—Replacement Payments) Liz was due to make
a payment of £2000 today. However, she has negotiated a deal to make two equal
payments: the first payment is to be made one year from now and the second payment
two years from now. Determine the amount of the equal payments where the interest
rate is 9% compounded quarterly and the focal date is today.

Solution (Equivalent Values—Replacement Payments)

Let x be the value of the equal payments. The first payment is made in one year and
so there are n = 1 * 4 = 4 compounding periods, and the second payment is made
in two years and so there are n = 2 * 4 = 8 compounding periods. The interest rate
i is 9%/4 = 2.25% = 0.0225.

The present value E1 of a sum x received in one year is given by:

PV = FV(1 + i)−n

= x(1 + 0.0225)−4

= x(1.0225)−4

= 0.9148x

The present value E2 of a sum x received in two years is given by:

PV = FV(1 + i)−n

= x(1 + 0.0225)−8

= x(1.0225)−8

30.4 Basic Mathematics of Annuities 477

= 0.8369x

The sum of the present value of E1 and E2 is £2000 and so we have:

0.9148x + 0.8369x = 2000
1.7517x = 2000
x = £1141.75

30.4 Basic Mathematics of Annuities

An annuity is a sequence of fixed equal payments made over a period of time,
and it is usually paid at the end of the payment interval. For example, for a hire
purchase contract the buyer makes an initial deposit for an item and then pays an
equal amount per month (the payment is generally at the end of the month) up to
a fixed end date. Personal loans from banks are paid back in a similar manner but
without an initial deposit.

An investment annuity (e.g., a regular monthly savings scheme) may be paid
at the start of the payment interval. A pension scheme involves two stages, with
the first stage involving an investment of regular payments at the start of the pay-
ment interval up to retirement, and the second stage involving the payment of the
retirement annuity. The period of payment of a retirement annuity is usually for
the remainder of a person’s life (life annuity), or it could be for a period of a fixed
number of years.

We may determine the final value of an investment annuity by determining the
future value of each payment up to the maturity date and then adding them all
together. Alternately, as the future values form a geometric series we may derive
a formula for the value of the investment by using the formula for the sum of a
geometric series.

We may determine the present value of an annuity by determining the present
value of each payment made and summing these, or we may also develop a formula
to calculate the present value.

The repayment of a bank loan is generally with an amortization annuity, where
the customer borrows a sum of money from a bank (e.g., a personal loan for a car
or a mortgage for the purchase of a house). The loan is for a defined period of time,
and its repayment is with a regular annuity, where each annuity payment consists
of interest and capital repayment. The bulk of the early payments go on interest
due on the outstanding capital with smaller amounts going on capital repayments.
However, the bulk of the later payments go on repaying the capital with smaller
amounts going on interest.

An annuity is a series of equal cash payments made at regular intervals over a
period of time, and they may be used for investment purposes or paying back a
loan or mortgage. We first consider the example of an investment annuity.

478 30 Basic Financial Mathematics

Example 30.13 (Investment Annuity) Sheila is investing e10,000 a year in a savings
scheme that pays 10% interest every year. What will the value of her investment be
after five years?

Solution (Invested Annuity)

Sheila invests e10,000 at the start of year 1 and so this earns five years of compound
interest of 10% and so its future value in five years is given by 10,000 * 1.15 =
e16,105. The future value of the payments that she makes is presented in Table
30.2.

Therefore, the value of her investment at the end of five years is the sum of the
future values of each payment at the end of five years = 16,105 + 14,641 + 13,310
+ 12,100 + 11,000 = e67,156.

We note that this is the sum of a geometric series and so in general if an investor
makes a payment of A at the start of each year for n years at a rate r of interest then
the investment value at the end of n years is:

A(1 + r)n + A(1 + r)n−1 + . . . A(1 + r)
= A(1 + r)

[
1 + A(1 + r) + · · · + A(1 + r)n−1]

= A(1 + r)
(1 + r)n − 1
(1 + r) − 1

= A(1 + r)
(1 + r)n − 1

r

We apply the formula to check our calculation.

10000(1 + 0.1)
(1 + 0.1)5 − 1

0.1

= 11000
(1.1)5 − 1

0.1

= 11000
(1.61051 − 1)

0.1
= e67,156

Table 30.2 Calculation of
future value of annuity

Year Amount Future value (r = 0.1)

1 10,000 10,000 * 1.15 = e16,105
2 10,000 10,000 * 1.14 = e14,641
3 10,000 10,000 * 1.13 = e13,310
4 10,000 10,000 * 1.12 = e12,100
5 10,000 10,000 * 1.11 = e11,000
Total e67,156

30.4 Basic Mathematics of Annuities 479

Note 30.1

We assumed that the annual payment was made at the start of the year. However,
for ordinary annuities payment is made at the end of the year (or compounding
period) and so the formula would be slightly different:

FV = A
(1 + r)n − 1

r

The future value formula is adjusted for multiple (m) compounding periods per
year, where the interest rate for the period is given by i = r /m, and the number
of payment periods n is given by where n = tm (where t is the number of years).
The future value of a series of payments of amount A (made at start of the com-
pounding period) with interest rate i per compounding period, where there are n
compounding periods, is given by:

FV = A(1 + i)
(1 + i)n − 1

i

The future value of a series of payments of amount A (made at end of the
compounding period) with interest rate i per compounding period, where there are
n compounding periods, is given by:

FV = A
(1 + i)n − 1

i

An annuity consists of a series of payments over a period of time, and so it is
reasonable to consider its present value with respect to a discount rate r (this is
applicable to calculating the present value of the annuity for mortgage repayments
discussed in the next section).

The net present value of an annuity is the sum of the present value of each of
the payments made over the period, and the method of calculation is clear from
Table 30.3.

Example 30.14 (Present Value Annuities) Calculate the present value of a series of
payments of $1000 with the payments made for five years at a discount rate of 10%.

Table 30.3 Calculation of
present value of annuity

Year Amount Present value (r = 0.1)

1 1000 $909.91

2 1000 $826.44

3 1000 $751.31

4 1000 $683.01

5 1000 $620.92

Total $3791

480 30 Basic Financial Mathematics

Solution (Present Value Annuities)

The regular payment A is 1000, and the rate r is 0.1 and n = 5. The present value of
the first payment received is 1000/1.1 = 909.91 at the end of year of year 1; at the
end of year 2 it is 1000/(1.1)2 = 826.45; and so on. At the end of year 5 its present
value is 620.92. The net present value of the annuity is the sum of the present value
of all the payments made over the five years, and it is given by the sum of the present
values from Table 30.3. That is, the present value of the annuity is 909.91 + 826.44
+ 751.31 + 683.01 + 620.92 = $3791.

We may derive a formula for the present value of a series of payments A made
over a period of n years at a discount rate of r as follows: Clearly, the present value
is given by:

A

(1 + r)
+ A

(1 + r)2
+ · · · + A

(1 + r)n

This is a geometric series where the constant ratio is 1
1+r and the present value of

the annuity is given by its sum:

PV =
A

r

[
1 − 1

(1 + r)n

]

For the example above we apply the formula and get

PV =
1000

0.1

[
1 −

1

(1.1)5

]

= 10000(0.3791)
= $3791

The annuity formula is adjusted for multiple (m) compounding periods per year,
and the interest rate for the period is given by i = r /m, and the number of payment
periods n is given by where n = tm (where t is the number of years). For example,
the present value of an annuity of amount A, with interest rate i per compounding
period, where there are n compounding periods, is given by:

P =
A

i

[
1 − 1

(1 + i)n

]

Example 30.15 (Retirement Annuity) Bláithín has commenced employment at a
company that offers a pension in the form of an annuity that pays 5% interest per
annum compounded monthly. She plans to work for 30 years and wishes to accumu-
late a pension fund that will pay her e2000 per month for 25 years after she retires.
How much does she need to save per month to do this?

Solution (Retirement Annuities)

30.5 Loans and Mortgages 481

First, we determine the value that the fund must accumulate to pay her e2000 per
month, and this is given by the present value of the 25-year annuity of e2000 per
month. The interest rate r is 5% and as there are 12 compounding periods per year
there are a total of 25 * 12 = 300 compounding periods, and the interest rate per
compounding period is 0.05/12 = 0.004166.

P = 2000/0.004166
[
1 − (1.004166)−300]

= e342,174.

That is, her pension fund at retirement must reach e342,174 and so we need to
determine the monthly payments necessary for her to achieve this. The future value
is given by the formula:

FV = A
(1 + i)n+1 − 1

i

and so

A = FV ∗i /
[
(1 + i)n+1 − 1

]

where m = 12, n = 30 * 12 = 360 and i = 0.05/12 = 0.004166 and FV = 342,174.

A = 342,174 ∗ 0.004166/3.4863

= e408.87

That is, Bláithín needs to save e408.87 per month into her retirement account
(sinking fund) for 30 years in order to have an annuity of e2000 per month for
25 years (where there is a constant interest rate of 5% compounded monthly).

30.5 Loans and Mortgages

The purchase of a home or car requires a large sum of money, and so most
purchasers need to obtain a loan from the bank to fund the purchase. Once the
financial institution has approved the loan, the borrower completes the purchase
and pays back the loan to the financial institution over an agreed period of time
(the term of the loan). For example, a mortgage is generally paid back over
20−25 years, whereas a car loan is usually paid back in five years (Fig. 30.2).

An interest-bearing debt is amortized if both the principal and interest are repaid
by a series of equal payments (except for possibly the last payment) made at equal
intervals of time. That is, the amortization of loans refers to the repayment of
interest-bearing debts by a series of equal payments made at equal intervals of
time. The debt is repaid by an amortization annuity, where each payment consists

482 30 Basic Financial Mathematics

Fig. 30.2 Loan or mortgage

of both the repayment of the capital borrowed and the interest due on the capital
for that time interval.

Mortgages and many consumer loans are repaid by this method, and the stan-
dard problem is to calculate what the annual (or monthly) payment should be to
amortize the principal P in n years where the rate of interest is r.

The present value of the annuity is equal to the principal borrowed: i.e., the
sum of the present values of the payments must be equal to the original principal
borrowed. That is:

P = A

(1 + r)
+ A

(1 + r)2
+ · · · + A

(1 + r)n

We may also use the formula that we previously derived for the present value
of the annuity to get:

P =
A

r

[
1 − 1

(1 + r)n

]

We may calculate A by manipulating this formula to get:

A = Pr
[
1 − 1

(1+r)n

]

A = Pr /
[
1 − (1 + r)−n]

Example 30.16 (Amortization) Joanne has taken out a e200,000 mortgage over
20 years at 8% per annum. Calculate her annual repayment amount to amortize the
mortgage.

Solution (Amortization)

We apply the formula to calculate her annual repayment:

A = Pr
[
1 − 1

(1+r)n

]

30.5 Loans and Mortgages 483

A =
200,000 ∗ 0.08
[
1 − 1

(1+0.08)20

]

=
16,000

[
1 − 1

4.661

]

= e20,370

We adjust the formula for the more common case where the interest is compounded
several times per year (usually monthly), and so n = # years * # compoundings and
the interest i = r/# compoundings.

A = Pi
[
1 − 1

(1+i)n

]

Example 30.17 (Amortization) A mortgage of £150,000 at 6% compounded
monthly is amortized over 20 years. Determine the following:

1. Repayment amount per month
2. Total amount paid to amortize the loan.
3. The cost of financing

Solution (Amortization)

The number of payments n = #years * payments per year = 20 * 12 = 240.
The interest rate i = 6%/12 = 0.5% = 0.005.

1. We calculate the amount of the repayment A by substituting for n and i and obtain:

A =
150,000 ∗ 0.005
[
1 − 1

(1+0.005)240

]

= 750
[
1 − 1

3.3102

]

= £1074.65

2. The total amount paid is the number of payments * amount of each payment =
n * A = 240 * 1074.65 = £257,916

3. The total cost of financing = total amount paid − original principal = 257,916
− 150,000 = £107,916.

Example 30.18 (Amortization) For the previous example determine the following
at the end of the first period:

1. The amount of interest repaid.

484 30 Basic Financial Mathematics

2. The amount of the principal repaid.
3. The amount of the principal outstanding.

Solution (Amortization)

The amount paid at the end of the first period is £1074.65.

1. The amount paid in interest for the first period is 150,000 * 0.005 = £750.
2. The amount of the principal repaid is £1074 − 750 = £324.65.
3. The amount of the principal outstanding at the end of the first interest period is

£150,000–324.65 = £149,675.35.

The early payments of the mortgage mainly involve repaying interest on the
capital borrowed, whereas the later payments mainly involve repaying the capital
borrowed with less interest due. We can create an amortization table which shows
the interest paid, the amount paid in capital repayment, and the outstanding prin-
cipal balance for each payment interval. Often, the last payment is different to the
others due to rounding errors introduced and carried through.

Each entry in the amortization table includes interest, the principal repaid,
and outstanding principal balance. The interest is calculated by the principal bal-
ance * periodic interest rate i; the principal repaid is calculated by the payment
amount − interest; and the new outstanding principal balance is given by the
principal balance − principal repaid.

30.6 Review Questions

1. Explain the difference between simple and compound interest?
2. Calculate the simple interest payable on an investment of £12,000 placed

on deposit for nine months at an interest rate of 8%.
3. An investor places £5000 on a term deposit that earns interest at 8% per

annum compounded quarterly for two years and three months. Find the
value of the investment on the maturity date.

4. Find the principal that will amount to $12,000 in three years at 6% per
annum compounded quarterly.

5. How many years will it take a principal of $5000 to exceed $10,000 at a
constant annual growth rate of 6% compound interest?

6. What is the present value of $5000 to be received in five years time at a
discount rate of 7%?

7. Explain the concept of equivalent values and when to use the present
value/future value in its calculation.

8. A debt value of e2000 due six months ago, e5000 due today and e3000
due in 18 months are to be combined into one payment due three months

30.7 Summary 485

from today at 6% compounded monthly. Determine the amount of the
single payment.

30.7 Summary

Simple interest is calculated on the principal only whereas compound interest is
calculated on both the principal and the accumulated interest of previous periods.
Compound interest is generally used for long-term investments and loans, and its
calculation is more complicated than that of simple interest.

The time value of money is the concept that the earlier that cash is received
the greater its value to the recipient, and vice versa for late payments. The future
value of a principal P invested for n-year compounding periods at a compound
rate r of interest per compounding period is given by A = P(1 + r)n. The present
value of a given amount A that will be received n years in future, at an interest
rate r for each compounding period is the principal that will grow to that amount
and is given by P = A(1 + r)−n.

A long-term promissory note has a term greater than one year and may be
bought or sold prior to its maturity date. The calculation of the value of a promis-
sory note is similar to that used in the calculation of the value of short-term
promissory notes.

The future value is what the principal will amount to in future at a given rate
of interest, whereas the present value of an amount to be received in future is the
principal that would grow to that amount at a given rate of interest.

An annuity is a sequence of fixed equal payments made over a period of time,
and it is usually paid at the end of the payment interval. An interest-bearing debt is
amortized if both the principal and interest are repaid by a series of equal payments
(with the exception of possibly the last payment) made at equal intervals of time.
The debt is repaid by an amortization annuity, where each payment consists of
both the repayment of the capital borrowed and the interest due on the capital for
that time interval.

31Introduction to Operations Research

Key Topics

Linear programming

Constraints

Variables

Optimization

Objective function

Cost volume profit analysis

Game theory

31.1 Introduction

Operations research is a multidisciplinary field that is concerned with the appli-
cation of mathematical and analytic techniques to assist in decision-making. It
includes techniques such as mathematical modelling, statistical analysis, and math-
ematical optimization as part of its goal to achieve optimal (or near optimal)
solutions to complex decision-making problems. The modern field of operations
research includes various other disciplines such as computer science, industrial
engineering, business practices in manufacturing and service companies, supply
chain management, and operations management.

Pascal did early work on operations research in the seventeenth century. He
attempted to apply early work on probability theory to solve complex decision-
making problems. Babbage’s work on the transportation and sorting of mail
contributed to the introduction of the uniform “Penny Post” in England in the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_31

487

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_31&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_31

488 31 Introduction to Operations Research

nineteenth century. The origins of the operations research field are from the work
of military planners during the First World War, and the field took off during the
Second World War as it was seen as a scientific approach to decision-making using
quantitative techniques. It was applied to strategic and tactical problems in mili-
tary operations, where the goal was to find the most effective utilization of limited
military resources through the use of quantitative techniques. It played an impor-
tant role in solving practical military problems such as determining the appropriate
convoy size in the submarine war in the Atlantic.

Numerous peacetime applications of the field of operations research emerged
after the Second World War, where operations research and management science
were applied to many industries and occupations. It was applied to procurement,
training, logistics, and infrastructure in addition to its use in operations. The
progress that has been made in the computing field means that operations research
can now solve problems with thousands of variables and constraints.

Operations research (OR) is the study of mathematical models for complex
organizational systems, where a model is a mathematical description of a system
that accounts for its known and inferred properties, and it may be used for the
further study of its properties, and a system is a functionally related collection of
elements such as a network of computer hardware and software. Optimization is a
branch of operations research that uses mathematical techniques to derive values
from system variables that will optimize system performance.

Operations research has been applied to a wide variety of problems includ-
ing network optimization problems, designing the layouts of the components on
a computer chip, supply chain management, critical path analysis during project
planning to identify key project activities that effect the project timeline, schedul-
ing project tasks and personnel, and so on. Several of the models used in operations
research are described in Table 31.1.

Mathematical programming involves defining a mathematical model for the
problem and using the model to find the optimal solution. A mathematical model
consists of variables, constraints, the objective function to be maximized or
minimized, and the relevant parameters and data. The general form is:

Min or Max f (x1, x2, . . . xn) (Objective function)

g(x1, x2, . . . xn) ≤ (or >, ≥, =<) bi (Constraints)

x ∈ X
f , g are linear and X is continuous (for linear programming LP)

A feasible solution is an assignment of values to the variables such that the con-
straints are satisfied. An optimal solution is one whose objective function exceeds
all other feasible solutions (for maximization optimization). We now discuss linear
programming in more detail.

31.1 Introduction 489

Table 31.1 Models used in operations research

Model Description

Linear programming These problems aim to find the best possible outcome (where
this is expressed as a linear function) such as to maximize a
profit or minimize a cost subject to various linear constraints.
The function and constraints are linear functions of the decision
variables, and modern software can solve problems containing
millions of variables and thousands of constraints

Network flow programming This is a special case of the general linear programming problem
and includes problems such as the transportation problem, the
shortest path problem, the maximum flow problem, and the
minimum cost problem. There are very efficient algorithms
available for these (faster and more efficient than standard linear
programming)

Integer programming This is a special case of the general linear programming problem,
where the variables are required to take on discrete values

Nonlinear programming The function and constraints are nonlinear, and these are much
more difficult to solve than linear programming. Many
real-world applications require a nonlinear model, and the
solution is often approximated with a linear model

Dynamic programming A dynamic programming (DP) model describes a process in
terms of states, decisions, transitions, and a return. The process
begins in some initial state, a decision is made leading to a
transition to a new state, the process continues through a
sequence of states until final state is reached. The problem is to
find a sequence that maximizes the total return

Stochastic processes A stochastic process models practical situations where the
attributes of a system randomly change over time (e.g., number
of customers at an ATM machine, the share price), and the state
is a snapshot of the system at a point in time that describes its
attributes. Events occur that change the state of the system

Markov chains A stochastic process that can be observed at regular intervals
(such as every day or every week) can be described by a matrix,
which gives the probabilities of moving to each state from every
other state in one-time interval. The process is called a Markov
Chain when this matrix is unchanging over time

Markov processes A Markov process is a continuous time stochastic process in
which the duration of all state-changing activities is
exponentially distributed

Game theory Game theory is the study of mathematical models of strategic
interaction among rational decision-makers. It is concerned with
logical decision-making by humans, animals, and computers

Simulation Simulation is a general technique for estimating statistical
measures of complex systems

Time series and forecasting A time series is a sequence of observations of a periodic random
variable and is generally used as input to an OR decision model

(continued)

490 31 Introduction to Operations Research

Table 31.1 (continued)

Model Description

Inventory theory Aims to optimize inventory management: e.g., determining when
and how much inventory should be ordered

Reliability theory Aims to model the reliability of a system from probability theory

31.2 Linear Programming

Linear programming (LP) is a mathematical model for determining the best possi-
ble outcome (e.g., maximizing profit or minimizing cost) of a particular problem.
The problem is subject to various constraints such as resources or costs, and the
constraints are expressed as a set of linear equations and linear inequalities. The
best possible outcome is expressed as a linear equation. For example, the goal may
be to determine the number of products that should be made to maximize profit
subject to the constraint of limited available resources.

The constraints for the problem are linear, and they specify regions that are
bounded by straight lines. The solution will lie somewhere within the regions
specified, and a feasible region is a region where all of the linear inequalities are
satisfied. Once the feasible region is found the challenge is then to find where
the best possible outcome may be maximized in the feasible region, and this will
generally be in a corner of the region. The steps involved in developing a linear
programming model include:

• Formulation of the problem
• Solution of the problem
• Interpretation of the solution

Linear programming models seek to select the most appropriate solution from the
alternatives that are available subject to the specified constraints. Often, graphical
techniques are employed to sketch the problem and the regions corresponding to
the constraints.

The graphical techniques identify the feasible region where the solution lies,
and then the maximization or minimization function is employed within the region
to search for the optimal value. The optimal solution will lie at one or more of the
corner points of the feasible region.

31.2.1 Linear Programming Example

We consider an example in an industrial setting where a company is trying to
decide how many of each product it should make to maximize profits subject to
the constraint of limited resources.

31.2 Linear Programming 491

Table 31.2 Square deal
furniture

Table Chair Hours available

Carpentry 3 h 4 h 2400

Painting 2 h 1 h 1000

Profit contribution 7 Euros 5 Euros

Square Deal Furniture produces two products, namely chairs and tables, and it
needs to decide on how many of each to make each month in order to maximize
profits. The amount of time to make tables and chairs and the maximum hours
available to make each product, as well as the profit contribution of each prod-
uct, is summarized in Table 31.2. There are additional constraints that need to be
specified:

• At least 100 tables must be made
• The maximum number of chairs to be made is 450

We use variables to represent tables and chairs and formulate an objective function
to maximize profits subject to the constraints.

T = Number of tables to make

C = Number of chairs to make

The objective function (to maximize profits) is then specified as

Maximize the value of 5C + 7T

The constraints on the hours available for carpentry and painting may be
specified as:

3T + 4C ≤ 2400 (carpentry time available)
2T + C ≤ 1000 (painting time available)

The constraints that at least 100 tables must be made and the maximum number
of chairs to be made is 450 may be specified as:

T ≥ 100 (number of tables)
C ≤ 450 (number of chairs

Finally, it is not possible to produce a negative number of chairs or tables and
this is specified as:

T ≥ 0 (non-negative)

C ≥ 0 (non-negative)

492 31 Introduction to Operations Research

The model is summarized as

Max 5C + 7T (Maximation problem)
3T + 4C ≤ 2400 (carpentry time available)
2T + C ≤ 1000 (painting time available)
T ≥ 100 (number of tables)
C ≤ 450 (number of chairs)
T ≥ 0 (non-negative)
C ≥ 0 (non-negative)

We graph the LP model and then use the graph to find a feasible region for
where the solution lies, and we then identify the optimal solution. The feasible
region is an area where all of the constraints for the problem are satisfied, and the
optimal solution lies at one or more of the corner points of the feasible region.

First, for the constraints on the hours available for painting and carpentry 3T +
4C ≤ 2400 and 2T + C ≤1000, respectively, we draw the two lines 3T + 4C =
2400 and 2T + C = 1000. We choose two points on each line and then join both
points to form the line, and we choose the intercepts of both lines as the points.

For the line 3T + 4C = 2400 when T is 0 C is 600 and when C is 0T is 800.
Therefore, the points (0, 600) and (800, 0) are on the line 3T + 4C = 2400. For
the line 2T + C = 1000 when T = 0 then C = 1000 and when C = 0 then T =
500. Therefore, the points (0, 1000) and (500, 0) are on the line 2T + C = 1000.

Figure 31.1 is the first step in developing a graphical solution and we note that
for the first two constraints 3T + 4C ≤2400 and 2T + C ≤1000 that the solution
lies somewhere in the area bounded by the lines 3T + 4C = 2400, 2T + C =
1000, the T axis and the C axis.

Next, we add the remaining constraints (T ≥100, C ≤ 450, T ≥ 0, C ≥0) to the
graph, and this has the effect of reducing the size of the feasible region in Fig. 31.1
(which placed no restrictions on T and C). The feasible region can be clearly seen
in Fig. 31.2, and the final step is to find the optimal solution in the feasible region
that maximizes the profit function 5C + 7T.

Fig. 31.1 Linear
programming—developing a
graphical solution

C

T

500

1000

1000500

2T + C= 1000

3T + 4C= 2400

31.2 Linear Programming 493

Fig. 31.2 Feasible region of
solution

C

T

500

1000

1000500

2T + C= 1000

3T + 4C= 2400

T = 100

Feasible
Region

Figure 31.3 shows how we find the optimal solution by drawing the line 7T +
5C = k within the feasible region, and this forms a family of parallel lines where
the slope of the line is –5/7 and k represents the profit. Each point in the feasible
region is on one of the lines in the family, and to determine the equation of that
line we just input the point into the equation 7T + 5C = k. For example, the point
(200, 0) is in the feasible region and it satisfies the equation 7T + 5C = 7 * 200
+ 5 * 0 = 1400.

We seek to maximize k and it is clear that the value of k that is maximal is at
one of the corner points of the feasible region. This is the point of intersection of
the lines 2T + C = 1000 and 3T + 4C = 2400, and we solve for T and C to
get T = 320 and C = 360. This means that the equation of the line containing the
optimal point is 7T + 5C = 2240 + 1800 = 4040. That is, its equation is 7T +
5C = 4040 and so the maximum profit is e4040.

Fig. 31.3 Optimal solution C

T

500

1000

1000500

2T + C= 1000

3T + 4C= 2400

T = 100

Feasible
Region

Optimal Point

7T+5C = 1400

7T+5C = 2800

7T+5C = 4040

494 31 Introduction to Operations Research

31.2.2 General Formulation of LP Problem

The more general formulation of the linear programming problem can be stated as
follows. Find variables x1, x2, …., xn to optimize (i.e., maximize or minimize) the
linear function:

Z = c1x1 + c2x2 + · · · , cnxn

where the problem is subject to the linear constraints:

a11x1 + a12x12 + · · · ., a1 j x j + · · · . + a1nxn (≤=≥)b1
a21x1 + a22x12 + · · · ., a2 j x j + · · · . + a2nxn (≤=≥)b2

: : : : :
am1x1 + am2x12 + · · · ., amj x j + · · · . + amnxn (≤=≥)bm

and to non-negative constraints on the variables such as:

x1, x2, . . . , xn ≥ 0

where aij, bj, and ci are constants and xi are variables.
The variables x1, x2, …, xn whose values are to be determined are called

decision variables.
The coefficients ci, c2, …, cn are called cost (profit) coefficients.
The constraints b1, b2, …., bm are called the requirements.
A set of real values (x1, x2, …, xn) which satisfies the constraints (including

the non-negative constraints) is said to be a feasible solution.
A set of real values (x1, x2, …, xn) which satisfies the constraints (including

the non-negative constraints) and optimizes the objective function is said to be an
optimal solution.

There may be no solution, a unique solution, or multiple solutions.
The constraints may also be formulated in terms of matrices as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
. . . · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
am1 am2 am3 . . . amn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
· · ·
· · ·
· · ·
xn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(≤=≥)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
· · ·
· · ·
· · ·
bm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This may also be written as AX (≤ = ≥) B and the optimization function may
be written as Z = CX where C = (c1, c2, …., cn) and X = (x1, x2, …., xn)T and
X ≥0.

Linear programming problems may be solved by graphical techniques (when
there are a small number of variables) or analytic techniques using matrices. There

31.3 Cost Volume Profit Analysis 495

are techniques that may be employed to find the solution of the LP problem that are
similar to finding the solution to a set of simultaneous equations using Gaussian
elimination (see Chap. 29).

31.3 Cost Volume Profit Analysis

A key concern in business is profitability, and management need to decide on the
volume of products to produce, including the costs and total revenue. Cost volume
profit analysis (CVPA) is a useful tool in the analysis of the relationship between
the costs, volume, revenue, and profitability of the products produced. The rela-
tionship between revenue and costs at different levels of output can be displayed
graphically, with revenue behaviour and cost behaviour shown graphically.

The breakeven point (BP) is where the total revenue is equal to the total costs,
and breakeven analysis is concerned with identifying the volume of products that
need to be produced to break even.

Example (CVPA)
Pilar is planning to set up a business that makes pottery cups, and she has been offered
a workshop to rent for e800 per month. She estimates that she needs to spend e10
on the materials to make each pottery cup and that she can sell each cup for e25.
She estimates that if she is very productive that she can make 500 pottery cups in a
month.

Prepare a table that shows the profit or loss that Pilar makes based on the sales of
0, 100, 200, 300, 400, and 500 pottery cups.

Solution (CVPA)

Each entry in the table consists of the revenue for the volume sold, the material costs
per volume of the pottery cups, the fixed cost of renting the workshop per month,
the total cost per month, and the net income per month (Table 31.3).

The total sales (revenue) are determined from the volume of sales multiplied by
the unit sales price of a pottery cup (e25). There are two types of cost that may be
incurred namely fixed costs and variable costs.

Fixed costs are incurred irrespective of the volume of items produced, and so the
cost of renting of the workshop is a fixed cost. Variable costs are constant per unit of

Table 31.3 Projected profit or loss per volume

#Cups 0 100 200 300 400 500

Revenue (sales) 0 2500 5000 7500 10,000 12,500

Materials (var cost) 0 1000 2000 3000 4000 5000

Workshop (fix cost) 800 800 800 800 800 800

Total cost 800 1800 2800 3800 4800 5800

Net income − e800 e700 e2200 e3700 e5200 e6700

496 31 Introduction to Operations Research

Table 31.4 Revenue and
costs

Item Amount

Total revenue (TR) SP * X

Total variable cost (TVC) VC * X

Fixed cost (FC) FC

Total cost (TC) FC + TVC
= FC + (VC*X)

Net income (profit) TR – TC − (SP * X) − FC −
(VC * X)

Fig. 31.4 Breakeven point TR

2500

100 200 300 400 500

5000

10000

12500

7500

TR

VC

TC

profit

loss

Breakeven
Point

output and include the direct material and labour costs, and so the total variable cost
increases as the volume increases. That is, the total variable cost is directly related
to the volume of items produced, and Table 31.4 summarizes the revenue and costs.

We may represent the relationships between volume, cost, and revenue graphically
and use it to see the relationship between revenue and costs at various levels of output
(Fig. 31.4). We may then use the graph to determine the breakeven point for when
total revenue is equal to total cost.

We may also determine the breakeven point algebraically by letting X represent
the volume of cups produced for breakeven. Then breakeven is when the total revenue
is equal to the total cost. That is,

SP ∗ X = FC + VC ∗ X

⇒ 25X = 800 + 10X
⇒ 15X = 800

⇒ X = 800
/
15 = 53.3 units

The breakeven amount in revenue is 25 * 53.3 = e1333.32.
Next, we present an alternate way of calculating the breakeven point in terms of

contribution margin and sales. Contribution margin is the monetary value that each
extra unit of sales makes towards profitability, and it is given by the selling price per
unit minus the variable cost per unit.

31.4 Game Theory 497

Each additional pottery cup sold increases the revenue by e25 whereas the
increase in costs is just e10 (the materials required). This, the contribution margin
per unit is the selling price minus the variable cost per unit (i.e., SP – VC = e15),
and so the total contribution margin is the total volume of units sold multiplied by
the contribution margin per unit (i.e., X * (SP − VC) = 15X).

The breakeven volume is reached when the total contribution margin covers the
fixed cost (i.e., the cost of renting the workshop which is e800 is covered by the
total contribution). That is, the breakeven volume is reached when:

X ∗ (SP − VC) = FC

X = FC

SP − VC
X = 800

/
(25 − 10) = 800

/
15 = 53.3

Example Suppose that the rent of the workshop is increased to e1200 per month
and that it also costs e12 (more than expected) to make each cup, and that she can
sell each cup for just e20. What is her new breakeven volume and revenue?

Solution
The breakeven volume is reached when:

X ∗ (SP − VC) = FC
X ∗ (20 − 12) = 1200
8X = 1200
X = 150

Further, the breakeven revenue is:

X ∗ SP

= 150 ∗ 20

= e3000.

31.4 Game Theory

Game theory is the study of mathematical models of strategic interaction among
rational decision-makers, and it was originally applied to zero sum games where
the gains or losses of each participant are exactly balanced by those of the other
participants.

Modern game theory emerged as a field following John von Neumann’s 1928
paper on the theory of games of strategy [1]. The Rand corporation investigated
possible applications of game theory to global nuclear strategy in the 1950s. Game

498 31 Introduction to Operations Research

Table 31.5 Network
viewing figures

Network 2

Network 1 Western Soap opera Comedy

Western 35 15 60

Soap Opera 45 58 50

Comedy 38 14 70

theory has been applied to many areas including economics, biology, and the social
sciences. It is an important tool in situations where a participant’s best outcome
depends on what other participants do, and their best outcome depends on what
he/she does. We illustrate the idea of game theory through the following example.

Example (Game Theory)
We consider an example of two television networks that are competing for an audi-
ence of 100 million on the 8 to 9 pm night-time television slot. The networks announce
their schedule ahead of time, but do not know of the other network’s decision until
the program begins. A certain number of viewers will watch Network 1, with the
remainder watching Network 2. Market research has been carried out to show the
expected number of viewers for each network based on what will be shown by the
networks (Table 31.5).

Problem to Solve (Viewing Figures)
Determine the best strategy that both networks should employ to maximize their
viewing figures.

Table 31.5 shows the number of viewers of Network 1 for each type of film that
also depends on the type of film that is being shown by Network 2. For example,
if Network 1 is showing a western while Network 2 is showing a comedy then
Network 1 will have 60 million viewers, and Network 2 will have 100 – 60 = 40
million viewers. However, if Network 2 was showing a soap opera then the viewing
figures for Network 1 are 15 million, and 100 – 15 = 85 million will be tuned into
Network 2.

Solution (Game Theory)

Network 1 is a row player whereas Network 2 is a column player, and the table
above is termed a payoff matrix. This is a constant-sum game (as the outcome for
both players always adds up to a constant 100 million).

The approach to finding the appropriate strategy for Network 1 is to examine each
option. If Network 1 decides to show a western then it can get as many as 60 million
viewers if Network 2 shows a comedy, or as few as 15 million viewers if Network
2 shows a soap opera. That is, this choice cannot guarantee more than 15 million
viewers. Similarly, if Network 1 shows a soap opera it may get as many as 58 million
viewers if Network 2 shows a soap opera as well, or as few as 45 million viewers
should Network 2 show a western. That is, this choice cannot guarantee more than
45 million viewers. Finally, if Network 1 shows a comedy it would get 70 million

31.4 Game Theory 499

viewers if Network 2 is showing a comedy as well, or as few as 14 million viewers if
Network 2 is showing a soap opera. That is, this option cannot guarantee more than
14 million viewers. Clearly, the best option for Network 1 would be to show a soap
opera, as at least 45 million viewers would tune into Network 1 irrespective of what
Network 2 does.

In other words, the strategy for Network 1 (being a row player) is to determine the
row minimum of each row and then to choose the row with the largest row minimum.

Similarly, the best strategy for Network 2 (being a column player) is to determine
the column maximum of each column and then to choose the column with the smallest
column maximum. For Network 2 the best option is to show a western and so 45
million viewers will tune into Network 1 to watch the soap opera, and 55 million
will tune into Network 2 to watch a western.

It is clear from the table that the two outcomes satisfy the following inequality:

Max(rows)
(
row minimum) ≤ Min(cols) (col maximum))

This choice is simultaneously best for Network 1 and Network 2 [as max(row min-
imum) = min(col maximum)], and this is called a saddle point, and the common
value of both sides of the equation is called the value of the game. An equilibrium
point of the game is where there is a choice of strategies for both players where
neither player can improve their outcome by changing their strategy, and a saddle
point of a game is an example of an equilibrium point.

Example (Prisoner Dilemma)
The police arrest two people who they know have committed an armed robbery
together. However, they lack sufficient evidence for a conviction for armed robbery,
but they have sufficient evidence for a conviction of two years for the theft of the
getaway car. The police make the following offer to each prisoner:

If you confess to your part in the robbery and implicate your partner and he does not confess,
then you will go free and he will get ten years. If you both confess you will both get five
years. If neither of you confess you will get each get two years for the theft of the car

Model the prisoners’ situation as a game and determine the rational (best possible)
outcome for each prisoner.

Solution (Prisoner’s Dilemma)

There are four possible outcomes for each prisoner:

• Go Free (He confesses, Other does not)
• 2-year sentence (Neither confess)
• 5-year sentence (Both confess)
• 10 years (He does not confess. Other does)

500 31 Introduction to Operations Research

Table 31.6 Outcomes in
prisoners’ dilemma

Prisoner 1 Prisoner 2

Confess Refuse confess

Confess
Refuse confess

5, 5 0, 10

10, 0 2, 2

Each prisoner has a choice of confessing or not, and Table 31.6 summarizes the
various outcomes depending on the choices that the prisoners make. The first entry
in each cell of the table is the outcome for prisoner 1, and the second entry is the
outcome for prisoner 2. For example, the cell with the entries 10, 0 states that prisoner
1 is sentenced for 10 years and prisoner 2 goes free.

It is clear from Table 31.6 that if both prisoners confess they both will receive a
5-year sentence; if neither confesses then they will both receive a 2-year sentence;
if prisoner 1 confesses and prisoner 2 does not then prisoner 1 goes free whereas
prisoner 2 gets a 10-year sentence; and finally, if prisoner 2 confesses and prisoner
1 does not then prisoner 2 goes free and prisoner a 1 gets a 10-year sentence.

Each prisoner evaluates his two possible actions by looking at the outcomes in
both columns, as this will show which action is better for each possible action of their
partner. If prisoner 2 confesses then prisoner 1 gets a 5-year sentence if he confesses or
a 10-year sentence if he does not confess. If prisoner 2 does not confess then prisoner
1 goes free if he confesses or 2 years if he does not confess. Therefore, prisoner 1
is better off confessing irrespective of the choice of prisoner 2. Similarly, prisoner
2 comes to exactly the same conclusion as prisoner 1, and so the best outcome for
both prisoners is to confess to the crime, and both will go to prison for 5 years.

The paradox in the prisoners’ dilemma is that two individuals acting in their
own self-interest do not produce the optimal outcome. Both parties choose to protect
themselves at the expense of the other, and as a result both find themselves in a worse
state than if they had cooperated with each other in the decision-making process and
received two years. For more detailed information on operations research see [2].

31.5 Review Questions

1. What is operations research?
2. Describe the models used in operations research.
3. What is linear programming and describe the steps in developing a linear

programming model?
4. What is cost volume profit analysis?
5. Suppose the fixed costs are rent of £1,500 per month and that the cost

of making each item is £20 and it may then be sold for £25. How many
items must be sold to breakeven and what is the breakeven revenue?

References 501

6. What is game theory?
7. What is a zero sum game?

31.6 Summary

Operations research is a multidisciplinary field concerned with the application of
mathematical and analytic techniques to assist in decision-making. It employs
mathematical modelling, statistical analysis, and mathematical optimization to
achieve optimal (or near optimal) solutions to complex decision-making prob-
lems. The modern field of operations research includes other disciplines such as
computer science, industrial engineering, business practices in manufacturing and
service companies, supply chain management, and operations management.

Linear programming is a mathematical model for determining the best possible
outcome such as maximizing profit or minimizing cost of a particular problem.
The problem is subject to various constraints such as resources or costs, and the
constraints are expressed as a set of linear equations and linear inequalities. The
best possible outcome is expressed as a linear equation. For example, the goal may
be to determine the number of products that should be made to maximize profit
subject to the constraint of limited available resources.

Cost volume profit analysis (CVPA) is used in the analysis of the rela-
tionship between the costs, volume, revenue, and profitability of the products
produced. The relationship between revenue and costs at different levels of output
can be displayed graphically, with revenue behaviour and cost behaviour shown
graphically.

Game theory is the study of mathematical models of strategic interaction among
rational decision-makers. Von Neumann was the founder of modern game theory
with his 1928 paper on the theory of games of strategy. The Rand Corporation
applied game theory to global nuclear strategy in the 1950s, and the original
applications of game theory were to zero sum games.

References

1. von Neumann J (1928) On the theory of games of strategy. Math Ann (in German) 100(1):295–
320

2. Taher H (2016) Operations research. An introduction, 10th edn. Pearson, London

32Mathematical Software for Software
Engineers

32.1 Introduction

The goal of this appendix is to introduce essential software to support software
engineering mathematics. We discuss a selection of software including Excel,
Python, Maple, Mathematica, MATLAB, Minitab, and R (Table 32.1).

32.2 Microsoft Excel

Microsoft Excel is a spreadsheet program created by the Microsoft Corporation,
and it consists of a rectangular grid of cells in rows and columns that may be
used for data manipulation and arithmetic operations. It includes functionality for
statistical, engineering, and financial applications, and it has graphical functionality
to display lines, histograms, and charts (Fig. 32.1).

This software program was initially called MultiPlan when it was released in
1982, and it was Microsoft’s first Office application. It was developed as a com-
petitor to Apple’s VisiCalc, and it was initially released on computers running the
CP/M operating system.1 It was renamed to Excel when it was released on the
Macintosh in 1985, and the first version of Excel for the IBM PC was released in
1987.

It provides support for user-defined macros, and it also allows the user to
employ Visual Basic for Applications (VBA) to perform numeric computation
and report the results back to the Excel spreadsheet. Lotus 1–2–3 was the leading
spreadsheet tool of the 1980s, but Excel overtook it from the early 1990s.

1 The CP/M operating system was developed by Gary Kildall at Digital Research, and Kildall did a
lot of early work on operating systems for microprocessors. The award of the operating system for
the original IBM PC to Microsoft was highly controversial, as the operating system that Microsoft
provided to IBM was essentially Kildall’s CP/M.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_32

503

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_32&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_32

504 32 Mathematical Software for Software Engineers

Table 32.1 Software for business mathematics

Software Description

Excel This is a spreadsheet program created by Microsoft that consists of a grid of
cells in rows and columns

Python Python is an interpreted high-level programming language that has been applied
to many areas including web development, game development, machine learning
and artificial intelligence, and data science and visualization

Maple Maple is a computer algebra system that can manipulate mathematical
expressions and find symbolic solutions to certain kinds of problems in calculus,
linear algebra, etc.

Minitab Minitab is a statistical software package that provides a powerful and
comprehensive set of statistics to investigate the data

R R is an open-source statistical computing environment that is used for
developing statistical software and for data analysis

Mathematica Mathematica is a computer algebra program that is used in the scientific,
engineering, and computer fields

MATLAB MATLAB is a numeric computing environment that supports matrix
manipulation, plotting of data and functions, and the implementation of
algorithms

Fig. 32.1 Excel spreadsheet screenshot. Used with permission of Microsoft

Excel is used to organize data and to perform financial analysis. It is used by
both small and large companies and across all business functions. The main uses
of Excel include:

Data entry
Data management
Accounting
Financial analysis

32.3 Python 505

Charts and graphs
Financial modelling.

Excel is used extensively for financial analysis, and many businesses use Excel for
budgeting, forecasting, and accounting. Spreadsheet software may be used to fore-
cast future performance, as well as calculating revenue and tax due and completing
the payroll. Excel may be used to generate financial reports and charts.

An Excel workbook consists of a collection of worksheets, where each work-
sheet is a spreadsheet page (i.e., a collection of cells organized in rows and
columns). A workbook may contain as many sheets as required, and the columns in
a sheet are generally labelled with letters, whereas the rows are generally labelled
with numbers. Each cell contains one piece of data or information.

A cell may contain a formula that refers to values in other cells (e.g., the effect
of the formula = B3 + C3 in cell B1 is to add cells B3 and C3 together and
to place the result in the cell B1). A formula may include a function, a refer-
ence to other cells, constants, as well as arithmetic operators. Excel uses standard
mathematical operators such as + , −, *, /, and it employs ^ for the exponential
function. An Excel formula always commences with an equals sign (=), and some
of the functions employed include:

AVERAGE, COUNT, SUM, MAX, MIN, and IF.
Excel is very useful in recording, analysing, and storing numeric data, and

various calculations may be performed on the numeric data, or graph tools may
be employed for visualization of the data. That is, it allows easy manipulation of
the data and graphing of the data for visualization. It may be used to create a wide
range of graphs and charts from the data in the spreadsheet, and there is a chart
wizard to assist with building the desired chart. Some of the charts that may be
displayed include:

Bar charts
Histograms
Pie charts
Scatter plots
Lines.

Excel may be used for data analysis, and the ability to analyse data is essential in
order to make better decisions. This generally involves the use of pivot tables, and
pivot tables are a technique in data processing that is used to arrange or rearrange
statistics in order to identify useful information. They may be employed to aggre-
gate the individual items of a more extensive table (e.g., a database or another
spreadsheet) within one or more discrete categories.

32.3 Python

506 32 Mathematical Software for Software Engineers

Python is an interpreted high-level programming language that was designed by
Guido van Rossum in the Netherlands in the early 1990s. The design of Python was
influenced by the ABC programming language, which was designed as a teaching
language, and developed at CWI in Amsterdam. Python has become a very pop-
ular programming language, and today the Python Software Foundation (PSF) is
responsible for the language and its development. It is an object-oriented language
that is based on the C programming language, and the language is versatile with
applications in many areas including:

Rapid web development
Scientific and numeric computing
Machine learning applications
Image processing applications
Game development
Artificial intelligence
Gathering data from websites
Data science and data analytics
Data visualization
Business applications such as ERP
Education on programming.

The language has become very popular especially for machine learning and artifi-
cial intelligence, as it is reasonably easy to use especially for those who are new
to programming. Its syntax is relatively simple, and the language is readable and
easy to understand. Python applications can run on any operating system for which
a Python interpreter exists.

Python includes many libraries such as libraries for web development, libraries
for the development of interactive games, and libraries for machine learning and
artificial intelligence. Python includes libraries that enable the development of
applications that can multitask and output video and audio media.

Python supports data science and data visualization, and its libraries allow the
data to be studied and information to be extracted. The data may be visualized
such as in plotting graphs.

Python is able to gather a large amount of data from websites, which enables
operations such as price comparison and job listings to be performed. For more
information on Python see https://www.python.org/.

32.4 Maple

Maple is math software that includes a powerful math engine and a user interface
that makes it easy to analyse, explore, visualize, and solve mathematical problems.
It allows problems to be solved easily and quickly in most areas of mathematics.
It is a commercial general-purpose computer algebra system that can manipulate
mathematical expressions and find symbolic solutions to certain kinds of problems

https://www.python.org/

32.4 Maple 507

including those that arise in ordinary and partial differential equations. It supports
symbolic mathematics, numerical analysis, data processing, and visualization. The
Canadian software company, Maplesoft™, developed Maple, and its initial release
was in the early 1980s (Fig. 32.2).

Maple supports several areas of mathematics including calculus, linear algebra,
differential equations, equation solving, and symbolic manipulation of expres-
sions. Maple has powerful visualization capabilities including support for two-
dimensional or three-dimensional plotting as well as animation. Further, Maple
includes a high-level programming language that enables users to create their own
applications.

Maple makes use of matrix manipulation tools along with sparse arrays, and
it has a wide range of special mathematical libraries. Maple supports 2D image
processing and supports several probability distributions. It has functionality for
code generation in languages such as C, Fortran, Python, and Java.

Maple includes the standard arithmetic operators such as +, −, *, /, and ^ for
exponential; it includes the relational operators <, >, <=, >=, <>, and =; the logical
operators AND, OR, XOR, implies, and NOT; and the set operators intersect,

Fig. 32.2 Maple user interface. Creative commons

508 32 Mathematical Software for Software Engineers

union, minus, subset, and member. A value may be assigned to a variable with
the assign command (:=). It includes special constants such as Pi, infinity, and the
complex number I. For more information on Maple see https://www.maplesoft.
com/.

32.5 Minitab Statistical Software

Minitab is a statistical software package that was originally developed at the Uni-
versity of Pennsylvania in the early 1970s. Minitab, LLC, was formed in the
early 1980s, and the company is based in Pennsylvania. It is responsible for the
Minitab statistical software and its associated products, and it distributes the suite
of commercial products around the world (Fig. 32.3).

Minitab statistical software is used by thousands of organizations around the
world. The software helps companies and institutions to identify trends, solve
problems, and discover valuable insights in data by delivering a comprehensive
suite of data analysis and process improvement tools. The software is easy to use
and makes it easy for business and organizations to gain insights from the data and
to discover trends and predict patterns. It assists in identifying hidden relationships
between variables as well as providing dazzling visualizations. Minitab has a team
of data analytic experts and services to ensure that users get the most out of their
analysis, enabling them to make better, faster, and more accurate decisions.

Minitab includes a complete set of statistical tools including descriptive statis-
tics, hypothesis testing, confidence intervals, and normality tests. It provides a
powerful and comprehensive set of statistics to investigate the data. It includes
functionality to support regression thereby identifying relationships between
variables, as well as functionality to support the analysis of variance (ANOVA).

Minitab supports several statistical tests such as t tests, one and two propor-
tions tests, normality test, chi-square, and equivalence tests. Minitab’s advanced
analytics provides modern data analysis and allows the data to be explored fur-
ther. Minitab’s predictive analytics techniques allow predictions and forecasts to
be made, and Minitab’s powerful visualizations allow the user to decide which
graph that best displays the data and supports the analysis.

Fig. 32.3 Minitab screenshot. Created by and used with permission of Minitab LLC

https://www.maplesoft.com/
https://www.maplesoft.com/

32.6 R Statistical Software Environment 509

Minitab includes functionality for control charts that allows processes to be
monitored over time, thereby ensuring that they are performing between the lower
and upper control limits for the process. That is, Minitab may be used for statisti-
cal process control thereby ensuring process stability and for data-driven process
improvement to transform the business. Minitab Engage is a tool for manag-
ing innovation and may be used for managing six-sigma and lean manufacturing
deployments.

For more detailed information on Minitab LLC (the makers of Minitab
Statistical Software) see https://www.minitab.com/.

32.6 R Statistical Software Environment

R is a free open-source statistical computing environment that is used by statisti-
cians and data scientists for developing statistical software and for data analysis.
R includes various libraries that implement various statistical and graphical tech-
niques such as statistical tests, linear and nonlinear modelling, and time series
analysis. It allows the user to clean, analyse, plot, and communicate all of their
data all in one place (Fig. 32.4).

Fig. 32.4 RStudio

https://www.minitab.com/

510 32 Mathematical Software for Software Engineers

R is an interpreted language, and the user generally accesses it through a com-
mand line interpreter, and it has thousands of packages to assist the user. R is a
popular statistical software tool, and it is widely used in academia and industry. It
can produce high-quality graphs, and the advantages of R include:

Free open-source software
Large community
Integrates with other languages (e.g., C and C++).

R was created in the 1990s by Ross Ihaka and Robert Gentleman at the University
of Auckland in New Zealand, and it was based on the S statistical programming
language that was developed by John Chambers and others at Bell Labs in the
1970s. The R Development Core Team is now responsible for its development, and
R programming plays a key role in statistics, machine learning, and data analysis.

RStudio is an integrated development environment (IDE) for R, and its func-
tional user interface provides an easier way of using R. Programs may be written
using the RStudio IDE. R may be downloaded from the Comprehensive R Archive
Network (CRAN) https://cloud.r-project.org, and RStudio may be downloaded
from http://www.rstudio.com/download. After installing RStudio there will be two
key regions in the interface, and R code is typed in the console panel.

R packages may then be installed where an R package consists of functions,
data, and documentation that extend the capabilities of R. The use of packages
is the key to the successful use of R in data science, as it has a large number of
packages available, and it is easy to install and use them. A core set of packages
is included with the basic installation, and other packages may be installed as
required. For example, the package tidyverse may be installed with a single line
of code that is typed in the console.

install.packages(“tidyverse”)
library(“tidyverse”)

The package must then be loaded with the library command before the functions,
objects, and help files may be used. The statistical features of R include:

Basic statistics including measures of central tendency
Static graphics
Probability distributions (e.g., binomial and normal)
Data analytics (tools for data analysis).

For more information on R and RStudio see https://www.r-project.org/.

32.7 Mathematica

https://cloud.r-project.org
http://www.rstudio.com/download
https://www.r-project.org/

32.7 Mathematica 511

Mathematica is a powerful tool for problem solving, and it includes symbolic cal-
culations with nice graphical output. It is a way for doing mathematics with a
computer, and this powerful computer algebra program is used in the scientific,
engineering, and computer fields. Symbolic mathematics involves the use of com-
puters to manipulate equations and expressions in symbolic form, as distinct from
manipulating the numerical quantities represented by the symbols (Fig. 32.5).

Mathematica was developed by Stephan Wolfram of Wolfram Research in the
late 1980s, and it supports many areas of mathematics including basic arithmetic,
algebra, geometry and trigonometry, calculus, complex analysis, vector analysis,
matrices and linear algebra, and probability and statistics.

It has a large number of predefined functions for mathematics and other disci-
plines and includes functionality for the visualization of data and functions. This
includes good graphical capabilities that are useful in plotting functions and data
in two or three dimensions. For example, the Mathematica command Revolution-
Plot3D constructs the surface formed by revolving an expression around an axis,
and Fig. 32.6 is generated from the command:

RevolutionPlot3D[x4 − x2, {x, − 1, 1}]

Fig. 32.5 Mathematica in operation. Provided courtesy of Wolfram Research, Inc., the makers of
Mathematica, www.wolfram.com

Fig. 32.6 Surface generated
with RevolutionPlot3D.
Provided courtesy of
Wolfram Research, Inc., the
makers of Mathematica,
www.wolfram.com

http://www.wolfram.com
http://www.wolfram.com

512 32 Mathematical Software for Software Engineers

Mathematica may be used to solve very simple arithmetic problems, as well as
solving complex problems in differential equations. It has approximately 5000
built-in functions covering the vast majority of areas in technical computing and
that work together in the integrated system. The Wolfram programming was
developed by Wolfram Research, and this multiparadigm language emphasizes
functional programming and symbolic computation.

The language can perform integration, differentiation, matrix manipulation and
solve differential equations using a set of rules. Mathematica has been applied to
many areas of computing including:

Machine learning
Neural networks
Image processing
Data science
Geometry
Visualization.

Mathematica has also been applied to many other areas, and it produces docu-
ments as well as code. Its visualizations of results are aesthetically pleasing and
powerful, and Mathematica also produces publication quality documents, and it has
thousands of examples in its documentation centre. It has built-in powerful algo-
rithms across many areas that aim to be of industrial strength. Finally, Mathematica
is integrated with the cloud, and this allows sharing as well as cloud computing.
There is more detailed information on Mathematica at Wolfram Research, Inc. (see
https://www.wolfram.com/mathematica/).

32.8 MATLAB

MATLAB is a commercial high-level programming language that is used to
perform mathematical computing, and this numeric computing environment was
developed by MathWork. It is used by engineers and scientists to organize, explore,
and analyse the data, and the MATLAB language may be employed to develop pro-
grams based on algorithms from a variety of domains. MATLAB allows the user
to create customized visualizations and to automatically generate the MATLAB
code to reproduce them with new data.

MATLAB manages array and matrix problems, and it may be used to solve
complex algebraic equations as well as analysing data and plotting graphs. It
allows the user to create customized visualizations, as well as using the built-in
charts. MATLAB has many applications including:

Machine learning
Deep learning
Robotics
Computer vision

https://www.wolfram.com/mathematica/

32.9 Summary 513

Image processing
Control systems.

At the heart of MATLAB is a high-level programming language that allows engi-
neers and scientists to express matrix and array mathematics directly. MATLAB
has a large library of toolboxes from everything from wireless communication, to
control systems, to signal and image processing, to robotics, and to AI. It is easy to
use and learn, and it allows ideas to be explored with the results and visualizations
seen quickly.

It includes pre-built apps and allows the user to create their own apps. It
includes App Designer, which allows a non-specialist to create professional apps
by laying out the visual components of the GUI as well as programming the app
behaviour. MATLAB may be extended with thousands of packages and tools, and
its capabilities include:

Data analysis
Graphics
Algorithm development
App building.

There is more detailed information on MATLAB at MathWorks (see https://www.
mathworks.com/products/matlab.html).

32.9 Summary

The goal of this chapter was to discuss a selection of software available to support
software engineering mathematics, including Excel, Python, Maple, Mathematica,
MATLAB, Minitab, and R.

Excel is a spreadsheet program that consists of a grid of cells in rows and
columns. Python is an interpreted high-level programming language with appli-
cations in web development, artificial intelligence, and data science. Maple is
a computer algebra system that can find symbolic solutions to certain kinds of
problems. Minitab is a statistical software package with a comprehensive set
of statistics to investigate the data. R is an open-source statistical computing
environment that is used for developing statistical software and for data anal-
ysis. Mathematica is a computer algebra program that is used in the scientific,
engineering, and computer fields.

MATLAB is a computing environment that supports matrix manipulation,
plotting of data and functions, and the implementation of algorithms.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

Index

A
Abstract algebra, 71
Abuse of statistics, 317
Agile development, 13
Algebra, 55
Algebraic expression, 56
Algorithm, 204
Alonzo Church, 204
Alphabets and words, 168
Amortization, 453
Annuity, 447, 448
Ariane 5 disaster, 8
Arithmetic, 48
Arithmetic mean, 323
Arithmetic sequence, 103
Arithmetic series, 103
Automata Theory, 189
Automated theorem proving, 277
Automath system, 280
Axiomatic approach, 233
Axiomatic semantics, 175, 176

B
Backus Naur Form, 172
Bags, 255
Bandera, 272
Bar chart, 319
Baye’s formula, 339
Bayesianism, 351
Bernouilli trial, 343
Bertrand Russell, 200
Big data, 364
Bijective, 47
Binary relation, 38, 42, 66
Binary trees, 97
Binomial distribution, 343
Block codes, 304

B Method, 238
Bombe, 50, 51, 288, 291, 296
Boole, 117
Boole’s symbolic logic, 117
Boyer-Moore Theorem prover, 281

C
Caesar cipher, 286
Calculus Communicating Systems (CCS), 240
Capability Maturity Model Integration

(CMMI), 23
Cartesian coordinates, 64
Cayley-Hamilton Theorem, 403
Central Limit Theorem, 350, 354
Chomsky hierarchy, 170
Church-Turing Thesis, 205
Classical engineers, 28
Classical mathematics, 35
Claude Shannon, 118
Cleanroom, 212
Cleanroom methodology, 215
Combination, 108
Communicating Sequential Processes (CSP),

240
Commuting diagram property, 260
Completeness, 204
Complete partial orders, 185
Completing the square, 63
Complex numbers, 407, 409
Compound interest, 440
Computability, 204
Computable function, 180
Computational complexity, 207
Computational tree logic, 271
Computer representation of sets, 42
Computer security, 221
Concurrency, 269

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
G. O’Regan, Mathematical Foundations of Software Engineering,
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8

515

https://doi.org/10.1007/978-3-031-26212-8

516 Index

Conditional probability, 338
Confidence intervals, 347
Context free grammar, 173
Continuous software development, 15
Correlation, 326, 333, 342
Cosine rule, 59
Cost Volume Profit Analysis (CVPA), 465
Covariance, 342
Cramer’s rule, 403
Cross product, 430
Cryptographic systems, 50, 290
Cryptography, 285
Customer Information Control System

(CICS), 229, 261

D
Darlington Nuclear power plant, 230
Data analytics, 361, 367
Data reification, 260
Data science, 355, 357
Data scientists, 361
Deadlock, 269
Decidability, 202, 203
Decimal, 50
Decomposition, 259
Deduction theorem, 136
Definite integrals, 378
Def Stan 00-55, 229
Degrees and radians, 61
De Moivre’s Theorem, 412
Denotational semantics, 179
Dependability engineering, 219
Descriptive statistics, 316
Determinants, 401
Differential equations, 392
Differentiation, 373
Digital signatures, 299
Dijkstra, 160
Dot product, 429

E
Early Algorithms, 40
Early Ciphers, 44
Eigen vectors and values, 403
Enigma codes, 286
Equivalent values, 444
Eratosthenes, 43
Error correcting code, 301
Error detection and correction, 306
Euclid, 40
Euclidean algorithm, 42
Euler’s formula, 411

European Space Agency, 8
Existential quantifier, 124, 140
Exponential function, 68

F
Fagan inspections, 5, 21
Fallacies, 115
Field, 73
Finite state machines, 190, 191, 241
Flowcharts, 29
Floyd, 29
Formalism, 201
Formal methods, 24
Formal specification, 226
Four Colour Theorem, 99
Fourier series, 390
Fraction, 50
Frequency distribution, 319
Frequency table, 319
Functions, 46
Fundamental theorem of algebra, 413
Future value, 438
Fuzzy logic, 152

G
Game theory, 467
Gaussian distribution, 345
Gaussian elimination, 404
GDPR law, 356
General formulation of LP problem, 464
Geometric sequence, 103
Geometric series, 104
Geometry Machine, 279
Gottlob Frege, 119, 200
Grammar, 170
Graph, 90, 91, 100
Graphical techniques, 61, 65
Greatest common divisors, 52
Group, 71

H
Hackers, 221
Halting problem, 144, 206
Hamiltonian paths, 95
Hamming code, 310
Hilbert’s programme, 201
Histogram, 319
Hoare logic, 31
HOL system, 277, 281
Horner’s method, 69
Hypothesis testing, 330

Index 517

I
IEEE standards, 10
Indices and logarithms, 66
Industrial applications of model checking, 272
Industrial applications of Z, 261
Inferential statistics, 316
Information hiding, 242
Injective, 47
Input assertion, 176
Insertion sort, 46
Integration, 377
Interactive theorem provers, 280
Interpretation, 143
Intuitionist logic, 155
Irish School of VDM (VDM♣), 237
Isabelle, 281
Isabelle theorem prover, 277

J
Julius Caesar, 286

K
Königsberg Seven Bridges Problem, 90

L
Lambda calculus, 180
Laplace transform, 391
Lattices, 183
Laws of probability, 337
Least common multiple, 53
Leibniz, 369
L. E. J. Brouwer, 155
L’Hôpital’s Rule, 372
Linear block codes, 307
Linear programming, 460
Linear temporal logic, 270
Livelock, 269
Loans, 452
Logical implication, 132
Logically equivalent, 131
Logic and AI, 161
Logic of partial functions, 157
Logic programming languages, 162
Logic Theorist, 278

M
Machine-learning algorithms, 360
Maple, 476
Mathematica, 481
Mathematical induction, 79

Mathematical proof, ix, 233, 261, 282
Matlab, 482
Matrix, 397
Matrix operations, 399
Mean value theorem, 371
Median, 324
Merge sort, 47
Method of elimination, The, 60
Method of substitution, 59
Microsoft Excel, 473
Minitab, 478
Mode, 323
Model, 9
Model checking, 242, 243, 266
Model-oriented approach, 232
Mongolian Hordes approach, 1
Monoids, 71
Morgages, 452

N
Natural deduction, 135
Natural logarithms, 69
Natural numbers, 48
Newton, 369
Newton’s method, 52
Normal distribution, 345
Numerical analysis, 51

O
Ockham’s Razor, 232
Operational semantics, 175, 178
Output assertion, 176
Overture Integrated Development

Environment, 231

P
Paradox, 114
Parity, 49
Parnas, 5, 6, 18, 28, 242
Parnas logic, 158
Parse trees and derivations, 173
Partial correctness, 240
Partial function, 46
Partially ordered sets, 182
Percentages, 55
Performance testing, 20
Periodic functions, 62
Permutation, 107
Permutations and combinations, 105
Pidgeonhole principle, 102, 106
Pie chart, 321

518 Index

Plaintext, 45, 292
Poisson distribution, 342, 344
Postcondition, 176, 238
Precondition, 238, 239
Predicate, 140
Predicate logic, viii, 124, 139
Predicate transformer, 240
Present value, 438, 443, 450
Prince 2, 5, 21
Principia Mathematica, 202
Prisoner’s Dilemma, 469
Probability mass function, 340
Probability theory, 336
Process calculi, 240
Professional Engineering Association, 3
Professional engineers, 6
Programming language semantics, 175
Project management, 22
Prolog, 163
Proof in propositional calculus, 130
Proof in Z, 261
Propositional logic, viii, 124
Prototyping, 16
Public key cryptosystem, 50, 290
Public key systems, 296
Pushdown automata, 193
Python, 476

Q
Quadratic equations, 62
Quadratic formula, 64
Quaternion algebra, 417
Quaternions, 415

R
R, 479
Random sample, 317
Random variables, 340, 341
Ratio, 53
Rational Unified Process, 9, 11, 12
Rectangular number, 49
Recursion, 84, 185
Refactoring, 18
Refinement, 33, 226
Reflexive, 43
Regression, 329
Reification, 259
Relations, 42
Requirements validation, 227
Ring, 72
Rolle’s theorem, 371
RSA public key cryptographic system, 39

RSA public key cryptosystem, 297
RStudio, 479
Rules of differentiation, 375
Russell’s paradox, 201

S
Safety critical systems, 220, 222
Scalar product, 426
Schema calculus, 238
Schema composition, 256, 259
Schema inclusion, 256
Schemas, 256
Scientific revolutions, 232
Secret key cryptosystem, 50, 290
Semantics, 167, 188
Semantic tableaux, 133, 145
Sequences, 102, 254
Set theory, 39
Sieve of Eratosthenes, 43
Simple channel code, 303
Simple equation, 57
Simple interest, 436
Simpson’s rule, 384, 389
Simultaneous equations, 57, 59
Sine rule, 59
Six sigma, 21
Social media, 365
Software availability, 220
Software crisis, 2, 25
Software engineering, 2, 4, 7
Software failures, 8
Software reliability, 211, 212, 214
Software reliability and defects, 213
Software reliability models, 217
Software reuse, 19
Software testing, 19
Sorting Algorithms, 46
Spin, 272
Spiral model, 10
Sprint planning, 14
Square number, 48
Standard deviation, 325, 342
Standish group, 3, 25
Statistical sampling, 317
Statistical usage testing, 216
Statistics, 315
Stoic logic, 115
Story, 14
Strong induction, 80, 82
Structural induction, 86
Surjective, 47
Syllogistic logic, 112, 114
Symmetric, 43

Index 519

Symmetric key systems, 291
Syntax, 167, 188
System availability, 222
System testing, 20

T
Tautology, 136
Taylor series, 372
Temporal logic, 153, 270
Test driven development, 19
Tests of significance, 347
Time value of money, 455
Traceability, 17
Transition function, 191
Transitive, 43
Trapezoidal rule, 384, 389
Trees, 96
Trend chart, 322
Triangular number, 49
Trigonometry, 39, 57
Truth tables, 125
Turing machines, 195, 205
Two × Two Matrices, 397

U
UAT testing, 20
Undefined values, 156
Undirected graphs, 91
Unit normal distribution, 346
Unit testing, 19

Universal quantifier, 124, 140

V
Valuation functions, 143
Variance, 325, 342
Vector, 425
Vector space, 74
Vienna Development Method (VDM), 227,

235
VIPER, 234

W
Waterfall model, 9
Weakest precondition, 239
Weak induction, 80
Well-ordering principle, 83
William Rowan Hamilton, 415

Y
Y2K, 4, 8
Y2K bug, 8

Z
Z, 227
Zermelo set theory, 239
Z specification, 238, 248
Z specification language, 238

	 Preface
	Overview
	Organization and Features
	Audience

	 Acknowledgments
	 Contents
	 Abbreviations
	 List of Figures
	 List of Tables
	1 Fundamentals of Software Engineering
	1.1 Introduction
	1.2 What Is Software Engineering?
	1.3 Challenges in Software Engineering
	1.4 Software Processes and Lifecycles
	1.4.1 Waterfall Lifecycle
	1.4.2 Spiral Lifecycles
	1.4.3 Rational Unified Process
	1.4.4 Agile Development
	1.4.5 Continuous Software Development

	1.5 Activities in Software Development
	1.5.1 Requirements Definition
	1.5.2 Design
	1.5.3 Implementation
	1.5.4 Software Testing
	1.5.5 Support and Maintenance

	1.6 Software Inspections
	1.7 Software Project Management
	1.8 CMMI Maturity Model
	1.9 Formal Methods
	1.10 Review Questions
	1.11 Summary
	References

	2 Software Engineering Mathematics
	2.1 Introduction
	2.2 Early Software Engineering Mathematics
	2.3 Debate on Mathematics in Software Engineering
	2.4 The Emergence of Formal Methods
	2.5 What Mathematics Do Software Engineers Need?
	2.6 Review Questions
	2.7 Summary
	References

	3 Mathematical Prerequisites for Software Engineers
	3.1 Introduction
	3.2 Set Theory
	3.2.1 Set Theoretical Operations
	3.2.2 Computer Representation of Sets

	3.3 Relations
	3.3.1 Reflexive, Symmetric and Transitive Relations
	3.3.2 Composition of Relations
	3.3.3 Binary Relations

	3.4 Functions
	3.5 Arithmetic
	3.5.1 Fractions and Decimals
	3.5.2 Prime Number Theory
	3.5.3 Greatest Common Divisors (GCD)
	3.5.4 Least Common Multiple (LCM)
	3.5.5 Ratios and Proportions
	3.5.6 Percentages

	3.6 Trigonometry
	3.6.1 Definition of Sine, Cosine, and Tangent
	3.6.2 Sine and Cosine Rules
	3.6.3 Trigonometric Identities
	3.6.4 Degrees and Radians
	3.6.5 Periodic Functions and Sketch of Sine and Cosine Functions
	3.6.6 Power Series for Sine and Cosine

	3.7 Cartesian Coordinates
	3.8 Review Questions
	3.9 Summary
	References

	4 Introduction to Algorithms
	4.1 Introduction
	4.2 Early Algorithms
	4.2.1 Greatest Common Divisors (GCD)
	4.2.2 Euclid’s Greatest Common Divisor Algorithm
	4.2.3 Sieve of Eratosthenes Algorithm
	4.2.4 Early Cipher Algorithms

	4.3 Sorting Algorithms
	4.4 Binary Trees and Graph Theory
	4.5 Modern Cryptographic Algorithms
	4.6 Algorithms in Numerical Analysis
	4.7 Computational Complexity
	4.8 Review Questions
	4.9 Summary
	References

	5 Algebra
	5.1 Introduction
	5.2 Simplification of Algebraic Expressions
	5.3 Simple and Simultaneous Equations
	5.3.1 Simultaneous Equations

	5.4 Quadratic Equations
	5.5 Indices and Logarithms
	5.6 Exponentials and Natural Logarithms
	5.7 Horner’s Method for Polynomials
	5.8 Abstract Algebra
	5.8.1 Monoids and Groups
	5.8.2 Rings
	5.8.3 Fields
	5.8.4 Vector Spaces

	5.9 Review Questions
	5.10 Summary

	6 Mathematical Induction and Recursion
	6.1 Introduction
	6.2 Strong Induction
	6.3 Recursion
	6.4 Structural Induction
	6.5 Review Questions
	6.6 Summary
	Reference

	7 Graph Theory
	7.1 Introduction
	7.2 Undirected Graphs
	7.2.1 Hamiltonian Paths

	7.3 Trees
	7.3.1 Binary Trees

	7.4 Graph Algorithms
	7.5 Graph Colouring and Four-Colour Problem
	7.6 Review Questions
	7.7 Summary
	Reference

	8 Sequences, Series, and Permutations and Combinations
	8.1 Introduction
	8.2 Sequences and Series
	8.3 Arithmetic and Geometric Sequences
	8.4 Arithmetic and Geometric Series
	8.5 Permutations and Combinations
	8.6 Review Questions
	8.7 Summary

	9 A Short History of Logic
	9.1 Introduction
	9.2 Syllogistic Logic
	9.3 Paradoxes and Fallacies
	9.4 Stoic Logic
	9.5 Boole’s Symbolic Logic
	9.5.1 Switching Circuits and Boolean Algebra

	9.6 Frege
	9.7 Review Questions
	9.8 Summary
	References

	10 Propositional and Predicate Logic
	10.1 Introduction
	10.2 Propositional Logic
	10.2.1 Truth Tables
	10.2.2 Properties of Propositional Calculus
	10.2.3 Proof in Propositional Calculus
	10.2.4 Semantic Tableaux in Propositional Logic
	10.2.5 Natural Deduction
	10.2.6 Sketch of Formalization of Propositional Calculus
	10.2.7 Applications of Propositional Calculus
	10.2.8 Limitations of Propositional Calculus

	10.3 Predicate Calculus
	10.3.1 Sketch of Formalization of Predicate Calculus
	10.3.2 Interpretation and Valuation Functions
	10.3.3 Properties of Predicate Calculus
	10.3.4 Applications of Predicate Calculus
	10.3.5 Semantic Tableaux in Predicate Calculus

	10.4 Review Questions
	10.5 Summary
	References

	11 Advanced Topics in Logic
	11.1 Introduction
	11.2 Fuzzy Logic
	11.3 Temporal Logic
	11.4 Intuitionist Logic
	11.5 Undefined Values
	11.5.1 Logic of Partial Functions
	11.5.2 Parnas Logic
	11.5.3 Dijkstra and Undefinedness

	11.6 Logic and AI
	11.7 Review Questions
	11.8 Summary
	References

	12 Language Theory and Semantics
	12.1 Introduction
	12.2 Alphabets and Words
	12.3 Grammars
	12.3.1 Backus Naur Form
	12.3.2 Parse Trees and Derivations

	12.4 Programming Language Semantics
	12.4.1 Axiomatic Semantics
	12.4.2 Operational Semantics
	12.4.3 Denotational Semantics

	12.5 Lambda Calculus
	12.6 Lattices and Order
	12.6.1 Partially Ordered Sets
	12.6.2 Lattices
	12.6.3 Complete Partial Orders
	12.6.4 Recursion

	12.7 Review Questions
	12.8 Summary
	References

	13 Automata Theory
	13.1 Introduction
	13.2 Finite-State Machines
	13.3 Pushdown Automata
	13.4 Turing Machines
	13.5 Review Questions
	13.6 Summary
	Reference

	14 Computability and Decidability
	14.1 Introduction
	14.2 Logicism and Formalism
	14.3 Decidability
	14.4 Computability
	14.5 Computational Complexity
	14.6 Review Questions
	14.7 Summary
	Reference

	15 Software Reliability and Dependability
	15.1 Introduction
	15.2 Software Reliability
	15.2.1 Software Reliability and Defects
	15.2.2 Cleanroom Methodology
	15.2.3 Software Reliability Models

	15.3 Dependability
	15.4 Computer Security
	15.5 System Availability
	15.6 Safety Critical Systems
	15.7 Review Questions
	15.8 Summary
	References

	16 Overview of Formal Methods
	16.1 Introduction
	16.2 Why Should We Use Formal Methods?
	16.3 Industrial Applications of Formal Methods
	16.4 Industrial Tools for Formal Methods
	16.5 Approaches to Formal Methods
	16.5.1 Model-Oriented Approach
	16.5.2 Axiomatic Approach

	16.6 Proof and Formal Methods
	16.7 Debate on Formal Methods in Software Engineering
	16.8 The Vienna Development Method
	16.9 VDM♣, the Irish School of VDM
	16.10 The Z Specification Language
	16.11 The B-Method
	16.12 Predicate Transformers and Weakest Preconditions
	16.13 The Process Calculi
	16.14 Finite-State Machines
	16.15 The Parnas Way
	16.16 Model Checking
	16.17 Usability of Formal Methods
	16.18 Review Questions
	16.19 Summary
	References

	17 Z Formal Specification Language
	17.1 Introduction
	17.2 Sets
	17.3 Relations
	17.4 Functions
	17.5 Sequences
	17.6 Bags
	17.7 Schemas and Schema Composition
	17.8 Reification and Decomposition
	17.9 Proof in Z
	17.10 Industrial Applications of Z
	17.11 Review Questions
	17.12 Summary
	Reference

	18 Model Checking
	18.1 Introduction
	18.2 Modelling Concurrent Systems
	18.3 Linear Temporal Logic
	18.4 Computational Tree Logic
	18.5 Tools for Model Checking
	18.6 Industrial Applications of Model Checking
	18.7 Review Questions
	18.8 Summary
	References

	19 The Nature of Theorem Proving
	19.1 Introduction
	19.2 Early Automation of Proof
	19.3 Interactive Theorem Provers
	19.4 A Selection of Theorem Provers
	19.5 Review Questions
	19.6 Summary
	References

	20 Cryptography
	20.1 Introduction
	20.2 Breaking the Enigma Codes
	20.3 Cryptographic Systems
	20.4 Symmetric Key Systems
	20.5 Public Key Systems
	20.5.1 RSA Public Key Cryptosystem
	20.5.2 Digital Signatures

	20.6 Review Questions
	20.7 Summary
	References

	21 Coding Theory
	21.1 Introduction
	21.2 Mathematical Foundations of Coding Theory
	21.3 Simple Channel Code
	21.4 Block Codes
	21.4.1 Error Detection and Correction

	21.5 Linear Block Codes
	21.5.1 Parity Check Matrix
	21.5.2 Binary Hamming Code
	21.5.3 Binary Parity Check Code

	21.6 Miscellaneous Codes in Use
	21.7 Review Questions
	21.8 Summary
	References

	22 Introduction to Statistics
	22.1 Introduction
	22.2 Basic Statistics
	22.2.1 Abuse of Statistics
	22.2.2 Statistical Sampling and Data Collection

	22.3 Frequency Distribution and Charts
	22.4 Statistical Measures
	22.4.1 Arithmetic Mean
	22.4.2 Mode
	22.4.3 Median

	22.5 Variance and Standard Deviation
	22.6 Correlation and Regression
	22.6.1 Regression

	22.7 Statistical Inference and Hypothesis Testing
	22.8 Review Questions
	22.9 Summary
	References

	23 Introduction to Probability Theory
	23.1 Introduction
	23.2 Basic Probability Theory
	23.2.1 Laws of Probability
	23.2.2 Bayes’ Formula

	23.3 Random Variables
	23.4 Binomial and Poisson Distributions
	23.5 The Normal Distribution
	23.5.1 Unit Normal Distribution
	23.5.2 Confidence Intervals and Tests of Significance
	23.5.3 The Central Limit Theorem

	23.6 Bayesian Statistics
	23.7 Review Questions
	23.8 Summary
	References

	24 Introduction to Data Science
	24.1 Introduction
	24.2 Ethics of Data Science
	24.2.1 Data Science and Data Scientists
	24.2.2 Data Science and Society

	24.3 What Is Data Analytics?
	24.3.1 Business Analytics and Business Intelligence
	24.3.2 Big Data and Data Mining
	24.3.3 Data Analytics for Social Media
	24.3.4 Sources of Data

	24.4 Mathematics Used in Data Science
	24.5 Review Questions
	24.6 Summary
	Reference

	25 Calculus I
	25.1 Introduction
	25.2 Differentiation
	25.2.1 Rules of Differentiation

	25.3 Integration
	25.3.1 Definite Integrals
	25.3.2 Fundamental Theorems of Integral Calculus

	25.4 Review Questions
	25.5 Summary
	Reference

	26 Calculus II
	26.1 Introduction
	26.2 Applications of Calculus
	26.3 Fourier Series
	26.4 The Laplace Transform
	26.5 Differential Equations
	26.6 Review Questions
	26.7 Summary
	Reference

	27 Matrix Theory
	27.1 Introduction
	27.2 Two × Two Matrices
	27.3 Matrix Operations
	27.4 Determinants
	27.5 Eigen Vectors and Values
	27.6 Gaussian Elimination
	27.7 Review Questions
	27.8 Summary
	Reference

	28 Complex Numbers and Quaternions
	28.1 Introduction
	28.2 Complex Numbers
	28.3 Quaternions
	28.4 Quaternion Algebra
	28.4.1 Quaternions and Rotations

	28.5 Review Questions
	28.6 Summary

	29 Vectors
	29.1 Introduction
	29.2 Vectors in Euclidean Space
	29.2.1 Dot Product
	29.2.2 Cross Product
	29.2.3 Linear Dependent and Independent Vectors

	29.3 Review Questions
	29.4 Summary

	30 Basic Financial Mathematics
	30.1 Introduction
	30.2 Simple Interest
	30.2.1 Computing Future and Present Values
	30.2.2 Computing Future Value
	30.2.3 Computing Present Values

	30.3 Compound Interest
	30.3.1 Present Value Under Compound Interest
	30.3.2 Equivalent Values

	30.4 Basic Mathematics of Annuities
	30.5 Loans and Mortgages
	30.6 Review Questions
	30.7 Summary

	31 Introduction to Operations Research
	31.1 Introduction
	31.2 Linear Programming
	31.2.1 Linear Programming Example
	31.2.2 General Formulation of LP Problem

	31.3 Cost Volume Profit Analysis
	31.4 Game Theory
	31.5 Review Questions
	31.6 Summary
	References

	32 Mathematical Software for Software Engineers
	32.1 Introduction
	32.2 Microsoft Excel
	32.3 Python
	32.4 Maple
	32.5 Minitab Statistical Software
	32.6 R Statistical Software Environment
	32.7 Mathematica
	32.8 MATLAB
	32.9 Summary

	Index

