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Preface 

Overview 

The objective of this book is to give the reader a flavour of the mathematical 
foundations of software engineering. The rich applications of mathematics to soft-
ware engineering includes its applications to error detection and correcting codes 
with finite field theory; the field of cryptography which uses the results of number 
theory; the modelling of telecommunication networks with graph theory; the appli-
cation of discrete mathematics and proof techniques to the software correctness 
field (especially safety critical systems using formal methods and model check-
ing); the application of financial mathematics to the banking and insurance fields; 
and the application of calculus and vectors to traditional engineering applications. 

Organization and Features 

Chapter 1 introduces software engineering and discusses both traditional and 
Agile software engineering. Chapter 2 examines which mathematics is needed in 
software engineering, including the core mathematics that all software engineers 
should be familiar with, as well as specific mathematics for the particular software 
engineering domains such as the safety critical field; to traditional engineering 
applications; and to the financial sector. 

Chapter 3 discusses the mathematical prerequisites, and we discuss fundamental 
building blocks in mathematics including sets, relations, and functions. A set is 
a collection of well-defined objects, and it may be finite or infinite. A relation 
between two sets A and B indicates a relationship between members of the two 
sets and is a subset of the Cartesian product of the two sets. A function is a special 
type of relation such that for each element in A there is at most one element in 
the codomain B. We discuss the fundamentals of number theory including prime 
number theory and the greatest common divisor and least common multiple of two 
numbers, and we provide a short introduction to trigonometry. 

Chapter 4 presents a short introduction to algorithms, where an algorithm is a 
well-defined procedure for solving a problem. It consists of a sequence of steps
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that takes a set of values as input and produces a set of values as output. An 
algorithm is an exact specification of how to solve the problem, and it explicitly 
defines the procedure so that a computer program may implement the solution in 
some programming language. 

Chapter 5 discusses algebra, and we discuss simple and simultaneous equa-
tions, including the method of elimination and the method of substitution to solve 
simultaneous equations. We show how quadratic equations may be solved by fac-
torization, completing the square or using the quadratic formula. We present the 
laws of logarithms and indices. We discuss various structures in abstract algebra, 
including monoids, groups, rings, integral domains, fields, and vector spaces. 

Chapter 6 discusses mathematical induction and recursion. Induction is a com-
mon proof technique in mathematics, and there are two parts to a proof by 
induction (the base case and the inductive step). We discuss strong and weak 
inductions, and we discuss how recursion is used to define sets, sequences, and 
functions. This leads us to structural induction, which is used to prove properties 
of recursively defined structures. 

Chapter 7 discusses graph theory where a graph G = (V, E) consists of vertices 
and edges. It is a practical branch of mathematics that deals with the arrangements 
of vertices and edges between them, and it has been applied to practical problems 
such as the modelling of computer networks, determining the shortest driving route 
between two cities, and the travelling salesman problem. 

Chapter 8 discusses sequences and series and permutations and combinations. 
Arithmetic and geometric sequences and series are discussed. 

Chapter 9 presents a short history of logic, and we discuss Greek contributions 
to syllogistic logic, stoic logic, fallacies, and paradoxes. Boole’s symbolic logic 
and its application to digital computing are discussed, and we consider Frege’s 
work on predicate logic. 

Chapter 10 provides an introduction to propositional and predicate logic. Propo-
sitional logic may be used to encode simple arguments that are expressed in natural 
language and to determine their validity. The nature of mathematical proof is 
discussed, and we present proof by truth tables, semantic tableaux, and natural 
deduction. Predicate logic allows complex facts about the world to be represented, 
and new facts may be determined via deductive reasoning. Predicate calculus 
includes predicates, variables, and quantifiers, and a predicate is a characteristic or 
property that the subject of a statement can have. 

Chapter 11 presents some advanced topics in logic including fuzzy logic, tem-
poral logic, intuitionistic logic, undefined values, and the applications of logic to 
AI. Fuzzy logic is an extension of classical logic that acts as a mathematical model 
for vagueness. Temporal logic is concerned with the expression of properties that 
have time dependencies, and it allows temporal properties about the past, present, 
and future to be expressed. Intuitionism was a controversial theory on the foun-
dations of mathematics based on a rejection of the law of the excluded middle 
and an insistence on constructive existence. We discuss approaches to deal with 
undefined values.
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Chapter 12 discusses language theory and includes a discussion on grammars, 
parse trees, and derivations from a grammar. The important area of program-
ming language semantics is discussed, including axiomatic, denotational, and 
operational semantics. 

Chapter 13 discusses automata theory, including finite-state machines, push-
down automata, and Turing machines. Finite-state machines are abstract machines 
that are in only one state at a time, and the input symbol causes a transition from 
the current state to the next state. Pushdown automata have greater computational 
power, and they contain extra memory in the form of a stack from which symbols 
may be pushed or popped. The Turing machine is the most powerful model for 
computation, and this theoretical machine is equivalent to an actual computer in 
the sense that it can compute exactly the same set of functions. 

Chapter 14 discusses computability and decidability. The Church–Turing thesis 
states that anything that is computable is computable by a Turing machine. Church 
and Turing showed that mathematics is not decidable. In other words, there is no 
mechanical procedure (i.e., algorithm) to determine whether an arbitrary mathe-
matical proposition is true or false, and so the only way to determine the truth or 
falsity of a statement is try to solve the problem. 

Chapter 15 discusses software reliability and dependability and covers topics 
such as software reliability and software reliability models, the cleanroom method-
ology, system availability, safety and security critical systems, and dependability 
engineering. 

Chapter 16 discusses formal methods, which consist of a set of mathemati-
cal techniques to rigorously specify and derive a program from its specification. 
Formal methods may be employed to rigorously state the requirements of the pro-
posed system; they may be employed to derive a program from its mathematical 
specification; and they may provide a rigorous proof that the implemented program 
satisfies its specification. They have been mainly applied to the safety critical field. 

Chapter 17 presents the Z specification language, which is one of the most 
widely used formal methods. It was developed at Oxford University in the UK. 

Chapter 18 discusses model checking which is an automated technique such 
that given a finite-state model of a system and a formal property, then it system-
atically checks whether the property is true of false in a given state in the model. 
It is an effective technique to identify potential design errors, and it increases the 
confidence in the correctness of the system design. 

Chapter 19 discusses the nature of proof and theorem proving, and we discuss 
automated and interactive theorem provers. We discuss the nature of mathematical 
proof and formal mathematical proof. 

Chapter 20 discusses cryptography, which is an important application of num-
ber theory. The codebreaking work done at Bletchley Park in England during the 
Second World War is discussed, and the fundamentals of cryptography, including 
private and public key cryptosystems, are discussed. 

Chapter 21 presents coding theory and is concerned with error detection and 
error correction codes. The underlying mathematics includes abstract mathematics 
such as group theory, rings, fields, and vector spaces.
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Chapter 22 discusses statistics which is an empirical science that is con-
cerned with the collection, organization, analysis, interpretation, and presentation 
of data. We discuss sampling; the average and spread of a sample; the abuse of 
statistics; frequency distributions; variance and standard deviation; correlation and 
regression; statistical inference and hypothesis testing. 

Chapter 23 discusses probability which is a branch of mathematics that is con-
cerned with measuring uncertainty and random events. We discuss discrete and 
continuous random variables; probability distributions such as the binomial and 
normal distributions; variance and standard deviation; confidence intervals; tests 
of significance; the central limit theorem; and Bayesian statistics. 

Chapter 24 discusses data science, which is a multidisciplinary field that 
extracts knowledge from data sets that consist of structured and unstructured data, 
and large data sets may be analysed to extract useful information. Data science 
may be regarded as a branch of statistics as it uses many concepts from the field, 
and in order to prevent errors occurring during data analysis it is essential that 
both the data and models are valid. 

Chapter 25 provides a short introduction to calculus and provides a high-level 
overview of limits, continuity, differentiation, and integration. Chapter 26 presents 
applications of the calculus in determining velocity, acceleration, area, and volume, 
as well as a short discussion on Fourier series, Laplace transforms, and differential 
equations. 

Chapter 27 discusses matrices including 2 × 2 and general n × m matrices. Var-
ious operations such as the addition and multiplication of matrices are considered, 
and the determinant and inverse of a square matrix are discussed. The applica-
tion of matrices to solving a set of linear equations using Gaussian elimination is 
considered. 

Chapter 28 discusses complex numbers and quaternions. Complex numbers are 
of the form a + bi where a and b are real numbers and i2 = –1. Quaternions 
are a generalization of complex numbers to quadruples that satisfy the quaternion 
formula i2 = j2 = k2 = –1. Chapter 29 discusses vectors, where a vector is repre-
sented as a directed line segment such that the length represents the magnitude of 
the vector and the arrow indicates the direction of the vector. 

Chapter 30 discusses basic financial mathematics, and we discuss simple and 
compound interest, annuities, and mortgages. Chapter 31 discusses operations 
research which is a multidisciplinary field that is concerned with the application 
of mathematical and analytic techniques to assist in decision making. It employs 
techniques such as mathematical modelling, statistical analysis, and mathematical 
optimization as part of its goal to achieve optimal (or near optimal) solutions to 
complex decision-making problems. 

Finally, Chap. 32 discusses a selection of software tools to support mathematics 
for software engineering, and we discuss Microsoft Excel, Minitab, Python, the R 
statistical software environment, and Mathematica.
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Audience 

The audience of this book includes software engineering students who wish to 
become familiar with foundation mathematics for software engineering and math-
ematicians who are curious as to how mathematics is applied in the software 
engineering field. The book will also be of interest to the motivated general reader. 
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1.1 Introduction 

The approach to software development in the 1950s and 1960s has been described 
as the “Mongolian Hordes Approach” by Brooks [1].1 The “method” or lack of 
method was applied to projects that were running late, and it involved adding 
many inexperienced programmers to the project, with the expectation that this 
would allow the project schedule to be recovered. However, this approach was

1 The “Mongolian Hordes” management myth is the belief that adding more programmers to a soft-
ware project that is running late will allow catch-up. In fact, as Brooks says adding people to a late 
software project makes it later. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
G. O’Regan, Mathematical Foundations of Software Engineering, 
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_1


2 1 Fundamentals of Software Engineering

deeply flawed as it led to programmers with inadequate knowledge of the project 
attempting to solve problems, and they inevitably required significant time from 
the other project team members. 

This resulted in the project being delivered even later, as well as subsequent 
problems with quality (i.e., the approach of throwing people at a problem does 
not work). The philosophy of software development back in the 1950/60s was 
characterized by: 

The completed code will always be full of defects. 
The coding should be finished quickly to correct these defects. 
Design as you code approach. 

This philosophy accepted defeat in software development, and suggested that 
irrespective of a solid engineering approach, that the completed software would 
always contain lots of defects, and that it therefore made sense to code as quickly 
as possible, and to then identify the defects that were present, and to correct them 
as quickly as possible to solve a problem. 

In the late 1960s it was clear that the existing approaches to software devel-
opment were deeply flawed, and that there was an urgent need for change. The 
NATO Science Committee organized two famous conferences to discuss critical 
issues in software development [2]. The first conference was held at Garmisch, 
Germany, in 1968, and it was followed by a second conference in Rome in 1969. 
Over 50 people from 11 countries attended the Garmisch conference, including 
Edsger Djkstra, who did important theoretical work on formal specification and 
verification. The NATO conferences highlighted problems that existed in the soft-
ware sector in the late 1960s, and the term “software crisis” was coined to refer 
to these. There were problems with budget and schedule overruns, as well as the 
quality and reliability of the delivered software. 

The conference led to the birth of software engineering as a discipline in its 
own right, and the realization that programming is quite distinct from science and 
mathematics. Programmers are like engineers in that they build software products, 
and they therefore need education in traditional engineering as well as the latest 
technologies. The education of a classical engineer includes product design and 
mathematics. However, often computer science education places an emphasis on 
the latest technologies, rather than on the important engineering foundations of 
designing and building high-quality products that are safe for the public to use. 

Programmers therefore need to learn the key engineering skills to enable them 
to build products that are safe for the public to use. This includes a solid founda-
tion on design and on the mathematics required for building safe software products. 
Mathematics plays a key role in classical engineering, and in some situations, it 
may also assist software engineers in the delivery of high-quality software prod-
ucts. Several mathematical approaches to assist software engineers are described 
in [3].
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Fig. 1.1 Standish report—results of 1995 and 2009 survey 

There are parallels between the software crisis in the late 1960s, and serious 
problems with bridge construction in the nineteenth century. Several bridges col-
lapsed, or were delivered late or over-budget, since people involved in their design 
and construction did not have the required engineering knowledge. This led to 
bridges that were poorly designed and constructed, leading to their collapse and 
loss of life, as well as endangering the lives of the public. 

This led to legislation requiring engineers to be licensed by the Professional 
Engineering Association prior to practicing as engineers. This organization spec-
ified a core body of knowledge that the engineer is required to possess, and the 
licensing body verifies that the engineer has the required qualifications and expe-
rience. This helps to ensure that only personnel competent to design and build 
products do so. Engineers have a professional responsibility to ensure that the 
products are properly built and are safe for the public to use. 

The Standish group has conducted research (Fig. 1.1) on the extent of prob-
lems with IT projects since the mid-1990s. These studies were conducted in the 
USA, but there is no reason to believe that European or Asian companies per-
form any better. The results indicate serious problems with on-time delivery of 
projects, and projects being cancelled prior to completion.2 However, the compar-
ison between 1995 and 2009 suggests that there have been some improvements 
with a greater percentage of projects being delivered successfully, and a reduction 
in the percentage of projects being cancelled. 

Fred Brooks argues that software is inherently complex, and that there is no 
silver bullet that will resolve all the problems associated with software develop-
ment such as schedule or budget overruns [1, 4]. Poor software quality can lead to

2 These are IT projects covering diverse sectors including banking, telecommunications, etc., rather 
than pure software companies. Software companies following maturity frameworks such as the 
CMMI generally achieve more consistent results. 
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defects in the software that may adversely impact the customer, and even lead to 
loss of life. It is therefore essential that software development organizations place 
sufficient emphasis on quality throughout the software development process. 

The Y2K problem was caused by a two-digit representation of dates, and it 
required major rework to enable legacy software to function for the new millen-
nium. Clearly, well-designed programs would have hidden the representation of 
the date, which would have required minimal changes for year 2000 compliance. 
Instead, companies spent vast sums of money to rectify the problem. 

The quality of software produced by some companies is impressive.3 These 
companies employ mature software processes and are committed to continuous 
improvement. There is a lot of industrial interest in software process maturity 
models for software organizations, and various approaches to assess and mature 
software companies are described in [5, 6].4 These models focus on improving the 
effectiveness of the management, engineering and organization practices related 
to software engineering, and in introducing best practice in software engineering. 
The disciplined use of the mature software processes by the software engineers 
enables high-quality software to be consistently produced. 

1.2 What Is Software Engineering? 

Software engineering involves the multiperson construction of multiversion pro-
grams. The IEEE 610.12 definition of Software Engineering is: 

Software engineering is the application of a systematic, disciplined, quantifiable approach 
to the development, operation, and maintenance of software; that is, the application of 
engineering to software, and the study of such approaches. 

Software engineering includes: 

1. Methodologies to design, develop, and test software to meet customers’ needs. 
2. Software is engineered. That is, the software products are properly designed, 

developed, and tested in accordance with engineering principles. 
3. Quality and safety are properly addressed. 
4. Mathematics may be employed to assist with the design and verification of 

software products. The level of mathematics employed will depend on the safety

3 I recall projects at Motorola that regularly achieved 5.6 σ-quality in a L4 CMM environment (i.e., 
approx. 20 defects per million lines of code. This represents very high quality). 
4 Approaches such as the CMM or SPICE (ISO 15504) focus mainly on the management and 
organizational practices required in software engineering. The emphasis is on defining software 
processes that are fit for purpose and consistently following them. The process maturity models 
focus on what needs to be done rather how it should be done. This gives the organization the 
freedom to choose the appropriate implementation to meet its needs. The models provide useful 
information on practices to consider in the implementation. 
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critical nature of the product. Systematic peer reviews and rigorous testing will 
often be sufficient to build quality into the software, with heavy mathematical 
techniques reserved for safety and security critical software. 

5. Sound project management and quality management practices are employed. 
6. Support and maintenance of the software is properly addressed. 

Software engineering is not just programming. It requires the engineer to 
state precisely the requirements that the software product is to satisfy, and then 
to produce designs that will meet these requirements. The project needs to be 
planned and delivered on time and budget. The requirements must provide a pre-
cise description of the problem to be solved, i.e., it should be evident from the 
requirements what is and what is not required. 

The requirements need to be rigorously reviewed to ensure that they are stated 
clearly and unambiguously and reflect the customer’s needs. The next step is then 
to create the design that will solve the problem, and it is essential to validate 
the correctness of the design. Next, the software code to implement the design is 
written, and peer reviews and software testing are employed to verify and validate 
the correctness of the software. 

The verification and validation of the design is rigorously performed for safety 
critical systems, and it is sometimes appropriate to employ mathematical tech-
niques for these systems. However, it will usually be sufficient to employ peer 
reviews or software inspections as these methodologies provide a high degree 
of rigour. This may include approaches such as Fagan inspections [7], Gilb 
inspections [8], or Prince 2’s approach to quality reviews [9]. 

The term “engineer” is a title that is awarded on merit in classical engineering. 
It is generally applied only to people who have attained the necessary education 
and competence to be called engineers, and who base their practice on classi-
cal engineering principles. The title places responsibilities on its holder to behave 
professionally and ethically. Often in computer science the term “software engi-
neer” is employed loosely to refer to anyone who builds things, rather than to an 
individual with a core set of knowledge, experience, and competence. 

Several computer scientists (such as Parnas5 ) have argued that computer scien-
tists should be educated as engineers to enable them to apply appropriate scientific 
principles to their work. They argue that computer scientists should receive a solid 
foundation in mathematics and design, to enable them to have the professional 
competence to perform as engineers in building high-quality products that are safe 
for the public to use. The use of mathematics is an integral part of the engineer’s 
work in other engineering disciplines, and so the software engineer should be able 
to use mathematics to assist in the modelling or understanding of the behaviour or 
properties of the proposed software system.

5 Parnas has made important contributions to computer science. He advocates a solid engineering 
approach with the extensive use of classical mathematical techniques in software development. He 
also introduced information hiding in the 1970s, which is now a part of object-oriented design. 
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Software engineers need education6 on specification, design, turning designs 
into programs, software inspections, and testing. The education should enable the 
software engineer to produce well-structured programs that are fit for purpose. 

Parnas has argued that software engineers have responsibilities as professional 
engineers.7 They are responsible for designing and implementing high-quality and 
reliable software that is safe to use. They are also accountable for their decisions 
and actions8 and have a responsibility to object to decisions that violate profes-
sional standards. Engineers are required to behave professionally and ethically with 
their clients. The membership of the professional engineering body requires the 
member to adhere to the code of ethics9 of the profession. Engineers in other pro-
fessions are licensed, and therefore Parnas argues that a similar licensing approach 
be adopted for professional software engineers10 to provide confidence that they 
are competent for the assignment. Professional software engineers are required to 
follow best practice in software engineering and the defined software processes.11 

Many software companies invest heavily in training, as the education and 
knowledge of its staff are essential to delivering high-quality products and services.

6 Software companies that are following approaches such as the CMM or ISO 9001 consider the 
education and qualification of staff prior to assigning staff to performing specific tasks. The appro-
priate qualifications and experience for the specific role are considered prior to appointing a person 
to carry out the role. Many companies are committed to the education and continuous development 
of their staff, and on introducing best practice in software engineering into their organization. 
7 The ancient Babylonians used the concept of accountability, and they employed a code of laws 
(known as the Hammurabi Code) c. 1750 B.C. It included a law that stated that if a house collapsed 
and killed the owner then the builder of the house would be executed. 
8 However, it is unlikely that an individual programmer would be subject to litigation in the case 
of a flaw in a program causing damage or loss of life. A comprehensive disclaimer of responsibil-
ity for problems rather than a guarantee of quality accompanies most software products. Software 
engineering is a team-based activity involving many engineers in various parts of the project, and 
it would be potentially difficult for an outside party to prove that the cause of a particular problem 
is due to the professional negligence of a particular software engineer, as there are many others 
involved in the process such as reviewers of documentation and code and the various test groups. 
Companies are more likely to be subject to litigation, as a company is legally responsible for the 
actions of their employees in the workplace, and a company is a wealthier entity than one of its 
employees. The legal aspects of licensing software may protect software companies from litiga-
tion. However, greater legal protection for the customer can be built into the contract between the 
supplier and the customer for bespoke-software development. 
9 Many software companies have a defined code of ethics that employees are expected to adhere. 
Larger companies will wish to project a good corporate image and to be respected worldwide. 
10 The British Computer Society (BCS) has introduced a qualification system for computer science 
professionals that it used to show that professionals are properly qualified. The most important of 
these is the BCS Information Systems Examination Board (ISEB) which allows IT professionals 
to be qualified in service management, project management, software testing, and so on. 
11 Software companies that are following the CMMI or ISO 9001 standards will employ audits 
to verify that the processes and procedures have been followed. Auditors report their findings 
to management and the findings are addressed appropriately by the project team and affected 
individuals. 
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Employees receive professional training related to the roles that they are per-
forming, such as project management, software design and development, software 
testing, and service management. The fact that the employees are professionally 
qualified increases confidence in the ability of the company to deliver high-quality 
products and services. A company that pays little attention to the competence and 
continuous development of its staff will obtain poor results and suffer a loss of 
reputation and market share. 

1.3 Challenges in Software Engineering 

The challenge in software engineering is to deliver high-quality software on time 
and on budget to customers. The research done by the Standish Group was dis-
cussed earlier in this chapter, and the results of their 1998 research (Fig. 1.2) on  
project cost overruns in the USA indicated that 33% of projects are between 21 
and 50% overestimate, 18% are between 51 and 100% over estimate, and 11% of 
projects are between 101 and 200% overestimate. 

The accurate estimation of project cost, effort and schedule is a challenge in 
software engineering. Therefore, project managers need to determine how good 
their estimation process actually is and to make appropriate improvements. The 
use of software metrics is an objective way to do this, and improvements in esti-
mation will be evident from a reduced variance between estimated and actual effort 
(see Chap. 10). The project manager will determine and report the actual versus 
estimated effort and schedule for the project. 

Risk management is an important part of project management, and the objective 
is to identify potential risks early and throughout the project, and to manage them

Fig. 1.2 Standish 1998 report—estimation accuracy 
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appropriately. The probability of each risk occurring and its impact is determined, 
and the risks are managed during project execution. 

Software quality needs to be properly planned to enable the project to deliver a 
quality product. Flaws with poor quality software may lead to a negative perception 
of the company and may potentially lead to damage to the customer relationship 
with a subsequent loss of market share. 

There is a strong economic case to building quality into the software, as less 
time is spent in reworking defective software. The cost of poor quality (COPQ) 
should be measured, and targets set for its reductions. It is important that lessons 
are learned during the project and acted upon appropriately. This helps to promote 
a culture of continuous improvement. 

Several high-profile software failures are discussed in [6]. These include the 
millennium bug (Y2K) problem; the floating-point bug in the Intel microprocessor; 
the European Space Agency Ariane-5 disaster, and so on. These failures led to 
embarrassment for the organizations, as well as the associated cost of replacement 
and correction. 

The millennium bug was due to the use of two digits to represent dates rather 
than four digits. The solution involved finding and analysing all code that that 
had a Y2K impact; planning and making the necessary changes; and verifying the 
correctness of the changes. The worldwide cost of correcting the millennium bug 
is estimated to have been in billions of dollars. 

The Intel Corporation was slow to acknowledge the floating-point problem in 
its Pentium microprocessor, and in providing adequate information on its impact 
to its customers. It incurred a large financial cost in replacing microprocessors for 
its customers. The Ariane-5 failure caused major embarrassment and damage to 
the credibility of the European Space Agency (ESA). Its maiden flight ended in 
failure on 4 June 1996, after a flight time of just 40s. 

These failures indicate that quality needs to be carefully considered when 
designing and developing software. The effect of software failure may be large 
costs to correct the software, loss of credibility of the company, or even loss of 
life. 

1.4 Software Processes and Lifecycles 

Organizations vary by size and complexity, and the processes employed will reflect 
the nature of their business. The development of software involves many pro-
cesses such as those for defining requirements; processes for project estimation 
and planning; processes for design, implementation, testing, and so on. 

It is important that the processes employed are fit for purpose, and a key premise 
in the software quality field is that the quality of the resulting software is influenced 
by the quality and maturity of the underlying processes, and compliance to them. 
Therefore, it is necessary to focus on the quality of the processes as well as the 
quality of the resulting software.
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There is, of course, little point in having high-quality processes unless their 
use is institutionalized in the organization. That is, all employees need to follow 
the processes consistently. This requires that the employees are trained on the 
processes, and that process discipline is instilled with an appropriate audit strategy 
that ensures compliance to them. Data will be collected to improve the process. 
The software process assets in an organization generally consist of: 

• A software development policy for the organization 
• Process maps that describe the flow of activities 
• Procedures and guidelines that describe the processes in more detail 
• Checklists to assist with the performance of the process 
• Templates for the performance of specific activities (e.g., design, testing) 
• Training materials. 

The processes employed to develop high-quality software generally include: 

• Project Management Process 
• Requirements Process 
• Design Process 
• Coding Process 
• Peer Review Process 
• Testing Process 
• Supplier Selection and Management processes 
• Configuration Management Process 
• Audit Process 
• Measurement Process 
• Improvement Process 
• Customer Support and Maintenance processes. 

The software development process has an associated lifecycle that consists of vari-
ous phases. There are several well-known lifecycles employed such as the waterfall 
model [10]; the spiral model [11], the Rational Unified Process [12] and the Agile 
methodology [13] which has become popular in recent years. The choice of a 
particular software development lifecycle is determined from the needs of the spe-
cific project. The various lifecycles are described in more detail in the following 
sections. 

1.4.1 Waterfall Lifecycle 

The waterfall model (Fig. 1.3) starts with requirements gathering and definition. 
It is followed by the system specification (with the functional and non-functional 
requirements), the design and implementation of the software, and comprehensive 
testing. The testing generally includes unit, system, and user acceptance testing.
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Fig. 1.3 Waterfall V lifecycle model 

The waterfall model is employed for projects where the requirements can be 
identified early in the project lifecycle or are known in advance. We are treating 
the waterfall model as the “V” lifecycle model, with the left-hand side of the 
“V” detailing requirements, specification, design, and coding and the right-hand 
side detailing unit tests, integration tests, system tests, and acceptance testing. 
Each phase has entry and exit criteria that must be satisfied before the next phase 
commences. There are several variations to the waterfall model. 

Many companies employ a set of templates to enable the activities in the vari-
ous phases to be consistently performed. Templates may be employed for project 
planning and reporting; requirements definition; design; testing; and so on. These 
templates may be based on the IEEE standards or industrial best practice. 

1.4.2 Spiral Lifecycles 

The spiral model (Fig. 1.4) was developed by Barry Boehm in the 1980s [11], 
and it is useful for projects where the requirements are not fully known at project 
initiation, or where the requirements evolve as a part of the development lifecycle. 
The development proceeds in several spirals, where each spiral typically involves 
objectives and an analysis of the risks, updates to the requirements, design, code, 
testing, and a user review of the iteration or spiral.

The spiral is, in effect, a reusable prototype with the business analysts and the 
customer reviewing the current iteration and providing feedback to the develop-
ment team. The feedback is analysed and used to plan the next iteration. This 
approach is often used in joint application development, where the usability and 
look and feel of the application is a key concern. This is important in web-
based development and in the development of a graphical user interface (GUI). 
The implementation of part of the system helps in gaining a better understanding 
of the requirements of the system, and this feeds into subsequent development
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Fig. 1.4 SPIRAL lifecycle model … Public Domain

cycles. The process repeats until the requirements and the software product are 
fully complete. 

There are several variations of the spiral model including Rapid Applica-
tion Development (RAD); Joint Application Development (JAD) models; and the 
Dynamic Systems Development Method (DSDM) model. The Agile methodology 
(discussed in Chap. 14) has become popular in recent years, and it employs sprints 
(or iterations) of 2–4 weeks duration to implement a number of user stories. A 
sample spiral model is shown in Fig. 1.4. 

There are other lifecycle models such as the iterative development process that 
combines the waterfall and spiral lifecycle model. An overview of Cleanroom is 
presented in Chap. 11, and the methodology was developed by Harlan Mills at 
IBM. It includes a phase for formal specification, and its approach to software 
testing is based on the predicted usage of the software product, which allows a 
software reliability measure to be calculated. The Rational Unified Process (RUP) 
was developed by Rational, and it is discussed in the next section.
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1.4.3 Rational Unified Process 

The Rational Unified Process [12] was developed at the Rational Corporation (now 
part of IBM) in the late 1990s. It uses the Unified Modelling Language (UML) 
as a tool for specification and design, where UML is a visual modelling language 
for software systems that provides a means of specifying, constructing, and docu-
menting the object-oriented system. It was developed by James Rumbaugh, Grady 
Booch, and Ivar Jacobson, and it facilitates the understanding of the architecture 
and complexity of the system. 

RUP is use case driven, architecture centric, iterative, and incremental, and 
includes cycles, phases, workflows, risk mitigation, quality control, project man-
agement, and configuration control (Fig. 1.5). Software projects may be very 
complex, and there are risks that requirements may be incomplete, or that the 
interpretation of a requirement may differ between the customer and the project 
team. RUP is a way to reduce risk in software engineering. 

Requirements are gathered as use cases, where the use cases describe the func-
tional requirements from the point of view of the user of the system. They describe 
what the system will do at a high level and ensure that there is an appropriate 
focus on the user when defining the scope of the project. Use cases also drive the 
development process, as the developers create a series of design and implemen-
tation models that realize the use cases. The developers review each successive 
model for conformance to the use-case model, and the test team verifies that the 
implementation correctly implements the use cases. 

The software architecture concept embodies the most significant static and 
dynamic aspects of the system. The architecture grows out of the use cases and fac-
tors such as the platform that the software is to run on, deployment considerations, 
legacy systems, and the non-functional requirements.

Fig. 1.5 Rational unified process 
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RUP decomposes the work of a large project into smaller slices or mini-projects, 
and each mini-project is an iteration that results in an increment to the product. The 
iteration consists of one or more steps in the workflow, and generally leads to the 
growth of the product. If there is a need to repeat an iteration, then all that is lost 
is the misdirected effort of one iteration, rather that the entire product. Another 
words, RUP is a way to mitigate risk in software engineering. 

1.4.4 Agile Development 

There has been a massive growth of popularity among software developers in 
lightweight methodologies such as Agile. This is a software development method-
ology that is more responsive to customer needs than traditional methods such as 
the waterfall model. The waterfall development model is similar to a wide and slow-
moving value stream, and halfway through the project 100% of the requirements 
are typically 50% done. However, for Agile development 50% of requirements are 
typically 100% done halfway through the project. 

This methodology has a strong collaborative style of working and its approach 
includes: 

• Aims to achieve a narrow fast flowing value stream 
• Feedback and adaptation employed in decision making 
• User stories and sprints are employed 
• Stories are either done are not done (no such thing as 50% done) 
• Iterative and incremental development is employed 
• A project is divided into iterations 
• An iteration has a fixed length (i.e., time boxing is employed) 
• Entire software development lifecycle is employed for the implementation of 

each story 
• Change is accepted as a normal part of life in the Agile world 
• Delivery is made as early as possible 
• Maintenance is seen as part of the development process 
• Refactoring and evolutionary design employed 
• Continuous integration is employed 
• Short cycle times 
• Emphasis on quality 
• Stand-up meetings 
• Plan regularly 
• Direct interaction preferred over documentation 
• Rapid conversion of requirements into working functionality 
• Demonstrate value early 
• Early decision making. 

Ongoing changes to requirements are considered normal in the Agile world, and 
it is believed to be more realistic to change requirements regularly throughout 
the project rather than attempting to define all the requirements at the start of
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the project. The methodology includes controls to manage changes to the require-
ments, and good communication and early regular feedback is an essential part of 
the process. 

A story may be a new feature or a modification to an existing feature. It is reduced 
to the minimum scope that can deliver business value, and a feature may give rise 
to several stories. Stories often build upon other stories and the entire software 
development lifecycle is employed for the implementation of each story. Stories 
are either done or not done, i.e., there is such thing as a story being 80% done. The 
story is complete only when it passes its acceptance tests. Stories are prioritized 
based on a number of factors including: 

• Business value of story 
• Mitigation of risk 
• Dependencies on other stories. 

The scrum approach is an Agile method for managing iterative development, and 
it consists of an outline planning phase for the project followed by a set of sprint 
cycles (where each cycle develops an increment). Sprint planning is performed 
before the start of the iteration, and stories are assigned to the iteration to fill the 
available time. Each scrum sprint is of a fixed length (usually 2–4 weeks), and 
it develops an increment of the system. The estimates for each story and their 
priority are determined, and the prioritized stories are assigned to the iteration. 
A short morning stand-up meeting is held daily during the iteration, and attended 
by the scrum master, the project manager,12 and the project team. It discusses the 
progress made the previous day, problem reporting and tracking, and the work 
planned for the day ahead. A separate meeting is held for issues that require more 
detailed discussion. 

Once the iteration is complete the latest product increment is demonstrated to 
an audience including the product owner. This is to receive feedback and to iden-
tify new requirements. The team also conducts a retrospective meeting to identify 
what went well and what went poorly during the iteration. This is for continuous 
improvement of future iterations. Planning for the next sprint then commences. 
The scrum master is a facilitator who arranges the daily meetings and ensures that 
the scrum process is followed. The role involves removing roadblocks so that the 
team can achieve their goals and communicating with other stakeholders. 

Agile employs pair programming and a collaborative style of working with the 
philosophy that two heads are better than one. This allows multiple perspectives in 
decision making and a broader understanding of the issues. 

Software testing is very important and Agile generally employs automated 
testing for unit, acceptance, performance, and integration testing. Tests are run 
frequently with the goal of catching programming errors early. They are generally

12 Agile teams are self-organizing, and the project manager role is generally not employed for small 
projects (< 20 staff). 
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run on a separate build server to ensure that all dependencies are checked. Tests 
are rerun before making a release. Agile employs test-driven development with tests 
written before the code. The developers write code to make a test pass with ideally 
developers only coding against failing tests. This approach forces the developer to 
write testable code. 

Refactoring is employed in Agile as a design and coding practice. The objective 
is to change how the software is written without changing what it does. Refac-
toring is a tool for evolutionary design where the design is regularly evaluated, 
and improvements are implemented as they are identified. It helps in improving 
the maintainability and readability of the code and in reducing complexity. The 
automated test suite is essential in showing that the integrity of the software is 
maintained following refactoring. 

Continuous integration allows the system to be built with every change. Early 
and regular integration allows early feedback to be provided. It also allows all 
of the automated tests to be run thereby identifying problems earlier. Agile is 
discussed in more detail in Chap. 14 of [14]. 

1.4.5 Continuous Software Development 

Continuous software development is in a sense the successor to Agile and involves 
activities such as continuous integration, continuous delivery, continuous testing, 
and continuous deployment of the software. Its objective is to enable technology 
companies to accelerate the delivery of their products to their customers, thereby 
delivering faster business benefits as well as reshaping relationships with their 
customers. 

Continuous integration is a coding philosophy with an associated set of prac-
tices where each developer submits their work as soon as it is finished, and several 
builds may take place during the day in response to the addition of significant 
change. The build has an associated set of unit and integration tests that are auto-
mated and are used to verify the integrity of the build, and this ensures that the 
addition of the new code is of a high quality. Continuous integration ensures that 
the developers receive immediate feedback on the software that they are working 
on. 

Continuous delivery builds on the activities in continuous integration, where 
each code that is added to the build has automated unit and system tests conducted. 
Automated functional tests, regression tests, and possibly acceptance tests will be 
conducted, and once the automated tests pass the software is sent to a staging 
environment for deployment. 

Continuous testing allows the test group to continuously test the most up to date 
version of the software, and it includes manual testing as well as user acceptance 
testing. It differs from conventional testing as the software is expected to change 
over time. 

Continuous deployment allows changes to be delivered to end users quickly 
without human intervention, and it requires the completion of the automated 
delivery tests prior to deployment to production.
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1.5 Activities in Software Development 

There are various activities involved in software development including: 

• Requirements Definition 
• Design 
• Implementation 
• Software Testing 
• Support and Maintenance 

These activities are discussed in the following sections and cover both traditional 
software engineering and Agile. 

1.5.1 Requirements Definition 

The user (business) requirements specify what the customer wants and define what 
the software system is required to do (as distinct from how this is to be done). The 
requirements are the foundation for the system, and if they are incorrect, then the 
implemented system will be incorrect. Prototyping may be employed to assist in 
the definition and validation of the requirements. The process of determining the 
requirements, analysing, and validating them and managing them throughout the 
project lifecycle is termed requirements engineering. 

The user requirements are determined from discussions with the customer to 
determine their actual needs, and they are then refined into the system requirements, 
which state the functional and non-functional requirements of the system. The 
specification of the user requirements needs to be unambiguous to ensure that all 
parties involved in the development of the system share a common understanding 
of what is to be developed and tested. 

There is no requirements document as such in Agile, and the product backlog 
(i.e., the prioritized list of functionality of the product to be developed) is the 
closest to the idea of a requirements document in a traditional project. However, 
the written part of a user story in Agile is incomplete until the discussion of that 
story takes place. It is often useful to think of the written part of a story as a pointer 
to the real requirement, such as a diagram showing a workflow or the formula 
for a calculation. The Agile software development methodology argues that as 
requirements change so quickly that a requirements document is unnecessary, since 
such a document would be out of date as soon as it was written. 

Requirements gathering in traditional software engineering involve meetings 
with the stakeholders to gather all relevant information for the proposed product. 
The stakeholders are interviewed, and requirements workshops conducted to elicit 
the requirements from them. An early working system (prototype) is often used to 
identify gaps and misunderstandings between developers and users. The prototype 
may serve as a basis for writing the specification.
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The requirements workshops are used to discuss and prioritize the requirements, 
as well as identifying and resolving any conflicting requirements. The collected 
information is consolidated into a coherent set of requirements. Changes to the 
requirements may occur during the project, and these need to be controlled. It 
is essential to understand the impacts (e.g., schedule, budget, and technical) of a 
proposed change to the requirements prior to its approval. 

Requirements verification is concerned with ensuring that the requirements are 
properly implemented (i.e., building it right) in the design and implementation. 
Requirements validation is concerned with ensuring that the right requirements are 
defined (building the right system), and that they are precise, complete, and reflect 
the actual needs of the customer. 

The requirements are validated by the stakeholders to ensure that they are those 
desired, and to establish their feasibility. This may involve several reviews of the 
requirements until all stakeholders are ready to approve the requirements docu-
ment. Other validation activities include reviews of the prototype and the design, 
and user acceptance testing. 

The requirements for a system are generally documented in a natural language 
such as “English”. Other notations that are employed include the visual modelling 
language UML [15], and formal specification languages such as VDM or Z for the 
safety critical field. 

The specification of the system requirements of the product is essentially a 
statement of what the software development organization will provide to meet 
the business (user) requirements. That is, the detailed business requirements are 
a statement of what the customer wants, whereas the specification of the system 
requirements is a statement of what will be delivered by the software development 
organization. 

It is essential that the system requirements are valid with respect to the user 
requirements, and they are reviewed by the stakeholders to ensure their valid-
ity. Traceability may be employed to show that the business requirements are 
addressed by the system requirements. 

There are two categories of system requirements: namely, functional and non-
functional requirements. The functional requirements define the functionality that 
is required of the system, and it may include screen shots, report layouts or desired 
functionality specified as use cases. The non-functional requirements will generally 
include security, reliability, availability, performance, and portability requirements, 
as well as usability and maintainability requirements. 

1.5.2 Design 

The design of the system consists of engineering activities to describe the architec-
ture or structure of the system, as well as activities to describe the algorithms and 
functions required to implement the system requirements. It is a creative process 
concerned with how the system will be implemented, and its activities include 
architecture design, interface design, and data structure design. There are often
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several possible design solutions for a particular system, and the designer will 
need to decide on the most appropriate solution. 

Refactoring is employed in Agile as a design and coding practice. The objective 
is to change how the software is written without changing what it does. Refactor-
ing is a tool for evolutionary design where the design is regularly evaluated, and 
improvements are implemented as they are identified. It helps in improving the 
maintainability and readability of the code and in reducing complexity. The auto-
mated test suite is essential in demonstrating that the integrity of the software is 
maintained following refactoring. 

The design may be specified in various ways such as graphical notations that 
display the relationships between the components making up the design. The 
notation may include flow charts, or various UML diagrams such as sequence 
diagrams, state charts, and so on. Program description languages or pseudocode 
may be employed to define the algorithms and data structures that are the basis 
for implementation. 

Function-oriented design is historical, and it involves starting with a high-level 
view of the system and refining it into a more detailed design. The system state is 
centralized and shared between the functions operating on that state. 

Object-oriented design is based on the concept of information hiding devel-
oped by Parnas [16]. The system is viewed as a collection of objects rather than 
functions, with each object managing its own state information. The system state 
is decentralized, and an object is a member of a class. The definition of a class 
includes attributes and operations on class members, and these may be inherited 
from super classes. Objects communicate by exchanging messages 

It is essential to verify and validate the design with respect to the system 
requirements, and this may be done by traceability of the design to the system 
requirements and design reviews. 

1.5.3 Implementation 

This phase is concerned with implementing the design in the target language and 
environment (e.g., C++ or Java), and it involves writing or generating the actual 
code. The development team divides up the work to be done, with each program-
mer responsible for one or more modules. The coding activities often include code 
reviews or walkthroughs to ensure that quality code is produced, and to verify its 
correctness. The code reviews will verify that the source code conforms to the cod-
ing standards and that maintainability issues are addressed. They will also verify 
that the code produced is a valid implementation of the software design. 

The development of a new feature in Agile begins with writing a suite of test 
cases based on the requirements for the feature. The tests fail initially, and so the 
first step is to write some code that enables the new test cases to pass. This new 
code may be imperfect (it will be improved later). The next step is to ensure that 
the new feature works with the existing features, and this involves executing all 
new and existing test cases.
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This may involve modification of the source code to enable all of the tests 
to pass and to ensure that all features work correctly together. The final step is 
refactoring the code, and this involves cleaning up and restructuring the code, 
and improving its structure and readability. The test cases are rerun during the 
refactoring to ensure that the functionality is not altered in any way. The process 
repeats with the addition of each new feature. 

Software reuse provides a way to speed up the development process. Compo-
nents or objects that may be reused need to be identified and handled accordingly. 
The implemented code may use software components that have either being devel-
oped internally or purchased off the shelf. Open-source software has become 
popular in recent years, and it allows software developed by others to be used 
(under an open-source license) in the development of applications. 

The benefits of software reuse include increased productivity and a faster time 
to market. There are inherent risks with customized-off-the shelf (COTS) software, 
as the supplier may decide to no longer support the software, or there is no guar-
antee that software that has worked successfully in one domain will work correctly 
in a different domain. It is therefore important to consider the risks as well as the 
benefits of software reuse and open-source software. 

1.5.4 Software Testing 

Software testing is employed to verify that the requirements have been correctly 
implemented, and that the software is fit for purpose, as well as identifying defects 
present in the software. There are various types of testing that may be conducted 
including unit testing, integration testing, system testing, performance testing, and 
user acceptance testing. These are described below: 

Unit and Integration Testing 
Unit testing is performed by the programmer on the completed unit (or module) 
and prior to its integration with other modules. The programmer writes these tests, 
and the objective is to show that the code satisfies the design. The unit test case 
is generally documented, and it should include the test objective and the expected 
results. 

Code coverage and branch coverage metrics are often generated to give an 
indication of how comprehensive the unit testing has been. These metrics provide 
visibility into the number of lines of code executed, as well as the branches cov-
ered during unit testing. The developer executes the unit tests; records the results; 
corrects any identified defects, and retests the software. 

Test driven development (TDD) is employed in the Agile world, and this 
involves writing the unit test cases (and possibly other test cases) before the code, 
and the code is then written to pass the defined test cases. These tests are automated 
in the Agile world and are run with every build. 

Integration testing is performed on the integrated system once all of the indi-
vidual units work correctly in isolation. The objective is to verify that all of the
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modules and their interfaces work correctly together, and to identify and resolve 
any issues. Modules that work correctly in isolation may fail when integrated with 
other modules. The developers generally perform this type of testing. These tests 
are automated in the Agile world. 

System and Performance Testing 
The purpose of system testing is to verify that the implementation is valid with 
respect to the system requirements. It involves the specification of system test 
cases, and the execution of the test cases will verify that the system requirements 
have been correctly implemented. An independent test group generally conducts 
this type of testing, and the system tests are traceable to the system requirements. 

The purpose of performance testing is to ensure that the performance of the 
system satisfies the non-functional requirements. It may include load performance 
testing, where the system is subjected to heavy loads over a long period of time, 
and stress testing, where the system is subjected to heavy loads during a short time 
interval. Performance testing often involves the simulation of many users using the 
system and involves measuring the response times for various activities. 

Any system requirements that have been incorrectly implemented will be iden-
tified, and defects logged and reported to the developers. System testing may also 
include security and usability testing. The preparation of the test environment may 
involve ordering special hardware and tools, and needs to be set up early in the 
project. 

User Acceptance Testing 
UAT testing is usually performed under controlled conditions at the customer site, 
and its operation will closely resemble the real-life behaviour of the system. The 
customer will see the product in operation and will judge whether the system is fit 
for purpose. The objective is to demonstrate that the product satisfies the business 
requirements and meets the customer expectations. Upon its successful completion 
the customer is happy to accept the product. 

1.5.5 Support and Maintenance 

Software systems often have a long lifetime, and the software needs to be continu-
ously enhanced over its lifetime to meet the evolving needs of the customers. This 
may involve regular new releases with new functionality and corrections to known 
defects. 

Any problems that the customer identifies with the software are reported as per 
the customer support and maintenance agreement. The support issues will require 
investigation, and the issue may be a defect in the software, an enhancement to the 
software, or  due to a misunderstanding. An appropriate solution is implemented to 
resolve, and testing is conducted to verify that the solution is correct, and that the 
changes made have not adversely affected other parts of the system. A postmortem



1.6 Software Inspections 21 

may be conducted to learn lessons from the defect,13 and to take corrective action 
to prevent a reoccurrence. 

The goal of building a correct and reliable software product the first time is 
difficult to achieve, and the customer is always likely to find some issues with the 
released software product. It is accepted today that quality needs to be built into 
each step in the development process, with the role of software inspections and 
testing to identify as many defects as possible prior to release and minimize the 
risk that serious defects will be found postrelease. 

The effective in-phase inspections of the deliverables will influence the quality 
of the resulting software and lead to a corresponding reduction in the number of 
defects. The testing group plays a key role in verifying that the system is cor-
rect, and in providing confidence that the software is fit for purpose and ready to 
be released. The approach to software correctness involves testing and retesting, 
until the testing group believe that all defects have been eliminated. Dijkstra [17] 
comments on testing are well-known: 

Testing a program demonstrates that it contains errors, never that it is correct. 

That is, irrespective of the amount of time spent testing, it can never be said 
with absolute confidence that all defects have been found in the software. Testing 
provides increased confidence that the program is correct, and statistical techniques 
may be employed to give a measure of the software reliability. 

Some mature organizations have a quality objective of three defects per million 
lines of code, which was introduced by Motorola as part of its six-sigma (6σ) pro-
gram. It was originally applied it to its manufacturing businesses and subsequently 
applied to its software organizations. The goal is to reduce variability in manufac-
turing processes and to ensure that the processes performed within strict process 
control limits. 

1.6 Software Inspections 

Software inspections are used to build quality into software products. There are 
a number of well-known approaches such as the Fagan Methodology [7]; Gilb’s 
approach [8]; and Prince 2’s approach. 

Fagan inspections were developed by Michael Fagan of IBM. It is a seven-step 
process that identifies and removes errors in work products. The process mandates 
that requirement documents, design documents, source code, and test plans are

13 This is essential for serious defects that have caused significant inconvenience to customers (e.g., 
a major telecom outage). The software development organization will wish to learn lessons to 
determine what went wrong in its processes that prevented the defect from been identified during 
peer reviews and testing. Actions to prevent a reoccurrence will be identified and implemented. 
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all formally inspected by experts independent of the author of the deliverable to 
ensure quality. 

There are various roles defined in the process including the moderator who 
chairs the inspection. The reader’s responsibility is to read or paraphrase the deliv-
erable, and the author is the creator of the deliverable and has a special interest in 
ensuring that it is correct. The tester role is concerned with the test viewpoint. 

The inspection process will consider whether the design is correct with respect 
to the requirements, and whether the source code is correct with respect to 
the design. Software inspections play an important role in building quality into 
software and in reducing the cost of poor quality in the organization. 

1.7 Software Project Management 

The timely delivery of quality software requires good management and engineering 
processes. Software projects have a history of being delivered late or over budget, 
and good project management practices include the following activities: 

• Estimation of cost, effort, and schedule for the project 
• Identifying and managing risks 
• Preparing the project plan 
• Preparing the initial project schedule and key milestones 
• Obtaining approval for the project plan and schedule 
• Staffing the project 
• Monitoring progress, budget, schedule, effort, risks, issues, change requests, 

and quality 
• Taking corrective action 
• Replanning and rescheduling 
• Communicating progress to affected stakeholders 
• Preparing status reports and presentations. 

The project plan will contain or reference several other plans such as the project 
quality plan; the communication plan; the configuration management plan; and the 
test plan. 

Project estimation and scheduling are difficult as often software projects are 
breaking new ground and may differ from previous projects. That is, previous 
estimates may often not be a good basis for estimation for the current project. 
Often, unanticipated problems can arise for technically advanced projects, and the 
estimates may often be optimistic. Gantt charts are often employed for project 
scheduling, and these show the work breakdown for the project, as well as task 
dependencies and allocation of staff to the various tasks.
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The effective management of risk during a project is essential to project suc-
cess. Risks arise due to uncertainty and the risk management cycle involves14 risk 
identification; risk analysis and evaluation; identifying responses to risks; select-
ing and planning a response to the risk; and risk monitoring. The risks are logged, 
and the likelihood of each risk arising, and its impact is then determined. The risk 
is assigned an owner and an appropriate response to the risk determined. Project 
management is discussed in more detail in Chap. 4 of [14]. 

1.8 CMMI Maturity Model 

The CMMI is a framework to assist an organization in the implementation of best 
practice in software and systems engineering. It is an internationally recognized 
model for software process improvement and assessment and is used worldwide 
by thousands of organizations. It provides a solid engineering approach to the 
development of software, and it supports the definition of high-quality processes 
for the various software engineering and management activities. 

It was developed by the Software Engineering Institute (SEI) who adapted the 
process improvement principles used in the manufacturing field to the software 
field. They developed the original CMM model and its successor the CMMI. The 
CMMI states what the organization needs to do to mature its processes rather than 
how this should be done. 

The CMMI consists of five maturity levels with each maturity level consist-
ing of several process areas. Each process area consists of a set of goals, and 
these goals are implemented by practices related to that process area. Level two is 
focused on management practices; level three is focused on engineering and orga-
nization practices; level four is concerned with ensuring that key processes are 
performing within strict quantitative limits; and level five is concerned with con-
tinuous process improvement. Maturity levels may not be skipped in the staged 
representation of the CMMI, as each maturity level is the foundation for the 
next level. The CMMI and Agile are compatible, and CMMI v1.3 supports Agile 
software development. 

The CMMI allows organizations to benchmark themselves against other orga-
nizations. This is done by a formal SCAMPI appraisal conducted by an authorized 
lead appraiser. The results of the appraisal are generally reported back to the SEI, 
and there is a strict qualification process to become an authorized lead appraiser. 
An appraisal is useful in verifying that an organization has improved, and it enables 
the organization to prioritize improvements for the next improvement cycle. The 
CMMI is discussed in more detail in Chap. 20 of [14].

14 These are the risk management activities in the Prince2 methodology.
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1.9 Formal Methods 

Dijkstra and Hoare have argued that the way to develop correct software is to 
derive the program from its specifications using mathematics, and to employ math-
ematical proof to demonstrate its correctness with respect to the specification. This 
offers a rigorous framework to develop programs adhering to the highest qual-
ity constraints. However, in practice mathematical techniques have proved to be 
cumbersome to use, and their widespread use in industry is unlikely at this time. 

The safety–critical area is one domain to which mathematical techniques have 
been successfully applied. There is a need for extra rigour in the safety and secu-
rity critical fields, and mathematical techniques can demonstrate the presence or 
absence of certain desirable or undesirable properties (e.g., “when a train is in a 
level crossing, then the gate is closed”). 

Spivey [18] defines a “formal specification” as the use of mathematical notation 
to describe in a precise way the properties which an information system must 
have, without unduly constraining the way in which these properties are achieved. 
It describes what the system must do, as distinct from how it is to be done. This 
abstraction away from implementation enables questions about what the system 
does to be answered, independently of the detailed code. Further, the unambiguous 
nature of mathematical notation avoids the problem of ambiguity in an imprecisely 
worded natural language description of a system. 

The formal specification thus becomes the key reference point for the differ-
ent parties concerned with the construction of the system and is a useful way of 
promoting a common understanding for all those concerned with the system. The 
term “formal methods” is used to describe a formal specification language, and a 
method for the design and implementation of computer systems. 

The specification is written precisely in a mathematical language. The deriva-
tion of an implementation from the specification may be achieved via stepwise 
refinement. Each refinement step makes the specification more concrete and closer 
to the actual implementation. There is an associated proof obligation that the refine-
ment be valid, and that the concrete state preserves the properties of the more 
abstract state. Thus, assuming the original specification is correct and the proofs 
of correctness of each refinement step are valid, then there is a very high degree 
of confidence in the correctness of the implemented software. 

Formal methods have been applied to a diverse range of applications, including 
circuit design, artificial intelligence, specification of standards, specification and 
verification of programs, etc. They are described in more detail in Chap. 16. 

1.10 Review Questions 

1. Discuss the research results of the Standish Group the current state of IT 
project delivery?
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2. What are the main challenges in software engineering? 
3. Describe various software lifecycles such as the waterfall model and the 

spiral model. 
4. Discuss the benefits of Agile over conventional approaches. List any risks 

and disadvantages? 
5. Describe the purpose of the CMMI? What are the benefits? 
6. Describe the main activities in software inspections. 
7. Describe the main activities in software testing. 
8. Describe the main activities in project management? 
9. What are the advantages and disadvantages of formal methods? 

1.11 Summary 

The birth of software engineering was at the NATO conference held in 1968 in 
Germany. This conference highlighted the problems that existed in the software 
sector in the late 1960s, and the term “software crisis” was coined to refer to 
these. The conference led to the realization that programming is quite distinct 
from science and mathematics, and that software engineers need to be properly 
trained to enable them to build high-quality products that are safe to use. 

The Standish group conducts research on the extent of problems with the deliv-
ery of projects on time and budget. Their research indicates that it remains a 
challenge to deliver projects on time, on budget and with the right quality. 

Programmers are like engineers in the sense that they build products. Therefore, 
programmers need to receive an appropriate education in engineering as part of 
their training. The education of traditional engineers includes training on product 
design and an appropriate level of mathematics. 

Software engineering involves multiperson construction of multiversion pro-
grams. It is a systematic approach to the development and maintenance of the 
software, and it requires a precise statement of the requirements of the software 
product, and then the design and development of a solution to meet these require-
ments. It includes methodologies to design, develop, implement, and test software 
as well as sound project management, quality management, and configuration man-
agement practices. Support and maintenance of the software need to be properly 
addressed. 

Software process maturity models such as the CMMI have become popular in 
recent years. They place an emphasis on understanding and improving the software 
process to enable software engineers to be more effective in their work. 
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2Software Engineering Mathematics 

Key Topics 

Software Engineering Mathematics 

Floyd 

Hoare 

Formal Methods 

2.1 Introduction 

The computer sector in the 1960s was dominated by several large mainframe com-
puter manufacturers. Computers were large, expensive and difficult to use for a 
non-specialist. The software used on the mainframes of the 1960s was proprietary, 
and the hardware of manufacturers was generally incompatible with one another. 
It was usually necessary to rewrite all existing software application programs for 
a new computer if a business decided to change to a new manufacturer or upgrade 
to a more powerful machine from its existing manufacturer. 

Software projects tended to be written once off for specific customers, and 
large projects were often characterized by under estimation and over expectations. 
There was a very small independent software sector in the 1960s, with software 
and training included as part of the computer hardware delivered to the customers. 
IBM’s dominant position in the market led to antitrust inquiries by the US Justice 
Department, and this led IBM to “unbundle” its software and services from its 
hardware sales. It then began charging separately for software, training and hard-
ware, and this led to the creation of a multi-billion-dollar software industry, and 
to a major growth of software suppliers.
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We discussed the two NATO conferences in the late 1960s that led to the birth 
of software engineering as a discipline in its own right (see Chap. 1), and the 
realization that programming is quite different from science and mathematics. 
Mathematics may be employed to assist with the design and verification of soft-
ware products. However, the level of mathematics employed will depend on the 
safety critical nature of the product, as systematic peer reviews and testing are 
often sufficient. 

Software engineers today work in many different domains such as telecom-
munications field; the banking and insurance fields; the general software sector; 
utilities; the medical device field; and the pharmaceutical sector. There is special-
ized knowledge required for each field and the consequence of a software failure 
varies between these fields (e.g., the defective software of the Therac-25 radiation 
machine led to several fatalities [1]). 

It is essential that the software engineer has the required education and knowl-
edge to perform his/her role effectively, and this includes knowledge of best 
practice in software engineering as well as the specialized knowledge required for 
the specific field that the software engineer is working in. The software engineer’s 
education provides the necessary foundation in software engineering, but this will 
generally be supplemented with specific training for that sector on commencing 
employment. 

Software engineering requires the engineer to state precisely the requirements 
that the software product is to satisfy, and then to produce designs that will meet 
these requirements. Engineers provide a precise description of the problem to be 
solved; they then proceed to producing a design and validating its correctness; 
finally, the design is implemented and testing is performed to verify the correctness 
of the implementation with respect to the requirements. The software requirements 
needs to be unambiguous and should clearly state what is and what is not required. 

Classical engineers produce the product design and then analyse their design for 
correctness. They use mathematics in their analysis, as this is the basis of confirm-
ing that the specifications are met. The level of mathematics employed will depend 
on the particular application and calculations involved. The term “engineer” is  
generally applied only to people who have attained the necessary education and 
competence to be called engineers, and who base their practice on mathematical 
and scientific principles. Often in computer science the term engineer is employed 
rather loosely to refer to anyone who builds things, rather than to an individual 
with a core set of knowledge, experience, and competence. 

Parnas argues that computer scientists should have the right education to apply 
scientific and mathematical principles to their work. This includes mathematics 
and design, to enable them to be able to build high-quality and safe products. 
He advocates a solid engineering approach to the teaching of mathematics with an 
emphasis on its application to developing and analysing product designs. He argues 
that software engineers need education on engineering mathematics; specification 
and design; converting designs into programs; software inspections, and test-
ing. The education should enable the software engineer to produce well-designed 
programs that will correctly implement the requirements.
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Software engineers may work in domains where just basic mathematics is 
required to do their work, or they may be employed in a sector where substan-
tial mathematics is required. It is important that software engineers receive the 
right education in software engineering mathematics so that they have the right 
tools in their toolbox to apply themselves successfully to their work. 

2.2 Early Software Engineering Mathematics 

Robert Floyd was born in New York in 1936, and he did pioneering work on soft-
ware engineering from the 1960s (Fig. 2.1). He made important contributions to the 
theory of parsing; the semantics of programming languages; program verification; 
and methodologies for the creation of efficient and reliable software. 

Mathematics and Computer Science were regarded as two completely separate 
disciplines in the 1960s, and software development was based on the assump-
tion that the completed code would always contain defects. It was therefore better 
and more productive to write the code as quickly as possible, and to then per-
form debugging to find the defects. Programmers then corrected the defects, made 
patches, and re-tested and found more defects. This continued until they could no 
longer find defects. Of course, there was always the danger that defects remained 
in the code that could give rise to software failures. 

Floyd believed that there was a way to construct a rigorous proof of the cor-
rectness of the programs using mathematics. He showed that mathematics could 
be used for program verification, and he introduced the concept of assertions that 
provided a way to verify the correctness of programs. 

Flowcharts were employed in the 1960s to explain the sequence of basic steps 
for computer programs. Floyd’s insight was to build upon flowcharts and to apply 
an invariant assertion to each branch in the flowchart. These assertions state the 
essential relations that exist between the variables at that point in the flow chart. 
An example relation is “R = Z > 0,  X = 1, Y = 0”. He devised a general flowchart 
language to apply his method to programming languages. The language essentially 
contains boxes linked by flow of control arrows [2].

Fig. 2.1 Robert Floyd 
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Fig. 2.2 Branch assertions in 
flowcharts 

S(f(x,v), v) 

x =f(x,v) 

S(x,v) 

Fig. 2.3 Assignment assertions in flowcharts 

Consider the assertion Q that is true on entry to a branch where the condition 
at the branch is P. Then, the assertion on exit from the branch is Q ∧ ¬P if P is 
false and Q ∧ P otherwise (Fig. 2.2). 

The use of assertions may be employed in an assignment statement. Suppose x 
represents a variable and v represents a vector consisting of all the variables in the 
program. Suppose f (x, v) represents a function or expression of x and the other 
program variables represented by the vector v. Suppose the assertion S(f (x, v), v) 
is true before the assignment x = f (x, v). Then the assertion S(x, v) is true after 
the assignment (Fig. 2.3). This is given by: 

Floyd used flowchart symbols to represent entry and exit to the flowchart. 
This included entry and exit assertions to describe the program’s entry and exit 
conditions. 

Floyd’s technique showed how a computer program is a sequence of logical 
assertions. Each assertion is true whenever control passes to it, and statements 
appear between the assertions. The initial assertion states the conditions that must 
be true for execution of the program to take place, and the exit assertion essentially 
describes what must be true when the program terminates. 

Floyd’s insight was his recognition that if it can be shown that the assertion 
immediately following each step is a consequence of the assertion immediately 
preceding it, then the assertion at the end of the program will be true, provided 
the appropriate assertion was true at the beginning of the program. 

He published an influential paper, “Assigning Meanings to Programs”, in 1967 
[2], and this paper influenced Hoare’s work on preconditions and post-conditions 
leading to Hoare logic [3]. Floyd’s paper also presented a formal grammar for 
flowcharts, together with rigorous methods for verifying the effects of basic actions 
like assignments.
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Fig. 2.4 C. A. R. Hoare 

Hoare logic is a formal system of logic used for programming semantics and 
for program verification. It was developed by C. A. R. Hoare (Fig. 2.4) and was 
originally published in Hoare’s 1969 paper “An axiomatic basis for computer pro-
gramming” [3]. Hoare and others have subsequently refined it, and it provides 
a logical methodology for precise reasoning about the correctness of computer 
programs. 

Hoare was influenced by Floyd’s [2] paper that applied assertions to flowcharts, 
and he recognized that this provided an effective method for proving the correct-
ness of programs. He built upon Floyd’s approach to cover the familiar constructs 
of high-level programming languages. 

This led to the axiomatic approach to defining the semantics of every statement 
in a programming language, and the approach consists of axioms and proof rules. 
He introduced what has become known as the Hoare triple, and this describes how 
the execution of a fragment of code changes the state. A Hoare triple is of the 
form: 

P{Q}R 
where P and R are assertions and Q is a program or command. The predicate P is 
called the precondition, and the predicate R is called the postcondition. 

Definition 2.1 (Partial Correctness) The meaning of the Hoare triple above is that 
whenever the predicate P holds of the state before the execution of the command 
or program Q, then the predicate R will hold after the execution of Q. The brackets 
indicate partial correctness as if Q does not terminate then R can be any predicate. R 
may be chosen to be false to express that Q does not terminate. 

Total correctness requires Q to terminate, and at termination R is true. Termi-
nation needs to be proved separately. Hoare logic includes axioms and rules of 
inference rules for the constructs of imperative programming language. 

Hoare and Dijkstra were of the view that the starting point of a program should 
always be the specification, and that the proof of the correctness of the program 
should be developed along with the program itself.
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That is, the starting point is the mathematical specification of what a program is 
to do, and mathematical transformations are applied to the specification until it is 
turned into a program that can be executed. The resulting program is then known 
to be correct by construction. 

2.3 Debate on Mathematics in Software Engineering 

The debate concerning the level of use of mathematics in software engineering is 
still ongoing. Many practitioners are against the use of mathematics and avoid its 
use. They tend to employ methodologies such as software inspections and testing 
to improve confidence in the correctness of the software. They argue that in the 
current competitive industrial environment where time to market is a key driver 
that the use of such formal mathematical techniques would seriously impact the 
market opportunity. Industrialists often need to balance conflicting needs such as 
quality, cost, and delivering on time. They argue that the commercial necessities 
require methodologies and techniques that allow them to achieve their business 
goals effectively. 

The other camp argues that the use of mathematics is essential in the delivery of 
high-quality and reliable software, and that if a company does not place sufficient 
emphasis on quality, it will pay the price in terms of poor quality and loss of 
reputation. 

It is generally accepted that mathematics and formal methods must play a role 
in the safety critical and security critical fields. Apart from that the extent of the 
use of mathematics is a hotly disputed topic. The pace of change in the world is 
extraordinary, and companies face immense competitive forces in a global market 
place. 

It is unrealistic to expect companies to deploy mathematical techniques unless 
they have clear evidence that it will support them in delivering commercial prod-
ucts to the market place ahead of their competition, at the right price and with the 
right quality. Formal methods and other mathematical techniques need to prove 
that they can do this if they wish to be taken seriously in mainstream software 
engineering. 

2.4 The Emergence of Formal Methods 

Formal methods refer to various mathematical techniques used for the formal 
specification and development of software. They consist of a formal specification 
language and employ a collection of tools to support the syntax checking of the 
specification, as well as the proof of properties of the specification. They allow 
questions to be asked about what the system does independently of the imple-
mentation. The use of mathematical notation helps in ensuring precision in the 
description of a system.
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The term “formal methods” is used to describe a formal specification language 
and a method for the design and implementation of computer systems. They may 
be employed at a number of levels starting with the formal specification only and 
developing the program informally, to formal specification and refinement with 
some program verification, and finally to full formal specification, refinement and 
verification. 

The specification is written in a mathematical language, and the implementation 
may be derived from the specification via stepwise refinement. The refinement step 
makes the specification more concrete and closer to the actual implementation. 
There is an associated proof obligation to demonstrate that the refinement is valid, 
and that the concrete state preserves the properties of the abstract state. Thus, 
assuming that the original specification is correct and the proof of correctness of 
each refinement step is valid, then there is a very high degree of confidence in the 
correctness of the implemented software. 

The mathematical analysis of the formal specification allows questions to be 
asked about what the system does, and these questions may be answered indepen-
dently of the implementation. Mathematical notation is precise, and this helps to 
avoid the problem of ambiguity inherent in a natural language description of a sys-
tem. The formal specification may be used to promote a common understanding 
for all stakeholders. 

One of the earliest formal methods was VDM which was developed at the IBM 
research laboratory in Vienna in the 1970s. VDM emerged as part of their work 
into the specification of the semantics of the PL/1 programming language. Over 
time other formal specification languages such as Z and B were developed, as well 
as a plethora of specialized calculi such as CSP, CCS, and π-calculus, and various 
temporal logics and theorem provers have been developed, and the important area 
of model checking emerged. 

However, despite the interest in formal methods in academia the industrial take 
up of formal methods has been quite limited, and they are mainly used in the safety 
critical and security critical fields. Formal methods have been criticized as being 
difficult to use, as being unintuitive and lacking industrial strength tool support, 
and so on. 

However, formal methods should be regarded as a tool in the software engi-
neer’s toolbox to be used in important domains such as the safety critical field. 
They should therefore be included as part of the software engineer’s education. 

2.5 What Mathematics Do Software Engineers Need? 

Mathematics plays a key role in classical engineering to assist with design and 
verification of products. It is therefore reasonable to apply appropriate mathemat-
ics in software engineering (especially for safety and security critical systems) to 
assure that the delivered systems conform to the requirements. 

The extent to which mathematics should be used is controversial with strong 
views in both camps between those who advocate a solid engineering approach
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with mathematical rigorous and those who argue for a lighter approach with mini-
mal mathematics (e.g., those in the Agile world). In many domains, rigorous peer 
reviews and testing will be sufficient to build quality into the software product, 
whereas in other more specialized areas (especially for safety and security critical 
applications), it is desirable to have the extra assurance that may be provided with 
mathematical techniques. 

The domain in which the software engineer is working is also relevant, as spe-
cialized mathematical knowledge may be required to develop software for some 
domains. For example, a software engineer who is working on financial software 
engineering applications will require specialized knowledge of the calculation of 
simple and compound interest, annuities and so on in the banking domain, and 
knowledge of probability, statistics, calculus, and actuarial mathematics may be 
required in the insurance domain. That is, there is not a one size that fits all in the 
use of mathematics—the mathematics that the software engineer needs to employ 
depends on the particular domain that the software engineer is working in. 

However, there is a core body of mathematical knowledge that the software 
engineer should possess, with more specialized mathematical knowledge required 
for specific domains. The core mathematics proposed for every software engineer 
includes arithmetic, algebra, logic, and trigonometry (Table 2.1). 

Further, mathematics provides essential training in critical thinking and problem 
solving, allows the software engineer to perform a rigorous analysis of a partic-
ular situation, and avoids an over-reliance on intuition. Mathematical modelling 
provides a mathematical simplification of the real world and provides a way to 
explain a system as well as providing predictions. Engineers are taught how to 
apply mathematics in their work, and the emphasis is always on the application 
of mathematics to solve practical problems. Mathematics may be applied to solve 
practical problems and to develop products that are fit for purpose.

Table 2.1 Appropriate mathematics in software engineering 

Area Description 

Core mathematics (reasoning/problem 
solving) 

Arithmetic, algorithms, algebra, sets, relations 
and functions, sequences and series, 
trigonometry, coordinate systems, logic, graph 
theory, language theory, automata theory 

Traditional engineering applications Complex analysis, matrices, vectors, calculus, 
Fourier series, Laplace transforms 

Financial software engineering (banking, 
insurance and business) 

Simple and compound interest, probability, 
statistics, operations research, linear 
programming 

Telecoms Cryptography, coding theory 

Safety/security critical Software reliability and dependability, formal 
methods, Z specification language, logic, 
temporal logic, theorem provers, model checking 

Robotics/computer graphics Complex numbers, quaternions, vectors, matrices 
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Classical mathematics may be applied to software engineering and specialized 
mathematical methods and notations have also been developed. However, the suc-
cessful delivery of a project requires a lot more than just the use of mathematics. It 
requires sound project management and quality management practices; the effec-
tive definition of the requirements; the management of changes to the requirements 
throughout the project; the management of risk; and so on (see the companion book 
[1]). A project that is not properly managed will suffer from schedule, budget, or 
cost overruns as well as problems with quality. 

2.6 Review Questions 

1. Why should mathematics be part of the education of software engineers? 
2. What mathematics should software engineers know? 
3. What is the role of mathematics in current software engineering? 
4. Discuss the contributions of Floyd and Hoare. 
5. Explain the difference between partial correctness and total correctness. 
6. What are formal methods ? Explain their significance. 
7. Explain the levels at which formal methods may be applied. 

2.7 Summary 

Classical engineering has a successful track record in building high-quality prod-
ucts that are safe for the public to use. It is therefore natural to consider using 
an engineering approach to developing software, and this involves identifying the 
customer requirements, carrying out a rigorous design to meet the requirements, 
developing and coding a solution to meet the design, and conducting appropriate 
inspections and testing to verify the correctness of the solution. 

Mathematics plays a key role in classical engineering to assist with the design 
and verification of products. It makes sense to apply appropriate mathematics in 
software engineering (especially for safety critical systems) to assure that the deliv-
ered systems conform to the requirements. The extent to which mathematics should 
be used remains controversial. 

There is a core body of mathematics that every software engineer should be 
familiar with, including arithmetic, algebra, and logic. The domain in which the 
software engineer is working is relevant, as specialized mathematical knowledge 
may be required by the software engineer for specific domains. 

Mathematics is a tool of thought, and it provides essential training for critical 
thinking and problem solving for the modern software engineer.
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3Mathematical Prerequisites 
for Software Engineers 

Key Topics 

Sets 

Relations 

Functions 

Natural numbers 

Prime numbers 

Fractions 

Decimals 

Percentages 

Ratios 

Proportions 

Cartesian Coordinates 

Pythagoras’s Theorem 

Periodic Functions 

Degrees and Radians 

Sine Rule 

Cosine Rule
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3.1 Introduction 

This chapter sketches the mathematical prerequisites that software engineers 
should be familiar with, and we discuss fundamental concept such as sets, relations 
and functions, arithmetic, and trigonometry. Sets are collections of well-defined 
objects; relations indicate relationships between members of two sets A and B; 
and functions are a special type of relation where there is exactly (or at most)1 

one relationship for each element a ∈ A with an element in B. 
A set is a collection of well-defined objects that contains no duplicates. The 

term “well defined” means that for a given value it is possible to determine whether 
or not it is a member of the set. There are many examples of sets such as the set of 
natural numbers N, the set of integer numbers Z, and the set of rational numbers 
Q. The natural numbers N is an infinite set consisting of the numbers {1, 2, …}. 
Venn diagrams may be used to represent sets pictorially. 

A binary relation R (A, B) where A and B are sets is a subset of the Cartesian 
product (A× B) of  A and B. The domain of the relation is A and the codomain of 
the relation is B. The notation aRb signifies that there is a relation between a and b 
and that (a, b) ∈ R. An  n-ary relation R (A1, A2, …  An) is a subset of (A1 ×A2 × 
…× An). However, an n-ary relation may also be regarded as a binary relation 
R(A, B) with A = A1 ×A2 × … × An−1 and B = An. 

Functions may be total or partial. A total function f : A → B is a special 
relation such that for each element a ∈ A there is exactly one element b ∈ B. This 
is written as f (a) = b. A partial function differs from a total function in that the 
function may be undefined for one or more values of A. The domain of a function 
(denoted by dom f ) is the set of values in A for which the partial function is 
defined. The domain of the function is A if f is a total function. The codomain of 
the function is B. 

Arithmetic (or number theory) is the branch of mathematics that is concerned 
with the study of numbers and their properties. It includes the study of the integer 
numbers, and operations on them, such as addition, subtraction, multiplication, and 
division. 

Number theory studies various properties of integer numbers such as their parity 
and divisibility; their additive and multiplicative properties; whether a number is 
prime or composite; the prime factors of a number; the greatest common divisor 
and least common multiple of two numbers; and so on. 

The natural numbers N consist of the numbers {1, 2, 3, …}. The integer num-
bers are a superset of the set of natural numbers, and they consist of {… − 2, − 1, 
0, 1, 2, …}. The rational numbers Q are a superset of the set of integer numbers, 
and they consist of all numbers of the form {p/q where p and q are integers and 
q /= 0}. The real numbers R is a superset of the set of rational numbers, and 
they are defined to be the set of converging sequences of rational numbers. They

1 We distinguish between total and partial functions. A total function f : A → B is defined for 
every element in A whereas a partial function may be undefined for one or more values in A. 
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contain the rational and irrational numbers. The complex numbers C consist of 
all numbers of the form {a + bi where a, b ∈ R and i = 

√−1}, and they are a 
superset of the set of real numbers. 

Number theory has many applications including cryptography and coding the-
ory in computing. For example, the RSA public key cryptographic system relies 
on its security due to the infeasibility of the integer factorization problem for large 
numbers. 

Trigonometry is concerned with the relationships between sides and angles of 
triangles, and the origin of the term is from the Greek words τρίγωνoν (trigonon) 
meaning triangle and μετρoν(metron) meaning measure. The origins of the field 
are from the Hellenistic world in the third century BC., but early work on angles 
had been done by the Sumerians and Babylonians. 

Pythagoras’s Theorem expresses the relationship between the hypotenuse of 
a right-angled triangle and the other two sides, and we define sine, cosine, and 
tangent for a right-angled triangle. The sine rule and cosine rule are invaluable 
in solving trigonometric problems, as well as various trigonometric identities. We 
discuss degrees and radians as well as sketching the curves of sine and cosine. 

The Cartesian system was invented by Descartes in the seventeenth century, and 
it allows geometric shapes such as curves to be described by algebraic equations. 
We discuss both the two-dimensional plane and three-dimensional space. 

3.2 Set Theory 

A set is a fundamental building block in mathematics, and it is defined as a col-
lection of well-defined objects. The elements in a set are of the same kind, and 
they are distinct with no repetition of the same element in the set.2 Most sets 
encountered in computer science are finite, as computers can only deal with finite 
entities. Venn diagrams3 are often employed to give a pictorial representation of a 
set, and to illustrate various set operations such as set union, intersection, and set 
difference. 

There are many well-known examples of sets including the set of natural num-
bers denoted by N; the set of integers denoted by Z; the set of rational numbers 
is denoted by Q; the set of real numbers denoted by R; and the set of complex 
numbers denoted by C. 

A finite set may be defined by listing all its elements. For example, the set A 
= {2, 4, 6, 8, 10} is the set of all even natural numbers less than or equal to 10. 
The order in which the elements are listed is not relevant, i.e., the set {2, 4, 6, 8, 
10} is the same as the set {8, 4, 2, 10, 6}.

2 There are mathematical objects known as multi-sets or bags that allow duplication of elements. 
For example, a bag of marbles may contain three green marbles, two blue and one red marble. 
3 The British logician, John Venn, invented the Venn diagram. It provides a visual representation 
of a set and the various set theoretical operations. Their use is limited to the representation of two 
or three sets as they become cumbersome with a larger number of sets. 
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Sets may be defined by using a predicate to constrain set membership. For 
example, the set S = {n : N : n ≤ 10 ∧ n mod 2 = 0} also represents the set 
{2, 4, 6, 8, 10}. That is, the use of a predicate allows a new set to be created 
from an existing set by using the predicate to restrict membership of the set. The 
set of even natural numbers may be defined by a predicate over the set of natural 
numbers that restricts membership to the even numbers. It is defined by: 

Evens = {x |x ∈ N ∧ even(x)}. 
In this example, even(x) is a predicate that is true if x is even and false other-

wise. In general, A = {x ∈ E |P(x) } denotes a set A formed from a set E using 
the predicate P to restrict membership of A to those elements of E for which the 
predicate is true. 

The elements of a finite set S are denoted by {x1, x2, …  xn}. The expression 
x ∈ S denotes that the element x is a member of the set S, whereas the expression 
x /∈S indicates that x is not a member of the set S. 

A set S is a subset of a set T (denoted S ⊆ T ) if whenever s ∈ S then s ∈ T , 
and in this case the set T is said to be a superset of S (denoted T ⊇ S). Two sets 
S and T are said to be equal if they contain identical elements, i.e., S = T if and 
only if S ⊆ T and T ⊆ S. A set S is a proper subset of a set T (denoted S ⊂ T ) 
if S ⊆ T and S /= T . That is, every element of S is an element of T and there is 
at least one element in T that is not an element of S. In this case, T is a proper 
superset of S (denoted T ⊃ S). 

The empty set (denoted by ∅ or {}) represents the set that has no elements. 
Clearly ∅ is a subset of every set. The singleton set containing just one element x 
is denoted by {x}, and clearly x ∈ {x} and x /= {x}. Clearly, y ∈ {x} if and only 
if x = y. 

3.2.1 Set Theoretical Operations 

Several set theoretical operations are considered in this section. These include the 
Cartesian product operation; the power set of a set; the set union operation; the set 
intersection operation; the set difference operation; and the symmetric difference 
operation. 

Cartesian Product 
The Cartesian product allows a new set to be created from existing sets. The Carte-
sian4 product of two sets S and T (denoted S × T ) is the set of ordered pairs 
{(s, t)|s ∈ S , t ∈ T }. Clearly, S × T /= T × S and so the Cartesian product of 
two sets is not commutative. Two ordered pairs (s1, t1) and (s2, t2) are considered 
equal if and only if s1 = s2 and t1 = t2.

4 Cartesian product is named after René Descartes who was a famous 17th French mathematician 
and philosopher. He invented the Cartesian coordinates system that links geometry and algebra, 
and allows geometric shapes to be defined by algebraic equations. 
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The Cartesian product may be extended to that of n sets S1, S2,…, 
Sn. The Cartesian product S1 × S2 ×…× Sn is the set of ordered n-tuples 
{(s1, s2, . . . ,  sn)|s1 ∈ S1 , s2 ∈ S2, . . . ,  sn ∈ Sn}. Two ordered n-tuples (s1, s2,…, 
sn) and (s1,, s2,,…, sn,) are considered equal if and only if s1 = s1,, s2, = s2,,…, 
sn = sn,. 

The Cartesian product may also be applied to a single set S to create ordered 
n-tuples of S, i.e., Sn = S × S × . . .  × S(n times ). 

Power Set 
The power set of a set A (denoted PA) denotes the set of subsets of A. For example, 
the power set of the set A = {1, 2, 3} has eight elements and is given by: 

PA = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. 

There are 23 = 8 elements in the power set of A = {1, 2, 3} where the 
cardinality of A is 3. In general, there are 2|A| elements in the power set of A. 

Union and Intersection Operations 
The union of two sets A and B is denoted by A∪ B. It results in a set that contains 
all of the members of A and of B and is defined by: 

A ∪ B = {r |r ∈ A or r ∈ B}. 

The intersection of two sets A and B is denoted by A ∩ B. It results in a set 
containing the elements that A and B have in common and is defined by: 

A ∩ B = {r |r ∈ A and r ∈ B}. 

Union and intersection may be extended to more generalized union and 
intersection operations. 

Set Difference Operations 
The set difference operation A \ B yields the elements in A that are not in B. It is  
defined by 

A\B = {a|a ∈ A and a /∈ B} 

For A and B defined as A = {1, 2} and B = {2, 3} we have A \ B = {1} and B 
\ A = {3}. Clearly, set difference is not commutative, i.e., A\B /= B\A. Clearly, 
A\A = ∅  and A\∅ = A. 

The symmetric difference of two sets A and B is denoted by AΔB and is given 
by: 

AΔB = A\B ∪ B\A
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The complement of a set A (with respect to the universal set U) is the elements 
in the universal set that are not in A. It is denoted by Ac (or A,) and is defined as: 

Ac = {u|u ∈ U and u /∈ A} =  U\A 

3.2.2 Computer Representation of Sets 

Sets are fundamental building blocks in mathematics, and so the question arises 
as to how is a set is stored and manipulated in a computer. The representation of 
a set M on a computer requires a change from the normal view that the order of 
the elements of the set is irrelevant, and we will need to assume a definite order 
in the underlying universal set m from which the set M is defined. 

That is, a set is defined in a computer program with respect to an underlying 
universal set, and the elements in the universal set are listed in a definite order. 
Any set M arising in the program that is defined with respect to this universal set 
m is a subset of m. Next, we show how the set M is stored internally on the 
computer. 

The set M is represented in a computer as a string of binary digits b1b2 … bn 
where n is the cardinality of the universal set m. The bits bi (where i ranges over 
the values 1, 2, … n) are determined according to the rule: 

bi = 1 if  ith element of m is in M 
bi = 0 if  ith element of m is not in M 

For example, if m = {1, 2, … 10} then the representation of M = {1, 2, 5,  
8} is given by the bit string 1100100100 where this is given by looking at each 
element of m in turn and writing down 1 if it is in M and 0 otherwise. 

Similarly, the bit string 0100101100 represents the set M = {2, 5, 7, 8}, and this 
is determined by writing down the corresponding element in m that corresponds 
to a 1 in the bit string. 

Clearly, there is a one-to-one correspondence between the subsets of m and 
all possible n-bit strings. Further, the set theoretical operations of set union, inter-
section, and complement can be carried out directly with the bit strings (provided 
that the sets involved are defined with respect to the same universal set). This 
involves a bitwise “or” operation for set union; a bitwise “and” operation for set 
intersection; and a bitwise “not” operation for the set complement operation. 

3.3 Relations 

A binary relation R(A, B) where A and B are sets is a subset of A×B, i.e., R ⊆ 
A × B. The domain of the relation is A, and the codomain of the relation is B. The 
notation aRb signifies that (a, b) ∈ R.
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A binary relation R(A, A) is a relation between A and A (or a relation on A). 
This type of relation may always be composed with itself, and its inverse is also a 
binary relation on A. The identity relation on A is defined by a iAa for all a ∈ A. 

A relation R(A, B) may be represented pictorially. This is referred to as the 
graph of the relation, and it is illustrated in the diagram below. An arrow from x 
to y is drawn if (x, y) is in the relation. Thus for the height relation R given by 
{(a, p), (a, r), (b, q)} an arrow is drawn from a to p, from a to r and from b to q 
to indicate that (a, p), (a, r) and (b, q) are in the relation R. 

a 
b 

p 
q 
r 

A B  

The pictorial representation of the relation makes it easy to see that the height 
of a is greater than the height of p and r; and that the height of b is greater than 
the height of q. 

An n-ary relation R (A1, A2, …  An) is a subset of (A1 × A2 × …× An). However, 
an n-ary relation may also be regarded as a binary relation R(A, B) with A = A1 × 
A2 ×…× An−1 and B = An. 

3.3.1 Reflexive, Symmetric and Transitive Relations 

A binary relation on A may have additional properties such as being reflexive, 
symmetric or transitive. These properties are defined as 

(i) A relation on a set A is reflexive if (a, a) ∈ R for all a ∈ A. 
(ii) A relation R is symmetric if whenever (a, b) ∈ R then (b, a) ∈ R. 
(iii) A relation is transitive if whenever (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R. 

A relation that is reflexive, symmetric, and transitive is termed an equivalence 
relation. 

Example 3.1 (Equivalence relation) The relation on the set of integers Z defined by 
(a, b) ∈ R if a – b = 2 k for some k ∈ Z is an equivalence relation, and it partitions 
the set of integers into two equivalence classes, i.e., the even and odd integers. 

Domain and Range of Relation 
The domain of a relation R (A, B) is given  by  {a ∈ A|∃b ∈ B and (a, b) ∈ 
R}. It is denoted by dom R. The domain of the relation R = 
{(a, p), (a, r), (b, q)} is {a, b}.
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The range of a relation R (A, B) is given by {b ∈ B|∃a ∈ A and (a, b) ∈ 
R}. It is denoted by rng R. The range of the relation R = 
{(a, p), (a, r ), (b, q)} is {p, q, r}. 

Inverse of a Relation 
Suppose R ⊆ A × B is a relation between A and B then the inverse relation 
R−1 ⊆ B × A is defined as the relation between B and A and is given by: 

bR−1a if and only if a Rb  

That is, 

R−1 = {(b, a) ∈ B × A : (a, b) ∈ R} 

Example 3.2 Let R be the relation between Z and Z+ defined by mRn if 
and only if m2 = n. Then R = {

(m, n) ∈ Z × Z+ : m2 = n
}

and R−1 ={
(n, m) ∈ Z+ × Z : m2 = n

}
. 

For example, − 3 R 9, − 4 R 16, 0 R 0, 16 R−1 − 4, 9 R−1 − 3, etc. 

Partitions and Equivalence Relations 
An equivalence relation on A leads to a partition of A, and vice versa for every 
partition of A there is a corresponding equivalence relation. 

Let A be a finite set and let A1, A2, …,  An be subsets of A such Ai /= ∅  for all 
i, Ai ∩ A j = ∅  if i /= j and A = ∪n 

i Ai = A1 ∪ A2 ∪ . . .  ∪ An . 
The sets Ai partition the set A, and these sets are called the classes of the 

partition. 

3.3.2 Composition of Relations 

The composition of two relations R1(A, B) and R2(B, C) is given by R2 ◦ R1 
where (a, c) ∈ R2 ◦ R1 if and only there exists b ∈ B such that (a, b) ∈ R1 and 
(b, c) ∈ R2. The composition of relations is associative, i.e., 

(R3 ◦ R2) ◦ R1 = R3 ◦ (R2 ◦ R1) 

The composition of S ◦ R is determined by choosing x ∈ A and y ∈ C and 
checking if there is a route from x to y in the graph. If so, we join x to y in S ◦ R. 

The union of two relations R1(A, B) and R2(A, B) is meaningful (as these are 
both subsets of A× B). The union R1 ∪ R2 is defined as (a, b) ∈ R1 ∪ R2 if and 
only if (a, b) ∈ R1 or (a, b) ∈ R2. 

Similarly, the intersection of R1 and R2(R1 ∩ R2) is meaningful and is defined 
as (a, b) ∈ R1 ∩ R2 if and only if (a, b) ∈ R1 and (a, b) ∈ R2. The relation R1 is 
a subset of R2(R1 ⊆ R2) if whenever (a, b) ∈ R1 then (a, b) ∈ R2. 

The inverse of the relation R was discussed earlier and is given by the relation 
R−1 where R−1 = {(b, a)|(a, b) ∈ R}.
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The composition of R and R−1 yields: R−1 ◦ R = {(a, a)|a ∈ dom R } = iA 
and R ◦ R−1 = {

(b, b)|b ∈dom R−1
} = iB . 

3.3.3 Binary Relations 

A binary relation R on A is a relation between A and A, and a binary relation can 
always be composed with itself. Its inverse is a binary relation on the same set. 
The following are all relations on A: 

R2 = R ◦ R 
R3 = (R ◦ R) ◦ R 
R0 = i A(identity relation) 

R−2 = R−1 ◦ R−1 

Example 3.3 Let R be the binary relation on the set of all people P such that (a, b) ∈ 
R if a is a parent of b. Then the relation Rn is interpreted as: 

R is the parent relationship 
R2 is the grandparent relationship 
R3 is the great grandparent relationship 
R−1 is the child relationship 
R−2 is the grandchild relationship 
R−3 is the great grandchild relationship 

This can be generalized to a relation Rn on A where Rn = R ◦ R ◦ . . .◦ R(n-times). 
The transitive closure of the relation R on A is given by: 

R∗ = 
∞⊔

i=0 

Ri = R0 ∪ R1 ∪ R2 ∪ . . .  Rn ∪ . . .  

where R0 is the reflexive relation containing only each element in the domain of 
R: i.e., R0 = iA = {(a, a)|a ∈dom R}. 

The positive transitive closure is similar to the transitive closure except that it 
does not contain R0. It is given  by:  

R+ = 
∞⊔

i=1 

Ri = R1 ∪ R2 ∪ . . .  ∪ Rn ∪ . . .  

a R+ b if and only if a Rn b for some n > 0, i.e., there exists c1, c2 … cn ∈ A such 
that 

aRc1, c1 Rc2, . . . ,  cn Rb.
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3.4 Functions 

A function f : A → B is a special relation such that for each element a ∈ A there 
is exactly (or at most)5 one element b ∈ B. This is written as f (a) = b. 

A function is a relation but not every relation is a function. For example, the 
relation in the diagram below is not a function since there are two arrows from the 
element a ∈ A. 

The domain of the function (denoted by dom f ) is the set of values in A for 
which the function is defined. The domain of the function is A if f is a total 
function. The codomain of the function is B. The range of the function (denoted 
rng f ) is a subset of the codomain and consists of: 

rng f = {r |r ∈ B such that f (a) = r for some a ∈ A}. 

Functions may be partial or total. A partial function (or partial mapping) may 
be undefined for some values of A, and partial functions arise regularly in the com-
puting field. Total functions are defined for every value in A and many functions 
encountered in mathematics are total. 

Example 3.4 (Functions) Functions are an essential part of mathematics and com-
puter science, and there are many well-known functions such as the trigonometric 
functions sin(x), cos(x), and tan(x); the logarithmic function ln(x); the exponential 
functions ex; and polynomial functions. 

(i) Consider the partial function f : R → R f (x) = 1/x ( where x /= 0). 

Then, this partial function is defined everywhere except for x = 0. 

(ii) Consider the function f : R → R where 

f (x) = x2 

Then this function is defined for all x ∈ R. 
Partial functions often arise in computing as a program may be undefined or 

fail to terminate for several values of its arguments (e.g., infinite loops). Care is 
required to ensure that the partial function is defined for the argument to which it 
is to be applied.

5 We distinguish between total and partial functions. A total function is defined for all elements in 
the domain, whereas a partial function may be undefined for one or more elements in the domain. 
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Example 3.5 Two partial functions f and g are equal if: 

1. dom f = domg 
2. f (a) = g(a) for all a ∈ dom f . 

A function f is less defined than a function g ( f ⊆ g) if the domain of f is a 
subset of the domain of g, and the functions agree for every value on the domain 
of f. 

1. dom f ⊆ domg 
2. f (a) = g(a) for all a ∈ dom f . 

The composition of functions is similar to the composition of relations. Suppose 
f : A → B and g: B → C then g ◦ f : A → C is a function, and it is written as 
g ◦ f (x) or g( f (x)) for x ∈ A. 

The composition of functions is not commutative, and this can be seen by an 
example. Consider the function f : R → R such that f (x) = x2 and the function 
g: R → R such that g(x) = x + 2. Then 

g ◦ f (x) = g
(
x2

) = x2 + 2. 
f ◦ g(x) = f (x + 2) = (x + 2)2 = x2 + 4x + 4. 

Clearly, g ◦ f(x) /= f ◦ g(x) and so composition of functions is not commutative. 
The composition of functions is associative, as the composition of relations is 
associative and every function is a relation. For f : A →B, g: B →C, and h: C → D 
we have: 

h ◦ (g ◦ f ) = (h ◦ g) ◦ f 

A function f : A →B is injective (one to one) if  

f (a1) = f (a2) ⇒ a1 = a2. 

For example, consider the function f : R → R with f (x) = x2. Then f (3) = f (− 
3) = 9 and so this function is not one to one. 

A function f : A →B is surjective (onto) if given any b∈B there exists an a ∈ A 
such that f (a) = b. Consider the function f : R → R with f (x) = x + 1. Clearly, 
given any r ∈ R then f (r − 1) = r and so f is onto. 

A function is bijective if it is one to one and onto. That is, there is a one to one 
correspondence between the elements in A and B, and for each b ∈ B there is a 
unique a ∈ A such that f (a) = b. 

The inverse of a relation was discussed earlier and the relational inverse of a 
function f : A→ B clearly exists. The relational inverse of the function may or may 
not be a function.
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However, if the relational inverse is a function it is denoted by f −1: B → A. A  
total function has an inverse if and only if it is bijective whereas a partial function 
has an inverse if and only if it is injective. 

The identity function 1A: A → A is a function such that 1A(a) = a for all a ∈ A. 
Clearly, when the inverse of the function exists then we have that f −1 ◦ f = 1A 
and f ◦ f −1 = 1B. 

Theorem 3.1 (Inverse of Function) A total function has an inverse if and only if it 
is bijective. 

3.5 Arithmetic 

The natural numbers N {1, 2, 3, …} are used for counting things starting from 
the number one, and they form an ordered set 1 < 2 < 3 < … and so on. The 
natural numbers are all positive (i.e., there are no negative natural numbers), and 
the number zero is not usually included as a natural number. However, the set of 
natural numbers including 0 is denoted by N0, and it is the set {0, 1, 2, 3, …}. 

The natural numbers are an ordered set and so given any pair of natural numbers 
(n, m) then either n < m, n = m or n > m. There is no largest natural number 
as such, since given any natural number we can immediately determine a larger 
natural number (e.g., its successor). Each natural number has a unique successor 
and every natural number larger than one has a unique predecessor. 

The addition of two numbers yields a new number, and the subtraction of a 
smaller number from a larger number yields the difference between them. Mul-
tiplication is the mathematical operation of scaling one number by another: for 
example: 3 * 4 = 4 + 4 + 4 = 12. 

Peano’s axiomization of arithmetic is a formal axiomization of the natural num-
bers, and they include axioms for the successor of a natural number and the axiom 
of induction. The number zero is considered to be a natural number in the Peano 
system. 

The natural numbers satisfy several nice algebraic properties such as closure 
under addition and multiplication (i.e., a natural number results from the addition 
or multiplication of two natural numbers); commutativity of addition and multi-
plication, i.e., a + b = b + a and a × b = b× a; addition and multiplication are 
associative: a + (b + c) = (a + b) + c and a × (b ×c) = (a × b)× c. Further, 
multiplication is distributive over addition: a × (b + c) = a×b + a× c. 

A square number is an integer that is the square of another integer. For example, 
the number 4 is a square number since 4 = 22. Similarly, the number 9 and the 
number 16 are square numbers. A number n is a square number if and only if one 
can arrange the n points in a square. 

The square of an odd number is odd, whereas the square of an even number is 
even. This is clear since an even number is of the form n = 2k for some k, and so 
n2 = 4k2 which is even. Similarly, an odd number is of the form n = 2k + 1 and 
so n2 = 4k2 + 4k + 1 which is odd.
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A rectangular number n may be represented by a vertical and horizontal rect-
angle of n points. For example, the number 6 may be represented by a rectangle 
with length 3 and breadth 2, or a rectangle with length 2 and breadth 3. Similarly, 
the number 12 can be represented by a 4 × 3 or a 3  × 4 rectangle. 

A triangular number n may be represented by an equilateral triangle of n points. 
It is the sum of k natural numbers from 1 to k. That is, 

n = 1 + 2 + · · ·  +  k 

Parity of Integers 
The parity of an integer refers to whether the integer is odd or even. An integer 
n is odd if there is a remainder of one when it is divided by two (i.e., it is of the 
form n = 2 k + 1). Otherwise, the number is even and of the form n = 2 k. 

The sum of two numbers is even if both are even or both are odd. The product 
of two numbers is even if at least one of the numbers is even. 

Let a and b be integers with a /=0 then a is said to be a divisor of b (denoted 
by a | b) if there exists an integer k such that b = ka. 

A divisor of n is called a trivial divisor if it is either 1 or n itself; otherwise it 
is called a non-trivial divisor. A  proper divisor of n is a divisor of n other than n 
itself. 

Properties of Divisors 

(i) a | b and a | c then a | b + c 
(ii) a | b then a | bc 
(iii) a | b and b | c then a | c. 

A prime number is a natural number (> 1) whose only divisors are trivial. There 
are an infinite number of prime numbers. 

The fundamental theorem of arithmetic states that every integer number can be 
factored as the product of prime numbers. 

Pythagorean triples are combinations of three whole numbers that satisfy 
Pythagoras’s equation x2 + y2 = z2. There are an infinite number of such triples, 
and 3, 4, 5 is an example since 32 + 42 = 52. 

Theorem 3.2 (Division Algorithm) For any integer a and any positive integer b 
there exists unique integers q and r such that: 

a = bq + r 0 ≤ r < b. 

Theorem 3.3 (Irrationality of Square Root of Two) The square root of two is an 
irrational number (i.e., it cannot be expressed as the quotient of two integer numbers).
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3.5.1 Fractions and Decimals 

A simple fraction is of the form a/b where a and b are integers, with the number 
a above the bar termed the numerator and the number b below the bar termed 
the denominator. Each fraction may be converted to a decimal representation by 
dividing the numerator by the denominator, and the decimal representation may 
be to an agreed number of decimal places (as the decimal representation may not 
terminate). 

The reverse operation of converting a decimal number to a fraction is straight 
forward, and involves determining the number of decimal places (n) of the number, 
and multiplying the number by the fraction 10n/10n. The resulting fraction is then 
simplified. 

For example, the conversion of the decimal number 0.25 to a fraction involves 
noting that we have 2 decimal places and so we multiply the decimal number 
0.25 by 102/102 (i.e., 100/100). This results in the fraction 25/100 which is then 
simplified to 1/4. 

The addition of two fractions with the same denominator is straightforward 
as all that is involved is adding the numerators of both fractions together and 
simplifying. For example, 1/12 + 5/12 = (1+5)/12 = 6/12 = 1/2. 

The addition of fractions with different denominators is more difficult. One way 
to do this is to multiply both denominators of both fractions together to form a 
common denominator and then simplify. That is, 

a 

m 
+ 

b 

n 
= 

na + mb 

mn 

For example, 1/2 + 1/3 = (3.1 + 2.1)/3.2 = (3 + 2)/6 = 5/6. 
However, the usual approach when adding two fractions is to determine the 

least common multiple of both denominators, and then to convert each fraction 
into the equivalent fraction with the common LCM denominator, and then to add 
both numerators together and simplify. For example, consider 

3 

4 
+ 

5 

6 
= 

First, the LCM of 4 and 6 is determined (see Sect. 3.5.4) and the LCM (4, 6) is 
the smallest multiple of both 4 and 6 and this is 12. We then convert both fractions 
into the equivalent fractions under the common LCM, i.e., we multiply the first 
fraction 3/4 by 3/3 and the second fraction 5/6 by 2/2 and this yields: 

3 

4 
+ 

5 

6 
= 

3.3 

12 
+ 

5.2 

12 
= 

9 + 10 
12

= 
19 

12 

The multiplication of two numbers involves multiplying the numerators together 
and the denominators together and then simplifying: 

a 

m 
× 

b 

n 
= 

ab 

mn
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The division of one fraction by another involves inverting the divisor and 
multiplying and simplifying. That is, 

a 

m 
÷ 

b 

n 
= 

a 

m 
× 

n 

b 
= 

an 

mb 
. 

3.5.2 Prime Number Theory 

A positive integer n > 1 is called prime if its only divisors are n and 1. A number 
that is not a prime is called composite. 

Theorem 3.4 (Fundamental Theorem of Arithmetic) Every natural number n > 1 
may be written uniquely as the product of primes: 

n = pα1 
1 p

α2 
2 p

α3 
3 . . .  pαk 

k 

There are an infinite number of primes but, most integer numbers are composite 
and so a reasonable question to ask is how many primes are there less than a certain 
number. The prime distribution function (denoted by π (x)) is defined by: 

π(x) =
∑

p≤x 

1 (where p is prime) 

The prime distribution function satisfies the following properties: 

(i) lim 
x→∞ 

π(x) 
x = 0 

(ii) lim 
x→∞ 

π(x) = ∞  

The first property expresses the fact that most integer numbers are composite, 
and the second property expresses the fact that there are an infinite number of 
prime numbers. 

There is an approximation of the prime distribution function in terms of the 
logarithmic function (x/ ln x) as follows: 

lim 
x→∞ 

π(x) 
x/ ln x 

= 1 (Prime Number Theorem) 

The approximation x/ln x to π(x) gives an easy way to determine the approx-
imate value of π(x) for a given value of x. This result is known as the Prime 
Number Theorem, and it was originally conjectured by Gauss.
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3.5.3 Greatest Common Divisors (GCD) 

Let a and b be integers (not both zero) then the greatest common divisor d of a 
and b is a divisor of a and b (i.e., d | a and d | b), and it is the largest such divisor 
(i.e., if k | a and k | b then k | d). It is denoted by gcd (a, b). 

Properties of Greatest Common Divisors 

(i) Let a and b be integers (not both zero) then exists integers x and y such that: 

d = gcd(a, b) = ax + by 

(ii) Let a and b be integers (not both zero) then the set S = {ax + by where x, 
y∈ Z} is the set of all multiples of d = gcd (a, b). 

Relatively Prime 
Two integers a, b are relatively prime if gcd (a, b) = 1. 

Properties If p is a prime and p | ab  then p | a  or p | b.  

Euclid’s 6 algorithm is one of the oldest known algorithms, and it provides a 
procedure for finding the greatest common divisor of two numbers. It is described 
in Book VII of Euclid’s Elements [1] and is discussed in more detail in Chap. 4. 

Lemma 3.1 Let a, b, q, and r be integers with b > 0 and 0≤ r < b such that a = bq 
+ r. Then gcd (a, b) = gcd (b, r). 

Theorem 3.5 (Euclid’s Algorithm) Euclid’s algorithm for finding the greatest com-
mon divisor of two positive integers a and b involves applying the division algorithm 
repeatedly as follows: 

a = bq0 + r1 0 < r1 < b 
b = r1q1 + r2 0 < r2 < r1 
r1 = r2q2 + r3 0 < r3 < r2 
· · ·  
· · ·  
rn−2 = rn−1qn−1 + rn 0 < rn < rn−1 

rn−1 = rnqn 

Then rn is the greatest common divisor of a and b, i.e., gcd (a, b) = rn.

6 Euclid was a third century B.C. Hellenistic mathematician and is considered the father of geom-
etry. 
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Lemma 3.2 Let n be a positive integer greater than one then the positive divisors 
of n are precisely those integers of the form: 

d = pβ1 
1 p

β2 
2 p

β3 
3 . . .  pβk 

k (where 0 ≤ βi ≤ αi ) 

where the unique factorization of n is given by: 

n = pα1 
1 p

α2 
2 p

α3 
3 . . .  pαk 

k . 

3.5.4 Least Common Multiple (LCM) 

If m is a multiple of a and m is a multiple of b then it is said to be a common 
multiple of a and b. The least common multiple is the smallest of the common 
multiples of a and b, and it is denoted by LCM (a, b). 

Properties If x is a common multiple of a and b then m | x.  That is, every common 
multiple of a and b is a multiple of the least common multiple m. 

Example 3.6 (LCM of two numbers) The LCM of two numbers is the smallest num-
ber that can be divided by both numbers. The LCM is calculated by first determining 
the prime factors of each number, and then multiplying each factor by the greatest 
number of times that it occurs in either number. 

The procedure may be seen more clearly with the calculation of the LCM of 8 
and 12, as 8 = 23 and 12 = 22.3. Therefore, the LCM (8, 12) = 23.3 = 24, since 
the greatest number of times that the factor 2 occurs is 3 and the greatest number of 
times that the factor 3 occurs is once. 

3.5.5 Ratios and Proportions 

Ratios and proportions are used to solve business problems such as computing 
inflation, currency exchange and taxation. 

A ratio is a comparison of the relative values of numbers or quantities where 
the quantities are expressed in the same units. Business information is often based 
on a comparison of related quantities stated in the form of a ratio, and a ratio is 
usually written in the form of num 1 to  num 2 or  num1: num2 (e.g., 3 to 4 or 3:4). 

The numbers appearing in a ratio are called the terms of the ratio, and the ratio 
is generally reduced to the lowest terms, e.g., the term 80:20 would generally be 
reduced to the ratio 4:1 with the common factor of 20 used to reduce the terms. If 
the terms contain decimals then the terms are each multiplied by the same number 
to eliminate the decimals and the term is then simplified. 

One application of ratios is to allocate a quantity into parts by a given ratio 
(i.e., allocating a portion of a whole into parts).
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Example 3.7 Consider a company that makes a profit of e180,000 which is to be 
divided between its three partners A, B, and C in the ratio 3:4:2. How much does 
each partner receive? 

Solution 
The total number of parts is 3 + 4 + 2 = 9. That is, for every 9 parts A receives 3, 

B receives 4 and C receives 2. That is, A receives 3/9 = 1/3 of the profits; B receives 
4/9 of the profits and C receives 2/9 of the profits. That is, 

A receives 1/3 × e180, 000 = e60, 000 
B receives 4/9 × e180, 000 = e80, 000 
C receives2/9 × e180, 000 = e40, 000 

A proportion is two ratios that are equal or equivalent (i.e., they have the same 
value and the same units). For example, the ratio 3:4 is the same as the ratio 6:8 and 
so they are the same proportion. 

Often, an unknown term arises in a proportion and in such a case the proportions 
form a linear equation in one variable. 

Example 3.8 Solve the proportion 2 : 5 = 8 : x 
Solution 

2 

5 
= 

8 

x 

Cross-multiplying we get 

2 × x = 8 × 5 
⇒ 2x = 40 
⇒ x = 20 

Example 3.9 A car travels 384 km on 32 L of petrol. How far does it travel on 25 L 
of petrol? 

Solution 
We let x represent the unknown distance that is travelled on 25 L of petrol. We 

then write the two ratios as a proportion, and solve the simple equation to find the 
unknown value x. 

384 

32 
= 

x 

25 

Cross-multiplying we get: 

25 × 384 = x × 32 
⇒ 32x = 9600 
⇒ x = 300 km (for 25L of petrol)
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3.5.6 Percentages 

Percent means “per hundred” and the symbol % indicates parts per hundred (i.e., 
a percentage is a fraction where the denominator is 100, which provides an easy 
way to compare two quantities). A percentage may be represented as a decimal 
or as a fraction, and Table 3.1 shows the representation of 25% as a percentage, 
decimal, and fraction: 

Percentages are converted to decimals by moving the decimal point two places 
to the left (e.g., 25% = 0.25). Conversely, the conversion of a decimal to a per-
centage involves moving the decimal point two places to the right and adding the 
percentage symbol. 

A percentage is converted to a fraction by dividing it by 100 and then simplify-
ing (e.g., 25% = 25/100 = 1/4). Similarly, a fraction can be converted to a decimal 
by dividing the numerator by the denominator, and then moving the decimal point 
two places to the right and adding the percent symbol. 

The value of the percentage of a number is calculated by multiplying the rate 
by the number to yield the new value. For example, 80% of 50 is given by 0.8 × 
50 = 40. That is, the value of the new number is given by: 

New number = rate × original number 

The rate (or percentage) that a new number is with respect to the original 
number is given by: 

Rate = New Number 

Original Number 
× 100 

For example, to determine what percentage of e120 that e15 is we apply the 
formula to get: 

Rate = 
15 

120 
× 100 = 12.5% 

Suppose that 30% of the original number is 15 and we wish to find the orig-
inal number. Then we let x represent the original number and we form a simple 
equation with one unknown: 

0.3x = 15 
⇒ x = 15/0.3 
⇒ x = 50

Table 3.1 Percentage, 
decimal, and fraction 

Percentage Decimal Fraction 

25% 0.25 25/100 = 1/4 
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In general, when we are given the rate and the new number we may determine 
the original number from the formula: 

Original Number = 
New Number 

Rate 

Example 3.10 Barbara is doing renovations on her apartment. She has budgeted 25% 
of the renovation costs for new furniture. The cost of the new furniture is e2200 and 
determine the total cost of the renovations to her apartment. 

Solution 
We let x represent the unknown cost of renovation and we form the simple equation 

with one unknown: 

0.25x = 2200 
⇒ x = e2200/0.25 
⇒ x = e8800 

Example 3.11 (i) What number is 25% greater than 40? (ii) What number is 20% 
less than 40? 

Solution 
We let x represent the new number. 

For the first case x = 40 + 0.25(40) = 40 + 10 = 50. 
For the second case x = 40 − 0.2(40) = 40 − 8 = 32. 

Often, we will wish to determine the rate of increase or decrease as in the following 
example. 

Example 3.12 Determine the percentage that 280 is greater than 200. (ii) Determine 
the percentage that 170 is less than 40? 

Solution 

(i) The amount of change is 280 – 200 = 80. The rate of change is therefore 80/200 
* 100 = 40% (a 40% increase). 

(ii) The amount of change is 170 – 200 = −  30. The rate of change is therefore − 
30/200 * 100 = −  15% (a 15% decrease). 

Example 3.13 Lilly increased her loan payments by 40% and now pays e700 back 
on her loan. What was her original payment? 

Solution 

Let the original amount be x and we form a simple equation of one unknown. 

x + 0.4x = 700
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1.4x = 700 
x = 700/1.4 
x = 500 

For more detailed information on basic arithmetic see [2]. 

3.6 Trigonometry 

Trigonometry is the branch of mathematics that deals with the measurement of 
sides and angles of triangles and their relationship with each other, and it has 
many practical applications in science and engineering. 

One well-known theorem from geometry is Pythagoras’s Theorem which states 
that for any right-angled triangle that the square of the hypotenuse (i.e., the side 
opposite the right angle) is equal to the sum of the squares of the other two sides 
(Fig. 3.1). 

That is: 

c2 = a2 + b2 

3.6.1 Definition of Sine, Cosine, and Tangent 

The sine, cosine, and tangent of the angle θ in the right-angled triangle below are 
defined as:

Fig. 3.1 Right-angled 
triangle 

Hypotenuse 

A 

BC 

c 
b 

a 
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Sin θ = opposite 

hypotenuse 
= 

b 

c 

Cos θ = adjacent 

hypotenuse 
= 

a 

c 

Tan θ = 
opposite 

adjacent 
= 

b 

a 

The secant, cosecant, and cotangent are defined in terms of sin, cos, and tan as 
follows: 

Csc θ = 1/ sin θ 
Sec θ = 1/Cosθ 
Cot θ = 1/Tanθ 

The trigonometric ratios may be expressed using the unit circle centred on the 
origin of the plane. 

That is, every point on the unit circle is of the form (Cos θ, Sin  θ ) for some 
angle θ, and so Cos2 θ + Sin2 θ = 1. Every point on a circle with radius r is of 
the form (rCos θ, rSin θ ). 

3.6.2 Sine and Cosine Rules 

The sine rule states that for any tringle ABC with sides a, b, c and opposite angles 
A, B, and C that: 

Sin A 

a 
= 

Sin B 

b 
= 

Sin C 

c 

The sine rule may be used to solve problems where: 

(i) One side and any two angles are given, or
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(ii) Two sides and one angle (where angle is opposite one of the sides) 

The cosine rule states that for any tringle ABC with sides a, b, c and opposite 
angles A, B and C that: 

a2 = b2 + c2 − 2bc Cos A 

or, 

b2 = a2 + c2 − 2ac Cos B 

or, 

c2 = a2 + b2 − 2ac Cos C 

The cosine rule may be used to solve problems where: 

(i) Two sides and the included angle are given, or 
(ii) Three sides are given. 

The area of any tringle ABC with sides a, b, c and angles A, B, and C is given by: 

Area = 1/2 ab Sin C = 1/2 ac Sin B = 1/2 bc Sin A. 

Example 3.14 Solve the following triangle (using the sine rule and determine its 
area). 

Solution 

As this is an isosceles triangle we note that angle < BCA is also 65°, and so angle < 
BAC = 180 – 130 = 50°. We thus have one unknown side BC (= x) and so we apply 
the sine rule to get: 

Sin 50 

x 
= 

Sin 65 

12 

⇒ 
0.766 

x 
= 

0.9063 

12
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Thus x = 10.14 cm. 
The area of the triangle is given by: 

Area = 1/2 ac SinB 
= 0.5 ∗ 12 ∗ 10.14 ∗ Sin 65 
= 55.14 cm2. 

Example 3.15 Solve the following triangle (using the cosine rule and determine its 
area). 

10 cm 

8 cm 

70o 

A 

CB 

Solution 

b2 = a2 + c2 − 2ac Cos B 
b2 = 82 + 102 − 2.8.10.Cos 70 

= 64 + 100 + 160 ∗ 0.342 
= 164 + 54.72 
= 218.72 

b = 14.78 cm 

The area of the triangle is then given by: 

Area = 1/2 ac SinB 
= 0.5 ∗ 10 ∗ 8 ∗ Sin 70 
= 37.59 cm2. 

3.6.3 Trigonometric Identities 

There are several useful trigonometric identities including: 

(i) Sin (− A) = −  Sin A
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(ii) Cos (− A) = Cos A 
(iii) Cos2 A + Sin2 A = 1 
(iv) Sin (A + B) = Sin A Cos B + Cos A Sin B 
(v) Sin (A − B) = Sin A Cos B − Cos A Sin B 
(vi) Cos (A + B) = Cos A Cos B − Sin A Sin B 
(vii) Cos (A − B) = Cos A Cos B + Sin A Sin B 
(viii) Sin 2A = 2 Sin  A Cos A 
(ix) Cos 2A = Cos2 A − Sin2 A 
(x) Sin A + Sin B = 2 Sin 1/2 (A + B) Cos 1/2 (A − B) 
(xi) Cos A + Cos B = 2 Cos 1/2 (A + B) Cos 1/2 (A − B) 
(xii) Sec2 A = 1 + Tan2 A. 

3.6.4 Degrees and Radians 

The sum of the angles in a triangle is 180° 
The measure (in radians) of the angle at the centre of a circle with radius r is 

given by the ratio of the arc s to the radius r, i.e., 

θ = 
s 

r 

That is, the length of the arc s is given by s = rθ, and clearly when the radius 
is 1 (i.e., the unit circle) then the radian measure of the angle θ is the length of 
the arc s. 

The length of the circumference of a circle with radius r is given by 2πr and 
so the measure in radians of the angle at the centre of the circle is 

2πr 

r 
= 2π(radians) = 360◦ 

That is, 

2π radians = 360◦ 

⇒ 1 radian = 360◦/2π
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= 57◦17,

We have the following identities: 

π(rads) = 180◦ 

π/2(rads) = 90◦ 

π/4(rads) = 45◦ 

π/6(rads) = 30◦. 

3.6.5 Periodic Functions and Sketch of Sine and Cosine 
Functions 

A function f (x) is periodic with period k if f (x + k) = f (x) for all values of x. 
That is, the curve of f (x) between 0 and k repeats endlessly to the left and to the 
right, i.e., f (x + nk) = f (x) for n = 0, ±1,± 2, … 

The sine and cosine functions are periodic functions with period 2π, and this 
may be seen by: 

Sin(x + 2π)  = Sinx Cos2π + Cosx Sin2π = Sinx ∗ 1 + Cosx ∗ 0 = Sinx 
Cos(x + 2π)  = Cosx Cos2π − Sinx Sin2π = Cosx ∗ 1 − Sinx ∗ 0 = Cosx 

This can be extended to 

Sin(x + 2nπ)  = Sinx n  = 0, ±1, ±2, . . .  
Cos(x + 2nπ)  = Cosx n  = 0, ±1, ±2, . . .  

The graph of the sine function between 0 and 2π is given by: 

Similarly, the graph of the cosine function between 0 and 2π is given by:
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3.6.6 Power Series for Sine and Cosine 

The power series for Sin x is given by: 

Sinx = x − 
x3 

3! + 
x5 

5! − · · ·  +  (−1)n 
x2n+1 

(2n + 1)! +  · · ·  

n = 0, 1, 2, . . .  

The power series for Cos x is given by: 

Cosx = 1 − 
x2 

2! + 
x4 

4! − · · ·  +  (−1)n 
x2n 

(2n)! + · · ·  

n = 0, 1, 2, . . .  

3.7 Cartesian Coordinates 

The Cartesian coordinate system specifies each point uniquely in the plane by a 
set of numerical coordinates, which are the signed distance of the point to two 
fixed coordinate axes. The point where the two axes meet is termed the origin of 
the coordinate system and has the coordinates (0, 0). The Cartesian system was 
invented by Rene Descartes in the seventeenth century, and it allows geometric 
shapes such as curves to be described by algebraic equations (Fig. 3.2).

There are three perpendicular axes in the three dimensional Cartesian coordinate 
system, and the Cartesian coordinates (x, y, z) of a point P in place are the numbers 
where the planes through P perpendicular to the three axes cut the axes (Fig. 3.3).

The points that lie on the x-axis have their y and z coordinate equal to zero, i.e., 
they are of the form (x, 0, 0), and similarly points in the y-axis have coordinates 
(0, y, 0) and points in the z-axis have coordinates (0, 0, z). 

The points in a plane perpendicular to the x-axis all have the same x coordinate, 
and similarly the points in a plane perpendicular to the y-axis all have the same y



64 3 Mathematical Prerequisites for Software Engineers

Fig. 3.2 Cartesian 
coordinate system

Fig. 3.3 Cartesian 
three-dimensional coordinate 
system

coordinate and the points in a plane perpendicular to the z-axis all have the same 
z coordinate. It is easy to write equations for these planes as for example, the 
equation x = 3 is an equation to the plane perpendicular to the x-axis at x = 3, 
and similarly the equation y = 2 is an equation to the plane perpendicular to the 
y-axis at y = 3 and the equation z = 4 is an equation to the plane perpendicular to 
the z-axis at z = 4. The intersection of the three planes is the point (3, 2, 4). 

The intersection of the planes x = 3 and y = 2 is a line that runs parallel to 
the z-axis, and is given by the equations x = 3 and y = 2. The equation of the 
xy-plane is z = 0; the equation of the yz-plane is x = 0; and the equation of the 
xz-plane is y = 0. 

The distance between any two points (x1, y1) and (x2, y2) in the two dimensional 
Cartesian plane is given by: 

d = 
/

(x2 − x1)2 + (y2 − y1)2
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The distance between any two points (x1, y1, z1) and (x2, y2, z2) in the three 
dimensional Cartesian plane is given by: 

d = 
/

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. 

3.8 Review Questions 

1. What is a set? A relation? A function? 
2. Explain the difference between a partial and a total function. 
3. Determine A Δ B where A = {a, b, c, d} and B = {c, d, e}. 
4. What is the domain and range of R = {(a, p), (a, r), (b, q)}. 
5. Determine the inverse relation R−1 where R = {(a, 2), (a, 5), (b, 3), (b, 

4), (c, 1)}. 
6. Determine the inverse of the function f : R × R → R defined by 

f (x) = 
x − 2 
x − 3 

(x /= 3) and f (3) = 1 

7. Compute 7/8 * 5/12. 
8. Find the prime factorization of 18 and 24. 
9. Find the least common multiple of 18 and 24. 
10. Find the greatest common divisor of 18 and 24. 
11. A company makes a profit of e120,000 which is to be divided between 

its three partners A, B, and C in the ratio 2:7:6. Find the amount that 
each partner gets. 

12. Solve the proportion 2:7 = 4:x. 
13. What number is 15% greater than 140? 
14. The length of the hypotenuse and one of the sides of a right-angled 

triangle is 17 cm and 8 cm respectively. Find the length of the other 
side. 

15. Use the cosine and sine rules to find the angles of a triangle where the 
sides are 17, 15 and 8. Determine its area. 

16. Calculate the number of degrees of: 
(a) π /6 radians 
(b) 3 radians 

17. What is the period of the following functions: 
(a) Sin 2x 
(b) Cos 3x 

18. Find the distance between (0, 1, 4) and (2, 3, 1).
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3.9 Summary 

This chapter introduced essential mathematics for computing including set theory, 
relations, and functions. Sets are collections of well-defined objects; a relation 
between A and B indicates relationships between members of the sets A and B; 
and functions are a special type of relation where there is at most one relationship 
for each element a ∈ A with an element in B. 

A binary relation R (A, B) is a subset of the Cartesian product (A× B) of  A and 
B where A and B are sets. The domain of the relation is A and the codomain of 
the relation is B. An  n-ary relation R (A1, A2, … An) is a subset of (A1 × A2 × …× 
An). 

A total function f : A→ B is a special relation such that for each element a∈ A 
there is exactly one element b ∈ B. This is written as f (a) = b. A function is a 
relation but not every relation is a function. 

Arithmetic is the branch of mathematics that is concerned with the study of 
numbers and their properties. It includes the study of the integer numbers, and 
operations on them, such as addition, subtraction, multiplication, and division. 

The natural numbers consist of the numbers {1, 2, 3, …}. The integer numbers 
are a superset of the set of natural numbers, and the rational numbers are a superset 
of the set of integer numbers, which consist of all numbers of the form {p/q where 
p and q are integers and q /= 0}. A simple fraction is of the form a/b where a 
and b are integers, with the number a above the bar termed the numerator and the 
number b below the bar termed the denominator. 

A positive integer n > 1 is called prime if its only divisors are n and 1, and a 
number that is not a prime is called composite. There are an infinite number of 
prime numbers, and prime numbers are the key building blocks in number theory, 
and the fundamental theorem of arithmetic states that every number may be written 
uniquely as the product of factors of prime numbers. 

Euclid’s algorithm is used for finding the greatest common divisor of two pos-
itive integers a and b. The least common multiple (LCM) of two numbers is the 
smallest number that can be divided by both numbers. 

Ratios and proportions are used to solve business problems where a ratio is a 
comparison of numbers where the quantities are expressed in the same units. The 
numbers appearing in a ratio are called the terms of the ratio, and the ratios are 
generally reduced to the lowest terms. One application of ratios is to allocate a 
quantity into parts by a given ratio (i.e., allocating a portion of a whole into parts). 

Percent means “per hundred”, and the symbol % indicates parts per hundred 
(i.e., a percentage is a fraction where the denominator is 100 which provides an 
easy way to compare two quantities). 

Trigonometry is the branch of mathematics that deals with the measurement 
of sides and angles of triangles and the relationship between them. It has many 
practical applications in science and engineering. 

Pythagoras’s expresses the relationship between the hypotenuse and other sides 
of a right-angled triangle, and the sine, cosine, and tangent of an angle can be 
expressed in terms of the sides of a right-angled triangle.
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The cosine rule and sine rule are used to solve a triangle with the cosine rule 
applied when given two sides and the included angled or when given three sides. 
The sine rule is applied when given one side and any two angles or two sides are 
given and one angle where the angle is opposite one of the sides. 

Angles may be measured in degrees or in radians although radians is more 
common. The sine and cosine functions are trigonometric functions of an angle 
and are periodic with period of 2π. They are used to model sound and light waves 
in physics. 
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4Introduction to Algorithms 

Key Topics 

Euclid’s Algorithm 

Sieve of Eratosthenes Algorithm 

Early Ciphers 

Sorting Algorithms 

Insertion Sort and Merge Sort 

Analysis of Algorithms 

Complexity of Algorithms 

NP Complete 

4.1 Introduction 

An algorithm is a well-defined procedure for solving a problem, and it consists 
of a sequence of steps that takes a set of values as input, and produces a set of 
values as output. It is an exact specification of how to solve the problem, and it 
explicitly defines the procedure so that a computer program may implement the 
solution. The origin of the word “algorithm” is from the name of the 9th Persian 
mathematician, Mohammed Al Khwarizmi. 

It is essential that the algorithm is correct, and that it terminates in a reason-
able amount of time. This may require mathematical analysis of the algorithm to 
demonstrate its correctness and efficiency, and to show that termination is within 
an acceptable timeframe. There may be several algorithms to solve a problem, and
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so the choice of the best algorithm (e.g., fastest/most efficient) needs to be con-
sidered. For example, there are several well-known sorting algorithms (e.g., merge 
sort and insertion sort), and the merge sort algorithm is more efficient [o(n lg n)] 
than the insertion sort algorithm [o(n2)]. 

An algorithm may be implemented by a computer program written in some 
programming language (e.g., C++ or Java). The speed of the program depends on 
the algorithm employed, the input value(s), how the algorithm has been imple-
mented in the programming language, the compiler, the operating system and the 
computer hardware. 

An algorithm may be described in natural language (care is needed to avoid 
ambiguity), but it is more common to use a more precise formalism for its descrip-
tion. These include pseudo code (an informal high-level language description); 
flowcharts; a programming language such as C or Java; or a formal specifica-
tion language such as VDM or Z. We shall mainly use natural language and 
pseudocode to describe an algorithm. One of the earliest algorithms developed 
was Euclid’s algorithm (discussed briefly in Chap. 3) for determining the greatest 
common divisor of two natural numbers, and it is described in the next section. 

4.2 Early Algorithms 

Euclid lived in Alexandria during the early Hellenistic period,1 and he is con-
sidered the father of geometry and the deductive method in mathematics. His 
systematic treatment of geometry and number theory is published in the thir-
teen books of the Elements [1]. It starts with five axioms, five postulates and 
twenty-three definitions to logically derive a comprehensive set of theorems in 
geometry. 

His method of proof was generally constructive, in that as well as demonstrating 
the truth of the theorem, a construction of the required entity was provided. He 
employed some indirect proofs, and one example was his proof that there are an 
infinite number of prime numbers. The procedure is to assume the opposite of 
what one wishes to prove, and to show that a contradiction results. This means 
that the original assumption must be false, and the theorem is established. 

1. Suppose there are a finite number of primes (say n primes). 
2. Multiply all n primes together and add 1 to form N. 

(N = p1 ∗ p2 ∗ . . .  ∗ pn + 1) 

3. N is not divisible by p1, p2, …,  pn as dividing by any of these gives a remainder 
of one.

1 This refers to the period following the conquests of Alexander the Great, which led to the spread 
of Greek culture throughout the Middle East and Egypt. 
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4. Therefore, N must either be prime or divisible by some other prime that was 
not included in the original list. 

5. Therefore, there must be at least n + 1 primes. 
6. This is a contradiction (it was assumed that there are exactly n primes). 
7. Therefore, the assumption that there is a finite number of primes is false. 
8. Therefore, there are an infinite number of primes. 

His proof that there are an infinite number of primes is indirect, and he does 
not present an algorithm to as such to construct the set of prime numbers. We 
present the well-known Sieve of Eratosthenes algorithm for determining the prime 
numbers up to a given number n later in the chapter. 

The material in Euclid’s elements is a systematic development of geometry 
starting from the small set of axioms, postulates, and definitions. It leads to many 
well-known mathematical results such as Pythagoras’s theorem, Thales theorem, 
sum of angles in a triangle, prime numbers, greatest common divisor and least 
common multiple, Euclidean algorithm, areas and volumes, tangents to a point, 
and algebra. 

4.2.1 Greatest Common Divisors (GCD) 

Let a and b be integers not both zero. The greatest common divisor d of a and b 
is a divisor of a and b (i.e., d|a and d|b), and it is the largest such divisor (i.e., if 
k|a and k|b then k|d). It is denoted by gcd (a, b). 

Properties of Greatest Common Divisors 

(i) Let a and b be integers not both zero then exists integers x and y such that: 

d = gcd(a, b) = ax + by 

(ii) Let a and b be integers not both zero then the set S = {ax + by where x, 
y ∈ Z} is the set of all multiples of d = gcd (a, b). 

4.2.2 Euclid’s Greatest Common Divisor Algorithm 

Euclid’s algorithm is one of the oldest known algorithms, and it provides the pro-
cedure for finding the greatest common divisor of two numbers a and b. It appears 
in Book VII of Euclid’s elements (Fig. 4.1).

The inputs for the gcd algorithm consists of two natural numbers a and b, and 
the output of the algorithm is d (the greatest common divisor of a and b). It is 
computed as follows: 

gcd (a, b) =
{

Check if b is zero. If so, then a is the gcd . 
Otherwise, the gcd(a, b) is given by gcd (b, a mod b).
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Fig. 4.1 Euclid of 
Alexandria

It is also possible to determine integers p and q such that ap + bq = gcd(a, b). 
The (informal) proof of the Euclidean algorithm is as follows. Suppose a and b 

are two positive numbers whose greatest common divisor is to be determined, and 
let r be the remainder when a is divided by b. 

1. Clearly a = qb + r where q is the quotient of the division. 
2. Any common divisor of a and b is also a divider or r (since r = a − qb). 
3. Similarly, any common divisor of b and r will also divide a. 
4. Therefore, the greatest common divisor of a and b is the same as the greatest 

common divisor of b and r. 
5. The number r is smaller than b and we will reach r = 0 in finitely many steps. 
6. The process continues until r = 0. 

Comment 4.1 

Algorithms are fundamental in computing as they define the procedure by which 
a problem is solved. A computer program implements the algorithm in some 
programming language. 
Next, we deal with the Euclidean algorithm more formally, and we start with a 
basic lemma. 

Lemma Let a, b, q, and r be integers with b > 0 and 0≤ r < b such that a = bq + r. 
Then gcd(a, b) = gcd(b, r).
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Proof Let K = gcd(a, b) and let L = gcd(b, r) then we need to show that K = L. 
Suppose m is a divisor of a and b, then as a = bq + r we have m is a divisor of r and 
so any common divisor of a and b is a divisor of r. Therefore, the greatest common 
divisor K of a and b is a divisor of r. Similarly, any common divisor n of b and r is 
a divisor of a. Therefore, the greatest common divisor L of b and r is a divisor of 
a. That is, K divides L and L divides K and so L = K, and so the greatest common 
divisor of a and b is equal to the greatest common divisor of b and r. 

Euclid’s Algorithm (more formal proof) 
Euclid’s algorithm for finding the greatest common divisor of two positive integers 
a and b involves a repeated application of the division algorithm as follows: 

a = bq0 + r1 0 < r1 < b 

b = r1q1 + r2 0 < r2 < r1 
r1 = r2q2 + r3 0 < r3 < r2 
. . .  

rn−2 = rn−1qn−1 + rn 0 < rn < rn−1 

rn−1 = rnqn 

Then rn (i.e., the last non-zero remainder) is the greatest common divisor of a 
and b: i.e., gcd(a, b) = rn. 

Proof It is clear from the construction that rn is a divisor of rn−1, rn−2, . . . ,  r3, r2, r1 
and of a and b. Clearly, any common divisor of a and b will also divide rn. Using 
the results from the lemma above we have: 

gcd(a, b) = gcd(b, r1) 
= gcd(r1r2) 
= . . .  
= gcd(rn−2rn−1) 

= gcd(rn−1, rn) 

= rn 

4.2.3 Sieve of Eratosthenes Algorithm 

Eratosthenes was a Hellenistic mathematician and scientist who worked in the 
famous library in Alexandria. He devised a system of latitude and longitude, and 
he was the first person to estimate of the size of the circumference of the earth. He 
developed a famous algorithm (the well-known Sieve of Eratosthenes algorithm) 
for determining the prime numbers up to a given number n.
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2 3 4 5 6 7 8 9 10  
11 12 13 14 15 16 17 18 19 20 
21 22 23 24 25 26 27 28 29 30 
31 32 33 34 35 36 37 38 39 40 
41 42 43 44 45 46 47 48 49 50 

Fig. 4.2 Primes between 1 and 50 

The algorithm involves listing all numbers from 2 up to n. The first step is to 
remove all multiples of 2 up to n; the second step is to remove all multiples of 3 
up to n; and so on (Fig. 4.2). 

The kth step involves removing multiples of the kth prime pk up to n and the 
steps in the algorithm continue while p≤√

n. The numbers remaining in the list 
are the prime numbers from 2 to n. 

1. List the integers from 2 to n. 
2. For each prime pk up to 

√
n remove all multiples of pk . 

3. The numbers remaining are the prime numbers between 2 and n. 

The list of primes between 1 and 50 is then given by 2, 3, 5, 7, 11, 13, 17, 19, 
23, 29, 31, 37, 41, 43, and 47. 

The steps in the algorithm may also be described as follows (in terms of two 
lists): 

1. Write a list of the numbers from 2 to the largest number to be tested. This first 
list is called A. 

2. A second list B is created to list the primes. It is initially empty. 
3. The number 2 is the first prime number, and it is added to List B. 
4. Strike off (or remove) all multiples of 2 from List A. 
5. The first remaining number in List A is a prime number, and this prime number 

is added to List B. 
6. Strike off (or remove) this number and all multiples of it from List A. 
7. Repeat steps 5 through 7 until no more numbers are left in List A. 

4.2.4 Early Cipher Algorithms 

Julius Caesar employed a substitution cipher on his military campaigns to ensure 
that important messages were communicated safely (Fig. 4.3). The Caesar cipher 
is a very simple encryption algorithm, and it involves the substitution of each 
letter in the plaintext (i.e., the original message) by a letter a fixed number of 
positions down in the alphabet. The Caesar encryption algorithm involves a shift 
of 3 positions, and causes the letter B to be replaced by E, the letter C by F, and
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Alphabet Symbol abcde  fghij  klmno  pqrst  uvwxyz 
Cipher Symbol dfegh  ijklm  nopqr  stuvw  xyzabc 

Fig. 4.3 Caesar cipher 

so on. The Caesar cipher is easily broken, as the frequency distribution of letters 
may be employed to determine the mapping. The Caesar cipher is defined as: 

The process of enciphering a message (i.e., the plaintext) involves mapping 
each letter in the plaintext to the corresponding cipher letter. For example, the 
encryption of “summer solstice” involves: 

Plaintext: summer solstice 

Cipher Text vxpphu vrovwleh 

The decryption involves the reverse operation, i.e., for each cipher letter the 
corresponding plaintext letter is determined from the table. 

Cipher Text vxpphu vrovwleh 

Plaintext: summer solstice 

The Caesar encryption algorithm may be expressed formally using modular 
arithmetic. The numbers 0–25 represent the alphabet letters, and the algorithm is 
expressed using addition (modula 26) to yield the encrypted cipher. The encoding 
of the plaintext letter x is given by: 

c = x + 3( mod 26) 

Similarly, the decoding of a cipher letter represented by the number c is given 
by: 

x = c − 3( mod 26) 

The emperor Augustus2 employed a similar substitution cipher (with a shift 
key of 1). The Caesar cipher remained in use up to the early twentieth century. 
However, by then frequency analysis techniques were available to break the cipher. 
The Vignère cipher uses a Caesar cipher with a different shift at each position 
in the text. The value of the shift to be employed with each plaintext letter is 
defined using a repeating keyword. We shall discuss cryptography in more detail 
in Chap. 20.

2 Augustus was the first Roman emperor, and his reign ushered in a period of peace and stabil-
ity following the bitter civil war that occurred after the assassination of Julius Caesar. He was the 
adopted son of Julius Caesar (he was called Octavion before he became emperor). The civil war 
broke out between Mark Anthony and Octavion, and Anthony and Cleopatra were defeated by 
Octavion and Agrippa at the battle of Actium in 31 B.C. 
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4.3 Sorting Algorithms 

One of the most common tasks to be performed in a computer program is that of 
sorting (e.g., consider the problem of sorting a list of names or numbers). This 
has led to the development of many sorting algorithms (e.g., selection sort, bubble 
sort, insertion sort, merge sort, and quicksort) as sorting is a fundamental task to 
be performed. 

For example, consider the problem of specifying the algorithm for sorting a 
sequence of n numbers. Then, the input to the algorithm is ⟨x1, x2, . . .  xn⟩, and 
the output is

⟨
x ,
1, x

,
2, . . .  x

,
n

⟩
, where x,

1 ≤x,
2 ≤…≤ x,

n. Further,
⟨
x ,
1, x

,
2, . . .  x

,
n

⟩
is a 

permutation of ⟨x1, x2, . . .  xn⟩, i.e., the same numbers are in both sequences except 
that the sorted sequence is in ascending order, whereas no order is imposed on the 
original sequence. 

Insertion sort is an efficient algorithm for sorting a small list of elements. It 
iterates over the input sequence; examines the next input element during the itera-
tion; and builds up the sorted output sequence. During the iteration, insertion sort 
removes the next element from the input data, and it then finds and inserts it into 
the location where it belongs in the sorted list. This continues until there are no 
more input elements to process. 

We first give an example of insertion sort and then give a more formal definition 
of the algorithm (Fig. 4.4). The example considered is that of the algorithm applied 
to the sequence A = ⟨5, 3 1, 4⟩. The current input element for each iteration is 
highlighted, and the arrow points to the location where it is inserted in the sorted 
sequence. For each iteration, the elements to the left of the current element are 
already in increasing order, and the operation of insertion sort is to move the 
current element to the appropriate position in the ordered sequence. 

We shall assume that we have an unsorted array A with n elements that we wish 
to sort. The operation of insertion sort is to rearrange the elements of A within the 
array, and the output is that the array A contains the sorted output sequence. 

Insertion sort 

for i from 2 to n do 

C ← A[i] 
j ← i-1 
while j > 0 and A[j] > C do 

A[j+1]← A[j] 
j ← j-1 

A[j+1] ← C

Fig. 4.4 Insertion sort 
example 

5 3 1        4 
3 5       1 4 
1 3        5        4 
1      3        4        5 
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The analysis of an algorithm involves determining its efficiency and establishing 
the resources that it requires (e.g., memory and bandwidth), as well as determining 
the computational time required. The time taken by the insertion sort algorithm 
depends on the size of the input sequence (clearly a large sequence will take 
longer to sort than a short sequence), and on the extent to which the sequences are 
already sorted. The worst-case running time for the insertion sort algorithm is of 
order n2—i.e., o(n2), where n is the size of the sequence to be sorted (the average 
case is also of order n2 with the best case linear). 

There are a number of ways to design sorting algorithms, and the insertion sort 
algorithm uses an incremental approach, with the subarray A[1 … i − 1] already 
sorted and the element A[i] is then inserted into its correct place to yield the sorted 
array A[1 … i]. 

Another approach is to employ divide and conquer techniques, and this tech-
nique is used in the merge sort algorithm. This is a more efficient algorithm, and it 
involves breaking a problem down into several subproblems, and then solving each 
problem separately. The problem solving may involve recursion or directly solv-
ing the subproblem (if it is small enough), and then combining the solutions to the 
subproblems into the solution for the original problem. The merge sort algorithm 
involves three steps (Divide, Conquer, and Combine): 

1. Divide the list A (with n elements) to be sorted into two subsequences (each 
with n/2 elements). 

2. Sort each of the subsequences by calling merge sort recursively (Conquer) 
3. Merge the two sorted subsequences to produce a single sorted list (Combine). 

The recursive part of the merge sort algorithm bottoms out when the sequence 
to be sorted is of length 1, as for this case the sequence is of length 1 which 
is already (trivially) sorted. The key operation then (where all the work is done) 
is the combine step that merges two sorted sequences to produce a single sorted 
sequence. The merge sort algorithm may also be described as follows: 

1. Divide the sequence (with n elements) to be sorted into n subsequences each 
with 1 element (a sequence with 1 element is sorted). 

2. Repeatedly merge subsequences to form new subsequences (each new sub 
sequence is sorted), until there is only one remaining subsequence (the sorted 
sequence). 

First, we consider an example (Fig. 4.5) to illustrate how the merge sort algorithm 
operates, and we then give a formal definition.

It may be seen from the example that the list is repeatedly divided into equal 
halves with each iteration, until we get to the atomic values that can no longer 
be divided. The lists are then combined in the order in which they were broken 
down, and this involves comparing the elements of both lists and combining them 
to form a sorted list. The merging continues in this way until there are no more
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Fig. 4.5 Merge sort example 15 7 2 12 9 3 10 

15 7 2 12 9 3 10 

15 7 2 12 9 3  10  

15 7 2 12  9 3  10  

7 15  2  12  3 9  10  

2 7 12 15 3 9 10  

2 3  7 9 10  12 15  

6 

6 

6 

6 

6 

6 

6 

lists to merge, and the list remaining is the sorted list. The formal definition of 
merge sort is as follows: 

Merge sort (A, m, n) 

If m < n then 

r ← (m + n) div 2 

Merge Sort (A, m, r) 

Merge Sort (A, r+1, n) 

Merge (A, m, r, n) 

The worst-case and average case running time for the merge sort algorithm is 
of order n lg n—i.e., o(n lg n), where n is the size of the sequence to be sorted 
(the average case and best case is also of order o(n lg n)). 

The merge procedure merges two sorted lists to produce a single sorted list. 
Merge (A, p, q, r) merges A[p … q] with A[q + 1 …  r] to yield the sorted list A[p 
… r]. We use a temporary working array B[p … r] with the same index range as 
A. The indices i and j point to the current element of each subarray, and we move 
the smaller element into the next position in B (indicated by index k) and then 
increment either i or j. When we run out of entries in one array then we copy the 
rest of the other array into B. Finally, we copy the entire contents of B back to A. 

Merge (A, p, q, r) 

Array B[p … r] 

i ← p 
k ← p 
j ← q+1 
while (i ≤ q ∧ j≤ r) i.e., while both subarrays are non-empty
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if A[i]≤ A[j]. 

B[k] ← A[i] 
i ← i+1 

else 

B[k] ← A[j] 
j ← j+1 
k ← k+1 

while (i ≤ q) … copy any leftover to B 

B[k] ← A[i] 
i ← i+1 
k ← k+1 

while (j ≤ r) … copy any leftover to B 

B[k] ← A[j] 
j ← j+1 
k ← k+1 

for i = p to r do … copy B back to A 

A[i] = B[i] 

4.4 Binary Trees and Graph Theory 

A binary tree (Fig. 4.6) is a tree in which each node has at most two child nodes 
(termed left and right child node). A node with children is termed a parent node, 
and the top node of the tree is termed the root node. Any node in the tree can 
be reached by starting from the root node, and by repeatedly taking either the left 
branch (left child) or right branch (right child) until the node is reached. Binary 
trees are often used in computing to implement efficient searching algorithms. 

The depth of a node is the length of the path (i.e., the number of edges) from 
the root to the node. The depth of a tree is the length of the path from the root to 
the deepest node in the tree. A balanced binary tree is a binary tree in which the 
depth of the two subtrees of any node never differs by more than one. 

Tree traversal is a systematic way of visiting each node in the tree exactly once, 
and we distinguish between breadth first search algorithms in which every node

Fig. 4.6 Sorted binary tree M 

QF 

OB S 

UN 
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at a particular level is visited before going to a lower level, and depth first search 
algorithms where one starts at the root and explores as far as possible along each 
branch before backtracking. The traversal in depth first search may be in preorder, 
inorder, or postorder. 

Graph algorithms are employed to solve various problems in graph theory 
including network cost minimization problems; construction of spanning trees; 
shortest path algorithms; longest path algorithms; and timetable construction prob-
lems. Chapter 7 discusses graph theory in more detail, and the reader may consult 
texts on graph theory (e.g., [2]) to explore many well-known graph algorithms 
such as Dijkstra’s shortest path and longest path algorithms, Kruskal’s minimal 
spanning tree algorithm, and Prim’s minimal spanning tree algorithms. 

4.5 Modern Cryptographic Algorithms 

A cryptographic system is concerned with the secure transmission of messages. 
The message is encrypted prior to its transmission, and any unauthorized intercep-
tion and viewing of the message is meaningless to anyone other than the intended 
recipient. The recipient uses a key to decrypt the encrypted text to retrieve the 
original message. 

• M represents the message (plaintext) 
• C represents the encrypted message (cipher text) 
• ek represents the encryption key 
• dk represents the decryption key 
• E represents the encryption 
• D represents the decryption 

There are essentially two different types of cryptographic systems, namely the 
public key cryptosystems and secret key cryptosystems. A public key cryptosystem 
is an asymmetric cryptosystem where two different keys are employed: one for 
encryption and one for decryption. The fact that a person can encrypt a message 
does not mean that the person is able to decrypt a message. 

The same key is used for both encryption and decryption in a secret key 
cryptosystem, and anyone who has knowledge on how to encrypt messages has suf-
ficient knowledge to decrypt messages. The encryption and decryption algorithms 
satisfy the following equation: 

Ddk (C) = Ddk (Eek (M)) = M 

There are two different keys employed in a public key cryptosystem. These 
are the encryption key ek and the decryption key dk with ek . /=dk . It is called 
asymmetric as the encryption key differs from the decryption key. 

A symmetric key cryptosystem (Fig. 20.5) uses the same secret key for encryp-
tion and decryption, and so the sender and the receiver first need to agree on a
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shared key prior to communication. This needs to be done over a secure channel 
to ensure that the shared key remains secret. Once this has been done they can 
begin to encrypt and decrypt messages using the secret key. 

The encryption of a message is in effect a transformation from the space of 
messages m to the space of cryptosystems C. That is, the encryption of a message 
with key k is an invertible transformation f such that: 

f : m k−→ C 

The cipher text is given by C = Ek(M) where M ∈m and C ∈C. The legiti-
mate receiver of the message knows the secret key k (as it will have transmitted 
previously over a secure channel), and so the cipher text C can be decrypted by 
the inverse transformation f −1 defined by: 

f −1:C k−→ m 

Therefore, we have that Dk(C) = Dk (Ek(M)) = M the original plaintext 
message. 

A public key cryptosystem (Fig. 20.6) is an asymmetric key system where there 
is a separate key ek for encryption and dk decryption with ek /=dk . The fact that a 
person is able to encrypt a message does not mean that the person has sufficient 
information to decrypt messages. There is a more detailed account of cryptography 
in Chap. 20. 

4.6 Algorithms in Numerical Analysis 

Numerical analysis is concerned with devising methods for approximating solu-
tions to mathematical problems. Often an exact formula is not available for solving 
a particular equation f (x) = 0, and numerical analysis provides techniques to 
approximate the solution in an efficient manner. 

An algorithm is devised to provide the approximate solution, and it consists of 
a sequence of steps to produce the solution as efficiently as possible within defined 
accuracy limits. The maximum error due to the application of the numerical meth-
ods needs to be determined. The algorithm is implemented in a programming 
language such as Fortran. 

There are several numerical techniques to determine the root of an equation 
f (x) = 0. These include techniques such as the bisection method, which has been 
used since ancient times, and the Newton–Raphson method developed by Sir Isaac 
Newton. 

The bisection method is employed to find a solution to f (x) = 0 for the contin-
uous function f on [a, b] where f (a) and f (b) have opposite signs (Fig. 4.7). The 
method involves a repeated halving of subintervals of [a, b], with each step locat-
ing the half that contains the root. The inputs to the algorithm are the endpoints a
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Fig. 4.7 Bisection method 

b = b1 
a = a1 p1p2 

y = f(x) 

p 

and b, the tolerance (TOL), and the maximum number of iterations N. The steps 
are as follows: 

1. Initialize i to 1 

2. while i≤ N 

i. Compute midpoint p 

(p → a + (b − a) / 2)  

ii. If f(p) = 0 or (b − a) / 2 < TOL  

Output p and stop 

iii. If f(a)f(p) > 0  

Set endpoint a → p 
Otherwise set b →p 

iv. i→ i + 1 

The Newton–Raphson method is a well-known technique to determine the roots 
of a function. It uses tangent lines to approximate the graph of y = f (x) near the 
points where f is zero. The procedure for Newton’s method is: 

Newton’s Method 

(i) Guess a first approximation to the root of the equation f (x) = 0. 
(ii) Use the first approximation to get a second, third, and so on. 
(iii) To go from the n-th approximation xn to the next approximation xn+1 then 

use the formula: 

where f,(xn) is the derivative of f at xn (the derivative is discussed in Chap. 25). 

xn+1 = xn − 
f (xn) 

f ,(xn) 

Newton’s method is very efficient for calculating roots as it converges very 
quickly. However, the method may converge to a different root than expected if 
the starting value is not close enough to the root sought. 

The method involves computing the tangent line at (xn, f (xn)), and the 
approximation xn+1 is the point where the tangent intersects the x-axis.



4.8 Review Questions 83 

4.7 Computational Complexity 

An algorithm is of little practical use if it takes millions of years to compute 
the solution to a problem. That is, the fact that there is an algorithm to solve a 
problem is not sufficient, as there is also the need to consider the efficiency of the 
algorithm. The security of the RSA encryption algorithm (see Chap. 20) relies on 
the fact that there is no known efficient algorithm to determine the prime factors 
of a large number. 

There are often slow and fast algorithms for the same problem, and a measure 
of the complexity of an algorithm is the number of steps in its computation. An 
algorithm is of time complexity f (n) if for all n and all inputs of length n the 
execution of the algorithm takes at most f (n) steps. 

An algorithm is said to be polynomially bounded if there is a polynomial p(n) 
such that for all n and all inputs of length n the execution of the algorithm takes 
at most p(n) steps. The notation P is used for all problems that can be solved in 
polynomial time. A problem is said to be computationally intractable if it may not 
be solved in polynomial time: that is, there is no known algorithm to solve the 
problem in polynomial time. 

A problem L is said to be in the set NP (non-deterministic polynomial time 
problems) if any given solution to L can be verified quickly in polynomial time. A 
problem is NP complete if it is in the set NP of non-deterministic polynomial time 
problems, and it is also in the class of NP hard problems. A key characteristic 
to NP complete problems is that there is no known fast solution to them, and the 
time required to solve the problem using known algorithms increases quickly as 
the size of the problem grows. Often, the time required to solve the problem is 
in billions of years. That is, although any given solution may be verified quickly 
there is no known efficient way to find a solution. 

4.8 Review Questions 

1. What is an algorithm? 
2. Explain why the efficiency of an algorithm is important. 
3. What factors should be considered in the choice of algorithm where 

several algorithms exist for solving the particular problem? 
4. Explain the difference between the insertion sort and merge sort algo-

rithms. 
5. Investigate famous computer algorithms such as Dijkstra’s shortest path, 

Prim’s algorithm, and Kruskal’s algorithm.
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4.9 Summary 

An algorithm is a well-defined procedure for solving a problem, and it consists of 
a sequence of steps that takes a set of input values and produces a set of output 
values. It is an exact specification of how to solve the problem, and a computer 
program implements the algorithm in some programming language. It is essential 
that the algorithm is correct, and that it terminates in a reasonable period of time. 
There may be several algorithms for a problem, and so the choice of the best 
algorithm (e.g., fastest/most efficient) needs to be considered. 

This may require mathematical analysis of the algorithm to demonstrate its 
correctness and efficiency and to show that it terminates in a finite period of time. 
An algorithm may be implemented by a computer program, and the speed of the 
program depends on the algorithm employed, the input value(s), how the algorithm 
has been implemented in the programming language, the compiler, the operating 
system, and the computer hardware. 
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Key Topics 

Simultaneous equations 

Quadratic equations 

Polynomials 

Indices 

Logs 

Abstract Algebra 

Groups 

Rings 

Fields 

Vector Spaces 

5.1 Introduction 

Algebra is the branch of mathematics that uses letters in the place of numbers, 
where the letters stand for variables or constants that are used in mathematical 
expressions. It is the study of such mathematical symbols and the rules for manip-
ulating them, and it is a powerful tool for problem solving in science, engineering 
and business. 

The origins of algebra are in work done by Islamic mathematicians during the 
Golden age in Islamic civilization, and the word “algebra” comes from the Arabic
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“al-jabr”, which appears as part of the title of a book by the Islamic mathemati-
cian, Al Khwarizmi, in the ninth century A.D. The third century A.D. Hellenistic 
mathematician, Diophantus, also did early work on algebra. 

Algebra covers many areas such as elementary algebra, linear algebra, and 
abstract algebra. Elementary algebra includes the study of symbols and rules 
for manipulating them to form valid mathematical expressions; solving simple 
equations, simultaneous equations and quadratic equations; polynomials; indices 
and logarithms. Linear algebra is concerned with the solution of a set of linear 
equations, and the study of matrices and vectors. 

We show how to solve simple equations by bringing the unknown variable to 
one side of the equation and the values to the other side. We show how simultane-
ous equations are solved by the method of substitution, the method of elimination, 
and graphical techniques. We show how to solve quadratic equations by factoriza-
tion, completing the square, the quadratic formula, and graphical techniques. We 
show how simultaneous equations and quadratic equations may be used to solve 
practical problems. 

We present the laws of indices and show the relationship between indices and 
logarithms. We discuss the exponential function ex and the natural logarithm logex 
or ln x. 

5.2 Simplification of Algebraic Expressions 

An algebraic expression is a combination of letters and symbols connected through 
various operations such as +, −, /,×, (, and). Arithmetic expressions are formed 
from terms, and like terms (i.e., terms with the same variables and exponents) may 
be added or subtracted. There are two terms in the algebraic expression below with 
the terms separated by a ‘−’. 

5x
(
2x2 + y

) − 4x(x + 2y − 1) 
term 1 term 2 

The terms may include powers of some number (e.g., x3 represents x raised to 
the power of 3, and 54 represents 5 raised to the power of 4). 

In algebra, the like terms may be added or subtracted by adding or subtracting 
the numerical coefficients of the like terms. For example, 

4x − 2x = 2x 

5x2 − 2x2 = 3x2 

5x − 2y + 3x − 2y = 8x − 4y 

4x2 − 2y3 − 3x2 + 3y3 = x2 + y3 

− (4x − 3y) = −4x + 3y 

5(3x) = (5 × 3)x = 15x
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5x · 2x = 10x2 

Algebraic expressions may be simplified. 

(ax + by)(ax − by) = aax2 + (−ab + ba)xy  − bby2 

= a2x2 − b2y2 

Therefore, 

(2x − 3y)(2x + 3y) = 22x2 − 32y2 = 4x2 − 9y2 

(a + b)(a − b) = a2 − b2 

Let P(x) = (ax + b) and Q(x) = (cx + d). Then P(x)Q(x) = 

(ax+b) (cx+d) = (ax+b) (cx+d) 

That is, 

(ax + b)(cx + d) = ax(cx + d) + b(cx + d) 
= axcx + axd + bcx + bd 

= acx2 + (ad + bc)x + bd 

A polynomial P(x) of degree n is defined as P(x) = anxn + an−s
−1 + an−2xn−2 

+  · · ·  +  a1x + a0. A polynomial may be multiplied by another, and when we 
multiply two polynomials P(x) of degree n and Q(x) of degree m together, the 
resulting polynomials is of degree n + m. 

Example 
Multiply (2a + 3b) by (a + b). 

Solution 
This is given by 2a2 + 2ab + 3ab + 3b2 = 2a2 + 5ab + 3b2. 

5.3 Simple and Simultaneous Equations 

A simple equation is an equation with one unknown, and the unknown may be on 
both the left-hand side and right-hand side of the equation. The method of solving 
such equations is to bring the unknowns to one side of the equation, and the values 
to the other side. 

Simultaneous equations are equations with two (or more) unknowns. There are 
a number of methods to finding a solution to two simultaneous equations such
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as elimination, substitution, and graphical techniques. The solution of n linear 
equations with n unknowns may be done using Gaussian elimination and matrix 
theory. 

Example 5.1 (Simple Equation) Solve the simple equation 4 − 3x = 2x − 11. 

Solution (Simple Equation) 

4 − 3x = 2x − 11 
4 − (−11) = 2x − (3x) 
4 + 11 = 2x + 3x 

15 = 5x 

3 = x 

Example 5.2 (Simple Equation) Solve the simple equation 

2y 

5 
+ 

3 

4 
+ 5 = 

1 

20 
− 

3y 

2 

Solution (Simple Equation) 

The LCM of 4, 5 and 20 is 20. We multiply both sides by 20 to get: 

20 ∗ 
2y 

5 
+ 20 ∗ 

3 

4 
+ 20 ∗ 5 = 20 ∗ 

1 

20 
− 20 ∗ 

3y 

2 
8y + 15 + 100 = 1 − 30y 

38y = −114 

y = −3 

Simple equations may be used to solve practical problems where there is one 
unknown value to be determined. The information in the problem is converted into 
a simple equation with one unknown, and the equation is then solved. 

Example 5.3 (Practical Problem—Simple Equations) The distance (in metres) trav-
elled in time t seconds is given by the formula s = ut + 1/2 at2, where u is the initial 
velocity in m/s and a is the acceleration in m/s2. Find the acceleration of the body if 
it travels 168 m in 6 s, with an initial velocity of 10 m/s. 

Solution 

Using the formula s = ut + 1/2 at2 we get: 

168 = 10 ∗ 6 + 1/2a∗62 

168 = 60 + 18a (simple equation) 
108 = 18a 

a = 6m/s2
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5.3.1 Simultaneous Equations 

Simultaneous equations are equations with two (or more) unknowns. There are 
several methods available to find a solution to the simultaneous equations including 
the method of substitution, the method of elimination, and graphical techniques. 
We start with the substitution method where we express one of the unknowns in 
terms of the other. The method of substitution involves expressing x in terms of y 
and substituting it in the other equation (or vice versa expressing y in terms of x 
and substituting it in the other equation). 

Example 5.4 (Simultaneous Equation—Substitution Method) Solve the following 
simultaneous equations by the method of substitution. 

x + 2y = −1 

4x − 3y = 18 

Solution (Simultaneous Equation—Substitution Method) 
For this example, we use the first equation to express x in terms of y. 

x + 2y = −1 

x = −1 − 2y 

We then substitute for x, i.e., instead of writing x we write (− 1 − 2y) for x in the 
second equation, and we get a simple equation involving just the unknown y. 

4(−1 − 2y) − 3y = 18 
⇒ −4 − 8y − 3y = 18 
⇒ −11y = 18 + 4 
⇒ −11y = 22 
⇒ y = −2 

We then obtain the value of x from the substitution: 

x = −1 − 2y 

⇒ x = −1 − 2(−2) 
⇒ x = −1 + 4 
⇒ x = 3 

We can then verify that our solution is correct by checking our answer for both 
equations. 

3 + 2(−2) = −1 √
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4(3) − 3(−2) = 18 √

The approach of the method of elimination is to manipulate both equations so that 
we may eliminate either x or y, and so reduce the equations to a simple equation of 
one unknown value of x or y. This is best seen by an example. 

Example 5.5 (Simultaneous Equation—Method of Elimination) Solve the following 
simultaneous equations by the method of elimination. 

3x + 4y = 5 
2x − 5y = −12 

Solution (Simultaneous Equation—Method of Elimination) 
We will use the method of elimination in this example to eliminate x, and so we 

multiply Eq. (5.1) by 2 and Eq. (5.2) by  − 3, and this yields two equations which 
have equal but opposite coefficients of x. 

6x + 8y = 10 
− 6x + 15y = 36 
− − − − − − − −  
0x + 23y = 46 

y = 2 

We then add both equations together and conclude that y = 2. We then determine 
the value of x by replacing y with 2 in the first equation. 

3x + 4(2) = 5 
3x + 8 = 5 
3x = 5 − 8 
3x = −3 

x = −1 

We can then verify that our solution is correct as before by checking our answer 
for both equations. 

Each simultaneous equation represents a straight line, and so the solution to the 
two simultaneous equations satisfies both equations and so is on both lines, i.e., the 
solution is the point of intersection of both lines (if there is such a point). Therefore, 
the solution involves drawing each line and finding the point of intersection of both 
lines (Fig. 5.1).
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X 

Y 

•
•

x +2y=-1

•

•

4x-3y=-18 

solution 

Fig. 5.1 Graphical solution to simultaneous equations 

Example 5.6 (Simultaneous Equation—Graphical Techniques) Find the solution to 
the following simultaneous equations using graphical techniques: 

x + 2y = −1 

4x − 3y = 18 

Solution (Simultaneous Equation—Graphical Techniques) 
First we find two points on line 1, e.g., (0, − 0.5) and (− 1, 0) are on line 1, since 

when x = 0 we have 2y = −  1 and so y = −  0.5. Similarly, when y = 0 we have  x 
= −  1. Next we find two points on line 2, e.g., when x is 0 y is − 6 and when y is 0 
we have x = 4.5 and so the points (0, − 6) and (4.5, 0) are on line 2. 

We then draw the X-axis and the Y-axis, draw the scales on the axes, label the 
axes, plot the points and draw both lines. Finally, we find the point of intersection 
of both lines (if there is such a point), and this is our solution to the simultaneous 
equations. 

The graph shows that the two lines intersect, and so we need to determine the 
point of intersection, and this involves determining the x and y coordinates of the 
solution which is given by x = 3 and y =− 2. The solution using graphical techniques 
requires care (as inaccuracies may be introduced from poor drawing) and graph paper 
is required for accuracy. 

The solution to practical problems often involves solving two simultaneous 
equations.
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Example 5.7 (Simultaneous Equation—Problem Solving) Three new cars and four 
new vans supplied to a dealer together cost £97,000, and five new cars and two new 
vans of the same models cost £103,100. Find the cost of a car and a van. 

Solution (Simultaneous Equation—Problem Solving) 

We let C represent the cost of a car and V represent the cost of a van. We convert 
the information provided into two equations with two unknowns and then solve for 
V and C. 

3C + 4V = 97,000 (5.1) 

5C + 2V = 103,100 (5.2) 

We multiply Eq. (5.2) by  − 2 and add to Eq. (5.1) to eliminate V 

3C + 4V = 97,000 
− 10C − 4V = −206,200 

− − − − − − − − − − − −−  
− 7C = −109,200 

C = £15,600 

We then calculate the cost of a van by substituting the value of C in Eq. (5.2) to  
reduce it to an equation of one unknown. 

5C + 2V = 103,100 
78,000 + 2V = 103,100 
2V = 25,100 
V = £12,550 

Therefore, the cost of a car is £15,600, and the cost of a van is £12,550. 

5.4 Quadratic Equations 

A quadratic equation is an equation of the form ax2 + bx + c = 0, and solving 
the quadratic equation is concerned with finding the unknown value x (roots of 
the quadratic equation). There may be no solution, one solution (a double root), 
or two solutions. There are several techniques for solving quadratic equations 
such as factorization; completing the square; the quadratic formula; and graphical 
techniques.



5.4 Quadratic Equations 93

Example 5.8 (Quadratic Equations—Factorization) Solve the quadratic Eq. 3x2 

– 11x –4 = 0 by factorization. 

Solution (Quadratic Equations—Factorization) 

The approach taken is to find the factors of the quadratic equation. Sometimes this 
is easy, but often other techniques will need to be employed. For the above quadratic 
equation we note immediately that its factors are (3x + 1)(x − 4) since 

(3x + 1)(x − 4) 
= 3x2 − 12x + x − 4 
= 3x2 − 11x − 4 

Next, we note the property that if the product of two numbers A and B is 0 then 
either A is 0 or  B is 0. Another words, AB = 0 ⇒ A = 0 or  B = 0. We conclude from 
this property that as: 

3x2 − 11x − 4 = 0 
⇒ (3x + 1)(x − 4) = 0 
⇒ (3x + 1) = 0 or  (x − 4) = 0 
⇒ 3x = −1 or  x = 4 
⇒ x = −0.33 or x = 4 

Therefore, the solution (or roots) of the quadratic equation 3x2 − 11x − 4 = 0 is  
x = −  0.33 or x = 4. 

Example 5.9 (Quadratic Equations—Completing the Square) Solve the quadratic 
equation 2x2 + 5x − 3 = 0 by completing the square. 

Solution (Quadratic Equations—Completing the Square) 

First we convert the quadratic equation to an equivalent quadratic with a unary 
coefficient of x2. This involves division by 2. Next, we examine the coefficient of x 
(in this case 5/2), and we add the square of half the coefficient of x to both sides. This 
allows us to complete the square, and we then to take the square root of both sides. 
Finally, we solve for x. 

2x2 + 5x − 3 = 0 
⇒ x2 + 5/2x − 3/2 = 0 
⇒ x2 + 5/2x = 3/2 
⇒ x2 + 5/2x + (5/4)2 = 3/2 + (5/4)2 

⇒ (x + 5/4)2 = 3/2 + (25/16) 
⇒ (x + 5/4)2 = 24/16 + (25/16)
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⇒ (x + 5/4)2 = 49/16 
⇒ (x + 5/4) = ±7/4 

⇒ x = −5/4 ± 7/4 
⇒ x = −5/4 − 7/4 or  x = −5/4 + 7/4 
⇒ x = −12/4 or  x = 2/4 
⇒ x = −3 or  x = 0.5 

Example 5.10 (Quadratic Equations—Quadratic Formula) Establish the quadratic 
formula for solving quadratic equations. 

Solution (Quadratic Equations—Quadratic Formula) 

We complete the square, and the result will follow. 

ax2 + bx + c = 0 
⇒ x2 + b/a x  + c/a = 0 
⇒ x2 + b/a x  = −c/a 

⇒ x2 + b/a x  + (b/2a)2 = −c/a + (b/2a)2 

⇒ (x + b/2a)2 = −c/a + (b/2a)2 

⇒ (x + b/2a)2 = 
−4ac 

4a2 + 
b2 

4a2 

⇒ (x + b/2a)2 = 
b2 − 4ac 

4a2 

⇒ (x + b/2a) = ±  
√

b2 − 4ac 

2a 

⇒ x = 
−b ± 

√
b2 − 4ac 

2a 
. 

Example 5.11 (Quadratic Equations—Quadratic Formula) Solve the quadratic 
equation 2x2 + 5x − 3 = 0 using the quadratic formula. 

Solution (Quadratic Equations—Quadratic Formula) 

For this example a = 2; b = 5; and c = −  3, and we put these values into the quadratic 
formula. 

x = 
−5 ± 

√ 
52 − 4.2.(−3) 
2.2

= 
−5 ± √

25 + 24 
4 

x = 
−5 ± 

√
49 

4
= 

−5 ± 7 
4 

x = 0.5 or  x = −3.
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Table 5.1 Table of values for quadratic equation 

x − 3 − 2 − 1 0 1 2 3 

y = 2x2 – x − 6 15 4 − 3 − 6 − 5 0 9 

Fig. 5.2 Graphical solution 
to quadratic equation 

X 

Y 

2x2 –x –6=0 

Example 5.12 (Quadratic Equations—Graphical Techniques) Solve the quadratic 
equation 2x2 – x − 6 = 0 using graphical techniques given that the roots of the 
quadratic equation lie between x = −  3 and x = 3. 

Solution (Quadratic Equations—Graphical Techniques) 

The approach is first to create a table of values for the curve y = 2x2 – x – 6 (Table 
5.1), and to draw the X- and Y-axis and scales, and then to plot the points from the 
table of values, and to join the points together to form the curve (Fig. 5.2). 

The graphical solution is to the quadratic equation is then given by the points 
where the curve intersects the X-axis (i.e., y = 0 on the X-axis). There may be no 
solution (i.e., the curve does not intersect the X-axis), one solution (a double root), 
or two solutions. 

The graph for the curve y = 2x2 – x − 6 is given in Table 5.1, and so the points 
where the curve intersects the X-axis are determined. We note from the graph that 
the curve intersects the X-axis at two distinct points, and we see from the graph 
that the roots of the quadratic equation are given by x = −  1.5 and x = 2. 

The solution to quadratic equations using graphical techniques requires care in 
the plotting the points (as in determining the solution to simultaneous equations 
using graphical techniques), and graph paper is required for accuracy. 

Quadratic equations often arise in solving practical problems as the following 
example shows.
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Example 5.13 (Quadratic Equations—Practical Problem) A shed is 7.0 m long and 
5.0 m wide. A concrete path of constant width x is laid all the way around the shed, 
and the area of the path is 30 m2. Calculate its width x to the nearest centimeter (and 
use the quadratic formula). 

Solution (Quadratic Equations—Practical Problem) 

Let x be the width of the path. Then the area of the path is the difference in area 
between the area of the large rectangle and the shed. We let AS denote the area of 
the shed and let AS+P denote the area of the large rectangle (i.e., the area of the shed 
+ the area of the path). 

AS = 7 ∗ 5 = 35 
AS+P = (7 + 2x)(5 + 2x) 

= 35 + 14x + 10x + 4x2 

= 35 + 24x + 4x2 

AP = 30 
= AS+P − AS 

⇒ 35 + 24x + 4x2 − 35 = 30 
⇒ −30 + 24x + 4x2 = 0 
⇒ 4x2 + 24x − 30 = 0 
⇒ x = 0.91 m (from the quadratic formula). 

5.5 Indices and Logarithms 

The product a.a.a.a…a (n times) is denoted by an, and the number n is the index 
of a. The following are properties of indices. 

a0 = 1 
am+n = am · an 

amn = (
am)n
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a−n = 
1 

an 

a 
1 
n = n

√
a 

Logarithms are closely related to indices, and if the number b can be written in 
the form b = ax, then we say that log to the base a of b is x, i.e., loga b = x ⇔ 
ax = b. Clearly, log10 100 = 2 since 102 = 100. The following are properties of 
logarithms 

loga AB = loga A + loga B 

loga A
n = n loga A 

log 
A 

B 
= log A − log B 

We will prove the first property of logarithms. Suppose logaA = x and logaB 
= y. Then A = ax and B = ay and so AB = axay = ax+y and so loga AB = x + y 
= logaA + logaB. 

Example 5.14 Solve log21/64 without a calculator 

Solution 

log2 1/64 = x 

⇒ 2x = 1/64 
⇒ 2x = 1/4 × 4 × 4 
⇒ 2x = 1/2 × 2 × 2 × 2 × 2 × 2 
⇒ 2x = 1/26 

⇒ 2x = 2−6 

⇒ x = −6. 

Example 5.15 Write log
{
16× 3

√
5 

81

}
in terms of log 2, log 3, and log 5 to any base. 

Solution 

log

{
16 × 3

√
5 

81

}

= log 16 + 1/3 log 5 − log 81 
= log 24 + 1/3 log 5 − log 34 

= 4 log 2 + 1/3 log 5 − 4 log 3 

The law of logarithms may be used to solve certain indicial equations, and we 
illustrate this with two examples.
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Example 5.16 (Indicial Equations) Solve the equation log(x − 4) + log(x + 2) = 
2 log (x − 2). 

Solution 

log(x − 4) + log(x + 2) = 2 log(x − 2) 
⇒ log(x − 4)(x + 2) = log(x − 2)2 

⇒ log
(
x2 − 2x − 8

) = log
(
x2 − 4x + 4

)

⇒ x2 − 2x − 8 = x2 − 4x + 4 
⇒ −2x − 8 = −4x + 4 
⇒ 2x = 12 
⇒ x = 6. 

Example 5.17 (Indicial Equations) Solve the equation 2x = 3, correct to 4 significant 
places. 

Solution 

2x = 3 
⇒ log10 2x = log10 3 
⇒ x log10 2 = log10 3 

⇒ x = 
log10 3 

log10 2 

= 
0.4771 

0.3010 
⇒ x = 1.585. 

5.6 Exponentials and Natural Logarithms 

The number e is a mathematical constant that occurs frequently in mathematics 
and its value is approximately equal to 2.7183 (it is an irrational number). The 
exponential function ex (where e is the base and x is the exponent) is widely 
used in mathematics and science, and especially in problems involving growth and 
decay. The exponential function has the property that it is the unique function that 
is equal to its own derivative (i.e., d/dx ex = ex). The number e is the base of the 
natural logarithm, and e is sometimes called Euler’s number or Euler’s constant.
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The value of the exponential function may be determined from its power series, 
and the value of e0.1 may be determined by substituting 0.1 for x in the power 
series. However, it is more common to determine its value by using a scientific 
calculator which contains the ex function. 

ex = 1 + x + 
x2 

2! + · · ·  +  
xn +  · · ·  

n! 
Logarithms to the base e are termed natural logarithms (or Napierian logs). The 

natural logarithm of x is written as logex or more commonly as ln x. 

Example 5.18 (Natural Logs) Solve the equation 7 = 4e−3x to find x, correct to 4 
decimal places. 

Solution (Natural Logs) 

7 = 4e−3x 

⇒ 7/4 = e−3x 

⇒ ln(1.75) = ln
(
e−3x) = −3x 

0.55966 = −3x 

x = −0.1865. 

Example 5.19 (Practical Problem) The length of a bar, l, at a temperature θ is given 
by l = l0 eαθ , where l0 and α are constants. Evaluate l, correct to four significant 
figures, when l0 = 2.587, θ = 321.7 and α = 1.771×10–4. 

Solution (Practical Problem) 

l = l0eαθ , 

= 2.587e1.771×10−4∗321.7 

= 2.587 ∗ 0.56973 
= 1.4739. 

5.7 Horner’s Method for Polynomials 

Horner’s method is a computationally efficient way to evaluate a polynomial func-
tion. It is named after William Horner who was a nineteenth century British 
mathematician and schoolmaster. Chinese mathematicians were familiar with the 
method in the third century A.D. 

The normal method for the evaluation of a polynomial involves computing 
exponentials, and this is computationally expensive. Horner’s method has the 
advantage that fewer calculations are required, and it eliminates all exponentials
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by using nested multiplication and addition. It also provides a computationally 
efficient way to determine the derivative of the polynomial. 

Horner’s Method and Algorithm 
Consider a polynomial P(x) of degree n defined by: 

P(x) = an xn + an−1xn−1 + an−2xn−2 +  · · ·  +  a1x + a0 

The Horner method to evaluate P(x0) essentially involves writing P(x) as: 

P(x) = ((((((an x + an−1)x + an−2)x +  · · ·  +  a1)x + a0 

The computation of P(x0) involves defining a set of coefficients bk such that: 

bm = an 

bn−1 = an−1 + bn x0 
· · ·  
bk = ak + bk+1x0 
· · ·  
b1 = a1 + b2x0 
b0 = a0 + b1x0 

Then the computation of P(x0) is given by: 

P(x0) = b0 

Further, if Q(x) = bn xn−1 + bn−1xn−2 + bn−2xn−3 + · · ·  +  b1 then it is easy 
to verify that: 

P(x) = (x − x0)Q(x) + b0 

This also allows the derivative of P(x) to be easily computed for x0 since: 

P ,(x) = Q(x) + (x − x0)Q,(x) 
P ,(x0) = Q(x0) 

Algorithm (To evaluate polynomial and its derivative) 

(i) Initialize y to an and z to an (Compute bn for P and bn-1 for Q) 
(ii) For each j from n − 1, n − 2 to 1 compute bj for P and bj−1 for Q by 

Set y to x0y + aj (i.e., bj for P) and z to x0z + y (i.e., bj−1 for Q) 
(iii) Compute b0 by setting y to x0y + a0 

Then P(x0) = y and P,(x0) = z.
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5.8 Abstract Algebra 

One of the important features of modern mathematics is the power of abstraction. 
This has opened up whole new areas of mathematics, and it has led to a large 
body of new results and problems. The term “abstract” is subjective, as what is 
abstract to one person may be quite concrete to another. We shall introduce some 
important algebraic structures in this section including monoids, groups, rings, 
fields, and vector spaces. Chapter 21 will show how abstract structures such as 
vector spaces may be used for error correcting codes in coding theory. 

5.8.1 Monoids and Groups 

A non-empty set M together with a binary operation ‘*’ is called a monoid if for 
all elements a, b, c∈M the following properties hold: 

(1) a ∗ b ∈ M (Closure property) 
(2) a ∗ (b ∗ c) = (a ∗ b) ∗ c (Associative property) 
(3) ∃u ∈ M such that: a ∗ u = u ∗ a = a(∀a ∈ M) (Identity Element) 

A monoid is commutative if a * b = b * a for all a, b∈M. A  semi-group (M, *) is  
a set with a binary operation ‘*’ such that the closure and associativity properties 
hold (but it may not have an identity element). 

Example 5.20 (Monoids) 

(i) The set of sequences Σ* under concatenation with the empty sequence Λ the 
identity element. 

(ii) The set of integers under addition forms an infinite monoid in which 0 is the 
identity element. 

A non-empty set G together with a binary operation ‘*’ is called a group if for 
all elements a, b, c∈G the following properties hold 

(1) a ∗ b ∈ G (Closure property) 
(2) a ∗ (b ∗ c) = (a ∗ b) ∗ c (Associative property) 
(3) ∃e ∈ G such that: a ∗ e = e ∗ a = a(∀a ∈ G) (Identity Element) 
(4) For every a ∈ G, ∃a−1 ∈ G , such that: a ∗ a−1 = a−1 ∗ a = 

e (Inverse Element) 

The identity element is unique, and the inverse a−1 of an element a is unique (see 
Exercise 5). A commutative group has the additional property that a * b = b * 
a for all a, b∈G. The order of a group G is the number of elements in G and is 
denoted by o(G). If the order of G is finite then G is said to be a finite group.
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Example 5.21 (Groups) 

(i) The set of integers under addition (Z, +) forms an infinite group in which 0 is 
the identity element. 

(ii) The set of integer 2 × 2 matrices under addition, where the identity element is(
0 0  
0 0

)

(iii) The set of integers under multiplication (Z,×) forms an infinite monoid with 1 
as the identity element. 

A cyclic group is a group where all elements g∈G are obtained from the powers ai 

of one element a∈ G, with a0 = e. The element ‘a’ is termed the generator of the 
cyclic group G. A finite cyclic group with n elements is of the form {a0, a1, a2, …,  
an−1}. 

A non-empty subset H of a group G is said to be a subgroup of G if for all 
a, b∈H then a * b∈H, and for any a∈H then a−1 ∈H. A subgroup N is termed 
a normal subgroup of G if gng−1 ∈N for all g∈G and all n∈N. Further, if G is 
a group and N is a normal subgroup of G, then the quotient group G/N may be 
formed. 

Lagrange’s theorem states the relationship between the order of a subgroup H 
of G, and the order of G. The theorem states that if G is a finite group, and H is a 
subgroup of G, then o(H) is a divisor of o(G). 

We may also define mapping between similar algebraic structures termed homo-
morphism, and these mapping preserve structure. If the homomorphism is one to 
one and onto it is termed an isomorphism, which means that the two structures are 
identical in some sense (apart from a relabelling of elements). 

5.8.2 Rings 

A ring is a non-empty set R together with two binary operations ‘+’ and ‘×’ 
where (R, +) is a commutative group; (R,×) is a semi-group; and the left and 
right distributive laws hold. Specifically, for all elements a, b, c∈R the following 
properties hold: 

(1) a + b ∈ R (Closure property) 
(2) a + (b + c) = (a + b) + c (Associative property) 
(3) ∃0 ∈ R such that ∀a ∈ R: a + 0 = 0 + a = a (Identity property) 
(4) ∀a ∈ R : ∃(−a) ∈ R: a + (−a) = (−a) + a = 0 (Inverse Element) 
(5) a + b = b + a (Commutativity) 
(6) a × b ∈ R (Closure property) 
(7) a × (b × c) = (a × b) × c (Associative property) 
(8) a × (b + c) = a × b + a × c (Distributive Law) 
(9) (b + c) × a = b × a + c × a (Distributive Law)
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The element 0 is the identity element under addition, and the additive inverse of 
an element a is given by− a. If a ring (R,×, +) has a multiplicative identity 1 
where a×1 = 1×a = a for all a∈R then R is termed a ring with a unit element. 
If a×b = b×a for all a, b∈R then R is termed a commutative ring. 

An element a /= 0 in a ring R is said to be a zero divisor if there exists b∈R, 
with b /=0 such that ab = 0. A commutative ring is an integral domain if it has 
no zero divisors. A ring is said to be a division ring if its nonzero elements form 
a group under multiplication. 

Example 5.22 (Rings) 

(i) The set of integers (Z, +,×) forms an infinite commutative ring with multi-
plicative unit element 1. Further, since it has no zero divisors it is an integral 
domain. 

(ii) The set of integers mod 4 (i.e., Z4 where addition and multiplication is per-
formed modulo 4)1 is a finite commutative ring with unit element [1]4. Its 
elements are {[0]4, [1]4, [2]4, [3]4}. It has zero divisors since [2]4[2]4 = [0]4 
and so it is not an integral domain. 

(iii) The quaternions (discussed in Chap. 28) are an example of a non-commutative 
ring (they form a division ring). 

(iv) The set of integers mod 5 (i.e., Z5 where addition and multiplication is per-
formed modulo 5) is a finite commutative division ring,2 and it has no zero 
divisors. 

5.8.3 Fields 

A field is a non-empty set F together with two binary operation ‘+’ and ‘×’ 
where (F, +) is a commutative group; (F \{0},×) is a commutative group; and 
the distributive properties hold. The properties of a field are: 

(1) a + b ∈ F (Closure property) 
(2) a + (b + c) = (a + b) + c (Associative property) 
(3) ∃0 ∈ F such that ∀a ∈ F : a + 0 = 0 + a = a (Identity Element) 
(4) ∀a ∈ F : ∃(−a) ∈ Fa + (−a) = (−a) + a = 0 (Inverse Element) 
(5) a + b = b + a (Commutativity) 
(6) a × b ∈ F (Closure property) 
(7) a × (b × c) = (a × b) × c (Associative property) 
(8) ∃1 ∈ F such that ∀a ∈ Fa × 1 = 1 × a = a (Identity Element)

1 Recall that Z/nZ = Zn = {[a]n : 0 ≤ a ≤ n − 1} = {[0]n , [1]n , . . . ,  [n − 1]n}. 
2 A finite division ring is actually a field (i.e., it is commutative under multiplication), and this 
classic result was proved by Wedderburn. 
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(9) ∀a ∈ F\{0}∃a−1 ∈ Fa × a−1 = a−1 × a = 1 (Inverse Element) 
(10) a × b = b × a (Commutativity) 
(11) a × (b + c) = a × b + a × c (Distributive Law) 
(12) (b + c) × a = b × a + c × a (Distributive Law) 

The following are examples of fields: 

Example 5.23 (Fields) 

(i) The set of rational numbers (Q, +, ×) forms an infinite commutative field. The 
additive identity is 0, and the multiplicative identity is 1. 

(ii) The set of real numbers (R, +, ×) forms an infinite commutative field. The 
additive identity is 0, and the multiplicative identity is 1. 

(iii) The set of complex numbers (C, +,×) forms an infinite commutative field. The 
additive identity is 0, and the multiplicative identity is 1. 

(iv) The set of integers mod 7 (i.e., Z7 where addition and multiplication is 
performed mod 7) is a finite field. 

(v) The set of integers mod p where p is a prime (i.e., Zp where addition and 
multiplication is performed mod p) is a finite field with p elements. The additive 
identity is [0], and the multiplicative identity is [1]. 

A field is a commutative division ring but not every division ring is a field. For 
example, the quaternions (discovered by Hamilton) are an example of a division 
ring, which is not a field (quaternion multiplication is not commutative). If the 
number of elements in the field F is finite then F is called a finite field, and F is 
written as Fq where q is the number of elements in F. In fact, every finite field 
has q = pk elements for some prime p, and some k ∈N and k > 0.  

5.8.4 Vector Spaces 

A non-empty set V is said to be a vector space over a field F if V is a commutative 
group under vector addition + , and if for every α∈F, v∈V there is an element 
αv in V such that the following properties hold for v, w∈ V and α, β ∈F: 

1. u + v ∈ V (Closure property) 
2. u + (v + w) = (u + v) + w (Associative) 
3. ∃0 ∈ V such that ∀v ∈ V + 0 = 0 + v = v (Identity element) 
4. ∀v ∈ V : ∃(−v) ∈ V such that v + (−v) = (−v) + v = 0 (Inverse) 
5. v + w = w + v (Commutative) 
6. α(v + w) = αv + αw 
7. (α + β)v = αv + βv 
8. α(βv) = (αβ)v 
9. 1v = v
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The elements in V are referred to as vectors and the elements in F are referred 
to as scalars. The element 1 refers to the identity element of the field F under 
multiplication. A normed vector space is a vector space where a norm is defined 
(the norm is similar to the distance function). 

Application of Vector Spaces to Coding Theory 
The representation of codewords in coding theory (discussed in Chap. 21) is by  
n-dimensional vectors over the finite field Fq. A codeword vector v is represented 
as the n-tuple: 

v = (a0, a1, . . . ,  an−1) 

where each ai ∈Fq. The set of all n-dimensional vectors is the n-dimensional vector 
space Fn 

q with qn elements. The addition of two vectors v and w, where v = (a0, 
a1,… an−1) and w = (b0, b1,… bn−1) is given by: 

v + w = (a0 + b0, a1 + b1, . . . ,  an−1bn−1) 

The scalar multiplication of a vector v = (a0, a1,… an−1) ∈ Fn 
q by a scalar 

β ∈Fq is given by: 

βv = (βa0, βa1, . . . βan−1) 

The set Fn 
q is called the vector space over the finite field Fq if the vector space 

properties above hold. A finite set of vectors v1,v2,…vk is said to be linearly 
independent if 

β1v1 + β2v2 +  · · ·  +  βk vk = 0 ⇒ β1 = β2 = . . . βk = 0 

Otherwise, the set of vectors v1,v2,… vk is said to be linearly dependent. 
A non-empty subset W of a vector space V (W ⊆V ) is said to be a subspace of 

V, if  W forms a vector space over F under the operations of V. This is equivalent 
to W being closed under vector addition and scalar multiplication, i.e., w1, w2 ∈W, 
α, β ∈F then αw1 + βw2 ∈W. 

The dimension (dim W ) of a subspace W ⊆V is k if there are k linearly inde-
pendent vectors in W but every k + 1 vectors are linearly dependent. A subset 
of a vector space is a basis for V if it consists of linearly independent vectors, 
and its linear span is V (i.e., the basis generates V ). We shall employ the basis 
of the vector space of codewords (see Chap. 21) to create the generator matrix to 
simplify the encoding of the information words. The linear span of a set of vectors 
v1,v2,…,vk is defined as β1v1 + β2v2 + · · ·  +  βkvk .
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Example 5.24 (Vector Spaces) 

(i) The real coordinate space Rn forms an n-dimensional vector space over R. The 
elements of Rn are the set of all n tuples of elements of R, where an element x 
in Rn is written as: 

x = (x1, x2, . . .  xn) 

where each xi ∈R and vector addition and scalar multiplication are given by: 

αx = (αx1, αx2, . . . , αxn) 
x + y = (x1 + y1, x2 + y2 . . .  xn + yn) 

(ii) The set of m×n matrices over the real numbers forms a vector space, with vector 
addition given by matrix addition, and the multiplication of a matrix by a scalar 
given by the multiplication of each entry in the matrix by the scalar. 

5.9 Review Questions 

1. Solve the simple equation: 4(3x + 1) = 7(x + 4) − 2(x + 5) 
2. Solve the following simultaneous equations by 

x + 2y = −1 

4x − 3y = 18 

3. Solve the quadratic Eq. 3x2 + 5x − 2 = 0 given that the solution is 
between x = −  3 and x = 3 by: 
(a) Graphical techniques 
(b) Factorization 
(c) Quadratic Formula 

4. Solve the following indicial equation using logarithms 

2x=1 = 32x−1 

5. Explain the differences between semigroups, monoids and groups. 
6. Show that the following properties are true for groups. 

(i) The identity element is unique in a group. 
(ii) The inverse of an element is unique in a group. 

7. Explain the differences between rings, commutative rings, integral 
domains, division rings and fields. 

8. What is a vector space?
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9. Explain how vector spaces may be applied to coding theory (see Chap. 11 
for more details). 

5.10 Summary 

This chapter provided a brief introduction to algebra, which is the branch of math-
ematics that studies mathematical symbols and the rules for manipulating them. 
Algebra is a powerful tool for problem solving in science and engineering. 

Elementary algebra includes the study of simultaneous equations (i.e., two or 
more equations with two or more unknowns); the solution of quadratic equations 
ax2 + bx + c = 0; and the study of polynomials, indices and logarithms. Linear 
algebra is concerned with the solution of a set of linear equations, and the study 
of matrices and vector spaces. 

Abstract algebra is concerned with the study of abstract algebraic structures 
such as monoids, groups, rings, integral domains, fields, and vector spaces. The 
abstract approach in modern mathematics has opened up whole new areas of math-
ematics as well as applications in areas such as coding theory in the computing 
field.
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Key Topics 
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Base Case 

Inductive Step 

Recursion 

Recursive Definition 

Structural Induction 

6.1 Introduction 

Mathematical induction is an important proof technique used in mathematics, and 
it is often used to establish the truth of a statement for all natural numbers. There 
are two parts to a proof by induction, and these are the base step and the inductive 
step. The base case involves showing that the statement is true for some natural 
number (usually the number 1). The second step is termed the inductive step, and 
it involves showing that if the statement is true for some natural number n = k, 
then the statement is true for its successor n = k + 1. This is often written as 
P(k) → P(k + 1). 

The statement P(k) that is assumed to be true when n = k is termed the 
inductive hypothesis. From the base step and the inductive step, we infer that the
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statement is true for all natural numbers (that are greater than or equal to the num-
ber specified in the base case). Formally, the proof technique used in mathematical 
induction is of the form1 : 

(P(1) ∧ (P(k) → P(k + 1)) → ∀nP(n). 

Mathematical induction (weak induction) may be used to prove a wide variety 
of theorems and especially theorems of the form ∀nP(n). It may be used to provide 
a proof of theorems about summation formulae, inequalities, set theory, and the 
correctness of algorithms and computer programs. One of the earliest inductive 
proofs was the sixteenth-century proof that the sum of the first n odd integers 
is n2, which was proved by Francesco Maurolico in 1575. Later mathematicians 
made the method of mathematical induction more precise. 

We distinguish between strong induction and weak induction, where strong 
induction also has a base case and an inductive step, but the inductive step is 
a little different. It involves showing that if the statement is true for all natural 
numbers less than or equal to an arbitrary number k, then the statement is true 
for its successor k + 1. Weak induction involves showing that if the statement is 
true for some natural number n = k, then the statement is true for its successor n 
= k + 1.  Structural induction is another form of induction, and this mathematical 
technique is used to prove properties about recursively defined sets and structures. 

Recursion is often used in mathematics to define functions, sequences, and sets. 
However, care is required with a recursive definition to ensure that it actually 
defines something, and that what is defined makes sense. Recursion defines a con-
cept in terms of itself, and we need to ensure that the definition is not circular (i.e., 
that it does not lead to a vicious circle). 

Recursion and induction are closely related and are often used together. Recur-
sion is extremely useful in developing algorithms for solving complex problems, 
and induction is a useful technique in verifying the correctness of such algorithms. 

Example 6.1 Show that the sum of the first n natural numbers is given by the formula: 

1 + 2 + 3 +  · · ·  +  n = 
n(n + 1) 

2 

Proof 
Base Case 

We consider the case where n = 1 and clearly 1 = 1(1+1) 
2 and so the base case P(1) 

is true.

1 This definition of mathematical induction covers the base case of n = 1 and would need to be 
adjusted if the number specified in the base case is higher. 
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Inductive Step 

Suppose the result is true for some number k, then we have P(k) 

1 + 2 + 3 + · · ·  +  k = 
k(k + 1) 

2 

Then consider the sum of the first k+1 natural numbers, and we use the inductive 
hypothesis to show that its sum is given by the formula. 

1 + 2 + 3 + · · ·  +  k + (k + 1) 

= 
k(k + 1) 

2
+ (k + 1) (by inductive hypothesis) 

= 
k2 + k 

2 
+ 

(2k + 2) 
2 

= 
k2 + 3k + 2 

2 

= 
(k + 1)(k + 2) 

2 

Thus, we have shown that if the formula is true for an arbitrary natural number 
k, then it is true for its successor k + 1. That is, P(k) → P(k+1). We have shown 
that P(1) is true, and so it follows from mathematical induction that P(2), P(3), …. 
are true, and so P(n) is true, for all natural numbers and the theorem is established. 

Note 6.1 There are opportunities to make errors in proofs with induction, and the 
most common mistakes are not to complete the base case or inductive step correctly. 
These errors can lead to strange results, and so care is required. It is important to be 
precise in the statements of the base case and inductive step. 

Example 6.2 (Binomial Theorem) Prove the binomial theorem using induction 
(permutations and combinations are discussed in Chap. 8). That is, 

(1 + x)n = 1 +
(
n 
1

)
x +

(
n 
2

)
x2 + · · ·  +

(
n 
r

)
xr +  · · ·  +

(
n 
n

)
xn 

Proof 
Base Case 

We consider the case where n = 1 and clearly (1 + x)1 = (1 + x) = 1 +
(
1 
1

)
x1, 

and so the base case P(1) is true. 

Inductive Step
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Suppose the result is true for some number k, then we have P(k) 

(1 + x)k = 1 +
(
k 
1

)
x +

(
k 
2

)
x2 +  · · ·  +

(
k 
r

)
xr +  · · ·  +

(
k 
k

)
xk 

Then consider (1 + x)k+1 and we use the inductive hypothesis to show that it is 
given by the formula. 

(1 + x)k+1 = (1 + x)k (1 + x) 

=
(
1 +

(
k 
1

)
x +

(
k 
2

)
x2 +  · · ·  +

(
k 
r

)
xr +  · · ·  +

(
k 
k

)
xk

)
(1 + x) 

=
(
1 +

(
k 
1

)
x +

(
k 
2

)
x2 +  · · ·  +

(
k 
r

)
xr +  · · ·  +

(
k 
k

)
xk

)

+ x +
(
k 
1

)
x2 +  · · ·  +

(
k 
r

)
xr+1 +  · · ·  +

(
k 
k

)
xk+1 

= 1 +
(
k 
1

)
x +

(
k 
2

)
x2 +  · · ·  +

(
k 
r

)
xr +  · · ·  +

(
k 
k

)
xk 

+
(
k 
0

)
x +

(
k 
1

)
x2 +  · · ·  +

(
k 

r − 1

)
xr +  · · ·  +

(
k 

k − 1

)
xk +

(
k 
k

)
xk+1 

= 1 +
(
k + 1 
1

)
x +  · · ·  +

(
k + 1 
r

)
xr +  · · ·  +

(
k + 1 
k

)
xk +

(
k + 1 
k + 1

)
xk+1 

(which follows from Exercise 7 below). 

Thus, we have shown that if the binomial theorem is true for an arbitrary natural 
number k, then it is true for its successor k+1. That is, P(k) → P(k+1). We have 
shown that P(1) is true, and so it follows from mathematical induction that P(n) 
is true, for all natural numbers, and so the theorem is established. 

The standard formula of the binomial theorem (x + y)n follows immediately 
from the formula for (1 + x)n, by noting that (x + y)n = {x(1 + y/x)}n = xn(1 + 
y/x)n. 

6.2 Strong Induction 

Strong induction is another form of mathematical induction, which is often 
employed when we cannot prove a result with (weak) mathematical induction. 
It is similar to weak induction in that there is a base step and an inductive step. 
The base step is identical to weak mathematical induction, and it involves show-
ing that the statement is true for some natural number (usually the number 1). The 
inductive step is a little different, and it involves showing that if the statement is
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true for all natural numbers less than or equal to an arbitrary number k, then the 
statement is true for its successor k + 1. This is often written as (P(1) ∧ P(2) ∧ 
… ∧ P(k)) → P(k + 1). 

From the base step and the inductive step, we infer that the statement is true 
for all natural numbers (that are greater than or equal to the number specified in 
the base case). Formally, the proof technique used in mathematical induction is of 
the form2 : 

(P(1) ∧ [(P(1) ∧ P(2) ∧ · · ·  ∧  P(k)) → P(k + 1)]) → ∀nP(n). 

Strong and weak mathematical induction are equivalent in that any proof done 
by weak mathematical induction may also be considered a proof using strong 
induction, and a proof conducted with strong induction may also be converted into 
a proof using weak induction. 

Weak mathematical induction is generally employed when it is reasonably clear 
how to prove P(k + 1) from P(k), with strong mathematical typically employed 
where it is not so obvious. The validity of both forms of mathematical induction 
follows from the well-ordering property of the natural numbers, which states that 
every non-empty set has a least element. 

Well-Ordering Principle 
Every non-empty set of natural numbers has a least element. The well-ordering 
principle is equivalent to the principle of mathematical induction. 

Example 6.3 Show that every natural number greater than one is divisible by a prime 
number. 

Proof 
Base Case 

We consider the case of n = 2 which is trivially true, since 2 is a prime number and 
is divisible by itself. 

Inductive Step (strong induction) 

Suppose that the result is true for every number less than or equal to k. Then we 
consider k + 1, and there are there are two cases to consider. If k + 1 is prime, then it 
is divisible by itself. Otherwise it is composite, and it may be factored as the product 
of two numbers each of which is less than or equal to k. Each of these numbers 
is divisible by a prime number by the strong inductive hypothesis, and so k + 1 is  
divisible by a prime number. 

Thus, we have shown that if all natural numbers less than or equal to k are divisible 
by a prime number, then k + 1 is divisible by a prime number. We have shown that

2 As before this definition covers the base case of n = 1 and would need to be adjusted if the number 
specified in the base case is higher. 
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the base case P(2) is true, and so it follows from strong mathematical induction that 
every natural numbers greater than one is divisible by some prime number. 

6.3 Recursion 

Some functions (or objects) used in mathematics (e.g., the Fibonacci sequence) 
are difficult to define explicitly and are best defined by a recurrence relation: (i.e., 
an equation that recursively defines a sequence of values, once one or more initial 
values are defined). Recursion may be employed to define functions, sequences, 
and sets. 

There are two parts to a recursive definition, namely the base case and the 
recursive step. The base case usually defines the value of the function at n = 0 or  
n = 1, whereas the recursive step specifies how the application of the function to 
a number may be obtained from its application to one or more smaller numbers. 

It is important that care is taken with the recursive definition, to ensure that 
that it is not circular, and does not lead to an infinite regress. The argument of 
the function on the right-hand side of the definition in the recursive step is usu-
ally smaller than the argument on the left-hand side to ensure termination (there 
are some unusual recursively defined functions such as the McCarthy 91 function 
where this is not the case). 

It is natural to ask when presented with a recursive definition whether it 
means anything at all, and in some cases, the answer is negative. Fixed-point 
theory provides the mathematical foundations for recursion and ensures that the 
functions/objects are well defined. 

Chapter 12 (see Sect. 12.6) discusses various mathematical structures such as 
partial orders, complete partial orders, and lattices, which may be employed to 
give a secure foundation for recursion. A precise mathematical meaning is given to 
recursively defined functions in terms of domains and fixed-point theory, and it is 
essential that the conditions in which recursion may be used safely be understood. 
The reader is referred to [1] for more detailed information. 

A recursive definition will include at least one non-recursive branch with every 
recursive branch occurring in a context that is different from the original and brings 
it closer to the non-recursive case. Recursive definitions are a powerful and elegant 
way of giving the denotational semantics of language constructs. 

Next, we present examples of the recursive definition of the factorial function 
and Fibonacci numbers. 

Example 6.4 (Recursive Definition of Functions) The factorial function n! is very  
common in mathematics, and its well-known definition is n! = n(n − 1)(n − 
2) … 3.2.1 and 0! = 1. The formal definition in terms of a base case and inductive 
step is given as follows: 

Base Step fac (0) = 1
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Recursive Step fac (n) = n * fac(n − 1) 

This recursive definition defines the procedure by which the factorial of a num-
ber is determined from the base case, or by the product of the number by the 
factorial of its predecessor. The definition of the factorial function is built up in a 
sequence: fac(0), fac(1), fac(2), … 

The Fibonacci sequence3 is named after the Italian mathematician Fibonacci, 
who introduced it in the 13th century. It had been previously described in Indian 
mathematics, and the Fibonacci numbers are the numbers in the following integer 
sequence: 

1, 1, 2, 3, 5, 8, 13, 21, 34 

Each Fibonacci number (apart from the first two in the sequence) is obtained 
by adding the two previous Fibonacci numbers in the sequence together. Formally, 
the definition is given by 

Base Step F1 = 1, F2 = 1 
Recursive Step Fn = Fn−1 + Fn−2 (Definition for when n > 2)  

Example 6.5 (Recursive Definition of Sets and Structures) Sets and sequences may 
also be defined recursively, and there are two parts to the recursive definition (as 
before). The base case specifies an initial collection of elements in the set, whereas the 
recursive step provides rules for adding new elements to the set based on those already 
there. Properties of recursively defined sets may often be proved by a technique called 
structural induction. 

Consider the subset S of the natural numbers defined by 

Base Step 5 ∈ S 
Recursive Step For x ∈ S then x + 5  ∈ S 

Then the elements in S are given by the set of all multiples of 5, as clearly 5 ∈ S; 
therefore by the recursive step 5 + 5 = 10 ∈ S; 5  + 10 = 15 ∈ S, and so on. 

The recursive definition of the set of strings Σ* over an alphabet Σ is given by 

Base Step Λ ∈ Σ* (Λ is the empty string) 
Recursive Step For σ ∈ Σ*and v ∈ Σ then σv ∈ Σ* 

Clearly, the empty string is created from the base step. The recursive step states 
that a new string is obtained by adding a letter from the alphabet to the end of an 
existing string in Σ*. Each application of the inductive step produces a new string

3 We are taking the Fibonacci sequence as starting at 1, whereas others take it as starting at 0.
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that contains one additional character. For example, if Σ = {0, 1}, then the strings 
in Σ* are the set of bit strings Λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, etc. 

We can define an operation to determine the length of a string (len: Σ*→ N) 
recursively. 

Base Step len (Λ) = 0 
Recursive Step len (σv) = len(σ) + 1 (where σ ∈ Σ* and v ∈ Σ) 

A binary tree4 is a well-known data structure in computer science, and it consists 
of a root node together with a left and right binary tree. It is defined as a finite set 
of nodes (starting with the root node), where each node consists of a data value 
and a link to a left subtree and a right subtree. Recursion is often used to define 
the structure of a binary tree. 

Base Step A single node is a binary tree (root) 
Recursive Step (i) Suppose X and Y are binary trees and x is a node then XxY 

is a binary tree, where X is the left subtree, Y the right subtree, 
and x is the new root node. 

(ii) Suppose X is a binary tree and x is a node, then xX and Xx 
are binary trees, which consist of the root node x and a single 
child left or right subtree. 

That is, a binary tree has a root node, and it may have no subtrees; it may consist 
of a root node with a left subtree only; a root node with a right subtree only; or a 
root node with both a left and right subtree. 

6.4 Structural Induction 

Structural induction is a mathematical technique that is used to prove properties 
about recursively defined sets and structures. It may be used to show that all mem-
bers of a recursively defined set have a certain property, and there two parts to the 
proof (as before), namely the base case and the recursive (inductive) step. 

The first part of the proof is to show that the property holds for all elements 
specified in the base case of the recursive definition. The second part of the proof 
involves showing that if the property is true for all elements used to construct 
the new elements in the recursive definition, then the property holds for the new 
elements. From the base case and the recursive step we deduce that the property 
holds for all elements of the set (structure).

4 We will give an alternate definition of a tree in terms of a connected acyclic graph in Chap. 7 on 
graph theory. 
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Example 6.6 (Structural Induction) We gave a recursive definition of the subset S 
of the natural numbers that consists of all multiples of 5. We did not prove that all 
elements of the set S are divisible by 5, and we use structural induction to prove this. 

Base Step 5 ∈ S (and clearly the base case is divisible by 5) 
Inductive Step Suppose q ∈ S then q = 5 k for some k. From the inductive 

hypothesis q + 5 ∈ S and q + 5 = 5 k + 5 = 5 (k +1) and so q 
+ 5 is divisible by 5 

Therefore, all elements of S are divisible by 5. 

6.5 Review Questions 

1. Show that 9n + 7 is always divisible by 8. 
2. Show that the sum of 12 + 22 + · · ·  +  n2 = n(n + 1)(2n + 1)/6. 
3. Explain the difference between strong and weak induction. 
4. What is structural induction? 
5. Explain how recursion is used in mathematics. 
6. Investigate the recursive definition of the McCarthy 91 function, and 

explain how it differs from usual recursive definitions. 

7. Show that

(
r 
r

)
+

(
n 

r − 1

)
=

(
n + 1 
r

)

8. Determine the standard formula for the binomial theorem (x + y)n from 
the formula for (1 + x)n. 

6.6 Summary 

Mathematical induction is an important proof technique that is used to establish 
the truth of a statement for all natural numbers. There are two parts to a proof 
by induction, and these are the base case and the inductive step. The base case 
involves showing that the statement is true for some natural number (usually for 
the number n = 1). The inductive step involves showing that if the statement is 
true for some natural number n = k, then the statement is true for its successor n 
= k + 1.  

From the base step and the inductive step, we infer that the statement is true 
for all natural numbers (that are greater than or equal to the number specified in 
the base case). Mathematical induction may be used to prove a wide variety of 
theorems, such as theorems about summation formulae, inequalities, set theory, 
and the correctness of algorithms and computer programs.
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Strong induction is often employed when we cannot prove a result with (weak) 
mathematical induction. It also has a base case and an inductive step, where the 
inductive step is a little different, and it involves showing that if the statement is 
true for all natural numbers less than or equal to an arbitrary number k, then the 
statement is true for its successor k + 1.  

Recursion may be employed to define functions, sequences, and sets in mathe-
matics, and there are two parts to a recursive definition, namely the base case and 
the recursive step. The base case usually defines the value of the function at n = 0 
or n = 1, whereas the recursive step specifies how the application of the function 
to a number may be obtained from its application to one or more smaller numbers. 
It is important that care is taken with the recursive definition, to ensure that that it 
is not circular, and does not lead to an infinite regress. 

Structural induction is a mathematical technique that is used to prove proper-
ties about recursively defined sets and structures. It may be used to show that all 
members of a recursively defined set have a certain property, and there are two 
parts to the proof, namely the base case and the recursive (inductive) step. 

Reference 
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Key Topics 

Directed Graphs 
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Incidence Matrix 

Degree of Vertex 

Walks and Paths 

Hamiltonian Path 

Graph Algorithms 

7.1 Introduction 

Graph theory is a practical branch of mathematics that deals with the arrangements 
of certain objects known as vertices (or nodes) and the relationships between them. 
It has been applied to practical problems such as the modelling of computer net-
works, determining the shortest driving route between two cities, the link structure 
of a website, the travelling salesman problem, and the four-colour problem.1 

Consider a map of the London underground, which is issued to users of the 
underground transport system in London. Then this map does not represent every 
feature of the city of London, as it includes only material that is relevant to the

1 The four-colour theorem states that given any map it is possible to colour the regions of the map 
with no more than four colours such that no two adjacent regions have the same colour. This result 
was finally proved in the mid-1970s. 
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Fig. 7.1 Königsberg Seven 
Bridges Problem 

River 
Pregel 

Fig. 7.2 Königsberg graph 

users of the London underground transport system. In this map the exact geo-
graphical location of the stations is unimportant, and the essential information is 
how the stations are interconnected to one another, as this allows a passenger to 
plan a route from one station to another. That is, the map of the London under-
ground is essentially a model of the transport system that shows how the stations 
are interconnected. 

The Seven Bridges of Königsberg2 (Fig. 7.1) is one of the earliest problems 
in graph theory. The city was set on both sides of the Pregel River in the early 
eighteenth century, and it consisted of two large islands that were connected to 
each other and the mainland by seven bridges. The problem was to find a walk 
through the city that would cross each bridge once and once only. 

Euler showed that the problem had no solution, and his analysis helped to lay 
the foundations for graph theory as a discipline. The Königsberg problem in graph 
theory is concerned with the question as to whether it is possible to travel along 
the edges of a graph starting from a vertex and returning to it and travelling along 
each edge exactly once. An Euler Path in a graph G is a simple path containing 
every edge of G. 

Euler noted that a walk through a graph traversing each edge exactly once 
depends on the degree of the nodes (i.e., the number of edges touching it). He 
showed that a necessary and sufficient condition for the walk is that the graph is 
connected and has zero or two nodes of odd degree. For the Konigsberg graph, the 
four nodes (i.e., the land masses) have odd degree (Fig. 7.2). 

A graph is a collection of objects that are interconnected in some way. The 
objects are typically represented by vertices (or nodes), and the interconnections 
between them are represented by edges (or lines). We distinguish between directed 
and adirected graphs, where a directed graph is mathematically equivalent to a

2 Königsberg was founded in the thirteenth century by Teutonic knights and was one of the cities 
of the Hanseatic League. It was the historical capital of East Prussia (historical part of Germany), 
and it was annexed by Russia at the end of the Second World War. The German population either 
fled the advancing Red army or were expelled by the Russians in 1949. The city is now called 
Kaliningrad. The famous German philosopher, Immanuel Kant, spent all his life in the city and is 
buried there. 
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binary relation, and an adirected (undirected) graph is equivalent to a symmetric 
binary relations. 

7.2 Undirected Graphs 

An undirected graph (adirected graph) (Fig. 7.3) G is a pair of finite sets (V, E) 
such that E is a binary symmetric relation on V. The set of vertices (or nodes) is 
denoted by V (G), and the set of edges is denoted by E(G). 

A directed graph (Fig. 7.4) is a pair of finite sets (V, E) where E is a binary 
relation (that may not be symmetric) on V. A  directed acyclic graph (dag) is a  
directed graph that has no cycles. The example below is of a directed graph with 
three edges and four vertices. 

An edge e∈E consists of a pair < x, y > where x, y are adjacent nodes in the 
graph. The degree of x is the number of nodes that are adjacent to x. The set of 
edges is denoted by E(G), and the set of vertices is denoted by V (G). 

A weighted graph is a graph G = (V, E) together with a weighting function w: 
E → N, which associates a weight with every edge in the graph. A weighting func-
tion may be employed in modelling computer networks: for example, the weight 
of an edge may be applied to model the bandwidth of a telecommunications link 
between two nodes. Another application of the weighting function is in determin-
ing the distance (or shortest path) between two nodes in the graph (where such a 
path exists). 

For an adirected graph the weight of the edge is the same in both directions: 
i.e., w(vi, vj) = w(vj, vi) for all edges < vi, vj > in the graph G, whereas the weights 
may be different for a directed graph. 

Two vertices x, y are adjacent if xy∈E, and x and y are said to be incident to 
the edge xy. A matrix may be employed to represent the adjacency relationship.

Fig. 7.3 Undirected graph 

Fig. 7.4 Directed graph 
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Example 7.1 

Consider the graph G = (V, E) where E = {u = ab, v = cd, w = fg, x = bg, y = 
af }. 

An adjacency matrix (Fig. 7.5) may be employed to represent the relationship 
of adjacency in the graph. Its construction involves listing the vertices in the rows 
and columns, and an entry of 1 is made in the table if the two vertices are adjacent 
and 0 otherwise. 

Similarly, we can construct a table describing the incidence of edges and ver-
tices by constructing an incidence matrix (Fig. 7.6). This matrix lists the vertices 
and edges in the rows and columns, and an entry of 1 is made if the vertex is one 
of the nodes of the edge and 0 otherwise.

Two graphs G = (V, E) and G, = (V ,, E,) are said to be isomorphic if 
there exists a bijection f : V →V , such that for any u, v∈V, uv∈E, f (u)f (v) ∈E,. 
The mapping f is called an isomorphism. Two graphs that are isomorphic are 
essentially equivalent apart from a relabelling of the nodes and edges. 

Let G = (V, E) and G, = (V ,, E,) be two graphs then G, is a subgraph of G if 
V , ⊆V and E, ⊆E. Given  G = (V, E) and V , ⊆V then we can induce a subgraph 
G, = (V ,, E,) by restricting G to V , (denoted by G|V , |). The set of edges in E, is 
defined as 

E , = {
e ∈ E : e = uv and u, v  ∈ V ,}.

Fig. 7.5 Adjacency matrix 
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Fig. 7.6 Incidence matrix

The degree of a vertex v is the number of distinct edges incident to v. It is denoted 
by deg v where 

deg v = |{e ∈ E : e = vx for some x ∈ V }| 
= |{x ∈ V : vx ∈ E}|. 

A vertex of degree 0 is called an isolated vertex. 

Theorem 7.1 Let G = (V, E) be a graph then
Σ

v∈V 

deg v = 2|E |. 

Proof This result is clear since each edge contributes one to each of the vertex 
degrees. The formal proof is by induction based on the number of edges in the graph, 
the basis case is for a graph with no edges (i.e., where every vertex is isolated), and 
the result is immediate for this case. 

The inductive step (strong induction) is to assume that the result is true for all 
graphs with k or fewer edges. We then consider a graph G = (V, E) with k + 1 
edges. 

Choose an edge e = xy∈E and consider the graph G, = (V, E,) where E, = 
E\{e}. Then G, is a graph with k edges and therefore letting deg, v represent the 
degree of a vertex in G, we have

Σ

v∈V 

deg,v = 2
||E ,|| = 2(|E | − 1) = 2|E | − 2. 

The degree of x and y are one less in G, than they are in G. That is,
Σ

v∈V 

deg v − 2 =
Σ

v∈V 

deg,v = 2|E | − 2 

⇒
Σ

v∈V 

deg v = 2|E |.
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A graph G = (V, E) is said to be complete if all the vertices are adjacent 
: i.e., E = V ×V. A graph G = (V, E) is said to be simple graph if each edge 
connects two different vertices, and no two edges connect the same pair of vertices. 
Similarly, a graph that may have multiple edges between two vertices is termed a 
multigraph. 

A common problem encountered in graph theory is determining whether or not 
there is a route from one vertex to another. Often, once a route has been identified 
the problem then becomes that of finding the shortest or most efficient route to the 
destination vertex. A graph is said to be connected if for any two given vertices 
v1, v2 in V, there is a path from v1 to v2. 

Consider a person walking in a forest from A to B where the person does not 
know the way to B. Often, the route taken will involve the person wandering 
around aimlessly, and often retracing parts of the route until eventually the desti-
nation B is reached. This is an example of a walk from v1 to vk where in a walk 
there may be repetition of edges. 

If all of the edges of a walk are distinct, then it is called a trail. A  path v1, v2, 
…, vk from vertex v1 to vk is of length k−1 and consists of the sequence of edges 
< v1, v2 > , <  v2, v3 > ,…, < vk−1, vk > where each < vi, vi+1 > is an edge in E. 
The vertices in the path are all distinct apart from possibly v1 and vk.. The path is 
said to be a cycle if v1 = vk.. A graph is said to be acyclic if it contains no cycles. 

Theorem 7.2 Let G = (V, E) be a graph and W = v1, v2, …,  vk be a walk from v1 
to vk . Then there is a path from v1 to vk using only edges of W. 

Proof The walk W may be reduced to a path by successively replacing redundant 
parts in the walk of the form vi, vi+1 …, vj where vi = vj with vi. That is, we 
successively remove cycles from the walk, and this clearly leads to a path (not 
necessarily the shortest path) from v1 to vk . 

Theorem 7.3 Let G = (V, E) be a graph and let u, v∈V with u /=v. Suppose that 
there exists two different paths from u to v in G, then G contains a cycle. 

Suppose that P = v1, v2, …,  vn and Q = w1, w2, …,  wm are two distinct paths 
from u to v (where u /=v), and u = v1 = w1 and v = vn = wm.
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Fig. 7.7 Travelling salesman 
problem 
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Suppose P and Q are identical for the first k vertices (k could be 1) and then 
differ (i.e., vk + 1 /=wk + 1). Then Q crosses P again at vn = wm, and possibly 
several times before then. Suppose the first occurrence is at vi = wj with k < i ≤n. 
Then wk , wk+1, wk+2, …,  wj, vi−1, vi−2, …,  vk is a closed path (i.e., a cycle) since 
the vertices are all distinct. 

If there is a path from v1 to v2, then it is possible to define the distance between 
v1 and v2. This is defined to be the total length (number of edges) of the shortest 
path between v1 and v2. 

7.2.1 Hamiltonian Paths 

A Hamiltonian path3 in a graph G = (V, E) is a path that visits every vertex once 
and once only. Other words, the length of a Hamiltonian path is |V |−1. A graph 
is Hamiltonian connected if for every pair of vertices there is a Hamiltonian path 
between the two vertices. 

Hamiltonian paths are applicable to the travelling salesman problem, where a 
salesman4 wishes to travel to k cities in the country without visiting any city more 
than once. In principle, this problem may be solved by looking at all of the possible 
routes between the various cities and choosing the route with the minimal distance. 

For example, Fig. 7.7 shows five cities and the connections (including distance) 
between them. Then, a travelling salesman starting at A would visit the cities in 
the order AEDCBA (or in reverse order ABCDEA) covering a total distance of 
14. 

However, the problem becomes much more difficult to solve as the number of 
cities increases, and there is no general algorithm for its solution. For example, 
for the case of ten cities, the total number of possible routes is given by 9! = 
362,880, and an exhaustive search by a computer is feasible and the solution may 
be determined quite quickly. However, for 20 cities, the total number of routes 
is given by 19! = 1.2 ×1017, and in this case it is no longer feasible to do an 
exhaustive search by a computer.

3 These are named after Sir William Rowan Hamilton, a nineteenth-century Irish mathematician 
and astronomer, who is famous for discovering quaternions discussed in a later chapter. 
4 We use the term “salesman” to stand for “salesman” or “saleswoman”.
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There are several sufficient conditions for the existence of a Hamiltonian path, 
and Theorem 7.4 describes one condition that is sufficient for its existence. 

Theorem 7.4 Let G = (V, E) be a graph with |V | = n and such that deg v + deg 
w≥n−1 for all non-adjacent vertices v and w. Then G possesses a Hamiltonian path. 

Proof The first part of the proof involves showing that G is connected, and the second 
part involves considering the largest path in G of length k−1 and assuming that k < 
n. A contradiction is then derived, and it is deduced that k = n. 

We assume that G, = (V ,, E,) and G,, = (V ,,, E,,) are two connected components 
of G, then |V ,| + |V ,,| ≤ n and so if v∈V , and w∈V ,, then n−1 ≤ deg v + deg 
w≤ |V ,|−1 + |V ,,|−1 = |V ,| + |V ,,|−2 ≤n−2 which is a contradiction, and so G 
must be connected. 

Let P = v1, v2, …,  vk be the largest path in G and suppose k < n. From this, a 
contradiction is derived, and the details for are in [1]. 

7.3 Trees 

An acyclic graph is termed a forest, and a connected forest is termed a tree. A  
graph G is a tree if and only if for each pair of vertices in G there exists a unique 
path in G joining these vertices. This is since G is connected and acyclic with 
the connected property giving the existence of at least one path and the acyclic 
property giving uniqueness. 

A spanning tree T = (V, E,) for the connected graph G = (V, E) is a tree with 
the same vertex set V. It is formed from the graph by removing edges from it until 
it is acyclic (while ensuring that the graph remains connected). 

Theorem 7.5 Let G = (V, E) be a tree and let e∈E then G, = (V, E\{e}) is 
disconnected and has two components. 

Proof Let e = uv then since G is connected and acyclic uv is the unique path from 
u to v, and thus G, is disconnected since there is no path from u to v in G,. 

It is thus clear that there are at least two components in G, with u and v in different 
components. We show that any other vertex w is connected to u or to v in G,. Since 
G is connected, there is a path from w to u in G, if this path does not use e, then it is 
in G, as well, and therefore u and w are in the same component of G,. 

If it does use e, then e is the last edge of the graph since u cannot appear twice 
in the path, and so the path is of the form w,…, v, u in G. Therefore, there is a path 
from w to v in G,, and so w and v are in the same component in G,. Therefore, there 
are only two components in G,.
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Theorem 7.6 Any connected graph G = (V, E) possesses a spanning tree. 

Proof This result is proved by considering all connected subgraphs of (G = V, E) 
and choosing a subgraph T with |E,| as small as possible. The final step is to show 
that T is the desired spanning tree, and this involves showing that T is acyclic. The 
details of the proof are left to the reader. 

Theorem 7.7 Let G = (V, E) be a connected graph, then G is a tree if and only if 
|E| = |V |−1. 

Proof This result may be proved by induction on the number of vertices |V | and the 
applications of Theorems 7.5 and 7.6. 

7.3.1 Binary Trees 

A binary tree (Fig. 7.8) is a tree in which each node has at most two child nodes 
(termed left and right child nodes). A node with children is termed a parent node, 
and the top node of the tree is termed the root node. Any node in the tree can 
be reached by starting from the root node and by repeatedly taking either the left 
branch (left child) or right branch (right child) until the node is reached. Binary 
trees are used in computing to implement efficient searching algorithms (we gave 
an alternative recursive definition of a binary tree in Chap. 6). 

The depth of a node is the length of the path (i.e., the number of edges) from 
the root to the node. The depth of a tree is the length of the path from the root to 
the deepest node in the tree. A balanced binary tree is a binary tree in which the 
depth of the two subtrees of any node never differs by more than one. The root 
of the binary tree in Fig. 7.8 is A, and its depth is 4. The tree is unbalanced and 
unsorted. 

Tree traversal is a systematic way of visiting each node in the tree exactly once, 
and we distinguish between breadth first search in which every node on a particular 
level is visited before going to a lower level, and depth first search where one starts 
at the root and explores as far as possible along each branch before backtracking. 
The traversal in depth first search may be in preorder, inorder, or postorder.

Fig. 7.8 Binary tree A 
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7.4 Graph Algorithms 

Graph algorithms are employed to solve various problems in graph theory includ-
ing network cost minimization problems; construction of spanning trees; shortest 
path algorithms; longest path algorithms; and timetable construction problems. 

A length function l: E → R may be defined on the edges of a connected graph 
G = (V, E), and a shortest path from u to v in G is a path P with edge set E, such 
that l(E,) is minimal. 

The reader may consult the many texts on graph theory to explore many well-
known graph algorithms. These include Dijkstra’s shortest path algorithm and 
longest path algorithm, and Kruskal’s minimal spanning tree algorithm and Prim’s 
minimal spanning tree algorithms are all described in [1]. Next, we briefly discuss 
graph colouring. 

7.5 Graph Colouring and Four-Colour Problem 

It is very common for maps to be coloured in such a way that neighbouring states 
or countries are coloured differently. This allows different states or countries to be 
easily distinguished as well as the borders between them. The question naturally 
arises as to how many colours are needed (or determining the least number of 
colours needed) to colour the entire map, as it might be expected that a large 
number of colours would be needed to colour a large complicated map. 

However, it may come as a surprise that in fact very few colours are required 
to colour any map. A former student of the British logician, Augustus De Mor-
gan, had noticed this in the mid-1800s, and he proposed the conjecture of the 
four-colour theorem. There were various attempts to prove that four colours 
were sufficient from the mid-1800s onwards, and it remained a famous unsolved 
problem in mathematics until the late twentieth century. 

Kempe gave an erroneous proof of the four-colour problem in 1879, but his 
attempt led to the proof that five colours are sufficient (which was proved by 
Heawod in the late 1800s). Appel and Haken of the University of Illinois finally 
provided the proof that four colours are sufficient in the mid-1970s (using over 
1000 h of computer time in their proof). 

Each map in the plane can be represented by a graph, with each region of the 
graph represented by a vertex. Edges connect two vertices if the regions have a 
common border. The colouring of a graph is the assignment of a colour to each 
vertex of the graph so that no two adjacent vertices in this graph have the same 
colour. 

Definition Let G = (V, E) be a graph and let C be a finite set called the colours. 
Then, a colouring of G is a mapping κ: V →C such that if uv∈E then κ(u) /= κ(v). 

That is, the colouring of a simple graph is the assignment of a colour to each 
vertex of the graph such that if two vertices are adjacent, then they are assigned a
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Fig. 7.9 Determining the 
chromatic colour of G 

p 

t 

r 

s 

q 

v 

u 

G 

Fig. 7.10 Chromatic 
colouring of G 

p 

t 

r 

s 

q 

v 

u 

red red 

green 

green 

blue 

blue 
red 

different colour. The chromatic number of a graph is the least number of colours 
needed for a colouring of the graph. It is denoted by χ(G). 

Example 7.2 Show that the chromatic colour of the graph G in Fig. 7.9 is 3. 

Solution 
The chromatic colour of G must be at least 3 since vertices p, q, and r must have 
different colours, and so we need to show that three colours are in fact sufficient 
to colour G. We assign the colours red, blue, and green to p, q, and r, respectively. 
We immediately deduce that the colour of s must be red (as adjacent to q and r). 
From this, we deduce that t is coloured green (as adjacent to q and s) and u is 
coloured blue (as adjacent to s and t). Finally, v must be coloured red (as adjacent 
to u and t). This leads to the colouring of the graph G in Fig. 7.10. 

Theorem 7.8 (Four-Colour Theorem) The chromatic number of a planar graph G 
is less than or equal to 4. 

7.6 Review Questions 

1. What is a graph and explain the difference between an adirected graph 
and a directed graph. 

2. Determine the adjacency and incidence matrices of the following graph 
where V = {a, b, c, d, e} and E = {ab, bc, ae, cd, bd}.
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3. Determine if the two graphs G and G’ defined below are isomorphic. 

G = (V , E), V = {a, b, c, d, e, f , g} and E 

= {ab, ad, ae, bd, ce, c f  , dg, f g, b f  } 

G , = (
V ,, E ,), V , = {a, b, c, d, e, f , g} and E ,

= {ab, bc, cd, de, e f , f g, ga, ac, be} 

4. What is a binary tree? Describe applications of binary trees. 
5. Describe the travelling salesman problem and its applications. 
6. Explain the difference between a walk, trail, and path. 
7. What is a connected graph? 
8. Explain the difference between an incidence matrix and an adjacency 

matrix. 
9. Describe the four-colour problem and its applications. 

7.7 Summary 

Graph theory is a practical branch of mathematics that deals with the arrangements 
of vertices and the edges between them. It has been applied to practical problems 
such as the modelling of computer networks, determining the shortest driving route 
between two cities, and the travelling salesman problem. 

An undirected graph G is a pair of finite sets (V, E) such that E is a binary 
symmetric relation on V, whereas a directed graph is a binary relation that is not 
symmetric. An adjacency matrix is used to represent whether two vertices are 
adjacent to each other, whereas an incidence matrix indicates whether a vertex is 
part of a particular edge. 

A Hamiltonian path in a graph is a path that visits every vertex once and once 
only. Hamiltonian paths are applicable to the travelling salesman problem, where a 
salesman wishes to travel to k cities in the country without visiting any city more 
than once. 

Graph colouring arose to answer the question as to how many colours are 
needed to colour an entire map. It may be expected that many colours would 
be required, but the four-colour theorem demonstrates that in fact four colours are 
sufficient to colour a planar graph. 

A tree is a connected and acyclic graph, and a binary tree is a tree in which 
each node has at most two child nodes. 
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and Combinations 

Key Topics 

Arithmetic Sequence 

Arithmetic Series 

Geometric Sequence 

Geometric Series 

Permutations and Combinations 

Counting Principle 

Sum and Product Rule 

Pigeonhole Principle 

8.1 Introduction 

The goal of this chapter is to give an introduction to sequences and series, includ-
ing arithmetic and geometric sequences, and arithmetic and geometric series. We 
derive formulae for the sum of an arithmetic series and geometric series, and we 
discuss the convergence of a geometric series when |r| < 1, and the limit of its sum 
as n gets larger and larger. 

We consider the counting principle where one operation has m possible out-
comes and a second operation has n possible outcomes. We determine that the 
total number of outcomes after performing the first operation followed by the 
second operation to be m × n, whereas the total number of outcomes from per-
forming the first operation or the second operation is given by m + n. We discuss
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the pigeonhole principle which states that if n items are placed into m containers 
(with n > m), then at least one container must contain more than one item. 

A permutation is an arrangement of a given number of objects, by taking 
some or all of them at a time. The order of the arrangement is important, as 
the arrangement “abc” is different from “cba”. 

A combination is a selection of a number of objects in any order, where the 
order of the selection is unimportant. That is, the selection “abc” is the same as 
the selection “cba”. 

8.2 Sequences and Series 

A sequence a1, a2, …  an … is any succession of terms (usually numbers). For 
example, each term in the Fibonacci sequence (apart from the first two terms) is 
obtained from the sum of the previous two terms in the sequence (see Sect. 6.3 
for a formal definition of the Fibonacci sequence). 

1, 1, 2, 3, 5, 8, 13, 21, . . . .  

A sequence may be finite (with a fixed number of terms) or infinite. The Fibonacci 
sequence is infinite, whereas the sequence 2, 4, 6, 8, 10 is finite. We distin-
guish between convergent and divergent sequences, where a convergent sequence 
approaches a certain value as n gets larger and larger. That is, we say that n→∞lim 
an exists (i.e., the limit of an exists), and otherwise, the sequence is said to be 
divergent. 

Often, there is a mathematical expression for the nth term of a sequence (e.g., 
for the sequence of even integers 2, 4, 6, 8, … the general expression for an is 
given by an = 2n). Clearly, the sequence of the even integers is divergent, as it 
does not approach a particular value, as n gets larger and larger. Consider the 
following sequence 

1, −1, 1, −1, 1, −1 . . .  

Then this sequence is divergent since it does not approach a certain value, as 
n gets larger and larger, since it continues to alternate between 1 and −1. The 
formula for the nth term in the sequence may be given by 

(−1)n+1 

The sequence 1, 1/2, 1/3, 1/4, … 1/n … is convergent, and it converges to 0. 
The nth term in the sequence is given by 1/n, and as n gets larger and larger, it 
gets closer and closer to 0. 

A series is the sum of the terms in a sequence, and the sum of the first n terms 
of the sequence a1, a2, …  an … is given  by  a1 + a2+ · · ·  +  an which is denoted
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by 

n∑

k=1 

ak 

A series is convergent if its sum approaches a certain value S as n gets larger 
and larger, and this is written formally as 

lim 
n→∞ 

n∑

k=1 

ak = S 

Otherwise, the series is said to be divergent. 

8.3 Arithmetic and Geometric Sequences 

Consider the sequence 1, 4, 7, 10, …, where each term is obtained from the pre-
vious term by adding the constant value 3. This is an example of an arithmetic 
sequence, and there is a difference of 3 between any term and the previous one. 
The general form of a term in this sequence is an = 3n−2. 

The general form of an arithmetic sequence is given by 

a, a + d, a + 2d, a + 3d, . . .  a + (n − 1)d, . . . .  

The value a is the initial term in the sequence, and the value d is the constant 
difference between a term and its successor. For the sequence, 1, 4, 7, …, we 
have a =1 and d = 3, and the sequence is not convergent. In fact, all arithmetic 
sequences (apart from the constant sequence a, a, ….  a which converges to a) are 
divergent. 

Consider the sequence 1, 3, 9, 27, 81, …, where each term is achieved from 
the previous term by multiplying by the constant value 3. This is an example of a 
geometric sequence, and the general form of a geometric sequence is given by 

a, ar , ar2, ar3, . . . ,  arn−1. 

The first term in the geometric sequence is a and r is the common ratio. Each 
term is obtained from the previous one by multiplying by the common ratio r. For  
the sequence 1, 3, 9, 27 the value of a is 1 and r is 3. 

A geometric sequence is convergent if r < 1, and for this case it converges to 0. 
It is also convergent if r = 1, as for this case it is simply the constant sequence a, 
a, a, …, which converges to a. For the case where r > 1 the sequence is divergent.
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8.4 Arithmetic and Geometric Series 

An arithmetic series is the sum of the terms in an arithmetic sequence, and a 
geometric sequence is the sum of the terms in a geometric sequence. It is possible 
to derive a simple formula for the sum of the first n terms in an arithmetic and 
geometric series. 

Arithmetic Series 
We write the series two ways: first the normal left to right addition and then the 
reverse, and then we add both series together. 

Sn = a + (a + d) + (a + 2d) + (a + 3d) + · · ·  +  (a + (n − 1))d 
Sn = a + (n − 1)d + a + (n − 2)d + · · ·  + +(a + d) + a 
− − − − − − − − − − − − − − − − − − − − − − − − − −  
2Sn = [2a + (n − 1)d] + [2a + (n − 1)d] + · · · + [2a + (n − 1)d] (n times) 

2Sn = n × [2a + (n − 1)d] 
Therefore, we conclude that 

Sn = 
n 

2 
[2a + (n − 1)d] 

Example 8.1 (Arithmetic Series) Find the sum of the first n terms in the following 
arithmetic series 1, 3, 5, 7, 9, …. 

Solution 
Clearly, a = 1 and d = 2. Therefore, applying the formula we get 

Sn = 
n 

2 
[2.1 + (n − 1)2] =  

2n2 

2 
= n2 

Geometric Series 
For a geometric series we have 

Sn = a + ar + ar2 + ar3 +  · · ·  +  arn−1 

⇒ r Sn = ar + ar2 + ar3 +  · · ·  +  arn−1 + arn 

− − − − − − − − − − − − − − − − − − − − − − − − − −  
⇒ r Sn − Sn = arn − a 

= a
(
rn − 1

)

⇒ (r − 1)Sn = a
(
rn − 1

)
. 

Therefore, we conclude that (where r /= 1) that 

Sn = 
a(rn − 1) 
r − 1 

= 
a(1 − rn) 
1 − r
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The case of when r = 1 corresponds to the arithmetic series a + a + · · ·  +  a, 
and the sum of this series is simply na. The geometric series converges when |r| <  
1 as  rn → 0 as  n → ∞, and so 

Sn → 
a 

1 − r 
as n → ∞  

Example 8.2 (Geometric Series) Find the sum of the first n terms in the following 
geometric series 1, 1/2, 1/4, 1/8, …. What is the sum of the series? 

Solution 
Clearly, a = 1 and r = 1/2. Therefore, applying the formula we get 

Sn = 
1(1 − 1/2n) 
1 − 1/2 

= 
(1 − 1/2n) 
1 − 1/2

= 2
(
1 − 1/2n

)

The sum of the series is the limit of the sum of the first n terms as n approaches 
infinity. This is given by 

lim 
n→∞ 

Sn = lim 
n→∞ 

2
(
1 − 1/2n

) = 2 

8.5 Permutations and Combinations 

A permutation is an arrangement of a given number of objects, by taking some or 
all of them at a time. A combination is a selection of a number of objects where the 
order of the selection is unimportant. Permutations and combinations are defined 
in terms of the factorial function, which is defined as: 

n! =  n(n − 1) . . .  3.2.1. 

Principles of Counting 

(a) Suppose one operation has m possible outcomes and a second operation has n 
possible outcomes, then the total number of possible outcomes when perform-
ing the first operation followed by the second operation is m × n. (Product 
Rule). 

(b) Suppose one operation has m possible outcomes and a second operation has 
n possible outcomes then the possible outcomes of the first operation or the 
second operation is given by m + n. (Sum Rule). 

Example 8.3 (Counting Principle (a)) Suppose a dice is thrown and a coin is then 
tossed. How many different outcomes are there and what are they?
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Solution 
There are six possible outcomes from a throw of the dice: 1, 2, 3, 4, 5, or 6, and 
two possible outcomes from the toss of a coin: H or T. Therefore, the total number 
of outcomes is determined from the product rule as 6 × 2 = 12. The outcomes are 
given by 

(1, H), (2, H), (3, H), (4, H), (5, H), (6, H), (1, T), (2, T), 

(3, T), (4, T), (5, T), (6, T). 

Example 8.4 (Counting Principle (b)) Suppose a dice is thrown and if the number 
is even a coin is tossed and if it is odd then there is a second throw of the dice. How 
many different outcomes are there? 

Solution 
There are two experiments involved with the first experiment involving an even 

number and a toss of a coin. There are three possible outcomes that result in an even 
number and two outcomes from the toss of a coin. Therefore, there are 3 × 2 = 6 
outcomes from the first experiment. 

The second experiment involves an odd number from the throw of a dice and the 
further throw of the dice. There are three possible outcomes that result in an odd 
number and six outcomes from the throw of a dice. Therefore, there are 3 × 6 = 18 
outcomes from the second experiment. 

Finally, there are six outcomes from the first experiment and 18 outcomes from 
the second experiment, and so from the sum rule there are a total of 6 + 18 = 24 
outcomes. 

Pigeonhole Principle 
The pigeonhole principle states that if n items are placed into m containers (with 
n > m), then at least one container must contain more than one item. 

Example 8.5 (Pigeonhole Principle) 

(a) Suppose there is a group of 367 people, then there must be at least two people 
with the same birthday. 
This is clear as there are 365 days in a year (with 366 days in a leap year), and 
so as there are at most 366 possible birthdays in a year. The group size is 367 
people, and so there must be at least two people with the same birthday.1 

(b) Suppose that a class of 102 students are assessed in an examination (the outcome 
from the exam is a mark between 0 and 100). Then, there are at least two students 
who receive the same mark.

1 The birthday paradox is the unintuitive result that in a group as small as 23 people the probability 
that there is a pair of people with the same birthday is above 0.5 (over 50%). 
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This is clear as there are 101 possible outcomes from the test (as the mark that 
a student may achieve is between 0 and 100), and as there are 102 students in 
the class and 101 possible outcomes from the test, then there must be at least two 
students who receive the same mark. 

Permutations 
A permutation is an arrangement of a number of objects in a definite order. 

Consider the three letters A, B, and C. If these letters are written in a row, then 
there are six possible arrangements 

ABC ACB BAC BCA CAB CBA. 

There is a choice of three letters for the first place, then there is a choice of 
two letters for the second place, and there is only one choice for the third place. 
Therefore, there are 3 × 2 × 1 = 6 arrangements. 

If there are n different objects to arrange, then the total number of arrangements 
(permutations) of n objects is given by n! = n(n−1)(n−2) … 3.2.1. 

Consider the four letters A, B, C, and D. How many arrangements (taking two 
letters at a time with no repetition) of these letters can be made? 

There are four choices for the first letter and three choices for the second letter, 
and so there are 12 possible arrangements. These are given by: 

AB AC AD BA BC BD CA CB CD DA DB DC. 

The total number of arrangements of n different objects taking r at a time (r ≤ 
n) is given by nPr = n(n−1)(n−2) … (n−r+1). It may also be written as: 

n Pr = 
n! 

(n − r )! 

Example 8.6 (Permutations) Suppose A, B, C, D, E, and F are six students. How 
many ways can they be seated in a row if: 

(i) There is no restriction on the seating. 
(ii) A and B must sit next to one another. 
(iii) A and B must not sit next to one another. 

Solution 
For unrestricted seating the number of arrangements is given by 6.5.4.3.2.1 = 6! = 
720. 

For the case where A and B must be seated next to one another, then consider 
A and B as one person, and then the five people may be arranged in 5! = 120 
ways. There are 2! = 2 ways in which AB may be arranged, and so there are 2! 
× 5! = 240 arrangements.
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AB C D E F 

For the case where A and B must not be seated next to one another, then this is 
given by the difference between the total number of arrangements and the number 
of arrangements with A and B together: i.e., 720 − 240 = 480. 

Combintations 
A combination is a selection of a number of objects in any order, and the order of 
the selection is unimportant, in that both AB and BA represent the same selection. 

The total number of arrangements of n different objects taking r at a time 
is given by nPr , and the number of ways that r objects can be selected from 
n different objects may be determined from this, since each selection may be 
permuted r! times. 

That is, the total number of arrangements is r! × total number of combinations. 
That is, nPr = r! × nCr , and we may also write this as:

(
n 
r

)
= n! 

r !(n − r )! = 
n(n − 1) . . . (n − r + 1) 

r ! 
It is clear from the definition that

(
n 
r

)
=

(
n 

n − r

)

Example 8.7 (Combinations) How many ways are there to choose a team of 11 
players from a panel of 15 players? 

Solution 

Clearly, the number of ways is given by

(
15 
11

)
=

(
15 
4

)

That is, 15.14.13.12/4.3.2.1 = 1365. 

Example 8.8 (Combinations) How many ways can a committee of four people be 
chosen from a panel of ten people where 

(i) There is no restriction on membership of the panel. 
(ii) A certain person must be a member. 
(iii) A certain person must not be a member. 

Solution 
For (i) with no restrictions on membership the number of selections of a committee 

of four people from a panel of ten people is given by:

(
10 
4

)
= 210.
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For (ii) where one person must be a member of the committee then this involves 

choosing three people from a panel of nine people and is given by:

(
9 
3

)
= 84. 

For (iii) where one person must not be a member of the committee then this 

involves choosing four people from a panel of nine people and is given by:

(
9 
4

)
= 

126. 

8.6 Review Questions 

1. Determine the formula for the general term and the sum of the following 
arithmetic sequence 

1, 4, 7, 10, . . . .  

2. Write down the formula for the nth term in the following sequence 

1/4, 1/12, 1/36, 1/108, . . . .  

3. Find the sum of the following geometric sequence 

1/3, 1/6, 1/12, 1/24, . . . .  

4. How many different five-digit numbers can be formed from the digits 1, 
2, 3, 4, 5 where: 
(i) No restrictions on digits and repetitions allowed. 
(ii) The number is odd and no repetitions are allowed. 
(iii) The number is even and repetitions are allowed. 

5. 
(i) How many ways can a group of five people be selected from nine 

people? 
(ii) How many ways can a group be selected if two particular people are 

always included? 
(iii) How many ways can a group be selected if two particular people are 

always excluded? 

8.7 Summary 

This chapter provided a brief introduction to sequences and series, including arith-
metic and geometric sequences, and arithmetic series and geometric series. We
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derived formulae for the sum of an arithmetic series and geometric series, and we 
discussed the convergence of a geometric series when |r| < 1.  

We considered counting principles including the product and sum rules. The 
product rule is concerned with where one operation has m possible outcomes and 
a second operation has n possible outcomes then the total number of possible 
outcomes when performing the first operation followed by the second operation is 
m × n. 

We discussed the pigeonhole principle, which states that if n items are placed 
into m containers (with n > m), then at least one container must contain more than 
one item. We discussed permutations and combinations where permutations are an 
arrangement of a given number of objects, by taking some or all of them at a time. 
A combination is a selection of a number of objects in any order, and the order of 
the selection is unimportant.



9A Short History of Logic 

Key Topics 

Syllogistic Logic 

Fallacies 

Paradoxes 

Stoic Logic 

Boole’s Symbolic Logic 

Digital Computing 

Propositional Logic 

Predicate Logic 

Universal and Existential Quantifiers 

9.1 Introduction 

Logic is concerned with reasoning and with establishing the validity of arguments. 
It allows conclusions to be deduced from premises according to logical rules, 
and the logical argument establishes the truth of the conclusion provided that the 
premises are true. 

The origins of logic are with the Greeks who were interested in the nature of 
truth. The sophists (e.g., Protagoras and Gorgias) were teachers of rhetoric, who 
taught their pupils techniques in winning an argument and convincing an audience. 
Plato explores the nature of truth in some of his dialogues, and he is critical of 
the position of the sophists who argue that there is no absolute truth and that truth
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instead is always relative to some frame of reference. The classic sophist position 
is stated by Protagoras “Man is the measure of all things: of things which are, that 
they are, and of things which are not, that they are not.” Other words, what is true 
for you is true for you, and what is true for me is true for me. 

Socrates had a reputation for demolishing an opponents position, and the 
Socratean enquiry consisted of questions and answers in which the opponent 
would be led to a conclusion incompatible with his original position. The approach 
was similar to a reductio ad absurdum argument, although Socrates was a moral 
philosopher who did no theoretical work on logic. 

Aristotle did important work on logic, and he developed a system of logic, 
called syllogistic logic, that remained in use up to the nineteenth century. Syllo-
gistic logic is a ‘term-logic’, with letters used to stand for the individual terms. 
A syllogism consists of two premises and a conclusion, where the conclusion is 
a valid deduction from the two premises. Aristotle also did some early work on 
modal logic. 

The Stoics developed an early form of propositional logic, where the assertable 
(propositions) have a truth-value such that at any time they are either true or 
false. The assertable may be simple or non-simple, and various connectives such 
as conjunctions, disjunctions, and implication are used in forming more complex 
assertables. 

George Boole developed his symbolic logic in the mid-1800s, and it later 
formed the foundation for digital computing. Boole argued that logic should be 
considered as a separate branch of mathematics, rather than a part of philosophy. 
He argued that there are mathematical laws to express the operation of reason-
ing in the human mind, and he showed how Aristotle’s syllogistic logic could be 
reduced to a set of algebraic equations. 

Frege is considered (along with Boole) to be one of the founders of modern 
logic. He also made important contributions to the foundations of mathematics, 
and he attempted to show that all of the basic truths of mathematics (or at least of 
arithmetic) could be derived from a limited set of logical axioms. 

Logic plays a key role in reasoning and deduction in mathematics, but it is 
considered a separate discipline to mathematics. There were attempts in the early 
twentieth century to show that all mathematics can be derived from formal logic, 
and that the formal system of mathematics would be complete, with all the truths of 
mathematics provable in the system (see Chap. 14). However, this program failed 
when the Austrian logician, Kurt Goedel, showed that the first-order arithmetic is 
incomplete. 

9.2 Syllogistic Logic 

Early work on logic was done by Aristotle in the fourth century B.C. in the 
Organon [1]. Aristotle regarded logic as a useful tool of enquiry into any sub-
ject, and his syllogistic logic provides more rigour in reasoning. This is a form of 
reasoning in which a conclusion is drawn from two premises, where each premise
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is in a subject-predicate form. A common or middle term is present in each of the 
two premises but not in the conclusion. For example: 

All Greeks are mortal. 
Socrates is a Greek 

− − − − − − − −  
Therefore Socrates is mortal 

The common (or middle) term in this example is ‘Greek’. It occurs in both 
premises but not in the conclusion. The above argument is valid, and Aristotle 
studied and classified the various types of syllogistic arguments to determine those 
that were valid or invalid. Each premise contains a subject and a predicate, and 
the middle term may act as subject or a predicate. Each premise is a positive 
or negative affirmation, and an affirmation may be universal or particular. The 
universal and particular affirmations and negatives are described in Table 9.1. 

This leads to four basic forms of syllogistic arguments (Table 9.2) where the 
middle is the subject of both premises; the predicate of both premises; and the 
subject of one premise and the predicate of the other premise. 

There are four types of premises (A, E, I, O) and therefore sixteen sets of 
premise pairs for each of the forms above. However, only some of these premise 
pairs will yield a valid conclusion. Aristotle went through every possible premise 
pair to determine if a valid argument may be derived. The syllogistic argument 
above is of form (iv) and is valid 

G A M 

S I G 

− −−  
S I M.

Table 9.1 Types of 
syllogistic premises 

Type Symbol Example 

Universal affirmative G A M All Greeks are mortal 

Universal negative G E M No Greek is mortal 

Particular affirmative G I M Some Greek is mortal 

Particular negative G O M Some Greek is not mortal 

Table 9.2 Forms of syllogistic premises 

Form (i) Form (ii) Form (iii) Form (iv) 

Premise 1 M P P M P M M P  

Premise 2 M S S M M S S M  

Conclusion S P S P S P S P  



144 9 A Short History of Logic

Syllogistic logic is a ‘term-logic’ with letters used to stand for the individual 
terms. Syllogistic logic was the first attempt at a science of logic, and it remained 
in use up to the nineteenth century. There are many limitations to what it may 
express and on its suitability as a representation of how the mind works. 

9.3 Paradoxes and Fallacies 

A paradox is a statement that apparently contradicts itself, and it presents a situ-
ation that appears to defy logic. Some logical paradoxes have a solution, whereas 
others are contradictions or invalid arguments. There are many examples of para-
doxes, and they often arise due to self-reference in which one or more statements 
refer to each other. We discuss several paradoxes such as the liar paradox and 
the sorites paradox, which were invented by Eubulides of Miletus, and the barber 
paradox, which was introduced by Russell to explain the contradictions in naïve 
set theory. 

An example of the liar paradox is the statement “Everything that I say is false”, 
which is made by the liar. This looks like a normal sentence, but it is also saying 
something about itself as a sentence. If the statement is true, then the statement 
must be false, since the meaning of the sentence is that every statement (including 
the current statement) made by the liar is false. If the current statement is false, 
then the statement that everything that I say is false is false, and so this must be a 
true statement. 

The Epimenides paradox is a variant of the liar paradox. Epimenides was a 
Cretan who allegedly stated “All Cretans are liars”. If the statement is true, then 
since Epimenides is Cretan, he must be a liar, and so the statement is false and we 
have a contradiction. However, if we assume that the statement is false and that 
Epimenides is lying about all Cretan being liars, then we may deduce (without 
contradiction) that there is at least one Cretan who is truthful. So in this case the 
paradox can be avoided. 

The sorites paradox (paradox of the heap) involves a heap of sand in which 
grains are individually removed. It is assumed that removing a single grain of 
sand does not turn a heap into a non-heap, and the paradox is to consider what 
happens after when the process is repeated often enough. Is a single remaining 
grain a heap? When does it change from being a heap to a non-heap? This paradox 
may be avoided by specifying a fixed boundary of the number of grains of sand 
required to form a heap, or to define a heap as a collection of multiple grains (≥ 
2 grains). Then any collection of grains of sand less than this boundary is not a 
heap. 

The barber paradox is a variant of Russell’s paradox (a contradiction in naïve 
set theory). In a village there is a barber who shaves everyone who does not shave 
himself, and no one else. Who shaves the barber? The answer to this question 
results in a contradiction, as the barber cannot shave himself, since he shaves only 
those who do not shave themselves. Further, as the barber does not shave himself,
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then he falls into the group of people who would be shaved by the barber (himself). 
Therefore, we conclude that there is no such barber (or that the barber has a beard). 

The purpose of a debate is to convince an audience of the correctness of your 
position and to challenge and undermine your opponent’s position. Often, the 
arguments made are factual, but occasionally individuals skilled in rhetoric and 
persuasion introduce bad arguments as a way to persuade the audience. Aristotle 
studied and classified bad arguments (known as fallacies), and these include falla-
cies such as the ad hominem argument; the appeal to authority argument; and the 
straw man argument. The fallacies are described in more detail in Table 9.3.

9.4 Stoic Logic 

The Stoic school1 was founded in the Hellenistic period by Zeno of Citium (in 
Cyprus) in the late 4th/early third century B.C. The school presented its philosophy 
as a way of life, and it emphasized ethics as the main focus of human knowledge. 
The Stoics stressed the importance of living a good life in harmony with nature 
(Fig. 9.1).

The Stoics recognized the importance of reason and logic, and Chrysippus, the 
head of the Stoics in the third century B.C., developed an early version of propo-
sitional logic. This was a system of deduction in which the smallest unanalyzed 
expressions are assertables (the Stoic equivalent of propositions). The asserta-
bles have a truth-value such that at any moment of time they are either true or 
false. True assertables are viewed as facts in the Stoic system of logic, and false 
assertables are defined as the contradictories of true ones. 

Truth is temporal, and assertions may change their truth-value over time. The 
assertables may be simple or non-simple (more than one assertible), and there may 
be present tense, past tense, and future tense assertables. Chrysippus distinguished 
between simple and compound propositions, and he introduced a set of logical 
connectives for conjunction, disjunction, and implication that are used to form 
non-simple assertables from existing assertables. 

The conjunction connective is of the form ‘both .. and ..’, and it has two con-
juncts. The disjunction connective is of the form ‘either .. or .. or ..’, and it consists 
of two or more disjuncts. Conditionals are formed from the connective ‘if .., ..’ and 
they consist of an antecedent and a consequence. 

His deductive system included various logical argument forms such as modus 
ponens and modus tollens.2 His propositional logic differed from syllogistic logic, 
in that the Stoic logic was based on propositions (or statements) as distinct from

1 The origin of the word Stoic is from the Stoa Poikile (Στoα Poιλικη), which was a covered 
walkway in the Agora of Athens. Zeno taught his philosophy in a public space at this location, and 
his followers became known as Stoics. 
2 Modus ponens is a rule of inference where from P and P→Q we can deduce Q, whereas modus 
tollens is a rule of inference where from P→Q and ¬Q we can deduce ¬P. 
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Table 9.3 Fallacies in arguments 

Fallacy Description/Example 

Hasty/accident generalization This is a bad argument that involves a generalization 
that disregards exceptions 

Slippery slope This argument outlines a chain reaction leading to a 
highly undesirable situation that will occur if a 
certain situation is allowed. The claim is that even if 
one step is taken onto the slippery slope, then we will 
fall all the way down to the bottom 

Against the person 
Ad Hominem 

The focus of this argument is to attack the person 
rather than the argument that the person has made 

Appeal to people 
Ad Populum 

This argument involves an appeal to popular belief to 
support an argument, with a claim that the majority of 
the population supports this argument. However, 
popular opinion is not always correct 

Appeal to authority (Ad Verecundiam) This argument is when an appeal is made to an 
authoritative figure to support an argument and where 
the authority is not an expert in this area 

Appeal to pity (Ad Misericordiam) This is where the arguer tries to get people to accept a 
conclusion by making them feel sorry for someone 

Appeal to ignorance The arguer makes the case that there is no conclusive 
evidence on the issue at hand and that therefore his 
conclusion should be accepted 

Straw man argument The arguer sets up a version of an opponent’s position 
of his argument and defeats this watered down version 
of his opponent’s position rather than the real subject 
of the argument 

Begging the question 
(Petitio Principii) 

This is a circular argument where the arguer relies on a 
premise that says the same thing as the conclusion and 
without providing any real evidence for the conclusion 

Red herring The arguer goes off on a tangent that has nothing to do 
with the argument in question 

False dichotomy The arguer presents the case that there are only two 
possible outcomes (often there are more). One of the 
possible outcomes is then eliminated leading to the 
desired outcome. The argument suggests that there is 
only one outcome

Aristotle’s term-logic. However, he could express the universal affirmation in syl-
logistic logic (e.g., All As are B) by rephrasing it as a conditional statement that if 
something is A then it is B.
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Fig. 9.1 Zeno of Citium

Chrysippus’s propositional logic did not replace Aristotle’s syllogistic logic, 
and syllogistic logic remained in use up to the mid-nineteenth century. George 
Boole developed his symbolic logic in the mid-1800s, and this logic is discussed 
in the next section. 

9.5 Boole’s Symbolic Logic 

George Boole was born in Lincoln, England, in 1815. His father (a cobbler who 
was interested in mathematics and optical instruments) taught him mathematics 
and showed him how to make optical instruments. Boole inherited his father’s 
interest in knowledge, and he was self-taught in mathematics and Greek. He taught 
at various schools near Lincoln, and he developed his mathematical knowledge by 
working his way through Newton’s Principia, as well as applying himself to the 
work of mathematicians such as Laplace and Lagrange. 

He developed his symbolic algebra, which is the foundation for modern com-
puting, and he is considered (along with Babbage) to be one of the grandfathers 
of computing. His work was theoretical, and he never actually built a computer or 
calculating machine. However, Boole’s symbolic logic was the perfect mathematical 
model for switching theory and for the design of digital circuits. 

Boole published a pamphlet titled “Mathematical Analysis of Logic” in 1847 
[2]. This short book developed novel ideas on a logical method, and he argued that 
logic should be considered as a separate branch of mathematics, rather than a part 
of philosophy. He argued that there are mathematical laws to express the operation 
of reasoning in the human mind, and he showed how Aristotle’s syllogistic logic 
could be reduced to a set of algebraic equations. He corresponded regularly on 
logic with Augustus De Morgan.3 

3 De Morgan was a 19th British mathematician based at University College London. De Morgan’s 
laws in Set Theory and Logic state that: (A ∪ B)c = Ac ∩ Bc and ¬ (A ∨ B) ≡ ¬A ∧ ¬B.
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He introduced two quantities “0” and “1” with the quantity 1 used to represent 
the universe of thinkable objects (i.e., the universal set), and the quantity 0 repre-
sents the absence of any objects (i.e., the empty set). He then employed symbols 
such as x, y, z, etc., to represent collections or classes of objects given by the 
meaning attached to adjectives and nouns. Next, he introduced three operators (+, 
−, and ×) that combined classes of objects. 

He showed that these symbols obeyed a rich collection of algebraic laws and 
could be added, multiplied, etc., in a manner that is similar to real numbers. These 
symbols may be used to reduce propositions to equations, and algebraic rules may 
be employed to solve the equations. 

Boole applied the symbols to encode Aristotle’s syllogistic logic, and he showed 
how the syllogisms could be reduced to equations. This allowed conclusions to be 
derived from premises by eliminating the middle term in the syllogism. He refined 
his ideas on logic further in his book “An Investigation of the Laws of Thought” 
[3]. This book aimed to identify the fundamental laws underlying reasoning in the 
human mind and to give expression to these laws in the symbolic language of a 
calculus. 

He considered the equation x2 = x to be a fundamental laws of thought. It 
allows the principle of contradiction to be expressed (i.e., for an entity to possess 
an attribute and at the same time not to possess it: i.e., x − x2 = 0 or equivalently 
x(1 − x) = 0). 

Boole’s logic appeared to have no practical use, but this changed with Claude 
Shannon’s 1937 Master’s Thesis, which showed its applicability to switching 
theory and to the design of digital circuits. 

9.5.1 Switching Circuits and Boolean Algebra 

Claude Shannon showed in his famous Master’s Thesis (“A Symbolic Analysis 
of Relay and Switching Circuits)” [4] that Boole’s symbolic algebra provided the 
perfect mathematical model for switching theory and for the design of digital cir-
cuits. He realized that you could combine switches in circuits in such a manner as 
to carry out symbolic logic operations. This allowed binary arithmetic and more 
complex mathematical operations to be performed by relay circuits. He designed a 
circuit, which could add binary numbers, and he later designed circuits that could 
make comparisons and thus be capable of performing a conditional statement. This 
was the birth of digital logic and the digital computing age. 

He showed that the binary digits (i.e., 0 and 1) can be represented by electrical 
switches. The implications of this were enormous, as it allowed binary arithmetic 
and more complex mathematical operations to be performed by relay circuits. This 
provided electronics engineers with the mathematical tool they needed to design 
digital electronic circuits and provided the foundation of digital electronic design. 

His Master’s Thesis is a key milestone in computing, and it shows how to lay out 
circuits according to Boolean principles. It provides the theoretical foundation of



9.6 Frege 149 

switching circuits, and his insight of using the properties of electrical switches to do 
Boolean logic is the basic concept that underlies all electronic digital computers. 

The use of the properties of electrical switches to process logic is the basic 
concept that underlies all modern electronic digital computers. Digital computers 
use the binary digits 0 and 1, and Boolean logical operations may be implemented 
by electronic AND, OR, and NOT gates. More complex circuits (e.g., arithmetic) 
may be designed from these fundamental building blocks. 

9.6 Frege 

Gottlob Frege (Fig. 9.2) was a German mathematician and logician who is consid-
ered (along with Boole) to be one of the founders of modern logic. He also made 
important contributions to the foundations of mathematics, and he attempted to 
show that all of the basic truths of mathematics (or at least of arithmetic) could be 
derived from a limited set of logical axioms (this approach is known as logicism). 

He invented predicate logic and the universal and existential quantifiers, and 
predicate logic was a significant advance on Aristotle’s syllogistic logic. Predicate 
logic is described in more detail in the next chapter. 

Frege’s first logical system contained nine axioms and one rule of inference. 
It was the first axiomization of logic, and it was complete in its treatment of 
propositional logic and first-order predicate logic. He published several important 
books on logic, including Begriffsschrift (term writing) in 1879; Die Grundlagen 
der Arithmetik (The Foundations of Arithmetic) in 1884; and the two-volume work 
Grundgesetze der Arithmetik (Basic Laws of Arithmetic), which were published in 
1893 and 1903. These books described his invention of axiomatic predicate logic; 
the use of quantified variables; and the application of his logic to the foundations 
of arithmetic.

Fig. 9.2 Gottlob Frege 
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Frege presented his predicate logic in his books, and he began to use it to 
define the natural numbers and their properties. He had intended producing three 
volumes of the Basic Laws of Arithmetic, with the later volumes dealing with 
the real numbers and their properties. However, Bertrand Russell discovered a 
contradiction in Frege’s system, which he communicated to Frege shortly before 
the publication of the second volume. Frege was astounded by the contradiction 
and he struggled to find a satisfactory solution, and Russell later introduced the 
theory of types in the Principia Mathematica as a solution. 

9.7 Review Questions 

1. What is logic? 
2. What is a fallacy? 
3. Give examples of fallacies in arguments in natural language (e.g., in 

politics, marketing, debates). 
4. Investigate some of the early paradoxes (e.g., the Tortoise and Achilles 

paradox or the arrow in flight paradox) and give your interpretation of the 
paradox. 

5. What is syllogistic logic and explain its relevance. 
6. What is stoic logic and explain its relevance. 
7. Explain the significance of the equation x2 = x in Boole’s symbolic logic. 
8. Describe how Boole’s symbolic logic provided the foundation for digital 

computing. 
9. Describe Frege’s contributions to logic. 

9.8 Summary 

This chapter gave a short introduction to logic, and logic is concerned with rea-
soning and with establishing the validity of arguments. It allows conclusions to 
be deduced from premises according to logical rules, and the logical argument 
establishes the truth of the conclusion provided that the premises are true. 

The origins of logic are with the Greeks who were interested in the nature of 
truth. Aristotle did important work on logic, and he developed a system of logic, 
syllogistic logic, that remained in use up to the nineteenth century. Syllogistic 
logic is a ‘term-logic’, with letters used to stand for the individual terms. A syl-
logism consists of two premises and a conclusion, where the conclusion is a valid 
deduction from the two premises. He also did some early work on modal logic. 

The Stoics developed an early form of propositional logic, where the assertables 
(propositions) have a truth-value such that at any time they are either true or false. 

George Boole developed his symbolic logic in the mid-1800s, and it later 
formed the foundation for digital computing. Boole argued that logic should be
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considered as a separate branch of mathematics, rather than a part of philosophy. 
He argued that there are mathematical laws to express the operation of reason-
ing in the human mind, and he showed how Aristotle’s syllogistic logic could be 
reduced to a set of algebraic equations. 

Gottlob Frege made important contributions to logic and to the foundations of 
mathematics. He attempted to show that all of the basic truths of mathematics (or 
at least of arithmetic) could be derived from a limited set of logical axioms (this 
approach is known as logicism). He invented predicate logic and the universal and 
existential quantifiers, and predicate logic was a significant advance on Aristotle’s 
syllogistic logic. 
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10Propositional and Predicate Logic 

Key Topics 

Propositions 

Truth Tables 

Semantic Tableaux 

Natural Deduction 

Proof 

Predicates 

Universal Quantifiers 

Existential Quantifiers 

10.1 Introduction 

Logic is the study of reasoning and the validity of arguments, and it is concerned 
with the truth of statements (propositions) and the nature of truth. Formal logic is 
concerned with the form of arguments and the principles of valid inference. Valid 
arguments are truth preserving, and for a valid deductive argument the conclusion 
will always be true if the premises are true. 

Propositional logic is the study of propositions, where a proposition is a 
statement that is either true or false. Propositions may be combined with other 
propositions (with a logical connective) to form compound propositions. Truth 
tables are used to give operational definitions of the most important logical con-
nectives, and they provide a mechanism to determine the truth-values of more 
complicated logical expressions.
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Propositional logic may be used to encode simple arguments that are expressed 
in natural language and to determine their validity. The validity of an argument 
may be determined from truth tables, or using the inference rules such as modus 
ponens to establish the conclusion via deductive steps. 

Predicate logic is richer and more expressive than propositional logic, and it 
allows complex facts about the world to be represented, with new facts deter-
mined via deductive reasoning. Predicate calculus includes predicates, variables, 
and quantifiers, and a predicate is a characteristic or property that the subject 
of a statement can have. A predicate may include variables, and statements with 
variables become propositions once the variables are assigned values. 

The universal quantifier is used to express a statement such as that all members 
of the domain of discourse have property P. This is written as (∀x) P(x), and it 
expresses the statement that the property. 

P(x) is true for all x. 
The existential quantifier states that there is at least one member of the domain 

of discourse that has property P. This is written as (∃x)P(x). 

10.2 Propositional Logic 

Propositional logic is the study of propositions where a proposition is a statement 
that is either true or false. There are many examples of propositions such as “1 + 
1 = 2” which is a true proposition, and the statement that ‘Today is Wednesday’ 
which is true if today is Wednesday and false otherwise. The statement x > 0 is not 
a proposition as it contains a variable x, and it is only meaningful to consider its 
truth or falsity only when a value is assigned to x. Once the variable x is assigned 
a value, it becomes a proposition. The statement “This sentence is false” is not 
a proposition as it contains a self-reference that contradicts itself. Clearly, if the 
statement is true, it is false, and if is false, it is true. 

A propositional variable may be used to stand for a proposition (e.g., let the 
variable P stand for the proposition ‘2 + 2 = 4’ which is a true proposition). A 
propositional variable takes the value true or false. The negation of a proposition 
P (denoted ¬P) is the proposition that is true if and only if P is false, and is false 
if and only if P is true. 

A well-formed formula (wff ) in propositional logic is a syntactically correct 
formula created according to the syntactic rules of the underlying calculus. A well-
formed formula is built up from variables, constants, terms, and logical connectives 
such as conjunction (and), disjunction (or), implication (if.. then..), equivalence (if 
and only if), and negation. A distinguished subset of these well-formed formulae 
is the axioms of the calculus, and there are rules of inference that allow the truth of 
new formulae to be derived from the axioms and from formulae that have already 
demonstrated to be true in the calculus. 

A formula in propositional calculus may contain several propositional variables, 
and the truth or falsity of the individual variables needs to be known prior to 
determining the truth or falsity of the logical formula.
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Table 10.1 Truth table for 
formula W 

A B W (A,B) 

T T T 

T F F 

F T F 

F F T 

Each propositional variable has two possible values, and a formula with n-
propositional variables has 2n values associated with the n-propositional variables. 
The set of values associated with the n variables may be used to derive a truth 
table with 2n rows and n + 1 columns. Each row gives each of the 2n truth-values 
that the n variables may take, and column n + 1 gives the result of the logical 
expression for that set of values of the propositional variables. For example, the 
propositional formula W defined in the truth table above has two propositional 
variables A and B, with 22 = 4 rows for each of the values that the two propo-
sitional variables may take. There are 2 + 1 = 3 columns with W defined in the 
third column (Table 10.1). 

A rich set of connectives is employed in the calculus to combine propositions 
and to build up the well-formed formulae. This includes the conjunction of two 
propositions (A ∧ B); the disjunction of two propositions (A ∨ B); and the implica-
tion of two propositions (A→B). These connectives allow compound propositions 
to be formed, and the truth of the compound propositions is determined from the 
truth-values of its constituent propositions and the rules associated with the logical 
connective. The meaning of the logical connectives is given by truth tables.1 

Logic involves proceeding in a methodical way from the axioms and rules of 
inference to derive further truths. A valid argument is truth preserving: i.e., for a 
valid logical argument if the set of premises is true, then the conclusion (i.e., the 
deduced proposition) will also be true. The rules of inference include rules such 
as modus ponens, which states that given the truth of the proposition A, and the 
proposition A→B, then the truth of proposition B may be deduced. 

10.2.1 Truth Tables 

Truth tables give operational definitions of the most important logical connectives, 
and they provide a mechanism to determine the truth-values of more complicated 
compound expressions. Compound expressions are formed from propositions and 
connectives, and the truth-values of a compound expression containing several 
propositional variables are determined from the underlying propositional variables 
and the logical connectives.

1 Basic truth tables were first used by Frege and developed further by Post and Wittgenstein.



156 10 Propositional and Predicate Logic

Table 10.2 Conjunction A B A ∧ B 

T T T 

T F F 

F T F 

F F F 

Table 10.3 Disjunction A B A ∨ B 

T T T 

T F T 

F T T 

F F F 

The conjunction of A and B (denoted A ∧ B) is true if and only if both A 
and B are true and is false in all other cases (Table 10.2). The disjunction of two 
propositions A and B (denoted A ∨ B) is true if at least one of A and B are true 
and false in all other cases (Table 10.3). The disjunction operator is known as the 
‘inclusive or’ operator, and there is also an exclusive or operator that is true exactly 
when one of A or B is true and is false otherwise. 

Example 10.1 

Consider proposition A given by “An orange is a fruit” and the proposition B given 
by “2 + 2 = 5” then A is true and B is false. Therefore, 

(i) A ∧ B (i.e., An orange is a fruit and 2 + 2 = 5) is false. 
(ii) A ∨ B (i.e., An orange is a fruit or 2 + 2 = 5) is true. 

The implication operation (A→B) is true if whenever A is true means that B is 
also true and also whenever A is false (Table 10.4). It is equivalent (as shown by a 
truth table) to ¬A ∨ B. The equivalence operation (A↔B) is true whenever both 
A and B are true or whenever both A and B are false (Table 10.5). 

The not operator (¬) is a unary operator (i.e., it has one argument) such that 
¬A is true when A is false and is false when A is true (Table 10.6).

Table 10.4 Implication A B A→B 

T T T 

T F F 

F T T 

F F T
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Table 10.5 Equivalence A B A↔B 

T T T 

T F F 

F T F 

F F T

Table 10.6 Not operation A ¬A 

T F 

F T 

Example 10.2 

Consider proposition A given by “Jaffa cakes are biscuits” and the proposition B 
given by “2 + 2 = 5” then A is true and B is false. Therefore, 

(i) A→B (i.e., Jaffa cakes are biscuits implies 2 + 2 = 5) is false. 
(ii) A↔B (i.e., Jaffa cakes are biscuits is equivalent to 2 + 2 = 5) is false. 
(iii) ¬B (i.e., 2 + 2 /=5) is true. 

Creating a Truth Table 
The truth table for a well-formed formula W (P1, P2, …,  Pn) is a table with 2n 

rows and n + 1 columns. Each row lists a different combination of truth-values of 
the propositions P1, P2, …,  Pn followed by the corresponding truth-value of W. 

The example above (Table 10.7) gives the truth table for a formula W with three 
propositional variables (meaning that there are 23 = 8 rows in the truth table). 

Table 10.7 Truth table for 
W (P, Q, R) 

P Q R W (P, Q, R)  

T T T F 

T T F F 

T F T F 

T F F T 

F T T T 

F T F F 

F F T F 

F F F T
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10.2.2 Properties of Propositional Calculus 

There are many well-known properties of the propositional calculus such as the 
commutative, associative, and distributive properties. These ease the evaluation of 
complex expressions and allow logical expressions to be simplified. 

The commutative property holds for the conjunction and disjunction operators, 
and it states that the order of evaluation of the two propositions may be reversed 
without affecting the resulting truth-value: i.e., 

A ∧ B = B ∧ A 
A ∨ B = B ∨ A. 

The associative property holds for the conjunction and disjunction operators. 
This means that order of evaluation of a subexpression does not affect the resulting 
truth-value: i.e., 

(A ∧ B) ∧ C = A ∧ (B ∧ C) 
(A ∨ B) ∨ C = A ∨ (B ∨ C). 

The conjunction operator distributes over the disjunction operator and vice 
versa. 

A ∧ (B ∨ C) = (A ∧ B) ∨ ( A ∧ C) 
A ∨ (B ∧ C) = ( A ∨ B) ∧ ( A ∨ C) 

The result of the logical conjunction of two propositions is false if one of the 
propositions is false (irrespective of the value of the other proposition). 

A ∧ F = F ∧ A = F 

The result of the logical disjunction of two propositions is true if one of the 
propositions is true (irrespective of the value of the other proposition). 

A ∨ T = T ∨ A = T 

The result of the logical disjunction of two propositions, where one of the 
propositions is known to be false, is given by the truth-value of the other propo-
sition. That is, the Boolean value ‘F’ acts as the identity for the disjunction 
operation. 

A ∨ F = A = F ∨ A
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The result of the logical conjunction of two propositions, where one of the 
propositions is known to be true, is given by the truth-value of the other propo-
sition. That is, the Boolean value ‘T’ acts as the identity for the conjunction 
operation. 

A ∧ T = A = T ∧ A 

The ∧ and ∨ operators are idempotent. That is, when the arguments of the 
conjunction or disjunction operator are the same proposition A, the result is A. The 
idempotent property allows expressions to be simplified. 

A ∧ A = A 

A ∨ A = A 

The law of the excluded middle is a fundamental property of the propositional 
calculus. It states that a proposition A is either true or false: i.e., there is no third 
logical value. 

A ∨ ¬A 

We mentioned earlier that A→B is logically equivalent to ¬A ∨ B (same truth 
table), and clearly ¬A ∨ B is the same as ¬A ∨ ¬¬B = ¬¬B ∨ ¬A which is 
logically equivalent to ¬B→¬A. Another word, A→B, is logically equivalent to 
¬B→¬A (this is known as the contrapositive). 

De Morgan was a contemporary of Boole in the nineteenth century, and the 
following law is known as De Morgan’s law. 

¬(A ∧ B) ≡ ¬A ∨ ¬B 

¬( A ∨ B) ≡ ¬A ∧ ¬B 

Certain well-formed formulae are true for all values of their constituent vari-
ables. This can be seen from the truth table when the last column of the truth table 
consists entirely of true values. 

A proposition that is true for all values of its constituent propositional variables 
is known as a tautology. An example of a tautology is the proposition A ∨ ¬A 
(Table 10.8). 

A proposition that is false for all values of its constituent propositional variables 
is known as a contradiction. An example of a contradiction is the proposition A ∧ 
¬A.

Table 10.8 Tautology B ∨ ¬B 

B ¬B B ∨ ¬B 

T F T 

F T T 
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10.2.3 Proof in Propositional Calculus 

Logic enables further truths to be derived from existing truths by rules of inference 
that are truth preserving. Propositional calculus is both complete and consistent. 
The completeness property means that all true propositions are deducible in the 
calculus, and the consistency property means that there is no formula A such that 
both A and ¬A are deducible in the calculus. 

An argument in propositional logic consists of a sequence of formulae that are 
the premises of the argument and a further formula that is the conclusion of the 
argument. One elementary way to see if the argument is valid is to produce a truth 
table to determine if the conclusion is true whenever all of the premises are true. 

Consider a set of premises P1, P2, …  Pn and conclusion Q. Then to determine 
if the argument is valid using a truth table involves adding a column in the truth 
table for each premise P1, P2, …  Pn, and then to identify the rows in the truth 
table for which these premises are all true. The truth-value of the conclusion Q is 
examined in each of these rows, and if Q is true for each case for which P1, P2, 
… Pn are all true then the argument is valid. This is equivalent to P1 ∧ P2 ∧… ∧ 
Pn →Q is a tautology. 

An alternate approach to proof with truth tables is to assume the negation of 
the desired conclusion (i.e., ¬Q) and to show that the premises and the negation 
of the conclusion result in a contradiction (i.e., P1 ∧ P2 ∧… ∧ Pn ∧ ¬Q) are a 
contradiction. 

The use of truth tables becomes cumbersome when there are a large number of 
variables involved, as there are 2n truth table entries for n-propositional variables. 

Procedure for Proof by Truth Table 

(i) Consider argument P1, P2, …,  Pn with conclusion Q. 
(ii) Draw truth table with column in truth table for each premise P1, P2, …,  Pn. 
(iii) Identify rows in truth table for when these premises are all true. 
(iv) Examine truth-value of Q for these rows. 
(v) If Q is true for each case that P1, P2, …  Pn are true, then the argument is 

valid. 
(vi) That is P1 ∧ P2 ∧… ∧ Pn →Q is a tautology. 

Example 10.3 (Truth Tables) 

Consider the argument adapted from [1] and determine if it is valid. 
If the pianist plays the concerto, then crowds will come if the prices are not too 
high. 
If the pianist plays the concerto, then the prices will not be too high. 
Therefore, if the pianist plays the concerto, then crowds will come.
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Table 10.9 Proof of argument with a truth table 

P C H ¬H ¬H →C P → (¬H →C) P →¬H P →C ¬(P →C) * 

T T T F T T F T F F 

T T F T T T T T F F 

T F T F T T F F T F 

T F F T F F T F T F 

F T T F T T T T F F 

F T F T T T T T F F 

F F T F T T T T F F 

F F F T F T T T F F 

Solution 

We will adopt a common proof technique that involves showing that the negation 
of the conclusion is incompatible (inconsistent) with the premises, and from this we 
deduce the conclusion must be true. First, we encode the argument in propositional 
logic: 

Let P stand for “The pianist plays the concerto”; C stands for “Crowds will 
come”; and H stands for “Prices are too high”. Then the argument may be expressed 
in propositional logic as 

P → (¬H → C) 
P → ¬H 

P → C . 

Then we negate the conclusion P →C and check the consistency of 
P → (¬H →C) ∧ (P →¬H) ∧ ¬  (P →C)* using a truth table (Table 10.9). 

It can be seen from the last column in the truth table that the negation of the 
conclusion is incompatible with the premises, and therefore it cannot be the case 
that the premises are true and the conclusion false. Therefore, the conclusion must 
be true whenever the premises are true, and we conclude that the argument is valid. 

Logical Equivalence and Logical Implication 
The laws of mathematical reasoning are truth preserving and are concerned with 
deriving further truths from existing truths. Logical reasoning is concerned with 
moving from one line in mathematical argument to another and involves deducing 
the truth of another statement Q from the truth of P. 

The statement Q may be in some sense be logically equivalent to P, and this 
allows the truth of Q to be immediately deduced. In other cases the truth of P is 
sufficiently strong to deduce the truth of Q; in other words P logically implies Q. 
This leads naturally to a discussion of the concepts of logical equivalence (W1 ≡ 
W2) and logical implication (W1 ├ W2).
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Table 10.10 Logical equivalence of two WFFs 

P Q P ∧ Q ¬P ¬Q ¬P ∨ ¬Q ¬(¬P ∨¬Q) 

T T T F F F T 

T F F F T T F 

F T F T F T F 

F F F T T T F 

Logical Equivalence 
Two well-formed formulae W1 and W2 with the same propositional variables 
(P,Q,R …) are logically equivalent (W1 ≡ W2) if they are always simultaneously 
true or false for any given truth-values of the propositional variables. 

If two well-formed formulae are logically equivalent, then it does not matter 
which of W1 and W2 is used and W1 ↔W2 is a tautology. In Table 10.10, we see  
that P ∧ Q is logically equivalent to ¬(¬P ∨ ¬Q). 

Logical Implication 
For two well-formed formulae W1 and W2 with the same propositional variables 
(P,Q,R …), W1 logically implies W2 (W1 ├ W2) if any assignment to the propo-
sitional variables which makes W1 true also makes W2 true. That is, W1 →W2 is 
a tautology. 

Example 10.4 

Show by truth tables that (P ∧ Q) ∨ (Q ∧ ¬R) ├ (Q ∨ R). 

The formula (P ∧ Q) ∨ (Q ∧ ¬R) is true on rows 1, 2, and 6, and formula (Q 
∨ R) is also true on these rows (Table 10.11). Therefore, (P ∧ Q) ∨ (Q ∧ ¬R) ├ 
(Q ∨ R). 

Table 10.11 Logical implication of two WFFs 

P Q R (P∧Q) ∨ (Q∧¬R) Q ∨ R 

T T T T T 

T T F T T 

T F T F T 

T F F F F 

F T T F T 

F T F T T 

F F T F T 

F F F F F
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10.2.4 Semantic Tableaux in Propositional Logic 

We showed in Example 10.3 how truth tables may be used to demonstrate the 
validity of a logical argument. However, the problem with truth tables is that they 
can get extremely large very quickly (as the size of the table is 2n where n is 
the number of propositional variables), and so in this section we will consider an 
alternate approach known as semantic tableaux. 

The basic idea of semantic tableaux is to determine if it is possible for a con-
clusion to be false when all of the premises are true. If this is not possible, then 
the conclusion must be true when the premises are true, and so the conclusion 
is semantically entailed by the premises. The method of semantic tableaux is a 
technique to expose inconsistencies in a set of logical formulae, by identifying 
conflicting logical expressions. 

We present a short summary of the rules of semantic tableaux in Table 10.12, 
and we then proceed to provide a proof for Example 10.3 using semantic tableaux 
instead of a truth table. 

Table 10.12 Rules of semantic tableaux 

Rule No. Definition Description 

1 A ∧ B 
A 
B 

If A ∧ B is true, then both A and B are true and may be added 
to the branch containing A ∧ B 

2 If A ∨ B is true, then either A or B is true, and we add two 
new branches to the tableaux, one containing A and one 
containing B 

3 If A→B is true, then either ¬A or B is true, and we add two 
new branches to the tableaux, one containing ¬A and one 
containing B 

4 If A↔B is true, then either A ∧ B or ¬A ∧ ¬B is true, and we 
add two new branches, one containing A ∧ B and one 
containing ¬A ∧ ¬B 

5 ¬¬A 
A 

If ¬¬A is true, then A may be added to the branch containing 
¬¬A 

6 If ¬(A ∧ B) is true, then either ¬A or ¬B is true, and we add 
two new branches to the tableaux, one containing ¬A and one 
containing ¬B 

7 ¬(A ∨ B) 
¬A 
¬B 

If ¬(A ∨ B) is true, then both ¬A and ¬B are true, and may be 
added to the branch containing ¬(A ∨ B) 

8 ¬(A→B) 
A 
¬B 

If ¬(A→B) is true, then both A and ¬B are true and  may be  
added to the branch containing ¬(A→B)
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Whenever a logical expression A and its negation ¬A appear in a branch of the 
tableau, then an inconsistency has been identified in that branch, and the branch is 
said to be closed. If all of the branches of the semantic tableaux are closed, then the 
logical propositions from which the tableau was formed are mutually inconsistent 
and cannot be true together. 

The method of proof with semantic tableaux is to negate the conclusion and 
to show that all branches in the semantic tableau are closed, and thus it is not 
possible for the premises of the argument to be true and for the conclusion to 
be false. Therefore, the argument is valid and the conclusion follows from the 
premises. 

Example 10.5 (Semantic Tableaux) Perform the proof for Example 10.3 using 
semantic tableaux. 

Solution 

We formalized the argument previously as 

(Premise 1) P → (¬H → C) 
(Premise 2) P → ¬H 
(Conclusion) P → C . 

We negate the conclusion to get ¬(P →C), and we show that all branches in the 
semantic tableau are closed, and that therefore it is not possible for the premises of 
the argument to be true and for the conclusion false. Therefore, the argument is valid, 
and the truth of the conclusion follows from the truth of the premises.
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Fig. 10.1 Gerhard Gentzen 

We have showed that all branches in the semantic tableau are closed, and that 
therefore it is not possible for the premises of the argument to be true and for the 
conclusion to be false. Therefore, the argument is valid as required. 

10.2.5 Natural Deduction 

The German mathematician, Gerhard Gentzen (Fig. 10.1), developed a method for 
logical deduction known as ‘Natural Deduction’, and this formal approach aims 
to be as close as possible to natural reasoning. Gentzen worked as an assistant to 
David Hilbert (Hilbert’s program is discussed in Chap. 14) at the University of 
Göttingen, and he died of malnutrition in Prague at the end of the Second World 
War. 

Natural deduction includes rules for ∧, ∨,→ introduction and elimination and 
also for reductio ab absurdum. There are ten inference rules in the system, and 
they include two inference rules for each of the five logical operators ∧, ∨, ¬, →, 
and ↔. There are two inference rules per operator (an introduction rule and an 
elimination rule), and the rules are defined in Table 10.13.

Natural deduction may be employed in logical reasoning, and it is described in 
detail in [1, 2]. 

10.2.6 Sketch of Formalization of Propositional Calculus 

Truth tables provide an informal approach to proof, and the proof is provided in 
terms of the meanings of the propositions and logical connectives. The formaliza-
tion of propositional logic includes the definition of an alphabet of symbols and 
well-formed formulae of the calculus, the axioms of the calculus, and rules of 
inference for logical deduction. 

The deduction of a new formulae Q is via a sequence of well-formed formulae 
P1, P2, …  Pn (where Pn = Q) such that each Pi is either an axiom, a hypothesis, 
or deducible from an earlier pair of formula Pj, Pk , (where Pk is of the form Pj ⇒
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Table 10.13 Natural deduction rules 

Rule Definition Description 

∧ I P1,P2,...Pn 
P1∧P2∧...∧Pn 

Given the truth of propositions P1, P2, …  Pn, then the truth of 
the conjunction P1 ∧ P2 ∧ …∧ Pn follows. This rule shows 
how conjunction can be introduced 

∧ E P1∧P2∧...∧Pn 
Pi 

where i ∈ {1,…,n} 

Given the truth the conjunction P1 ∧ P2 ∧ …∧ Pn, then the 
truth of proposition Pi (1 ≤ i ≤n) follows. This rule shows how 
a conjunction can be eliminated 

∨ I Pi 
P1∨P2∨...∨Pn 

Given the truth of propositions Pi, then the truth of the 
disjunction P1 ∨ P2 ∨ …∨ Pn follows. This rule shows how a 
disjunction can be introduced 

∨ E P1∨...∨Pn ,P1→E,...Pn→E 
E Given the truth of the disjunction P1 ∨ P2 ∨ …∨ Pn, and  that  

each disjunct implies E, then the truth of E follows. This rule 
shows how a disjunction can be eliminated 

→ I From P1,P2,...Pn infer P 
(P1∧P2∧...∧Pn )→P This rule states that if we have a theorem that allows P to be 

inferred from the truth of premises P1, P2, …  Pn (or previously 
proved), then we can deduce (P1 ∧ P2 ∧ …∧ Pn) →P. This is  
known as the deduction theorem 

→E 
Pi →Pj ,Pi 

Pj 
This rule is known as modus ponens. The consequence of an 
implication follows if the antecedent is true (or has been 
previously proved) 

≡ I Pi →Pj ,Pj →Pi 
Pi ↔Pj 

If proposition Pi implies proposition Pj and vice versa, then 
they are equivalent (i.e., Pi ↔ Pj) 

≡ E 
Pi ↔Pj 

Pi →Pj ,Pj →Pi 
If proposition Pi is equivalent to proposition Pj, then 
proposition Pi implies proposition Pj and vice versa 

¬ I From P infer P1∧¬P1 ¬P If the proposition P allows a contradiction to be derived, then 
¬P is deduced. This is an example of a proof by contradiction 

¬ E From ¬P infer P1∧¬P1 
P If the proposition ¬P allows a contradiction to be derived, then 

P is deduced. This is an example of a proof by contradiction

Pi) and modus ponens. Modus ponens is a rule of inference that states that given 
propositions A, and A ⇒ B then proposition B may be deduced. The deduction of 
a formula Q from a set of hypothesis H is denoted by H ├ Q, and where Q is 
deducible from the axioms alone this is denoted by ├ Q. 

The deduction theorem of propositional logic states that if H ∪ {P} ├ Q, then 
H ├ P →Q, and the converse of the theorem is also true: i.e., if H ├ P →Q, 
then H ∪ {P} ├ Q. Formalism (this approach was developed by the German math-
ematician, David Hilbert) allows reasoning about symbols according to rules and 
to derive theorems from formulae irrespective of the meanings of the symbols and 
formulae. 

Propositional calculus is sound; i.e., any theorem derived using the Hilbert 
approach is true. Further, the calculus is also complete, and every tautology has a
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proof (i.e., is a theorem in the formal system). The propositional calculus is con-
sistent: (i.e., it is not possible that both the well-formed formula A and ¬A are 
deducible in the calculus). 

Propositional calculus is decidable: i.e., there is an algorithm (truth table) to 
determine for any well-formed formula A whether A is a theorem of the formal 
system. The Hilbert style system is slightly cumbersome in conducting proof and 
is quite different from the normal use of logic in mathematical deduction. 

10.2.7 Applications of Propositional Calculus 

Propositional calculus may be employed in reasoning with arguments in natural 
language. First, the premises and conclusion of the argument are identified and 
formalized into propositions. Propositional logic is then employed to determine if 
the conclusion is a valid deduction from the premises. 

Consider, for example, the following argument that aims to prove that Superman 
does not exist. 

If Superman were able and willing to prevent evil, he would do so. If Superman were unable 
to prevent evil he would be impotent; if he were unwilling to prevent evil he would be 
malevolent; Superman does not prevent evil. If superman exists he is neither malevolent nor 
impotent; therefore Superman does not exist. 

First, letters are employed to represent the propositions as follows: 

a: Superman is able to prevent evil 
w: Superman is willing to prevent evil 
i: Superman is impotent 
m: Superman is malevolent 
p: Superman prevents evil 
e: Superman exists. 

Then, the argument above is formalized in propositional logic as follows: 

Premises 
P1 (a ∧ w) → p 
P2 (¬a → i) ∧ (¬w → m) 
P3 ¬p 
P4 e → ¬i ∧ ¬m 

− − − − − − − − − − − − − − − − −−  
Conclusion P1 ∧ P2 ∧ P3 ∧ P4 ⇒ ¬e
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Proof that Superman does not exist 

1. a ∧ w→p Premise 1 

2. (¬ a→ i) ∧ (¬ w→m) Premise 2 

3. ¬p Premise 3 

4. e→ (¬ i ∧ ¬  m) Premise 4 

5. ¬p→¬(a ∧ w) 1, Contrapositive 

6. ¬(a ∧ w) 3,5 Modus Ponens 

7. ¬a ∨ ¬w 6, De Morgan’s Law 

8. ¬ (¬ i ∧ ¬  m)→¬e 4, Contrapositive 

9. i ∨ m→¬e 8, De Morgan’s Law 

10. (¬ a→ i) 2, ∧ Elimination 

9. (¬ w→m) 2, ∧ Elimination 

12. ¬¬a ∨ i 10, A →B equivalent to ¬A∨ B 
13. ¬¬a ∨ i ∨ m 11, ∨ Introduction 
14. ¬¬a ∨ (i ∨ m) 

15. ¬a→ (i ∨ m) 14, A →B equivalent to ¬A∨ B 
16. ¬¬w ∨ m 11, A →B equivalent to ¬A∨ B 
17. ¬¬w ∨ (i ∨ m) 

18. ¬w→ (i ∨ m) 17, A →B equivalent to ¬A∨ B 
19. (i ∨ m) 7, 15, 18 ∨Elimination 

20. ¬e 9, 19 Modus Ponens 

Second Proof 

1. ¬p P3 

2. ¬(a ∧w) ∨ p P1 (A→B ≡ ¬A ∨ B) 
3. ¬(a ∧w) 1, 2 A ∨ B, ¬B ├ A 

4. ¬a ∨ ¬w 3, De Morgan’s Law 

5. (¬a→ i) P2 (∧-Elimination) 

6. ¬a→ i ∨ m 5, x →y ├ x →y ∨ z 

7. (¬w→m) P2 (∧-Elimination) 

8. ¬w→ i ∨ m 7, x →y ├ x →y ∨ z 

9. (¬a ∨ ¬w)→ (i ∨ m) 8, x → z, y→ z ├ x ∨ y→ z 

10. (i ∨ m) 4, 9 Modus Ponens 

9. e→¬(i ∨ m) P4 (De Morgan’s Law) 

12. ¬e ∨ ¬  (i ∨ m) 11, (A→ B ≡ ¬A ∨ B) 
13. ¬e 10, 12 A ∨ B, ¬B ├ A 

Therefore, the conclusion that Superman does not exist is a valid deduction 
from the given premises.
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10.2.8 Limitations of Propositional Calculus 

The propositional calculus deals with propositions only. It is incapable of dealing 
with the syllogism ‘All Greeks are mortal; Socrates is a Greek; therefore Socrates 
is mortal’. This would be expressed in propositional calculus as three proposi-
tions A, B therefore C, where A stands for ‘All Greeks are mortal’, B stands for 
‘Socrates is a Greek’, and C stands for ‘Socrates is mortal’. Propositional logic 
does not allow the conclusion that all Greeks are mortal to be derived from the 
two premises. 

Predicate calculus deals with these limitations by employing variables and 
terms and using universal and existential quantification to express that a particular 
property is true of all (or at least one) value(s) of a variable. 

10.3 Predicate Calculus 

Predicate logic is a richer system than propositional logic, and it allows complex 
facts about the world to be represented. It allows new facts about the world to 
be derived in a way that guarantees that if the initial premises are true, then the 
conclusions are true. Predicate calculus includes predicates, variables, constants, 
and quantifiers. 

A predicate is a characteristic or property that an object can have, and we 
are predicating some property of the object. For example, “Socrates is a Greek” 
could be expressed as G(s), with capital letters standing for predicates and small 
letters standing for objects. A predicate may include variables, and a statement 
with a variable becomes a proposition once the variables are assigned values. For 
example, G(x) states that the variable x is a Greek, whereas G(s) is an assignment 
of values to x. The set of values that the variables may take is termed the universe 
of discourse (the variables take values from this set). 

Predicate calculus employs quantifiers to express properties such as all members 
of the domain have a particular property: e.g., (∀x)P(x), or that there is at least 
one member that has a particular property: e.g., (∃x)P(x). These are referred to as 
the universal and existential quantifiers. 

The syllogism ‘All Greeks are mortal; Socrates is a Greek; therefore Socrates 
is mortal’ may be easily expressed in predicate calculus by 

(∀x)(G(x) → M(x)) 
G(s) 
− − − − − −−  
M(s). 

In this example, the predicate G(x) stands for x is a Greek and the predicate 
M(x) stands for x is mortal. The formula G(x)→M(x) states that if x is a Greek, 
then x is mortal, and the formula (∀x)(G(x)→M(x)) states for any x that if x is a
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Greek, then x is mortal. The formula G(s) states that Socrates is a Greek, and the 
formula M(s) states that Socrates is mortal. 

Example 10.6 (Predicates) A predicate may have one or more variables. A predicate 
that has only one variable (i.e., a unary or 1-place predicate) is often related to sets; a 
predicate with two variables (a 2-place predicate) is a relation; and a predicate with n 
variables (an-place predicate) is an-ary relation. Propositions do not contain variables 
and so they are 0-place predicates. The following are examples of predicates: 

i. The predicate Prime(x) states that x is a prime number (with the natural numbers 
being the universe of discourse). 

ii. Lawyer(a) may stand for a is a lawyer. 
iii. Mean(m,x,y) states that m is the mean of x and y: i.e., m = ½(x + y). 
iv. LT(x,6) states that x is less than 6. 
v. G(x, π) states that x is greater than π (where π is the constant 3.14159) 
vi. G(x,y) states that x is greater than y. 
vii. EQ(x, y) states that x is equal to y. 
viii. LE(x,y) states that x is less than or equal to y. 
ix. Real(x) states that x is a real number. 
x. Father(x,y) states that x is the father of y. 
xi. ¬(∃x)(Prime(x) ∧ B(x,32,36)) states that there is no prime number between 32 

and 36. 

Universal and Existential Quantification 
The universal quantifier is used to express a statement such as that all members of 
the domain have property P. This is written as (∀x)P(x) and expresses the statement 
that the property. 

P(x) is true for all x. Similarly, (∀x1, x2, …,  xn) P(x1, x2, …,  xn) states that prop-
erty P(x1, x2, …,  xn) is true for all x1, x2, …,  xn. Clearly, the predicate (∀x) P(a,b) 
is identical to P(a,b) since it contains no variables, and the predicate (∀y∈N) 
(x ≤y) is true if x = 1 and false otherwise. 

The existential quantifier states that there is at least one member in the domain 
of discourse that has property P. This is written as (∃x)P(x), and the predicate 
(∃x1, x2, …,  xn) P(x1, x2, …,  xn) states that there is at least one value of (x1, x2, 
…, xn) such that P(x1, x2, …,  xn) is true. 

Example 10.7 (Quantifiers) 

(i) (∃p) (Prime(p) ∧ p > 1,000,000) is true 

It expresses the fact that there is at least one prime number greater than a million, 
which is true as there are an infinite number of primes. 

(ii) (∀x) (∃y) x < y is true
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This predicate expresses the fact that given any number x we can always find a 
larger number: e.g., take y = x + 1.  

(iii) (∃y) (∀x) x < y is false 

This predicate expresses the statement that there is a natural number y such that 
all natural numbers are less than y. Clearly, this statement is false since there is 
no largest natural number, and so the predicate (∃y) (∀x) x < y is false. 

Comment 10.1 

It is important to be careful with the order in which quantifiers are written, as the 
meaning of a statement may be completely changed by the simple transposition of 
two quantifiers. 

The well-formed formulae in the predicate calculus are built from terms 
and predicates, and the rules for building the formulae are described briefly in 
Sect. 10.3.1. Examples of well-formed formulae include 

(∀x)(x > 2) 
(∃x)x2 = 2 
(∀x)(x > 2 ∧ x < 10) 
(∀x)(∃y)x2 = y 
(∀x)(∃y) Love (y, x) (everyone is loved by someone) 
(∃y)(∀x) Love (y, x) (someone loves everyone) 

The formula (∀x)(x > 2) states that every x is greater than the constant 2; (∃x) 
x2 = 2 states that there is an x that is the square root of 2; (∀x) (∃y) x2 = y states 
that for every x there is a y such that the square of x is y. 

10.3.1 Sketch of Formalization of Predicate Calculus 

The formalization of predicate calculus includes the definition of an alphabet of 
symbols (including constants and variables), the definition of function and predi-
cate letters, logical connectives, and quantifiers. This leads to the definitions of the 
terms and well-formed formulae of the calculus. 

The predicate calculus is built from an alphabet of constants, variables, function 
letters, predicate letters, and logical connectives (including the logical connectives 
discussed earlier in propositional logic and universal and existential quantifiers). 

The definition of terms and well-formed formulae specifies the syntax of the 
predicate calculus, and the set of well-formed formulae gives the language of the 
predicate calculus. The terms and well-formed formulae are built from the sym-
bols, and these symbols are not given meaning in the formal definition of the 
syntax.
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The language defined by the calculus needs to be given an interpretation in 
order to give a meaning to the terms and formulae of the calculus. The interpreta-
tion needs to define the domain of values of the constants and variables and provide 
meaning to the function letters, the predicate letters, and the logical connectives. 

Terms are built from constants, variables, and function letters. A constant or 
variable is a term, and if t1, t2, …,  tk are terms, then f i k(t1, t2, …,  tk) is a term 
(where f i k is a k-ary function letter). Examples of terms include. 

x2 where x is a variable and square is a 1-ary function letter. 

x2 + y2 
where x2 + y2 is shorthand for the function add (square(x), square(y)) 
where add is a 2-ary function letter and square is a 1-ary function 

letter. 

The well-formed formulae are built from terms as follows. If Pi 
k is a k-ary 

predicate letter, t1, t2, …,  tk are terms, then Pi 
k(t1, t2, …,  tk) is a well-formed 

formula. If A and B are well-formed formulae, then so are ¬A, A ∧ B, A ∨ B, 
A→B, A↔B, (∀x)A, and (∃x)A. 

There is a set of axioms for predicate calculus and two rules of inference 
used for the deduction of new formulae from the existing axioms and previously 
deduced formulae. The deduction of a new formula Q is via a sequence of well-
formed formulae P1, P2, …  Pn (where Pn = Q) such that each Pi is either an 
axiom, a hypothesis, or deducible from one or more of the earlier formulae in the 
sequence. 

The two rules of inference are modus ponens and generalization. Modus ponens 
is a rule of inference that states that given predicate formulae A, and A→B, then 
the predicate formula B may be deduced. Generalization is a rule of inference that 
states that given predicate formula A, then the formula (∀x)A may be deduced 
where x is any variable. 

The deduction of a formula Q from a set of hypothesis H is denoted by H ├ 
Q, and where Q is deducible from the axioms alone this is denoted by ├ Q. The 
deduction theorem states that if H ∪ {P} ├ Q, then H ├ P →Q2 and the converse 
of the theorem is also true: i.e., if H ├ P →Q, then H ∪{P} ├ Q. 

The approach allows reasoning about symbols according to rules and to derive 
theorems from formulae irrespective of the meanings of the symbols and formulae. 
Predicate calculus is sound: i.e., any theorem derived using the approach is true, 
and the calculus is also complete. 

Scope of Quantifiers 
The scope of the quantifier (∀x) in the well-formed formula (∀x)A is A. Similarly, 
the scope of the quantifier (∃x) in the well-formed formula (∃x)B is B. The variable

2 This is stated more formally that if H ∪ {P} ├ Q by a deduction containing no application of 
generalization to a variable that occurs free in P, then H ├ P → Q. 
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x that occurs within the scope of the quantifier is said to be a bound variable. If a  
variable is not within the scope of a quantifier, it is free. 

Example 10.8 (Scope of Quantifiers) 

(i) x is free in the well-formed formula ∀y (x2 + y > 5). 
(ii) x is bound in the well-formed formula ∀x (x2 > 2). 

A well-formed formula is closed if it has no free variables. The substitution of 
a term t for x in A can only take place only when no free variable in t will become 
bound by a quantifier in A through the substitution. Otherwise, the interpretation 
of A would be altered by the substitution. 

A term t is free for x in A if no free occurrence of x occurs within the scope 
of a quantifier (∀y) or (∃y) where y is free in t. This means that the term t may be 
substituted for x without altering the interpretation of the well-formed formula A. 

For example, suppose A is ∀y (x2 + y2 > 2) and the term t is y, then t is not 
free for x in A as the substitution of t for x in A will cause the free variable y in 
t to become bound by the quantifier ∀y in A, thereby altering the meaning of the 
formula to ∀y (y2 + y2 > 2). 

10.3.2 Interpretation and Valuation Functions 

An interpretation gives meaning to a formula, and it consists of a domain of 
discourse and a valuation function. If the formula is a sentence (i.e., does not 
contain any free variables), then the given interpretation of the formula is either 
true or false. If a formula has free variables, then the truth or falsity of the formula 
depends on the values given to the free variables. A formula with free variables 
essentially describes a relation say, R(x1, x2,.… xn) such that R(x1, x2,.… xn) is  
true if (x1, x2, …  xn) is in relation R. If the formula is true irrespective of the 
values given to the free variables, then the formula is true in the interpretation. 

A valuation (meaning) function gives meaning to the logical symbols and con-
nectives. Thus associated with each constant c is a constant cΣ in some universe 
of values Σ; with each function symbol f of arity k, we have a function symbol 
f Σ in Σ and f Σ : Σk →Σ; and for each predicate symbol P of arity k a relation 
PΣ ⊆Σk. The valuation function, in effect, gives the semantics of the language of 
the predicate calculus L. 

The truth of a predicate P is then defined in terms of the meanings of the terms, 
the meanings of the functions, predicate symbols, and the normal meanings of the 
connectives. 

Mendelson [3] provides a technical definition of truth in terms of satisfaction 
(with respect to an interpretation M). Intuitively a formula F is satisfiable if it 
is true (in the intuitive sense) for some assignment of the free variables in the 
formula F. If a formula F is satisfied for every possible assignment to the free
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variables in F, then it is true (in the technical sense) for the interpretation M. An  
analogous definition is provided for false in the interpretation M. 

A formula is valid if it is true in every interpretation; however, as there may 
be an uncountable number of interpretations, it may not be possible to check this 
requirement in practice. M is said to be a model for a set of formulae if and only 
if every formula is true in M. 

There is a distinction between proof theoretic and model theoretic approaches 
in predicate calculus. Proof theoretic is essentially syntactic, and there is a list of 
axioms with rules of inference. The theorems of the calculus are logically derived 
(i.e., ├ A), and the logical truths are as a result of the syntax or form of the 
formulae, rather than the meaning of the formulae. Model theoretical, in contrast, 
is essentially semantic. The truth derives from the meaning of the symbols and 
connectives, rather than the logical structure of the formulae. This is written as ├ 
M A. 

A calculus is sound if all of the logically valid theorems are true in the inter-
pretation, i.e., proof theoretic ⇒ model theoretic. A calculus is complete if all 
the truths in an interpretation are provable in the calculus, i.e., model theoretic ⇒ 
proof theoretic. A calculus is consistent if there is no formula A such that ├ A 
and ├ ¬A. 

The predicate calculus is sound, complete, and consistent. Predicate calculus is 
not decidable: i.e., there is no algorithm to determine for any well-formed formula 
A whether A is a theorem of the formal system. The undecidability of the pred-
icate calculus may be demonstrated by showing that if the predicate calculus is 
decidable, then the halting problem (of Turing machines) is solvable. The halting 
problem is discussed in Chap. 14. 

10.3.3 Properties of Predicate Calculus 

The following are properties of the predicate calculus. 

(i) (∀x) P(x) ≡ (∀y) P(y) 
(ii) (∀x) P(x) ≡ ¬  (∃x) ¬ P(x) 
(iii) (∃x)P(x) ≡ ¬  (∀x) ¬ P(x) 
(iv) (∃x)P(x) ≡ (∃y)P(y) 
(v) (∀x) (∀y) P(x,y) ≡ (∀y) (∀x) P(x,y) 
(vi) (∃x)(P(x) ∨ Q(x)) ≡ (∃x)P(x) ∨ (∃y)Q(y) 
(vii) (∀x) (P(x) ∧ Q(x)) ≡ (∀x) P(x) ∧ (∀y) Q(y) 

10.3.4 Applications of Predicate Calculus 

The predicate calculus may be employed to formally state the system requirements 
of a proposed system. It may be used to conduct formal proof to verify the presence 
or absence of certain properties in a specification.
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It may also be employed to define piecewise defined functions such as f (x,y) 
where f (x,y) is defined by 

f (x, y) = x2 − y2 where x ≤ 0 ∧ y < 0; 
f (x, y) = x2 + y2 where x > 0 ∧ y < 0; 
f (x, y) = x + y where x ≥ 0 ∧ y = 0; 
f (x, y) = x − y where x < 0 ∧ y = 0; 
f (x, y) = x + y where x ≤ 0 ∧ y > 0; 
f (x, y) = x2 + y2 where x > 0 ∧ y > 0 

The predicate calculus may be employed for program verification and to show 
that a code fragment satisfies its specification. The statement that a program F is 
correct with respect to its precondition P and postcondition Q is written as P{F}Q. 
The objective of program verification is to show that if the precondition is true 
before execution of the code fragment, then this implies that the postcondition is 
true after execution of the code fragment. 

A program fragment a is partially correct for precondition P and postcondition 
Q if and only if whenever a is executed in any state in which P is satisfied and exe-
cution terminates, then the resulting state satisfies Q. Partial correctness is denoted 
by P{F}Q, and Hoare’s axiomatic semantics is based on partial correctness. It 
requires proof that the postcondition is satisfied if the program terminates. 

A program fragment a is totally correct for precondition P and postcondition Q, 
if and only if whenever a is executed in any state in which P is satisfied, then the 
execution terminates and the resulting state satisfies Q. It is denoted by {P}F{Q}, 
and Dijkstra’s calculus of weakest preconditions is based on total correctness [2, 
4]. It is required to prove that if the precondition is satisfied, then the program 
terminates and the postcondition is satisfied 

10.3.5 Semantic Tableaux in Predicate Calculus 

We discussed the use of semantic tableaux for determining the validity of argu-
ments in propositional logic earlier in this chapter, and its approach is to negate 
the conclusion of an argument and to show that this results in inconsistency with 
the premises of the argument. 

The use of semantic tableaux is similar with predicate logic, except that there 
are some additional rules to consider. As before, if all branches of a seman-
tic tableau are closed, then the premises and the negation of the conclusion are 
mutually inconsistent. From this, we deduce that the conclusion must be true. 

The rules of semantic tableaux for propositional logic were presented in Table 
10.12, and the additional rules specific to predicate logic are detailed in Table 
10.14.
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Table 10.14 Extra rules of semantic tableaux (for predicate calculus) 

Rule No Definition Description 

1 (∀x) A(x) 
A(t) where  t is a term 

Universal instantiation 

2 (∃x) A(x) 
A(t) where  t is a term that has not been 
used in the derivation so far 

Rule of existential instantiation. The term 
“t” is often a constant “a” 

3 ¬(∀x) A(x) 
(∃x) ¬A(x) 

4 ¬(∃x) A(x) 
(∀x)¬A(x) 

Example 10.9 (Semantic Tableaux) Show that the syllogism ‘All Greeks are mortal; 
Socrates is a Greek; therefore Socrates is mortal’ is a valid argument in predicate 
calculus. 

Solution 

We expressed this argument previously as (∀x)(G(x) →M(x));G(s); M(s). Therefore, 
we negate the conclusion (i.e., ¬M(s)) and try to construct a closed tableau. 

Therefore, as the tableau is closed we deduce that the negation of the conclusion 
is inconsistent with the premises, and that therefore the conclusion follows from the 
premises. 

Example 10.10 (Semantic Tableaux) Determine whether the following argument is 
valid. 

All lecturers are motivated. 
Anyone who is motivated and clever will teach well. 
Joanne is a clever lecturer. 
Therefore, Joanne will teach well.
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Solution 

We encode the argument as follows: 

L(x) stands for ‘x is a lecturer’. 
M(x) stands for ‘x is motivated’. 
C(x) stands for ‘x is clever’. 
W (x) stands for ‘x will teach well’. 

We therefore wish to show that 
(∀x)(L(x) →M(x)) ∧ (∀x)((M(x) ∧ C(x)) →W (x)) ∧ L(joanne) ∧ C(joanne) |= 

W (joanne) 
Therefore, we negate the conclusion (i.e., ¬W (joanne)) and try to construct a 

closed tableau. 

Therefore, since the tableau is closed we deduce that the argument is valid. 

10.4 Review Questions 

1. Draw a truth table to show that ¬ (P → Q) ≡ P ∧¬ Q. 
2. Translate the sentence “Execution of program P begun with x < 0 will 

not terminate” into propositional form.
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3. Prove the following theorems using the inference rules of natural deduc-
tion. 
(a) From b, infer b ∨¬c. 
(b) From b ⇒ (c ∧ d), b, infer d. 

4. Explain the difference between the universal and the existential quantifier. 
5. Express the following statements in the predicate calculus. 

(a) All natural numbers are greater than 10. 
(b) There is at least one natural number between 5 and 10. 
(c) There is a prime number between 100 and 200. 

6. Which of the following predicates are true? 
(a) ∀i ∈ {10, …,50}. i2 < 2000 ∧ i < 100 
(b) ∃ i ∈ N. i > 5  ∧ i2 = 25 
(c) ∃ i ∈ N. i2 = 25 

7. Use semantic tableaux to show that (A→A) ∨ (B ∧ ¬B) is true. 
8. Determine if the following argument is valid. 

If Pilar lives in Cork, she lives in Ireland. Pilar lives in Cork. Therefore, 
Pilar lives in Ireland. 

10.5 Summary 

Propositional logic is the study of propositions, and a proposition is a statement 
that is either true or false. A formula may contain several variables and a rich set 
of connectives is employed to combine propositions to build up the well-formed 
formulae of the calculus. This allows compound propositions to be formed, and the 
truth of these is determined from the truth-values of the constituent propositions 
and the rules associated with the logical connectives. 

Propositional calculus is both complete and consistent with all true propositions 
deducible in the calculus, and there is no formula A such that both A and ¬A are 
deducible in the calculus. 

An argument in propositional logic consists of a sequence of formulae that are 
the premises of the argument and a formula that is the conclusion of the argument. 
One elementary way to see if the argument is valid is to produce a truth table to 
determine if the conclusion is true whenever all of the premises are true. 

Predicates are statements involving variables, and these statements become 
propositions once the variables are assigned values. Predicate calculus allows 
expressions such as all members of the domain have a particular property or that 
there is at least one member that has a particular property. 

Predicate calculus may be employed to specify the requirements of a pro-
posed system and to give the definition of a piecewise defined function. Semantic 
tableaux may be used for determining the validity of arguments in propositional 
or predicate logic, and its approach is to negate the conclusion of an argument and 
to show that this results in inconsistency with the premises of the argument.
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11Advanced Topics in Logic 

Key Topics 

Fuzzy Logic 

Intuitionist Logic 

Temporal Logic 

Undefined Values 

Logic of Partial Functions 

Logic and AI 

11.1 Introduction 

In this chapter we consider some advanced topics in logic including fuzzy logic, 
temporal logic, intuitionist logic, approaches that deal with undefined values, and 
logic and AI. Fuzzy logic is an extension of classical logic that acts as a math-
ematical model for vagueness, and it handles the concept of partial truth where 
truth-values lie between completely true and completely false. Temporal logic is 
concerned with the expression of properties that have time dependencies, and it 
allows temporal properties about the past, present, and future to be expressed. 

Brouwer and others developed intuitionist logic which provided a controver-
sial theory on the foundations of mathematics based on a rejection of the law 
of the excluded middle and an insistence on constructive existence. Martin Löf 
successfully applied intuitionist logic to type theory in the 1970s. 

Partial functions arise naturally in computer science, and such functions may 
fail to be defined for one or more values in their domain. One approach to dealing 
with partial functions is to employ a precondition, which restricts the application
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of the function to values where it is defined. We consider three approaches to deal 
with undefined values, including the logic of partial functions; Dijkstra’s approach 
with his cand and cor operators; and Parnas’s approach which preserves a classical 
two-valued logic. 

We examine the contribution of logic to the AI field, with a short discussion of 
the work of John McCarthy and the Prolog logic programming language. 

11.2 Fuzzy Logic 

Fuzzy logic is a branch of many-valued logic that allows inferences to be made 
when dealing with vagueness, and it can handle problems with imprecise or incom-
plete data. It differs from classical two-valued propositional logic; in that it is 
based on degrees of truth, rather than on the standard binary truth-values of “true 
or false” (1 or 0) of propositional logic. That is, while statements made in propo-
sitional logic are either true or false (1 or 0), the truth-value of a statement made 
in fuzzy logic is a value between 0 and 1. Its value expresses the extent to which 
the statement is true, with a value of 1 expressing absolute truth and a value of 0 
expressing absolute falsity. 

Fuzzy logic uses degrees of truth as a mathematical model for vagueness, and 
this is useful since statements made in natural language are often vague and have 
a certain (rather than an absolute) degree of truth. It is an extension of classical 
logic to deal with the concept of partial truth, where the truth-value lies between 
completely true and completely false. Lofti Zadeh developed fuzzy logic at Berkley 
in the 1960s, and it has been successfully applied to expert systems and other areas 
of artificial intelligence. 

For example, consider the statement “John is tall”. If John is six feet, four 
inches, then we would say that this is a true statement (with a truth-value of 1) 
since John is well above average height. However, if John is five feet, nine inches 
tall (around average height) then this statement has a degree of truth, and this 
could be indicated by a fuzzy truth-value of 0.6. Finally, if John’s height is four 
feet, ten inches then we would say that this is a false statement with truth-value 0. 
Similarly, the statement that today is sunny may be assigned a truth-value of 1 if 
there are no clouds, 0.8 if there are a small number of clouds, and 0 if it is raining 
all day. 

Propositions in fuzzy logic may be combined together to form compound 
propositions. Suppose X and Y are propositions in fuzzy logic, then compound 
propositions may be formed from the conjunction, disjunction, and implication 
operators. The usual definition in fuzzy logic of the truth-values of the compound 
propositions formed from X and Y is given by: 

Truth(¬X) = 1 − Truth(X) 
Truth(X and Y ) = min(Truth(X), Truth(Y )) 
Truth(X or Y ) = max(Truth(X), Truth(Y )) 
Truth(X → Y ) = Truth(¬X or Y ))
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Another way in which the operators may be defined is in terms of multiplica-
tion: 

Truth(X and Y ) = Truth(X) ∗ Truth(Y ) 
Truth(X or Y ) = 1 − (1 − Truth(X ))∗(1 − Truth(Y )) 
Truth(X → Y ) = max{z|Truth(X) ∗ z ≤ Truth(Y )} where 0 ≤ z ≤ 1 

Under these definitions, fuzzy logic is an extension of classical two-valued 
logic, which preserves the usual meaning of the logical connectives of proposi-
tional logic when the fuzzy values are just {0, 1}. 

Fuzzy logic has been very useful in expert system and artificial intelligence 
applications. The first fuzzy logic controller was developed in England in the mid-
1970s. Fuzzy logic has also been applied to the aerospace and automotive sectors 
and the medical, robotics, and transport sectors. 

11.3 Temporal Logic 

Temporal logic is concerned with the expression of properties that have time 
dependencies, and the various temporal logics can express facts about the past, 
present, and future. Temporal logic has been applied to specify temporal prop-
erties of natural language, artificial intelligence as well as the specification and 
verification of program and system behaviour. It provides a language to encode 
temporal properties in artificial intelligence applications, and it plays a useful role 
in the formal specification and verification of temporal properties (e.g., liveness 
and fairness) in safety critical systems. 

The statements made in temporal logic can have a truth-value that varies over 
time. Another words, sometimes the statement is true and sometimes it is false, but 
it is never true or false at the same time. The two main types of temporal logics 
are linear time logics (reason about a single timeline) and branching time logics 
(reason about multiple timelines). 

The roots of temporal logic lie in work done by Aristotle in the fourth century 
B.C., when he considered whether a truth-value should be given to a statement 
about a future event that may or may not occur. For example, what truth-value (if 
any) should be given to the statement that “There will be a sea battle tomorrow”? 
Aristotle argued against assigning a truth-value to such statements in the present 
time. 

Newtonian mechanics assumes an absolute concept of time independent of 
space, and this viewpoint remained dominant until the development of the theory 
of relativity in the early twentieth century (when space–time became the dominant 
paradigm). 

Arthur Prior began analysing and formalizing the truth-values of statements 
concerning future events in the 1950s, and he introduced tense logic (a temporal 
logic) in the early 1960s. Tense logic contains four modal operators (strong and 
weak) that express events in future or in the past:
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• P (it has at some time been the case that) 
• F (it will be at some time be the case that) 
• H (it has always been the case that) 
• G (it will always be the case that). 

The P and F operators are known as weak tense operators, while the H and G 
operators are known as strong tense operators. The two pairs of operators are 
interdefinable via the equivalences: 

Pφ ∼= ¬H¬φ 
H φ, ∼= ¬P¬φ 
Fφ ∼= ¬G¬φ 

Gφ, ∼= ¬F¬φ 

The set of formulae in Prior’s temporal logic may be defined recursively, and 
they include the connectives used in classical logic (e.g., ¬, ∧, ∨,→, ↔). We can 
express a property φ that is always true as Aφ ∼=Hφ ∧ φ ∧ Gφ and a property that 
is sometimes true as Eφ ∼=Pφ ∨ φ ∨ Fφ. Various extensions of Prior’s tense logic 
have been proposed to enhance its expressiveness. These include the binary since 
temporal operator “S” and the binary until temporal operator “U”. For example, 
the meaning of φSψ is that φ has been true since a time when ψ was true. 

Temporal logics are applicable in the specification of computer systems, as a 
specification may require safety, fairness, and liveness properties to be expressed. 
For example, a fairness property may state that it will always be the case that 
a certain property will hold sometime in future. The specification of temporal 
properties often involves the use of special temporal operators. 

The common temporal operators that may be used include an operator to 
express properties that will always be true; properties that will eventually be true; 
and a property that will be true in the next time instance. For example,

�P P is always true 
♦P P will be true sometime in future
©P P is true in the next time instant (discrete time) 

Linear temporal logic (LTL) was introduced by Pnueli in the late 1970s and is 
useful in expressing safety and liveness properties. Branching time logics assume 
a non-deterministic branching future for time (with a deterministic, linear past). 
Computation tree logics (CTL and CTL*) were introduced in the early 1980s by 
Emerson and others. 

It is also possible to express temporal operations directly in classical mathe-
matics, and Parnas prefers this approach. He is critical of computer scientists for 
introducing unnecessary formalisms when classical mathematics has the ability to 
do this. For example, the value of a function f at a time instance prior to the
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current time t is defined as: 

Prior( f , t) = lim 
ε→0 

f (t − ε) 

For more detailed information on temporal logic the reader is referred to the 
excellent article in [1]. 

11.4 Intuitionist Logic 

The school of intuitionist mathematics was founded by the Dutch mathematician, 
L. E. J. Brouwer, who was a famous topologist and well known for his fixpoint 
theorem in topology. Brouwer’s constructive approach to mathematics proved to be 
highly controversial, as its acceptance as a foundation of mathematics would have 
led to the rejection of many accepted theorems in classical mathematics (including 
his own fixed-point theorem). 

Brouwer was deeply interested in the foundations of mathematics and the prob-
lems arising from the paradoxes of set theory. He was determined to provide a 
secure foundation, and his view was that an existence theorem that demonstrates 
the proof of a mathematical object has no validity, unless the proof is constructive 
and accompanied by a procedure to construct the object. He therefore rejected 
indirect proof and the law of the excluded middle (P ∨ ¬P) or equivalently 
(¬¬P →P), and he insisted on an explicit construction of the mathematical object. 

The problem with the law of the excluded middle (LEM) arises in dealing with 
properties of infinite sets. For finite sets, one can decide if all elements of the set 
possess a certain property P by testing each one. However, this procedure is no 
longer possible for infinite sets. We may know that a certain element of the infinite 
set does not possess the property, or it may be the actual method of construction 
of the set allows us to prove that every element has the property. However, the 
application of the law of the excluded middle is invalid for infinite sets, as we 
cannot conclude from the situation where not all elements of an infinite set possess 
a property P that there exists at least one element which does not have the property 
P. Another words, the law of the excluded middle may only be applied in cases 
where the conclusion can be reached in a finite number of steps. 

Consequently, if the Brouwer view of the world were accepted then many 
of the classical theorems of mathematics (including his own well-known results 
in topology) could no longer be said to be true. His approach to the founda-
tions of mathematics hardly made him popular with contemporary mathematicians 
(the differences were so fundamental that it was more like a civil war), and 
intuitionism never became mainstream in mathematics. It led to deep and bit-
ter divisions between Hilbert1 and Brouwer, with Hilbert accusing Brouwer (and

1 David Hilbert was a famous German mathematician, and Hilbert’s program is discussed in 
Chap. 14. 
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Weyl) of trying to overthrow everything that did not suit them in mathematics, 
and that intuitionism was treason to science. Hilbert argued that a suitable foun-
dation for mathematics should aim to preserve most of mathematics. Brouwer 
described Hilbert’s formalist program as a false theory that would produce nothing 
of mathematical value. 

For Brouwer, “to exist” is synonymous with “constructive existence”, and con-
structive mathematics is relevant to computer science, as a program may be viewed 
as the result obtained from a constructive proof of its specification. Brouwer devel-
oped one of the more unusual logics that have been invented (intuitionist logic), 
in which many of the results of classical mathematics were no longer true. Intu-
itionist logic may be considered the logical basis of constructive mathematics, and 
formal systems for intuitionist propositional and predicate logic were developed 
by Heyting and others [2]. 

Consider a hypothetical mathematical property P(x) of which there is no known 
proof (i.e., it is unknown whether P(x) is true or false for arbitrary x where x 
ranges over the natural numbers). Therefore, the statement ∀x (P(x) ∨ ¬P(x)) 
cannot be asserted with the present state of knowledge, as neither P(x) nor ¬P(x) 
has been proved. That is, unproved statements in intuitionist logic are not given 
an intermediate truth-value, and they remain of an unknown truth-value until they 
have been either proved or disproved. 

The intuitionist interpretation of the logical connectives is different from clas-
sical propositional logic. A sentence of the form A ∨ B asserts that either a proof 
of A or a proof of B has been constructed, and A ∨ B is not equivalent to ¬ (¬A 
∧ ¬B). Similarly, a proof of A ∧ B is a pair whose first component is a proof of 
A and whose second component is a proof of B. The statement ∀x ¬P(x) is not  
equivalent to ∃x P(x) in intuitionist logic. 

Intuitionist logic was applied to type theory by Martin Löf in the 1970s [3]. 
Intuitionist type theory is based on an analogy between propositions and types, 
where A ∧ B is identified with A×B, the Cartesian product of A and B. The ele-
ments in the set A×B are of the form (a, b) where a∈A and b∈B. The expression 
A ∨ B is identified with A + B, the disjoint union of A and B. The elements in the 
set A + B are got from tagging elements from A and B, and they are of the form 
inl(a) for a∈A and inr(b) for b∈B. The left and right injections are denoted by inl 
and inr. 

11.5 Undefined Values 

Total functions f : X →Y are functions that are defined for every element in their 
domain, and total functions are widely used in mathematics. However, partial func-
tions may be undefined for one or more elements in their domain, and one example 
is the function y = 1/x which is undefined at x = 0. 

Partial functions arise naturally in computer science, and such functions may 
fail to be defined for one or more values in their domain. One approach to dealing 
with partial functions is to employ a precondition, which restricts the application
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Fig. 11.1 Conjunction and disjunction operators 

of the function to where it is defined. This makes it possible to define a new set (a 
proper subset of the domain of the function) for which the function is total over 
the new set. 

Undefined terms often arise2 and need to be dealt with. Consider the example 
of the square root function 

√
x taken from [4]. The domain of this function is the 

positive real numbers, and the following expression is undefined: 

((x > 0) ∧ (y = 
√

x)) ∨ ((x ≤ 0) ∧ (y = 
√ − x)) 

The reason this is undefined is since the usual rules for evaluating such an 
expression involve evaluating each subexpression and then performing the Boolean 
operations. However, when x < 0 the subexpression y = 

√
x is undefined, whereas 

when x > 0 the subexpression y = 
√−x is undefined. Clearly, it is desirable that 

such expressions be handled, and that for the example above, the expression would 
evaluate to true. 

Classical two-valued logic does not handle this situation adequately, and there 
have been several proposals to deal with undefined values. Dijkstra’s approach is 
to use the cand and cor operators in which the value of the left-hand operand 
determines whether the right-hand operand expression is evaluated or not. Jones 
logic of partial functions [5] uses a three-valued logic,3 and Parnas’s4 approach is 
an extension to the predicate calculus to deal with partial functions that preserve 
the two-valued logic. 

11.5.1 Logic of Partial Functions 

Jones [5] has proposed the logic of partial functions (LPFs) as an approach to deal 
with terms that may be undefined. This is a three-valued logic, and a logical term 
may be true, false, or undefined (denoted ⊥). The truth tables for conjunction and 
disjunction are defined in Fig. 11.1. 

The conjunction of P and Q is true when both P and Q are true; false if one 
of P or Q is false; and undefined otherwise. The operation is commutative. The

2 It is best to avoid undefinedness by taking care with the definitions of terms and expressions.
3 The above expression would evaluate to true under Jones three-valued logic of partial functions.
4 The above expression evaluates to true for Parnas logic (a two-valued logic).
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Fig. 11.2 Implication and equivalence operators 

Fig. 11.3 Negation 

disjunction of P and Q (P ∨ Q) is true if one of P or Q is true; false if both P 
and Q are false; and undefined otherwise. The implication operation (P →Q) is  
true when P is false or when Q is true; false when P is true and Q is false; and 
undefined otherwise. The equivalence operation (P ↔Q) is true when both P and 
Q are true or false; it is false when P is true and Q is false (and vice versa); and 
it is undefined otherwise (Fig. 11.2). 

The not operator (¬) is a unary operator; such ¬A is true when A is false, false 
when A is true, and undefined when A is undefined (Fig. 11.3). 

The result of an operation may be known immediately after knowing the value 
of one of the operands (e.g., disjunction is true if P is true irrespective of the value 
of Q). The law of the excluded middle and several other well-known laws do not 
hold in the three-valued logic. Jones [5] argues that this is reasonable as one would 
not expect the following to be true: 

(1/0 = 1) ∨ (1/0 �= 1) 

11.5.2 Parnas Logic 

Parnas’s approach is based on classical two-valued logic with the philosophy that 
truth-values should be true or false only. His system is an extension to predicate 
calculus to deal with partial functions. The evaluation of a logical expression yields 
the value ‘true’ or ‘false’ irrespective of the assignment of values to the variables 
in the expression. This allows the expression: ((x > 0)  ∧ (y = 

√
x)) ∨ ((x ≤0) ∧ 

(y = 
√−x)) that is undefined in classical logic to yield the value true.5 

The advantages of his approach are that no new symbols are introduced into the 
logic, and that the logical connectives retain their traditional meaning. This makes

5 It seems strange to assign the value false to the primitive predicate calculus expression y = 1/ 0.
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Table 11.1 Examples of 
Parnas evaluation of 
undefinedness 

Expression x < 0  x ≥ 0 

y = 
√

x False True if y = 
√

x, False otherwise 

y = 1/0 False False 

y = x2 + 
√

x False True if y = x2 + 
√

x, False otherwise 

Table 11.2 Example of undefinedness in array 

Expression i ∈{1…N} i /∈ {1…N} 

B[i] = x True if B[i] = x False 

∃i, B[i] = x True if B[i] = x for some i, False otherwise False 

Fig. 11.4 Finding index in array 

it easier for engineers and computer scientists to understand, as it is closer to their 
intuitive understanding of logic. 

The meaning of predicate expressions is given by first defining the meaning 
of the primitive expressions. These are used as the building bocks for predicate 
expressions. The evaluation of a primitive expression Rj(V ) (where V is a comma 
that separated set of terms with some elements of V involving the application of 
partial functions) is false if the value of an argument of a function used in one 
of the terms of V is not in the domain of that function.6 The following examples 
(Tables 11.1 and 11.2) should make this clearer. 

These primitive expressions are used to build the predicate expressions, and 
the standard logical connectives are used to yield truth-values for the predicate 
expression. Parnas logic is defined in detail in [4]. 

The power of Parnas logic may be seen by considering a tabular expressions 
example. The table below specifies the behaviour of a program that searches the 
array B for the value x. It describes the properties of the values of j’ and present’. 
There are two cases to consider (Fig. 11.4): 

Clearly, from the example above the predicate expressions ∃i, B[i] = x, and 
¬(∃i, B[i] = x) are defined. One disadvantage of the Parnas’s approach is that some 
common relational operators (e.g., >, ≥, ≤, and <) are not primitive in the logic. 
However, these relational operators are then constructed from primitive operators. 
Further, the axiom of reflection does not hold in the logic.

6 The approach avoids the undefined logical value (⊥) and preserves the two-valued logic.
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Fig. 11.5 Edsger Dijkstra. 
Courtesy of Brian Randell 

11.5.3 Dijkstra and Undefinedness 

The cand and cor operators were introduced by Dijkstra (Fig. 11.5) to deal with 
undefined values. These are non-commutative operators that allow the evaluation 
of predicates that contain undefined values. 

Consider the following expression: 

y = 0 ∨ (x/y = 2) 

Then this expression is undefined when y = 0 as  x/y is undefined, since the 
logical disjunction operation is not defined when one of its operands is undefined. 
However, there is a case for giving meaning to such an expression when y = 0, 
since in that case the first operand of the logical or operation is true. Further, the 
logical disjunction operation is defined to be true if either of its operands is true. 
This motivates the introduction of the cand and cor operators. These operators are 
associative, and their truth tables are defined in Tables 11.3 and 11.4. 

The order of the evaluation of the operands for the cand operation is to evaluate 
the first operand; if the first operand is true then the result of the operation is the

Table 11.3 a cand b a b a cand b 

T T T 

T F F 

T U U 

F T F 

F F F 

F U F 

U T U 

U F U 

U U U
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Table 11.4 a cor b a b a cor b  

T T T 

T F T 

T U T 

F T T 

F F F 

F U U 

U T U 

U F U 

U U U

second operand; otherwise the result is false. The expression a cand b is equivalent 
to: 

a cand b ∼= if a then b else F 

The order of the evaluation of the operands for the cor operation is to evaluate 
the first operand. If the first operand is true then the result of the operation is true; 
otherwise the result of the operation is the second operand. The expression a cor 
b is equivalent to: 

a cor b ∼= if a then T else b 

11.6 Logic and AI 

Artificial intelligence is a young field, and the term was coined at the Dartmouth 
conference in 1956. John McCarthy7 has long advocated the use of logic in AI 
to formalize knowledge and to guide the design of mechanized reasoning systems 
(Fig. 11.6). Logic has been used as an analytic tool, as a knowledge representation 
formalism, and as a programming language.

McCarthy’s goal was to formalize common-sense reasoning: i.e., the normal 
reasoning that is employed in problem solving and dealing with normal events 
in the real world. McCarthy [6] argues that it is reasonable for logic to play a 
key role in the formalization of common-sense knowledge, and this includes the 
formalization of basic facts about actions and their effects; facts about beliefs and 
desires; and facts about knowledge and how it is obtained. His approach allows 
common-sense problems to be solved by logical reasoning (Fig. 11.5).

7 John McCarthy received the Turing Award in 1971 for his contributions to artificial intelligence. 
He also developed the programming language LISP. 



192 11 Advanced Topics in Logic

Fig. 11.6 John McCarthy. 
Courtesy of John McCarthy

Its formalization requires sufficient understanding of the common-sense world, 
and often the relevant facts to solve a particular problem are unknown. It may be 
that knowledge thought to be relevant is irrelevant and vice versa. A computer may 
have millions of facts stored in its memory, and the problem is how to determine 
which of these should be chosen from its memory to serve as premises in logical 
deduction. 

McCarthy’s influential 1959 paper discusses various common-sense problems 
such as getting home from the airport. Mathematical logic is the standard approach 
to express premises, and it includes rules of inferences that are used to deduce valid 
conclusions from a set of premises. Its rigorous deductive reasoning shows how 
new formulae may be logically deduced from a set or premises. 

McCarthy’s approach to programs with common sense has been criticized by 
Bar-Hillel and others on the grounds that common sense is fairly elusive and the 
difficulty that a machine would have in determining which facts are relevant to a 
particular deduction from its known set of facts. However, McCarthy’s approach 
has showed how logical techniques can contribute to the solution of specific AI 
problems. 

Artificial intelligence influenced the development of logic programming, and 
logic programming languages describe what is to be done, rather than how it 
should be done. These languages are concerned with the statement of the prob-
lem to be solved, rather than how the problem will be solved. These languages use 
mathematical logic as a tool in the statement of the problem definition. 

Logic is a useful tool in developing a body of knowledge (or theory), and it 
allows rigorous mathematical deduction to derive further truths from the existing 
set of truths. The theory is built up from a small set of axioms or postulates, and 
rules of inference derive further truths logically. 

Many problems are naturally expressed as a theory, and the statement of a 
problem to be solved is often equivalent to determining if a new hypothesis is 
consistent with an existing theory. Logic provides a rigorous way to determine 
this, as it includes a rigorous process for conducting proof.
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Computation in logic programming is essentially logical deduction, and logic 
programming languages use first-order8 predicate calculus. They employ theorem 
proving to derive a desired truth from an initial set of axioms. These proofs are 
constructive9 ; in that an actual object that satisfies the constraints is produced 
rather than a pure existence theorem. Logic programming specifies the objects, the 
relationships between them, and the constraints to be satisfied for the problem. 

– The set of objects involved in the computation 
– The relationships that hold between the objects 
– The constraints of the particular problem. 

The language interpreter decides how to satisfy the particular constraints. The 
first logic programming language was Planner developed by Carl Hewitt at MIT 
in 1969. It uses a procedural approach for knowledge representation rather than 
McCarthy’s declarative approach. 

The best-known logic programming language is Prolog, which was developed 
in the early 1970s by Alain Colmerauer and Robert Kowalski. It stands for pro-
gramming in logic. It is a goal-oriented language that is based on predicate logic. 
Prolog became an ISO standard in 1995. The language attempts to solve a goal by 
tackling the subgoals that the goal consists of: 

goal : −  subgoal1, . . . ,  subgoaln . 

That is, in order to prove a particular goal it is sufficient to prove subgoal1 
through subgoaln. Each line of a Prolog program consists of a rule or a fact, 
and the language specifies what exists rather than how. The following program 
fragment has one rule and two facts: 

grandmother(G, S) : −  parent(P, S), mother(G, P). 
mother(sarah, isaac). 
parent(isaac, jacob). 

The first line in the program fragment is a rule that states that G is the grand-
mother of S if there is a parent P of S and G is the mother of P. The next two 
statements are facts stating that Isaac is a parent of Jacob, and that Sarah is the 
mother of Isaac. A particular goal clause is true if all of its subclauses are true: 

goalclause
(
Vg

) : −  clause1(V1), . . . ,  clausem (Vm )

8 First-order logic allows quantification over objects but not functions or relations. Higher-order 
logics allow quantification of functions and relations. 
9 For example, the statement ∃x such that x = 

√
4 states that there is an x such that x is the square 

root of 4, and the constructive existence yields that the answer is that x = 2 or  x =−2; i.e., construc-
tive existence provides more the truth of the statement of existence, and an actual object satisfying 
the existence criteria is explicitly produced. 
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A Horn clause consists of a goal clause and a set of clauses that must be proven 
separately. Prolog finds solutions by unification: i.e., by binding a variable to a 
value. For an implication to succeed, all goal variables Vg on the left side of:-
must find a solution by binding variables from the clauses which are activated on 
the right side. When all clauses are examined and all variables in Vg are bound, 
the goal succeeds. But if a variable cannot be bound for a given clause, then that 
clause fails. Following the failure, Prolog backtracks, and this involves going back 
to the left to previous clauses to continue trying to unify with alternative bindings. 
Backtracking gives Prolog the ability to find multiple solutions to a given query 
or goal. 

Logic programming languages generally use a simple searching strategy to 
consider alternatives: 

• If a goal succeeds and there are more goals to achieve, then remember any 
untried alternatives and go on to the next goal. 

• If a goal is achieved and there are no more goals to achieve then stop with 
success. 

• If a goal fails and there are alternative ways to solve it then try the next one. 
• If a goal fails and there are no alternate ways to solve it, and there is a previous 

goal, then go back to the previous goal. 
• If a goal fails and there are no alternate ways to solve it, and no previous goal, 

then stop with failure. 

Constraint programming is a programming paradigm where relations between vari-
ables can be stated in the form of constraints. Constraints specify the properties 
of the solution and differ from the imperative programming languages in that they 
do not specify the sequence of steps to execute. 

11.7 Review Questions 

1. What is fuzzy logic? 
2. What is intuitionist logic and how is it different from classical logic? 
3. Discuss the problem of undefinedness and the advantages and disadvan-

tages of three-valued logics. Describe the approaches of Parnas, Dijkstra, 
and Jones. 

4. What is temporal logic? 
5. Show how the temporal operators may be expressed in classical mathe-

matics. Discuss the merits of temporal operators. 
6. Discuss the applications of logic to AI.
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11.8 Summary 

We discussed some advanced topics in logic in this chapter, including fuzzy logic, 
temporal logic, intuitionist logic, undefined values, logic and AI, and theorem 
provers. Fuzzy logic is an extension of classical logic that acts as a mathematical 
model for vagueness, whereas temporal logic is concerned with the expression of 
properties that have time dependencies. 

Intuitionism was a controversial school of mathematics that aimed to provide 
a solid foundation for mathematics. Its adherents rejected the law of the excluded 
middle and insisted that for an entity to exist that there must be a constructive 
proof of its existence. 

Partial functions arise naturally in computer science, and such functions may 
fail to be defined for one or more values in their domain. There are a number of 
approaches to deal with undefined values, including the logic of partial functions; 
Dijkstra’s approach with his cand and cor operators; and Parnas’s approach which 
preserves a classical two-valued logic. 

We discussed temporal logic and its applications to the specification of proper-
ties with time dependencies. We discussed the application of logic to the AI field, 
where logic has been used to formalize knowledge in AI systems. 
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Key Topics 
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12.1 Introduction 

There are two key parts to any programming language, and these are its syntax and 
semantics. The syntax is the grammar of the language, and a program needs to be 
syntactically correct with respect to its grammar. The semantics of the language is 
deeper and determines the meaning of what has been written by the programmer. 

The difference between syntax and semantics may be illustrated by an example 
in a natural language. A sentence may be syntactically correct but semantically 
meaningless, or a sentence may have semantic meaning but be syntactically 
incorrect. For example, consider the sentence:
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I will go to Dublin yesterday. 

Then this sentence is syntactically valid but semantically meaningless. Similarly, 
if a speaker utters the sentence “Me Dublin yesterday” we would deduce that 
the speaker had visited Dublin the previous day even though the sentence is 
syntactically incorrect. 

The semantics of a programming language determines what a syntactically valid 
program will compute. A programming language is therefore given by: 

Programming Language = Syntax + Semantics 

Many programming languages have been developed since the birth of digital com-
puting including Plankalkül which was developed by Zuse in the 1940s; Fortran 
developed by IBM in the 1950s; COBOL was developed by a committee in the 
late 1950s; ALGOL 60 and ALGOL 68 were developed by an international com-
mittee in the 1960s; Pascal was developed by Wirth in the early 1970s; Ada was 
developed for the US military in the late 1970s; the C language was developed 
by Richie and Thompson at Bell Labs in the early 1970s; C ++ was developed by 
Stroustrup at Bell Labs in the early 1980s; and Java developed by Gosling at Sun 
Microsystems in the mid-1990s. A short description of a selection of programming 
languages in use is in [1]. 

A programming language needs to have a well-defined syntax and semantics, 
and the compiler preserves the semantics of the language (rather than giving the 
semantics of a language). Compilers are programs that translate a program that is 
written in some programming language into another form. It involves syntax anal-
ysis and parsing to check the syntactic validity of the program; semantic analysis 
to determine what the program should do; optimization to improve the speed and 
performance; and code generation in some target language. 

Alphabets are a fundamental building block in language theory, as words and 
language are generated from alphabets. They are discussed in the next section. 

12.2 Alphabets and Words 

An alphabet is a finite non-empty set A, and the elements of A are called letters. 
For example, consider the set A which consists of the letters a to z. 

Words are finite strings of letters, and a set of words is generated from the 
alphabet. For example, the alphabet A = {a, b} generates the following set of 
words1 : 

{ε, a, b, aa, ab, bb, ba, aaa, bbb . . .}

1 ε denotes the empty word.
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Each word consists of an ordered list of one or more letters, and the set of 
words of length two consists of all ordered lists of two letters. It is given by 

A2 = {aa, ab, bb, ba} 
Similarly, the set of words of length three is given by: 

A3 = {aaa, aab, abb, aba, baa, bab, bbb, bba} 
The set of all words over the alphabet A is given by the positive closure A+, 

and it is defined by: 

A+ = A ∪ A2 ∪ A3 ∪ . . .  = 
∞⊔

n=1 

An 

Given any two words w1 = a1, a2 … ak and w2 = b1, b2 … br then the 
concatenation of w1 and w2 is given by: 

w = w1w2 = a1a2 . . .  akb1b2 . . .  br 

The empty word is a word of length zero and is denoted by ε. Clearly, εw = wε 
= w for all w, and so ε is the identity element under the concatenation operation. 
A0 is used to denote the set containing the empty word {ε}, and the closure A* (= 
A+ ∪{ε}) denotes the infinite set of all words over A (including empty words). It 
is defined as: 

A∗ = 
∞⊔

n=0 

An 

The mathematical structure (A*, ^,  ε) forms a monoid,2 where ^ is the concate-
nation operator for words and the identity element is ε. The length of a word w is 
denoted by |w|, and the length of the empty word is zero: i.e., |ε| = 0. 

A subset L of A* is termed a formal language over A. Given two languages L1, 
L2 then the concatenation (or product) of L1 and L2 is defined by: 

L1L2 = {w|w = w1w2 where w1 ∈ L1 and w2 ∈ L2} 
The positive closure of L and the closure of L may also be defined as: 

L+ = 
∞⊔

n=1 

Ln L∗ = 
∞⊔

n=0 

Ln

2 Recall from Chap. 5 (see Sect. 5.8) that a monoid (M, *, e) is a structure that is closed and 
associative under the binary operation “*”, and it has an identity element “e”. 
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12.3 Grammars 

A formal grammar describes the syntax of a language, and we distinguish between 
concrete and abstract syntaxes. Concrete syntax describes the external appearance 
of programs as seen by the programmer, whereas abstract syntax aims to describe 
the essential structure of programs rather than its external form. In other words, 
abstract syntax aims to give the components of each language structure while 
leaving out the representation details (e.g., syntactic sugar). Backus Naur Form 
(BNF) notation is often used to specify the concrete syntax of a language. A 
grammar consists of 

• A finite set of terminal symbols 
• A finite set of non-terminal symbols 
• A set of production rules 
• A start symbol. 

A formal grammar generates a formal language, which is set of finite length 
sequences of symbols created by applying the production rules of the grammar. 
The application of a production rule involves replacing symbols at the left-hand 
side of the rule with the symbols on the right-hand side of the rule. The formal lan-
guage then consists of all words consisting of terminal symbols that are reached 
by a derivation (i.e., the application of production rules) starting from the start 
symbol of the grammar. 

A construct that appears on the left-hand side of a production rule is termed 
a non-terminal, whereas a construct that only appears on the right-hand side of a 
production rule is termed a terminal. The set of non-terminals N is disjoint from 
the set of terminals A. 

The theory of the syntax of programming languages is well established, and pro-
gramming languages have a well-defined grammar that allows syntactically valid 
programs to be derived from the grammars. 

Chomsky3 (Fig. 12.1) is a famous linguist who classified a number of differ-
ent types of grammar that occur. The Chomsky hierarchy (Table 12.1) consists of 
four levels including regular grammars; context-free grammars; context-sensitive 
grammars; and unrestricted grammars. The grammars are distinguished by the 
production rules, which determine the type of language that is generated.

Regular grammars are used to generate the words that may appear in a program-
ming language. This includes the identifiers (e.g., names for variables, functions, 
and procedures); special symbols (e.g., addition, multiplication, etc.); and the 
reserved words of the language. 

A rewriting system for context-free grammars is a finite relation between N and 
(A ∪ N)*: i.e., a subset of N × (A∪ N)*: A production rule <N> →w is one element

3 Chomsky made important contributions to linguistics and the theory of grammars. He is more 
widely known today as a critic of US foreign policy. 
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Fig. 12.1 Noah Chomsky. 
Public domain 

Table 12.1 Chomsky hierarchy of grammars 

Grammar type Description 

Type 0 grammar Type 0 grammars include all formal grammars. They have production 
rules of the form α → β where α and β are strings of terminals and 
non-terminals. They generate all languages that can be recognized by a 
turing machine (see Chap. 13) 

Type 1 grammar 
(context sensitive) 

These grammars generate the context-sensitive languages. They have 
production rules of the form αAβ →αγ β where A is a non-terminal and 
α, β, and  γ are strings of terminals and non-terminals. They generate all 
languages that can be recognized by a linear bounded automaton4 

Type 2 grammar 
(context free) 

These grammars generate the context-free languages. These are defined by 
rules of the form A→ γ where A is a non-terminal and γ is a string of 
terminals and non-terminals. These languages are recognized by a 
pushdown automaton5 and are used to define the syntax of most 
programming languages 

Type 3 grammar 
(regular grammars) 

These grammars generate the regular languages (or regular expressions). 
These are defined by rules of the form A→ a or A→aB where A and B 
are non-terminals and a is a single terminal. A finite-state automaton 
recognizes these languages (see Chap. 13), and regular expressions are 
used to define the lexical structure of programming languages

of this relation and is an ordered pair (<N>, w) where w is a word consisting 
of zero or more terminal and non-terminal letters. This production rule means 
that <N> may be replaced by w.

4 A linear bounded automaton is a restricted form of a non-deterministic Turing machine in which 
a limited finite portion of the tape (a function of the length of the input) may be accessed. 
5 A pushdown automaton is a finite automaton that can make use of a stack containing data, and it 
is discussed in Chap. 13. 
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12.3.1 Backus Naur Form 

Backus Naur Form6 (BNF) provides an elegant means of specifying the syntax of 
programming languages. It was originally employed to define the grammar for the 
ALGOL 60 programming language [2], and a variant was used by Wirth to specify 
the syntax of the Pascal programming language. BNF is widely used to specify the 
syntax of programming languages. 

BNF specifications essentially describe the external appearance of programs as 
seen by the programmer. The grammar of a context-free grammar may then be 
input into a parser (e.g., Yacc), and the parser is used to determine if a program is 
syntactically correct or not. 

A BNF specification consists of a set of production rules with each production 
rule describing the form of a class of language elements such as expressions and 
statements. A production rule is of the form: 

<symbol> ::= <expression with symbols> 

where < symbol> is a non-terminal, and the expression consists of a sequence of 
terminal and non-terminal symbols. A construct that has alternate forms appears 
more than once, and this is expressed by sequences separated by the vertical bar 
“|” (which indicates a choice). In other words, there is more than one possible 
substitution for the symbol on the left-hand side of the rule. Symbols that never 
appear on the left-hand side of a production rule are called terminals. 

The following example defines the syntax of various statements in a sample 
programming language: 

<loop statement> ::= <while loop>|<for loop> 
<while loop> ::= while(<condition>)<statement> 
<for loop> ::= for (<expression>) < statement> 
<statement> ::= <assignment statement>|<loop statement> 
<assignment statement> ::= <variable> := <expression> 

This is a partial definition of the syntax of various statements in the language. 
It includes various non-terminals such as < loop statement>, <while loop> . The 
terminals include “while”, “for”, “: = ”, “(”, and “)”. The production rules for < 
condition> and <expression > are not included. 

The grammar of a context-free language (e.g., LL(1), LL(k), LR(1), LR(k)) 
grammar expressed in BNF notation may be translated by a parser into a parse 
table. The parse table may then be employed to determine whether a particular 
program is valid with respect to its grammar.

6 Backus Naur Form is named after John Backus and Peter Naur. It was created as part of the design 
of the ALGOL 60 programming language and is used to define the syntax rules of the language. 
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Example 12.1 (Context-Free Grammar) The example considered is that of paren-
thesis matching in which there are two terminal symbols and one non-terminal 
symbol 

S → SS 
S → (S) 
S → () 

Then by starting with S and applying the rules we can construct: 

S → SS → (S)S → (())S → (())() 

Example 12.2 (Context-Free Grammar) The example considered is that of expres-
sions in a programming language. The definition is ambiguous as there is more 
than one derivation tree for some expressions (e.g., there are two parse trees for the 
expression 5× 3 + 1 discussed below). 

<expr> ::= <numeral>|(<expr>) 
|(< expr >< operator >< expr >) 

< operator > ::= +| − | × |/ 
< digit > ::= 0|1| . . .  |9 

< numeral > ::= < digit >|< digit >< numeral > 

Example 12.3 (Regular Grammar) The definition of an identifier in most program-
ming languages is similar to: 

<identifier> ::= <let><letdig> 
<letdig> ::= <let>|<dig>|ε 
<letdig> ::= <let><letdig>|<dig><letdig> 

<let> ::= a|b|c| . . .  |z 
<dig> ::= 0|1| . . . .|9 

12.3.2 Parse Trees and Derivations 

Let A and N be the terminal and non-terminal alphabet of a rewriting system and 
let <X>→ w be a production. Let x be a word in (A ∪ N)* with x = u <X> v for 
some words u, v ∈ (A∪ N)*. Then x is said to directly yield uwv, and this is written 
as x ⇒ uwv. 

This single substitution (⇒) can be extended by a finite number of productions 
(⇒*), and this gives the set of words that can be obtained from a given word. This
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derivation is achieved by applying several production rules (one production rule is 
applied at a time) in the grammar. 

That is, given x, y∈ (A ∪N)* then x yields y (or y is a derivation of x) if  x = y, 
or there exists a sequence of words w1, w2, …  wn ∈ (A ∪ N)* such that x = w1, y 
= wn and wi ⇒ wi+1 for 1≤ i≤ n − 1. This is written as x ⇒* y. 

The expression grammar presented in Example 12.2 is ambiguous, and this 
means that an expression such as 5 × 3 + 1 has more than one interpretation. 
(Figs. 12.2 and 12.3). It is not clear from the grammar whether multiplication is 
performed first and then addition, or whether addition is performed first and then 
multiplication. 

The interpretation of the parse tree in Fig. 12.2 is that multiplication is per-
formed first and then addition (this is the normal interpretation of such expressions 
in programming languages as multiplication is a higher precedence operator than 
addition). 

The interpretation of the second parse tree is that addition is performed first and 
then multiplication (Fig. 12.3). It may seem a little strange that one expression has 
two parse trees and it shows that the grammar is ambiguous. This means that there 
is a choice for the compiler in evaluating the expression, and the compiler needs

Fig. 12.2 Parse tree 5 × 3 + 
1 

Fig. 12.3 Parse tree 5×3 + 
1 
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to assign the right meaning to the expression. For the expression grammar one 
solution would be for the language designer to alter the definition of the grammar 
to remove the ambiguity. 

12.4 Programming Language Semantics 

The formal semantics of a programming language is concerned with defining the 
actual meaning of a language. Language semantics is deeper than syntax, and the 
theory of the syntax of programming languages is well established. A programmer 
writes a program according to the rules of the language. The compiler first checks 
the program for syntactic correctness: i.e., it determines whether the program as 
written is valid according to the rules of the grammar of the language. If the 
program is syntactically correct, then the compiler determines the meaning of what 
has been written and generates the corresponding machine code.7 

The compiler must preserve the semantics of the language: i.e., the semantics is 
not defined by the compiler, but rather the function of the compiler is to preserve 
the semantics of the language. Therefore, there is a need to have an unambiguous 
definition of the meaning of the language independently of the compiler, and the 
meaning is then preserved by the compiler. 

A program’s syntax8 gives no information as to the meaning of the pro-
gram, and therefore there is a need to supplement the syntactic description of 
the language with a formal unambiguous definition of its semantics. 

We mentioned that it is possible to utter syntactically correct but semantically 
meaningless sentences in a natural language. Similarly, it is possible to write syn-
tactically correct programs that behave in quite a different way from the intention 
of the programmer. 

The formal semantics of a language is given by a mathematical model 
that describes the possible computations described by the language. There are 
three main approaches to programming language semantics, namely axiomatic 
semantics, operational semantics, and denotational semantics (Table 12.2).

There are several applications of programming language semantics including 
language design, program verification, compiler writing, and language standard-
ization. The three main approaches to semantics are described in more detail 
below.

7 It is possible that what the programmer has written is not be what the programmer had intended.
8 There are attribute (or affix) grammars that extend the syntactic description of the language with 
supplementary elements covering the semantics. The process of adding semantics to the syntactic 
description is termed decoration. 
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Table 12.2 Programming language semantics 

Approach Description 

Axiomatic semantics This involves giving meaning to phrases of the language using logical 
axioms 
It employs pre- and postcondition assertions to specify what happens 
when the statement executes. The relationship between the initial 
assertion and the final assertion essentially gives the semantics of the 
code 

Operational semantics This approach describes how a valid program is interpreted as 
sequences of computational steps. These sequences then define the 
meaning of the program 
An abstract machine (SECD machine) may be defined to give 
meaning to phrases, and this is done by describing the transitions they 
induce on states of the machine 

Denotational semantics This approach provides meaning to programs in terms of 
mathematical objects such as integers, tuples, and functions 
Each phrase in the language is translated into a mathematical object 
that is the denotation of the phrase

12.4.1 Axiomatic Semantics 

Axiomatic semantics gives meaning to phrases of the language by describing the 
logical axioms that apply to them. It was developed by C.A.R. Hoare9 in a famous 
paper “An axiomatic basis for computer programming” [3]. His axiomatic theory 
consists of syntactic elements, axioms, and rules of inference. 

The well-formed formulae that are of interest in axiomatic semantics are pre-
and postassertion formulae of the form P{a}Q, where a is an instruction in the 
language and P and Q are assertions: i.e., properties of the program objects that 
may be true or false. 

An assertion is essentially a predicate that may be true in some states and false 
in other states. For example, the assertion (x − y > 5) is true in the state in which 
the values of x and y are 7 and 1, respectively, and false in the state where x and 
y have values 4 and 2. 

The pre- and postcondition assertions are employed to specify what hap-
pens when the statement executes. The relationship between the initial assertion 
and the final assertion gives the semantics of the code statement. The pre- and 
postcondition assertions are of the form: 

P{a}Q 
The precondition P is a predicate (input assertion), and the postcondition Q is 

a predicate (output assertion). The braces separate the assertions from the program

9 Hoare was influenced by earlier work by Floyd on assigning meanings to programs using 
flowcharts [ 8]. 
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fragment. The well-formed formula P{a}Q is itself a predicate that is either true 
or false. 

This notation expresses the partial correctness10 of a with respect to P and Q, 
and its meaning is that if statement a is executed in a state in which the predicate 
P is true and execution terminates, then it will result in a state in which assertion 
Q is satisfied. 

The axiomatic semantics approach is described in more detail in [4], and the 
axiomatic semantics of a selection of statements is presented below. 

• Skip 
The skip statement does nothing, and whatever condition is true on entry to 

the command is true on exit from the command. Its meaning is given by: 

P{skip}P 
• Assignment 

The meaning of the assignment statement is given by the axiom: 

Px 
e {x := e}P 

The meaning of the assignment statement is that P will be true after execu-
tion of the assignment statement if and only if the predicate Px 

e with the value 
of x replaced by e in P is true before execution (since x will contain the value 
of e after execution). 

The notation Px 
e denotes the expression obtained by substituting e for all 

free occurrences of x in P. 
• Compound 

The meaning of the conditional command is: 

P{S1}Q, Q{S2}R 
P{S1; S2}R 

The compound statement involves the execution of S1 followed by the exe-
cution of S2. The meaning of the compound statement is that R will be true 
after the execution of the compound statement S1; S2 provided that P is true, if 
it is established that Q will be true after the execution of S1 provided that P is 
true, and that R is true after the execution of S2 provided Q is true. 

There needs to be at least one rule associated with every construct in the 
language in order to give its axiomatic semantics. The semantics of other 
programming language statements such as the “while” statement and the “if” 
statement is described in [4].

10 Total correctness is expressed using {P}a{Q}, and program fragment a is totally correct for pre-
condition P and postcondition Q if and only if whenever a is executed in any state in which P is 
satisfied then execution terminates, and the resulting state satisfies Q. 
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12.4.2 Operational Semantics 

The operational semantics definition is similar to that of an interpreter, where 
the semantics of the programming language is expressed using a mechanism that 
makes it possible to determine the effect of any program written in the language. 
The meaning of a program is given by the evaluation history that an interpreter pro-
duces when it interprets the program. The interpreter may be close to an executable 
programming language, or it may be a mathematical language. 

The operational semantics for a programming language describes how a valid 
program is interpreted as sequences of computational steps. The evaluation history 
defines the meaning of the program, and this is a sequence of internal interpreter 
configurations. 

John McCarthy did early work on operational semantics in the late 1950s with 
his work on the semantics of LISP in terms of the lambda calculus. The use 
of lambda calculus allows the meaning of a program to be expressed using a 
mathematical interpreter, which gives precision through the use of mathematics. 

The meaning of a program may be given in terms of a hypothetical or virtual 
machine that performs the set of actions that corresponds to the program. An 
abstract machine (SECD machine11 ) may be defined to give meaning to phrases 
in the language, and this is done by describing the transitions that they induce on 
states of the machine. 

Operational semantics gives an intuitive description of the programming lan-
guage being studied, and its descriptions are close to real programs. It can play a 
useful role as a testing tool during the design of new languages, as it is relatively 
easy to design an interpreter to execute the description of example programs. This 
allows the effects of new languages or new language features to be simulated 
and studied through actual execution of the semantic descriptions prior to writ-
ing a compiler for the language. Another words, operational semantics can play a 
role in rapid prototyping during language design and to get early feedback on the 
suitability of the language. 

One disadvantage of the operational approach is that the meaning of the 
language is understood in terms of execution: i.e., in terms of interpreter configura-
tions, rather than in an explicit machine independent specification. An operational 
description is just one way to execute programs. Another disadvantage is that the 
interpreters for non-trivial languages often tend to be large and complex. A more 
detailed account of operational semantics is in [5, 6].

11 The stack, environment, code, and dump (SECD) virtual stack-based machine was originally 
designed by Peter Landin (a British computer scientist) to evaluate lambda calculus expressions, 
and it has since been used as a target for several compilers. Landin was influenced by McCarthy’s 
LISP. 



209 

Fig. 12.4 Denotational 
semantics Program 

Mathematical 
Denotation 

Meaning Function 

12.4.3 Denotational Semantics 

Denotational semantics expresses the semantics of a programming language by a 
translation schema that associates a meaning (denotation) with each program in 
the language [6]. It maps a program directly to its meaning, and it was originally 
called mathematical semantics as it provides meaning to programs in terms of 
mathematical values such as integers, tuples, and functions. That is, the meaning 
of a program is a mathematical object, and an interpreter is not employed. Instead, 
a valuation function is employed to map a program directly to its meaning, and the 
denotational description of a programming language is given by a set of meaning 
functions M associated with the constructs of the language (Fig. 12.4). 

Each meaning function is of the form MT : T →DT where T is some construct 
in the language and DT is some semantic domain. Many of the meaning func-
tions will be “higher order”: i.e., functions that yield functions as results. The 
signature of the meaning function is from syntactic domains (i.e., T ) to semantic 
domains (i.e., DT ). A valuation map VT : T → B may be employed to check the 
static semantics prior to giving a meaning of the language construct.12 

A denotational definition is more abstract than an operational definition. It does 
not specify the computational steps, and its exclusive focus is on the programs 
to the exclusion of the state and other data elements. The state is less visible in 
denotational specifications. 

It was developed by Christopher Strachey and Dana Scott at the Program-
ming Research Group at Oxford, England, in the mid-1960s, and their approach to 
semantics is known as the Scott–Strachey approach [7]. It provides a mathematical 
foundation for the semantics of programming languages. 

Dana Scott’s contributions included the formulation of domain theory, which 
allows programs containing recursive functions and loops to be given a precise 
semantics. Each phrase in the language is translated into a mathematical object 
that is the denotation of the phrase. Denotational semantics has been applied to 
language design and implementation.

12 This is similar to what a compiler does in that if errors are found during the compilation phase, 
the compiler halts and displays the errors and does not continue with code generation. 
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12.5 Lambda Calculus 

Functions are an essential part of mathematics, and they play a key role in specify-
ing the semantics of programming language constructs. We discussed partial and 
total functions in Chap. 3, and a function was defined as a special type of relation, 
and simple finite functions may be defined as an explicit set of pairs: e.g., 

fΔ{(a, 1), (b, 2), (c, 3)} 
However, for more complex functions there is a need to define the function 

more abstractly, rather than listing all of its member pairs. This may be done 
in a similar manner to set comprehension, where a set is defined in terms of a 
characteristic property of its members. 

Functions may be defined (by comprehension) through a powerful abstract nota-
tion known as lambda calculus. This notation was introduced by Alonzo Church 
in the 1930s to study computability (discussed in Chap. 14), and lambda cal-
culus provides an abstract framework for describing mathematical functions and 
their evaluation. It may be used to study function definition, function application, 
parameter passing, and recursion. 

Any computable function can be expressed and evaluated using lambda calculus 
or Turing machines, as these are equivalent formalisms. Lambda calculus uses a 
small set of transformation rules, and these include: 

• Alpha-conversion rule (α-conversion)13 

• Beta-reduction rule (β-reduction)14 

• Eta-conversion (η-conversion).15 

Every expression in the λ-calculus stands for a function with a single argument. 
The argument of the function is itself a function with a single argument, and so 
on. The definition of a function is anonymous in the calculus. For example, the 
function that adds one to its argument is usually defined as f (x) = x + 1. However, 
in λ-calculus the function is defined as: 

succ Δ λx · x + 1 

The name of the formal argument x is irrelevant, and an equivalent definition 
of the function is λ z. z + 1. The evaluation of a function f with respect to an 
argument (e.g., 3) is usually expressed by f (3). In λ-calculus this would be written 
as (λ x. x + 1) 3, and this evaluates to 3 + 1 = 4. Function application is left 
associative: i.e., f x  y  = (f x) y. A function of two variables is expressed in lambda

13 This essentially expresses that the names of bound variables are unimportant.
14 This essentially expresses the idea of function application.
15 This essentially expresses the idea that two functions are equal if and only if they give the same 
results for all arguments. 
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calculus as a function of one argument, which returns a function of one argument. 
This is known as currying: e.g., the function f (x, y) = x + y is written as λ x. λ 
y. x + y. This is often abbreviated to λ xy. x + y. 

λ-calculus is a simple mathematical system, and its syntax is defined as follows: 

< exp > ::= < identifier> | 
˘< identifier>.< exp > | - - abstraction 

< exp >< exp > | - - application 

( < exp>) 

λ-calculus’s four lines of syntax plus conversion rules are sufficient to define 
Booleans, integers, data structures, and computations on them. It inspired LISP and 
modern functional programming languages. The original calculus was untyped, 
but typed lambda calculi were later introduced. The typed lambda calculus allows 
the sets to which the function arguments apply to be specified. For example, the 
definition of the plus function is given as: 

plusΔλa, b : N · a + b 

The lambda calculus makes it possible to express properties of the function 
without reference to members of the base sets on which the function operates. 
It allows functional operations such as function composition to be applied, and 
one key benefit is that the calculus provides powerful support for higher-order 
functions. This is important in the expression of the denotational semantics of the 
constructs of programming languages. 

12.6 Lattices and Order 

This section considers some the mathematical structures used in the definition of 
the semantic domains used in denotational semantics. These mathematical struc-
tures may also be employed to give a secure foundation for recursion (discussed 
in Chap. 6), and it is essential that the conditions in which recursion may be used 
safely be understood. 

It is natural to ask when presented with a recursive definition whether it means 
anything at all, and in some cases the answer is negative. Recursive definitions 
are a powerful and elegant way of giving the denotational semantics of language 
constructs. The mathematical structures considered in this section include partial 
orders, total orders, lattices, complete lattices, and complete partial orders. 

12.6.1 Partially Ordered Sets 

A partial order ≤on a set P is a binary relation such that for all x, y, z∈ P the 
following properties hold (Fig. 12.5):
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Fig. 12.5 Pictorial 
representation of a partial 
order 

(i) x≤ x (reflexivity)
(ii) x≤ y and y ≤ x ⇒ x = y (anti-isymmetry) 
(iii) x≤ y and y ≤ z ⇒ x≤ z (transitivity) 

A set P with an order relation≤ is said to be a partially ordered set. 

Example 12.4 Consider the power set PX, which consists of all the subsets of the 
set X with the ordering defined by set inclusion. That is, A≤B if and only if A⊆ B 
then ⊆ is a partial order on PX. 

A partially ordered set is a totally ordered set (also called chain) if for all x, y ∈P 
then either x ≤y or y ≤x. That is, any two elements of P are directly comparable. 

A partially ordered set P is an anti-chain if for any x, y in P then x≤ y only if 
x = y. That is, the only elements in P that are comparable to a particular element 
are the element itself. 

Maps between Ordered Sets 
Let P and Q be partially ordered sets then a map φ from P to Q may preserve the 
order in P and Q. We distinguish among order preserving, order embedding, and 
order isomorphism. These terms are defined as follows: 

Order Preserving (or Monotonic Increasing Function) 

A mapping φ: P →Q is said to be order preserving if 

x ≤ y ⇒ φ(x) ≤ φ(y) 

Order Embedding 
A mapping φ: P →Q is said to be an order embedding if 

x ≤y in P if and only if φ(x)≤φ(y) in  Q. 

Order Isomorphism 
The mapping φ: P→ Q is an order isomorphism if and only if it is an order 
embedding mapping onto Q.
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Dual of a Partially Ordered Set 
The dual of a partially ordered set P (denoted P∂ ) is a new partially ordered set 
formed from P where x≤y holds in P∂ if and only if y≤x holds in P (i.e., P∂ is 
obtained by reversing the order on P). 

For each statement about P there is a corresponding statement about P∂ . Given  
any statement Φ about a partially ordered set, then the dual statement Φ∂ is 
obtained by replacing each occurrence of≤ by ≥and vice versa. 

Duality Principle 
Given that statement Φ is true of a partially ordered set P, then the statement Φ∂ 

is true of P∂ . 

Maximal and Minimum Elements 
Let P be a partially ordered set and let Q ⊆ P then 

(i) a∈ Q is a maximal element of Q if a ≤ x∈ Q ⇒ a = x. 
(ii) a∈ Q is the greatest (or maximum) element of Q if a ≥ x for every x∈Q, and 

in that case we write a = max Q. 

A minimal element of Q and the least (or minimum) are defined dually by reversing 
the order. The greatest element (if it exists) is called the top element and is denoted 
by T. The least element (if it exists) is called the bottom element and is denoted 
by ⊥. 

Example 12.5 Let X be a set and consider PX the set of all subsets of X with the 
ordering defined by set inclusion. The top element T is given by X, and the bottom 
element ⊥ is given by ∅. 

A finite totally ordered set always has top and bottom elements, but an infinite 
chain need not have. 

12.6.2 Lattices 

Let P be a partially ordered set and let S ⊆ P. An element x∈P is an upper bound 
of S if s≤ x for all s∈ S. A lower bound is defined similarly. 

The set of all upper bounds for S is denoted by Su, and the set of all lower 
bounds for S is denoted by Sl. 

Su = {x ∈ P | (∀s ∈ S) s ≤ x} 
Sl = {x ∈ P | (∀s ∈ S) s ≥ x} 

If Su has a least element x then x is called the least upper bound of S. Similarly, 
if Sl has a greatest element x then x is called the greatest lower bound of S. 

Another words, x is the least upper bound of S if.



214 12 Language Theory and Semantics

(i) x is an upper bound of S. 
(ii) x≤y for all upper bounds y of S. 

The least upper bound of S is also called the supremum of S denoted (sup S), and 
the greatest lower bound is also called the infimum of S and is denoted by inf S. 

Join and Meet Operations 
The join of x and y (denoted by x ∨ y) is given by sup{x, y} when it exists. The 
meet of x and y (denoted by x ∧ y) is given by inf{x, y} when it exists. 

The supremum of S is denoted by
V
S, and the infimum of S is denoted by

Δ
S. 

Definition Let P be a non-empty partially ordered set then 

(i) If x ∨ y and x ∧ y exist for all x, y∈ P then P is called a lattice. 
(ii) If

V
S and

Δ
S exist for all S ⊆ P then P is called a complete lattice. 

Every non-empty finite subset of a lattice has a meet and a join (inductive 
argument can be used), and every finite lattice is a complete lattice. Further, any 
complete lattice is bounded: i.e., it has top and bottom elements (Fig. 12.6). 

Example 12.6 Let X be a set, and consider PX the set of all subsets of X with the 
ordering defined by set inclusion. Then PX is a complete lattice in which 

∨ {Ai |i ∈ I } = ∪Ai 

∧ {Ai |i ∈ I } = ∩Ai 

Consider the set of natural numbers N and consider the usual ordering of <. Then 
N is a lattice with the join and meet operations defined as:

x ∨ y = max(x, y)

Fig. 12.6 Pictorial 
representation of a complete 
lattice 
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x ∧ y = min(x, y)

Another possible definition of the meet and join operations are in terms of the 
greatest common multiple and lease common divisor. 

x ∨ y = lcm(x, y) 
x ∧ y = gcd(x, y) 

12.6.3 Complete Partial Orders 

Let S be a non-empty subset of a partially ordered set P. Then 

(i) S is said to be a directed set if for every finite subset F of S there exists z∈S 
such that z∈Fu. 

(ii) S is said to be consistent if for every finite subset F of S there exists z ∈ P 
such that z∈ Fu. 

A partially ordered set P is a complete partial order (CPO) if: 

(i) P has a bottom element ⊥. 
(ii)

V
D exists for each directed subset D of P. 

The simplest example of a directed set is a chain, and we note that any complete 
lattice is a complete partial order, and that any finite lattice is a complete lattice. 

12.6.4 Recursion 

Recursive definitions arise frequently in programs and offer an elegant way to 
define routines and data types. A recursive routine contains a direct or indirect 
call to itself, and a recursive data type contains a direct or indirect reference to 
specimens of the same type. Recursion needs to be used with care, as there is 
always a danger that the recursive definition may be circular (i.e., defines nothing). 
It is therefore important to investigate when a recursive definition may be used 
safely and to give a mathematical definition of recursion. 

The control flow in a recursive routine must contain at least one non-recursive 
branch since if all possible branches included a recursive form the routine could 
never terminate. The value of at least one argument in the recursive call is different 
from the initial value of the formal argument as otherwise the recursive call would 
result in the same sequence of events and therefore would never terminate. 

The mathematical meaning of recursion is defined in terms of fixed-point theory, 
which is concerned with determining solutions to equations of the form x = τ (x), 
where the function τ is of the form τ: X → X.
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A recursive definition may be interpreted as a fixpoint equation of the form f 
= Φ(f ); i.e., the fixpoint of a high-level functional Φ that takes a function as an 
argument. For example, consider the functional Φ defined as follows:

ΦΔ λ f λn · if n = 0 then 1 else n ∗ f (n − 1) 

Then a fixpoint of Φ is a function f such that f = Φ(f ) or another words 

f = λn · if n = 0 then 1 else n ∗ f (n − 1) 

Clearly, the factorial function is a fixpoint of Φ, and it is the only total function 
that is a fixpoint. The solution of the equation f = Φ(f ) (where Φ has a fixpoint) 
is determined as the limit f of the sequence of functions f 0, f 1, f 2, …, where the 
f i is defined inductively as: 

f0 Δ∅ (the empty partial function) 

fi Δ Φ( fi−1) 

Each f i may be viewed as a successive approximation to the true solution f 
of the fixpoint equation, with each f i bringing a little more information on the 
solution than its predecessor f i−1. 

The function f i is defined for one more value than f i−1 and gives the same 
result for any value for which they are both defined. The definition of the factorial 
function is thus built up as follows: 

f0Δ∅ (the empty partial function) 
f1Δ{0 → 1} 
f2Δ{0 → 1, 1 → 1} 
f3Δ{0 → 1, 1 → 1, 2 → 2} 
f4Δ{0 → 1, 1 → 1, 2 → 2, 3 → 6} 

For every i, the domain of f i is the interval 1, 2, … i−1 and f i(n) = n! for any n in 
this interval. Another words f i is the factorial function restricted to the interval 1, 
2, … i−1. The sequence of f i may be viewed as successive approximations of the 
true solution of the fixpoint equation (which is the factorial function), with each f i 
bringing defined for one more value that is its predecessor f i−1 and defining the 
same result for any value for which they are both defined. 

The candidate fixpoint f ∞ is the limit of the sequence of functions f i, and is 
the union of all the elements in the sequence. It may be written as follows: 

f∞ Δ∅ ∪ Φ(∅) ∪ Φ(Φ(∅)) ∪ . . .  = ∪i :N fi 

where the sequence f i is defined inductively as 

f0 Δ∅ (the empty partial function)
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fi+1 Δ fi ∪ Φ( fi ) 

This forms a subset chain where each element is a subset of the next, and it 
follows by induction that: 

fi+1 = ∪ j :0...iΦ( fi ) 

A general technique for solving fixpoint equations of the form h = τ (h) for 
some functional τ is to start with the least defined function ∅ and iterate with τ . 
The union of all the functions obtained as successive sequence elements is the 
fixpoint. 

The condition in which f ∞ is a fixpoint of Φ is the requirement for Φ(f ∞) = 
f ∞. This is equivalent to:

Φ(∪i :N fi ) = ∪i :N fi
Φ(∪i :N fi ) = ∪i :NΦ( fi ) 

A sufficient point for Φ to have a fixpoint is that the property Φ(∪i:N f i) = 
∪ i:NΦ(f i) holds for any subset chain f i. 

A more detailed account on the mathematics of recursion is in Chap. 8 of [6]. 

12.7 Review Questions 

1. Explain the difference between syntax and semantics. 
2. Describe the Chomsky hierarchy of grammars and give examples of each 

type. 
3. Show that a grammar may be ambiguous leading to two difference parse 

trees. What problems does this create and how should it be dealt with? 
4. Describe axiomatic semantics, operation semantics, and denotational 

semantics and explain the differences between them. 
5. Explain partial orders, lattices, and complete partial orders. Give exam-

ples of each. 
6. Show how the meaning of recursion is defined with fixpoint theory. 

12.8 Summary 

This chapter considered the syntax and semantics of programming languages. The 
syntax of the language is concerned with the production of grammatically correct 
programs in the language, whereas the semantics of the language is deeper and is 
concerned with the meaning of what has been written by the programmer.
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The semantics of programming languages may be given by axiomatic, opera-
tional, and denotational semantics. Axiomatic semantics is concerned with defining 
properties of the language in terms of axioms; operational semantics is concerned 
with defining the meaning of the language in terms of an interpreter; and deno-
tational semantics is concerned with defining the meaning of the phrases in a 
language by the denotation or mathematical meaning of the phrase. 

Compilers are programs that translate a program that is written in some pro-
gramming language into another form. It involves syntax analysis and parsing to 
check the syntactic validity of the program; semantic analysis to determine what 
the program should do; optimization to improve the speed and performance of the 
compiler; and code generation in some target language. 

Various mathematical structures including partial orders, total orders, lattices, 
and complete partial orders were considered. These are useful in the defini-
tion of the denotational semantics of a language and in giving a mathematical 
interpretation of recursion. 
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Key Topics 

Finite-State Automata 

State Transition Table 

Deterministic FSA 

Non-deterministic FSA 

Pushdown Automata 

Turing Machine 

13.1 Introduction 

Automata theory is the branch of computer science that is concerned with the study 
of abstract machines and automata. These include finite-state machines, pushdown 
automata, and Turing machines. Finite-state machines are abstract machines that 
may be in one of a finite number of states. These machines are in only one state 
at a time (current state), and the input symbol causes a transition from the current 
state to the next state. Finite-state machines have limited computational power due 
to memory and state constraints, but they have been applied to a number of fields 
including communication protocols, neurological systems, and linguistics. 

Pushdown automata have greater computational power than finite-state 
machines, and they contain extra memory in the form of a stack from which sym-
bols may be pushed or popped. The state transition is determined from the current 
state of the machine, the input symbol, and the element on the top of the stack. 
The action may be to change the state and/or push/pop an element from the stack.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
G. O’Regan, Mathematical Foundations of Software Engineering, 
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_13 

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_13&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_13


220 13 Automata Theory

The Turing machine is the most powerful model for computation, and this theo-
retical machine is equivalent to an actual computer in the sense that it can compute 
exactly the same set of functions. The memory of the Turing machine is a tape 
that consists of a potentially infinite number of one-dimensional cells. It provides a 
mathematical abstraction of computer execution and storage, as well as providing 
a mathematical definition of an algorithm. However, Turing machines are not suit-
able for programming, and therefore they do not provide a good basis for studying 
programming and programming languages. 

13.2 Finite-State Machines 

Warren McCulloch and Walter Pitts (two neurophysiologists) published early work 
on finite-state automata in 1943. They were interested in modelling the thought 
process for humans and machines. Moore and Mealy developed this work further 
in the mid-1950s, and their finite-state machines are referred to as the “Mealy 
machine” and the “Moore machine”. The Mealy machine determines its outputs 
from the current state and the input, whereas the output of Moore’s machine is 
based upon the current state alone. 

Definition 13.1 (Finite-State Machine) A finite-state machine (FSM) is an abstract 
mathematical machine that consists of a finite number of states. It includes a start 
state q0 in which the machine is in initially; a finite set of states Q; an input alphabet
Σ; a state transition function δ; and a set of final accepting states F (where F⊆ , Q). 

The state transition function δ takes the current state and an input symbol and 
returns the next state. That is, the transition function is of the form: 

δ : Q × Σ → Q 

The transition function provides rules that define the action of the machine 
for each input symbol, and its definition may be extended to provide output as 
well as a transition of the state. State diagrams are used to represent finite-state 
machines, and each state accepts a finite number of inputs. A finite-state machine 
(Fig. 13.1) may be deterministic or non-deterministic, and a deterministic machine 
changes to exactly (or at most)1 one state for each input transition, whereas a non-
deterministic machine may have a choice of states to move to for a particular input 
symbol.

Finite-state automata can compute only very primitive functions, and so they 
are not adequate as a model for computing. There are more powerful automata 
such as the Turing machine that is essentially a finite automaton with a potentially

1 The transition function may be undefined for a particular input symbol and state.
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Fig. 13.1 Finite-state 
machine with output
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infinite storage (memory). Anything that is computable is computable by a Turing 
machine. 

A finite-state machine can model a system that has a finite number of states 
and a finite number of inputs/events that trigger transitions between states. The 
behaviour of the system at a point in time is determined from its current state and 
input, with behaviour defined for the possible input to that state. The system starts 
in the initial state. 

A finite-state machine (also known as finite-state automata) is a quintuple (Σ, 
Q, δ, q0, F). The alphabet of the FSM is given by Σ; the set of states is given by 
Q; the transition function is defined by δ: Q ×Σ →Q; the initial state is given by 
q0; and the set of accepting states is given by F (where F is a subset of Q). A 
string is given by a sequence of alphabet symbols: i.e., s ∈Σ*, and the transition 
function δ can be extended to δ*: Q×Σ*→ Q. 

A string s ∈Σ* is accepted by the finite-state machine if δ*(q0, s) = qf where 
qf ∈F, and the set of all strings accepted by a finite-state machine is the lan-
guage generated by the machine. A finite-state machine is termed deterministic 
(Fig. 13.2) if the transition function δ is a function,2 and otherwise (where it is a 
relation) it is said to be non-deterministic. A non-deterministic automaton is one 
for which the next state is not uniquely determined from the present state and input 
symbol, and the transition may be to a set of states rather than to a single state. 

For the example above the input alphabet is given by Σ = {0,1}; the set of 
states by {A, B, C}; the start state by A; the accepting states by {C}; and the 
transition function is given by the state transition table below (Table 13.1). The 
language accepted by the automata is the set of all binary strings that end with a 
one that contain exactly two ones.

2 It may be a total or a partial function (as discussed in Chap. 3). 
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Table 13.1 State transition 
table 

State 0 1 

A A B 

B B C 

C – – 

Fig. 13.3 Non-deterministic 
finite-state machine 

A non-deterministic automaton (NFA) or non-deterministic finite-state machine 
is a finite-state machine where from each state of the machine and any given input, 
the machine may go to several possible next states. However, a non-deterministic 
automaton (Fig. 13.3) is equivalent to a deterministic automaton, in that they 
both recognize the same formal language (i.e., regular languages as defined in 
Chomsky’s classification in Chap. 12). For any non-deterministic automaton, it 
is possible to construct the equivalent deterministic automaton using power set 
construction. 

NFAs were introduced by Scott and Rabin in 1959, and a NFA is defined for-
mally as a 5-tuple (Q, Σ, δ, qo, F) as in the definition of a deterministic automaton, 
and the only difference is in the transition function δ. 

δ : Q × Σ → PQ 

The non-deterministic finite-state machine M1 = (Q, Σ, δ, qo, F) may be 
converted to the equivalent deterministic machine M2 = (Q’, Σ, δ’, qo’, F’) where: 

Q, = PQ (the set of all subsets of Q) 
q ,
o = {qo} 
F , = {

q ∈ Q, and q ∩ F /= ∅}

δ,(q, σ) = ∪p∈q δ(p, σ) for each state q ∈ Q, and σ ∈ Σ. 

The set of strings (or language) accepted by an automaton M is denoted L(M). 
That is, L(M) = {s: |  δ*(q0, s) = qf for some qf ∈ F}. A language is termed regular 
if it is accepted by some finite-state machine. Regular sets are closed under union, 
intersection, concatenation, complement, and transitive closure. That is, for regular 
sets A, B⊆Σ* then: 

• A∪B and A∩ B are regular. 
• Σ* \ A (i.e., Ac) is regular.
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• AB and A* is regular. 

The proof of these properties is demonstrated by constructing finite-state machines 
to accept these languages. The proof for A∩ B is to construct a machine MA ∩B 
that mimics the execution of MA and MB and is in a final state if and only if 
both MA and MB are in a final state. Finite-state machines are useful in designing 
systems that process sequences of data. 

13.3 Pushdown Automata 

A pushdown automaton (PDA) is essentially a finite-state machine with a stack, 
and its three components (Fig. 13.4) are an input tape; a control unit; and a poten-
tially infinite stack. The stack head scans the top symbol of the stack, and two 
operations (push or pop) may be performed on the stack. The push operation adds 
a new symbol to the top of the stack, whereas the pop operation reads and removes 
an element from the top of the stack. 

A pushdown automaton may remember a potentially infinite amount of infor-
mation, whereas a finite-state automaton remembers only a finite amount of 
information. A PDA also differs from a FSM in that it may use the top of the stack 
to decide on which transition to take, and it may manipulate the stack as part of 
performing a transition. The input and current state determine the transition of a 
finite-state machine, and the FSM has no stack to work with. 

A pushdown automaton is defined formally as a 7-tuple (Σ, Q, ⎡, δ, q0, Z,  F). 
The set Σ is a finite set which is called the input alphabet; the set Q is a finite set 
of states; ⎡ is the set of stack symbols; δ, is the transition function which maps

Stack 

Stack head 
Finite 
Control 
Unit 

Takes input 

Input Tape 

Push/pop 

Fig. 13.4 Components of pushdown automata 
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Fig. 13.5 Transition in 
pushdown automata 

q1 q2 
a, b c  

Input symbol 
Top stack 
symbol Push symbol 

Q×{Σ ∪ {ε}}3 ×⎡ into finite subsets of Q×⎡*4 ; q0 is the initial state; Z is the 
initial stack top symbol on the stack (i.e., Z ∈⎡); and F is the set of accepting 
states (i.e., F ⊆ Q). 

Fig. 13.5 shows a transition from state q1 to q2, which is labelled as a, b→c. 
This means that if the input symbol a occurs in state q1, and the symbol on the 
top of the stack is b, then b is popped from the stack and c is pushed onto the 
stack. The new state is then q2. 

In general, a pushdown automaton has several transitions for a given input 
symbol, and so pushdown automata are mainly non-deterministic. If a pushdown 
automaton has at most one transition for the same combination of state, input sym-
bol, and top of stack symbol it is said to be a deterministic PDA (DPDA). The set 
of strings (or language) accepted by a pushdown automaton M is denoted L(M). 

The class of languages accepted by pushdown automata is the context-free lan-
guages, and every context-free grammar can be transformed into an equivalent 
non-deterministic pushdown automaton. We discussed the Chomsky classification 
of grammars in Chap. 12. 

Example (Pushdown Automata) 
Construct a non-deterministic pushdown automaton which recognizes the language 
{0n1n | n ≥ 0}. 

Solution 
We construct a pushdown automaton M = (Σ, Q, ⎡, δ, q0, Z,  F) where Σ = {0, 1}; 
Q = {q0, q1, qf }; ⎡ = {A, Z}; q0 is the start state; the start stack symbol is Z; and 
the set of accepting states is given by {qf }:. The transition function (relation) δ is 
defined by: 

The transition function (Fig. 13.6) essentially says that whenever the value 0 
occurs in state q0 then A is pushed onto the stack. Parts (3) and (4) of the transition 
function essentially state that the automaton may move from state q0 to state q1 at 
any moment. Part (5) states when the input symbol is 1 in state q1 then one symbol A 
is popped from the stack. Finally, part (6) states the automaton may move from state

3 The use of {Σ∪{ε}} is to formalize that the PDA can either read a letter from the input or proceed 
leaving the input untouched. 
4 This could also be written as δ : Q × {Σ ∪ {ε}} ×⎡ → P(Q × ⎡∗) . It may also be described as 
a transition relation. 
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Fig. 13.6 Transition 
function for pushdown 
automata M 

q1 to the accepting state qf only when the stack consists of the single stack symbol 
Z. 

For example, it is easy to see that the string 0011 is accepted by the automaton, 
and the sequence of transitions is given by: 

(q0, 0011, Z )⊦(q0, 011, AZ)⊦(q0, 11, AAZ  )
⊦(q1, 11, AAZ)⊦(q1, 1, AZ)⊦(q1, ε, Z)⊦(qf, Z ). 

13.4 Turing Machines 

Turing introduced the theoretical Turing machine (TM) in 1936, and this abstract 
mathematical machine consists of a head and a potentially infinite tape that is 
divided into frames (Fig. 13.7). Each frame may be either blank or printed with a 
symbol from a finite alphabet of symbols. The input tape may initially be blank 
or have a finite number of frames containing symbols. At any step, the head can 
read the contents of a frame; the head may erase a symbol on the tape, leave it 
unchanged, or replace it with another symbol. It may then move one position to 
the right, one position to the left, or not at all. If the frame is blank, the head can 
either leave the frame blank or print one of the symbols.

Turing believed that a human with finite equipment and with an unlimited sup-
ply of paper to write on could do every calculation. The unlimited supply of paper 
is formalized in the Turing machine by a paper tape marked off in squares, and the 
tape is potentially infinite in both directions. The tape may be used for intermedi-
ate calculations as well as input and output. The finite number of configurations of 
the Turing machine was intended to represent the finite states of mind of a human 
calculator.
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Tape Head (move left or right) 

Control 
Unit 

Potentially Infinite Tape 

Transition Function 
Finite Set of States 

Fig. 13.7 Turing machine

The transition function determines for each state and the tape symbol what the 
next state to move to and what should be written on the tape, and where to move 
the tape head. The Turing machine is defined formally as follows: 

Definition 13.2 (Turing Machine) A Turing machine M = (Q, ⎡, b, Σ, δ, q0, F) is  
a 7-tuple is defined as follows in [1]: 

• Q is a finite set of states. 
• ⎡ is a finite set of the tape alphabet/symbols. 
• b∈⎡ is the blank symbol (This is the only symbol that is allowed to occur infinitely 

often on the tape during each step of the computation). 
• Σ is the set of input symbols and is a subset of ⎡ (i.e., ⎡ = Σ ∪ {b}). 
• δ: Q×⎡ →Q×⎡ × {L, R}5 is the transition function. This is a partial function 

where L is left shift and R is right shift. 
• q0 ∈Q is the initial state. 
• F ⊆ Q is the set of final or accepting states. 

The Turing machine is a simple machine that is equivalent to an actual physical 
computer in the sense that it can compute exactly the same set of functions. It is much 
easier to analyse and prove things about than a real computer, but it is not suitable 
for programming and does not provide a good basis for studying programming and 
programming languages. 

Fig. 13.8 illustrates the behaviour when the machine is in state q1 and the 
symbol under the tape head is a, where b is written to the tape and the tape head 
moves to the left and the state changes to q2.

A Turing machine is essentially a finite-state machine (FSM) with an 
unbounded tape. The tape is potentially infinite and unbounded, whereas real com-
puters have a large but finite store. The machine may read from and write to 
the tape. The FSM is essentially the control unit of the machine, and the tape is

5 We may also allow no movement of the tape head to be represented by adding the symbol “N” 
to the set. 
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Fig. 13.8 Transition on 
turing machine q1 q2 

a / b L

essentially the store. However, the store in a real computer may be extended with 
backing tapes and discs and in a sense may be regarded as unbounded. However, 
the maximum amount of tape that may be read or written within n steps is n. 

A Turing machine has an associated set of rules that defines its behaviour. Its 
actions are defined by the transition function. It may be programmed to solve any 
problem for which there is an algorithm. However, if the problem is unsolvable 
then the machine will either stop or compute forever. The solvability of a problem 
may not be determined beforehand. There is, of course, some answer (i.e., either 
the machine halts or it computes forever). The applications of the Turing machine 
to computability and decidability are discussed in Chap. 14. 

Turing also introduced the concept of a Universal Turing Machine, and 
this machine is able to simulate any other Turing machine. For more detailed 
information on automata theory see [1]. 

13.5 Review Questions 

1. What is a finite-state machine? 
2. Explain the difference between the deterministic and non-deterministic 

finite-state machines. 
3. Show how to convert the non-deterministic finite-state automaton in 

Fig. 7.3 to a deterministic automaton. 
4. What is a pushdown automaton? 
5. What is a Turing machine? 
6. Explain what is meant by the language accepted by an automaton. 
7. Give an example of a language accepted by a pushdown automaton but 

not by a finite-state machine. 
8. Describe the applications of the Turing machine to computability and 

decidability. 

13.6 Summary 

Automata theory is concerned with the study of abstract machines and automata. 
These include finite-state machines, pushdown automata, and Turing machines. 
Finite-state machines are abstract machines that may be in one of a finite num-
ber of states. These machines are in only one state at a time (current state), and 
the state transition function determines the new state from the current state and
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the input symbol. Finite-state machines have limited computational power due to 
memory and state constraints, but they have been applied to a number of fields 
including communication protocols and linguistics. 

Pushdown automata have greater computational power than finite-state 
machines, and they contain extra memory in the form of a stack from which sym-
bols may be pushed or popped. The state transition is determined from the current 
state of the machine, the input symbol, and the element on the top of the stack. 
The action may be to change the state and/or push/pop an element from the stack. 

The Turing machine is the most powerful model for computation, and it is 
equivalent to an actual computer in the sense that it can compute exactly the same 
set of functions. The Turing machine provides a mathematical abstraction of com-
puter execution and storage, as well as providing a mathematical definition of an 
algorithm. 
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Key Topics 

Computability 

Completeness 

Decidability 

Formalism 

Logicism 

14.1 Introduction 

It is impossible for a human or machine to write out all of the members of an 
infinite countable set, such as the set of natural numbers N. However, humans can 
do something quite useful in the case of certain enumerable infinite sets: they can 
give explicit instructions (that may be followed by a machine or another human) 
to produce the nth member of the set for an arbitrary finite n. The problem remains 
that for all but a finite number of values of n it will be physically impossible for 
any human or machine to actually carry out the computation, due to the limitations 
on the time available for computation, the speed at which the individual steps in 
the computation may be carried out, and due to finite materials. 

The intuitive meaning of computability is in terms of an algorithm (or effec-
tive procedure) that specifies a set of instructions to be followed to complete the 
task. Another words, a function f is computable if there exists an algorithm that 
produces the value of f correctly for each possible argument of f . The compu-
tation of f for a particular argument x just involves following the instructions in 
the algorithm, and it produces the result f (x) in a finite number of steps if x is in
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the domain of f . If  x is not in the domain of f then the algorithm may produce 
an answer saying so or it might run forever never halting. A computer program 
implements an algorithm. 

The concept of computability may be made precise in several equivalent ways 
such as Church’s lambda calculus, recursive function theory, or by the theoretical 
Turing machines.1 These are all equivalent, and perhaps the most well known 
is the Turing machine (discussed in Chap. 13). This is a mathematical machine 
with a potentially infinite tape divided into frames (or cells) in which very basic 
operations can be carried out. The set of functions that are computable are those 
that are computable by a Turing machine. 

Decidability is an important topic in contemporary mathematics. Church and 
Turing independently showed in 1936 that mathematics is not decidable. In other 
words, there is no mechanical procedure (i.e., algorithm) to determine whether 
an arbitrary mathematical proposition is true or false, and so the only way to 
determine the truth or falsity of a statement is try to solve the problem. That is, 
it is impossible to of prove or disprove certain statements within a formal system, 
and there is no a general method to solve all instances of a specific problem. 

14.2 Logicism and Formalism 

Gottlob Frege (Fig. 9.2) was a 19th-century German mathematician and logician 
who invented a formal system which is the basis of modern predicate logic. It 
included axioms, definitions, universal and existential quantification, and formal-
ization of proof. His objective was to show that mathematics was reducible to logic 
(logicism) but his project failed, and one of the axioms that he had added to his 
system led to inconsistency. 

The inconsistency was pointed out by Bertrand Russell, and it is known as 
Russell’s paradox.2 Russell later introduced his theory of types to deal with the 
paradox, and he jointly published Principia Mathematica with Alfred North White-
head as an attempt to derive the truths of arithmetic from a set of logical axioms 
and rules of inference. 

The sentences of Frege’s logical system denote the truth-values of true or false. 
The sentences may include expressions such as equality (x = y), and this returns 
true if x is the same as y and false otherwise. Similarly, a more complex expression 
such as f (x,y,z) = w is true if f (x,y,z) is identical with w and false otherwise. Frege 
represented statements such as “5 is a prime” by “P(5)” where P() is termed a 
concept. The statement P(x) returns true if x is prime and false otherwise. His 
approach was to represent a predicate as a function of one variable which returns 
a Boolean value of true or false.

1 The Church–Turing thesis states that anything that is computable is computable by a Turing 
machine. 
2 Russell’s paradox considers the question as to whether the set of all sets that contain themselves 
as members is a set. In either case there is a contradiction. 
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Fig. 14.1 David Hilbert 

Formalism was proposed by Hilbert (Fig. 14.1) as a foundation for mathemat-
ics in the early twentieth century. The motivation for the program was to provide 
a secure foundations for mathematics and to resolve the contradictions in the 
formalization of set theory identified by Russell’s paradox. The presence of a 
contradiction in a theory means the collapse of the whole theory, and so it was 
seen as essential that there be a proof of the consistency of the formal system. 
The methods of proof in mathematics are formalized with axioms and rules of 
inference. 

Formalism is a formal system that contains meaningless symbols together with 
rules for manipulating them. The individual formulae are certain finite sequences 
of symbols obeying the syntactic rules of the formal language. A formal system 
consists of: 

• A formal language 
• A set of axioms 
• Rules of inference. 

The expressions in a formal system are terms, and a term may be simple or com-
plex. A simple term may be an object such as a number, and a complex term may 
be an arithmetic expression such as 43 + 1. A complex term is formed via func-
tions, and the expression above uses two functions, namely the cube function with 
argument 4 and the plus function with two arguments. 

A formal system is generally intended to represent some aspect of the real 
world. A rule of inference relates a set of formulae (P1,P2,….Pk) called the 
premises to the consequence formula P called the conclusion. For each rule of 
inference there is a finite procedure for determining whether a given formula Q 
is an immediate consequence of the rule from the given formulae (P1,P2,….Pk). 
A proof in a formal system consists of a finite sequence of formulae, where each 
formula is either an axiom or derived from one or more preceding formulae in the 
sequence by one of the rules of inference. 

Hilbert’s program was concerned with the formalization of mathematics (i.e., 
the axiomatization of mathematics) together with a proof that the axiomatization
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is consistent (i.e., there is no formula A such that both A and ¬A are deducible in 
the calculus). Its specific objectives were to: 

• Provide a formalism of mathematics. 
• Show that the formalization of mathematics is complete: i.e., all mathematical 

truths can be proved in the formal system. 
• Provide a proof that the formal system is consistent (i.e., that no contradictions 

may be derived). 
• Show that mathematics is decidable: i.e., there is an algorithm to determine the 

truth of falsity of any mathematical statement. 

The formalist movement in mathematics led to the formalization of large parts 
of mathematics, where theorems could be proved using just a few mechanical 
rules. The two most comprehensive formal systems developed were Principia 
Mathematica by Russell and Whitehead and the axiomatization of set theory by 
Zermelo-Fraenkel (subsequently developed further by von Neumann). 

Principia Mathematica is a comprehensive three-volume work on the logical 
foundations of mathematics written by Bertrand Russel and Alfred Whitehead 
between 1910 and 1913. Its goal was to show that all of the concepts of math-
ematics can be expressed in logic, and that all of the theorems of mathematics can 
be proved using only the logical axioms and rules of inference of logic. It covered 
set theory, ordinal numbers, and real numbers, and it showed that in principle that 
large parts of mathematics could be developed using logicism. 

It avoided the problems with contradictions that arose with Frege’s system by 
introducing the theory of types in the system. The theory of types meant that 
one could no longer speak of the set of all sets, as a set of elements is of a 
different type from that of each of its elements, and so Russell’s paradox was 
avoided. It remained an open question at the time as to whether the Principia was 
consistent and complete. That is, is it possible to derive all the truths of arith-
metic in the system and is it possible to derive a contradiction from the Principia’s 
axioms? However, it was clear from the three-volume work that the development 
of mathematics using the approach of the Principia was extremely lengthy and 
time-consuming. 

14.3 Decidability 

The question remained whether these axioms and rules of inference are sufficient 
to decide any mathematical question that can be expressed in these systems. Hilbert 
believed that every mathematical problem could be solved, and that the truth or 
falsity of any mathematical proposition could be determined in a finite number of 
steps. He outlined twenty-three key problems in 1900 that needed to be solved by 
mathematicians in the twentieth century. 

He believed that the formalism of mathematics would allow a mechanical pro-
cedure (or algorithm) to determine whether a particular statement was true or false.
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The problem of the decidability of mathematics is known as the decision problem 
(Entscheidungsproblem). 

The question of the decidability of mathematics had been considered by Leib-
nitz in the seventeenth century. He had constructed a mechanical calculating 
machine and wondered if a machine could be built that could determine whether 
particular mathematical statements are true or false. 

Definition 14.1 (Decidability) Mathematics is decidable if the truth or falsity of any 
mathematical proposition may be determined by an algorithm. 

Church and Turing independently showed this to be impossible in 1936. Church 
developed the lambda calculus in the 1930s as a tool to study computability,3 and 
he showed that anything that is computable is computable by the lambda calculus. 
Turing showed that decidability was related to the halting problem for Turing 
machines, and that therefore if first-order logic were decidable then the halting 
problem for Turing machines could be solved. However, he had already proved 
that there was no general algorithm to determine whether a given Turing machine 
halts. Therefore, first-order logic is undecidable. 

The question as to whether a given Turing machine halts or not can be formu-
lated as a first-order statement. If a general decision procedure exists for first-order 
logic, then the statement of whether a given Turing machine halts or not is within 
the scope of the decision algorithm. However, Turing had already proved that the 
halting problem for Turing machines is not computable: i.e., it is not possible algo-
rithmically to decide whether or not any given Turing machine will halt or not. 
Therefore, since there is no general algorithm that can decide whether any given 
Turing machine halts, there is no general decision procedure for first-order logic. 
The only way to determine whether a statement is true or false is to try to solve 
it. However, if one tries but does not succeed this does not prove that an answer 
does not exist. 

There are first-order theories that are decidable. However, first-order logic that 
includes Peano’s axioms of arithmetic (or any formal system that includes addition 
and multiplication) cannot be decided by an algorithm. That is, there is no algo-
rithm to determine whether an arbitrary mathematical proposition is true or false. 
Propositional logic is decidable as there is a procedure (e.g., using a truth table) 
to determine whether an arbitrary formula is valid4 in the calculus. 

Gödel (Fig. 14.2) proved that first-order predicate calculus is complete; i.e., all 
truths in the predicate calculus can be proved in the language of the calculus.

3 The Church–Turing thesis states that anytime that is computable is computable by lambda calcu-
lus or equivalently by a Turing machine. 
4 A well-formed formula is valid if it follows from the axioms of first-order logic. A formula is 
valid if and only if it is true in every interpretation of the formula in the model. 
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Fig. 14.2 Kurt Gödel 

Definition 14.2 (Completeness) A formal system is complete if all the truths in the 
system can be derived from the axioms and rules of inference. 

Gödel’s first incompleteness theorem showed that first-order arithmetic is incom-
plete; i.e., there are truths in first-order arithmetic that cannot be proved in the 
language of the axiomatization of first-order arithmetic. Gödel’s second incom-
pleteness theorem showed that any formal system extending basic arithmetic 
cannot prove its own consistency within the formal system. 

Definition 14.3 (Consistency) A formal system is consistent if there is no formula 
A such that A and ¬A are provable in the system (i.e., there are no contradictions in 
the system). 

14.4 Computability 

Alonzo Church (Fig. 14.3) developed the lambda calculus in the mid-1930s, as 
part of his work into the foundations of mathematics. Turing published a key 
paper on computability in 1936, which introduced the theoretical machine known 
as the Turing machine. This machine is computationally equivalent to the lambda 
calculus and is capable of performing any conceivable mathematical problem that 
has an algorithm.

Definition 14.4 (Algorithm) An algorithm (or effective procedure) is a finite set of 
unambiguous instructions to perform a specific task. 

A function is computable if there is an effective procedure or algorithm to 
compute f for each value of its domain. The algorithm is finite in length and 
sufficiently detailed so that a person can execute the instructions in the algorithm. 
The execution of the algorithm will halt in a finite number of steps to produce the 
value of f (x) for all x in the domain of f . However, if  x is not in the domain of
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Fig. 14.3 Alonzo Church

f then the algorithm may produce an answer saying so, or it may get stuck, or it 
may run forever never halting. 

The Church–Turing thesis states that any computable function may be computed 
by a Turing machine. There is overwhelming evidence in support in support of 
this thesis, including the fact that alternative formalizations of computability in 
terms of lambda calculus, recursive function theory, and Post systems have all 
been shown to be equivalent to Turing machines. 

A Turing machine consists of a head and a potentially infinite tape that is 
divided into cells. Each cell on the tape may be either blank or printed with a 
symbol from a finite alphabet of symbols. The input tape may initially be blank or 
have a finite number of cells containing symbols. 

At any step, the head can read the contents of a frame. The head may erase 
a symbol on the tape, leave it unchanged, or replace it with another symbol. It 
may then move one position to the right, one position to the left, or not at all. If 
the frame is blank, the head can either leave the frame blank or print one of the 
symbols. 

Turing believed that a human with finite equipment and with an unlimited 
supply of paper could do every calculation. The unlimited supply of paper is 
formalized in the Turing machine by a tape marked off in cells. 

The Turing machine is a simple theoretical machine, but it is equivalent to an 
actual physical computer in the sense that they both compute exactly the same set 
of functions. A Turing machine is easier to analyse and prove things about than a 
real computer. The formal definition of a Turing machine as a 7-tuple M = (Q, ⎡, 
b, Σ, δ, q0, F) is given in Chap. 13. 

A Turing machine is essentially a finite state machine (FSM) with an unbounded 
tape. The machine may read from and write to the tape, and the tape provides 
memory and acts as the store. The finite state machine is essentially the control
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unit of the machine, whereas the tape is a potentially infinite and unbounded store. 
A real computer has a large but finite store, whereas the store in a Turing machine 
is potentially infinite. However, the store in a real computer may be extended 
with backing tapes and discs and in a sense may be regarded as unbounded. The 
maximum amount of tape that may be read or written within n steps is n. 

A Turing machine has an associated set of rules that defines its behaviour. These 
rules are defined by the transition function that specify the actions that a machine 
will perform with respect to a particular input. The behaviour will depend on the 
current state of the machine and the contents of the tape. 

A Turing machine may be programmed to solve any problem for which there is 
an algorithm. However, if the problem is unsolvable then the machine will either 
stop in a non-accepting state or compute forever. The solvability of a problem may 
not be determined beforehand, but there is, of course, some answer (i.e., either the 
machine either halts or computes forever). 

Turing showed that there was no solution to the decision problem (Entschei-
dungsproblem) posed by Hilbert. Hilbert believed that the truth or falsity of a 
mathematical problem may always be determined by a mechanical procedure, and 
he believed that first-order logic is decidable: i.e., there is a decision procedure to 
determine if an arbitrary formula is a theorem of the logical system. 

Turing also introduced the concept of a Universal Turing Machine, and this 
machine is able to simulate any other Turing machine. Turing’s results on com-
putability were proved independently of Church’s lambda calculus equivalent 
results in computability. Turing’s studied at Princeton University in 1937 and 1938 
and was awarded a PhD from the university in 1938. His research supervisor was 
Alonzo Church.5 

Question 14.1 (Halting Problem) 
Given an arbitrary program is there an algorithm to decide whether the program will 
finish running or will it continue running forever? Another words, given a program 
and an input will the program eventually halt and produce an output or will it run 
forever? 

Note (Halting Problem) 
The halting problem was one of the first problems that was shown to be undecidable: 
i.e., there is no general decision procedure or algorithm that may be applied to an 
arbitrary program and input to decide whether the program halts or not when run 
with that input.

5 Alonzo Church was a famous American mathematician and logician who developed the lambda 
calculus. He also showed that Peano arithmetic and first-order logic were undecidable. Lambda cal-
culus is equivalent to Turing machines and whatever may be computed is computable by Lambda 
calculus or a Turing machine. 
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Proof We assume that there is an algorithm (i.e., a computable function H(i, j)) that 
takes any program i (program i refers to the ith program in the enumeration of all 
the programs) and arbitrary input j to the program such that: 

H(i, j ) =
{
1 If program i halts on input j . 
0 otherwise 

We then employ a diagonalization argument6 to show that every computable total 
function f with two arguments differs from the desired functionH. First, we construct 
a partial function g from any computable function f with two arguments such that g 
is computable by some program e. 

g(i ) =
{
0 if  f (i , i ) = 0 
undefined otherwise 

There is a program e that computes g and this program is one of the programs 
in which the halting problem is defined. One of the following two cases must hold: 

g(e) = f (e, e) = 0 (14.1) 

In this case H(e, e) = 1 because e halts on input e. 

g(e) is undefined and f (e, e) /= 0. (14.2) 

In this case H(e, e) = 0 because the program e does not halt on input e. 
In either cases, f is not the same function as H. Further, since f was an arbi-

trary total computable function all such functions must differ from H. Hence, the 
function H is not computable, and there is no such algorithm to determine whether 
an arbitrary Turing machine halts for an input x. Therefore, the halting problem is 
not decidable. 

14.5 Computational Complexity 

An algorithm is of little practical use if it takes millions of years to compute 
particular instances. There is a need to consider the efficiency of the algorithm 
due to practical considerations. Chapter 20 discusses cryptography and the RSA 
algorithm, and the security of the RSA encryption algorithm is due to the fact that 
there is no known efficient algorithm to determine the prime factors of a large 
number.

6 This is similar to Cantor’s diagonalization argument that shows that the real numbers are uncount-
able. This argument assumes that it is possible to enumerate all real numbers between 0 and 1, 
and it then constructs a number whose nth decimal differs from the nth decimal position in the nth 
number in the enumeration. If this holds for all n then the newly defined number is not among the 
enumerated numbers. 
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There are often slow and fast algorithms for the same problem, and a measure 
of complexity is the number of steps in a computation. An algorithm is of time 
complexity f (n) if for all n and all inputs of length n the execution of the algorithm 
takes at most f (n) steps. 

An algorithm is said to be polynomially bounded if there is a polynomial p(n) 
such that for all n and all inputs of length n the execution of the algorithm takes 
at most p(n) steps. The notation P is used for all problems that can be solved in 
polynomial time. 

A problem is said to be computationally intractable if it may not be solved 
in polynomial time—that is, there is no known algorithm to solve the problem in 
polynomial time. 

A problem L is said to be in the set NP (non-deterministic polynomial time 
problems) if any given solution to L can be verified quickly in polynomial time. A 
problem is NP complete if it is in the set NP of non-deterministic polynomial time 
problems, and it is also in the class of NP hard problems. A key characteristic 
to NP complete problems is that there is no known fast solution to them, and the 
time required to solve the problem using known algorithms increases quickly as 
the size of the problem grows. Often, the time required to solve the problem is in 
billions or trillions of years. Although any given solution can be verified quickly 
there is no known efficient way to find a solution. 

14.6 Review Questions 

1. Explain computability and decidability. 
2. What were the goals of logicism and formalism and how successful were 

these movement in mathematics? 
3. What is a formal system? 
4. Explain the difference among consistency, completeness, and decidability. 
5. Describe a Turing machine and explain its significance in computability. 
6. Describe the halting problem and show that it is undecidable. 
7. Discuss the complexity of an algorithm and explain terms such as “poly-

nomial bounded”, “computationally intractable”, and “NP complete”. 

14.7 Summary 

This chapter provided an introduction to computability and decidability. The intu-
itive meaning of computability is that in terms of an algorithm (or effective 
procedure) that specifies a set of instructions to be followed to solve the prob-
lem. Another words, a function f is computable if there exists an algorithm that 
produces the value of f correctly for each possible argument of f . The computa-
tion of f for a particular argument x just involves following the instructions in the 
algorithm, and it produces the result f (x) in a finite number of steps if x is in the 
domain of f .
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The concept of computability may be made precise in several equivalent ways 
such as Church’s lambda calculus, recursive function theory, or by the theoretical 
Turing machines. The Turing machine is a mathematical machine with a poten-
tially infinite tape divided into frames (or cells) in which very basic operations 
can be carried out. The set of functions that are computable are those that are 
computable by a Turing machine. 

A formal system contains meaningless symbols together with rules for manip-
ulating them and is generally intended to represent some aspect of the real world. 
The individual formulae are certain finite sequences of symbols obeying the syn-
tactic rules of the formal language. A formal system consists of a formal language, 
a set of axioms, and rules of inference. 

Church and Turing independently showed in 1936 that mathematics is not 
decidable. In other words it is not possible to determine the truth or falsity of 
any mathematical proposition by an algorithm. 

Turing had already proved that the halting problem for Turing machines is not 
computable: i.e., it is not possible algorithmically to decide whether a given Turing 
machine will halt or not. He then applied this result to first-order logic to show 
that it is undecidable. That is, the only way to determine whether a statement is 
true or false is to try to solve it. 

The complexity of an algorithm was discussed, and it was noted that an algo-
rithm is of little practical use if it takes millions of years to compute the solution. 
There is a need to consider the efficiency of the algorithm due to practical con-
siderations. The class of polynomial time bound problems and non-deterministic 
polynomial time problems were considered, and it was noted that the security of 
various cryptographic algorithms is due to the fact that there are no time-efficient 
algorithms to determine the prime factors of large integers. 

The reader is referred to [1] for a more detailed account of decidability and 
computability. 
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15.1 Introduction 

This chapter gives an introduction to the important area of software reliabil-
ity and dependability, and it discusses important topics in software engineering 
such as software reliability; software availability; software reliability models; 
the Cleanroom methodology; dependability and its various dimensions; security 
engineering; and safety critical systems. 

Software reliability is the probability that the program works without failure 
for a period of time, and it is usually expressed as the mean time to failure. It 
is different from hardware reliability, which is characterized by components that 
physically wear out over time, whereas software is intangible and software failures 
are due to design and implementation errors. In other words, software is either 
correct or incorrect when it is designed and developed, and it does not physically 
deteriorate with time.
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Harlan Mills and others at IBM developed the Cleanroom approach to soft-
ware development, and the process is described in [1]. It involves the application 
of statistical techniques to calculate a software reliability measure based on the 
expected usage of the software.1 This involves executing tests chosen from the 
population of all possible uses of the software in accordance with the probability 
of its expected use. Statistical usage testing has been shown to be more effective 
in finding defects that lead to failure than coverage testing. 

Models are simplifications of the reality, and a good model allows accurate 
predictions of future behaviour to be made. A model is judged effective if there 
is good empirical evidence to support it, and a good software reliability model 
will have good theoretical foundations and realistic assumptions. The extent to 
which the software reliability model can be trusted depends on the accuracy of its 
predictions, and empirical data will need to be gathered to judge its accuracy. A 
good software reliability model will give good predictions of the reliability of the 
software. 

It is essential that software that is widely used is dependable, which means that 
the software is available whenever required, and that it operates safely and reliably 
without any adverse side effects (e.g., the software problems with the Therac-
25 radiography machine led to several patients receiving massive overdoses in 
radiation in the mid-1980s leading to serious injury and death of several patients 
as discussed in [2]). 

Today, billions of computers are connected to the Internet, and this has led to a 
growth in attacks on computers. It is essential that computer security is carefully 
considered, and developers need to be aware of the threats facing a system and 
techniques to eliminate them. The developers need to be able to develop secure 
systems that are able to deal with and recover from external attacks. 

15.2 Software Reliability 

The design and development of high-quality software has become increasingly 
important for society. The hardware field has been very successful in developing 
sound reliability models, which allow useful predictions of how long a hardware 
component (or product) will function to be provided. This has led to a growing 
interest in the software field in the development of a sound software reliability 
model. Such a model would provide a sound mechanism to predict the reliability 
of the software prior to its deployment at the customer site, as well as confidence 
that the software is fit for purpose and safe to use. 

Definition 15.1 (Software reliability) It is the probability that the program works 
without failure for a specified length of time, and it is a statement of the future

1 The expected usage of the software (or operational profile) is a quantitative characterization 
(usually based on probability) of how the system will be used. 
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behaviour of the software. It is generally expressed in terms of the mean time to 
failure (MTTF) or the mean time between failure (MTBF). 

Statistical sampling techniques are often employed to predict the reliability 
of hardware, as it is not feasible to test all items in a production environment. 
The quality of the sample is then used to make inferences on the quality of the 
entire population, and this approach is effective in manufacturing environments 
where variations in the manufacturing process often lead to defects in the physical 
products. 

There are similarities and differences between hardware and software reliability. 
A hardware failure generally arises due to a component wearing out due to its age, 
and often a replacement component is required. Many hardware components are 
expected to last for a certain period of time, and the variation in the failure rate of a 
hardware component is often due to variations in the manufacturing process and to 
the operating environment of the component. Good hardware reliability predictors 
have been developed, and each hardware component has an expected mean time 
to failure. The reliability of a product may then be determined from the reliability 
of the individual components. 

Software is an intellectual undertaking involving a team of designers and pro-
grammers. It does not physically wear out as such, and software failures manifest 
themselves from particular user inputs. Each copy of the software code is identi-
cal, and the software code is either correct or incorrect. That is, software failures 
are due to design and implementation errors, rather than to the software physically 
wearing out over time. The software community has not yet developed a sound 
software reliability predictor model. 

The software population to be sampled consists of all possible execution paths 
of the software, and since this is potentially infinite it is generally not possible to 
perform exhaustive testing. The way in which the software is used (i.e., the inputs 
entered by the users) will impact upon its perceived reliability. Let If represent the 
fault set of inputs (i.e., if ∈ If and only if the input of if by the user leads to failure). 
The randomness of the time to software failure is due to the unpredictability in the 
selection of an input if ∈ If . It may be that the elements in If are inputs that are 
rarely used, and therefore the software will be perceived as reliable. 

Statistical usage testing may be used to make predictions on the future per-
formance and reliability of the software. This requires an understanding of the 
expected usage profile of the system, as well as the population of all possible 
usages of the software. The sampling is done in accordance with the expected 
usage profile, and a software reliability measure is calculated. 

15.2.1 Software Reliability and Defects 

The release of an unreliable software product may result in damage to property 
or injury (including loss of life) to a third party. Consequently, companies need to 
be confident that their software products are fit for use prior to their release. The
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Table 15.1 Adam’s 1984 study of software failures of IBM products 

Rare Frequent 

1 2 3 4 5 6 7 8 

MTTF (years) 5000 1580 500 158 50 15.8 5 1.58 

Avg % fixes 33.4 28.2 18.7 10.6 5.2 2.5 1.0 0.4 

Prob failure 0.008 0.021 0.044 0.079 0.123 0.187 0.237 0.300 

project team needs to conduct extensive inspections and testing of the software, as 
well as considering all associated risks prior to its release. 

Objective product quality criteria may be set (e.g., 100% of tests performed and 
passed) that must be satisfied prior to the release of the product. This provides a 
degree of confidence that the software has the desired quality, and is fit for purpose. 
However, these results are historical in the sense that they are a statement of past 
and present quality. The question is whether the past behaviour and performance 
provide a sound indication of future behaviour. 

Software reliability models are an attempt to predict the future reliability of the 
software and to assist in deciding on whether the software is ready for release. 
A defect does not always result in a failure, as it may occur on a rarely used 
execution path. Studies indicate that many observed failures arise from a small 
proportion of the existing defects. 

Adam’s 1984 case study of defects in IBM software [3] indicates that over 
33% of the defects led to an observed failure with mean time to failure greater 
than 5000 years, whereas less than 2% of defects led to an observed failure with a 
mean time to failure of less than five years. This suggests that a small proportion 
of defects often lead to almost all of the observed failures (Table 15.1). 

The analysis shows that 61.6% of all fixes (Group 1 and 2) were for failures 
that will be observed less than once in 1580 years of expected use, and that these 
constitute only 2.9% of the failures observed by typical users. On the other hand, 
groups 7 and 8 constitute 53.7% of the failures observed by typical users and only 
1.4% of fixes. 

This case study indicates that coverage testing is not cost effective in increasing 
MTTF. Usage testing, in contrast, would allocate 53.7% of the test effort to fixes 
that will occur 53.7% of the time for a typical user. Harlan Mills has argued [4] 
that the data in the table shows that usage testing is 21 times more effective than 
coverage testing. 

There is a need to be careful with reliability growth models, as there is no 
tangible growth in reliability unless the corrected defects are likely to manifest 
themselves as a failure.2 Many existing software reliability growth models assume 
that all remaining defects in the software have an equal probability of failure and

2 We are assuming that the defect has been corrected perfectly with no new defects introduced by 
the changes made. 
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Table 15.2 New and old version of software 

Similarities and differences between new/old version

• The new version of the software is identical to the previous version except that the identified 
defects have been corrected

• The new version of the software is identical to the previous version, except that the identified 
defects have been corrected, but the developers have introduced some new defects

• No assumptions can be made about the behaviour of the new version of the software until 
further data is obtained 

that the correction of a defect leads to an increase in software reliability. These 
assumptions are questionable. 

The defect count and defect density may be poor predictors of operational reli-
ability, and an emphasis on removing a large number of defects from the software 
may not be sufficient to achieve high reliability. 

The correction of defects in the software leads to a newer version of the soft-
ware, and many software reliability models assume reliability growth: i.e., the new 
version is more reliable than the older version as several identified defects have 
been corrected. However, in some sectors such as the safety critical field the view 
is that the new version of a program is a new entity and that no inferences may 
be drawn until further investigation has been done. There are a number of ways 
to interpret the relationship between the new version of the software and the older 
version (Table 15.2). 

The safety critical industry (e.g., the nuclear power industry) takes the conser-
vative viewpoint that any change to a program creates a new program. The new 
program is therefore required to demonstrate its reliability, and so extensive testing 
needs to be performed. 

15.2.2 Cleanroom Methodology 

Harlan Mills and others at IBM developed the Cleanroom methodology as a way 
to develop high-quality software [4]. Cleanroom helps to ensure that the software 
is released only when it has achieved the desired quality level, and the probability 
of zero defects is very high. 

The way in which the software is used will impact on its perceived quality and 
reliability. Failures will manifest themselves on certain input sequences, and as the 
input sequences will vary among users, the result will be different perceptions of 
the reliability of the software among the users. The knowledge of how the software 
will be used allows the software testing to focus on verifying the correctness of 
common everyday tasks carried out by users. 

Therefore, it is important to determine the operational profile of the users to 
enable effective software testing to be performed. This may be difficult to deter-
mine and could change over time, as users may potentially change their behaviour
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as their needs evolve. The determination of the operational profile involves iden-
tifying the common operations to be performed, and the probability of each 
operation being performed. 

Cleanroom employs statistical usage testing rather than coverage testing, and 
this involves executing tests chosen from the population of all possible uses of 
the software in accordance with the probability of its expected use. The software 
reliability measure is calculated by statistical techniques based on the expected 
usage of the software, and Cleanroom provides a certified mean time to failure of 
the software. 

Coverage testing involves designing tests that cover every path through the pro-
gram, and this type of testing is as likely to find a rare execution failure as well as 
a frequent execution failure. However, it is essential to find failures that occur on 
frequently used parts of the system. 

The advantage of usage testing (that matches the actual execution profile of the 
software) is that it has a better chance of finding execution failures on frequently 
used parts of the system. This helps to maximize the expected mean time to failure 
of the software. 

The Cleanroom software development process and calculation of the software 
reliability measure are described in [1], and the Cleanroom development process 
enables engineers to deliver high-quality software on time and on budget. Some of 
the benefits of the use of Cleanroom on projects at IBM are described in [4] and 
summarized in Table 15.3.

Table 15.3 Cleanroom 
results in IBM 

Project Results 

Flight control project (1987) 
33KLOC 

Completed ahead of schedule 
Error-fix effort reduced by 
factor of five 
2.5 errors KLOC before any 
execution 

Commercial product (1988) Deployment failures of 
0.1/KLOC 
Certification testing failures 
3.4/KLOC 
Productivity 740 LOC/month 

Satellite control (1989) 80 
KLOC 
(Partial cleanroom) 

50% improvement in quality 
Certification testing failures of 
3.3/KLOC 
Productivity 780 LOC/month 
80% improvement in 
productivity 

Research project (1990) 12 
KLOC 

Certified to 0.9978 with 989 
test cases
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Table 15.4 Characteristics 
of good software reliability 
model 

Characteristics of good software reliability model 

Good theoretical foundation 

Realistic assumptions 

Good empirical support 

As simple as possible (Ockham’s Razor) 

Trustworthy and accurate 

15.2.3 Software Reliability Models

Models are simplifications of the reality, and a good model allows accurate pre-
dictions of future behaviour to be made. It is important to determine the adequacy 
of the model, and this is done by model exploration, and determining the extent 
to which it explains the actual manifested behaviour, as well as the accuracy of its 
predictions. 

A model is judged effective if it has accurate predictions and has good empirical 
evidence to support it, and more accurate models are sought to replace inadequate 
models. Models are often modified (or replaced) over time, as further facts and 
observations lead to aberrations that cannot be explained with the current model. 
A good software reliability model will have the following characteristics (Table 
15.4). 

The underlying mathematics used in the calculation of software reliability (i.e., 
probability and statistics) is discussed in Chaps. 22 and 23. There are several 
existing software reliability predictor models employed (Table 15.5) with vary-
ing degrees of success. Some of these models just compute defect counts rather 
than estimating software reliability in terms of mean time to failure. They may be 
categorized into:

• Size and Complexity Metrics 
These are used to predict the number of defects that a system will reveal in 

operation or testing. 
• Operational Usage Profile 

These predict failure rates based on the expected operational usage profile of 
the system. The number of failures encountered is determined, and the software 
reliability is predicted (e.g., Cleanroom and its prediction of the MTTF). 

• Quality of the Development Process 
These predict failure rates based on the process maturity of the software 

development process in the organization (e.g., CMMI maturity). 

The extent to which the software reliability model can be trusted depends on the 
accuracy of its predictions, and empirical data will need to be gathered to make a 
judgement. It may be acceptable to have a little inaccuracy during the early stages 
of prediction, provided the predictions of operational reliability are close to the
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Table 15.5 Software reliability models 

Model Description Comments 

Jelinski/Moranda model The failure rate is a Poisson 
processa and is proportional to 
the current defect content of 
program. The initial defect 
count is N; the initial failure 
rate is Nϕ; it decreases to 
(N−1)ϕ after the first fault is 
detected and eliminated, and so 
on. The constant ϕ is termed 
the proportionality constant 

Assumes defects are corrected 
perfectly and no new defects are 
introduced 
Assumes each fault contributes 
the same amount to failure rate 

Littlewood/Verrall model Successive execution time 
between failures is independent 
exponentially distributed 
random variables.b Software 
failures are the result of the 
particular inputs and faults 
introduced from the correction 
of defects 

Does not assume perfect 
correction of defects 

Seeding and tagging This is analogous to estimating 
the fish population of a lake 
(Mills). A known number of 
defects are inserted into a 
software program, and the 
proportion of these identified 
during testing determined 
Another approach (Hyman) is 
to regard the defects found by 
one tester as tagged, and then 
to determine the proportion of 
tagged defects found by a 2nd 
independent tester 

Estimate of the total number of 
defects in the software but not a 
not s/w reliability predictor 
Assumes all faults equally likely 
to be found and introduced 
faults representative of existing 

Generalized poisson model The number of failures 
observed in ith time interval τ i 
has a Poisson distribution with 
mean φ(N−Mi-1) τ i α where N 
is the initial number of faults; 
Mi−1 is the total number of 
faults removed up to the end of 
the (i−1)th time interval; and φ 
is the proportionality constant 

Assumes faults are removed 
perfectly at end of time interval 

aThe Poisson process is a widely used counting process, and especially in counting the occurrence 
of certain events that appear to happen at a certain rate but at random. A Poisson random variable 
is of the form P{X = i} = e−λ λi / i!. 
bThe exponential distribution is used to model the time between the occurrence of events in an 
interval of time. The density function is given by f (x) = λe−λx.
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observations. A model that gives overly optimistic results is termed ‘optimistic’, 
whereas a model that gives overly pessimistic results is termed ‘pessimistic’. 

The assumptions in the reliability model need to be examined to determine 
whether they are realistic. Several software reliability models have questionable 
assumptions such as: 

• All defects are corrected perfectly. 
• Defects are independent of one another. 
• Failure rate decreases as defects are corrected. 
• Each fault contributes the same amount to the failure rate. 

15.3 Dependability 

Software is ubiquitous and is important to all sections of society, and so it is 
essential that widely used software is dependable (or trustworthy). In other words, 
the software should be available whenever required, as well as operating properly, 
safely and reliably, without any adverse side effects or security concerns. It is 
essential that the software used in systems in the safety critical and security critical 
fields is dependable, as the consequence of failure (e.g., the failure of a nuclear 
power plant) could be massive damage leading to loss of life or endangering the 
lives of the public. 

Dependability engineering is concerned with techniques to improve the depend-
ability of systems, and it involves the use of a rigorous design and development 
process to minimize the number of defects in the software. A dependable sys-
tem is generally designed for fault tolerance, where the system can deal with (and 
recover from) faults that occur during software execution. Such a system needs to 
be secure and able to protect itself from accidental or deliberate external attacks. 
Table 15.6 lists several dimensions of dependability. 

Modern software systems are subject to attack by malicious software such as 
viruses that change the behaviour of the software, or corrupt data causing the 
system to become unreliable. Other malicious attacks include a denial-of-service 
attack that negatively impacts the system’s availability.

Table 15.6 Dimensions of 
dependability 

Dimension Description 

Availability System is available for use at any time 

Reliability The system operates correctly and is trustworthy 

Safety The system does not injure people or damage the 
environment 

Security The system prevents unauthorized intrusions 
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The design and development of dependable software needs to include protection 
measures that protect against external attacks that could compromise the avail-
ability and security of the system. Further, a dependable system needs to include 
recovery mechanisms to enable normal service to be restored as quickly as possible 
following an attack. 

Dependability engineering is concerned with techniques to improve the depend-
ability of systems, and in designing dependable systems. A dependable system 
will generally be developed using an explicitly defined repeatable process, and it 
may employ redundancy (spare capacity) and diversity (different types) to achieve 
reliability. 

There is a trade-off between dependability and the performance of the system, 
as dependable systems often need to carry out extra checks to monitor them-
selves and to check for erroneous states, and to recover from faults before failure 
occurs. This inevitably leads to increased costs in the design and development of 
dependable systems. 

Software availability is the percentage of the time that the software system is 
running, and is a measure of the uptime/downtime of the software during a par-
ticular time period. The downtime refers to a period of time when the software is 
unavailable for use (including planned and unplanned outages), and many compa-
nies aim to develop software that is available for use 99.999% of the time in the 
year (i.e., a downtime of less than five minutes per annum). This goal is known as 
five nines, and it is a common goal in the telecommunications sector. 

Safety critical systems are systems where it is essential that the system is safe 
for the public and that people or the environment are not harmed in the event of 
system failure. These include aircraft control systems and process control systems 
for chemical and nuclear power plants. The failure of a safety critical system could 
in some situations lead to loss of life or serious economic damage. 

Formal methods are discussed in Chap. 16, and they provide a precise way 
of specifying the requirements of the proposed system, and demonstrating (using 
mathematics) that key properties are satisfied in the formal specification. Further, 
they may be used to show that the implemented program satisfies its specifica-
tion. The use of formal methods generally leads to increased confidence in the 
correctness of safety critical and security critical systems. 

The security of the system refers to its ability to protect itself from accidental 
or deliberate external attacks, which are common today since most computers are 
networked and connected to the Internet. There are various security threats in 
any networked system including threats to the confidentiality and integrity of the 
system and its data, and threats to the availability of the system. 

Therefore, controls are required to enhance security and to ensure that attacks 
are unsuccessful. Encryption is one way to reduce system vulnerability, as 
encrypted data is unreadable to the attacker. There may be controls that detect 
and repel attacks, and these controls are used to monitor the system and to take 
action to shut down parts of the system or restrict access in the event of an attack. 
There may be controls that limit exposure (e.g., insurance policies and automated 
backup strategies) that allow recovery from the problems introduced.
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It is important to have a reasonable level of security as otherwise all of the other 
dimensions of dependability (reliability, availability, and safety) are compromised. 
Security loopholes may be introduced in the development of the system, and so 
care needs to be taken to prevent hackers from exploiting security vulnerabilities. 

Risk analysis plays a key role in the specification of security and dependability 
requirements, and this involves identifying risks that can result in serious incidents. 
This leads to the generation of specific security requirements as part of the system 
requirements to ensure that these risks do not materialize, or if they do materialize 
then serious incidents will not materialize. 

15.4 Computer Security 

The introduction of the World Wide Web in the early 1990s transformed the world 
of computing, and it led inexorably to more and more computers being connected 
to the Internet. This has subsequently led to an explosive growth in attacks on 
computers and systems, as hackers and malicious software seek to exploit known 
security vulnerabilities. It is therefore essential to develop secure systems that can 
deal with and recover from such external attacks. 

Hackers will often attempt to steal confidential data and to disrupt the services 
being offered by a system. Security engineering is concerned with the develop-
ment of systems that can prevent such malicious attacks and recover from them. 
It has become an important part of software and system engineering, and software 
developers need to be aware of the threats facing a system and develop solutions 
to eliminate them. 

Hackers may probe parts of the system for weaknesses, and system vulnera-
bilities may lead to attackers gaining unauthorized access to the system. There 
is a need to conduct a risk assessment of the security threats facing a system 
early in the software development process, and this will lead to several security 
requirements for the system. 

The system needs to be designed for security, as it is difficult to add security 
after it has been implemented. Security loopholes may be introduced in the devel-
opment of the system, and so care needs to be taken to prevent these as well as 
prevent hackers from exploiting security vulnerabilities. There may be controls 
that detect and repel attacks, and these monitor the system and take appropriate 
action to restrict access in the event of an attack. 

The choice of architecture and how the system is organized are fundamental 
to the security of the system, and different types of systems will require different 
technical solutions to provide an acceptable level of security to its users. There 
following guidelines for designing secure systems are described in [5]: 

• Security decisions should be based on the security policy. 
• A security critical system should fail securely. 
• A secure system should be designed for recoverability. 
• A balance is needed between security and usability.
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• A single point of failure should be avoided. 
• A log of user actions should be maintained. 
• Redundancy and diversity should be employed. 
• Organization information in system into compartments. 

It is important to have a reasonable level of security, as otherwise all of the other 
dimensions of dependability are compromised. 

15.5 System Availability 

System availability is the percentage of time that the software system is running 
without downtime, and robust systems will generally aim to achieve 5-nines avail-
ability (i.e., 99.999% availability). This is equivalent to approximately five minutes 
of downtime (including planned / unplanned outages) per year. The availability of 
a system is measured by its performance when a subsystem fails, and its ability to 
resume service in a state close to the original state. A fault-tolerant system contin-
ues to operate correctly (possibly at a reduced level) after some part of the system 
fails, and it aims to achieve 100% availability. 

System availability and software reliability are related, with availability measur-
ing the percentage of time that the system is operational, and reliability measuring 
the probability of failure-free operation over a period of time. The consequence 
of a system failure may be to freeze or crash the system, and system availability 
is measured by how long it takes to recover and restart after a failure. A system 
may be unreliable and yet have good availability metrics (fast restart after failure), 
or it may be highly reliable with poor availability metrics (taking a long time to 
recover after a failure). 

Software that satisfies strict availability constraints is usually reliable. The 
downtime generally includes the time needed for activities such as rebooting a 
machine, upgrading to a new version of software, planned and unplanned outages. 
It is theoretically possible for software to be highly unreliable but yet to have good 
availability metrics or for software that is highly reliable to have poor availabil-
ity metrics. Consequently, care is required before drawing conclusions between 
software reliability and software availability metrics. 

15.6 Safety Critical Systems 

A safety critical system is a system whose failure could result in significant eco-
nomic damage or loss of life. There are many examples of safety critical systems 
including aircraft flight control systems and missile systems. It is therefore essen-
tial to employ rigorous processes in their design and development, and testing 
alone is usually insufficient to verifying the correctness of a safety critical system.
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The safety critical industry takes the view that any change to safety critical 
software creates a new program. The new program is therefore required to demon-
strate that it is reliable and safe to the public, and so extensive testing needs to be 
performed. Other techniques such as formal verification and model checking may 
be employed to provide an extra level of assurance in the correctness of the safety 
critical system. 

Safety critical systems need to be dependable and available for use whenever 
required. Safety critical software must operate correctly and reliably without any 
adverse side effects. The consequence of failure (e.g., the failure of a weapons 
system) could be massive damage, leading to loss of life or endangering the lives 
of the public. 

Safety critical systems are generally designed for fault tolerance, where the 
system can deal with (and recover from) faults that occur during execution. Fault 
tolerance is achieved by anticipating exceptional events and designing the system 
to handle them. A fault-tolerant system is designed to fail safely, and programs are 
designed to continue working (possibly at a reduced level of performance) rather 
than crashing after the occurrence of an error or exception. Many fault-tolerant 
systems mirror all operations, where each operation is performed on two or more 
duplicate systems, and so if one fails then the other system can take over. 

The development of a safety critical system needs to be rigorous, and subject to 
strict quality assurance to ensure that the system is safe to use and that the public 
will not be in danger. This involves rigorous design and development processes to 
minimize the number of defects in the software, as well as comprehensive testing 
to verify its correctness. Formal methods are often employed in the development 
of safety critical systems (Chap. 16). 

15.7 Review Questions 

1. Explain the difference between software reliability and system availabil-
ity. 

2. What is software dependability? 
3. Explain the significance of Adam’s 1984 study of failures at IBM. 
4. Describe the Cleanroom methodology. 
5. Describe the characteristics of a good software reliability model. 
6. Explain the relevance of security engineering. 
7. What is a safety critical system?
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15.8 Summary 

This chapter gave an introduction to some important topics in software engineer-
ing including software reliability and the Cleanroom methodology; dependability; 
availability; security; and safety critical systems. 

Software reliability is the probability that the program works without failure for 
a period of time, and it is usually expressed as the mean time to failure. Cleanroom 
involves the application of statistical techniques to calculate software reliability, 
and it is based on the expected usage of the software. 

It is essential that software used in the safety and security critical fields is 
dependable, with the software available when required, as well as operating safely 
and reliably without any adverse side effects. Many of these systems are fault 
tolerant and are designed to deal with (and recover) from faults that occur during 
execution. 

Such a system needs to be secure and able to protect itself from external attacks 
and needs to include recovery mechanisms to enable normal service to be restored 
as quickly as possible. In other words, it is essential that if the system fails then it 
fails safely. 

Today, billions of computers are connected to the Internet, and this has led to 
a growth in attacks on computers. It is essential that developers are aware of the 
threats facing a system and are familiar with techniques to eliminate them. 
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Key Topics 

Formal Specification 

Vienna Development Method 

Z Specification Language 

B Method 

Model-oriented approach 

Axiomatic approach 

Process Calculus 

Refinement 

Finite State Machines 

Model Checking 

Usability of Formal Methods 

16.1 Introduction 

The term “formal methods” refer to various mathematical techniques used for the 
formal specification and development of software. They consist of a formal speci-
fication language and employ a collection of tools to support the syntax checking 
of the specification, as well as the proof of properties of the specification. They 
allow questions to be asked about what the system does independently of the 
implementation.
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The use of mathematical notation avoids speculation about the meaning of 
phrases in an imprecisely worded natural language description of a system. Nat-
ural language is inherently ambiguous, whereas mathematics employs a precise 
rigorous notation. Spivey [1] defines formal specification as: 

Definition 16.1 (Formal Specification) Formal specification is the use of mathe-
matical notation to describe in a precise way the properties that an information 
system must have, without unduly constraining the way in which these properties 
are achieved. 

The formal specification thus becomes the key reference point for the different 
parties involved in the construction of the system. It may be used as the reference 
point for the requirements, program implementation, testing, and program docu-
mentation. It thus promotes a common understanding for all those concerned with 
the system. The term “formal methods” is used to describe a formal specification 
language and a method for the design and implementation of a computer system. 
Formal methods may be employed at a number of levels: 

• Formal specification only (program developed informally) 
• Formal specification, refinement, and verification (some proofs) 
• Formal specification, refinement, and verification (with extensive theorem 

proving). 

The specification is written in a mathematical language, and the implementation 
may be derived from the specification via stepwise refinement.1 The refinement 
step makes the specification more concrete and closer to the actual implementation. 
There is an associated proof obligation to demonstrate that the refinement is valid 
and that the concrete state preserves the properties of the abstract state. Thus, 
assuming that the original specification is correct and the proof of correctness of 
each refinement step is valid, then there is a very high degree of confidence in the 
correctness of the implemented software. 

Stepwise refinement is illustrated as follows: the initial specification S is the 
initial model M0; it is then refined into the more concrete model M1, and M1 
is then refined into M2, and so on until the eventual implementation Mn = E is 
produced. 

S = M0 ⊑ M1 ⊑ M2 ⊑ M3 ⊑ . . . ⊑ Mn = E

1 It is questionable whether stepwise refinement is cost effective in mainstream software engi-
neering, as it involves rewriting a specification ad nauseum. It is time-consuming to proceed in 
refinement steps with significant time also required to prove that the refinement step is valid. It is 
more relevant to the safety critical field. Others in the formal methods field may disagree with this 
position. 
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Requirements are the foundation of the system to be built, and irrespective 
of the best design and development practices, the product will be incorrect if 
the requirements are incorrect. The objective of requirements validation is to 
ensure that the requirements reflect what is actually required by the customer (in 
order to build the right system). Formal methods may be employed to model the 
requirements, and the model exploration yields further desirable or undesirable 
properties. 

Formal methods provide the facility to prove that certain properties are true 
of the specification, and this is valuable, especially in safety critical and security 
critical applications. The properties are a logical consequence of the mathemat-
ical definition, and the requirements may be amended where appropriate. Thus, 
formal methods may be employed in a sense to debug the requirements during 
requirements validation. 

The use of formal methods generally leads to more robust software and 
increased confidence in its correctness. Formal methods may be employed at dif-
ferent levels (e.g., just for specification with the program developed informally). 
The challenges involved in the deployment of formal methods in an organiza-
tion include the education of staff in formal specification, as the use of these 
mathematical techniques may be a culture shock to many staff. 

Formal methods have been applied to a diverse range of applications, including 
the safety and security critical fields to develop dependable software. The appli-
cations include the railway sector, microprocessor verification, the specification of 
standards, and the specification and verification of programs. Parnas and others 
have criticized formal methods (Table 16.1)

However, formal methods are potentially quite useful and reasonably easy to 
use. The use of a formal method such as Z or VDM forces the software engineer 
to be precise and helps to avoid ambiguities present in natural language. Clearly, a 
formal specification should be subject to peer review to provide confidence in its 
correctness. New formalisms need to be intuitive to be usable by practitioners, and 
an advantage of the use of classical mathematics is that it is familiar to students. 

16.2 Why Should We Use Formal Methods? 

There is a strong motivation to use best practice in software engineering in order 
to produce software adhering to high-quality standards. Quality problems with 
software may cause minor irritations or major damage to a customer’s business 
including loss of life. Formal methods are a leading-edge technology that may be 
of benefit to companies in reducing the occurrence of defects in software products. 
Brown [2] argues that for the safety critical field that: 

Comment 16.1 (Missile Safety) 
Missile systems must be presumed dangerous until shown to be safe and that the 
absence of evidence for the existence of dangerous errors does not amount to evidence 
for the absence of danger.
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Table 16.1 Criticisms of formal methods 

No. Criticism 

1 Often the formal specification is as difficult to read as the programa 

2 Many formal specifications are wrongb 

3 Formal methods are strong on syntax but provide little assistance in deciding on what 
technical information should be recorded using the syntaxc 

4 Formal specifications provide a model of the proposed system. However, a precise 
unambiguous mathematical statement of the requirements is what is neededd 

5 Stepwise refinement is unrealistice. It is like, for example, deriving a bridge from the 
description of a river and the expected traffic on the bridge. There is always a need for 
the creative step in design 

6 Many unnecessary mathematical formalisms have been developed rather than using 
the available classical mathematicsf 

a Of course, others might reply by saying that some of Parnas’s tables are not exactly intuitive and 
that the notation he employs in some of his tables is quite unfriendly. The usability of all of the 
mathematical approaches needs to be enhanced if they are to be taken seriously by industrialists 
b Obviously, the formal specification must be analysed using mathematical reasoning and tools to 
provide confidence in its correctness. The validation of a formal specification can be carried out 
using mathematical proof of key properties of the specification; software inspections; or specifica-
tion animation 
c Approaches such as VDM include a method for software development as well as the specification 
language 
d Models are extremely valuable as they allow simplification of the reality. A mathematical study 
of the model demonstrates whether it is a suitable representation of the system. Models allow 
properties of the proposed requirements to be studied prior to implementation 
e Stepwise refinement involves rewriting a specification with each refinement step producing a 
more concrete specification (that includes code and formal specification) until eventually the 
detailed code is produced. It is difficult and time-consuming but tool support may make refinement 
easier 
f Approaches such as VDM or Z are useful in that they add greater rigour to the software develop-
ment process. They are reasonably easy to learn, and there have been some good results obtained 
by their use. Classical mathematics is familiar to students, and therefore it is desirable that new 
formalisms are introduced only where absolutely necessary

This suggests that companies in the safety critical field will need to demonstrate 
that every reasonable practice was taken to prevent the occurrence of defects. One 
such practice is the use of formal methods, and its exclusion may need to be 
justified in some domains. It is quite possible that a software company may be 
sued for software which injures a third party, and this suggests that companies 
will need a rigorous quality assurance system to prevent the occurrence of defects. 

There is some evidence to suggest that the use of formal methods provides 
savings in the cost of the project. For example, a 9% cost saving is attributed to 
the use of formal methods during the CICS project; the T800 project attributes 
a 12-month reduction in testing time to the use of formal methods. These are 
discussed in more detail in chapter one of [3]. 

The use of formal methods is mandatory in certain circumstances. The Ministry 
of Defence (MOD) in the United Kingdom issued two safety critical standards in
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the early 1990s related to the use of formal methods in the software development 
lifecycle. 

The first is Defence Standard 00-55, “The Procurement of safety critical software 
in defense equipment” [4] which makes it mandatory to employ formal methods 
in the development of safety critical software in the UK. The standard mandates 
the use of formal proof that the most crucial programs correctly implement their 
specifications. 

The other is Def. Stan 00-56 “Hazard analysis and safety classification of the 
computer and programmable electronic system elements of defense equipment” [5]. 
The objective of this standard is to provide guidance to identify which systems or 
parts of systems being developed are safety critical and thereby require the use of 
formal methods. This proposed system is subject to an initial hazard analysis to 
determine whether there are safety critical parts. 

The reaction to these defence standards 00-55 and 00-56 was quite hostile ini-
tially, as most suppliers were unlikely to meet the technical and organizational 
requirements of the standard [6]. The U.K. Defence Standards 0055 and 0056 
were later revised to be less prescriptive on the use of formal methods. 

16.3 Industrial Applications of Formal Methods 

Formal methods have been employed in several domains such as the transport 
sector, the nuclear sector, the space sector, the defence sector, the semiconductor 
sector, the financial sector, and the telecoms sector. The extent of the application 
of formal methods has varied from formal specification only, to specification with 
inspections, to proofs, to refinement, to test generation, and to model checking. 
Formal methods are applicable to the regulated sector, and it has been applied to 
real-time applications in the nuclear industry, the aerospace industry, the security 
technology area, and the railroad domain. These sectors are subject to stringent 
regulatory controls to ensure that safety and security are properly addressed. 

Several organizations have piloted formal methods with varying degrees of suc-
cess. IBM developed the VDM specification language at its laboratory in Vienna, 
and it piloted the Z and B formal specification languages on the CICS (Customer 
Information Control System) project at its plant in Hursley, England. 

The mathematical techniques developed by Parnas (i.e., his requirements model 
and tabular expressions) were employed to specify the requirements of the A-7 
aircraft (as part of a research project for the US Navy).2 Tabular expressions were 
also employed for the software inspection of the automated shutdown software of

2 However, the resulting software was never actually deployed on the A-7 aircraft.
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the Darlington Nuclear power plant in Canada.3 These are two successful uses of 
mathematical techniques in software engineering. 

There are examples of the use of formal methods in the railway domain, with 
GEC Alstom and RATP using B for the formal specification and verification of the 
computerized signalling system on the Paris Metro. Several examples dealing with 
the modelling and verification of a railroad gate controller and railway signalling 
are described in [3]. Clearly, it is essential to verify safety critical properties such 
as “when the train goes through the level crossing then the gate is closed”. 

PVS is a mechanized environment for formal specification and verification, 
and it was developed at SRI in California. It includes a specification language 
integrated with support tools and an interactive theorem prover. The specifica-
tion language is based on higher-order logic, and the theorem prover is guided 
by the user in conducting proof. It has been applied to the verification of hard-
ware and software, and PVS has been used for the formal specification and partial 
verification of the micro-code of the AAMP5 microprocessor. 

A selection of applications of formal methods to industry is presented in [8]. 

16.4 Industrial Tools for Formal Methods 

Formal methods have been criticized for the limited availability of tools to support 
the software engineer in writing the formal specification and in conducting proof. 
Many of the early tools were criticized as not being of industrial strength. However, 
in recent years more advanced tools have become available to support the software 
engineer’s work in formal specification and formal proof, and this is likely to 
continue in the coming years. 

The tools include syntax checkers that determine whether the specification is 
syntactically correct; specialized editors which ensure that the written specification 
is syntactically correct; tools to support refinement; automated code generators 
that generate a high-level language corresponding to the specification; theorem 
provers to demonstrate the correctness of refinement steps and to identify and 
resolve proof obligations, as well proving the presence or absence of key proper-
ties; and specification animation tools where the execution of the specification can 
be simulated. 

The B-Toolkit4 from B-Core is an integrated set of tools that supports the 
B-Method. It provides functionality for syntax and type checking, specification 
animation, proof obligation generator, an auto-prover, a proof assistor, and code 
generation. This, in theory, allows the complete formal development from the ini-
tial specification to the final implementation, with every proof obligation justified,

3 This was an impressive use of mathematical techniques, and it has been acknowledged that formal 
methods must play an important role in future developments at Darlington. However, given the 
time and cost involved in the software inspection of the shutdown software some managers have 
less enthusiasm in shifting from hardware to software controllers [ 7]. 
4 The source code for the B-Toolkit is now available.
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leading to a provably correct program. There is also the Atelier B tool to support 
formal specification and development in B. 

The IFAD Toolbox5 is a support tool for the VDM-SL specification language, 
and it provides support for syntax and type checking, an interpreter and debugger 
to execute and debug the specification, and a code generator to convert from VDM-
SL to C++. The Overture Integrated Development Environment (IDE) is an open-
source tool for formal modelling and analysis of VDM-SL specifications. 

There are various tools for model checking including Spin, Bandera, SMV, and 
UppAal. These tools perform a systematic check on property P in all states and 
are applicable if the system generates a finite behavioural model. Spin is an open-
source tool, and it checks finite-state systems with properties specified by linear 
temporal logic. It generates a counterexample trace if determines that a property 
is violated. 

There are tools to support theorem provers (see Chap. 19) such as the Boyer-
Moore Theorem prover (NQTHM) which was developed at the University of Texas 
in the late 1970s. It is far more automated than many other interactive theorem 
provers, but it requires detailed human guidance (with suggested lemmas) for dif-
ficult proofs. The user therefore needs to understand the proof being sought and the 
internals of the theorem prover. Many mathematical theorems have been proved 
including Gödel’s incompleteness theorem. 

The HOL system was developed at the University of Cambridge, and it is an 
environment for interactive theorem proving in a higher-order logic. It requires 
skilled human guidance and has been used for the verification of microprocessor 
design. It is a widely used theorem prover. 

16.5 Approaches to Formal Methods 

There are two key approaches to formal methods: namely the model-oriented 
approach of VDM or Z, and the algebraic or axiomatic approach of the pro-
cess calculi such as the calculus communicating systems (CCS) or communicating 
sequential processes (CSP). 

16.5.1 Model-Oriented Approach 

The model-oriented approach to specification is based on mathematical models, 
where a model is a simplification or abstraction of the real world that contains 
only the essential details. For example, the model of an aircraft will not include 
the colour of the aircraft, and the objective may be to model the aerodynamics

5 The IFAD Toolbox has been renamed to VDMTools as IFAD sold the VDM Tools to CSK in 
Japan. The CSK VDM tools are available for worldwide use. 
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of the aircraft. There are many models employed in the physical world, such as 
meteorological models that allow weather forecasts to be made. 

The importance of models is that they serve to explain the behaviour of a par-
ticular entity and may also be used to predict future behaviour. Different models 
may vary in their ability to explain aspects of the entity under study. One model 
may be good at explaining some aspects of the behaviour, whereas another model 
might be good at explaining other aspects. The adequacy of a model is a key con-
cept in modelling and reflects the effectiveness of the model in representing the 
underlying behaviour, and in its ability to predict future behaviour. Model explo-
ration consists of asking questions, and determining whether the model is able to 
give an effective answer to the particular question. A good model is chosen as a 
representation of the real world and is referred to whenever there are questions in 
relation to the aspect of the real world. 

It is fundamental to explore the model to determine its adequacy, and to deter-
mine the extent to which it explains the underlying physical behaviour, and allows 
accurate predictions of future behaviour to be made. There may be more than one 
possible model of a particular entity, for example, the Ptolemaic model and the 
Copernican model are different models of the solar system. This leads to the ques-
tion as to which is the best or most appropriate model to use, and on the criteria 
to use to determine the most suitable model. The ability of the model to explain 
the behaviour, its simplicity, and its elegance will be part of the criteria. The prin-
ciple of “Ockham’s Razor” (law of parsimony) is often used in modelling, and it 
suggests that the simplest model with the least number of assumptions required 
should be selected. 

The adequacy of the model will determine its acceptability as a representation 
of the physical world. Models that are ineffective will be replaced with models that 
offer a better explanation of the manifested physical behaviour. There are many 
examples in science of the replacement of one theory by a newer one. For example, 
the Copernican model of the universe replaced the older Ptolemaic model, and 
Newtonian physics was replaced by Einstein’s theories of relativity. The structure 
of the revolutions that take place in science is described in [9]. 

Modelling can play a key role in computer science, as computer systems tend to 
be highly complex, whereas a model allows simplification or an abstraction of the 
underlying complexity, and it enables a richer understanding of the underlying real-
ity to be gained. The model-oriented approach to software development involves 
defining an abstract model of the proposed software system, and the model is then 
explored to determine its suitability as a representation of the system. This takes 
the form of model interrogation, i.e., asking questions, and determining the extent 
to which the model can answer the questions. The modelling in formal methods 
is typically performed via elementary discrete mathematics, including set theory, 
sequences, functions, and relations. 

Various models have been applied to assist with the complexities in software 
development. These include the Capability Maturity Model (CMM), which is 
employed as a framework to enhance the capability of the organization in software 
development; UML, which has various graphical diagrams that are employed to 
model the requirements and design; and mathematical models that are employed 
for formal specification.
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VDM and Z are model-oriented approaches to formal methods. VDM arose 
from work done at the IBM laboratory in Vienna in formalizing the semantics for 
the PL/1 compiler in the early 1970s, and it was later applied to the specification 
of software systems. The origin of the Z specification language is in work done at 
Oxford University in the early 1980s. 

16.5.2 Axiomatic Approach 

The axiomatic approach focuses on the properties that the proposed system is 
to satisfy, and there is no intention to produce an abstract model of the system. 
The required properties and behaviour of the system are stated in mathematical 
notation. The difference between the axiomatic specification and a model-based 
approach may be seen in the example of a stack. 

The stack includes operators for pushing an element onto the stack and popping 
an element from the stack. The properties of pop and push are explicitly defined in 
the axiomatic approach. The model-oriented approach constructs an explicit model 
of the stack, and the operations are defined in terms of the effect that they have on 
the model. The axiomatic specification of the pop operation on a stack is given by 
properties, for example, pop(push(s, x)) = s. 

Comment 16.2 (Axiomatic Approach) 
The property-oriented approach has the advantage that the implementer is not con-
strained to a particular choice of implementation, and the only constraint is that the 
implementation must satisfy the stipulated properties. 

The emphasis is on specifying the required properties of the system, and 
implementation issues are avoided. The properties are typically stated using mathe-
matical logic or higher-order logics. Mechanized theorem-proving techniques may 
be employed to prove results. 

One potential problem with the axiomatic approach is that the properties spec-
ified may not be satisfied in any implementation. Thus, whenever a “formal 
axiomatic theory” is developed a corresponding “model” of the theory must be 
identified, in order to ensure that the properties may be realized in practice. That 
is, when proposing a system that is to satisfy some set of properties, there is a need 
to prove that there is at least one system that will satisfy the set of properties. 

16.6 Proof and Formal Methods 

The nature of theorem proving is discussed in Chap. 19. A mathematical proof 
typically includes natural language and mathematical symbols, and often many of 
the tedious details of the proof are omitted. The proof may employ a “divide and 
conquer” technique; i.e., breaking the conjecture down into sub-goals and then 
attempting to prove each of the sub-goals.
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Many proofs in formal methods are concerned with crosschecking the details 
of the specification, checking the validity of the refinement steps, or checking 
that certain properties are satisfied by the specification. There are often many 
tedious lemmas to be proved, and theorem provers6 play a key role in dealing 
with them. Machine proof is explicit, and reliance on some brilliant insight is 
avoided. Proofs by hand are notorious for containing errors or jumps in reasoning, 
while machine proofs are explicit but are often extremely lengthy and unreadable. 
The infamous machine proof of the correctness of the VIPER microprocessor7 

consisted of several million formulae [6]. 
A formal mathematical proof consists of a sequence of formulae, where each 

element is either an axiom or derived from a previous element in the series by 
applying a fixed set of mechanical rules. 

The application of formal methods in an industrial environment requires the 
use of machine-assisted proof, since thousands of proof obligations arise from a 
formal specification, and mechanized theorem provers are essential in resolving 
these efficiently. Automated theorem proving is difficult, as often mathematicians 
prove a theorem with an initial intuitive feeling that the theorem is true. Human 
intervention to provide guidance or intuition improves the effectiveness of the 
theorem prover. 

The proof of various properties about a program increases confidence in its cor-
rectness. However, an absolute proof of correctness8 is unlikely except for the most 
trivial of programs. A program may consist of legacy software that is assumed to 
work; a compiler that is assumed to work correctly creates it. Theorem provers 
are programs that are assumed to function correctly. The best that formal methods 
can claim is increased confidence in correctness of the software, rather than an 
absolute proof of correctness. 

16.7 Debate on Formal Methods in Software Engineering 

The debate concerning the level of use of formal methods in software engineer-
ing is still ongoing. Many practitioners are against the use of mathematics and 
avoid its use. They argue that in the current competitive industrial environment 
where time to market is a key driver that the use of such formal techniques would

6 Most existing theorem provers are difficult to use and are for specialist use only. There is a need 
to improve the usability of theorem provers. 
7 This verification was controversial with RSRE and Charter overselling VIPER as a chip design 
that conforms to its formal specification. 
8 This position is controversial with others arguing that if correctness is defined mathematically 
then the mathematical definition (i.e., formal specification) is a theorem, and the task is to prove 
that the program satisfies the theorem. They argue that the proofs for nontrivial programs exist and 
that the reason why there are not many examples of such proofs is due to a lack of mathematical 
specifications. 
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seriously impact the market opportunity. Industrialists often need to balance con-
flicting needs such as quality, cost, and delivering on time. They argue that the 
commercial necessities require methodologies and techniques that allow them to 
achieve their business goals effectively. 

The other camp argues that the use of mathematics is essential in the delivery of 
high-quality and reliable software and that if a company does not place sufficient 
emphasis on quality it will pay the price in terms of poor quality and loss of 
reputation. 

It is unrealistic to expect companies to deploy formal methods unless they have 
clear evidence that it will support them in delivering commercial products to the 
marketplace ahead of their competition, at the right price and with the right quality. 
Formal methods need to prove that it can do this if it wishes to be taken seriously 
in mainstream software engineering. 

16.8 The Vienna Development Method 

VDM was developed by a research team at the IBM research laboratory in Vienna 
in the early 1970s. This group9 was specifying the semantics of the PL/1 program-
ming language using an operational semantic approach. That is, the semantics of 
the language were defined in terms of a hypothetical machine which interprets 
the programs of that language [10, 11]. Later work led to the Vienna Development 
Method (VDM) with its specification language, Meta IV. This was used to give the 
denotational semantics of programming languages; i.e., a mathematical object (set, 
function, etc.) is associated with each phrase of the language. The mathematical 
object is termed the denotation of the phrase. 

VDM is a model-oriented approach and this means that an explicit model of 
the state of an abstract machine is given, and operations are defined in terms of 
the state. Operations may act on the system state, taking inputs, and producing 
outputs as well as a new system state. Operations are defined in a precondition and 
postcondition style. Each operation has an associated proof obligation to ensure 
that if the precondition is true, then the operation preserves the system invariant. 
The initial state itself is, of course, required to satisfy the system invariant. 

VDM uses keywords to distinguish different parts of the specification, e.g., 
preconditions, postconditions, as introduced by the keywords pre and post, respec-
tively. In keeping with the philosophy that formal methods specify what a system 
does as distinct from how, VDM employs postconditions to stipulate the effect of 
the operation on the state. The previous state is then distinguished by employing 
hooked variables, e.g., v↼and the postcondition specifies the new state which is 
defined by a logical predicate relating the pre-state to the poststate.

9 The IBM research laboratory was set up by Dr. Heinz Zamenek, and its members included Peter 
Lucas, Cliff Jones, Dines Bjørner, and others. 
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VDM is more than its specification language VDM-SL and is, in fact, a software 
development method, with rules to verify the steps of development. The rules 
enable the executable specification, i.e., the detailed code, to be obtained from the 
initial specification via refinement steps. Thus, we have a sequence S = S0, S1, 
…, Sn = E of specifications, where S is the initial specification, and E is the final 
(executable) specification. 

Retrieval functions enable a return from a more concrete specification to the 
more abstract specification. The initial specification consists of an initial state, a 
system state, and a set of operations. The system state is a particular domain, where 
a domain is built out of primitive domains such as the set of natural numbers and 
integers or constructed from primitive domains using domain constructors such as 
Cartesian product and disjoint union. A domain-invariant predicate may further 
constrain the domain, and a type in VDM reflects a domain obtained in this way. 
Thus, a type in VDM is more specific than the signature of the type and thus 
represents values in the domain defined by the signature, which satisfy the domain 
invariant. In view of this approach to types, it is clear that VDM types may not be 
“statically type checked”. 

VDM specifications are structured into modules, with a module containing the 
module name, parameters, types, operations, etc. Partial functions occur frequently 
in computer science as many functions, may be undefined, or fail to terminate for 
some arguments in their domain. VDM addresses partial functions by employing 
non-standard logical operators, namely the logic of partial functions (LPFs), which 
was discussed in Chap. 11. 

VDM has been used in industrial projects, and its tool support includes the 
IFAD Toolbox.10 VDM is described in more detail in [12]. There are several vari-
ants of VDM, including VDM++, the object-oriented extension of VDM, and the 
Irish school of the VDM, which is discussed in the next section. 

16.9 VDM♣, the Irish School of VDM 

The Irish School of VDM is a variant of standard VDM and is characterized by 
its constructive approach, classical mathematical style, and its terse notation [13]. 
This method aims to combine the what and how of formal methods in that its 
terse specification style stipulates in concise form what the system should do; 
furthermore, the fact that its specifications are constructive (or functional) means 
that the how is included with the what. 

However, it is important to qualify this by stating that the how as presented by 
VDM♣ is not directly executable, as several of its mathematical data types have 
no corresponding structure in high-level programming languages or functional lan-
guages. Thus, a conversion or reification of the specification into a functional

10 The VDM Tools are now available from the CSK Group in Japan.
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or higher-level language must take place to ensure a successful execution. Fur-
ther, the fact that a specification is constructive is no guarantee that it is a good 
implementation strategy, if the construction itself is naive. 

The Irish school follows a similar development methodology as in standard 
VDM, and it is a model-oriented approach. The initial specification is pre-
sented, with the initial state and operations defined. The operations are presented 
with preconditions; however, no postcondition is necessary as the operation is 
“functionally” (i.e., explicitly) constructed. 

There are proof obligations to demonstrate that the operations preserve the 
invariant. That is, if the precondition for the operation is true, and the operation 
is performed, then the system invariant remains true after the operation. The phi-
losophy is to exhibit existence constructively rather than providing a theoretical 
proof of existence that demonstrates the existence of a solution without presenting 
an algorithm to construct the solution. 

The school avoids the existential quantifier of predicate calculus, and reliance 
on logic in proof is kept to a minimum, with emphasis instead placed on equational 
reasoning. Structures with nice algebraic properties are sought, and one nice alge-
braic structure employed is the monoid, which has closure, associative, and a unit 
element. The concept of isomorphism is powerful, reflecting that two structures 
are essentially identical, and thus we may choose to work with either, depending 
on which is more convenient for the task in hand. 

The school has been influenced by the work of Polya and Lakatos. The for-
mer [14] advocated a style of problem-solving characterized by first considering 
an easier sub-problem and considering several examples. This generally leads to 
a clearer insight into solving the main problem. Lakatos’s approach to mathemat-
ical discovery [15] is characterized by heuristic methods. A primitive conjecture 
is proposed and if global counterexamples to the statement of the conjecture are 
discovered, then the corresponding hidden lemma for which this global counterex-
ample is a local counterexample is identified and added to the statement of the 
primitive conjecture. The process repeats, until no more global counterexamples 
are found. A sceptical view of absolute truth or certainty is inherent in this. 

Partial functions are the norm in VDM♣, and as in standard VDM, the problem 
is that functions may be undefined or fail to terminate for several of the argu-
ments in their domain. The logic of partial functions (LPFs) is avoided, and instead 
care is taken with recursive definitions to ensure termination is achieved for each 
argument. Academic and industrial projects have been conducted using VDM, but 
tool support is limited. The Irish School of VDM is discussed in more detail in 
[ORg17b]. 

16.10 The Z Specification Language 

Z is a formal specification language founded on Zermelo set theory, and it was 
developed by Abrial at Oxford University in the early 1980s. It is used for the 
formal specification of software and is a model-oriented approach. An explicit
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model of the state of an abstract machine is given, and the operations are defined 
in terms of the effect on the state. It includes a mathematical notation that is similar 
to VDM and the visually striking schema calculus. The latter consists essentially 
of boxes (or schemas), and these are used to describe operations and states. The 
schema calculus enables schemas to be used as building blocks and combined with 
other schemas. The Z specification language was published as an ISO standard 
(ISO/IEC 13568:2002) in 2002. 

The schema calculus is a powerful means of decomposing a specification into 
smaller pieces or schemas. This helps to make Z specification highly readable, as 
each individual schema is small in size and self-contained. Exception handling is 
done by defining schemas for the exception cases, and these are then combined 
with the original operation schema. Mathematical data types are used to model the 
data in a system, and these data types obey mathematical laws. These laws enable 
simplification of expressions and are useful with proofs. 

Operations are defined in a precondition/postcondition style. However, the pre-
condition is implicitly defined within the operation; i.e., it is not separated out as 
in standard VDM. Each operation has an associated proof obligation to ensure that 
if the precondition is true, then the operation preserves the system invariant. The 
initial state itself is, of course, required to satisfy the system invariant. Postcon-
ditions employ a logical predicate which relates the pre-state to the poststate, and 
the poststate of a variable v is given by priming, e.g., v,. Various conventions are 
employed, e.g., v? indicates that v is an input variable and v! indicates that v is an 
output variable. The symbol  Op operation indicates that this operation does not 
affect the state, whereas Δ Op indicates that this operation affects the state. 

Many data types employed in Z have no counterpart in standard program-
ming languages. It is therefore important to identify and describe the concrete 
data structures that will ultimately represent the abstract mathematical structures. 
The operations on the abstract data structures may need to be refined to yield 
operations on the concrete data structure that yield equivalent results. For simple 
systems, direct refinement (i.e., one step from abstract specification to implementa-
tion) may be possible; in more complex systems, deferred refinement is employed, 
where a sequence of increasingly concrete specifications is produced to eventually 
yield the executable specification. 

Z has been successfully applied in industry, and one of its well-known successes 
is the CICS project at IBM Hursley in England. Z is described in more detail in 
Chap. 17. 

16.11 The B-Method 

The B-Technologies [16] consist of three components: a method for software devel-
opment, namely the B-Method; a supporting set of tools, namely the B-Toolkit; and 
a generic program for symbol manipulation, namely the B-Tool (from which the 
B-Toolkit is derived). The B-Method is a model-oriented approach and is closely
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related to the Z specification language. Abrial developed the B specification lan-
guage, and every construct in the language has a set theoretic counterpart, and 
the method is founded on Zermelo set theory. Each operation has an explicit 
precondition. 

A key role of the abstract machine in the B-Method is to provide encapsulation 
of variables representing the state of the machine and operations that manipulate 
the state. Machines may refer to other machines, and a machine may be intro-
duced as a refinement of another machine. The abstract machines are specification 
machines, refinement machines, or implementable machines. The B-Method adopts 
a layered approach to design where the design is gradually made more concrete by 
a sequence of design layers. Each design layer is a refinement that involves a more 
detailed implementation in terms of the abstract machines of the previous layer. 
The design refinement ends when the final layer is implemented purely in terms 
of library machines. Any refinement of a machine by another has associated proof 
obligations, and proof is required to verify the validity of the refinement step. 

Specification animation of the Abstract Machine Notation (AMN) specifica-
tion is possible with the B-Toolkit, and this enables typical usage scenarios to be 
explored for requirements validation. This is, in effect, an early form of testing, 
and it may be used to demonstrate the presence or absence of desirable or unde-
sirable behaviour. Verification takes the form of a proof to demonstrate that the 
invariant is preserved when the operation is executed within its precondition, and 
this is performed on the AMN specification with the B-Toolkit. 

The B-Toolkit provides several tools that support the B-Method, and these 
include syntax and type checking; specification animation, proof obligation gener-
ator, auto-prover, proof assistor, and code generation. Thus, in theory, a complete 
formal development from initial specification to final implementation may be 
achieved, with every proof obligation justified, leading to a provably correct 
program. 

The B-Method and toolkit have been successfully applied in industrial applica-
tions, including the CICS project at IBM Hursley in the United Kingdom [17]. The 
automated support provided has been cited as a major benefit of the application of 
the B-Method and the B-Toolkit. 

16.12 Predicate Transformers and Weakest Preconditions 

The precondition of a program S is a predicate, i.e., a statement that may be true 
or false, and it is usually required to prove that if the precondition Q is true then 
execution of S is guaranteed to terminate in a finite amount of time in a state 
satisfying R. This is written as {Q} S {R}. 

The weakest precondition of a command S with respect to a postcondition R 
[18] represents the set of all states such that if execution begins in any one of these 
states, then execution will terminate in a finite amount of time in a state with R 
true. These set of states may be represented by a predicate Q’, so that wp(S,R) = 
wpS (R) = Q’, and so wpS is a predicate transformer: i.e., it may be regarded as
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a function on predicates. The weakest precondition is the precondition that places 
the fewest constraints on the state than all of the other preconditions of (S,R). That 
is, all of the other preconditions are stronger than the weakest precondition. 

The notation Q{S}R is used to denote partial correctness and indicates that if 
execution of S commences in any state satisfying Q, and if execution terminates, 
then the final state will satisfy R. Often, a predicate Q which is stronger than the 
weakest precondition wp(S, R) is employed, especially where the calculation of 
the weakest precondition is non-trivial. Thus, a stronger predicate Q such that Q 
⇒ wp(S,R) is often employed. 

There are many properties associated with the weakest preconditions, and these 
may be used to simplify expressions involving weakest preconditions, and in 
determining the weakest preconditions of various program commands such as 
assignments and iterations. Weakest preconditions may be used in developing a 
proof of correctness of a program in parallel with its development [19]. 

An imperative program may be regarded as a predicate transformer. This is 
since a predicate P characterizes the set of states in which the predicate P is 
true, and an imperative program may be regarded as a binary relation on states, 
which leads to the Hoare triple P{F}Q. That is, the program F acts as a predicate 
transformer with the predicate P regarded as an input assertion, i.e., a Boolean 
expression that must be true before the program F is executed, and the predicate 
Q is the output assertion, which is true if the program F terminates (where F 
commenced in a state satisfying P). 

16.13 The Process Calculi 

The objectives of the process calculi [20] are to provide mathematical models 
which provide insight into the diverse issues involved in the specification, design, 
and implementation of computer systems which continuously act and interact 
with their environment. These systems may be decomposed into sub-systems that 
interact with each other and their environment. 

The basic building block is the process, which is a mathematical abstraction of 
the interactions between a system and its environment. A process that lasts indef-
initely may be specified recursively. Processes may be assembled into systems; 
they may execute concurrently or communicate with each other. Process commu-
nication may be synchronized, and this takes the form of one process outputting 
a message simultaneously to another process inputting a message. Resources may 
be shared among several processes. Process calculi such as CSP [20] and CCS 
[21] have been developed and they enrich the understanding of communication 
and concurrency, and they obey several mathematical laws. 

The expression (a ? P) in CSP describes a process which first engages in event 
a, and then behaves as process P. A recursive definition is written as (μX)•F(X) 
and an example of a simple chocolate vending machine is: 

VMS = μX : {coin, choc} •  (coin ? (choc ? X))
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The simple vending machine has an alphabet of two symbols, namely coin and 
choc. The behaviour of the machine is that a coin is entered into the machine, and 
then a chocolate is selected and provided, and the machine is ready for further use. 
CSP processes use channels to communicate values with their environment, and 
input on channel c is denoted by (c?.x Px). This describes a process that accepts 
any value x on channel c and then behaves as process Px. In contrast, (c!e P) 
defines a process which outputs the expression e on channel c and then behaves 
as process P. 

The π-calculus is a process calculus based on names. Communication between 
processes takes place between known channels, and the name of a channel may 
be passed over a channel. There is no distinction between channel names and data 
values in the π-calculus. The output of a value v on channel a is given by āv; i.e., 
output is a negative prefix. Input on a channel a is given by a(x) and is a positive 
prefix. Private links or restrictions are denoted by (x)P. 

16.14 Finite-State Machines 

Warren McCulloch and Walter Pitts published early work on finite-state automata 
in 1943. Moore and Mealy developed this work further, and these machines are 
referred to as the “Moore machine” and the “Mealy machine”. 

A finite-state machine (FSM) is an abstract mathematical machine that consists 
of a finite number of states. It includes a start state q0 in which the machine is in 
initially; a finite set of states Q; an input alphabet Σ; a state transition function δ; 
and a set of final accepting states F (where F ⊆ , Q). 

The state transition function takes the current state and an input and returns the 
next state. It provides rules that define the action of the machine for each input, and 
it may be extended to provide output as well as a state transition. State diagrams 
are used to represent finite-state machines, and each state accepts a finite number 
of inputs. 

A deterministic machine changes to exactly one state for each input transition, 
whereas a non-deterministic machine may have a choice of states to move to for a 
particular input. 

Finite-state automata compute very primitive functions and are not an ade-
quate model for computing. There are more powerful automata such as the Turing 
machine that is essentially a finite automaton with an infinite storage (memory). 
Anything that is computable is computable by a Turing machine. The Turing 
machine provides a mathematical abstraction of computer execution and storage, 
as well as providing a mathematical definition of an algorithm. Automata theory 
was discussed in Chap. 13.



272 16 Overview of Formal Methods

Table 16.2 Parnas’s contributions to software engineering 

Area Contribution 

Tabular expressions These are mathematical tables for specifying requirements and 
enable complex predicate logic expressions to be represented in 
a simpler form 

Mathematical documentation He advocates the use of precise mathematical documentation for 
requirements and design 

Requirements specification He advocates the use of mathematical relations to specify the 
requirements precisely 

Software design He developed information hiding that is used in object-oriented 
designa and allows software to be designed for change 

Software inspections His approach requires the reviewers to take an active part in the 
inspection. They are provided with a list of questions by the 
author and their analysis involves the production of 
mathematical table to justify the answers 

Predicate logic He developed an extension of the predicate calculus to deal with 
partial functions, and it preserves the classical two-valued logic 
when dealing with undefined values 

a It is surprising that many in the object-oriented world seem unaware that information hiding goes 
back to the early 1970s and many have never heard of Parnas. 

16.15 The Parnas Way 

Parnas has been influential in the computing field, and his ideas on the spec-
ification, design, implementation, maintenance, and documentation of computer 
software remain important. He advocates a solid engineering approach and argues 
that the role of the engineer is to apply scientific principles and mathematics to 
design and develop products. He argues that computer scientists need to be edu-
cated as engineers to ensure that they have the appropriate background to build 
software correctly. 

His tabular expressions were used for the specification of the requirements of 
the A-7 aircraft for the US Navy, and his mathematical inspections were used to 
verify the correctness of the shutdown software at the Darlington Nuclear power 
plant in Canada. His contributions to software engineering include (Table 16.2). 

16.16 Model Checking 

Model checking is an automated technique such that given a finite-state model of a 
system and a formal property, (expressed in temporal logic) then it systematically 
checks whether the property is true or false in a given state in the model. It is an 
effective technique to identify potential design errors, and it increases the confi-
dence in the correctness of the system design. Model checking is a highly effective 
verification technology and is widely used in the hardware and software fields. It
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has been employed in the verification of microprocessors; in security protocols; in 
the transportation sector (trains); and in the verification of software in the space 
sector. 

Model checking is a formal verification technique based on graph algorithms 
and formal logic. It allows the desired behaviour (specification) of a system to be 
verified, and its approach is to employ a suitable model of the system and to carry 
out a systematic and exhaustive inspection of all states of the model to verify that 
the desired properties are satisfied. These properties are generally safety proper-
ties such as the absence of deadlock, request-response properties, and invariants. 
Its systematic search determines whether a given system model truly satisfies a 
particular property or not. Model checking is discussed in more detail in Chap. 18. 

16.17 Usability of Formal Methods 

There are practical difficulties associated with the industrial use of formal methods. 
It seems to be assumed that programmers and customers are willing to become 
familiar with the mathematics used in formal methods, but this is true in only 
some domains.11 It is usually possible to get a developer to learn a formal method, 
as a programmer has some experience of mathematics and logic. However, it is 
more difficult to get a customer to learn a formal method, and this makes it more 
difficult to perform a rigorous validation of the formal specification. 

This often means that often a formal specification of the requirements and an 
informal definition of the requirements using a natural language are maintained. It 
is essential that both of these are consistent and that there is a rigorous validation 
of the formal specification. Otherwise, if the programmer proves the correctness 
of the code with respect to the formal specification, and the formal specification 
is incorrect, then the formal development of the software will be incorrect. There 
are several techniques to validate a formal specification including: 

• Proof that the formal specification satisfies key properties 
• Software inspections to compare formal specification and informal set of 

requirements 
• Specification animation to validate the formal specification. 

Formal methods are perceived as being difficult to use, and of providing lim-
ited value in mainstream software engineering. Programmers receive education in 
mathematics as part of their studies, but many never use formal methods again 
once they take an industrial position. Some of the reasons for this are:

11 The domain in which the software is being used will influence the willingness or otherwise of 
the customers to become familiar with the mathematics required. There appears to be little inter-
est in mainstream software engineering, and their perception is that formal methods are unusable. 
However, there is a greater interest in the mathematical approach in the safety critical field. 
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• The notation is not intuitive. 
• It is difficult to write a formal specification. 
• Validation of a formal specification is difficult. 
• Refinement and proof are difficult. 
• Limited tool support. 

It is important to investigate ways by which formal methods can be made more 
usable to software engineers and to design more usable notations and better tools 
to support the process. Practical training and coaching to employees can help. 
Some of the characteristics of a usable formal method are: 

• A formal method should be intuitive. 
• It should have tool support. 
• A formal method should be teachable. 
• It should be able to adapt to change. 
• The technology transfer path should be defined. 
• A formal method should be cost-effective. 

16.18 Review Questions 

1. What are formal methods and describe their potential benefits? How 
essential is tool support? 

2. What is stepwise refinement and how realistic is it in mainstream 
software engineering? 

3. Discuss Parnas’s criticisms of formal methods and discuss whether his 
views are valid. 

4. Discuss the industrial applications of formal methods and which areas 
have benefited most from their use? What problems have arisen? 

5. Describe a technology transfer path for the deployment of formal 
methods in an organization. 

6. Explain the difference between the model-oriented approach and the 
axiomatic approach. 

7. Discuss the nature of proof in formal methods and tools to support proof. 
8. Discuss the Vienna Development Method and explain the difference 

between standard VDM and VDM♣. 
9. Discuss Z and B. Describe the tools in the B-Toolkit. 
10. Discuss process calculi such as CSP, CCS, or π–calculus.
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16.19 Summary 

Formal methods provide a mathematical approach to the development of high-
quality software. They consist of a formal specification language; a methodology 
for formal software development; and a set of tools to support the syntax checking 
of the specification, as well as the proof of properties of the specification. 

The model-oriented approach includes formal methods such as VDM, Z, and 
B, and the axiomatic approach includes the process calculi such as CSP, CCS, and 
the π calculus. VDM was developed at the IBM lab in Vienna and has been used 
in academia and industry. 

Formal methods allow questions to be asked and answered about what the 
system does independently of the implementation. They offer a way to debug 
the requirements and to show that certain desirable properties are true of the 
specification, whereas certain undesirable properties are absent. 

The use of formal methods generally leads to increased confidence in its cor-
rectness. There are challenges involved in the deployment of formal methods, as 
mathematical techniques may be a culture shock to staff. The usability of existing 
formal methods was considered, and reasons for their perceived difficulty were 
considered. The characteristics of a usable formal method were explored. 

There are various tools to support formal methods including syntax checkers; 
specialized editors; tools to support refinement; automated code generators to gen-
erate a high-level language corresponding to the specification; theorem provers; 
and specification animation tools for simulation of the specification. 
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17Z Formal Specification Language 

Key Topics 

Sets, relations and functions 

Bags and sequences 

Data Reification 

Refinement 

Schema Calculus 

Proof in Z 

17.1 Introduction 

Z is a formal specification language based on Zermelo set theory. It was devel-
oped at the Programming Research Group at Oxford University in the early 1980s 
[1] and became an ISO standard in 2002. Z specifications are mathematical and 
employ a classical two-valued logic. The use of mathematics ensures precision 
and allows inconsistencies and gaps in the specification to be identified. Theorem 
provers may be employed to demonstrate that the software implementation meets 
its specification. 

Z is a ‘model-oriented’ approach with an explicit model of the state of an 
abstract machine given, and operations are defined in terms of this state. Its math-
ematical notation is used for formal specification, and the schema calculus is used 
to structure the specifications. The schema calculus is visually striking and con-
sists essentially of boxes, with these boxes or schemas used to describe operations 
and states. The schemas may be used as building blocks and combined with other
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Fig. 17.1 Specification of 
positive square root 

schemas. The simple schema below (Fig. 17.1) is the specification of the positive 
square root of a real number. 

The schema calculus is a powerful means of decomposing a specification into 
smaller pieces or schemas. This helps to make Z specifications highly readable, as 
each individual schema is small in size and self-contained. Exception handling is 
addressed by defining schemas for the exception cases. These are then combined 
with the original operation schema. Mathematical data types are used to model 
the data in a system, these data types obey mathematical laws. These laws enable 
simplification of expressions and are useful with proofs. 

Operations are defined in a precondition/postcondition style. A precondition 
must be true before the operation is executed, and the postcondition must be true 
after the operation has been executed. The precondition is implicitly defined within 
the operation. Each operation has an associated proof obligation to ensure that if 
the precondition is true, then the operation preserves the system invariant. The 
system invariant is a property of the system that must be true at all times. The 
initial state itself is, of course, required to satisfy the system invariant. 

The precondition for the specification of the square root function above is that 
num?≥0; i.e., the function SqRoot may be applied to positive real numbers only. 
The postcondition for the square root function is root!2 = num? and root!≥ 0. 
That is, the square root of a number is positive and its square gives the number. 
Postconditions employ a logical predicate which relates the pre-state to the post-
state, with the poststate of a variable being distinguished by priming the variable, 
e.g., v,. 

Z is a typed language and whenever a variable is introduced its type must be 
given. A type is simply a collection of objects, and there are several standard types 
in Z. These include the natural numbers N, the integers Z, and the real numbers 
R. The declaration of a variable x of type X is written x: X. It is also possible to 
create your own types in Z. 

Various conventions are employed within Z specification, for example v? indi-
cates that v is an input variable; v! indicates that v is an output variable. The 
variable num? is an input variable, and root! is an output variable for the square 
root example above. The notation  in a schema indicates that the operation Op 
does not affect the state; whereas the notation ∆ in the schema indicates that Op 
is an operation that affects the state. 

Many of the data types employed in Z have no counterpart in standard program-
ming languages. It is therefore important to identify and describe the concrete data 
structures that ultimately will represent the abstract mathematical structures. As 
the concrete structures may differ from the abstract, the operations on the abstract
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Fig. 17.2 Specification of a 
library system 

Fig. 17.3 Specification of 
borrow operation 

data structures may need to be refined to yield operations on the concrete data 
that yield equivalent results. For simple systems, direct refinement (i.e., one step 
from abstract specification to implementation) may be possible; in more complex 
systems, deferred refinement1 is employed, where a sequence of increasingly con-
crete specifications is produced to yield the executable specification. The schema 
calculus is employed for combining schemas to make larger specifications and is 
discussed later in the chapter. 

Example 17.1 The following is a Z specification to borrow a book from a library 
system. The library is made up of books that are on the shelf; books that are borrowed; 
and books that are missing (Fig. 17.2). The specification models a library with sets 
representing books on the shelf, on loan or missing. These are three mutually disjoint 
subsets of the set of books Bkd-Id. 

The system state is defined in the Library schema below, and operations such 
as Borrow and Return affect the state. The Borrow operation is specified below 
(Fig. 17.3). 

The notation PBkd-Id is used to represent the power set of Bkd-Id (i.e., the set 
of all subsets of Bkd-Id). The disjointness condition for the library is expressed 
by the requirement that the pairwise intersection of the subsets on-shelf, borrowed, 
missing is the empty set. 

The precondition for the Borrow operation is that the book must be available 
on the shelf to borrow. The postcondition is that the borrowed book is added to 
the set of borrowed books and is removed from the books on the shelf.

1 Step-wise refinement involves producing a sequence of increasingly more concrete specifica-
tions until eventually the executable code is produced. Each refinement step has associated proof 
obligations to prove that it is valid. 
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Z has been successfully applied in industry including the CICS project at IBM 
Hursley in the UK.2 Next, we describe key parts of Z including sets, relations, 
functions, sequences, and bags. 

17.2 Sets 

Sets were discussed in Chap. 3, and this section focuses on their use in Z. Sets 
may be enumerated by listing all of their elements. Thus, the set of all even natural 
numbers less than or equal to 10 is: 

{2, 4, 6, 8, 10} 

Sets may be created from other sets using set comprehension: i.e., stating the 
properties that its members must satisfy. For example, the set of even natural 
numbers less than 10 is given by set comprehension as: 

{n : N|n /= 0 ∧ n < 10 ∧ n mod 2 = 0 · n} 

There are three main parts to the set comprehension above. The first part is the 
signature of the set and this is given by n: N above. The first part is separated 
from the second part by a vertical line. The second part is given by a predicate, 
and for this example the predicate is n /= 0 ∧ n < 10  ∧ n mod 2 = 0. The second 
part is separated from the third part by a bullet. The third part is a term, and for 
this example it is simply n. The term is often a more complex expression: e.g., 
log(n2). 

In mathematics, there is just one empty set. However, since Z is a typed set 
theory, there is an empty set for each type of set. Hence, there are an infinite 
number of empty sets in Z. The empty set is written as ∅ [X] where X is the type 
of the empty set. In practice, X is omitted when the type is clear. 

Various operations on sets such as union, intersection, set difference, and sym-
metric difference are employed in Z. The power set of a set X is the set of all 
subsets of X and is denoted by P X. The set of non-empty subsets of X is denoted 
by P1X where 

P1 X == {U : P X |U /= ∅ [X ]} 

A finite set of elements of type X (denoted by F X) is a subset of X that cannot 
be put into a one-to-one correspondence with a proper subset of itself. This is 
defined formally as: 

FX == {U : P X |¬∃V : P U · V /= U ∧ (∃ f : V↢U )}

2 This project claimed a 9% increase in productivity attributed to the use of formal methods.
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The expression f : V ↢ U denotes that f is a bijection from U to V and injective, 
surjective, and bijective functions were discussed in Chap. 3. 

The fact that Z is a typed language means that whenever a variable is introduced 
(e.g., in quantification with ∀ and ∃) it is first declared. For example, ∀j: J • P ⇒ 
Q. There is also the unique existential quantifier ∃1 j: J | P which states that there 
is exactly one j of type J that has property P. 

17.3 Relations 

Relations were discussed in Chap. 3 and are used extensively in Z. A relation R 
between X and Y is any subset of the Cartesian product of X and Y; i.e., R⊆ (X × 
Y ), and a relation in Z is denoted by R: X ↔Y. The notation x |→ y indicates that 
the pair (x,y) ∈R. 

Consider, the relation home owner: Person↔Home that exists between people 
and their homes. An entry daphne |→ mandalay ∈home owner if daphne is the 
owner of mandalay. It is possible for a person to own more than one home: 

rebecca |→ nirvana ∈ home_owner 

rebecca |→ tr i  voli ∈ home_owner 

It is possible for two people to share ownership of a home: 

rebecca |→ nir vana ∈ home_owner 

lawrence |→ nir vana ∈ home_owner 

There may be some people who do not own a home, and there is no entry for 
these people in the relation home owner. The type Person includes every possi-
ble person, and the type Home includes every possible home. The domain of the 
relation home owner is given by: 

x ∈ dom home_owner ⇔ ∃h : Home  • x |→ h ∈ home_owner . 

The range of the relation home owner is given by: 

h ∈ ran home_owner ⇔ ∃h : Person  • x |→ h ∈ home_owner . 

The composition of two relations home owner: Person ↔ Home and 
home value: Home ↔Value yields the relation owner wealth: Person ↔ Value and 
is given by the relational composition home owner; home value where: 

p |→ v ∈ home_owner; home_value ⇔ 

(∃h : Home  • p |→ h ∈ home_owner ∧ h |→ v ∈ home_value)
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The relational composition may also be expressed as: 

owner_wealth = home_value o home_owner 

The union of two relations often arises in practice. Suppose a new entry aisling
|→ muckross is to be added. Then this is given by 

home_owner , = home_owner ∪ {aisling |→ muckross} 

Suppose that we are interested in knowing all females who are house own-
ers. Then we restrict the relation home owner so that the first element of 
all ordered pairs have to be female. Consider female: P Person with {aisling, 
rebecca} ⊆ female. 

home_owner = {aisling |→ muckross, rebecca |→ nir vana, 
lawrence |→ nirvana} 

f emale ⊲ home_owner = {aisling |→ muckross, rebecca |→ nir vana} 

That is, female ▷ home owner is a relation that is a subset of home owner, 
and the first element of each ordered pair in the relation is female. The operation
▷ is termed domain restriction, and its fundamental property is: 

x |→ y ∈ U ⊲ R ⇔ (x ∈ U ∧ x |→ y ∈ R} 

where R: X ↔ Y and U: P X. 
There is also a domain anti-restriction (subtraction) operation, and its funda-

mental property is: 

x |→ y ∈ U --⊲ R ⇔ (x /∈ U ∧ x |→ y ∈ R} 

where R: X ↔ Y and U: PX. 
There are also range restriction (the ▷ operator) and the range anti-restriction 

operator (the --▷ operator). These are discussed in [1]. 

17.4 Functions 

A function [1] is an association between objects of some type X and objects of 
another type Y such that given an object of type X, there exists only one object in 
Y associated with that object. A function is a set of ordered pairs where the first 
element of the ordered pair has at most one element associated with it. A function 
is therefore a special type of relation, and a function may be total or partial. 

A total function has exactly one element in Y associated with each element of 
X, whereas a partial function has at most one element of Y associated with each
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element of X (there may be elements of X that have no element of Y associated 
with them). 

A partial function from X to Y (f : X↛Y ) is a relation f : X ↔Y such that: 

∀x : X; y, z : Y · (x |→ y ∈ f ∧ x |→ z ∈ f ⇒ y = z) 

The association between x and y is denoted by f (x) = y, and this indicates that 
the value of the partial function f at x is y. A total function from X to Y (denoted f : 
X → Y ) is a partial function such that every element in X is associated with some 
value of Y. 

f : X → Y ⇔ f : X↛Y ∧ dom f = X 

Clearly, every total function is a partial function but not vice versa. 
One operation that arises quite frequently in specifications is the function 

override operation. Consider the following specification of a temperature map: 

| −  T empMap  − − − −  
|CityList  : PCity  
|temp  : City↛Z 

| − −−  
|dom temp  = CityList  
| − − − − − − − −  

Suppose the temperature map is given by temp = {Cork |→ 17, Dublin |→ 19, 
London |→ 15}. Then consider the problem of updating the temperature map if 
a new temperature reading is made in Cork: e.g., {Cork |→ 18}. Then the new 
temperature chart is obtained from the old temperature chart by function override 
to yield {Cork |→ 18, Dublin |→ 19, London |→ 15}. This is written as: 

temp, = temp  ⊕ {Cork |→ 18} 
The function override operation combines two functions of the same type to 

give a new function of the same type. The effect of the override operation is that 
the entry {Cork |→ 17} is removed from the temperature chart and replaced with 
the entry {Cork |→ 18}. 

Suppose f , g: X↛ Y are partial functions then f ⊕ g is defined and indicates 
that f is overridden by g. It is defined as follows: 

( f ⊕ g)(x) = g(x) where x ∈ dom g 

( f ⊕ g)(x) = f (x) where x /∈ dom g ∧ x ∈ dom f 

This may also be expressed (using domain anti-restriction) as: 

f ⊕ g = ((dom g) --⊲ f ) ∪ g
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There is notation in Z for injective, surjective, and bijective functions. An 
injective function is one to one: i.e., 

f (x) = f (y) ⇒ x = y. 

A surjective function is onto: i.e., 

Given y ∈ Y , ∃x ∈ X such that f (x) = y 

A bijective function is one to one and onto, and it indicates that the sets X and 
Y can be put into one-to-one correspondence with one another. Z  includes lambda 
calculus notation to define functions (λ-calculus was discussed in Chap. 12). For 
example, the function cube == λx: N·x * x * x. Function composition f ; g is similar 
to relational composition. 

17.5 Sequences 

The type of all sequences of elements drawn from a set X is denoted by seq X. 
Sequences are written as ⟨x1, x2, . . . .xn⟩, and the empty sequence is denoted by ⟨⟩
. Sequences may be used to specify the changing state of a variable over time, with 
each element of the sequence representing the value of the variable at a discrete 
time instance. 

Sequences are functions and a sequence of elements drawn from a set X is a 
finite function from the set of natural numbers to X. A partial finite function f from 
X to Y is denoted by f : X −→|| Y. A finite sequence of elements of X is given by a 
finite function f : N −→|| X, and the domain of the function consists of all numbers 
between 1 and # f (where #f is the cardinality of f ). It is defined formally as: 

seq X == { f : N −→|| X | dom f = 1..# f · f } 

The sequence ⟨x1, x2, . . . .xn⟩ above is given by: 

{1 |→ x1, 2 |→ x2, . . .  n |→ xn} 

There are various functions to manipulate sequences. These include the 
sequence concatenation operation. Suppose σ = ⟨x1, x2, . . .  xn⟩ and τ =
⟨y1, y2, . . .  ym⟩ then: 

σ ∩τ = ⟨x1, x2, . . .  xn, y1, y2, . . .  ym⟩

The head of a non-empty sequence gives the first element of the sequence. 

head σ = head⟨x1, x2, . . . .xn⟩ = x1
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The tail of a non-empty sequence is the same sequence except that the first 
element of the sequence is removed. 

tail σ = tail⟨x1, x2, . . .  xn⟩ = ⟨x2, . . .  xn⟩

Suppose f : X → Y and a sequence σ: seq X then the function map applies f to 
each element of σ: 

map f σ = map ⟨x1, x2, . . .  xn⟩ = ⟨ f (x1), f (x2), . . .  f (xn)⟩

The map function may also be expressed via function composition as: 

map f σ = σ; f 

The reverse order of a sequence is given by the rev function: 

rev σ = rev⟨x1, x2, . . .  xn⟩ = ⟨xn, . . .  x2, x1⟩

17.6 Bags 

A bag is similar to a set except that there may be multiple occurrences of each 
element in the bag. A bag of elements of type X is defined as a partial function 
from the type of the elements of the bag to positive whole numbers. The definition 
of a bag of type X is: 

bag X == X↛N1. 

For example, a bag of marbles may contain 3 blue marbles, 2 red marbles, and 1 
green marble. This is denoted by B = [b, b, b, g, , r, r]. The bag of marbles is thus 
denoted by: 

bag Marble  == Marble↛N1. 

The function count determines the number of occurrences of an element in a 
bag. For the example above, count Marble b = 3, and count Marble y = 0 since 
there are no yellow marbles in the bag. This is defined formally as: 

count bag X y  = 0 y /∈ bag X 
count bag X y  = (bag X)(y) y ∈ bag X 

An element y is in bag X if and only if y is in the domain of bag X. 

y in bag X ⇔ y ∈ dom (bag X)
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Fig. 17.4 Specification of 
vending machine using bags 

The union of two bags of marbles B1 = [b, b, b, g, , r, r] and B2 = [b, g, , r, 
y] is given by B1 ⊎ B2 [b, b ,b, b, g, g, r, r, r, y]. It is defined formally as: 

(B1⊎B2)(y) = B2(y) y /∈ domB1 ∧ y ∈ domB2 

(B1⊎B2)(y) = B1(y) y ∈ dom B1 ∧ y /∈ domB2 

(B1⊎B2)(y) = B1(y) + B2(y) y ∈ domB1 ∧ y ∈ domB2 

A bag may be used to record the number of occurrences of each product in 
a warehouse as part of an inventory system. It may model the number of items 
remaining for each product in a vending machine (Fig. 17.4). 

The operation of a vending machine would require other operations such as 
identifying the set of acceptable coins, checking that the customer has entered 
sufficient coins to cover the cost of the good, returning change to the customer, 
and updating the quantity on hand of each good after a purchase (see [1]). 

17.7 Schemas and Schema Composition 

The schemas in Z are visually striking, and the specification is presented in 
two-dimensional graphic boxes. Schemas are used for specifying states and state 
transitions, and they employ notation to represent the before and after state (e.g., 
s and s, where s, represents the after state of s). The schemas group all relevant 
information that belongs to a state description. 

There are a number of useful schema operations such as schema inclusion, 
schema composition, and the use of propositional connectives to link schemas 
together. The ∆ convention indicates that the operation affects the state, whereas 
the  convention indicates that the state is not affected. These operations and 
conventions allow complex operations to be specified concisely and assist with 
the readability of the specification. Schema composition is analogous to relational 
composition and allows new schemas to be derived from existing schemas. 

A schema name S1 may be included in the declaration part of another schema 
S2. The effect of the inclusion is that the declarations in S1 are now part of S2, and 
the predicates of S1 are S2 are joined together by conjunction. If the same variable
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is defined in both S1 and S2, then it must be of the same type. 

| −  S1 − −−  
|x, y : N 
| − −  
|x + y > 2 
| − −−  

| −  S2 − −−  
|S1, z : N 
| − −  
|z = x + y 
| − −−  

The result is that S2 includes the declarations and predicates of S1 (Fig. 17.5). 
Two schemas may be linked by propositional connectives such as S1 ∧ S2, S1 

∨ S2, S1 → S2, and S1 ↔ S2. The schema S1 ∨ S2 is formed by merging the 
declaration parts of S1 and S2, and then combining their predicates by the logical 
∨ operator. For example, S = S1 ∨ S2 yields (Fig. 17.6). 

Schema inclusion and the linking of schemas use normalization to convert sub-
types to maximal types, and predicates are employed to restrict the maximal type 
to the sub-type. This involves replacing declarations of variables (e.g., u : 1..35 
with u : Z and adding the predicate u > 0 and u < 36 to the predicate part of the 
schema). 

The ∆ and  conventions are used extensively, and the notation ∆ TempMap 
is used in the specification of schemas that involve a change of state. The notation

Fig. 17.5 Schema inclusion 

Fig. 17.6 Merging schemas 
(S1 ∨ S2) 
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∆ TempMap represents:

∆ T empMap  = T empMap  ∧ T empMap,

The longer form of ∆ TempMap is written as: 

| − ∆T empMap  
|CityList, CityList , : P City  
|temp, temp, : City↛Z 
| − −−  
|dom temp  = CityList  
|dom temp, = CityList ,
| − − − − − − − −−  

The notation  TempMap is used in the specification of operations that do not 
involve a change to the state. 

| −  T empMap  − − − −  
|∆T empMap  
| − −−  
|CityList  = CityList ,
|temp  = temp,
| − − − − − − − −−  

Schema composition is analogous to relational composition, and it allows new 
specifications to be built from existing ones. It allows the after-state variables 
of one schema to be related with the before variables of another schema. The 
composition of two schemas S and T (S; T ) is described in detail in [1] and 
involves four steps (Table 17.1). 

Table 17.1 Schema composition 

Step Procedure 

1 Rename all after-state variables in S to something new: 
S[s+/s,] 

2 Rename all before state variables in T to the same new thing: i.e., 
T [s+/s] 

3 Form the conjunction of the two new schemas: 
S[s+/s’]∧T [s+/s] 

4 Hide the variable introduced in steps 1 and 2 
S; T = (S[s+/s’]∧T [s+/s])\(s+)
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Fig. 17.7 Schema composition 

The example below should make schema composition clearer. Consider the 
composition of S and T where S and T are defined as follows: 

| −  S − −−  
|x, x ,, y? : N 
| − −−  
|x , = y? − 2 
| − −−  

| −  T − −−  
|x, x , : N 
| − −−  
|x , = x + 1 
| − −−  

| −  S1 − −−  
|x, x+, y? : N 
| − −−  
|x+ = y? − 2 
| − −−  

| −  T1 − −−  
|x+, x , : N 
| − −−  
|x , = x+ + 1 
| − −−  

S1 and T1 represent the results of step 1 and step 2, with x’ renamed to x+ in 
S, and x renamed to x+ in T. Step 3 and step 4 yield (Fig. 17.7). 

Schema composition is useful as it allows new specifications to be created from 
existing ones. 

17.8 Reification and Decomposition 

A Z specification involves defining the state of the system and then specifying 
the required operations. The Z specification language employs many constructs 
that are not part of conventional programming languages, and a Z specification 
is therefore not directly executable on a computer. A programmer implements the 
formal specification, and mathematical proof may be employed to prove that a 
program meets its specification.
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Often, there is a need to write an intermediate specification that is between the 
original Z specification and the eventual program code. This intermediate specifi-
cation is more algorithmic and uses less abstract data types than the Z specification. 
The intermediate specification is termed the design and the design needs to be 
correct with respect to the specification, and the program needs to be correct with 
respect to the design. The design is a refinement (reification) of the state of the 
specification, and the operations of the specification have been decomposed into 
those of the design. 

The representation of an abstract data type such as a set by a sequence is termed 
data reification, and data reification is concerned with the process of transforming 
an abstract data type into a concrete data type. The abstract and concrete data types 
are related by the retrieve function, and the retrieve function maps the concrete data 
type to the abstract data type. There are typically several possible concrete data 
types for a particular abstract data type (i.e., refinement is a relation), whereas 
there is one abstract data type for a concrete data type (i.e., retrieval is a function). 
For example, sets are often reified to unique sequences; and clearly more than one 
unique sequence can represent a set, whereas a unique sequence represents exactly 
one set. 

The operations defined on the concrete data type are related to the operations 
defined on the abstract data type. That is, the commuting diagram property is 
required to hold (Fig. 17.8). That is, for an operation ⊡ on the concrete data 
type to correctly model the operation ⨀ on the abstract data type the diagram 
must commute, and the commuting diagram property requires proof. That is, it is 
required to prove that: 

ret  (σ ⊡ τ)  = (ret  σ) ⨀ (ret  τ)  

In Z, the refinement and decomposition are done with schemas. It is required 
to prove that the concrete schema is a valid refinement of the abstract schema, 
and this gives rise to a number of proof obligations. It needs to be proved that 
the initial states correspond to one another and that each operation in the concrete 
schema is correct with respect to the operation in the abstract schema, and also 
that it is applicable (i.e., whenever the abstract operation may be performed the 
concrete operation may also be performed).

Fig. 17.8 Refinement 
commuting diagram 
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17.9 Proof in Z 

We discuss the nature of theorem proving in Chap. 19. Mathematicians perform 
rigorous proof of theorems using technical and natural language, whereas logicians 
employ formal proofs using propositional and predicate calculus. Formal proofs 
generally involve a long chain of reasoning with every step of the proof justified, 
whereas rigorous mathematical proofs involve precise reasoning using a mixture 
of natural and mathematical language. Rigorous proofs [1] have been described as 
being analogous to high-level programming languages, whereas formal proofs are 
analogous to machine language. 

A mathematical proof includes natural language and mathematical symbols, 
and often many of the tedious details of the proof are omitted. Many proofs in 
formal methods such as Z are concerned with crosschecking on the details of 
the specification, or on the validity of the refinement step, or proofs that certain 
properties are satisfied by the specification. There are often many tedious lemmas 
to be proved, and tool support is essential as proof by hand often contains errors or 
jumps in reasoning. Machine proofs provide extra confidence as every step in the 
proof is justified, and the proof of various properties about the programs increases 
confidence in its correctness. 

17.10 Industrial Applications of Z 

The Z specification language is one of the more popular formal methods, and it 
has been employed for the formal specification and verification of safety critical 
software. IBM piloted the Z formal specification language on the CICS (Customer 
Information Control System) project at its plant in Hursley, England. 

Rolls Royce and Associates (RRA) developed a lifecycle suitable for the devel-
opment of safety critical software, and the safety critical lifecycle used Z for the 
formal specification and the CADiZ tool provided support for specification, and 
Ada was the target implementation language. 

Logica employed Z for the formal verification of a smartcard-based electronic 
cash system (the Mondex smartcard) in the early 1990s. The smartcard had an 
8-bit microprocessor, and the objective was to formally specify both the high-level 
abstract security policy model and the lower-level concrete architectural design in 
Z, and to provide a formal proof of correspondence between the two. 

Computer Management Group (CMG) employed Z for modelling data and oper-
ations as part of the formal specification of a movable barrier (the MaeslantKering) 
in the mid-1990s, which is used to protect the port of Rotterdam from flooding. 
The decisions on opening and closing of the barrier are based on meteorologi-
cal data provided by the computer system, and the focus of the application of 
formal methods was to the decision-making subsystem and its interfaces to the 
environment.
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17.11 Review Questions 

1. Describe the main features of the Z specification language. 
2. Explain the difference between P1 X, P X and FX. 
3. Give an example of a set derived from another set using set com-

prehension. Explain the three main parts of set comprehension in 
Z. 

4. Discuss the applications of Z and which areas have benefited most from 
their use? What problems have arisen? 

5. Give examples to illustrate the use of domain and range restriction oper-
ators and domain and range anti-restriction operators with relations in 
Z. 

6. Give examples to illustrate relational composition. 
7. Explain the difference between a partial and total function and give 

examples to illustrate function override. 
8. Give examples to illustrate the various operations on sequences includ-

ing concatenation, head, tail, map and reverse operations. 
9. Give examples to illustrate the various operations on bags. 
10. Discuss the nature of proof in Z and tools to support proof. 
11. Explain the process of refining an abstract schema to a more con-

crete representation, the proof obligations that are generated, and the 
commuting diagram property. 

17.12 Summary 

Z is a formal specification language that was developed in the early 1980s 
at Oxford University in England. It has been employed in both industry and 
academia, and it was used successfully on the IBM’s CICS project. Its specifi-
cations are mathematical, and this leads to more rigorous software development. 
Its mathematical approach allows properties to be proved about the specification, 
and any gaps or inconsistencies in the specification may be identified. 

Z is a ‘model-oriented’ approach and an explicit model of the state of an 
abstract machine is given, and the operations are defined in terms of their effect 
on the state. Its main features include a mathematical notation that is similar to 
VDM, and the schema calculus. The latter consists essentially of boxes and is used 
to describe operations and states. 

The schema calculus enables schemas to be used as building blocks to form 
larger specifications. It is a powerful means of decomposing a specification into 
smaller pieces and helps with the readability of Z specifications, as each schema 
is small in size and self-contained.
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Z is a highly expressive specification language, and it includes notation for 
sets, functions, relations, bags, sequences, predicate calculus, and schema calcu-
lus. Z specifications are not directly executable as many of its data types and 
constructs are not part of modern programming languages. Therefore, there is a 
need to refine the Z specification into a more concrete representation and prove 
that the refinement is valid. 

Reference 

1. Diller A (1990) An introduction to formal methods. Wiley, England
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Key Topics 

Concurrent Systems 

Temporal Logic 

State Explosion 

Safety and Liveness Properties 

Fairness Properties 

Linear Temporal Logic 

Computational Tree Logic 

18.1 Introduction 

Model checking is an automated technique such that given a finite-state model of a 
system and a formal property (expressed in temporal logic), then it systematically 
checks whether the property is true or false in a given state in the model. It is an 
effective technique to identify potential design errors, and it increases confidence 
in the correctness of the system design. Model checking is a highly effective veri-
fication technology and is widely used in the hardware and software fields. It has 
been employed in the verification of microprocessors; in security protocols; in the 
transportation sector (trains); and in the verification of software in the space sector. 

Early work on model checking commenced in the early 1980s (especially in 
checking the presence of properties such as mutual exclusion and the absence of 
deadlocks), and the term “model checking” was coined by Clarke and Emerson 
in the early 1980s [1], when they combined the state exploration approach and
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Table 18.1 Model-checking process 

Phase Description 

Modelling phase Model the system under consideration 
Formalize the property to be checked 

Running phase Run the model checker to determine the validity of the property in the model 

Analysis phase Is the property satisfied? If applicable, check next property 
If the property is violated then 

1. Analyse generated counterexample 
2. Refine model, design, or property 

If out of space try alternative approach (e.g., abstraction of system model) 

temporal logic in an efficient manner. Clarke and Emerson received the ACM 
Turing Award in 2007 for their role in developing model checking into a highly 
effective verification technology. 

Model checking is a formal verification technique based on graph algorithms 
and formal logic. It allows the desired behaviour (specification) of a system to be 
verified, and its approach is to employ a suitable model of the system and to carry 
out a systematic and exhaustive inspection of all states of the model to verify that 
the desired properties are satisfied. These properties are generally safety properties 
such as the absence of deadlock, request-response properties, and invariants. The 
systematic search shows whether a given system model truly satisfies a particular 
property or not. 

The phases in the model-checking process include the modelling, running, and 
analysis phases (Table 18.1). 

The model-based techniques use mathematical models to describe the required 
system behaviour in precise mathematical language, and the system models have 
associated algorithms that allow all states of the model to be systematically 
explored. Model checking is used for formally verifying finite-state concurrent 
systems (typically modelled by automata), where the specification of the system 
is expressed in temporal logic, and efficient algorithms are used to traverse the 
model defined by the system (in its entirety) to check if the specification holds or 
not. Of course, any verification using model-based techniques is only as good as the 
underlying model of the system. 

Model checking is an automated technique such that given a finite-state model 
of a system and a formal property, then a systematic search may be conducted to 
determine whether the property holds for a given state in the model. The set of all 
possible states is called the model’s state space, and when a system has a finite-
state space it is then feasible to apply model-checking algorithms to automate the 
demonstration of properties, with a counterexample exhibited if the property is not 
valid. 

The properties to be validated are generally obtained from the system specifi-
cation, and they may be quite elementary: e.g., a deadlock scenario should never 
arise (i.e., the system should never be able to reach a situation where no further 
progress is possible). The formal specification describes what the system should



18.1 Introduction 297

do, whereas the model description (often automatically generated) is an accurate 
and unambiguous description of how the system actually behaves. The model is 
often expressed in a finite-state machine consisting of a finite set of states and a 
finite set of transitions. 

Figure 18.1 shows the structure of a typical model-checking system where a 
preprocessor extracts a state transition graph from a program or circuit. The model-
checking engine then takes the state transition graph and a temporal formula P and 
determines whether the formula is true or not in the model. 

The properties need to be expressed precisely and unambiguously (usually 
in temporal logic) to enable rigorous verification to take place. Model checking 
extracts a finite model from a system and then checks some property of that model. 
The model checker performs an exhaustive state search, which involves checking 
all system states to determine whether they satisfy the desired property or not 
(Fig. 18.2). 

If a state that violates the desired property is determined (i.e., a defect has 
been found once it is shown that the system does not fulfil one of its specified 
properties), then the model checker provides a counterexample indicating how the 
model can reach this undesired state. The system is considered to be correct if 
it satisfies all of the specified properties. In the cases of where the model is too

Fig. 18.1 Concept of model 
checking Preprocessor Model Checker 

Program / 
Circuit 

True / 
False 

Formula P 

Fig. 18.2 Model checking Requirements 
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System 
Model 

modellingformalizing 
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satisfied counter example 
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large to fit within the physical memory of the computer (state explosion problem), 
then other approaches such as abstraction of the system model or probabilistic 
verification may be employed. 

There may be several causes of a state violating the desired property. It may be 
due to a modelling error (i.e., the model does not reflect the design of the system, 
and the model may need to be corrected and the model checking restarted). Alter-
natively, it may be due to a design error with improvements needed to the design, 
or it may be due to an error in the statement of the property with a modification 
to the property required and the model checking needs to be restarted. 

Model checking is expressed formally by showing that a desired property P 
(expressed as a temporal logic formula) and a model M with initial state s, that P 
is always true in any state derivable from s (i.e., M, s |= P). We discussed tempo-
ral logic briefly in Chap. 11, and model checking is concerned with verifying that 
linear time properties such as safety, liveness, and fairness properties are always 
satisfied, and it employs linear temporal logic and branching temporal logic. Com-
putational tree logic is a branching temporal logic where the model of time is a 
tree-like structure, with many different paths in future, one of which might be an 
actual path which is realized. 

One problem with model checking is the state space explosion problem, where 
the transition graph grows exponentially on the size of the system, which makes 
the exploration of the state space difficult or impractical. Abstraction is one tech-
nique that aims to deal with the state explosion problem, and it involves creating 
a simplified version of the model (the abstract model). The abstract model may be 
explored in a reasonable period of time, and the abstract model must respect the 
original model with respect to key properties such that if the property is valid in 
the abstract model it is valid in the original model. 

Model checking has been applied to areas such as the verification of hard-
ware designs, embedded systems, protocol verification, and software engineering. 
Its algorithms have improved over the years, and today model checking is a 
mature technology for verification and debugging with many successful industrial 
applications. 

The advantages of model theory include the fact that the user of the model 
checker does not need to construct a correctness proof (as in automated theorem 
proving or proof checking). Essentially, all the user needs to do is to input a 
description of the program or circuit to be verified and the specification to be 
checked, and to then press the return key. The checking process is then automatic 
and fast, and it provides a counterexample if the specification is not satisfied. One 
weakness of model checking is that it verifies an actual model rather than the 
actual system, and so its results are only as good as the underlying model. Model 
checking is described in detail in [2].
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18.2 Modelling Concurrent Systems 

Concurrency is a form of computing in which multiple computations (processes) 
are executed during the same period of time. Parallel computing allows execu-
tion to occur in the same time instant (on separate processors of a multiprocessor 
machine), whereas concurrent computing consists of process lifetimes overlapping 
and where execution need not happen at the same time instant. 

Concurrency employs interleaving where the execution steps of each process 
employ time-sharing slices so that only one process runs at a time, and if it does 
not complete within its time slice it is paused; another process begins or resumes; 
and then later the original process is resumed. In other words, only one process 
is running at a given time instant, whereas multiple processes are part of the way 
through execution. 

It is important to identify concurrency-specific errors such as deadlock and 
livelock. A deadlock is a situation in which the system has reached a state in which 
no further progress can be made, and at least one process needs to complete its 
tasks. Livelock refers to a situation where the processes in a system are stuck in a 
repetitive task and are making no progress towards their functional goals. 

It is essential that safety properties such as mutual exclusion (at most one pro-
cess is in its critical section at any given time) are not violated. In other words, 
something bad (e.g., a deadlock situation) should never happen; liveness properties 
(a desired event or something good eventually happens) are satisfied; and invari-
ants (properties that are true all the time) are never violated. These behaviour errors 
may be mechanically detected if the systems are properly modelled and analysed. 

Transition systems (Fig. 18.3) are often used as models to describe the 
behaviour of systems, and these are directed graphs with nodes representing states 
and edges representing state transitions. A state describes information about a sys-
tem at a certain moment of time. For example, the state of a sequential computer 
consists of the values of all program variables and the current value of the program 
counter (pointer to next program instruction to be executed). 

A transition describes the conditions under which a system moves from one 
state to another. Transition systems are expressive in that programs are transition 
systems; communicating processes are transition systems; and hardware circuits 
are transition systems.

Fig. 18.3 Simple transition system 
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The transitions are associated with action labels that indicate the actions that 
cause the transition. For example, in Fig. 18.3 the Insert coin is a user action, 
whereas the Get coke and Get choc are actions that are performed by the machine. 
The activity τ represents an internal activity of the vending machine that is not of 
interest to the modeller. Formally, a transition system TS is a tuple (S, Act, → , I, 
AP, L) such that: 

S is the set of states 
Act is the set of actions 
→S ×Act ×S is the transition relation (source state, action and target state) 
I ⊆S is the set of initial states 
AP is a set of atomic propositions 
L: S →P AP (power set of AP) is a labelling function 

The transition (s, a, s ′) is written as s a−→ s′
L(s) are the atomic propositions in AP that are satisfied in state s. 
A concurrent system consists of multiple processes executing concurrently. If 

a concurrent system consists of n processes where each process proci is modelled 
by a transition system TSi, then the concurrent system may be modelled by a 
transition system (|| is the parallel composition operator): 

TS = TS1||TS2|| . . .  ||TSn 
There are various operators used in modelling concurrency with transition sys-

tems, including operators for interleaving, communication via shared variables, 
handshaking, and channel systems. 

18.3 Linear Temporal Logic 

Temporal logic was discussed in Chap. 11 and is concerned with the expression of 
properties that have time dependencies. The existing temporal logics allow facts 
about the past, present, and future to be expressed. Temporal logic has been applied 
to specify temporal properties of natural language, as well as the specification and 
verification of program and system behaviour. It provides a language to encode 
temporal knowledge in artificial intelligence applications, and it plays a useful role 
in the formal specification and verification of temporal properties (e.g., liveness 
and fairness) in safety critical systems. 

The statements made in temporal logic can have a truth value that varies over 
time. In other words, sometimes the statement is true and sometimes it is false, but 
it is never true or false at the same time. The two main types of temporal logics 
are linear time logics (reason about a single timeline) and branching time logics 
(reason about multiple timelines). 

Linear temporal logic (LTL) is a modal temporal logic that can encode formu-
lae about the future of paths (e.g., a condition that will eventually be true). The
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Table 18.2 Basic temporal 
operators 

Operator Description 

Fp p holds sometime in future 

Gp p holds globally in future 

Xp p holds in next time instant 

pUq p holds until q is true 

Fig. 18.4 LTL operators 
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basic linear temporal operators that are often employed (p is an atomic proposition 
below) are listed in Table 18.2 and illustrated in Fig. 18.4. 

For example, consider how the sentence “This microwave does not heat up until 
the door is closed” is expressed in temporal logic. This is naturally expressed with 
the until operator pUq as follows: 

¬HeatupUDoorClosed 

18.4 Computational Tree Logic 

In linear logic we look at the execution paths individually, whereas in branching 
time logics we view the computation as a tree. Computational tree logic (CTL) is 
a branching time logic, which means that its model of time is a tree-like structure 
in which the future is not determined, and so there are many paths in future such 
that any of them could be an actual path that is realized. CTL was first proposed 
by Clark and Emerson in the early 1980s. 

Computational tree logic can express many properties of finite-state concurrent 
systems. Each operator of the logic has two parts namely the path quantifier (A— 
“every path”, E—“there exists a path”), and the state quantifier (F, P, X, U as 
explained in Table 18.3). The operators in CTL logic are given by:

For example, the following is a valid CTL formula that states that it is always 
possible to get to the restart state from any state: 

AG(EF  restart)
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Table 18.3 CTL temporal 
operators 

Operator Description 

Aϕ (all) ϕ holds on all paths starting from the 
current state 

Eϕ (exists) ϕ holds on at least one path starting from 
the current state 

Xϕ (next) ϕ holds in the next state 
Gϕ (global) ϕ has to hold on the entire subsequent 

path 

Fϕ (finally) ϕ eventually has to hold (somewhere on 
the subsequent path) 

ϕUψ (until) ϕ has to hold until at some position ψ 
holds 

ϕWψ (weak until) ϕ has to hold until ψ holds (no guarantee 
ψ will ever hold)

18.5 Tools for Model Checking 

There are various tools for model checking including Spin, Bandera, SMV, and 
UppAal. These tools perform a systematic check on property P in all states and 
are applicable if the system generates a finite behavioural model. Model-checking 
tools use a model-based approach rather than a proof rule-based approach, and 
the goal is to determine whether the concurrent program satisfies a given logical 
property. 

Spin is a popular open-source tool that is used for the verification of dis-
tributed software systems (especially concurrent protocols), and it checks finite-
state systems with properties specified by linear temporal logic. It generates a 
counterexample trace if determines that a property is violated. 

Spin has its own input specification language (PROMELA), and so the system 
to be verified needs to be translated into the language of the model checker. The 
properties are specified using LTL. 

Bandera is a tool for model-checking Java source code, and it automates the 
extraction of a finite-state model from the Java source code. It then translates 
into an existing model checker’s input language. The properties to be verified are 
specified in the Bandera Specification Language (BSL), which supports pre- and 
postconditions and temporal properties. 

18.6 Industrial Applications of Model Checking 

There are many applications of model checking in the hardware and software 
fields, including the verification of microprocessors and security protocols, as well 
as applications in the transportation sector (trains) and in the space sector. 

The Mars Science Laboratory (MSL) mission used model checking as part 
of the verification of the critical software for the landing of Curiosity (a large
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rover) on its mission to Mars. The hardware and software of a spacecraft must 
be designed for a high degree of reliability, as an error can lead to a loss of the 
mission. The Spin model checker was employed for the model verification, and 
the rover was launched in November 2011 and landed safely on Mars in August 
2012. 

CMG employed formal methods as part of the specification and verification of 
the software for a movable flood barrier in the mid-1990s. This is used to protect 
the port of Rotterdam from flooding, Z was employed for modelling data and 
operations, and Spin/Promela was used for model checking. 

Lucent’s Pathstar Access Server was developed in the late 1990s, and this 
system is capable of sending voice and data over the Internet. The automated 
verification techniques applied to Pathstar consist of generating an abstract model 
from the implemented C code, and then defining the formal requirements that 
the application is satisfy. Finally, the model checker is employed to perform the 
verification. 

18.7 Review Questions 

1. What is model checking? 
2. Explain the state explosion problem. 
3. Explain the difference between parallel processing and concurrency. 
4. Describe the basic temporal operators. 
5. Describe the temporal operators in CTL. 
6. Explain the difference between liveness and fairness properties. 
7. What is a transition system? 
8. Explain the difference between linear temporal logic and branching 

temporal logic. 
9. Investigate tools to support model checking. 

18.8 Summary 

Model checking is a formal verification technique which allows the desired 
behaviours of a system to be verified. Its approach is to employ a suitable model 
of the system and to carry out a systematic inspection of all states of the model to 
verify the required properties are satisfied in each state. The properties to be val-
idated are generally obtained from the system specification, and a defect is found 
once it is shown that the system does not fulfil one of its specified properties. The 
system is considered to be correct if it satisfies all of the specified properties. 

The desired behaviour (specification) of the system is verified by employing 
a suitable model of the system and then carrying out a systematic exhaustive
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inspection of all states of the model to verify that the desired properties are sat-
isfied. These properties are generally properties such as the absence of deadlock 
and invariants. The systematic search shows whether a given system model truly 
satisfies a particular property or not. 

The model-based techniques use mathematical models to describe the required 
system behaviour in precise mathematical language, and the system models have 
associated algorithms that allow all states of the model to be systematically 
explored. The specification of the system is expressed in temporal logic, and 
efficient algorithms are used to traverse the model defined by the system (in its 
entirety) to check if the specification holds or not. Model-based techniques are 
only as good as the underlying model of the system. 
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Mathematical Proof 
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19.1 Introduction 

The word “proof ” is generally interpreted as facts or evidence that support a par-
ticular proposition or belief, and such proofs are generally conducted in natural 
language. Several premises (which are self-evident or already established) are pre-
sented, and from these premises (via deductive or inductive reasoning) further 
propositions are established, until finally the conclusion is established. 

The proof of a theorem in mathematics requires additional rigour, and such 
proofs consist of a mixture of natural language and mathematical argument. It is 
common to skip over the trivial steps in the proof, and independent mathematicians 
conduct peer reviews to provide additional confidence in the correctness of the 
proof and to ensure that no unwarranted assumptions or errors in reasoning have
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been made. Proofs conducted in logic are extremely rigorous with every step in 
the proof is explicit.1 

Mathematical proof dates back to the Greeks, and many students are famil-
iar with Euclid’s work (The Elements) in geometry, where from a small set of 
axioms and postulates and definitions he derived many of the well-known theo-
rems of geometry. Euclid was a Hellenistic mathematician based in Alexandria 
around 300BC, and his style of proof was mainly constructive: i.e., in addition to 
the proof of the existence of an object, he actually constructed the object in the 
proof. Euclidean geometry remained unchallenged for over 2000 years, until the 
development of the non-Euclidean geometries in the nineteenth century, and these 
geometries were based on a rejection of Euclid’s controversial 5th postulate (the 
parallels postulate). 

Mathematical proof may employ a “divide and conquer” technique; i.e., break-
ing the conjecture down into subgoals and then attempting to prove each of the 
subgoals. Another common proof technique is indirect proof where we assume the 
opposite of what we wish to prove, and we show that this results in a contradiction 
(e.g., see the proof in Chap. 4 that there are an infinite number of primes or the 
proof that there is no rational number whose square is 2). Other proof techniques 
used are the method of mathematical induction, where involves a proof of the base 
case and inductive step (see Chap. 6). 

Aristotle developed syllogistic logic in the fourth century BC, and the rules of 
reasoning with valid syllogisms remained dominant in logic up to the nineteenth 
century. Boole develop his mathematical logic in the mid-nineteenth century, and 
he aimed to develop a calculus of reasoning to verify the correctness of arguments 
using logical connectives. Predicate logic (including universal and existential quan-
tifiers) was introduced by Frege in the late nineteenth century as part of his efforts 
to derive mathematics from purely logical principles. Russell and Whitehead con-
tinued this attempt in Principia Mathematica, and Russell introduced the theory 
of types to deal with the paradoxes in set theory, which he identified in Frege’s 
system. 

The formalists introduced extensive axioms in addition to logical principles, 
and Hilbert’s program led to the definition of a formal mathematical proof as a 
sequence of formulae, where each element is either an axiom or derived from a 
previous element in the series by applying a fixed set of mechanical rules (e.g., 
modus ponens). The last line in the proof is the theorem to be proved, and the 
formal proof is essentially syntactic following rules with the formulae simply a 
string of symbols and the meaning of the symbols is unimportant. 

The formalists later ran into problems in trying to prove that a formal system 
powerful enough to include arithmetic was both complete and consistent, and the 
results of Gödel showed that such a system would be incomplete (and one of the

1 Perhaps a good analogy might be that a mathematical proof is like a program written in a high-
level language such as C, whereas a formal mathematical proof in logic is like a program written 
in assembly language. 
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propositions without a proof is that of its own consistency). Turing later showed 
(with his Turing machine) that mathematics is undecidable: i.e., there is no algo-
rithm or mechanical procedure that may be applied in a finite number of steps to 
determine if an arbitrary mathematical proposition is true or false. 

The proofs employed in mathematics are rarely formal (in the sense of Hilbert’s 
program), and whereas they involve deductions from a set of axioms, these 
deductions are rarely expressed as the application of individual rules of logical 
inference. 

The application of formal methods in an industrial environment requires the use 
of machine-assisted proof, since thousands of proof obligations arise from a for-
mal specification, and theorem provers are essential in resolving these efficiently. 
Many proofs in formal methods are concerned with crosschecking the details of 
the specification, checking the validity of the refinement steps, or checking that 
certain properties are satisfied by the specification. There are often many tedious 
lemmas to be proved, and theorem provers2 are essential in dealing with these. 
Machine proof is explicit, and reliance on some brilliant insight is avoided. Proofs 
by hand in formal methods are notorious for containing errors or jumps in rea-
soning, whereas machine proofs are explicit but are often extremely lengthy and 
essentially unreadable. 

Automated theorem proving (ATP) is difficult, as often mathematicians prove a 
theorem with an initial intuitive feeling that the theorem is true (Fig. 19.1). Human 
intervention to provide guidance or intuition improves the effectiveness of the 
theorem prover. There are several tools available to support theorem proving, and 
these include the Boyer-Moore theorem prover (known as NQTHM); the Isabelle 
theorem prover; and the HOL system. 

The proof of various properties about a program increases confidence in its cor-
rectness. However, an absolute proof of correctness3 is unlikely except for the most

2 Most existing theorem provers are difficult to use and are for specialist use only. There is a need 
to improve the usability of theorem provers. 
3 This position is controversial with others arguing that if correctness is defined mathematically 
then the mathematical definition (i.e., formal specification) is a theorem, and the task is to prove 
that the program satisfies the theorem. They argue that the proofs for non-trivial programs exist and 
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trivial of programs. A program may consist of legacy software that is assumed to 
work; a compiler that is assumed to work correctly creates it. Theorem provers 
are programs that are assumed to function correctly. The best that mathematical 
proof in formal methods can claim is increased confidence in the correctness of 
the software, rather than an absolute proof of correctness. 

19.2 Early Automation of Proof 

Early work on the automation of proof began in the 1950s with the beginning 
of work in the Artificial Intelligence field, where the early AI practitioners were 
trying to develop a “thinking machine”. One of the earliest programs developed 
was the Logic Theorist (LT), which was presented at the Dartmouth conference on 
Artificial Intelligence in 1956 [1]. 

It was developed by Allen Newell and Herbert Simon, and it could prove 38 of 
the first 52 theorems from Russell and Whitehead’s Principia Mathematica [2].4 

Russell and Whitehead had attempted to derive all mathematics from axioms and 
the inference rules of logic, and the LT program conducted proof from a small 
set of propositional axioms and deduction rules. Its approach was to start with the 
theorem to be proved, and to then search for relevant axioms and operators to prove 
the theorem. The Logic Theorist proved theorems in the propositional calculus, but 
it did not support predicate calculus. It used the five basic axioms of propositional 
logic and three rules of inference from the Principii to prove theorems.5 

LT demonstrated that computers had the ability to encode knowledge and 
information, and to perform intelligent operations such as solving theorems in 
mathematics. The heuristic approach of the LT program tried to emulate human 
mathematicians but could not guarantee that a proof could be found for every valid 
theorem. 

If no immediate one-step proof could be found, then a set of subgoals was 
generated (these are formulae from which the theorem may be proved in one step) 
and proofs of these were then searched for, and so on. The program could use 
previously proved theorems while developing a proof of a new theorem. Newell 
and Simon were hoping that the Logic Theorist would do more than just prove 
theorems in logic, and their goal was that it would attempt to prove theorems in a 
human-like way and especially with a selective search.

that the reason why there are not many examples of such proofs is due to a lack of mathematical 
specifications.
4 Russell is said to have remarked that he was delighted to see that the Principia Mathematica could 
be done by machine, and that if he and Whitehead had known this in advance that they would not 
have wasted 10 years doing this work by hand in the early twentieth century. 
5 Another possibility (though an inefficient and poor simulation of human intelligence) would be 
to start with the five axioms of the Principia, and to apply the three rules of inference to logically 
derive all possible sequences of valid deductions. This is known as the British Museum algorithm 
(as sensible as putting monkeys in front of typewriters to reproduce all of the books of the British 
Museum). 
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However, in practice, the Logic Theorist search was not very selective in its 
approach, and the subproblems were considered in the order in which they were 
generated, and so there was no actual heuristic procedure (as in human problem 
solving) to guess at which subproblem was most likely to yield an actual proof. 
This meant that the Logic Theorist could, in practice, find only very short proofs, 
since as the number of steps in the proof increased, the amount of search required 
to find the proof exploded. 

The Geometry Machine was developed by Herbert Gelerner at the IBM 
Research Centre in New York in the late 1950s, with the goal of developing intel-
ligent behaviour in machines. It differed from the Logic Theorist in that it selected 
only the valid subgoals (i.e., it ignored the invalid ones) and attempted to find a 
proof of these. The Geometry Machine was successful in finding the solution to 
a large number of geometry problems taken from high-school text books in plane 
geometry. 

The logicians Hao Wang and Evert Beth (the inventor of semantic tableaux 
which was discussed in Chap. 10) were critical of the approaches of the AI pio-
neers and believed that mathematical logic could do a lot more. Wang and others 
developed a theorem prover for first-order predicate calculus in 1960, but it had 
serious limitations due to the combinatorial explosion. 

Alan Robinson’s work on theorem provers in the early 1960s led to a proof 
procedure termed “resolution”, which appeared to provide a breakthrough in the 
automation of predicate calculus theorem provers. A resolution theorem prover 
is essentially provided with the axioms of the field of mathematics in question, 
and the negation of the conjecture whose proof is sought. It then proceeds until a 
contradiction is reached, where there is no possible way for the axioms to be true 
and for the conjecture to be false. 

The initial success of resolution led to excitement in the AI field where pio-
neers such as John McCarthy (see Chap. 11) believed that human knowledge could 
be expressed in predicate calculus,6 and that therefore if resolution was indeed 
successful for efficient automated theorem provers, then the general problem of 
Artificial Intelligence was well on the way to a solution. However, while resolu-
tion led to improvements with the state explosion problem, it did not eliminate the 
problem. 

This led to a falloff in research into resolution-based approaches to theorem 
proving, and other heuristic-based techniques were investigated by Bledsoe in the 
late 1970s. The field of logic programming began in the early 1970s with the 
development of the Prolog programming language (see Chap. 11). Prolog is in a 
sense an application of automated theorem proving, where problems are stated in 
the form of goals (or theorems) that the system tries to prove using a resolution

6 McCarthy’s viewpoint that predicate logic was the solution for the AI field was disputed by 
Minsksy and others (resulting in a civil war between the logicists and the proceduralists). The pro-
ceduralists argued that formal logic was an inadequate representation of knowledge for AI and that 
predicate calculus was an overly rigid and inadequate framework. They argued that an alternative 
approach such as the procedural representation of knowledge was required. 
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theorem prover. The theorem prover generally does not need to be very powerful 
as many Prolog programs require only a very limited search, and a depth-first 
search from the goal backwards to the hypotheses is conducted. 

The Argonne Laboratory (based in Chicago in the United States) developed the 
Aura System in the early 1980s (it was later replaced by Otter), as an improved 
resolution-based automated theorem prover, and this led to renewed interest in 
resolution-based approaches to theorem proving. There is a more detailed account 
of the nature of proof and theorem proving in [1]. 

19.3 Interactive Theorem Provers 

The challenges in developing efficient automated theorem provers led researchers 
to question whether an effective fully automated theorem prover was possible, and 
if it made more sense to develop a theorem prover that could be guided by a human 
in its search for a proof. This led to the concept of Interactive theorem proving 
(ITP) which involves developing formal proofs by man-machine collaboration and 
is (in a sense) a new way of doing mathematics in front of a computer. 

Such a system is potentially useful in mathematical research in formalizing 
and checking proofs, and it allows the user to concentrate on the creative parts of 
the proof and relieves the user of the need of carrying out the trivial steps in the 
proof. It is also a useful way of verifying the correctness of published mathematical 
proofs by acting as a proof checker, where the ITP is provided with a formal proof 
constructed by a human, which may then be checked for correctness.7 Such a 
system is important in program verification in showing that the program satisfies 
its specification, and especially in the safety/security critical field. 

A group at Princeton developed a series of systems called Semi-automated 
mathematics (SAM) in the late 1960s, which combined logic routines with human 
guidance and control. Their approach placed the mathematician at the heart of 
the theorem proving, and it was a departure from the existing theorem proving 
approaches where the computer attempted to find proofs unaided. SAM provided 
a proof of an unproven conjecture in lattice theory (SAM’s lemma), and this is 
regarded as the first contribution of automated reasoning systems to mathematics 
[1]. 

De Bruijn and others at the Technische Hogeschool in Eindhoven in the Nether-
lands commenced development of the Automath system in the late 1960s. This 
was a large-scale project for the automated verification of mathematics, and it was 
tested by treating a full text book. Automath systematically checked the proofs 
from Landau’s text Grundlagen der Analysis (this foundations of analysis text was 
first published in 1930).

7 A formal mathematical proof (of a normal proof) is difficult to write down and can be lengthy. 
Mathematicians were not really interested in these proof checkers. 
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The typical components of an Interactive Theorem Prover include an interactive 
proof editor to allow editing of proofs, formulae and terms in a formal theory of 
mathematics, and a large library of results which is essential for achieving complex 
results. 

The Gypsy verification environment and its associated theorem prover was 
developed at the University of Texas in the 1980s, and it achieved early success 
in program verification with its verification of the encrypted packet interface pro-
gram (a 4200 line program). It supports the development of software systems and 
formal mathematical proof of their behaviour. 

The Boyer-Moore Theorem prover (NQTHM) was developed in the 
1970s/1980s at the University of Texas by Boyer and Moore [3]. It was improved 
and became known as NQTHM (it has been superseded by ACL2 available from 
the University of Texas). It supports mathematical induction as a rule of infer-
ence, and induction is a useful technique in proving properties of programs. The 
axioms of Peano arithmetic are built into the theorem prover, and new axioms 
added to the system need to pass a “correctness test” to prevent the introduction 
of inconsistencies. 

It is far more automated than many other interactive theorem provers, but it 
requires detailed human guidance (with suggested lemmas) for difficult proofs. 
The user therefore needs to understand the proof being sought and the internals of 
the theorem prover. 

It has been effective in proving well-known theorems such as Gödel’s Incom-
pleteness Theorem, the insolvability of the Halting problem, a formalization of the 
Motorola MC 68,020 Microprocessor, and many more. 

Computational Logic Inc. was a company founded by Boyer and Moore in 1983 
to share the benefits of a formal approach to software development with the wider 
computing community. It was based in Austin, Texas, and provided services in the 
mathematical modelling of hardware and software systems. This involved the use 
of mathematics and logic to formally specify microprocessors and other systems. 
The use of its theorem prover was to formally verify that the implementation meets 
its specification: i.e., to prove that the microprocessor or other system satisfies its 
specification. 

The HOL system was developed by Michael Gordon and others at Cambridge 
University in the UK, and it is an environment for interactive theorem proving in a 
higher-order logic. It has been applied to the formalization of mathematics and to 
the verification of hardware (including the verification of microprocessor design). 
It requires skilled human guidance and is one of the most widely used theorem 
provers. It was originally developed in the early 1980s, and HOL 4 is the latest 
version. It is an open-source project and is used by academia and industry. 

Isabelle is a theorem proving environment developed at Cambridge University 
by Larry Paulson and Tobias Nipkow of the Technical University of Munich. It 
allows mathematical formulae to be expressed in a formal language and provides 
tools for proving those formulae. The main application is the formalization of
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mathematical proof and proving the correctness of computer hardware or software 
with respect to its specification and proving properties of computer languages and 
protocols. 

Isabelle is a generic theorem prover in the sense that it has the capacity to accept 
a variety of formal calculi, whereas most other theorem provers are specific to a 
specific formal calculus. Isabelle is available free of charge under an open-source 
licence. 

There is a steep learning curve with the theorem provers above, and it generally 
takes a couple of months for users to become familiar with them. However, auto-
mated theorem proving has become a useful tool in the verification of integrated 
circuit design. Several semiconductor companies use automated theorem proving 
to demonstrate the correctness of division and other operators on their processors. 
We present a selection of theorem provers in the next section. 

19.4 A Selection of Theorem Provers 

Table 19.1 presents a small selection of the available automated and interactive 
theorem provers.

19.5 Review Questions 

1. What is a mathematical proof? 
2. What is a formal mathematical proof? 
3. What approaches are used to prove a theorem? 
4. What is a theorem prover? 
5. What role can theorem provers play in software development? 
6. What is the difference between an automated theorem prover and an 

interactive theorem prover? 
7. Investigate and give a detailed description of one of the theorem provers 

in Table 19.1. 

19.6 Summary 

A mathematical proof includes natural language and mathematical symbols, and 
often many of the tedious details of the proof are omitted. The proofs in math-
ematics are rarely formal as such, and many proofs in formal methods are 
concerned with crosschecking the details of the specification, checking the valid-
ity of the refinement steps, or checking that certain properties are satisfied by the 
specification.
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Table 19.1 Selection of theorem provers 

Theorem prover Description 

ACL2 A Computational Logic for Applicative Common Lisp 
(ACL2) is part of the Boyer-Moore family of theorem 
provers. It is a software system consisting of a programming 
language (LISP) and an interactive theorem prover. It was 
developed in the mid-1990s as an industrial strength 
successor to the Boyer-Moore Theorem prover (NQTHM). It 
is used in the verification of safety critical hardware and 
software, and in industrial applications such as the 
verification of the floating-point module of a microprocessor 

OTTER OTTER is a resolution-style theorem prover for first-order 
logic developed at the Argonne Laboratory at the University 
of Chicago (it was the successor to Aura). It has been mainly 
applied to abstract algebra and formal logic 

PVS The Prototype Verification System (PVS) is a mechanized 
environment for formal specification and verification. It 
includes a specification language integrated with support 
tools and an interactive theorem prover. It was developed by 
John Rushby and others at SRI in California. The 
specification language is based on higher-order logic, and the 
theorem prover is guided by the user in conducting proof. It 
has been applied to the verification of hardware and software 

Theorem Proving System (TPS) TPS is an automated theorem prover for first-order and 
higher-order logic (it can also prove theorems interactively). 
It was developed at Carnegie Mellon University and is used 
for hardware and software verification 

HOL and Isabelle HOL and Isabelle were developed by the Automated 
Reasoning Group at the University of Cambridge. The HOL 
system is an environment for interactive theorem proving in a 
higher-order logic, and it has been applied to hardware 
verification. Isabelle is a generic proof assistant which allows 
mathematical formulae to be expressed in a formal language, 
and it provides tools for proving those formulae in a logical 
calculus 

Boyer-Moore The Boyer-Moore Theorem prover (NQTHM) was developed 
at the University of Texas in the 1970s with the goal of 
checking the correctness of computer systems. It has been 
used to verify the correctness of microprocessors, and it has 
been superseded by ACL2

Machine proof is explicit, and reliance on some brilliant insight is avoided. 
Proofs by hand often contain errors or jumps in reasoning, while machine proofs 
are often extremely lengthy and unreadable. The application of formal methods in 
an industrial environment requires the use of machine-assisted proof, since thou-
sands of proof obligations arise from a formal specification, and theorem provers 
are essential in resolving these efficiently. The proof of various properties about
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a program increases confidence in its correctness. However, an absolute proof of 
correctness is unlikely except for the most trivial of programs. 

Automated theorem proving is difficult, as often mathematicians prove a theo-
rem with an initial intuitive feeling that the theorem is true. Human intervention 
to provide guidance or intuition improves the effectiveness of the theorem prover. 
Early work on the automation of proof began in the 1950s with the beginning of 
work in the Artificial Intelligence field, and one of the earliest programs devel-
oped was the Logic Theorist, which was presented at the Dartmouth conference 
on Artificial Intelligence in 1956. 

The challenges in developing effective automated theorem provers led 
researchers to investigate whether it made more sense to develop a theorem prover 
that could be guided by a human in its search for a proof. This led to the develop-
ment of Interactive theorem proving which involved developing formal proofs by 
man-machine collaboration. 

The typical components of an interactive Theorem Prover include an interactive 
proof editor to allow editing of proofs, formulae, and terms in a formal theory of 
mathematics, and a large library of results which is essential for achieving complex 
results. 

An interactive theorem prover allows the user to concentrate on the creative 
parts of the proof and relieves the user of the need to carry out and verify the 
trivial steps in the proof. It is also a useful way of verifying the correctness of 
published mathematical proofs by acting as a proof checker and is also useful in 
program verification in showing that the program satisfies its specification, and 
especially in the safety/security critical fields. 
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20.1 Introduction 

Cryptography was originally employed to protect communication of private infor-
mation between individuals. Today, it consists of mathematical techniques that 
provide secrecy in the transmission of messages between computers, and its 
objective is to solve security problems such as privacy and authentication over 
a communications channel. 

It involves enciphering and deciphering messages, and it employs theoretical 
results from number theory (see Chap. 3) to convert the original message (or plain-
text) into cipher text that is then transmitted over a secure channel to the intended 
recipient. The cipher text is meaningless to anyone other than the intended recipi-
ent, and the recipient uses a key to decrypt the received cipher text and to read the 
original message.
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The origin of the word “cryptography” is from the Greek ‘kryptos’ meaning 
hidden, and ‘graphein’ meaning to write. The field of cryptography is concerned 
with techniques by which information may be concealed in cipher texts and made 
unintelligible to all but the intended recipient. This ensures the privacy of the 
information sent, as any information intercepted will be meaningless to anyone 
other than the authorized recipient. 

Julius Caesar developed one of the earliest ciphers on his military campaigns in 
Gaul (see Chap. 4). His objective was to communicate important messages safely 
to his generals. His solution is one of the simplest and widely known encryption 
techniques, and it involves the substitution of each letter in the plaintext (i.e., the 
original message) by a letter a fixed number of positions down in the alphabet. 
The Caesar cipher involves a shift of three positions, and this leads to the letter B 
being replaced by E, the letter C by F, and so on. 

The Caesar cipher is easily broken, as the frequency distribution of letters may 
be employed to determine the mapping. However, the Gaulish tribes were mainly 
illiterate, and so it is highly likely that the cipher provided good security. The 
translation of the Roman letters by the Caesar cipher (with a shift key of 3) can 
be seen in Fig. 4.3. 

The process of enciphering a message (i.e., the plaintext) simply involves going 
through each letter in the plaintext and writing down the corresponding cipher 
letter, with the reverse process employed in deciphering a cipher message. The 
encryption and decryption may also be done using modular arithmetic, with the 
numbers 0–25 used to represent the alphabet letters, and the encryption of a letter 
x is given by x + 3 (mod 26) and decryption of a letter y is given by y − 3 (mod 
26). 

The Caesar cipher was still in use up to the early twentieth century. However, 
by then frequency analysis techniques were available to break the cipher. The 
Vigenère cipher uses a Caesar cipher with a different shift at each position in the 
text. The value of the shift to be employed with each plaintext letter is defined 
using a repeating keyword. 

20.2 Breaking the Enigma Codes 

The Enigma codes were used by the Germans during the Second World War for 
the secure transmission of naval messages to their submarines. These messages 
contained top-secret information on German submarine and naval activities in the 
Atlantic and the threat that they posed to British and Allied shipping. 

The codes allowed messages to be passed secretly using encryption, and this 
meant that any unauthorized interception was meaningless to the Allies. The plain-
text (i.e., the original message) was converted by the Enigma machine (Fig. 20.1) 
into the encrypted text, and these messages were then transmitted by the German 
military to their submarines in the Atlantic, or to their bases throughout Europe.

The Enigma cipher was invented in 1918, and the Germans believed it to 
be unbreakable. A letter was typed in German into the machine, and electrical
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Fig. 20.1 The Enigma 
machine

impulses through a series of rotating wheels and wires produced the encrypted 
letter which was lit up on a panel above the keyboard. The recipient typed the 
received message into his machine, and the decrypted message was lit up letter by 
letter above the keyboard. The rotors and wires of the machine could be configured 
in many different ways, and during the war, the cipher settings were changed at 
least once a day. The odds against anyone breaking the Enigma machine without 
knowing the setting were 150×1018 to 1. 

The British code and cipher school was relocated from London to Bletchley 
Park at the start of the Second World War (Fig. 20.2). It was located in the town 
of Bletchley (near Milton Keynes about fifty miles northwest of London). It was 
commanded by Alistair Dennison and was known as Station X, and several thou-
sands were working there during the second world war. The team at Bletchley Park 
broke the Enigma codes and therefore made vital contributions to the British and 
Allied war effort.

Polish cryptanalysts did important work in breaking the Enigma machine in 
the early 1930s, and they constructed a replica of the machine. They passed their 
knowledge on to the British and gave them the replica just prior to the German 
invasion of Poland. The team at Bletchley built upon the Polish work, and the team 
included Alan Turing1 (Fig. 20.3), Gordan Welchman,2 and other mathematicians.

1 Turing made fundamental contributions to computing, including the theoretical Turing machine.
2 Gordon Welchman was the head of Hut 6 at Bletchley Park, and he made important contribu-
tions to code breaking. He invented a method to reduce the time to find the settings of the Enigma 
machine from days to hours. He also invented a technique known as traffic analysis (later called 
network analysis/metadata analysis which collected and analysed German messages to determined 
where and when they were sent. 
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Fig. 20.2 Bletchley park

Fig. 20.3 Alan Turing 

The code-breaking teams worked in various huts in Bletchley park. Hut 6 
focussed on air force and army ciphers, and hut 8 focussed on naval ciphers. The 
deciphered messages were then converted into intelligence reports, with air force 
and army intelligence reports produced by the team in hut 3, and naval intelli-
gence reports produced by the team in hut 4. The raw material (i.e., the encrypted 
messages) to be deciphered came from wireless intercept stations dotted around 
Britain, and from various countries overseas. These stations listened to German 
radio messages and sent them to Bletchley park to be deciphered and analysed. 

Turing devised a machine to assist with breaking the codes (an idea that was 
originally proposed by the Polish cryptanalysts). This electromechanical machine 
was known as the bombe (Fig. 20.4), and its goal was to find the right settings 
of the Enigma machine for that particular day. The machine greatly reduced the 
odds and the time required to determine the settings on the Enigma machine, and 
it became the main tool for reading the Enigma traffic during the war. The bombe 
was first installed in early 1940, and it weighed over a tonne. It was named after a 
cryptological device designed in 1938 by the Polish cryptologist, Marian Rejewski.

A standard Enigma machine employed a set of rotors, and each rotor could be 
in any of 26 positions. The bombe tried each possible rotor position and applied 
a test. The test eliminated almost all of the positions and left a smaller number of
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Fig. 20.4 Replica of bombe

cases to be dealt with. The test required the cryptologist to have a suitable “crib”: 
i.e., a section of ciphertext for which he could guess the corresponding plaintext. 

For each possible setting of the rotors, the bombe employed the crib to per-
form a chain of logical deductions. The bombe detected when a contradiction had 
occurred, and it then ruled out that setting and moved onto the next. Most of the 
possible settings would lead to contradictions and could then be discarded. This 
would leave only a few settings to be investigated in detail. 

The Government Communication Headquarters (GCHQ) was the successor of 
Bletchley Park, and it relocated to Cheltenham after the war. The site at Bletchley 
park was then used for training purposes. 

The codebreakers who worked at Bletchley Park were required to remain silent 
about their achievements until the mid-1970s when the wartime information was 
declassified.3 The link between British Intelligence and Bletchley Park came to an 
end in the mid-1980s. 

It was decided in the mid-1990s to restore Bletchley Park, and today it is run 
as a museum by the Bletchley Park Trust.

3 Gordan Welchman published his book ‘The Hut Six Story’ in 1982 (in the US and UK) describing 
his wartime experience at Bletchley Park. However, the security services disapproved of its publi-
cation and his security clearance was revoked. He was forbidden to speak of his book and wartime 
work. 
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Table 20.1 Notation in 
cryptography 

Symbol Description 

M Represents the message (plaintext) 

C Represents the encrypted message (cipher text) 

ek Represents the encryption key 

dk Represents the decryption key 

E Represents the encryption process 

D Represents the decryption process 

20.3 Cryptographic Systems 

A cryptographic system is a computer system that is concerned with the secure 
transmission of messages. The message is encrypted prior to its transmission, 
which ensures that any unauthorized interception and viewing of the message is 
meaningless to anyone other than the intended recipient. The recipient uses a key 
to decrypt the cipher text and to retrieve the original message. 

There are essentially two different types of cryptographic systems employed, 
and these are public key cryptosystems and secret key cryptosystems. A public 
key cryptosystem is an asymmetric cryptosystem where two different keys are 
employed: one for encryption and one for decryption. The fact that a person is 
able to encrypt a message does not mean that the person is able to decrypt a 
message. 

In a secret key cryptosystem, the same key is used for both encryption and 
decryption. Anyone who has knowledge on how to encrypt messages has sufficient 
knowledge to decrypt messages, and the sender and receiver need to agree on a 
shared key prior to any communication. The following notation is employed (Table 
20.1). 

The encryption and decryption algorithms satisfy the following equation: 

Ddk (C) = Ddk
(
Eek (M)

) = M 

There are two different keys employed in a public key cryptosystem. These 
are the encryption key ek and the decryption key dk with ek /= dk . It is called 
asymmetric since the encryption key differs from the decryption key. 

There is just one key employed in a secret key cryptosystem, with the same 
key ek is used for both encryption and decryption. It is called symmetric since the 
encryption key is the same as the decryption key: i.e., ek = dk . 

20.4 Symmetric Key Systems 

A symmetric key cryptosystem (Fig. 20.5) uses the same secret key for encryption 
and decryption. The sender and the receiver first need to agree a shared key prior 
to communication. This needs to be done over a secure channel to ensure that the
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shared key remains secret. Once this has been done they can begin to encrypt and 
decrypt messages using the secret key. Anyone who is able to encrypt a message 
has sufficient information to decrypt the message. 

The encryption of a message is in effect a transformation from the space of 
messages m to the space of cryptosystems C. That is, the encryption of a message 
with key k is an invertible transformation f such that: 

f : m k−→ C 

The cipher text is given by C = Ek(M) where M ∈ m and C ∈ C. The legitimate 
receiver of the message knows the secret key k (as it will have been transmitted 
previously over a secure channel), and so the cipher text C can be decrypted by 
the inverse transformation f −1 defined by: 

f −1: C k−→ m 

Therefore, we have that Dk(C) = Dk(Ek(M)) = M the original plaintext 
message. 

The advantages and disadvantages of symmetric key systems include (Table 
20.2).

Examples of Symmetric Key Systems 

(i) Caesar Cipher 

The Caesar cipher may be defined using modular arithmetic. It involves a shift 
of three places for each letter in the plaintext, and the alphabetic letters are rep-
resented by the numbers 0–25. The encryption is carried out by addition (module

Message 
M 

Encryption 
C = Ek(M) 

Decryption 
M= Dk(C) 

Message 
M 

Secret Key 
(k) 

Public Channel 
(Insecure) 

Hostile Attack 
(Enemy) 

Secure Channel 

Fig. 20.5 Symmetric key cryptosystem 



322 20 Cryptography

Table 20.2 Advantages and disadvantages of symmetric key systems 

Advantages Disadvantages 

Encryption process is simple (as the same key 
is used for encryption and decryption) 

A shared key must be agreed between two 
parties 

It is faster than public key systems Key exchange is difficult as there needs to be a 
secure channel between the two parties (to 
ensure that the key remains secret) 

It uses less computer resources than public key 
systems 

If a user has n trading partners then n secret 
keys must be maintained (one for each partner) 

It uses a different key for communication with 
every different party 

There are problems with the management and 
security of all of these keys (due to volume of 
keys that need to be maintained) 

Authenticity of origin or receipt cannot be 
proved (as key is shared)

26). The encryption of a plaintext letter x to a cipher letter c is given by4 : 

c = x + 3(mod 26) 

Similarly, the decryption of a cipher letter c is given by: 

x = c − 3(mod 26) 

(ii) Generalized Caesar Cipher 

This is a generalization of the Caesar cipher to a shift of k (the standard Caesar 
cipher involves a shift of three). This is given by: 

fk = Ek (x) ≡ x + k(mod 26) 0 ≤ k ≤ 25 
f −1 
k = Dk (c) ≡ c − k(mod 26) 0 ≤ k ≤ 25 

(iii) Affine Transformation 

This is a more general transformation and is defined by: 

f(a,b) = E(a,b)(x) ≡ ax + b(mod 26) 0 ≤ a, b, x ≤ 25 and gcd(a, 26) = 1 
f −1 
(a,b) = D(a,b)(c) ≡ a−1(c − b)(mod 26) a−1 is the inverse of a mod 26

4 Here x and c are variables rather than the alphabetic characters ‘x’ and  ‘c’.
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(iv) Block Ciphers 

Stream ciphers encrypt a single letter at a time and are easy to break. Block 
ciphers offer greater security, the plaintext is split into groups of letters, and the 
encryption is performed on the block of letters rather than on a single letter. 

The message is split into blocks of n-letters: M1, M2, …  Mk where each Mi 

(1≤ i ≤ k) is a block n-letters. The letters in the message are translated into their 
numerical equivalents, and the cipher text is formed as follows: 

Ci ≡ AMi + B(mod N ) i = 1, 2, . . .  k 
⎛ 

⎜ 
⎜ 
⎜⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

a11 a12 a13 · · ·  a1n 
a21 a22 a23 · · ·  a2n 
a31 a32 a33 · · ·  a3n 
· · ·  · · ·  · · ·  · · ·  · · ·  
· · ·  · · ·  · · ·  · · ·  · · ·  
an1 an2 an3 · · ·  ann 

⎞ 

⎟ 
⎟ 
⎟⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

⎛ 

⎜ 
⎜ 
⎜⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

m1 

m2 

m3 

· · ·  
· · ·  
mn 

⎞ 

⎟ 
⎟ 
⎟⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

+ 

⎛ 

⎜ 
⎜ 
⎜⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

b1 
b2 
b3 
· · ·  
· · ·  
bn 

⎞ 

⎟ 
⎟ 
⎟⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

= 

⎛ 

⎜ 
⎜ 
⎜⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

c1 
c2 
c3 
· · ·  
· · ·  
cn 

⎞ 

⎟ 
⎟ 
⎟⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

where (A, B) is the key, A is an invertible n× n matrix with gcd(det(A), N) = 
1,5 Mi = (m1, m2, …  mn)T, B = (b1, b2, …  bn)T, Ci = (c1, c2, …,  cn)T. The 
decryption is performed by: 

Mi ≡ A−1(Ci − B)(mod N ) i = 1, 2, . . .  k 
⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎜ 
⎝ 

m1 

m2 

m3 

· · ·  
· · ·  
mn 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎟ 
⎠ 

= 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎜ 
⎝ 

a11 a12 a13 · · ·  a1n 
a21 a22 a23 · · ·  a2n 
a31 a32 a33 · · ·  a3n 
. . .  · · ·  · · ·  · · ·  · · ·  
· · ·  · · ·  · · ·  · · ·  · · ·  
an1 an2 an3 · · ·  ann 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎟ 
⎠ 

−1 ⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎜ 
⎝ 

c1 − b1 
c2 − b2 
c3 − b3 

· · ·  
. . .  

cn − bn 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎟ 
⎠ 

(v) Exponential Ciphers 

Pohlig and Hellman [1] invented the exponential cipher in 1976. This cipher is 
less vulnerable to frequency analysis than block ciphers. 

Let p be a prime number and let M be the numerical representation of the 
plaintext, with each letter of the plaintext replaced with its two-digit representation 
(00–25). That is, A = 00, B = 01, …, Z = 25. 

M is divided into blocks Mi (these are equal size blocks of m letters where the 
block size is approximately the same number of digits as p). The number of letters

5 This requirement is to ensure that the matrix A is invertible. Matrices are discussed in Chap. 27. 
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m per block is chosen such that: 

2525 . . .  25︸ ︷︷ ︸
m times 

< p < 2525 . . .  25︸ ︷︷ ︸
m+1 times 

For example, for the prime 8191 a block size of m = 2 letters (4 digits) is 
chosen since: 

2525 < 8191 < 252,525 

The secret encryption key is chosen to be an integer k such that 0 < k < p and 
gcd(k, p − 1) = 1. Then the encryption of the block Mi is defined by: 

Ci = Ek (Mi ) ≡ Mk 
i (mod p) 

The cipher text Ci is an integer such that 0 ≤ Ci < p. 
The decryption of Ci involves first determining the inverse k−1 of the key k 

(mod p − 1), i.e., we determine k−1 such that k.k−1 ≡ 1 (mod  p − 1). The secret 
key k was chosen so that (k, p − 1) = 1, and this means that there are integers d 
and n such that kd = 1 + n(p − 1), and so k−1 is d and kk−1 = 1 + n(p − 1). 
Therefore, 

Dk−1 (Ci ) ≡ Ck−1 

i ≡
(
Mk 

i

)k−1 

≡ M1+n( p−1) 
i ≡ Mi (mod p) 

The fact that M1+n(p−1) 
i ≡ Mi (mod p) follows from Euler’s Theorem and 

Fermat’s Little Theorem (Theorem 3.7 and 3.8), which are discussed in Chap. 3 
of [2]. Euler’s Theorem states that for two positive integers a and n with gcd(a,n) 
= 1 that aφ(n) ≡ 1 (mod  n). 

Clearly, for a prime p we have that φ(p) = p − 1. This allows us to deduce 
that: 

M1+n(p−1) 
i ≡ M1 

i M
n(p−1) 
i ≡ Mi

(
M (p−1) 

i

)n ≡ Mi (1)
n ≡ Mi (mod p) 

(vi) Data Encryption Standard (DES) 

DES is a popular cryptographic system [3] used by governments and private 
companies around the world. It is based on a symmetric key algorithm and uses a 
shared secret key that is known only to the sender and receiver. It was designed 
by IBM and approved by the National Bureau of Standards (NBS6 ) in 1976. It is

6 The NBS is now known as the National Institute of Standards and Technology (NIST).
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a block cipher, and a message is split into 64-bit message blocks. The algorithm 
is employed in reverse to decrypt each cipher text block. 

Today, DES is considered to be insecure for many applications as its key size 
(56 bits) is viewed as being too small, and the cipher has been broken in less 
than 24 h. This has led to it being withdrawn as a standard and replaced by the 
Advanced Encryption Standard (AES), which uses a larger key of 128 bits or 256 
bits. 

The DES algorithm uses the same secret 56-bit key for encryption and decryp-
tion. The key consists of 56 bits taken from a 64-bit key that includes 8 parity bits. 
The parity bits are at position 8, 16, …, 64, and so every 8th bit of the 64-bit key 
is discarded leaving behind only the 56-bit key. 

The algorithm is then applied to each 64-bit message block, and the plaintext 
message block is converted into a 64-bit cipher text block. An initial permutation 
is first applied to M to create M ,, and M , is divided into a 32-bit left half L0 and a 
32-bit right half R0. There are then 16 iterations, with the iterations having a left 
half and a right half: 

Li = Ri−1 

Ri = Li−1 ⊕ f (Ri−1, Ki ) 

The function f is a function that takes a 32-bit right half and a 48-bit round key 
Ki (each Ki contains a different subset of the 56-bit key) and produces a 32-bit 
output. Finally, the pre-cipher text (R16, L16) is permuted to yield the final cipher 
text C. The function f operates on half a message block (Table 20.3) and involves: 

The decryption of the cipher text is similar to the encryption, and it involves 
running the algorithm in reverse. 

DES has been implemented on a microchip. However, it has been superseded 
in recent years by AES due to security concerns with its small 56-bit key size. The 
AES uses a key size of 128 bits or 256 bits.

Table 20.3 DES encryption 

Step Description 

1 Expansion of the 32-bit half block to 48 bits (by duplicating half of the bits) 

2 The 48-bit result is combined with a 48-bit subkey of the secret key using an XOR 
operation 

3 The 48-bit result is broken into 8 * 6 bits  and passed through 8 substitution boxes to 
yield 8 * 4  = 32 bits 
(This is the core part of the encryption algorithm.) 

4 The 32-bit output is re-arranged according to a fixed permutation 
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20.5 Public Key Systems 

A public key cryptosystem (Fig. 20.6) is an asymmetric key system where there is 
a separate key ek for encryption and dk decryption with ek /=dk . Martin Hellman 
and Whitfield Diffie invented it in 1976. The fact that a person is able to encrypt 
a message does not mean that the person has sufficient information to decrypt 
messages. 

The public key cryptosystem is based on the following (Table 20.4). 
The advantages and disadvantages of public key cryptosystems include (Table 

20.5).
The implementation of public key cryptosystems is based on trapdoor one-way 

functions. A function f : X → Y is a trapdoor one-way function if 

• f is easy to computer 
• f −1 is difficult to compute 
• f −1 is easy to compute if a trapdoor (secret information associated with the 

function) becomes available. 

A function satisfying just the first two conditions above is termed a one-way 
function.

Message 
M 

Encryption 
C = Eek(M) 

Decryption 
M= Ddk(C) 

Message 
M 

Public Channel 
(Insecure) 

Hostile Attack 
(Enemy) 

Decryption Key 
(Private) 

Encryption Key 
(Public) 

Fig. 20.6 Public key cryptosystem 

Table 20.4 Public key encryption system 

Item Description 

1 It uses the concept of a key pair (ek , dk) 

2 One half of the pair can encrypt messages and the other half can decrypt messages 

3 One key is private, and one key is public 

4 The private key is kept secret, and the public key is published (but associated with 
trading partner) 

5 The key pair is associated with exactly one trading partner 
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Table 20.5 Advantages and disadvantages of public key cryptosystems 

Advantages Disadvantages 

Only the private key needs to be kept secret Public keys must be authenticated 

The distribution of keys for encryption is 
convenient as everyone publishes their public 
key and the private key is kept private 

It is slow and uses more computer resources 

It provides message authentication as it allows 
the use of digital signatures (which enables the 
recipient to verify that the message is really 
from the particular sender) 

Security compromise is possible (if private 
key compromised) 

The sender encodes with the private key that is 
known only to sender. The receiver decodes 
with the public key and therefore knows that 
the message is from the sender 

Loss of private key may be irreparable (unable 
to decrypt messages) 

Detection of tampering (digital signatures 
enable the receiver to detect whether message 
was altered in transit) 

Provides for non-repudiation

Examples of Trapdoor and One-way Functions 

(i) The function f : pq → n (where p and q are primes) is a one-way function 
since it is easy to compute. However, the inverse function f −1 is difficult to 
compute problem for large n since there is no efficient algorithm to factorize 
a large integer into its prime factors (integer factorization problem). 

(ii) The function f g, N : x → gx (mod N) is a one-way function since it is easy to 
compute. However, the inverse function f −1 is difficult to compute as there 
is no efficient method to determine x from the knowledge of gx (mod N) and 
g and N (the discrete logarithm problem). 

(iii) The function f k, N : x →xk (mod N) (where N = pq and p and q are primes) 
and kk, ≡ 1 (mod  ϕ(n)) is a trapdoor function. It is easy to compute but the 
inverse of f (the kth root modulo N) is difficult to compute. However, if the 
trapdoor k, is given then f can easily be inverted as (xk)k, ≡ x (mod N). 

20.5.1 RSA Public Key Cryptosystem 

Rivest, Shamir, and Adleman proposed a practical public key cryptosystem (RSA) 
based on primality testing and integer factorization in the late 1970s. The RSA 
algorithm was filed as a patent (Patent No. 4405, 829) at the U.S. Patent Office 
in December 1977. The RSA public key cryptosystem is based on the following 
assumptions:
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• It is straightforward to find two large prime numbers. 
• The integer factorization problem is infeasible for large numbers. 

The algorithm is based on mod-n arithmetic where n is a product of two large 
prime numbers. 

The encryption of a plaintext message M to produce the cipher text C is given 
by: 

C ≡ Me(mod n) 

where e is the public encryption key, M is the plaintext, C is the cipher text, and 
n is the product of two large primes p and q. Both e and n are made public, and 
e is chosen such that 1 < e < φ(n), where φ(n) is the number of positive integers 
that are relatively prime to n. 

The cipher text C is decrypted by 

M ≡ Cd (mod n) 

where d is the private decryption key that is known only to the receiver, and ed ≡ 
1 (mod  φ(n)) and d and φ(n) are kept private. 

The calculation of φ(n) is easy if both p and q are known, as it is given by φ 
(n) = (p − 1)(q − 1). However, its calculation for large n is infeasible if p and q 
are unknown. 

ed ≡ 1(mod φ(n)) 

⇒ ed = 1 + kφ(n) for some k ∈ Z 

Euler’s Theorem is discussed in Chap. 3 of [2], and this result states that if a 
and n are positive integers with gcd(a, n) = 1 then aφ(n) ≡ 1 (mod  n). Therefore, 
Mφ(n) ≡ 1 (mod  n) and Mkφ(n) ≡ 1 (mod  n). The decryption of the cipher text is 
given by: 

Cd (mod n) ≡ Med(mod n) 

≡ M1+kφ(n) (mod n) 

≡ M1Mkφ(n) (mod n) 

≡ M · 1(mod n) 

≡ M(mod n)
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Table 20.6 Steps for A to 
send secure message and 
signature to B 

Step Description 

1 A uses B’s public key to encrypt the message 

2 A uses its private key to encrypt its signature 

3 A sends the message and signature to B 

4 B uses A’s public key to decrypt A’s signature 

5 B uses its private key to decrypt A’s message 

20.5.2 Digital Signatures 

The RSA public key cryptography may also be employed to obtain digital sig-
natures. Suppose A wishes to send a secure message to B as well as a digital 
signature. This involves signature generation using the private key, and signature 
verification using the public key. The steps involved are (Table 20.6). 

The National Institute of Standards and Technology (NIST) proposed an algo-
rithm for digital signatures in 1991. The algorithm is known as the Digital 
Signature Algorithm (DSA) and later became the Digital Signature Standard 
(DSS). 

20.6 Review Questions 

1. Discuss the Caesar cipher. 
2. Describe how the team at Bletchley Park cracked the German Enigma 

codes. 
3. Explain the differences between a public key cryptosystem and a private 

key cryptosystem. 
4. Describe the advantages/disadvantages of symmetric key cryptosystems. 
5. Describe the various types of symmetric key systems. 
6. What are the advantages and disadvantages of public key cryptosystems? 
7. Describe public key cryptosystems. 
8. Describe how digital signatures may be generated. 

20.7 Summary 

Cryptography is the study of mathematical techniques that provide secrecy in the 
transmission of messages between computers. It was originally employed to pro-
tect communication between individuals, and today it is employed to solve security 
problems such as privacy and authentication over a communications channel. 

It involves enciphering and deciphering messages and uses theoretical results 
from number theory to convert the original messages (or plaintext) into cipher text
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that is then transmitted over a secure channel to the intended recipient. The cipher 
text is meaningless to anyone other than the intended recipient, and the received 
cipher text is then decrypted to allow the recipient to read the message. 

A public key cryptosystem is an asymmetric cryptosystem. It has two different 
encryption and decryption keys, and the fact that a person has knowledge on how 
to encrypt messages does not mean that the person has sufficient information to 
decrypt messages. 

In a secret key cryptosystem, the same key is used for both encryption and 
decryption. Anyone who has knowledge on how to encrypt messages has suffi-
cient knowledge to decrypt messages, and it is essential that the key is kept secret 
between the two parties. 
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Key Topics 

Groups, Rings and Fields 

Block Codes 

Error Detection and Correction 

Generation Matrix 

Hamming Codes 

21.1 Introduction 

Coding theory is a practical branch of mathematics concerned with the reliable 
transmission of information over communication channels. It allows errors to be 
detected and corrected, which is essential when messages are transmitted through 
a noisy communication channel. The channel could be a telephone line, radio link, 
or satellite link, and coding theory is applicable to mobile communications and 
satellite communications. It is also applicable to storing information on storage 
systems such as the compact disc. 

It includes theory and practical algorithms for error detection and correction, 
and it plays an important role in modern communication systems that require 
reliable and efficient transmission of information. 

An error correcting code encodes the data by adding a certain amount of redun-
dancy to the message. This enables the original message to be recovered if a small 
number of errors have occurred. The extra symbols added are also subject to errors, 
as accurate transmission cannot be guaranteed in a noisy channel.
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Fig. 21.1 Basic digital communication 

The basic structure of a digital communication system is shown in Fig. 21.1. It  
includes transmission tasks such as source encoding, channel encoding and mod-
ulation; and receiving tasks such as demodulation, channel decoding, and source 
decoding. 

The modulator generates the signal that is used to transmit the sequence of 
symbols b across the channel. The transmitted signal may be altered due to the 
fact that there is noise in the channel, and the signal received is demodulated to 
yield the sequence of received symbols r. 

The received symbol sequence r may differ from the transmitted symbol 
sequence b due to the noise in the channel, and therefore a channel code is 
employed to enable errors to be detected and corrected. The channel encoder intro-
duces redundancy into the information sequence u, and the channel decoder uses 
the redundancy for error detection and correction. This enables the transmitted 
symbol sequence û to be estimated. 

Shannon [1] showed that it is theoretically possible to produce an information 
transmission system with an error probability as small as required provided that 
the information rate is smaller than the channel capacity. 

Coding theory uses several results from pure mathematics, and we discussed 
several abstract mathematical structures that are used in coding theory in Chap. 5. 
We briefly discuss its mathematical foundations in the next section. 

21.2 Mathematical Foundations of Coding Theory 

Coding theory is built from the results of modern algebra, and it uses abstract 
algebraic structures such as groups, rings, fields, and vector spaces. These abstract 
structures provide a solid foundation for the discipline, and the main abstract struc-
tures used include vector spaces and fields. A group is a non-empty set with a 
single binary operation, whereas rings and fields are algebraic structures with two 
binary operations satisfying various laws. A vector space consists of vectors over 
a field. 

The representation of codewords is by n-dimensional vectors over the finite 
field Fq. A codeword vector v is represented as the n-tuple: 

v = (a0, a, . . . ,  an−1) 

where each ai ∈Fq. The set of all n-dimensional vectors is the n-dimensional vector 
space Fn 

q with qn elements. The addition of two vectors v and w, where v = (a0,
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a1, …,  an−1) and w = (b0, b1, …,  bn−1) is given by: 

v + w = (a0 + b0, a1 + b1, . . . ,  an−1 + bn−1) 

The scalar multiplication of a vector v = (a0, a1, …  an−1)∈Fn 
q by a scalar 

β ∈Fq is given by: 

βv = (βa0, βa1, . . . , βan−1) 

The set Fn 
q is called the vector space over the finite field Fq if the vector 

space properties hold. A finite set of vectors v1, v2, …,  vk is said to be linearly 
independent if: 

β1v1 + β2v2 +  · · ·  +  βk vk = 0 ⇒ β1 = β2 = · · ·  βk = 0 

Otherwise, the set of vectors v1, v2, …  vk is said to be linearly dependent. 
The dimension (dim W ) of a subspace W ⊆V is k if there are k linearly inde-

pendent vectors in W but every k + 1 vectors are linearly dependent. A subset of 
a vector space is a basis for V if it consists of linearly independent vectors, and 
its linear span is V (i.e., the basis generates V ). 

We shall employ the basis of the vector space of codewords to create the gen-
erator matrix to simplify the encoding of the information words. The linear span 
of a set of vectors v1, v2, …,  vk is defined as β1v1 + β2v2 +  · · ·  +  βk vk . 

21.3 Simple Channel Code 

We present a simple example to illustrate the concept of an error correcting code, 
and the example code presented is able to correct a single transmitted error only. 

We consider the transmission of binary information over a noisy channel that 
leads to differences between the transmitted sequence and the received sequence. 
The differences between the transmitted and received sequence are illustrated by 
underlining the relevant digits in the example. 

Sent 00101110 

Received 00000110 

Initially, it is assumed that the transmission is done without channel codes as 
follows: 

00101110 
Channel−→ 00000110
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Next, the use of an encoder is considered and a triple repetition-encoding 
scheme is employed. That is, the binary symbol 0 is represented by the code word 
000, and the binary symbol 1 is represented by the code word 111. 

00101110 → Encoder → 000000111000111111111000 

Other words, if the symbol 0 is to be transmitted then the encoder emits the 
codeword 000, and similarly the encoder emits 111 if the symbol 1 is to be trans-
mitted. Assuming that on average one symbol in four is incorrectly transmitted, 
then transmission with binary triple repetition may result in a received sequence 
such as: 

000000111000111111111000 → Channel → 010000011010111010111010 

The decoder tries to estimate the original sequence by using a majority decision 
on each 3-bit word. Any 3-bit word that contains more zeros than ones is decoded 
to 0, and similarly if it contains more ones than zero it is decoded to 1. The 
decoding algorithm yields: 

0100000110100111010111010 → Decoder → 00101010 

In this example, the binary triple repetition code is able to correct a single error 
within a code word (as the majority decision is two to one). This helps to reduce 
the number of errors transmitted compared to unprotected transmission. In the first 
case where an encoder is not employed there are two errors, whereas there is just 
one error when the encoder is used. 

However, there are disadvantages with this approach in that the transmission 
bandwidth has been significantly reduced. It now takes three times as long to 
transmit an information symbol with the triple replication code than with standard 
transmission. Therefore, it is desirable to find more efficient coding schemes. 

21.4 Block Codes 

There were two code words employed in the simple example above: namely 000 
and 111. This is an example of a (n, k) code where the code words are of length n 
= 3, and the information words are of length k = 1 (as we were just encoding a 
single symbol 0 or 1). This is an example of a (3, 1) block code, and the objective 
of this section is to generalize the simple coding scheme to more efficient and 
powerful channel codes. 

The fundamentals of the q-nary (n, k) block codes (where q is the number of 
elements in the finite field Fq) involve converting an information block of length 
k to a codeword of length n. Consider an information sequence u0, u1, u2, …  
of discrete information symbols where ui ∈ {0, 1, …, q − 1} = Fq. The normal
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class of channel codes is when we are dealing with binary codes, i.e., q = 2. The 
information sequence is then grouped into blocks of length k as follows: 

u0u1u2 . . .  uk−1
︸ ︷︷ ︸

ukuk+1uk+2 . . .  u2k−1
︸ ︷︷ ︸

u2ku2k+1u2k+2 . . .  u3k−1 . . .
︸ ︷︷ ︸

Each block is of length k (i.e., the information words are of length k), and it is 
then encoded separately into codewords of length n. For example, the information 
word u0u1u2 . . .  uk−1 is uniquely mapped to a code word b0b1b2 . . .  bn−1 of length 
n where bi ∈Fq. Similarly, the information word ukuk+1uk+2 . . .  u2k−1 is encoded 
to the code word bnbn+1bn+2 . . .  b2n−1 of length n where bi ∈Fq. That is, 

(u0u1u2 . . .  uk−1) → Encoder → (b0b1b2 . . .  bn−1) 

These code words are then transmitted across the communication channel, and 
the received words are then decoded. The received word r = (r0r1r2 . . .  rn−1) is 
decoded into the information word û = (

û0 û1 û2 . . .  ̂uk−1
)

(r0r1r2 . . .  rn−1) → Decoder → (

û0 û1 û2 . . .  ̂uk−1
)

Strictly speaking the decoding is done in two steps with the received n-block 
word r first decoded to the n-block codeword b*. This is then decoded into the 
k-block information word û. The encoding, transmission, and decoding of an (n, 
k) block may be summarized as follows (Fig. 21.2). 

A lookup table may be employed for the encoding to determine the code word 
b for each information word u. However, the size of the table grows exponentially 
with increasing information word length k, and so this is inefficient due to the 
large memory size required. We shall discuss later how a generator matrix may be 
used to provide an efficient encoding and decoding mechanism. 

Notes 

(i) The codeword is of length n. 
(ii) The information word is of length k. 
(iii) The codeword length n is larger than the information word length k. 
(iv) A block (n, k) code is a code in which all codewords are of length n and all 

information words are of length k.

Channel 
Encoder Modulator Channel 

DecoderDemodulator 
Channelu b  

(r0r1r2 …rn-1) (û0û1û2 …ûk-1)(u0u1u2 …uk-1) (b0b1b2 …bn-1) 

r û  

Fig. 21.2 Encoding and decoding of an (n, k) block  
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(v) The number of possible information words is given by M = qk (where each 
information symbol can take one of q possible values and the length of the 
information word is k). 

(vi) The code rate R in which information is transmitted across the channel is 
given by: 

R = 
k 

n 

(vii) The weight of a codeword is b = (b0b1b2 . . .  bn−1) which is given by the 
number of non-zero components of b. That is, 

wt(b) = |{i : bi /= 0, 0 ≤ i < n}| 

(viii) The distance between two codewords b = (b0b1b2 . . .  bn−1) and b, =
(

b,
0b,

1b,
2 . . .  b,

n−1

)

measures how close the codewords b and b, are to each 
other. It is given by the Hamming distance: 

dist
(

b, b,) = ∣

∣

{

i : bi /= b,
i , 0 ≤ i < n

}∣

∣

(ix) The minimum Hamming distance for a code B consisting of M codewords 
b1, …,  bM is given by: 

d = min
{

dist
(

b, b,): where b /= b,}

(x) The (n, k) block code B = {b1, …,  bM} with M (= qk) codewords of length 
n and minimum Hamming distance d is denoted by B(n, k, d). 

21.4.1 Error Detection and Correction 

The minimum Hamming distance offers a way to assess the error detection and 
correction capability of a channel code. Consider two codewords b and b, of an 
(n, k) block code B(n, k, d). 

Then, the distance between these two codewords is greater than or equal to 
the minimum Hamming distance d, and so errors can be detected as long as the 
erroneously received word is not equal to a codeword different from the transmitted 
code word. 

That is, the error detection capability is guaranteed as long as the number 
of errors is less than the minimum Hamming distance d, and so the number of 
detectable errors is d − 1.
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Fig. 21.3 Error-correcting 
capability sphere b b’ 

p p 
r 

Any two codewords are of distance at least d and so if the number of errors is 
less than d /2 then the received word can be properly decoded to the codeword b. 
That is, the error correction capability is given by: 

Ecor = 
d − 1 
2 

An error-correcting sphere (Fig. 21.3) may be employed to illustrate the error 
correction of a received word to the correct codeword b. This may be done when 
all received words are within the error-correcting sphere with radius p (< d /2). 

If the received word r is different from b in less than d /2 positions, then it 
is decoded to b as it is more than d /2 positions from the next closest codeword. 
That is, b is the closest codeword to the received word r (provided that the error-
correcting radius is less than d /2). 

21.5 Linear Block Codes 

Linear block codes have nice algebraic properties and the codewords in a linear 
block code are considered to be vectors in the finite vector space Fn 

q. The repre-
sentation of codewords by vectors allows the nice algebraic properties of vector 
spaces to be used, and this simplifies the encoding of information words as a 
generator matrix may be employed to create the codewords. 

An (n, k) block code B(n, k, d) with minimum Hamming distance d over the 
finite field Fq is called linear if B(n, k, d) is a subspace of the vector space Fn 

q 

of dimension k. The number of codewords is then given by: 

M = qk 

The rate of information (R) through the channel is given by: 

R = 
k 

n 

Clearly, since B(n, k, d) is a subspace of Fn 
q any linear combination of the 

codewords (vectors) will be a codeword. That is, for the codewords b1, b2, …,  br 

we have that: 

α1b1 + α2b2 +  · · ·  +  αr br ∈ B(n, k, d) 

where α1, α2, … ,  αr ∈ Fq and b1, b2, …,  br ∈B(n, k, d).
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Clearly, the n-dimensional zero row vector (0, 0, …, 0) is always a codeword, 
and so (0, 0, …, 0)∈ B(n, k, d). The minimum Hamming distance of a linear 
block code B(n, k, d) is equal to the minimum weight of the nonzero codewords: 
That is, 

d = min
∀b /=b,

{

dist
(

b,b,)} = min∀b /=0 
wt(b) 

In summary, an (n, k) linear block code B(n, k, d) is: 

1. A subspace of Fn 
q. 

2. The number of codewords is M = qk . 
3. The minimum Hamming distance d is the minimum weigh of the non-zero 

codewords. 

The encoding of a specific k-dimensional information word u = (u0, u1, …,  uk−1) 
to a n-dimensional codeword b = (b0, b1, …,  bn−1) may be done efficiently with 
a generator matrix (matrices are discussed in Chap. 27). First, a basis {g0, g1, 
… gk−1} of the k-dimensional subspace spanned by the linear block code is cho-
sen, and this consists of k linearly independent n-dimensional vectors. Each basis 
element gi (where 0 ≤ i ≤k−1) is a n-dimensional vector: 

gi =
(

gi,0, gi ,1, . . . ,  gi ,n−1
)

The corresponding codeword b = (b0, b1, …,  bn−1) is then a linear combination 
of the information word with the basis elements. That is, 

b = u0g0 + u1g1 +  · · ·  +  uk−1gk−1 

where each information symbol ui ∈Fq. The generator matrix G is then con-
structed from the k linearly independent basis vectors as follows (Fig. 21.4). 

The encoding of the k-dimensional information word u to the n-dimensional 
codeword b involves matrix multiplication (Fig. 21.5).

This may also be written as: 

b = uG

Fig. 21.4 Generator matrix g0,n-1….g0,2g0,1g0,0 

gk-1,n-1….gk-1,2gk-1,1gk-1,0 

g2,n-1….g2,2g2,1g2,0 

g1,n-1….g1,2g1,1g1,0 

….….….….… 

…. 

…. ….….….… 

….….….… 

g0,n-1….g0,2g0,1g0,0 

gk-1,n-1….gk-1,2gk-1,1gk-1,0 

g2,n-1….g2,2g2,1g2,0 

g1,n-1….g1,2g1,1g1,0 

….….….….… 

…. 

…. ….….….… 

….….….… 

gk-1 

…. 

…. 

…. 

g2, 

g1, 

g0, 

gk-1 

…. 

…. 

…. 

g2, 

g1, 

g0, 

=G = 
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Fig. 21.5 Generation of 
codewords

g0,n-1….g0,2g0,1g0,0 

gk-1,n-1….gk-1,2gk-1,1gk-1,0 

g2,n-1….g2,2g2,1g2,0 

g1,n-1….g1,2g1,1g1,0 

….….….….… 

…. 

…. ….….….… 

….….….… 

g0,n-1….g0,2g0,1g0,0 

gk-1,n-1….gk-1,2gk-1,1gk-1,0 

g2,n-1….g2,2g2,1g2,0 

g1,n-1….g1,2g1,1g1,0 

….….….….… 

…. 

…. ….….….… 

….….….… 

= (b0, b1,…., bn-1 )(u0, u1,…., uk-1 ) 

Fig. 21.6 Identity matrix 
(k ×k) 

Clearly, all M = qk codewords b∈B(n, k, d) can be generated according to 
this rule, and so the matrix G is called the generator matrix. The generator matrix 
defines the linear block code B(n, k, d). There is an equivalent k ×n generator 
matrix for B(n, k, d) defined as: 

G = Ik
∣

∣Ak,n−k 

where Ik is the k ×k identity matrix (Fig. 21.6). 
The encoding of the information word u yields the codeword b such that the 

first k symbols bi of b are the same as the information symbols ui 0≤ i ≤k. 

b = uG = (

u
∣

∣u Ak,n−k
)

The remaining m = n − k symbols are generated from uAk,n−k and the last m 
symbols are the m parity check symbols. These are attached to the information 
vector u for the purpose of error detection and correction. 

21.5.1 Parity Check Matrix 

The linear block code B(n, k, d) with generator matrix G = (Ik | Ak,n−k) may be 
defined equivalently by the (n − k) ×n parity check matrix H, where this matrix 
is defined as: 

H =
(

−AT 
k,n−k |In−k

)

The generator matrix G and the parity check matrix H are orthogonal, i.e., 

H GT = 0n−k,k
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The parity check orthogonality property holds if and only if the vector belongs 
to the linear block code. That is, for each code vector in b∈ B(n, k, d) we have  

HbT = 0n−k,1 

and vice versa whenever the property holds for a vector r, then r is a valid 
codeword in B(n, k, d). We present an example of a parity check matrix in Example 
21.1 below. 

21.5.2 Binary Hamming Code 

The Hamming code is a linear code that has been employed in dynamic random 
access memory to detect and correct deteriorated data in memory. The generator 
matrix for the B(7, 4, 3) binary Hamming code is given by (Fig. 21.7). 

The information words are of length k = 4 and the codewords are of length n 
= 7. For example, it can be verified by matrix multiplication that the information 
word (0, 0, 1, 1) is encoded into the codeword (0, 0, 1, 1, 0, 0, 1). 

That is, three parity bits 001 have been added to the information word (0, 0, 1, 
1) to yield the codeword (0, 0, 1, 1, 0, 0, 1). 

The minimum Hamming distance is d = 3, and the Hamming code can detect 
up to two errors, and it can correct one error. 

Example 21.1 (Parity Check Matrix—Hamming Code) The objective of this example 
is to construct the parity check matrix of the binary Hamming code (7, 4, 3) and to 
show an example of the parity check orthogonality property. 

First, we construct the parity check matrix H which is given by H = (−AT 
k, n−k 

| In−k) or another words H = (−AT 
4,3 | I3). We first note that 

A4,3 = 

⎡ 

⎢ 
⎢ 
⎣ 

0 1 1  
1 0 1  
1 1 0  
1 1 1  

⎤ 

⎥ 
⎥ 
⎦ AT 

4,3 = 

⎡ 

⎣ 
0 1 1 1  
1 0 1 1  
1 1 0 1  

⎤ 

⎦ 

Therefore, H is given by: 

H = 

⎡ 

⎣ 
0 −1 −1 −1 1 0 0  

−1 0  −1 −1 0  1 0  
−1 −1 0  −1 0  0  1  

⎤ 

⎦

Fig. 21.7 Hamming code 
B(7, 4, 3) generator matrix 
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We noted that the encoding of the information word u = (0011) yields the code-
word b = (0011001). Therefore, the calculation of HbT yields (recalling that addition 
is modulo two): 

HbT = 

⎡ 

⎣ 
0 −1 −1 −1 1 0 0  

−1 0  −1 −1 0  1 0  
−1 −1 0  −1 0 0  1  

⎞ 

⎠ 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

0 
0 
1 
1 
0 
0 
1 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

= 

⎛ 

⎝ 
0 
0 
0 

⎞ 

⎠ 

21.5.3 Binary Parity Check Code 

The binary parity check code is a linear block code over the finite field F2. The 
code takes a k-dimensional information word u = (u0, u1, …,  uk−1) and generates 
the codeword b = (b0, b1, …,  bk−1, bk) where ui = bi (0 ≤ i ≤k−1) and bk is the 
parity bit chosen so that the resulting codeword is of even parity. That is, 

bk = u0 + u1 + · · ·  +  uk−1 = 
k−1
∑

i=0 

ui 

21.6 Miscellaneous Codes in Use 

There are many examples of codes in use such as repetition codes (such as the 
triple replication code considered earlier in Sect. 21.3); parity check codes where 
a parity symbol is attached such as the binary parity check code; Hamming codes 
such as the (7, 4) code that was discussed in Sect. 21.5.2, which has been applied 
for error correction of faulty memory. 

The Reed–Muller codes form a class of error correcting codes that can correct 
more than one error. Cyclic codes are special linear block codes with efficient 
algebraic decoding algorithms. The BCH codes are an important class of cyclic 
codes, and the Reed–Solomon codes are an example of a BCH code. 

Convolution codes have been applied in the telecommunications field, for exam-
ple, in GSM, UMTS, and in satellite communications. They belong to the class of 
linear codes, but also employ a memory so that the output depends on the current 
input symbols and previous input. For more detailed information on coding theory 
see [2].



342 21 Coding Theory

21.7 Review Questions 

1. Describe the basic structure of a digital communication system. 
2. Describe the mathematical structure known as the field. Give examples of 

fields. 
3. Describe the mathematical structure known as the ring and give examples 

of rings. Give examples of zero divisors in rings. 
4. Describe the mathematical structure known as the vector space and give 

examples 
5. Explain the terms linear independence and linear dependence and a basis. 
6. Describe the encoding and decoding of an (n, k) block code where an 

information word of length k is converted to a codeword of length n. 
7. Show how the minimum Hamming distance may be employed for error 

detection and error correction. 
8. Describe linear block codes and show how a generator matrix may be 

employed to generate the codewords from the information words. 

21.8 Summary 

Coding theory is the branch of mathematics that is concerned with the reliable 
transmission of information over communication channels. It allows errors to be 
detected and corrected, and this is extremely useful when messages are transmit-
ted through a noisy communication channel. This branch of mathematics includes 
theory and practical algorithms for error detection and correction. 

The theoretical foundations of coding theory were considered, and its founda-
tions lie in abstract algebra including group theory, ring theory, fields, and vector 
spaces. The codewords are represented by n-dimensional vectors over a finite field 
Fq. 

An error-correcting code encodes the data by adding a certain amount of redun-
dancy to the message so that the original message can be recovered if a small 
number of errors have occurred. 

The fundamentals of block codes were discussed where an information word is 
of length k and a codeword is of length n. This led to the linear block codes B(n, 
k, d) and a discussion on error detection and error correction capabilities of the 
codes. 

The goal of this chapter was to give a flavour of coding theory, and the reader 
is referred to more specialized texts (e.g., [2]) for more detailed information.
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Key Topics 

Random Sample 

Sampling Techniques 

Frequency Distribution 

Arithmetic Mean, Mode and Median 

Bar Chart, Histogram, and Trend Chart 

Variance 

Standard Deviation 

Correlation and Regression 

Statistical Inference 

Hypothesis Testing 

22.1 Introduction 

Statistics is an empirical science that is concerned with the collection, organization, 
analysis, interpretation, and presentation of data. The data collection needs to be 
planned and this may include surveys and experiments. Statistics are widely used 
by government and industrial organizations, and they are employed for forecasting 
as well as for presenting trends. They allow the behaviour of a population to be 
studied and inferences to be made about the population. These inferences may be 
tested (hypothesis testing) to ensure their validity.
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The analysis of statistical data allows an organization to understand its perfor-
mance in key areas and to identify problematic areas. Organizations will often 
examine performance trends over time and will devise appropriate plans and 
actions to address problematic areas. The effectiveness of the actions taken will be 
judged by improvements in performance trends over time. 

It is often not possible to study the entire population, and instead a representa-
tive subset or sample of the population is chosen. This random sample is used to 
make inferences regarding the entire population, and it is essential that the sample 
chosen is indeed random and representative of the entire population. Otherwise, 
the inferences made regarding the entire population will be invalid, as a selec-
tion bias has occurred. Clearly, a census where every member of the population is 
sampled is not subject to this type of bias. 

A statistical experiment is a causality study that aims to draw a conclusion 
between the values of a predictor variable(s) and a response variable(s). For exam-
ple, a statistical experiment in the medical field may be conducted to determine if 
there is a causal relationship between the use of a particular drug and the treat-
ment of a medical condition such as lowering of cholesterol in the population. A 
statistical experiment involves: 

• Planning the research 
• Designing the experiment 
• Performing the experiment 
• Analysing the results 
• Presenting the results. 

22.2 Basic Statistics 

The field of statistics is concerned with summarizing, digesting, and extracting 
information from large quantities of data. It provides a collection of methods for 
planning an experiment and analysing data to draw accurate conclusions from the 
experiment. We distinguish between descriptive statistics and inferential statistics: 

Descriptive Statistics 
This is concerned with describing the information in a set of data elements in 
graphical format, or by describing its distribution. 

Inferential Statistics 
This is concerned with making inferences with respect to the population by using 
information gathered in the sample.
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22.2.1 Abuse of Statistics 

Statistics are extremely useful in drawing conclusions about a population. How-
ever, it is essential that the random sample chosen is actually random, and that 
the experiment is properly conducted to ensure that valid conclusions are inferred. 
Some examples of the abuse of statistics include: 

• The sample size may be too small to draw conclusions 
• It may not be a genuine random sample of the population 
• There may be bias introduced from poorly worded questions 
• Graphs may be drawn to exaggerate small differences 
• Area may be misused in representing proportions 
• Misleading percentages may be used. 

The quantitative data used in statistics may be discrete or continuous. Discrete 
data is numerical data that has a finite or countable number of possible values, and 
continuous data is numerical data that has an infinite number of possible values. 

22.2.2 Statistical Sampling and Data Collection 

Statistical sampling is concerned with the methodology for choosing a random 
sample of a population and the study of the sample with the goal of drawing valid 
conclusions about the entire population. If a genuine representative random sample 
of the population is chosen, then a detailed study of the sample will provide insight 
into the whole population. This helps to avoid a lengthy expensive (and potentially 
infeasible) study of the entire population. 

The sample chosen must be truly random and the sample size sufficiently large 
to enable valid conclusions to be drawn for the entire population. The probability 
of being chosen for the random sample should be the same for each member of 
the population. 

Random Sample 
A random sample is a sample of the population such that each member of the 
population has an equal chance of being chosen. 

A large sample size gives more precise the information about the popula-
tion. However, little extra information is gained from increasing the sample size 
above a certain level, and the sample size chosen will depend on factors such as 
money and time available, the aims of the survey, the degree of precision required, 
and the number of subsamples required. Table 22.1 summarizes several ways for 
generating a random sample from the population:

Once the sample is chosen, the next step is to obtain the required information 
from the sample. The data collection may be done by interviewing each member 
in the sample; conducting a telephone interview with each member; conducting a 
postal questionnaire survey, and so on (Table 22.2).
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Table 22.1 Sampling techniques 

Sampling technique Description 

Systematic sampling The population is listed and every kth member of the population is 
sampled. For example, to choose a 2% (1 in 50) sample then every 
50th member of the population would be sampled 

Stratified sampling The population is divided into two or more strata and each 
subpopulation (stratum) is then sampled. Each element in the 
subpopulation shares the same characteristics (e.g., age groups, 
gender). The results from the various strata are then combined 

Multistage sampling This approach may be used when the population is spread over a wide 
geographical area. The area is split up into a number of regions, and a 
small number of the regions are randomly selected. Each selected 
region is then sampled. It requires less effort and time, but it may 
introduce bias if a small number of regions are selected, as it is not a 
truly random sample 

Cluster sampling A population is divided into clusters, and a few of these clusters are 
exhaustively sampled (i.e., every element in the cluster is considered). 
This approach may lead to significant selection bias, as the sampling is 
not random 

Convenience sampling Sampling is done as convenient, and in this case each person selected 
may decide whether to participate or not in the sample

Table 22.2 Types of survey 

Survey type Description 

Personal interview Interviews are expensive and time consuming, but allow detailed 
and accurate information to be collected. Questionnaires are often 
employed and the interviewers need to be trained in interview 
techniques. Interviews need to be planned and scheduled, and they 
are useful in dealing with issues that may arise (e.g., a respondent 
not fully understanding a question) 

Phone survey This is a reasonably efficient and cost-effective way to gather data. 
However, refusals or hang-ups may affect the outcome. It also has 
an in-built bias as only those people with telephones may be 
contacted and interviewed 

Mail questionnaire survey This involves sending postal questionnaire survey to the 
participants. The questionnaire needs to be well designed to ensure 
the respondents understand the questions and answer them 
correctly. There is a danger of a low response rate that may 
invalidate the findings 

Direct measurement This may involve a direct measurement of all those in the sample 
(e.g., the height of all students in a class) 

Direct observational study An observational study allows individuals to be studied, and the 
variables of interest to be measured 

Experiment An experiment imposes some treatment on individuals in order to 
study the response
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The design of the questionnaire requires careful consideration as a poorly 
designed questionnaire may lead to invalid results. The questionnaire should be 
as short as possible, and the questions should be simple and unambiguous. Closed 
questions where the respondent chooses from simple categories are useful. It is 
best to pilot the questionnaire prior to carrying out the survey. 

22.3 Frequency Distribution and Charts 

The data gathered from a statistical study is often raw and may yield little infor-
mation as it stands. Therefore, the way the data is presented is important, and it 
is useful to present the information in pictorial form. The advantage of a pictorial 
presentation is that it allows the data to be presented in an attractive and colourful 
way, and the reader is not overwhelmed with excessive detail. This enables anal-
ysis and conclusions to be drawn. There are several types of charts or graphs that 
are often employed in the presentation of the data including: 

• Bar chart 
• Histogram 
• Pie chart 
• Trend graph. 

A frequency table is often used to present and summarize data, where a simple 
frequency distribution consists of a set of data values and the number of items that 
have that value (i.e., a set of data values and their frequency). The information is 
then presented pictorially in a bar chart. 

The general frequency distribution is employed when dealing with a larger num-
ber of data values (e.g., > 20 data values). It involves dividing the data into a set 
of data classes, and listing the data classes in one column and the frequency of 
data values in that category in another column. The information is then presented 
pictorially in a bar chart or histogram. 

Figure 22.1 presents the raw data of salaries earned by different people in a 
company, and Table 22.3 presents the raw data in table format using a frequency 
table of salaries. Figure 22.2 presents a bar chart of the salary data in pictorial 
form, and it is much easier to read than the raw data presented in Fig. 22.1. 

A histogram is a way of representing data in bar chart format, and it shows the 
frequency or relative frequency of various data values or ranges of data values. It 
is usually employed when there are a large number of data values, and it gives a 
crisp picture of the spread of the data values, and the centring and variance of the 
data values from the mean.

Fig. 22.1 Raw salary data 90,000 50,000 50,000 65,000 65,000 45,000  50,000  
50,000  50,000  65,000  50,000  50,000  45,000    50,000   
65,000 
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Table 22.3 Frequency table 
of salary data 

Salary Frequency 

45,000 2 

50,000 8 

65,000 4 

90,000 1 

Frequency Distribution - Salary 
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Fig. 22.2 Bar chart of salary data

The data is divided into disjoint intervals where an interval is a certain range of 
values. The horizontal axis of the histogram contains the intervals (also known as 
buckets), and the vertical axis shows the frequency (or relative frequency) of each 
interval. 

The bars represent the frequency, and there is no space between the bars. The 
histogram has an associated shape, e.g., it may be a normal distribution, a  bimodal 
or multimodal distribution, and it may be positively or negatively skewed. The 
variation and centring refer to the spread of data, and the spread of the data is 
important as it may indicate whether the entity under study (e.g., a process) is too 
variable, or whether it is performing within the requirements. 

The histogram is termed process centred if its centre coincides with the cus-
tomer requirements; otherwise, the process is too high or too low. A histogram 
allows predictions of future performance to be made, where it can be assumed that 
the future will resemble the past. 

The construction of a histogram first requires that a frequency table be con-
structed, and this requires that the range of the data values be determined. The 
data are divided into a number of classes (or data buckets), where a bucket is a 
particular range of data values, and the relative frequency of each bucket is dis-
played in bar format. The number of class intervals or buckets is determined, and 
the class intervals are defined. The class intervals are mutually disjoint and span 
the range of the data values. Each data value belongs to exactly one class interval, 
and the frequency of each class interval is determined.
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Table 22.4 Frequency 
table—test results 

Mark Frequency 

0–24 3 

25–49 10 

50–74 15 

75–100 2 

The results of a class test in mathematics are summarized in Table 22.4. There 
are 30 students in the class, and each student achieves a score somewhere between 
0 and 100. There are four data intervals between 0 and 100 employed to summa-
rize the scores, and the result of each student belongs to exactly one interval. 
Figure 22.3 is the associated histogram for the frequency data, and it gives a 
pictorial representation of the marks for the class test. 

We may also employ a pie chart as an alternate way to present the class marks. 
The frequency table is constructed as before, and a visual representation of the 
percentage in each data class (i.e., the relative frequency) is provided with the pie 
chart. Each portion of the pie chart represents the percentage of the data values in 
that interval (Fig. 22.4). 
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Fig. 22.3 Histogram test results 
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Fig. 22.4 Pie chart test results
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Table 22.5 Monthly sales 
and profit 

Sales Profit 

Jan 5500 200 

Feb 3000 −400 

Mar 3500 200 

Apr 3000 600 

May 4500 −100 

Jun 6200 1200 

Jul 7350 3200 

Aug 4100 100 

Sep 9000 3300 

Oct 2000 −500 

Nov 1100 −800 

Dec 3000 300 
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Fig. 22.5 Monthly sales and profit 

We present the monthly sales and profit figures for a company in Table 22.5, 
and Fig. 22.5 gives a pictorial representation of the data in the form of a time 
series (or trend chart). 

22.4 Statistical Measures 

Statistical measures are concerned with the basic analysis of the data to determine 
the average of the data as well as how spread out the data is. The term “average” 
generally refers to the arithmetic mean of a sample, but it may also refer to the 
statistical mode or median of the sample. We first discuss the arithmetic mean as 
it is the mathematical average of the data and is representative of the data. The 
arithmetic mean is the most widely used average in statistics.
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22.4.1 Arithmetic Mean 

The arithmetic mean (or just mean) of a set of n numbers is defined to be the sum 
of the data values divided by the number of values. That is, the arithmetic mean 
of a set of data values x1, x2, …,  xn (where the sample size is n) is given by: 

x =
Σn 

i=1 xi 
n 

The arithmetic mean is representative of the data as all values are used in its 
calculation. The mean of the set of values 5, 11, 9, 4, 16, 9 is given by: 

m = 5+11+9+4+16+9/6 = 54/6 = 9. 

The formula for the arithmetic mean of a set of data values given by a frequency 
table needs to be adjusted. 

x1 x2 … … xn 

f 1 f 2 f n 

x =
Σn 

i=1 fi xiΣn 
i=1 fi 

The arithmetic mean for the following frequency distribution is calculated by: 

x 2 5 7 10 12 

f x 2 4 7 4 2 

The mean is given by: 
m = (2∗2+5∗4+7∗7+10∗4+12∗2)/(2+4+7+4+2) 

= (4+20+49+40+24)/19 = 137/19 = 7.2 
. 

The actual mean of the population is denoted by μ, and it may differ from the 
sample mean m. 

22.4.2 Mode 

The mode is the most popular element in the sample, i.e., it is the data element 
that occurs most frequency in the sample. For example, consider a shop that sells 
mobile phones, then the mode of the annual sales of phones is the most popular 
phone sold. The mode of the list [1, 4, 1, 2, 7, 4, 3, 2, 4] is 4, whereas the there 
is no unique mode in the sample [1, 1, 3, 3, 4], and it is said to be bimodal. 

The mode of the following frequency distribution is 7, since it occurs the most 
times in the sample.
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x 2 5 7 10 12 

f x 2 4 7 4 2 

It is possible that the mode is not unique (i.e., there are at least two elements 
that occur with the equal highest frequency in the sample), and if this is the case 
then we are dealing with a bimodal or possibly a multimodel distribution (where 
there are more than two elements that occur most frequently in the sample). 

22.4.3 Median 

The median of a set of data is the value of the data item that is exactly half 
way along the set of items, where the data set is arranged in increasing order of 
magnitude. 

If there are an odd number of elements in the sample the median is the middle 
element. Otherwise, the median is the arithmetic mean of the two middle elements. 

The median of 34, 21, 38, 11, 74, 90, 7 is determined by first ordering the set 
as 7, 11, 21, 34, 38, 74, 90, and the median is then given by the value of the 4th 
item in the list which is 34. 

The median of the list 2, 4, 8, 12, 20, 30 is the mean of the middle two items 
(as there are an even number of elements and the set is ordered), and so it is given 
by the arithmetic mean of the 3rd and 4th elements, i.e., 8+12/2 = 10. 

The calculation of the median of a frequency distribution first requires the cal-
culation of the total number of data elements (i.e., this is given by N = Σf ), and 
then determining the value of the middle element in the table, which is the N+1/2 
element. 

The median for the following frequency distribution is calculated by: 

x 2 5 7 10 12 

f x 2 4 7 4 2 

The number of elements is given by N = Σf = 2 + 4 + 7 + 4 + 2 = 19 and 
so the middle element is given by the value of the N+1/2 element, i.e., the 19+1/2 
= the 10th element. From an examination of the table it is clear that the value of 
the 10th element is 7 and so the median of the frequency distribution is 7. 

The final average that we consider is the midrange of the data in the sample, 
and this is given by the arithmetic mean of the highest and lowest data elements 
in the sample. That is, mmid = (xmax + xmin)/2. 

The mean, mode, and median coincide for symmetric frequency distributions 
but differ for left or right skewed distributions (Fig. 22.6). Skewness describes how 
non-symmetric the data is.

Dispersion indicates how spread out or scattered the data is, and there are sev-
eral ways of measuring dispersion including how skewed the distribution is, the 
range of the data, variance, and the standard deviation.
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Fig. 22.6 Symmetric distribution

22.5 Variance and Standard Deviation 

An important characteristic of a sample is its distribution, and the spread of each 
element from some measure of central tendency (e.g., the mean). One elementary 
measure of dispersion is that of the sample range, which is defined to be the 
difference between the maximum and minimum value in the sample. That is, the 
sample range is defined to be: 

range = xmax − xmin 

The sample range is not a reliable measure of dispersion as just two elements 
in the sample are used, and so extreme values in the sample may distort the range 
and make it very large even if most of the elements are quite close to one another. 

The standard deviation is the most common way to measure dispersion, and 
it gives the average distance of each element in the sample from the arithmetic 
mean. The sample standard deviation of a sample x1, x2, …  xn is denoted by s, 
and its calculation first requires the calculation of the sample mean. It is defined 
by: 

s =
/

Σ
(xi − x)2 

n − 1
=

/Σ
x2 i − nx2 

n − 1 

The population standard deviation is denoted by σ and is defined by: 

σ =
/

Σ
(xi − μ)2 

n
=

/
Σ

x2 i − nμ2 

n 

Variance is another measure of dispersion, and it is defined as the square of the 
standard deviation. The sample variance s2 is given by: 

s2 =
Σ

(xi − x)2 

n − 1
=

Σ
x2 i − nx2 

n − 1
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The population variance σ 2 is given by: 

σ 2 =
Σ

(xi − μ)2 

n
=

Σ
x2 i − nμ2 

n 

Example 22.1 (Standard Deviation) Calculate the standard deviation of the sample 
2, 4, 6, 8. 

Solution (Standard Deviation) 
The sample mean is given by m = 2 + 4 + 6 + 8/4 = 5. 

The sample variance is given by: 

s2 = (2 − 5)2 + (4 − 5)2 + (6 − 5)2 + (8 − 5)2/4 − 1 
= 9 + 1 + 1 + 9/3 
= 20/3 
= 6.66 

The sample standard deviation is given by the square root of the variance and 
so it is given by: 

s = √
6.66 

= 2.58 

The formula for the standard deviation and variance may be adjusted for fre-
quency distributions. The standard deviation and mean often go hand in hand, and 
for normal distributions 68% of the data lies within one standard deviation of the 
mean; 95% of the data lies within two standard deviations of the mean; and the 
vast majority (99.7%) of the data lies within three standard deviations of the mean. 
All data values are used in the calculation of the mean and standard deviation, and 
so these measures are truly representative of the data. 

22.6 Correlation and Regression 

The two most common techniques for exploring the relationship between two 
variables are correlation and linear regression. Correlation is concerned with quan-
tifying the strength of the relationship between two variables by measuring the 
degree of “scatter” of the data values, whereas regression expresses the relationship 
between the variable in the form of an equation (usually a linear equation). 

Correlation quantifies the strength and direction of the relationship between 
two numeric variables X and Y, and the correlation coefficient may be positive or 
negative and it lies between − 1 and + 1. If the correlation is positive, then as 
the value of one variable increases the value of the other variable increases (i.e., 
the variables move together in the same direction), whereas if the correlation is
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negative then as the value of one variable increases the value of the other vari-
able decreases (i.e., the variables move together in the opposite directions). The 
correlation coefficient r is given by the formula: 

Corr(X .Y ) = 
XY  − X Y 

Std(X)Std(Y ) 
= nΣXi Yi − ΣXiΣYi 

/
nΣX2 

i − (ΣXi )
2 
/
nΣY 2 i − (ΣYi )2 

The sign of the correlation coefficient indicates the direction of the relationship 
between the two variables. A correlation of r = +1 indicates perfect positive cor-
relation, whereas a correlation of r = −  1 indicates perfect negative correlation. A 
correlation close to zero indicates no relationship between the two variables; a cor-
relation of r = −  0.3 indicates a weak negative relationship; whereas a correlation 
of r = 0.85 indicates a strong positive relationship. The extent of the relationship 
between the two variables may be seen from the following: 

• A change in the value of X leads to a change in the value of Y. 
• A change in the value of Y leads to a change in the value of X. 
• Changes in another variable lead to changes in both X and Y. 
• There is no relationship (or correlation) between X and Y. 

The relationship (if any) between the two variables can be seen by plotting the 
values of X and Y in a scatter graph as in Figs. 22.7 and 22.8. The correlation 
coefficient identifies linear relationships between X and Y, but it does not detect 
non-linear relationships. It is possible for correlation to exist between two variables 
but for no causal relationship to exist, i.e., correlation is not the same as causation. 

Example 22.2 (Correlation) The data in Table 22.6 is a summary of the cost of 
maintenance of eight printers, and it is intended to explore the extent to which the 
age of the machine is related to the cost of maintenance. It is required to calculate 
the correlation coefficient.
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Fig. 22.7 Strong positive correlation
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Fig. 22.8 Strong negative correlation

Table 22.6 Cost of maintenance of printers 

X (Age) Y (Cost) XY X2 Y 2 

5 50 250 25 2500 

12 135 1620 144 18,225 

4 60 240 16 3600 

20 300 6000 400 90,000 

2 25 50 4 625 

10 80 800 100 6400 

15 200 3000 225 40,000 

8 90 720 64 8100 

76 940 12,680 978 169,450 

Solution (Correlation) 
For this example, n = 8 (as there are 8 printers) and ΣXi, ΣYi, ΣXiY i, ΣXi 

2,
ΣYi 

2 are computed in the last row of the table and so:

ΣXi = 76
ΣYi = 940

ΣXi Yi = 12,680
ΣX2 

i = 978
ΣY 2 i = 169,450 

We input these values into the correlation formula and get: 

r = 8 ∗ 12,680 − 76 ∗ 940 √
8 ∗ 978 − 762 

√ 
8 ∗ 169,450 − 9402 

= 30,000 √
2048 

√
472,000
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= 30,000 

45.25 ∗ 687.02 

= 
30,000 

31,087 
= 0.96 

Therefore, r = 0.96 and so there is strong correlation between the age of the 
machine and the cost of maintenance of the machine. 

22.6.1 Regression 

Regression is used to study the relationship (if any) between dependent and inde-
pendent variables and to predict the dependent variable when the independent 
variable is known. The prediction capability of regression makes it a more pow-
erful tool than correlation, and regression is useful in identifying which factors 
impact upon a desired outcome variable. 

There are several types of regression that may be employed such as linear or 
polynomial regression, and this section is concerned with linear regression where 
the relationship between the dependent and independent variables is expressed by 
a straight line. More advanced statistical analysis may be conducted with multiple 
regression models, where there are several independent variables that are believed 
to affect the value of another variable. 

Regression analysis first involves data gathering and plotting the data on a scat-
ter graph. The regression line is the line that best fits the data on the scatter graph 
(Fig. 22.9), and it is usually determined using the method of least squares or one 
of the methods summarized in Table 22.7. The regression line is a plot of the 
expected values of the dependent variable for all values of the independent vari-
able, and the formula (or equation) of the regression line is of the form y = mx + 
b, where the coefficients of a and b are determined. 
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Fig. 22.9 Regression line
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Table 22.7 Methods to obtain regression line 

Methods Description 

Inspection This is the simplest method and involves plotting the data in a scatter graph and 
then drawing a line that best suits the data. (this is subjective and so it is best to 
draw the mean point, and ensure the regression line passes through this point) 

Semi-averages This involves splitting the data into two equal groups, then finding and drawing 
the mean point in each group, and joining these points with a straight line (i.e., 
the regression line) 

Least squares The method of least squares is a mathematical and involves obtaining a 
regression line where the sum of the squares of the vertical deviations of all the 
points from the line is minimal 

Table 22.8 Hypothesis 
testing 

Action H0 true, H1 false H0 false, H1 true 

Fail to reject H0 Correct False positive—type 
2 error  
P (accept H0 | H0 
false) = β 

Reject H0 False negative—type 
1 error 
P (reject H0 | H0 
true) = α 

Correct 

The regression line then acts as a model that describes the relationship between 
the two variables, and the value of the dependent variable may be predicted from 
the value of the independent variable using the regression line. 

22.7 Statistical Inference and Hypothesis Testing 

Inferential statistics is concerned with statistical techniques to infer properties of 
a population from samples taken from the population. Often, it is infeasible or 
inconvenient to study all members of a population, and so the properties of a 
representative sample are studied and statistical techniques are used to generalize 
these properties to the population. A statistical experiment is carried out to gain 
information from the sample, and it may be repeated as many times as required to 
gain the desired information. Statistical experiments may be simple or complex. 

There are two main types of inferential statistics, and these are estimating 
parameters and hypothesis testing. Estimating parameters is concerned taking a 
statistic from the sample (e.g., the sample mean or variance) and using it to make 
a statement about the population parameter (i.e., the population mean or variance). 
Hypothesis testing is concerned with using the sample data to answer research 
questions such as whether a new drug is effective in the treatment of a partic-
ular disease. A sample is not expected to perfectly represent the population, as 
sampling errors will naturally occur.
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A hypothesis is a statement about a particular population whose truth or falsity 
is unknown. Hypothesis testing is concerned with determining whether the values 
of the random sample from the population are consistent with the hypothesis. 
There are two mutually exclusive hypotheses: one of these is the null hypothesis 
H0 and the other is the alternate research hypothesis H1. The null hypothesis H0 
is what the researcher is hoping to reject, and the research hypothesis H1 is what 
the researcher is hoping to accept. 

Statistical testing is employed to test the hypothesis, and the result of the test 
is that we either reject the null hypothesis (and therefore accept the alternative 
hypothesis), or that we fail to reject it (i.e., we accept) the null hypothesis. The 
rejection of the null hypothesis means that the null hypothesis is highly unlikely 
to be true, and that the research hypothesis should be accepted. 

Statistical testing is conducted at a certain level of significance, with the prob-
ability of the null hypothesis H0 being rejected when it is true never greater than 
α. The value α is called the level of significance of the test, with α usually being 
0.1, 0.05, or 0.005. A significance level β may also be applied to with respect to 
accepting the null hypothesis H0 when H0 is false. The objective of a statistical 
test is not to determine whether or not H0 is actually true, but rather to determine 
whether its validity is consistent with the observed data. That is, H0 should only 
be rejected if the resultant data is very unlikely if H0 is true (Table 22.8). 

The errors that can occur with hypothesis testing include type 1 and type 2 
errors. Type 1 errors occur when we reject the null hypothesis when the null 
hypothesis is actually true. Type 2 errors occur when we accept the null hypothesis 
when the null hypothesis is false (Fig. 22.7). 

For example, an example of a false positive is where the results of a blood test 
come back positive to indicate that a person has a particular disease when in fact 
the person does not have the disease. Similarly, an example of a false negative is 
where a blood test is negative indicating that a person does not have a particular 
disease when in fact the person does. 

Both errors are potentially very serious, with a false positive generating major 
stress and distress to the recipient, until further tests are done that show that the 
person does not have the disease. A false negative is potentially even more serious, 
as early detection of a serious disease is essential to its treatment, and so a false 
negative means that valuable time is lost in its detection, which could be very 
serious. 

The terms α and β represent the level of significance that will be accepted, and 
α may or may not be equal to β. In other words, α is the probability that we will 
reject the null hypothesis when the null hypothesis is true, and β is the probability 
that we will accept the null hypothesis when the null hypothesis is false. 

Testing a hypothesis at the α = 0.05 level is equivalent to establishing a 
95% confidence interval. For 99% confidence α will be 0.01, and for 99.999% 
confidence then α will be 0.00001. 

The hypothesis may be concerned with testing a specific statement about the 
value of an unknown parameter θ of the population. This test is to be done at a 
certain level of significance, and the unknown parameter may, for example, be the
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mean or variance of the population. An estimator for the unknown parameter is 
determined, and the hypothesis that this is an accurate estimate is rejected if the 
random sample is not consistent with it. Otherwise, it is accepted. 

The steps involved in hypothesis testing include: 

1. Establish the null and alternative hypothesis 
2. Establish error levels (significance) 
3. Compute the test statistics (often a t-test) 
4. Decide on whether to accept or reject the null hypothesis. 

The difference between the observed and expected test statistic and whether the 
difference could be accounted for by normal sampling fluctuations is the key to 
the acceptance or rejection of the null hypothesis. For more detailed information 
on statistics see [1, 2]. 

22.8 Review Questions 

1. What is statistics? 
2. Explain how statistics may be abused. 
3. What is a random sample? How may it be generated? 
4. Describe the charts available for the presentation of statistical data. 
5. Explain how the average of a sample may be determined. 
6. Explain sample variance and sample standard deviation. 
7. Explain the difference between correlation and regression. 
8. Explain the methods for obtaining the regression line from data. 
9. What is hypothesis testing? 

22.9 Summary 

Statistics is an empirical science that is concerned with the collection, organiza-
tion, analysis, interpretation, and presentation of data. Statistics are widely used 
for forecasting as well as for presenting trends. They allow the behaviour of a 
population to be studied and inferences to be made about the population. These 
inferences may be tested to ensure their validity. 

It is often not possible to study the entire population, and instead a representa-
tive subset or sample of the population is chosen. This random sample is used to 
make inferences regarding the entire population, and it is essential that the sample 
chosen is indeed random and representative of the entire population. Otherwise, 
the inferences made regarding the entire population will be invalid due to the 
introduction of a selection bias.
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The data gathered from a statistical study is often raw, and, the way the data is 
presented is important. It is useful to present the information in pictorial form, 
as this enables analysis to be done and conclusions to be drawn. Bar charts, 
histograms, pie chart, and trend graphs may be employed. 

Statistical measures are concerned with the basic analysis of the data to deter-
mine the average of the data, as well as how spread out the data is. The term 
“average” generally refers to the arithmetic mean of a sample, but it may also 
refer to the statistical mode or median of the sample. 

An important characteristic of a sample is its distribution and the spread of each 
element from some measure of central tendency (e.g., the mean). The standard 
deviation is the most common way to measure dispersion, and it gives the average 
distance of each element in the sample from the arithmetic mean. 

Correlation and linear regression are techniques for exploring the relationship 
between two variables. Correlation is concerned with quantifying the strength 
of the relationship between two variables, whereas regression expresses the 
relationship between the variable in the form of an equation. 

Inferential statistics is concerned with statistical techniques to infer properties of 
a population from samples taken from the population. A hypothesis is a statement 
about a particular population whose truth or falsity is unknown. Hypothesis testing 
is concerned with determining whether the values of the random sample from the 
population are consistent with the hypothesis. 
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23Introduction to Probability Theory 

Key Topics 

Random Variables 

Expectation and Variance 

Bayes’ Formula 

Normal Distributions 

Binomial Distribution 

Poisson Distribution 

Unit Normal Distribution 

Confidence Intervals and Tests of Significance 

23.1 Introduction 

Probability is a branch of mathematics that is concerned with measuring uncer-
tainty and random events, and it provides a precise way of expressing the 
likelihood of a particular event occurring. Probability is also used as part of every-
day speech in expressions such as “It is likely to rain in the afternoon”, where the 
corresponding statement expressed mathematically might be “The probability that 
it will rain in the afternoon is 0.7”. 

The modern theory of probability theory has its origins in work done on the 
analysis of games of chance by Cardano in the sixteenth century, and it was devel-
oped further in in the seventeenth century by Fermat and Pascal, and refined in the 
eighteenth century by Laplace. It led to the classical definition of the probability
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of an event being: 

P(Event) = 
#Favourable Outcomes 

#Possible Outcomes 

There are several definitions of probability such as the frequency interpretation 
and the subjective interpretation of probability. For example, if a geologist sates 
that “there is a 70% chance of finding gas in a certain region” then this statement 
is usually interpreted in two ways: 

• The geologist is of the view that over the long run 70% of the regions whose 
environment conditions are very similar to the region under consideration have 
gas. [Frequency Interpretation]. 

• The geologist is of the view that it is likely that the region contains gas, 
and that 0.7 is a measure of the geologist’s belief in this hypothesis. [Belief 
Interpretation]. 

That is, according to the frequency interpretation the probability of an event is 
equal to the long-term frequency of the event’s occurrence when the same process 
is repeated many times. 

According to the belief interpretation probability measures the degree of belief 
about the occurrence of an event or in the truth of a proposition, with a probability 
of 1 representing the certain belief that something is true and a probability of 0 
representing the certain belief that something is false, with a value in between 
reflecting uncertainty about the belief. 

Probabilities may be updated by Bayes’ theorem (see Sect. 23.2.2), where the 
initial belief is the prior probability for the event, and this may be updated to 
a posterior probability with availability of new information (see Sect. 23.6 for a 
short account of Bayesian statistics). 

23.2 Basic Probability Theory 

Probability theory provides a mathematical indication of the likelihood of an event 
occurring, and the probability lies between 0 and 1. A probability of 0 indicates 
that the event cannot occur, whereas a probability of 1 indicates that the event 
is guaranteed to occur. If the probability of an event is greater than 0.5 then this 
indicates that the event is more likely to occur than not to occur. 

A statistical experiment is conducted to gain certain desired information, and 
the sample space is the set of all possible outcomes of an experiment. The out-
comes are all equally likely if no one outcome is more likely to occur than another. 
An event E is a subset of the sample space, and the event is said to have occurred 
if the outcome of the experiment is in the event E. 

For example, the sample space for the experiment of tossing a coin is the set 
of all possible outcomes of this experiment, i.e., head or tails. The event that the
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toss results a tail is a subset of the sample space. 

S = {h, t} E = {t} 

Similarly, the sample space for the gender of a newborn baby is the set of 
outcomes, i.e., the newborn baby is a boy or a girl. The event that the baby is a 
girl is a subset of the sample space. 

S = {b, g} E = {g} 

For any two events E and F of a sample space S we can also consider the union 
and intersection of these events. That is, 

• E ∪F consists of all outcomes that are in E or F or both. 
• E ∩F (usually written as EF) consists of all outcomes that are in both E and 

F. 
• Ec denotes the complement of E with respect to S, and represents the outcomes 

of S that are not in E. 

If EF = ∅  then there are no outcomes in both E and F, and so the two events E 
and F are mutually exclusive. Events that are mutually exclusive cannot occur at 
the same time (i.e., they cannot occur together). 

Two events are said to be independent if the occurrence (or not) of one of the 
events does not affect the occurrence (or not) of the other. Two mutually exclusive 
events cannot be independent, since the occurrence of one excludes the occurrence 
of the other. 

The union and intersection of two events can be extended to the union and 
intersection of a family of events E1, E2, …  En (i.e., ∪n 

i=1Ei and ∩n 
i=1Ei Ei). 

23.2.1 Laws of Probability 

The probability of an event E occurring is given by: 

P(E) = 
# Outcomes in Event E 

# Total Outcomes (in S) 

The laws of probability essentially state that the probability of an event is 
between 0 and 1, and that the probability of the union of a mutually disjoint set 
of events is the sum of their individual probabilities. The probability of an event 
E is zero if E is an impossible event, and the probability of an event E is one if it 
is a certain event (Table 23.1).

The probability of the union of two events (not necessarily disjoint) is given 
by: 

P(E ∪ F) = P(E) + P(F) − P(E F)
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Table 23.1 Axioms of probability 

Axiom Description 

1 P(S) = 1 
2 P(∅) = 0 
3 0≤P(E) ≤ 1 
4 For any sequence of mutually exclusive events E1, E2, ….  En. (i.e.,  Ei Ej = ∅  where 

i /= j) then the probability of the union of these events is the sum of their individual 
probabilities: i.e., 
P(∪n 

i=1Ei) = Σn 
i=1P(Ei)

The complement of an event E is denoted by Ec and denotes that event E does 
not occur. Clearly, S = E ∪Ec and E and Ec are disjoint and so: 

P(S) = P
(
E ∪ Ec) = P(E) + P

(
Ec) = 1 

⇒ P
(
Ec) = 1 − P(E) 

The probability of an event E occurring given that an event F has occurred is 
termed the conditional probability (denoted by P(E |F)) and is given by: 

P(E |F) = 
P(E F) 
P(F) 

where P(F) >  0 

This formula allows us to deduce that: 

P(E F) = P(E |F)P(F) 

Example 23.1 (Conditional Probability) A family has two children. Find the 
probability that they are both girls given that they have at least one girl. 

Solution (Conditional Probability) 
The sample space for a family of two children is S = {(g, g), (g, b), b, g), (b, b)}. 
The event E where is at least one girl in the family is given by E = {(g, g), (g, b), 
(b, g)}, and the event that G both are girls is G = {(g, g)}, so we will determine 
the conditional probability P(G|E) that both children are girls given that there is 
at least one girl in the family: 

P(EG) = P(G) = P(g, g) = 1/4 
P(E) = 3/4 

P(G|E) = 
P(EG) 
P(E) 

= 
1/4 

3/4 
= 1/3
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Two events E, F are independent if knowledge that F has occurred does not 
change the probability that E has occurred. That is, P(E|F) = P(E) and since 
P(E|F) = P(EF)/P(F) we have that two events E, F are independent if: 

P(E F) = P(E)P(F) 

Two events E and F that are not independent are said to be dependent. 

23.2.2 Bayes’ Formula 

Bayes formula enables the probability of an event E to be determined by a weighted 
average of the conditional probability of E given that the event F has occurred and 
the conditional probability of E given that F has not occurred: 

E = E ∩ S = E ∩ (
F ∪ Fc)

= E F  ∪ E Fc 

P(E) = P(E F) + P(E Fc) (since E F  ∩ E Fc = ∅) 
= P(E |F)P(F) + P(E |Fc)P(Fc) 
= P(E |F)P(F) + P(E |Fc)(1 − P(F)) 

We may also get another expression of Bayes’ formula from noting that: 

P(F |E) = 
P(F E) 
P(E) 

= 
P(E F) 
P(E) 

Therefore, P(EF) = P(F|E)P(E) = P(E|F)P(F) 

P(E |F) = 
P(F |E)P(E) 

P(F) 

This version of Bayes’ formula allows the probability to be updated where the 
initial or preconceived belief (i.e., P(E)) is the prior probability for the event, 
and this may be updated to a posterior probability (i.e., P(E|F is the updated 
probability), with the new information or evidence (i.e., P(F)) and the likelihood 
that the new information leads to the event (i.e., P(F|E)). 

Example 23.2 (Bayes’ Formula) A medical lab is 99% effective in detecting a certain 
disease when it is actually present, and it yields a false positive for 1% of healthy peo-
ple tested. If 0.25% of the population actually have the disease what is the probability 
that a person has the disease if the patient’s blood test is positive.
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Solution (Bayes’ Formula) 
Let T be the event that that the patient’s test result is positive, and D the event that 
the tested person has the disease. Then the desired probability is P(D|T ) and is 
given by: 

P(D|T ) = 
P(DT ) 
P(T ) 

= P(T |D)P(D) 
P(T |D)P(D) + P(T |Dc)P(Dc) 

= 0.99 ∗ 0.0025 
0.99 ∗ 0.0025 + 0.01 ∗ 0.9975 

= 0.1988 

The reason that only approximately 20% of the population whose test results 
are positive actually have the disease may seem surprising, but is explained by the 
low incidence of the disease, just one person out of every 400 tested will have the 
disease and the test will correctly confirm that 0.99 have the disease, but the test 
will also state that 399 * 0.01 = 3.99 have the disease and so the proportion of 
time that the test is correct is 0.99/0.99+3.99 = 0.1988. 

23.3 Random Variables 

Often, some numerical quantity determined by the result of the experiment is of 
interest rather than the result of the experiment itself. These numerical quantities 
are termed random variables. A random variable is termed discrete if it can take 
on a finite or countable number of values, and otherwise it is termed continuous. 

The distribution function (denoted by F(x)) of a random variable is the prob-
ability that the random variable X takes on a value less than or equal to x. It is  
given by: 

F(x) = P{X ≤ x} 

All probability questions about X can be answered in terms of its distribution 
function F. For example, the computation of P {a < X < b} is given by: 

P{a < X < b} =  P{X ≤ b} −  P{X ≤ a} 
= F(b) − F(a) 

The probability mass function for a discrete random variable X (denoted by 
p(a)) is the probability that the random variable is a certain value. It is given by: 

p(a) = P{X = a} 

Further, F(a) can also be expressed in terms of the probability mass function 

F(a) = P{X ≤ a} =
Σ 

∀x≤a 

p(x)
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X is a continuous random variable if there exists a non-negative function f (x) 
(termed the probability density function) defined for all x ∈ (− ∝,∝ ) such that 

P{X ∈ B} =
∫

B 

f (x)dx 

All probability statements about X can be answered in terms of its density 
function f (x). For example: 

P{a ≤ X ≤ b} =  
b∫

a 

f (x)dx 

P{X ∈ (− ∝, ∝)} =  1 = 
∞∫

−∞ 

f (x)dx 

The function f (x) is termed the probability density function, and the probability 
distribution function F(a) is defined by: 

F(a) = P{X ≤ a} =  
a∫

−∞ 

f (x)dx 

Further, the first derivative of the probability distribution function yields the 
probability density function. That is, 

d/da F(a) = f (a). 

The expected value (i.e., the mean) of a discrete random variable X (denoted 
E[X]) is given by the weighted average of the possible values of X: 

E[X ] =  

⎧ 
⎨ 

⎩

Σ 
i xi P{X = xi } Discrete Random variable

∞∫
−∞ 

x f  (x)dx Continuous Random variable 

Further, the expected value of a function of a random variable is given by 
E[g(X)] and is defined for the discrete and continuous case respectively. 

E[g(X )] =  

⎧ 
⎨ 

⎩ 

Σi g(xi )P{X = xi } Discrete Random variable
∞∫

−∞ 
g(x) f (x)dx Continuous Random variable
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The variance of a random variable is a measure of the spread of values from 
the mean and is defined by: 

Var(X ) = E
[
X2] − (E[X ])2 

The standard deviation σ is given by the square root of the variance. That is, 

σ = 
√ 
Var(X ) 

The covariance of two random variables is a measure of the relationship 
between two random variables X and Y, and indicates the extent to which they 
both change (in either similar or opposite ways) together. It is defined by: 

Cov(X , Y ) = E[XY ] −  E[X ].E[Y ]. 

It follows that the covariance of two independent random variables is zero. Vari-
ance is a special case of covariance (when the two random variables are identical). 
This follows since Cov(X, X) = E[X.X] − (E[X])(E[X]) = E[X2] − (E[X])2 = 
Var(X). 

A positive covariance (Cov(X, Y ) ≥ 0) indicates that Y tends to increase as 
X does, whereas a negative covariance indicates that Y tends to decrease as X 
increases. 

The correlation of two random variables is an indication of the relation-
ship between two variables X and Y (we discussed correlation and regression in 
Sect. 22.6). If the correlation is negative and close to –1 then Y tends to decrease 
as X increases, and if it is positive and close to 1 then Y tends to increase as 
X increases. A correlation close to zero indicates no relationship between the two 
variables; a correlation of r = –0.4 indicates a weak negative relationship; whereas 
a correlation of r = 0.8 indicates a strong positive relationship. The correlation 
coefficient is between ± 1 and is defined by: 

Corr(X , Y ) = 
Cov(X , Y ) √
Var(X )Var(Y ) 

Once the correlation between two variables has been calculated the probability 
that the observed correlation was due to chance can be computed. This is to ensure 
that the observed correlation is a real one and not due to a chance occurrence. 

23.4 Binomial and Poisson Distributions 

The binomial and Poisson distributions are two important distributions in statistics, 
and the Poisson distribution may be used as an approximation for the bino-
mial. The binomial distribution was first used in games of chance, and it has the 
following characteristics:
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• The existence of a trial of an experiment, which is, defined in terms of two 
states namely success or failure. 

• The identical trials may be repeated a number of times yielding several 
successes and failures. 

• The probability of success (or failure) is the same for each trial. 

A Bernoulli trial is where there are just two possible outcomes of an experiment, 
i.e., success or failure. The probability of success and failure is given by: 

P{X = 1} =  p 

P{X = 0} =  1 − p 

The mean of the Bernoulli distribution is given by p (since E[X] = 1.p + 0.(1 − 
p) = p), and the variance is given by p(1 − p) (since E[X2] − E[X]2 = p − p2 = 
p(1 − p)). 

The Binomial distribution involves n Bernoulli trials, where each trial is 
independent and results in either success (with probability p) or failure (with prob-
ability 1 − p). The binomial random variable X with parameters n and p represents 
the number of successes in n independent trials, where Xi is the result of the ith 
trial and X is represented as: 

X = 
nΣ 

i=1 

Xi 

Xi =
{
1 if the i th trial is a success 
0 otherwise 

The probability of i successes from n independent trials is then given by the 
binomial theorem: 

P{X = i} = (n 
i
)

pi (1 − p)n−i i = 0, 1, . . .  n 

Clearly, E[Xi] = p and Var(Xi) = p(1 − p) (since Xi is an independent Bernoulli 
random variable). The mean of the binomial distribution E[X] is the sum of the 
mean of the E[Xi], i.e., Σ1 

n E[Xi] = np, and the variance Var(X) is the sum of the 
Var(Xi) (since the Xi are independent random variables) and so Var (X) = np(1 − 
p). The binomial distribution is symmetric when p = 0.5, and the distribution is 
skewed to the left or right when p /= 0.5 (Fig. 23.1).

Example 23.3 (Binomial Distribution) The probability that a printer will need cor-
recting adjustments during a day is 0.2. If there are five printers running on a particular 
day determine the probability of: 

1. No printers need correcting 
2. One printer needs correcting
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Binomial Distribution (n=10, p=0.5) 

0 1 2 3 4 5 6 7 8 9 10  
X (Number of Successes) 

Series1 

Fig. 23.1 Binomial distribution

3. Two printers require correcting
4. More than two printers require adjusting. 

Solution (Binomial Distribution) 
There are five trials (with n = 5, p = 0.2, and the success of a trial is a printer 
needing adjustments). And so, 

(1) This is given by P(X = 0) = (5 0) 0.20 * 0.85 = 0.3277 
(2) This is given by P(X = 1) = (5 1) 0.21 * 0.84 = 0.4096 
(3) This is given by P(X = 2) = (5 2) 0.22 * 0.83 = 0.205 
(4) This is given by 1 − P(2 or fewer printers need correcting) 

= 1 − [P(X = 0) + P(X = 1) + P(X = 2) 
= 1 − [0.3277 + 0.4096 + 0.205] 
= 1 − 0.9423 
= 0.0577 

The Poisson distribution may be used as an approximation to the binomial distribu-
tion when n is large (e.g., n > 30) and p is small (e.g., p < 0.1). The characteristics 
of the Poisson distribution are: 

• The existence of events that occur at random and may be rare (e.g., road 
accidents). 

• An interval of time is defined in which events may occur. 

The probability of i successes (where i = 0, 1, 2 …) is given by: 

P(X = i ) = 
e−λ λi 

i ! 
The mean and variance of the Poisson distribution are given by λ.
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Example 23.4 (Poisson Distribution) Customers arrive randomly at a supermarket 
at an average rate of 2.5 customers per minute, where the customer arrivals form a 
Poisson distribution. Determine the probability that: 

1. No customers arrive in any particular minute 
2. Exactly one customer arrives in any particular minute 
3. Two or more customers arrive in any particular minute 
4. One or more customers arrive in any 30 s period. 

Solution (Poisson Distribution) 
The mean λ is 2.5/min for parts 1–3, and λ is 1.25 for part 4. 

1. P(X = 0) = e−2.5*2.50/0! = 0.0821 
2. P(X = 1) = e−2.5*2.51/1! = 0.2052 
3. P(2 or more) = 1 − P(X = 0 or  X = 1)] = 1 − [P(X = 0) + P(X = 1)] = 

0.7127 
4. P(1 or more) = 1 − P(X = 0) = 1 − e−1.25*1.250/0! = 1 − 0.2865 = 0.7134. 

23.5 The Normal Distribution 

The normal distribution is the most important distribution in statistics, and it occurs 
frequently in practice. It is shaped like a bell, and it is popularly known as the 
bell-shaped distribution, and the curve is symmetric about the mean of the distribu-
tion. The empirical frequencies of many populations naturally exhibit a bell-shaped 
(normal) curve, such as the frequencies of the height and weight of people. The 
largest frequencies cluster around the mean and taper away symmetrically on either 
side of the mean. The German mathematician, Gauss (Fig. 23.2), originally studied 
the normal distribution, and it is also known as the Gaussian distribution. 

The normal distribution is a continuous distribution, and it has two parameters, 
namely the mean μ and the standard deviation σ . It is a continuous distribution,

Fig. 23.2 Carl Friedrich 
Gauss 
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Fig. 23.3 Standard normal 
bell curve (Gaussian 
distribution) 

and so it is not possible to find the probability of individual values, and thus it 
is only possible to find the probabilities of ranges of values. The normal distribu-
tion has the important properties that 68.2% of the values lie within one standard 
deviation of the mean, with 95% of the values within two standard deviations; and 
99.7% of values are within three standard deviations of the mean. Another words, 
the value of the normal distribution is practically zero when the value of x is more 
than three standard deviations from the mean. The shaded area under the curve in 
Fig. 23.3 represents two standard deviations of the mean and comprises 95% of 
the population. 

The normal distribution N has mean μ and standard deviation σ . Its density 
function f (x) where (where − ∞  < x < ∞) is given by: 

f (x) = 1 √
2πσ  

e−(x−μ)2/2σ 2 

23.5.1 Unit Normal Distribution 

The unit (or standard) normal distribution Z(0,1) has mean 0 and standard 
deviation of 1. Every normal distribution may be converted to the unit normal 
distribution by Z = (X − μ)/σ , and every probability statement about X has an 
equivalent probability statement about Z. The unit normal density function is given 
by: 

f (y) = 
1 √
2π 

e− 1 
2 y

2
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The standard normal distribution is symmetric about 0 (as the mean is zero), 
and the process of converting a normal distribution with mean μ and standard 
deviation σ is termed standardizing the x-value. There are tables of values that 
give the probability of a Z score between zero and the one specified. 

Example 23.5 (Normal Distribution) Weights of bags of oranges are normally dis-
tributed with mean 3 lbs and standard deviation 0.2 lb. The delivery to a supermarket 
is 350 bags at a time. Determine the following: 

1. Standardize to a unit normal distribution. 
2. What is the probability that a standard bag will weigh more than 3.5 lbs? 
3. How many bags from a single delivery would be expected to weigh more than 

3.5 lbs. 

Solution (Normal Distribution) 

1. Z = X − μ/σ = X − 3/0.2. 
2. Therefore, when X = 3.5 we have Z = 3.5 − 3/0.2 = 2.5. 

For Z = 2.5 we have from the unit normal tables that 

P(Z ≤ 2.50) = 0.9938 = P(X ≤ 3.5) 

Therefore, P(X > 3.5) = 1 − P(X ≤ 3.5) = 1 − 0.9938 = 0.0062 

3. The proportion of all bags that have a weight greater than 3.5 lbs is 0.0062, and 
so it would be expected that there are 350 * 0.0062 = 2.17 bags with a weight 
> 3.5, and so in practical terms we would expect two bags to weigh more than 
3.5 lbs. 

The normal distribution may be used as an approximation to the binomial when n 
is large (e.g., n > 30), and when p is not too small or large. This is discussed in 
the next section, where the mean of the normal distribution is np and the standard 
deviation is

√
np(1 − p). 

23.5.2 Confidence Intervals and Tests of Significance 

The study of normal distributions helps in the process of estimating or specifying a 
range of values, where certain population parameters (such as the mean) lie from 
the results of small samples. Further, the estimate may be stated with a certain 
degree of confidence, such as there is 95% or 99% confidence that the mean value 
lies between 4.5 and 5.5. That is, confidence intervals (also known as confidence 
limits) specify a range of values within which some unknown population parameter 
lies with a stated degree of confidence, and it is based on the results of the sample.
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The confidence interval for an unknown population mean where the sample 
mean, sample variance, the sample size, and desired confidence level are known is 
given by: 

x ± z 
s √
n 

In the formula x is the sample mean, s is the sample standard deviation, n is 
the sample size, and z is the confidence factor (for a 90% confidence interval z = 
1.64, for the more common 95% confidence interval z = 1.96, and z = 2.58 for 
the 99% confidence interval). 

Example 23.6 (Confidence Intervals) Suppose a new motor fuel has been tested on 
30 similar cars, and the fuel consumption was 44.1 mpg with a standard deviation of 
2.9 mpg. Calculate a 95% confidence interval for the fuel consumption of this model 
of car. 

Solution (Confidence Intervals) 

The sample mean is 44.1, the sample standard deviation is 2.9, the sample size is 30, 
and the confidence factor is 1.96, and so the 95% confidence interval is: 

x ± z 
s √
n 

= 44.1 ± 1.96 ∗ 
2.9 √
30 

= 44.1 ± 1.96 ∗ 0.5295 
= 44.1 ± 1.0378 
= (43.0622, 45.1378) 

That is, we can say with 95% confidence that the fuel consumption for this 
model of car is between 43.0 and 45.1 mpg. 

The confidence interval for an unknown population mean where the sample 
proportion and sample size are known is given by: 

p ± z 

/
p(1 − p) 

n 

In the formula p is the sample proportion, n is the sample size, and z is the 
confidence factor. 

Example 23.7 (Confidence Intervals) Suppose 3 faulty components are identified in 
a random sample of 20 products taken from a production line. What statement can 
be made about the defect rate of all finished products?
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Solution (Confidence Intervals) 
The proportion of defective products in the sample is p = 3/20 = 0.15, and the 
sample size is n = 20. Therefore, the 95% confidence interval for the population 
mean is given by: 

p ± z 

/
p(1 − p) 

n
= 0.15 ± 1.96 

/
0.15(1 − 0.15) 

20 
= 0.15 ± 1.96 ∗ 0.0798 
= 0.15 ± 0.1565 
= (−0.0065, 0.3065) 

That is, we can say with 95% confidence that the defective rate of finished 
products lies between 0 and 0.3065. 

Tests of Significance for the Mean 
Tests of significance are related to confidence intervals and use the concepts from 
the normal distribution. To test whether a sample of size n, with sample mean x 
and sample standard deviation s could be considered as having been drawn from 
a population with mean μ the test statistic must lie in the range − 1.96 to 1.96. 

z = 
x − μ
[

s √
n

]

That is, the test is looking for evidence of a significant difference between the 
sample mean x and the population mean μ, and evidence is found if z lies outside 
of the stated limits, whereas if z lies within the limits then there is no evidence 
that the sample mean is different from the population mean. 

Example 23.8 (Tests of Significance) A new machine has been introduced, and 
management is questioning whether it is more productive than the previous one. 
Management takes 15 samples of this week’s hourly output to test whether it is 
less productive, and the average production per hour is 1250 items with a standard 
deviation of 50. The output per hour of the previous machine was 1275 items per hour. 
Determine with a test of significance whether the new machine is less productive. 

Solution (Tests of Significance) 
The sample mean is 1250, the population mean is 1275, the sample standard 
deviation is 50, and the sample size is 15. 

z = 
x − μ
[

s √
n

] = 
1250 − 1275

[
50 √
15

] = 
−25 

12.91 
= −0.1936 

This lies within the range − 1.96 to 1.96 and so there is no evidence of any 
significant difference between the sample mean and the population mean, and so 
management is unable to make any statement on differences in productivity.
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23.5.3 The Central Limit Theorem 

A fundamental result in probability theory is the central limit theorem, which 
essentially states that the sum of a large number of independent and identically 
distributed random variables has a distribution that is approximately normal. That 
is, suppose X1, X2, …,  Xn is a sequence of independent random variables each 
with mean μ and variance σ 2. Then for large n the distribution of 

X1 + X2 + · · ·  +  Xn − nμ 
σ
√

n 

is approximately that of a unit normal variable Z. One application of the central 
limit theorem is in relation to the binomial random variables, where a binomial 
random variable with parameters (n, p) represents the number of successes of n 
independent trials, where each trial has a probability of p of success. This may be 
expressed as: 

X = X1 + X2 + · · ·  +  Xn 

where Xi = 1 if the  ith trial is a success and is 0 otherwise. The mean of the 
Bernoulli trial E(Xi) = p, and its variance is Var(Xi) = p(1 − p). (The mean of 
the Binomial distribution with n Bernoulli trials is np and the variance is np(1 − 
p)). By applying the central limit theorem it follows that for large n that 

X − np √
np(1 − p) 

will be approximately a unit normal variable (which becomes more normal as n 
becomes larger). 

The sum of independent normal random variables is normally distributed, and 
it can be shown that the sample average of X1, X2, …  Xn is normal, with a mean 
equal to the population mean but with a variance reduced by a factor of 1/n. 

E(X ) = 
nΣ 

i=1 

E(Xi ) 
n 

= μ 

Var(X ) = 
1 

n2 

nΣ 

i=1 

Var(Xi ) = 
σ 2 

n 

It follows that from this that the following is a unit normal random variable. 

√
n 
(X − μ) 

σ 

The term six-sigma (6σ ) is a methodology concerned with continuous process 
improvement to improve business performance, and it aims to develop very high
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Table 23.2 Probability distributions 

Distribution name Density function Mean/variance 

Hypergeometric P{X = i} = (N 
i) (M 

n − i)/(N 
n 
+M ) nN /N + M, np(1 − p)[1 − (n − 1)/N 

+ M − 1] 
Uniform f (x) = 1/(β − α) α ≤x ≤ β, 0 (α + β)/2, (β − α)2/12 
Exponential f (x) = λe−λx 1/λ, 1/λ2 

Gamma f (x) = λe−λx(λx)α−1/⎡(α) α/λ, α/λ2 

quality close to perfection. It was developed by Bill Smith at Motorola in the early 
1980s, and it was later used by leading companies such as General Electric. A 6σ 
process is one in which 99.9996% of the products are expected to be free from 
defects (3.4 defects per million) [1]. 

There are many other well-known distributions such as the hypergeometric dis-
tribution that describes the probability of i successes in n draws from a finite 
population without replacement; the uniform distribution; the exponential distribu-
tion; and the gamma distribution. The mean and variance of these distributions are 
summarized in Table 23.2. 

23.6 Bayesian Statistics 

Bayesian statistics is named after Thomas Bayes who was an 18th-century English 
theologian and statistician, and it differs from the frequency interpretation of prob-
ability in that it considers the probability of an event to be a measure of one’s 
personal belief in the event. According to the frequentist approach only repeatable 
events such as the result from flipping a coin have probabilities, where the prob-
ability of an event is the long-term frequency of its occurrence. Bayesians view 
probability in a more general way and probabilities may be used to represent the 
uncertainty of an event or hypothesis. It is perfectly acceptable in the Bayesian 
view of the world to assign probabilities to non-repeatable events, whereas a strict 
frequentist would claim that such probabilities do not make sense, as they are not 
repeatable. 

Bayesian thinking provides a way of dealing rationally with randomness and 
risk in daily life, and it is very useful when the more common frequency inter-
pretation is unavailable or has limited information. It interprets probability as a 
measure of one’s personal belief in a proposition or outcome, and it is essential to 
first use all your available prior knowledge to form an initial estimate of the prob-
ability of the event or hypothesis. Further, when reliable frequency data becomes 
available the measure of personal belief would be updated accordingly to equal the 
probability calculated by the frequency calculation. Further, the probabilities must 
be updated in the light of new information that becomes available, as probabilities 
may change significantly from new information and knowledge. Finally, no matter
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how much the odds move in your favour there is eventually one final outcome 
(which may or may not be the desired event). 

Often, in an unreliable and uncertain world we base our decision-making on 
a mixture of reflection and our gut instinct (which can be wrong). Often, we 
encounter several constantly changing random events and so it is natural to won-
der on the extent to which rational methods may be applied to risk assessment and 
decision making in an uncertain world. 

An initial estimate is made of the belief in the proposition, and if you always 
rely on the most reliable and objective probability estimates while keeping track 
of possible uncertainties and updating probabilities in line with new data then the 
final probability number computed will be the best possible. 

We illustrate the idea of probabilities being updated with an adapted excerpt 
from a children’s story called “Fortunately”, which was written by Remy Charlip 
in the 1960s [2]: 

• A lady went on a hot air balloon trip 
• Unfortunately she fell out 
• Fortunately she had a parachute on 
• Unfortunately the parachute did not open 
• Fortunately there was a haystack directly below 
• Unfortunately there was a pitchfork sticking out at the top of haystack 
• Fortunately she missed the pitchforks 
• Unfortunately she missed the haystack. 

The story illustrates how probabilities can change dramatically based on new infor-
mation, and despite all the changes to the probabilities during the fall the final 
outcome is a single result (i.e., either life or death). Let p be the probability of 
survival then the value of p changes as she falls through sky based on new infor-
mation at each step. Table 23.3 illustrates an estimate of what the probabilities 
might be: 

Table 23.3 Probability of survival 

Step Prob. survival 

A lady went on a hot air balloon trip p = 0.999998 
Unfortunately she fell out p = 0.000001 
Fortunately she had a parachute on p = 0.999999 
Unfortunately the parachute did not open p = 0.000001 
Fortunately there was a haystack directly below p = 0.5 
Unfortunately there was a pitchfork sticking out at the top of haystack p = 0. 000,001 
Fortunately she missed the pitchforks p = 0.5 
Unfortunately she missed the haystack p = 0.000001
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However, even if probability calculations become irrelevant after the event they 
still give the best chances over the long term. Over our lives we make many thou-
sands of decisions about where and how to travel, what diet we should have and so 
on, and though the impact of each of these decisions on our life expectancy is very 
small, their combined effect is potentially significant. Clearly, careful analysis is 
needed for major decisions rather than just deciding based on gut instinct. 

For the example above we could estimate probabilities for the various steps 
based on the expectation of probability of survival on falling without a parachute, 
the expectation of probability of survival on falling onto a haystack without a 
parachute and we would see wildly changing probabilities from the changing 
circumstances. 

We discussed Bayes’ formula in Sect. 22.2.2, which allows the probability to be 
updated where the initial or preconceived belief (i.e., P(E) is the  prior probability 
for the event), and this may be updated to a posterior probability (i.e., P(E|F is 
the updated probability), with the new information or evidence (i.e., P(F)) and the 
likelihood that the new information leads to the event (i.e., P(F|E)). The reader is 
referred to [3] for a more detailed account of probability and statistics. 

23.7 Review Questions 

1. What is probability? 
2. Explain the laws of probability. 
3. What is a sample space? What is an event? 
4. Prove Boole’s inequality P(∪n 

i=1Ei ) ≤ Σn 
i=1P(Ei ) where the Ei are not 

necessarily disjoint. 
5. A couple has 2 children. What is the probability that both are girls if the 

eldest is a girl? 
6. What is a random variable? 
7. Explain the difference between the probability mass function and the 

probability density function (for both discrete and continuous random 
variables). 

8. Explain variance, covariance, and correlation. 
9. What is the binomial distribution and what is its mean and variance? 
10. What is the Poisson distribution and what is its mean and variance? 
11. What is the normal distribution and what is its mean and variance? 
12. What is the unit normal distribution and what is its mean and variance? 
13. Explain the significance of the central limit theorem. 
14. What is Bayes’ theorem? Explain the importance of Bayesian thinking.
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23.8 Summary 

Probability is a branch of mathematics that is concerned with measuring uncer-
tainty and random events, and it provides a precise way of expressing the 
likelihood of a particular event occurring, and the probability is a numerical value 
between 0 and 1. A probability of 0 indicates that the event cannot occur, whereas 
a probability of 1 indicates that the event is guaranteed to occur. If the probability 
of an event is greater than 0.5, then this indicates that the event is more likely to 
occur than not. 

A sample space is the set of all possible outcomes of an experiment, and an 
event E is a subset of the sample space, and the event is said to have occurred if the 
outcome of the experiment is in the event E. Bayes formula enables the probability 
of an event E to be determined by a weighted average of the conditional probability 
of E given that the event F occurred and the conditional probability of E given 
that F has not occurred. 

Often, some numerical quantity from an experiment is of interest rather than 
the result of the experiment itself. These numerical quantities are termed random 
variables. The distribution function of a random variable is the probability that the 
random variable X takes on a value less than or equal to x. 

The binomial and Poisson distributions are important distributions in statistics, 
and the Poisson distribution may be used as an approximation for the binomial. 
The Binomial distribution involves n Bernoulli trials, where each trial is indepen-
dent and results in either success or failure. The mean of the Bernoulli distribution 
is given by p and the variance by p(1 − p). 

The normal distribution is popularly known as the bell-shaped distribution. It 
is a continuous distribution, and the curve is symmetric about the mean of the 
distribution. It has two parameters, namely the mean μ and the standard deviation 
σ . Every normal distribution may be converted to the unit normal distribution 
by Z= (X − μ)/σ , and every probability statement about X has an equivalent 
probability statement about the unit distribution Z. 

The central limit theorem essentially states that the sum of a large number of 
independent and identically distributed random variables has a distribution that 
is approximately normal. Bayesian statistics provides a way of dealing rationally 
with randomness and risk in daily life, and it interprets probability as a measure 
of one’s personal belief in a proposition or outcome. 
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Key Topics 

Data Science 

Data Scientist 

GDPR 

Privacy 

Security 

AI 

Internet of Things 

Social Media 

24.1 Introduction 

Information is power in the digital age, and the collection, processing, and use of 
information need to be regulated. Data science involves the extraction of knowl-
edge from data sets that consist of structured and unstructured data, and data 
scientists have a responsibility to ensure that this knowledge is used wisely and not 
abused. Data science may be regarded as a branch of statistics as it uses many con-
cepts from the field, and in order to prevent errors occurring during data analysis 
it is essential that both the data and models are valid. 

The question of ownership of the data is important; as if, for example, I take 
a picture of another individual does the picture belong to me (as owner of the 
camera and the collector of the data)? Or does it belong to the individual who is 
the subject of the image? Most reasonable people would say that the image is my
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property, and, if so, what responsibilities or obligations do I have (if any) to the 
other individual? That is, although I may technically be the owner of the image, 
the fact that it contains the personal data (or image) of another should indicate that 
I have an ethical responsibility or obligation to ensure that the image (or personal 
data) is not misused in any way to harm that individual. Further, if I misuse the 
image in any way then I may be open to a lawsuit from the individual. 

Personal data is collected about individuals from their use of computer 
resources such as their use of email, their Google searches, their Internet, and 
social media use to build up revealing profiles of the user that may be targeted 
to advertisers. Modern technology has allowed governments to conduct mass 
surveillance on its citizens, with face recognition software allowing citizens to 
be recognized at demonstrations or other mass assemblies. 

Further, smartphones provide location data that allows the location of the user to 
be tracked and may be used for mass surveillance. Many online service providers 
give customer data to the security and intelligence agencies (e.g., NSA and CIA), 
and these agencies often have the ability to hack into electronic devices. It is 
important that such surveillance technologies are regulated and not abused by the 
state. Privacy has become more important in the information age, and it is the 
way in which we separate ourselves from other people and is the right to be left 
alone. The European GDPR law has become an important protector of privacy and 
personal data, and it has been adopted by many countries around the world. 

Companies collect lots of personal data about individuals, and so the question is 
how should a company respond to a request for personal information on particular 
users? Does it have a policy to deal with that situation? What happens to the 
personal data that a bankrupt company has gathered? Is the personal data part 
of the assets of the bankrupt company and sold on with the remainder of the 
company? How does this affect privacy information agreements and compliance 
to them or does the agreement cease on termination of business activities? 

The consequence of an error in data collection or processing could result in 
harm to an individual, and so the data collection and processing needs to be accu-
rate. Decisions may be made on the basis of public and private data, and often 
individuals are unaware as to what data was collected about them, whether the 
data is accurate, and whether it is possible to correct errors in the data. 

Further, the conclusions from the analysis may be invalid due to errors in 
incorrect or biased algorithms, and so a reasonable question is how to keep 
algorithmically driven systems from harming people? Data scientists have a 
responsibility to ensure that the algorithm is fit for purpose and uses the right train-
ing data, and as far as practical to detect and eliminate unintentional discrimination 
in algorithms against individuals or groups. 

That is, problems may arise when the algorithm uses criteria tuned to fit the 
majority, as this may be unfair to minorities. Another words, the results are cor-
rect, but presented in an over simplistic manner. This could involve presenting the 
correct aggregate outcome but ignoring the differences within the population, and 
so leading to the suppression of diversity, and discriminating against the minority
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group. Another problem is where the data may be correct but presented in a mis-
leading way (e.g., the scales of the axis may be used to present the results visually 
in an exaggerated way). 

24.2 Ethics of Data Science 

There has been a phenomenal growth in the use of digital data in information 
technology, with vast amounts of data collected, processed, and used, and so the 
ethics of data science has become important. There are social consequences to the 
use of data, and the ethics of data science aims to investigate what is fair and 
ethical in data science, and what should or should not be done with data. 

A fundamental principle of ethics in data science refers to informed consent, 
and this has its origins in the ethics of medical experiments on individuals. The 
concept of informed consent in medical ethics is where the individual is informed 
about the experiment and gives their consent voluntarily. The individual has the 
right to withdraw consent at any time during the experiment. Such experiments 
are generally conducted to benefit society, and often there is a board that approves 
the study and oversees it to ensure that all participants have given their informed 
consent, and attempts to balance the benefits to society with any potential harm 
to individuals. Once individuals have given their informed consent data may be 
collected about them. 

The principle of informed consent is part of information technology, in the 
sense that individuals accept the terms and conditions before they may use soft-
ware applications, and these terms state that data may be collected, processed, and 
shared. However, it is important to note that generally users do not give informed 
consent in the sense of medical experiments, as the details of the data collection 
and processing is hidden in the small print of the terms and condition, and this 
is generally a long and largely unreadable document. Further, the consent is not 
given voluntarily, in the sense that if a user wishes to use the software, then he or 
she has no choice but to click acceptance of the terms and conditions of use for 
the site. Otherwise, they are unable to access the site, and so for many software 
applications (apps) consent is essentially coerced rather than freely given. 

There was some early research done on user behaviour by Facebook in 2012, 
where they conducted an experiment to determine if they could influence the mood 
of users by posing happy or sad stories to their news feed. The experiment was 
done without the consent of the users, and while the study indicated that happy or 
sad stories did influence the user’s mood and postings, it led to controversy and 
major dissatisfaction with Facebook when users became aware that they were the 
subject of a psychological experiment without their consent. 

The dating site OKCupid uses an algorithm to find compatibility matches for 
its users based on their profiles, and two people are assigned a match rating based 
on the extent to which the algorithm judges them to be compatible. OKCupid 
conducted psychological experiments on its users without their knowledge, with
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the first experiment being a “love is blind” day where all images were removed 
from the site, and so compatibilities were determined without the use of images. 

Another experiment was very controversial and unethical, as the site lied to the 
users on their match ratings (e.g., two people with a compatibility rating of 90% 
were given a rating of 30%, and vice versa). The site was trying to determine 
the extent that two people would get along irrespective of the rating that they 
were given, and it showed that two people talked more when falsely told that the 
algorithm matched them, and vice versa. The controversy arose once users became 
aware of the deception by the company, and it provides a case study on the socially 
unacceptable manipulation of user data by an Internet company. 

Data collection is not a new phenomenon as devices such as cameras and tele-
phones have been around for some time. People have reasonable expectations on 
privacy and do not expect their phone calls to be monitored and eavesdropped on 
by others, or they do not expect to be recorded in a changing room or in their 
home. Individuals will wish to avoid the harm that could occur due to data about 
them being collected, processed, and shared. The question is whether reasonable 
rules can be defined and agreed, and whether tradeoffs may be made to balance the 
conflicting rights and to protect the individual as far as is possible. Some relevant 
questions on data collection and ownership are considered in Table 24.1.

24.2.1 Data Science and Data Scientists 

Data science is a multidisciplinary field that extracts knowledge from data sets 
that consist of structured and unstructured data, and large data sets (big data1 ) 
may be analysed to extract useful information. The field has great power to harm 
and to help, and data scientists have a responsibility to use this power wisely. Data 
science may be regarded as a branch of statistics as it uses many concepts from the 
field, and in order to prevent errors occurring during data analysis it is essential 
that both the data and models are valid. 

The consequence of an error in the data analysis or with the analysis method 
could result in harm to the individual. There are many sources of error such as the 
sample chosen, which may not be representative of the entire population. Other 
problems arise with knowledge acquisition by machine learning, where the learn-
ing algorithm has used incomplete training data for pattern (or other knowledge) 
recognition. Training data may also be incomplete if the future population differs 
from the past population. 

The data collection needs to decide on the data and attributes to be collected, 
and often the attributes chosen are limited to what is available, and the data scien-
tist will also need to decide what to do with missing attributes. Often errors arise 
in data processing tasks such as analysing text information or recognizing faces

1 Big data involves combining data from lots of sources such as bar codes, cctv, shopping data, 
driver’s license, and so on. 
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Table 24.1 Some reasons for data collection 

Question Answers 

Who owns the data? A user’s personal information may legally 
belong to the data collector, but the data subject 
may have some control as the data is about 
him/her 
– The author of the biography of an individual 
owns the copyright not the individual 

– The photographer of a (legally taken) photo 
owns the image not the subject 

– Recording of audio/video is similar 
– May be a need to acknowledge copyright (if 
applicable) 

– May be limits in rights as to how data is 
collected and used (e.g., privacy of phone 
calls) 

– The data subject may have some control of 
the data collected 

What are the expected responsibilities of the 
collector 

The collector of the data is expected to: 
– Collect only required data 
– Collect legal and ethical data only 
– Preserve confidentiality/integrity of collected 
personal data 

– Not misuse the data (e.g., alter image) 
– Use data only for purpose gathered 
– Share data only with user consent 

What is the purpose of the data collection? The purpose may be to: 
– Carry out service for a user 
– Improve user experience 
– Understand users 
– Build up profile of user behaviour 
– Exploit user data for commercial purposes 

How is user consent to data collection given? User consent may be given in various ways 
– User informed of purpose of data collection 
– User consents to use of data 
– May be hidden in terms and conditions of site 

User control This refers to the ability of the user to control 
the way that their personal data is being 
collected/used: 
– Ability of user to modify their personal data 
– Ability of user to delete their personal data

from photos. There may be human errors in the data (e.g., spelling errors or where 
the data field was misunderstood), and errors may lead to poor results and possible 
harm to the user. The problem with such errors is that often decisions are made on 
the basis of public and private data, and often individuals are unaware as to what 
data was collected and whether there is a method to correct it. 

Even with perfect data the conclusions from the analysis may be invalid due to 
errors in the model, and there are many ways in which the model may be incorrect.



390 24 Introduction to Data Science

Many machine-learning algorithms just estimate parameters to fit a pre-determined 
model, without knowing whether the model is appropriate or not (e.g., the model 
may be attempting to fit a linear model to a non-linear reality). This becomes 
problematic when estimating (or extrapolating) values outside of the given data 
unless there is confidence in the correctness of the model. 

Further, care is required before assigning results to an individual from an anal-
ysis of group data, as there may be other explanations (e.g., Simpson’s paradox in 
probability/statistics is where a trend that appears in several groups of data disap-
pears or reverses when these groups are combined). It is important to think about 
the population that you are studying, and to make sure that you are collecting data 
on the right population, and whether to segment it into population groups, as well 
as how best to do the segmentation. 

It may seem reasonable to assume that data-driven analysis is fair and neutral, 
but unfortunately the problem is that humans may unintentionally introduce bias, 
as they set the boundary conditions. The bias may be through their choice of the 
model, the use of training data that may not be representative of the population, or 
the past population may not be representative of the future population, and so on. 
This may potentially lead to algorithmic decisions that are unfair (e.g., the case 
of the Amazon hiring algorithm that was biased towards the hiring of males), and 
so the question is how to be confident that the algorithms are fair and unbiased. 
Data scientists have a responsibility to ensure that the algorithm is fit for purpose 
and uses the right training data, and as far as practical to detect and eliminate 
unintentional discrimination (individual or target group). 

Another problem that may arise is data that is correct but presented in a mis-
leading way. One simple way to do this is to manipulate the scales of the axis 
to present the results visually in an exaggerated way. Another example is where 
the results are correct, but presented in an over simplistic manner (e.g., there may 
be two or more groups in the population with distinct behaviour where one group 
is the dominant), where the correct aggregate outcome is presented but this is 
misleading due to the differences within the population, and by suppressing diver-
sity there may be discrimination against the minority group. In other words, the 
algorithm may use criteria tuned to fit the majority and may be unfair to minorities. 

Exploration is the first phase in data analysis, and a hypothesis may be devised 
to fit the observed data (this is the opposite of traditional approaches where the 
starting point is the hypothesis, and the data is used to confirm or reject the hypoth-
esis based on the data from the control and target groups, and so this approach 
needs to be used carefully to ensure the validity of the results). 

24.2.2 Data Science and Society 

Data science has consequences for society with one problem being that algorithms 
tend to learn and codify the current state of the world, and it is therefore harder 
to change the algorithm to reflect the reality of a changing world. The impact of 
innovative technologies affects the different cohorts and social groups in society
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in different ways, and there may also be differences between how different groups 
view privacy. Data scientists tend to be focused on getting the algorithm to perform 
correctly to do the right processing, and so often may not consider the wide societal 
impacts of the technology. 

Algorithms may be unfair to individuals in that an individual may be classi-
fied as being a member of a group in view of the value of a particular attribute, 
and so the individual could be typecast due to their perceived membership of the 
group. Another words, the individual may be assigned opinions or properties of the 
group, and this means that there is a danger of developing a stereotype view of the 
individual. Further, it may be difficult for individuals to break out of these stereo-
types, as these biases become embedded within the algorithm thereby helping to 
maintain the status quo. 

There are further dangers when predications are made, as predictions are prob-
abilistic and may be wrong, and only suggest a greater likelihood of occurrence of 
an event. Predictive techniques have been applied to predictive policing and to the 
prediction of uprisings, but there are dangers of false positives and false negatives 
(see type I and type II errors in probability/statistics in Chap. 9). 

It is important that the societal consequences of algorithms are fully considered 
by companies, in order to ensure that the benefits of data science are achieved, and 
harm to individuals is avoided. 

24.3 What Is Data Analytics? 

Data analytics is the science of handling data collection by computer-driven sys-
tems, where the goal is to generate insights that will improve decision making. 
It involves the overlap of several disciplines such as statistics, information tech-
nology, and domain knowledge. It is widely used in social media, e-commerce, 
the Internet of Things, recommendation engines, gaming, and may potentially be 
applied to other fields such as information security, logistics, and so on. 

Data analytics involves the analysis of data to create structure, order, meaning, 
and patterns from the data. It uses the collected data to produce information as 
well as generating insights from the data for decision makers. This is essential 
in making informed decisions to meet current and future business needs. Data 
analytics may involve machine learning, or it could be quick and simple if the 
data set is ready, and the goal is to perform just simple descriptive analysis. There 
are four types of data analytics (Table 24.2).

Descriptive analysis is a data analysis method that is used to give summary 
of what is going on and nothing more. It provides information as to what hap-
pened, and it allows the data collected by the system to be used to identify what 
went wrong. This type of data is often used to summarize large data sets, and to 
describe a summary of the outcomes to the stakeholders. The most relevant metrics 
produced include the key performance indicators (KPIs).
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Table 24.2 Types of data analytics 

Type Description 

Descriptive These metrics describe what happened in the past and gives a summary of what 
is going on 

Diagnostic These are concerned with why it happened and involve analysis to determine 
why something has happened 

Predictive These are concerned with what is likely to happen in the future 

Prescriptive These are concerned with analysis to make better decisions, and it may involve 
considering several factors to suggest a course of action for the business. It may 
involve the use of AI techniques such as machine learning, and the goal is to 
make progress and avoid problems in the future

Diagnostic analysis is concerned with the analysis of the descriptive metrics 
to solve problems, and to identify what the issue could potentially be, and to 
understand why something has happened. 

Predictive analysis involves predicting what is likely to happen in the future 
based on data from the past, i.e., it is attempting to predict the future based on 
actions in the past, and it may involve the use of statistics and modeling to pre-
dict future performance, based on current and historical data. Other techniques 
employed include neural networks, regression, and decision trees. 

Prescriptive analysis is used to help business to make better decisions through 
the analysis of data and is effective when the organization knows the right ques-
tions to ask and responds appropriately to the answers. It often uses AI techniques 
such as machine learning to process a vast amount of data, to find patterns, and 
to recommend a course of action that will resolve or improve the situation. The 
recommended course of action is based on past events and outcomes, and the use 
of machine learning strategies builds upon the predictive analysis of what is likely 
to happen to recommend a future course of action. 

Prescriptive analytics may be used to automate prices based on several fac-
tors such as demand, weather, and commodity prices. These algorithms may 
automatically raise or lower prices at a much faster rate than human intervention. 

Companies may use data analytics to create and sell useful products by drilling 
down into customer data to determine what they are looking for. This includes 
understanding the features desired of the product and the price that they are willing 
to pay, and so data analytics has a role to play in new product design. They may be 
used by the business to improve customer loyalty and retention, and this may be 
done by gathering data (e.g., the opinions of customers from social media, email, 
and phone calls) to ensure that the voice of the customer is heard and acted upon 
appropriately. 

Marketing groups often use data analytics to determine how successful their 
marketing campaign has been and to make changes where required. The mar-
keting team may use the analytics to run targeted marketing and advertisement 
campaigns to segmented audiences (i.e., subsets of the population based on their
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unique characteristics such as demographics, interests, needs, and location). Mar-
ket segmentation is useful in getting to know the customers, and determining what 
is needed in their market segment, and to determine how best to meet their needs. 

Big data analytics may be used for targeted advertisements. For example, Net-
flix collects data on its customers including their searches and viewing history, and 
this data provides an insight into the specific interests of the customer, which is 
then used to send suggestions to the customer on the next movie that they should 
watch. 

Big data analytics involves examining large amounts of data to identify the 
hidden patterns and correlations, and to give insights to enable the right business 
decisions to be made. Big data analytics is often done with sophisticated software 
systems that provide fast analytic procedures, where the use of big data allows 
the business to identify patterns and trends. It enables the business to collect as 
much data it requires to understand the customers and to derive critical insights to 
maintain customers. 

24.3.1 Business Analytics and Business Intelligence 

Business analytics involves converting business data into useful business informa-
tion through the use of statistical techniques and advanced software. It includes 
a set of analytical methods for solving problems and assisting decision making, 
especially in the context of vast quantities of data. The combination of analysis 
with intuition allows useful insights into business organizations to be provided and 
helps them to achieve their objectives. Many organizations use the principles and 
practice of business analytics. 

Business intelligence (BI) processes all the data generated by a business, and 
uses it to generate clear reports (e.g., a dashboard report of the key metrics), 
as well as the key trends and performance measures that are used by manage-
ment in decision making. That is, business intelligence is data analytics with 
insight that allows managers to make informed decisions, and so it is focused 
on the decision-making part of the process. It may employ data mining, perfor-
mance benchmarking, process analysis, and descriptive analytics. That is, business 
analytics allows management issues to be explored and solved. 

The effectiveness of management decision making is influenced by the accuracy 
and completeness of the information that managers have, with inaccurate or incom-
plete information leading to poorer decisions. Companies often have data that is 
unstructured or in diverse formats, and such data is generally more difficult to 
gather and analyse. This has led software firms to offer business intelligence solu-
tions to organizations that wish to make better use of their data, and to optimize 
the information gathered from the data. There are several software applications 
designed to unify a company’s data and analytics.
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24.3.2 Big Data and Data Mining 

The term “Big data” refers to the large, diverse sets of data that arrives at ever-
increasing rates and volumes. It encompasses the volume of data, the velocity or 
speed at which it is created and collected, and the variety or scope of the data 
points being covered (these are generally referred to as the three V’s of big data). 
There has been an explosion in the volume of big data with approximately 40 
zettabytes2 (ZB) of data employed globally. 

Big data often comes from data mining, where data mining involves exploring 
and analysing large blocks of data to gather meaningful patterns and trends. Data 
is gathered and loaded into data warehouses by organizations (i.e., the data is 
centralized into a single database or program), and then stored either on in-house 
servers or on the cloud. The user decides how to organize the data, and application 
software sorts the data accordingly, and the data is presented in an easy-to-read 
format such as a graph or report. 

The data may be internal or external. It may be structured or unstructured, 
where structured data is often already managed in the organization’s databases or 
spreadsheets and may be numeric and easily formatted. Unstructured data uses data 
that may be unformatted, and so it does not fall into a predetermined format (i.e., 
it is free form), and it may come from search engines or from forum discussions 
on social media. 

Big data may be collected in various ways such as from publicly shared com-
ments on social media, or gathered from personal electronics or apps, through 
questionnaires, product purchases, and so on. Big data is generally stored in 
databases and is analysed with software that is designed to handle large and 
complex data sets (usually software as a service, SaaS). 

24.3.3 Data Analytics for Social Media 

Data analytics provides a quantitative insight into human behaviour on a social 
media website and is a way to understand users and how to communicate with 
them better. It enables the business to understand its audience better, to improve 
the user experience, and to create content that will be of interest to them. Data 
analytics consist of a collection of data that says something about the social media 
conversation, and it involves the collection, monitoring, analysis, summarization, 
and a graph to visualize the behaviour of users. 

Another words, data analytics involves learning to read a social media com-
munity through data, and the interpretations of the quantifiable data (or metrics) 
gives information on the activities, events, and conversations. This includes what 
users like when they are online, but other important information such as their

2 A zettabyte is 1 sextillion bytes = 270 bytes (approximately a billion terabytes or 1000 exabytes 
or a trillion gigabytes). 
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opinions and emotions need to be gathered through social listening. Social listen-
ing involves monitoring keywords and mentions in social media conversations in 
the target audience and industry, to understand and analyse what the audience is 
saying about the business and allows the business to engage with its audience. 

Social media companies use data analytics to gain an insight into customers, 
and elementary data such as the number of likes, the number of followers, the 
number of times a video is played on YouTube, and so on are gathered to obtained 
a quantified understanding of a conversation. This data is valuable in judging the 
effectiveness of a social media campaign, where the focus is to determine how 
effective the campaign has been in meeting its goals. The goals may be to increase 
the number of users or to build a brand, and data analytics combined with social 
listening help in understanding how people are interacting, as well as what they 
are interacting about and how successful the interactions has been. 

Facebook and Twitter maintain a comprehensive set of measurements for data 
analytics, with Facebook maintaining several metrics such as the number of page 
views and the number of likes and reach of posts (i.e., the number of people 
who saw posts at least once). Twitter includes a dashboard view to summarize 
how successful tweet activity has been, as well as the interests and locations of 
the user’s followers. Social listening considers user opinions, emotions, views, 
evaluations, and attitude, and social media data contains rich collection of human 
emotions. 

The design of a social media campaign is often an iterative process, with the 
first step being to determine the objective of the campaign and designing the cam-
paign to meet the requirements. The effectiveness of a campaign is judged by 
a combination of social media analytics and social listening, with the campaign 
refined appropriately to meet its goals and the cycle repeating. The key perfor-
mance indicators (KPI) may include increased followers/subscribers or an increase 
in the content shared, and so on. 

24.3.4 Sources of Data 

The collected data is commercially valuable, especially when data about individ-
uals are linked from several sources. Data brokers are companies that aggregate 
and link information from multiple sources to create more complete and valuable 
information products (i.e., profiles of individuals) that may then be sold on to inter-
ested parties. Meta data (i.e., data about the data such as the time of a phone call 
or who the call is made to) also provides useful information that may be collected 
and shared (Table 24.3).

For example, suppose the probability of an individual buying a pair of hiking 
books is very low (say 1 in 5000 probability). Next, that individual starts scanning 
a website (say Amazon) for boots then that individual is now viewed as being more 
likely to buy a pair of hiking boots (say a 1 in 100 probability). This large increase 
in probability will mean that the individual is now of interest to advertisers and 
sellers, and various targeted (popup) advertisements will appear to the individual
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Table 24.3 Sources of data 

Source Answers 

Data collected by merchants and service 
providers 

This includes personal data entered for the 
purchase of products and services such as name, 
address, date of birth, products and services 
purchased, etc. 

Activity tracking This involves monitoring the user’s activity on the 
site (or app), and recording the user’s searches, 
and the products browsed and purchased 
It may involve recording the user’s interests, their 
activities, and their interactions and 
communications with others on the site 

Search profile The history of a person’s searches over a period 
of time on a search engine such as Google reveals 
information about the individual and their 
interests 

Sensors from devices There are many sensors in the world around us 
such as personal devices as part of the Internet of 
Things that may record information such as 
health data or what the individual is eating. 
Third-party devices such as security cameras may 
be conducting public or private surveillance. GPS 
technology on smart phones may be tracking the 
user’s location

advertising different hiking boots. This may become quite tedious and annoying 
to the individual, who may have been just browsing, and is now subject to an 
invasion of advertisements, but many apps are free and often the source of their 
revenue is from advertisements, and so they gather data about the user that is then 
sold on to advertisers. 

Users should be in control of how their data is used, and most user agreements 
are “all-or-nothing” in the sense that a user must give up control of their data to 
use the application, and so essentially the user has no control. That is, a user must 
click acceptance of the terms and conditions in order to use the services of a web 
application. Clearly, users would be happier and feel that they are in control if they 
were offered graduated choices by the vendor, to allow them to make tradeoffs, 
and to choose a level of privacy that they are comfortable with. 

24.4 Mathematics Used in Data Science 

Mathematics is employed in data science and analytics and includes areas such as 
(Table 24.4).

Other areas of mathematics that may arise in data analytics include graph theory 
(see Chap. 7), operations research (see Chap. 31), and discrete mathematics (see 
[1]).
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Table 24.4 Mathematics in data analytics 

Type Description 

Probability An introduction to some of the concepts in probability theory such as basic 
probability, expectation, conditional probability, Bayes’ theorem, and 
probability density functions was discussed in Chap. 23 

Statistics Statistics is a vast area and an introduction to some of the important concepts 
in the field including descriptive statistics; measures of central tendency such 
as the mean, mode and median, variance and covariance, and correlation was 
discussed in Chap. 22 

Linear algebra This includes topics such as matrix theory and Gaussian elimination as 
discussed in Chap. 27, as well as basic algebra as discussed in Chap. 5 

Calculus This includes the study of differentiation and integration and includes topics 
such as limits, continuity, rules of differentiation, Taylor’s series, and area and 
volume as discussed in Chaps. 25 and 26

24.5 Review Questions 

1. What is data science? 
2. What is the role of the data scientist? 
3. What are the main sources of personal data collected on line? 
4. What are the main risks to an individual using social media? 
6. What mathematics are employed in data science? 
7. What is data analytics? 

24.6 Summary 

Companies collect lots of personal data about individuals from their use of com-
puter resources such as email, search engines, their Internet, and social media use, 
and the data is processed to build up revealing profiles of the user that may be tar-
geted to advertisers. Modern technology allows mass surveillance to be conducted 
by governments on its citizens, with face recognition software allowing citizens to 
be recognized at demonstrations or other mass assemblies. 

Modern technology allows the location of the user to be tracked, and privacy is 
important in the information age, and it is the way in which we separate ourselves 
from other people, and is the right to be left alone. The European GDPR law has 
become an important protector of privacy and personal data, and both European 
and other countries have adapted it. 

Data analytics is the science of handling data collection by computer-driven 
systems, where the goal is to generate insights that will improve decision making. 
It involves the overlap of several disciplines such as statistics, information tech-
nology, and domain knowledge. It is widely used in social media, e-commerce,
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the Internet of Things, recommendation engines, gaming, and may potentially be 
applied to other fields such as information security, logistics, and so on. 
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Key Topics 

Limit of a function 

Continuity 

Mean value theorem 

Taylor’s theorem 

Differentiation 

Maxima and minima 

Integration 

25.1 Introduction 

Newton and Leibniz independently developed calculus in the late seventeenth cen-
tury.1 Calculus plays a key role in describing how rapidly things change, and it 
may be employed to determine the velocity and acceleration of moving bodies as 
well as calculating the area of a region under a curve or between two curves. It 
may be used to determine the volumes of solids, computing the length of a curve,

1 The question of who invented the calculus led to a bitter controversy between Newton and Leib-
niz with the latter accused of plagiarising Newton’s work. Newton, an English mathematician and 
physicist was the giant of the late seventeenth century, and Leibnitz was a German mathematician 
and philosopher. Today, both Newton and Leibniz are credited with the independent development 
of the calculus. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
G. O’Regan, Mathematical Foundations of Software Engineering, 
Texts in Computer Science, https://doi.org/10.1007/978-3-031-26212-8_25 

399

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26212-8_25&domain=pdf
https://doi.org/10.1007/978-3-031-26212-8_25


400 25 Calculus I

a - ,  x 0 a + 

l 
l -

l + 

f 

Fig. 25.1 Limit of a function 

and in finding the tangent to a curve. It is an important branch of mathematics 
concerned with limits, continuity, derivatives, and integrals of functions. 

The concept of a limit is fundamental in the calculus. Let f be a function defined 
on the set of real numbers, then the limit of f at a is l (written as limx→a f (x) = 
l) if given any real number ε > 0 then there exists a real number δ > 0 such that 
|f (x) − l| <  ε whenever |x − a| <  δ. The idea of a limit can be seen in Fig. 25.1. 

The function f defined on the real numbers is continuous at a if limx→a f (x) = 
f (a). The set of all continuous functions on the closed interval [a, b] is denoted by 
C[a, b]. 

If f is a function defined on an open interval containing x0 then f is said to be 
differentiable at x0 if the limit 

lim 
x→x0 

f (x) − f (x0) 
x − x0 

exists. Whenever this limit exists it is denoted by f,(x0) and is called the derivative 
of f at x0. Differential calculus is concerned with the properties of the derivative 
of a function. The derivative of f at x0 is the slope of the tangent line to the graph 
of f at (x0, f (x0)) (Fig. 25.2). 

It is easy to see that if a function f is differentiable at x0 then f is continuous 
at x0.

Fig. 25.2 Derivative as a 
tangent to curve 

x0 

f(x0) 

y = f(x) 

Tangent line, Slope f’(x)
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Rolle’s Theorem 
Suppose f ∈ C[a, b] and f is differentiable on (a, b). If f (a) = f (b) then there exists 
c such that a < c < b with f,(c) = 0. 

Mean Value Theorem 
Suppose f ∈C[a, b] and f is differentiable on (a, b). Then there exists c such that a 
< c < b with 

f ,(c) = 
f (b) − f (a) 

b − a 

Proof The mean value theorem is a special case of Rolle’s theorem, and the proof 
involves defining the function g(x) = f (x) − rx where r = (f (b) − f (a))/(b − a). 

It is easy to verify that g(a) = g(b). Clearly, g is differentiable on (a, b) and so 
by Rolle’s theorem there is a c in (a, b) such that g,(c) = 0. Therefore, f,(c) − r 
= 0 and so f ,(c) = r = f (b) − f (a)/(b − a) as required. 

Interpretation of the Mean Value Theorem 
The mean value theorem essentially states that there is at least one point c on the 
curve f ,(x) between a and b such that slope of the chord is the same as the tangent 
f (c) (Fig. 25.3). 

Intermediate Value Theorem 
Suppose f ∈ C[a, b] and K is any real number between f (a) and f (b). Then there 
exists c in (a, b) for which f (c) = K.

Fig. 25.3 Interpretation of 
mean value theorem 

a b 

f(a) 

y = f(x) 

Slope chord is 

f(b) 

f(b) – f(a) 

b – a 

Slope tangent f’(c) 
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Fig. 25.4 Interpretation of 
intermediate value theorem 

a 

f(b) y = f(x) 

f(a) 

b 

K 

c 

Proof The proof of this relies on the completeness property of the real numbers. It 
involves considering the set S in [a, b] such that f (x)≤K and noting that this set is 
non-empty since a∈S and bounded above by b. Therefore the supremum2 sup S = 
c exists, and it is straightforward to show (using ε and δ arguments and the fact that 
f is continuous) that f (c) = K (Fig. 25.4). 

L’Hôpital’s Rule 
Suppose that f (a) = g(a) = 0 and that f ,(a) and g,(a) exist and that g,a) /= 0. Then 
L’Hopital’s rule states that: 

lim 
x→a 

f (x) 
g(x) 

= 
f ,(a) 
g,(a) 

Proof 
lim 
x→a 

f (x) 
g(x) 

= lim 
x→a 

f (x) − f (a) 
g(x) − g(a) 

= lim 
x→a 

f (x)− f (a) 
x−a 

g(x)−g(a) 
x−a 

= 
lim 
x→a 

f (x)− f (a) 
x−a 

lim 
x→a 

g(x)−g(a) 
x−a 

= 
f ,(a) 
g,(a) 

Taylor’s Theorem 
The Taylor series is concerned with the approximation to values of the function f 
near x0. The approximation employs a polynomial (or power series) in powers of (x 
− x0) as well as the derivatives of f at x = x0. There is an error term (or remainder) 
associated with the approximation.

2 The supremum is the least upper bound and the infimum is the greatest lower bound.
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Suppose f ∈ Cn[a, b] and f n+1 exists on (a, b). Let x0 ∈ (a, b) then for every x ∈ (a, 
b) there exists ξ (x) between x0 and x with 

f (x) = Pn(x) + Rn(x) 

where Pn(x) is the nth Taylor polynomial for f about x0 and Rn(x) is the called the 
remainder term associated with Pn(x). The infinite series obtained by taking the limit 
of Pn(x) as  n→∞  is termed the Taylor series for f about x0. 

Pn(x) = f (x0) + f ,(x0)(x − x0) + 
f ,,(x0) 
2! (x − x0)2 + · · ·  +  

f n(x0) 
n! (x − x0)n 

The remainder term is given by: 

Rn(x) = 
f n+1(ξ(x))(x − x0)n+1 

(n + 1)! 

25.2 Differentiation 

Mathematicians of the seventeenth century were working on various problems con-
cerned with motion. These included problems such as determining the motion or 
velocity of objects on or near the earth, as well as the motion of the planets. They 
were also interested in changes of motion, i.e., in the acceleration of these moving 
bodies. 

Velocity is the rate at which distance changes with respect to time, and the 
average speed during a journey is the distance travelled divided by the elapsed 
time. However, since the speed of an object may be variable over a period of time, 
there is a need to be able to determine its velocity at a specific time instance. That 
is, there is a need to determine the rate of change of distance with respect to time 
at any time instant. 

The direction in which an object is moving at any instant of its flight was 
also studied. For example, the direction in which a projectile is fired determines 
the horizontal and vertical components of its velocity. The direction in which an 
object is moving can vary from one instant to another. 

The problem of finding the maximum and minimum values of a function was 
also studied, e.g., the problem of determining the maximum height that a bullet 
reaches when it is fired. Other problems studied include problems to determine the 
lengths of paths, the areas of figures, and the volume of objects. 

Newton and Leibnitz (Figs. 25.5 and 25.6) showed that these problems could 
be solved by means of the concept of the derivative of a function, i.e., the rate of 
change of one variable with respect to another.
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Fig. 25.5 Isaac Newton 

Fig. 25.6 Wilhelm Gottfried 
Leibniz 

Rate of Change 
The average rate of change and instantaneous rate of change are of practical interest. 
For example, if a motorist drives 200 miles in four hours, then the average speed is 
50 miles per hour, i.e., the distance travelled divided by the elapsed time. The actual 
speed during the journey may vary as if the driver stops for lunch, then the actual 
speed is zero for the duration of lunch. 

The actual speed is the instantaneous rate of change of distance with respect to 
time. This has practical implications as motorists are required to observe speed limits, 
and a speed camera may record the actual speed of a vehicle with the driver subject 
to a fine if the permitted speed limit has been exceeded. The actual speed is relevant 
in a car crash as speed is a major factor in road fatalities. 

In calculus, the term ∆x means a change in x and ∆y means the corresponding 
change in y. The derivative of f at x is the instantaneous rate of change of f , and f is 
said to be differentiable at x. It is defined as: 

dy 

dx 
= lim

∆x→0

∆y

∆x 
= lim

∆x→0 

f (x + ∆x) − f (x)
∆x 

In the formula, ∆y is the increment f (x + ∆x) − f (x)
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The average velocity of a body moving along a line in the time interval t to t +
∆t where the body moves from position s = f (t) to position s + ∆s is given by: 

Vav = 
displacement 

Time travelled 
= ∆s

∆t 
= 

f (t + ∆t) − f (t)
∆t 

The instantaneous velocity of a body moving along a line is the derivative of its 
position s = f (t) with respect to t. It is given by: 

v = 
ds 

dt 
= lim

∆t→0

∆s

∆t 
= f ,(t) 

25.2.1 Rules of Differentiation 

Table 25.1 presents several rules of differentiation. 

Derivatives of Well-Known Functions 
The following are the derivatives of some well-known functions including basic 
trigonometric functions, the exponential function, and the natural logarithm function. 

(i) d/dxSinx = Cosx

Table 25.1 Rules of differentiation 

No. Rule Definition 

1 Constant The derivative of a constant is 0. That is, for y = f (x) = c (a constant value) 
we have dy/dx = 0 

2 Sum d/dx (f + g) = df /dx + dg/dx 
3 Power The derivative of y = f( x) = xn is  given by dy/dx = nxn−1 

4 Scalar If c is a constant and u is a differentiable function of x then dy/dx = c d u/dx 
where y = cu(x) 

5 Product The product of two differentiable functions u and v is differentiable and 
d 
dx (uv) = v du dx + u dv 

dx 

6 Quotient The quotient of two differentiable functions u, v is differentiable (where 
v /= 0) and 
d 
dx

[ u 
v

] = v du dx −u dv 
dx 

v2 

7 Chain rule Chain Rule. Suppose h = g ◦ f is the composite of two differentiable 
functions y = g(x) and  x = f (t). Then h is a differentiable function of t whose 
derivative at each value of t is: 
h,(t) = (g ◦ f ),(t) = g,( f (t)) f ,(t) 
This may also be written as: 
dy 
dt = dy dx 

dx 
dt 
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(ii) d/dxCosx = −Sinx
(iii) d/dxTanx = Sec2x 
(iv) d/dxex = ex 
(v) d/dx ln x = 1/x (where x > 0) 
(vi) d/dxax = ln(a)ax 

(vii) d/dx loga x = 1/x ln(a) 
(viii) d/dx arcsin x = 1/

/(
1 − x2

)

(ix) d/dx arccos x = −1/
/(

1 − x2
)

(x) d/dx arctan x = 1/
(
1 + x2

)

Increasing and Decreasing Functions 
Suppose that a function f has a derivative at every point x of an interval I. Then 

(i) f increases on I if f ,(x) > 0 for all x in I. 
(ii) f decreases on I if f ,(x) < 0 for all x in I. 

The geometric interpretation of the first derivative test is that it states that differen-
tiable functions increase on intervals where their graphs have positive slopes and 
decrease on intervals where their graphs have negative slopes. 

If f , changes from positive to negative values as x passes from left to right through 
point c then the value of f at c is a local maximum value of f . Similarly, if f, changes 
from negative to positive values as x passes from left to right through point c then 
the value of f at c is a local minimum value of f (Fig. 25.7).

The graph of a differentiable function y = f (x) is concave down in an interval 
where f , decreases and concave up in an interval where f , increases. This may be 
defined by the second interval test for concavity. Other words the graph of y = f (x) 
are concave down in an interval where f ,, < 0 and concave up in an interval where 
f ,, > 0.  

A point on the curve where the concavity changes from concave up to concave 
down or vice versa is termed a point of inflection. That is, at a point of inflection c 
we have that f , is positive on one side and negative on the other side. At the point of 
inflection c we have the value of the second derivative is zero, i.e., f ,,(c) = 0, or in 
other words f , goes through a local maximum or minimum.

Fig. 25.7 Local minima and 
maxima 

 
y = f(x) 

Local Maximum 

Local Minimum 

Point of Inflection 
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25.3 Integration 

The derivative is a functional operator that takes a function as an argument and 
returns a function as a result. The inverse operation involves determining the orig-
inal function from the known derivative, and integral calculus is the branch of the 
calculus concerned with this problem. The integral of a function consists of all 
those functions that have it as a derivative. 

Integration is applicable to problems involving area and volume. It is the math-
ematical process that allows the area of a region with curved boundaries to be 
determined, and it also allows the volume of a solid to be determined. 

The problem of finding functions whose derivatives is known involves finding 
a function y = F(x) whose derivative is given by the differential equation: 

dy 

dx 
= f (x) 

The solution to this differentiable equation over the interval I is F if F is 
differentiable at every point of I and for every x in  I we have:  

d 

dx 
F(x) = f (x) 

Clearly, if F(x) is a particular solution to d/dx F(x) = f (x) then the general 
solution is given by: 

y =
∫

f (x)dx = F(x) + k 

since 
d 
dx (F(x) + k) = f (x) + 0 = f (x). 

Rules of Integration 
The following are rules of integration as well as the integrals of some well-known 
functions such as basic trigonometric functions and the exponential function. Table 
25.2 presents several rules of integration.

It is easy to check that the integration has been carried out correctly. This is 
done by computing the derivative of the function obtained and checking that it is 
the same as the function to be integrated. 

Often, the goal may be to determine a particular solution satisfying certain 
conditions rather than the general solution. The general solution is first determined, 
and then the constant k that satisfies the particular solution is calculated. 

The substitution method is a useful method that is often employed in performing 
integration, and its effect is to potentially change an unfamiliar integral into one 
that is easier to evaluate. The procedure to evaluate

∫
f (g(x))g,(x)dx where f ,, g,

are continuous functions is as follows:



408 25 Calculus I

Table 25.2 Rules of integration 

No. Rule Definition 

1 Constant
∫
u,(x)dx = u(x) + k 

2 Sum
∫

(u(x) + v(x))dx = ∫
u(x)dx + ∫

v(x)dx 

3 Scalar
∫
au(x)dx = a

∫
u(x)dx (where a is a constant) 

4 Power
∫
xndx = xn+1 

n+1 + k (where n /= −1) 

5 Cos
∫
cosxdx = sin x + k 

6 Sin
∫
sinxdx = −  cos x + k 

7 sec2 x
∫
sec2xdx = tan x + k 

8 ex
∫
ex dx = ex + k 

9 Logarithm
∫
1/xdx = ln x + k

1. Substitute u = g(x) and du = g,(x)dx to obtain
∫
f (u)du

2. Integrate with respect to u. 
3. Replace u by g(x) in the result. 

The method of integration by parts is a rule of integration that transforms the 
integral of a product of functions into simpler integrals. It is a consequence of the 
product rule for differentiation.

∫
udv = uv −

∫
vdu

∫
f (x)g,(x)dx = f (x)g(x) −

∫
f ,(x)g(x)dx 

25.3.1 Definite Integrals 

A definite integral defines the area under the curve y = f (x), and the area of the 
region between the graph of a non-negative continuous function y = f (x) for the 
interval a≤ x≤ b of the x-axis is given by the definite integral. 

The sum of the area of the rectangles approximates the area under the curve 
and the more rectangles that are used the better the approximation (Fig. 25.8).

The definition of the area of the region beneath the graph of y = f (x) from 
a to b is defined to be the limit of the sum of the rectangle areas as the width 
of the rectangles become smaller and smaller, and the number of rectangles used 
approaches infinity. The limit of the sum of the rectangle areas exists for any 
continuous function. 

The approximation of the area under the graph y = f (x) between x = a and x = 
b is done by dividing the region into n strips with each strip of uniform width given 
by ∆x = (b − a)/n and drawing lines perpendicular to the x-axis (Fig. 25.9). Each
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Fig. 25.8 Area under the 
curve

ba 

strip is approximated with an inscribed rectangle where the base of the rectangle is 
on the x-axis to the to the lowest point on the curve above (lower Riemann sum). 
We let ck be a point in which f takes on its minimum value in the interval from 
xk−1 to xk and the height of the rectangle is f (ck). The sum of these areas is the 
approximation of the area under the curve and is given by: 

Sn = f (c1)∆x + f (c2)∆x +  · · ·  +  f (cn)∆x 

The area under the graph of a nonnegative continuous function f over the inter-
val [a, b] is the limit of the sums of the areas of inscribed rectangles of equal base 
length as n approaches infinity. 

A = lim 
n→∞ 

Sn 

= lim 
n→∞ 

f (c1)∆x + f (c2)∆x + · · ·  +  f (cn)∆x 

= lim 
n→∞ 

n∑

k=1 

f (ck )∆x 

It is not essential that the division of [a, b] into a, x1, x2, ….  xn−1, b gives 
equal subintervals ∆x1 = x1 − a, ∆x2 = x2 − x1, … ∆xn = b − xn−1. The norm 
of the subdivision is the largest interval length.

Fig. 25.9 Area under the 
curves—lower sum 

a   x1   x2                                   xn-1 b 
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The lower Riemann sum L and the upper sum U may be formed, and the more 
finely divided that [a, b] is the closer the values of the lower and upper sum U and 
L. The upper and lower sums may be written as: 

L = min 
1

∆x1 + min 
2

∆x2 + · · ·  +  min 
n

∆xn 

U = max 
1

∆x1 + max 
2

∆x2 + · · ·  +  max 
n

∆xn 

lim 
normx→0 

U − L = 0 (i.e., lim 
norm→0 

U = lim 
norm →0 

L ) 

Further, if S = Σ f (ck)∆xk (where ck is any point in the subinterval and 
mink ≤ f (ck) ≤maxk) we have:  

lim 
norm →0 

L = lim 
norm →0 

S = lim 
norm →0 

U 

Integral Existence Theorem (Riemann Integral) 
If f is continuous on [a, b] then. 

b∫

a 

f (x)dx = lim 
norm→0

∑
f (cx )∆xk 

exists and is the same number for any choice of the numbers ck. 

Properties of Definite Integrals 
Table 25.3 presents some algebraic properties of the definite integral. 

Table 25.3 Properties of 
definite integral 

Properties of definite integral 

(i)
∫ a 
a f (x)dx = 0 

(ii)
∫ a 
b f (x)dx = − ∫ b 

a f (x)dx 

(iii)
∫ b 
a k f  (x)dx = k

∫ b 
a f (x)dx 

(iv)
∫ b 
a f (x)dx ≥ 0 if  f (x) ≥ 0 on  [a, b] 

(v)

∫ b 

a 
f (x)dx ≤

∫ b 

a 
g(x)dx 

if f (x) ≤ g(x) on [a, b] 

(vi)
∫ b 
a f (x)dx +

∫ c 
b f (x)dx =

∫ c 
a f (x)dx 

(vii)
∫ b 
a { f (x) + g(x)}dx = ∫ b 

a f (x)dx +
∫ b 
a g(x)dx 

(viii)
∫ b 
a { f (x) − g(x)}dx = ∫ b 

a f (x)dx −
∫ b 
a g(x)dx
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Table 25.4 Fundamental 
theorems of integral calculus 

Theorem 

First fundamental theorem: (existence of anti-derivative) 
If f is continuous on [a, b] then  F(x) is differentiable at every 
point x in [a, b] where  F(x) is given by: 

F(x) = ∫ x 
a f (t)at 

If f is continuous on [a, b] then there exists a function F(x) 
whose derivative on [a, b] is  f 
dF 
dx = d 

dx

∫ x 
a f (t)dt = f (x) 

Second fundamental theorem: (integral evaluation theorem) 
If f is continuous on [a, b] and  F is any anti-derivative of f on 
[a, b] then:
∫ b 
a f (x)dx = F(b) − F(a) 

25.3.2 Fundamental Theorems of Integral Calculus 

Table 25.4 presents two fundamental theorems of integral calculus. 
That is, the procedure to calculate the definite integral of f over [a, b] involves 

just two steps: 

(i) Find an antiderivative F of f 
(ii) Calculate F(b) − F(a) 

For a more detailed account of integral and differential calculus the reader is 
referred to Finney [1]. 

25.4 Review Questions 

1. Explain the concept of the limit of a function. 
2. Explain the concept of continuity. 
3. Explain the difference between average velocity and instantaneous veloc-

ity, and explain the concept of the derivative of a function. 
4. Determine the following 

a. limx→0 Sin x 
b. limx→0 × Cos x 
c. limx→-∝ |x| 

5. Determine the derivative of the following functions 
a. y = x3 + 2x + 1 
b. y = x2 + 1, x = (t + 1)2 
c. y = Cos x2 

6. Determine the integral of the following functions 
a.

∫
(x2 − 6x) dx
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b.
∫ √

(x − 6) dx 
c.

∫
(x2 − 4)2 3x3dx 

7. Explain the significance of the fundamental theorems of the calculus. 

25.5 Summary 

This chapter provided a brief introduction to the calculus including limits, conti-
nuity, differentiation, and integration. Newton and Leibniz developed the calculus 
independently in the late seventeenth century. It plays a key role in describing 
how rapidly things change and may be employed to calculate areas of regions 
under curves, volumes of figures, and in finding tangents to curves. 

In calculus, the term ∆x means a small change in x and ∆y means the corre-
sponding change in y. The derivative of f at x is the instantaneous rate of change 
of f , and is defined as 

dy 

dx 
= lim

∆x→0

∆y

∆x 
= lim

∆x→0 

f (x + ∆x) − f (x)
∆x 

Integration is the inverse operation of differentiation and involves determining 
the original function from the known derivative. The integral of a function consists 
of all those functions that have the function as a derivative. 

Integration is applicable to problems involving area and volume, and it allows 
the area of a region with curved boundaries to be determined. 

Reference 
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Key Topics 

Applications of calculus 

Velocity and acceleration 

Area and volume 

Length of curve 

Trapezoidal rule 

Simpsons rule 

Fourier series 

Laplace transforms 

Differential equations 

26.1 Introduction 

This chapter considers several applications of calculus including the use of dif-
ferentiation to deal with problems involving the rate of change, and we show 
how velocity, speed, and acceleration may be determined, as well as solving max-
ima/minima problems. We show how integration may be used to solve problems 
involving area, volume, and length of a curve.
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The definite integral may be used to determine the area under a curve as well as 
computing the area bounded by two curves. We show how the volume of a solid 
of known cross-sectional area may be determined and show how to compute the 
volume of a solid generated by rotating a region around the x- or y-axis. 

We show how the length of a curve may be determined, and we present the for-
mulae for the Trapezoidal Rule and Simpson’s Rule which are used to approximate 
definite integrals. 

Finally, we introduce Fourier series, Laplace transforms, and differential equa-
tions. A Fourier series consists of the sum of a possibly infinite set of sine and 
cosine functions. The Laplace transform is an integral transform which takes a 
function f and transforms it to another function F by means of an integral. An 
equation that contains one or more derivatives of an unknown function is termed 
a differential equation, and many important problems in engineering and physics 
involve determining a solution to these equations. 

26.2 Applications of Calculus 

There are rich applications of the calculus in science and engineering, and we 
consider several applications of differentiation and integration. This includes a 
discussion of problems involving velocity and acceleration of moving objects, 
problems to determine the rate at which one variable changes from the rate at 
which another variable is known to change, and maxima and minima problems 
that are solved with differentiation. We then solve problems involving area and 
volume that are solved by integration. 

Differentiation may be used to determine the speed, velocity, and acceleration 
of bodies. Velocity is the rate of change of position with respect to time, and 
acceleration is given by the rate of change of velocity with respect to time. The 
speed is the magnitude of the velocity. This is expressed mathematically by letting 
s(t) be a function giving the position of an object at time t, and the velocity, speed, 
and acceleration are then given by: 

Velocity of object at time t = y(t) = s,(t) 
Acceleration of object at time t = a(t) = v,(t) = s,,(t) 
Speed of object at time t = |v(t)| 

Example 26.1 A ball is dropped from a height of 64 ft (Imperial system), and its 
height above the ground after t seconds is given by the equation s(t) = −  16t2 + 64. 
Determine. 

(a) The velocity when it hits the ground. 
(b) The average velocity during its fall.
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Solution 

The ball hits the ground when s(t) = 0: i.e., 

0 = −16t2 + 64 
16t2 = 64 
t2 = 4 
t = 2 

The velocity is given by s,(t) = −32t. and so the velocity when the ball hits 
the ground is equal to −32 * 2 = −  64 ft/s. 

The average velocity is given by distance travelled/time = (s(2) − s(0))/2 − 0 
= −64/2 = −32 ft/s. 

Occasionally, problems arise where one variable is known to change at a certain 
rate and the problem is to determine the rate of change on another variable. For 
example, how fast does the height of the water level drop when a cylindrical tank 
is drained at a certain rate. 

Example 26.2 How fast does the water level in a cylindrical tank drop when water 
is removed at the rate of 3 L/s? 

Solution 
The radius of the tank is r (a constant) and the height is h and the volume of water 
V (which are both changing over time and so V and h are considered differentiable 
functions of time). 

dV/dt = −3 (3 L/sec.is being removed) 

We wish to determine dh/dt and we can determine this using the formula for the 
volume of a cylinder. 

V = πr2h 

Then 

dV /dt = πr2 dh/dt = −3 (since r is a constant) 
dh/dt = −3/πr2 

That is, the water level is dropping at the constant rate of 3/πr2 L/s.
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Maxima and minima problems refer to problems where the goal is to maximize 
or minimize a function on a particular interval, where the function is continuous 
and differentiable on the interval, and the function does not attain its maximum 
or minimum at the endpoints of the interval. Then we know that the maximum or 
minimum is at an interior point of the interval where the derivative is zero. 

Example 26.3 Find two positive integers whose sum is 20 and whose product is as 
large as possible. 

Solution 
Let x be one of the numbers then the other number is 20 – x and so the product 
of both numbers is given by: 

f (x) = x(20 − x) = 20x − x2 

The objective is to determine the value of x that will maximize the product 
(i.e., the value of f (x) in the interval 0 ≤ x ≤ 20). The function f (x) is continuous 
and differentiable and attains a local maximum where its derivative is zero. The 
derivative is given by: 

f ,(x) = 20 − 2x 

The derivative is 0 when 20 – 2x = 0 or when x = 10, and the maximum value 
of f (x) is 200 – 100 = 100. 

Problems involving area and volume may be solved with integration. The defi-
nite integral may be applied to problems to determine the area below the curve as 
may be seen in the following example: 

Example 26.4 Find the area under the curve x2 − 4 and the x-axis from x = −2 to  
x = 2. 

Solution 
The area under the curve y = f (x) between x = a and x = b is given by: 

A = 
b∫

a 

f (x)dx 

And so the area of the curve is y = f (x) between x = −  2 to  x = 2 is given by: 

2∫

−2

(
x2 − 4

)
dx 

= 
x3 

3 
− 4x |2−2
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=
[
8 

3 
− 8

]
−

[−8 

3 
+ 8

]

= −  
32 

3 

The area between two curves y = f (x) and y = g(x) where f (x) ≥ g(x) on the  
interval [a, b] is given by: 

A = 
b∫

a 

( f (x) − g(x))dx 

Example 26.5 Find the area of the region bounded by the curve y = 2 − x2 and the 
line y = −x on the interval [− 1, 2]. 

Solution 
We take f (x) = 2 − x2 and g(x) = -x, and it can be seen by drawing both curves 
that f (x) ≥ g(x) on the interval [− 1, 2]. Therefore, the area between both curves 
is given by: 

A = 
2∫

−1

((
2 − x2

) − (−x)
)
dx 

=
∫ 2 

−1

((
2 + x − x2

)
dx 

= 2x + 1/2x2 − 1/ 3x3
||2 − 1 

= 10/3 + 7/6 
= 27/6 
= 4.5 

The volume of a solid of known cross functional area A(x) from x = a to x = 
b is given by: 

V =
∫ b 

a 
A(x)dx 

Example 26.6 Find the volume of the pyramid that has a square base that is 3 m on 
a side and is 3 m high. The area of a cross section of the pyramid is given by A(x) = 
x2. Find the volume of the pyramid.
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Solution 
The volume is given by: 

V = 
3∫

0 

x2dx 

= 1/ 3x3
||3 0 

= 9m2 

The volume of a solid created by revolving the region bounded by y = f (x) and 
x = a to x = b about the x-axis is given by: 

V = 
b∫

a 

π( f (x))2dx 

Example 26.7 Find the volume of the sphere generated by rotating the semi-circle 
y = 

√
(a2 − x2) about the x-axis (between x =-a and x = a). 

Solution 
The volume is given by: 

V = 
a∫

−a 

π(a2 − x2)dx 

= π
(
a2x − x3/3

)||a −a 

= 4/3πa3 

The length of a curve y = f (x) from x = a to x = b is given by: 

L = 
b∫

a 

/
1 + ( f ,(x))2dx 

Example 26.8 

Find the length of the curve y = f (x) = x3/2 from (0, 0) to (4, 8). 

Solution 
The derivative f ,(x) is given by: f ,(x) = 3/2 x1/2 and so (f ,(x))2 = 9/4 x
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The length is then given by: 

L = 
4∫

0 

√ 
1 + 9/4x dx 

= 2/3 4/ 9(1 + 9/4x)3/2
||4 
0 

= 8/27
(
103/2 − 1

)

There are various rules for approximating definite integrals including the 
Trapezoidal Rule and Simpson’s Rule. The Trapezoidal Rule approximates short 
stretches of the curve with line segments, and the sum of the areas of the trape-
zoids under the curve is calculated and used as the approximate to the definite 
integral. Simpson’s Rule approximates short stretches of the curve with parabolas, 
and the sum of the areas under the parabolic arcs is calculated and used as the 
approximate to the definite integral. 

The approximation of the Trapezoidal rule to the definite integral is given by 
the formula: 

b∫

a 

f (x)dx ≈ 
h 

2 
(y0 + 2y1 + 2y2 +  · · ·  +  2yn−1 + yn) 

where there are n subintervals and h = (b – a)/n. 

Example 26.9 Determine an approximation to the definite integral
∫

2 
1 x2 dx using 

the Trapezoidal rule with n = 4 and compare to the exact value of the integral. 

Solution 
The approximate value is given by: 

1/4/2(1 + 2 ∗ 1.5625 + 2 ∗ 2.25 + 2 ∗ 3.0625 + 4) 
= 1/8, (18.75) 
= 2.34 

The exact value is given by 

x3/ 3|2 1 = 2.33 

The approximation of Simpson’s rule to the definite integral is given by the 
formula: 

b∫

a 

f (x)dx ≈ 
h 

3 
(y0 + 4y1 + 2y2 + 4y3 . . .  + 2yn−2 + 4yn−1 + yn) 

where there are n subintervals (n is even) and h = (b – a)/n.
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26.3 Fourier Series 

Fourier series are named after Joseph Fourier, a 19th-century French mathemati-
cian, and are used to solve practical problems in physics. A Fourier series consists 
of the sum of a possibly infinite set of sine and cosine functions. The Fourier series 
for f on the interval 0 ≤ x ≤ l defines a function f whose value at each point is 
the sum of the series for that value of x. 

f (x) = 
a0 
2 

+ 
∞Σ

m=1

[
am cos 

mπ x 
l

+ bm sin 
mπ x 
l

]

The sine and cosine functions are periodic functions 

Note 1: (Period of Function) 
A function f is periodic with period T > 0 if  f (x + T ) = f (x) for every value of x. 
The sine and cosine functions are periodic with period 2π: i.e., sin(x + 2π) = sin(x) 
and cos(x + 2π) = cos(x). The functions sin mπ x/l and cos mπ x/l have period T = 
2l/m. 

Note 2: (Orthogonality) 
Two functions f and g are said to be orthogonal on a ≤ x ≤ b if: 

b∫

a 

f (x)g(x)dx = 0 

A set of functions is said to be mutually orthogonal if each distinct pair in the 
set is orthogonal. The functions sin mπx/l and cos mπx/l where m = 1, 2, … form 
a mutually orthogonal set of functions on the interval –l ≤ x ≤ l, and they satisfy 
the following orthogonal relations as specified in Table 26.1. 

The orthogonality property of the set of sine and cosine functions allows the 
coefficients of the Fourier series to be determined. Thus, the coefficients an, bn for

Table 26.1 Orthogonality 
properties of sine and cosine 

Orthogonality properties of sine and cosine∫ l 
−l cos 

mπ x 
l sin nπ x 

l dx = 0 all  m, n

∫ l 
−l cos 

mπ x 
l cos nπ x 

l dx =
{
0 m /= n 
l m  = n

∫ l 
−l sin 

mπ x 
l sin nπ x 

l dx =
{
0 m /= n 
l m  = n 
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the convergent Fourier series f (x) are given by: 

an = 
1 

l 

l∫

−l 

f (x) cos 
nπ x 
l 

dx n  = 0, 1, 2, . . .  

bn = 
1 

l 

l∫

−l 

f (x) sin 
nπ x 
l 

dx n  = 1, 2, . . . .  

The values of the coefficients an and bn are determined from the integrals, and 
the ease of computation depends on the particular function f involved. 

f (x) = 
a0 
2 

+ 
∞Σ

m=1

[
am cos 

mπ x 
l

+ bm sin 
mπ x 
l

]

The values of an and bn depend only on the value of f (x) in the interval −l ≤ 
x ≤ l. The terms in the Fourier series are periodic with period 2l, and the function 
converges for all x whenever it converges on −l ≤ x ≤ l. Further, its sum is a 
periodic function with period 2l, and therefore, f (x) is determined for all x by its 
values in the interval −l ≤ x ≤ l. 

26.4 The Laplace Transform 

An integral transform takes a function f and transforms it to another function F 
by means of an integral. Often, the objective is to transform a problem for f into 
a simpler problem and then to recover the desired function from its transform 
F. Integral transforms are useful in solving differential equations, and an integral 
transform is a relation of the form: 

F(s) = 
β∫

α 

K (s, t) f (t)dt 

The function F is said to be the transform of f , and the function K is called the 
kernel of the transformation. 

The Laplace transform is named after the well-known 18th-century French 
mathematician and astronomer, Pierre Laplace. The Laplace transform of f 
(denoted by L {f (t)} or F(s)) is given by: 

L{ f (t)} =  F(s) = 
∞∫

0 

e−st f (t)dt
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The kernel K(s, t) of the transformation is e−st , and the Laplace transform is 
defined over an integral from zero to infinity. This is defined as a limit of integrals 
over finite intervals as follows: 

∞∫

a 

f (t)dt = lim 
A→∞ 

A∫

a 

f (t)dt 

Theorem (Sufficient Condition for Existence of Laplace Transform) 
Suppose that f is a piecewise continuous function on the interval 0 ≤ x ≤ A for any 
positive A and |f (t)| ≤ Keat when t ≥ M where a, K, and M are constants and K, M 
> 0 then the Laplace transform L {f (t)} = F(s) exists for s > a. 

The following examples are Laplace transforms of some well-known elementary 
functions. 

L{1} =  
∞∫

0 

e−st  dt = 
1 

s 
, s > 0 

L{
eat

} = 
∞∫

0 

e−st eatdt = 1 

s − a 
s > a 

L{sin at} =  
∞∫

0 

e−st sin at dt = 
a 

s2 + a2 
s > 0 

26.5 Differential Equations 

Many important problems in engineering and physics involve determining a solu-
tion to an equation that contains one or more derivatives of the unknown function. 
Such an equation is termed a differential equation, and the study of these equations 
began with the development of the calculus by Newton and Leibnitz. 

Differential equations are classified as ordinary or partial based on whether the 
unknown function depends on a single independent variable or on several indepen-
dent variables. In the first case only ordinary derivatives appear in the differential 
equation and it is said to be an ordinary differential equation. In the second case 
the derivatives are partial, and the equation is termed a partial differential equation. 

For example, Newton’s second law of motion (F = ma) expresses the relation-
ship between the force exerted on an object of mass m and the acceleration of the 
object. The force vector is in the same direction as the acceleration vector. It is 
given by the ordinary differential equation: 

m 
d2x(t) 
dt2 

= F(x(t))
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The next example is that of a second-order partial differential equation. It is 
the wave equation and is used for the description of waves (e.g., sound, light, and 
water waves) as they occur in physics. It is given by: 

a2 
∂2u(x, t) 

∂x2 
= 

∂2u(x, t) 
∂t2 

There are several fundamental questions with respect to a given differential 
equation. First, there is the question as to the existence of a solution to the differ-
ential equation. Second, if it does have a solution then is this solution unique. A 
third question is to how to determine a solution to a particular differential equation. 

Differential equations are classified as to whether they are linear or nonlinear. 
The ordinary differential equation F(x, y, y,, … ,  y(n)) = 0 is said to be linear if F 
is a linear function of the variables y, y,, …,  y(n). The general ordinary differential 
equation is of the form: 

a0(x)y
(n) + a1(x)y(n−1) + . . .  an(x)y = g(x) 

A similar definition applies to partial differential equations, and an equation is 
nonlinear if it is not linear. 

26.6 Review Questions 

1. What is the difference between velocity and acceleration? 
2. How fast does the radius of a spherical soap bubble change when air is 

blown into it at the rate of 10 cm3/s? 
3. Find the area under the curve y = x3 − 4x and the x-axis between x = −  

2 to 0.  
4. Find the area between the curves y = x − 2x and y = x1/2 between x = 

2 to 4.  
5. Determine the volume of the figure generated by revolving the line x + 

y = 2 about the x-axis bounded by x = 0 and y = 0. 
6. Determine the length of the curve y = 1/3 (x2 + 2)3/2 from x = 0 to  x = 

3. 
7. What is a periodic function and give examples? 
8. Describe applications of Fourier series, Laplace transforms, and differen-

tial equations.
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26.7 Summary 

This chapter provided a short account of applications of the calculus to calculating 
the velocity and acceleration of moving bodies and problems involving rates of 
change and maxima/minima problems. 

We showed that integration allows the area under a curve to be calculated and 
the area of the region between two curves to be computed to numerical analysis, 
Fourier series, Laplace transforms, and differential equations. 

Numerical analysis is concerned with devising methods for approximating solu-
tions to mathematical problems. Often an exact formula is not available for solving 
a particular problem, numerical analysis provides techniques to approximate the 
solution in an efficient manner. We discussed the Trapezoidal and Simpson’s rule 
which provide an approximation to the definite integral. 

A Fourier series consists of the sum of a possibly infinite set of sine and 
cosine functions. A differential equation is an equation that contains one or more 
derivatives of the unknown function. 

This chapter has sketched some important results in the calculus, and the reader 
is referred to Finney [1] for more detailed information. 

Reference 
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Key Topics 

Matrix 

Matrix operations 

Inverse of a matrix 

Determinant 

Eigen vectors and values 

Cayley Hamilton theorem 

Cramer’s rule 

27.1 Introduction 

A matrix is a rectangular array of numbers that consists of horizontal rows and 
vertical columns. A matrix with m rows and n columns is termed an m× n matrix, 
where m and n are its dimensions. A matrix with an equal number of rows and 
columns (e.g., n rows and n columns) is termed a square matrix. Figure 27.1 is an 
example of a square matrix with four rows and four columns.

The entry in the ith row and the jth column of a matrix A is denoted by A[i, j], 
Ai,j, or  aij, and the matrix A may be denoted by the formula for its (i, j)th entry: 
i.e., (aij) where i ranges from 1 to m and j ranges from 1 to n. 

An m× 1 matrix is termed a column vector, and a 1× n matrix is termed a row 
vector. Any row or column of a m ×n matrix determines a row or column vector 
which is obtained by removing the other rows (respectively columns) from the
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Fig. 27.1 Example of a 4 × 
4 square matrix

matrix. For example, the row vector (11, −5, 5, 3) is obtained from the matrix 
example by removing rows 1, 2, and 4 of the matrix. 

Two matrices A and B are equal if they are both of the same dimensions, and 
if aij = bij for each i = 1, 2…, m and each j = 1, 2, …., n. 

Matrices be added and multiplied (provided certain conditions are satisfied). 
There are identity matrices under the addition and multiplication binary oper-
ations such that the addition of the (additive) identity matrix to any matrix A 
yields A and similarly for the multiplicative identity. Square matrices have inverses 
(provided that their determinant is nonzero), and every square matrix satisfies its 
characteristic polynomial. 

It is possible to consider matrices with infinite rows and columns, and although 
it is not possible to write down such matrices explicitly, it is still possible to add, 
subtract, and multiply by a scalar provided; there is a well-defined entry in each 
(i, j)th element of the matrix. 

Matrices are an example of an algebraic structure known as an algebra. 
Chapter 5 discussed several algebraic structures such as groups, rings, fields, and 
vector spaces. The matrix algebra for m × n matrices A, B, C and scalars λ, μ 
satisfies the following properties (there are additional multiplicative properties for 
square matrices). 

1. A + B = B + A 
2. A + (B + C) = ( A + B) + C 
3. A + 0 = 0 + A = A 
4. A + (−A) = (−A) + A = 0 
5. λ( A + B) = λA + λB 
6. (λ + μ) A = λ A + μB 
7. λ(μ A) = (λμ)A 
8. 1A = A 

Matrices have many applications including their use in graph theory to keep track 
of the distance between pairs of vertices in the graph; a rotation matrix may be 
employed to represent the rotation of a vector in three-dimensional space. The 
product of two matrices represents the composition of two linear transformations, 
and matrices may be employed to determine the solution to a set of linear equa-
tions. They also arise in computer graphics and may be employed to project a 
three-dimensional image onto a two-dimensional screen. It is essential to employ 
efficient algorithms for matrix computation, and this is an active area of research 
in the field of numerical analysis.
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27.2 Two × Two Matrices 

Matrices arose in practice as a means of solving a set of linear equations. One of 
the earliest examples of their use is in a Chinese text dating from between 300BC 
and 200AD. The Chinese text showed how matrices could be employed to solve 
simultaneous equations. Consider the set of equations: 

ax + by = r 
cx + dy  = s 

Then the coefficients of the linear equations in x and y above may be represented 
by the matrix A, where A is given by: 

A =
[
a b  
c d

]

The linear equations may be represented as the multiplication of the matrix A and 
a vector x resulting in a vector v: 

Ax = v. 

The matrix representation of the linear equations and its solution are as follows:

[
a b  
c d

][
x 
y

]
=

[
r 
s

]

The vector x may be calculated by determining the inverse of the matrix A 
(provided that its inverse exists). The vector x is then given by: 

x = A−1v 

The solution to the set of linear equations is then given by:

[
x 
y

]
=

[
a b  
c d

]−1[
r 
s

]

The inverse of a matrix A exists if and only if its determinant is nonzero, and if 
this is the case the vector x is given by:

[
x 
y

]
= 1 

det A

[
d −b 

−c a

][
r 
s

]
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The determinant of a 2× 2 matrix A is given by: 

det A = ad − cb. 

The determinant of a 2× 2 matrix is denoted by:

||||a b  
c d

||||

A key property of determinants is that 

det(AB) = det(A). det(B) 

The transpose of a 2× 2 matrix A (denoted by AT) involves exchanging rows 
and columns and is given by: 

AT =
[
a c  
b d

]

The inverse of the matrix A (denoted by A−1) is given by: 

A−1 = 1 
det A

[
d −b 

−c a

]

Further, A · A−1 = A−1 · A = I where I is the identity matrix of the algebra of 
2 ×2 matrices under multiplication. That is: 

AA−1 = A−1 A =
[
1 0  
0 1

]

The addition of two 2 × 2 matrices A and B is given by a matrix whose entries 
are the addition of the individual components of A and B. The addition of two 
matrices is commutative and we have: 

A + B = B + A =
[
a + p b  + q 
c + r d  + s

]

where A and B are given by: 

A =
[
a b  
c d

]
B =

[
p q  
r s

]
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The identity matrix under addition is given by the matrix whose entries are all 
0, and it has the property that A + 0 = 0 + A = A.

[
0 0  
0 0

]

The multiplication of two 2 × 2 matrices is given by: 

AB  =
[
ap + br aq + bs 
cp + dr cq + ds

]

The multiplication of matrices is not commutative: i.e., AB /=BA. The multi-
plicative identity matrix I has the property that A · I = I · A = A, and it is given 
by: 

I =
[
1 0  
0 1

]

A matrix A may be multiplied by a scalar λ, and this yields the matrix λA where 
each entry in A is multiplied by the scalar λ. That is the entries in the matrix λA 
are λaij. 

27.3 Matrix Operations 

More general sets of linear equations may be solved with m× n matrices (i.e., a 
matrix with m rows and n columns) or square n ×n matrices. In this section, we 
consider several matrix operations including addition, subtraction, multiplication 
of matrices, scalar multiplication, and the transpose of a matrix. 

The addition and subtraction of two matrices A and B are meaningful if and 
only if A and B have the same dimensions: i.e., they are both m × n matrices. In 
this case, A + B is defined by adding the corresponding entries: 

( A + B)i j  = Ai j  + Bi j  

The additive identity matrix for the square n× n matrices is denoted by 0, where 
0 is a  n× n matrix whose entries are zero: i.e., rij = 0 for all i, j where 1≤ i ≤ n 
and 1 ≤ j≤n. 

The scalar multiplication of a matrix A by a scalar k is meaningful and the 
resulting matrix kA is given by: 

(k A)i j  = k Ai j  

The multiplication of two matrices A and B is meaningful if and only if the 
number of columns of A is equal to the number of rows of B (Fig. 27.2): i.e., A
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Fig. 27.2 Multiplication of two matrices 

is an m × n matrix and B is a n ×p matrix and the resulting matrix AB is a m× p 
matrix. 

Let A = (aij) where i ranges from 1 to m and j ranges from 1 to n, and let B 
= (bjl) where j ranges from 1 to n and l ranges from 1 to p. Then AB is given by 
(cil) where i ranges from 1 to m and l ranges from 1 top with cil given by: 

cil  = 
nΣ

k=1 

aikbkl . 

That is, the entry (cil) is given by multiplying the ith row in A by the lth 
column in B followed by a summation. Matrix multiplication is not commutative: 
i.e., AB /=BA. 

The identity matrix I is a n×n matrix and the entries are given by rij where rii 
= 1 and rij = 0 where i /= j (Fig. 27.3). A matrix that has nonzero entries only on 
the diagonal is termed a diagonal matrix. A triangular matrix is a square matrix 
in which all the entries above or below the main diagonal are zero. A matrix is an 
upper triangular matrix if all entries below the main diagonal are zero and lower 
triangular if all of the entries above the main diagonal are zero. Upper triangular 
and lower triangular matrices form a sub-algebra of the algebra of square matrices. 

Fig. 27.3 Identity matrix In
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Fig. 27.4 Transpose of a matrix 

A key property of the identity matrix is that for all n×n matrices A we have: 

AI  = I A  = A 

The inverse of a n ×n matrix A is a matrix A−1 such that: 

AA−1 = A−1 A = I 

The inverse A−1 exists if and only if the determinant of A is nonzero. 
The transpose of a matrix A = (aij) involves changing the rows to columns and 

vice versa to form the transpose matrix AT. The result of the operation is that the 
m ×n matrix A is converted to the n× m matrix AT (Fig. 27.4). It is defined by:

(
AT)

i j  =
(
A ji

)
1 ≤ j ≤ n and 1 ≤ i ≤ m 

A matrix is symmetric if it is equal to its transpose: i.e., A = AT. 

27.4 Determinants 

The determinant is a function defined on square matrices, and its value is a scalar. 
A key property of determinants is that a matrix is invertible if and only if its 
determinant is nonzero. The determinant of a 2 × 2 matrix is given by:

||||a b  
c d

|||| = ad − bc
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Fig. 27.5 Determining the 
(i, j) minor of A

The determinant of a 3×3 matrix is given by: 

||||||
a b  c  
d e  f  
g h  i

|||||| = aei + b f  g  + cdh − a f  h  − bdi − ceg 

Cofactors 
Let A be an n × n matrix. For 1≤ i, j≤ n, the (i, j) minor of A is defined to be the (n − 
1)× (n− 1) matrix obtained by deleting the ith row and jth column of A (Fig. 27.5). 

The shaded row is the ith row, and the shaded column is the jth column. These 
are both deleted from A to form the (i, j) minor of A, and this is a (n− 1)× (n− 1) 
matrix. 

The (i, j) cofactor of A is defined to be (−1)i+j times the determinant of the (i, j) 
minor. The (i, j) cofactor of A is denoted by Ki j(A). 

The cofactor matrix Cof A is formed in this way where the (i, j)th element in the 
cofactor matrix is the (i, j) cofactor of A. 

Definition of Determinant 
The determinant of a matrix is defined as: 

det A = 
nΣ
j=1 

Ai j  Ki j  

In other words the determinant of A is determined by taking any row of A and 
multiplying each element by the corresponding cofactor and adding the results. The 
determinant of the product of two matrices is the product of their determinants. 

det(AB) = det A × det B 

Definition The adjugate of A is the n× n matrix Adj(A) whose (i, j) entry is the (j, i) 
cofactor Kji(A) of  A. That is, the adjugate of A is the transpose of the cofactor matrix 
of A.
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Inverse of A 
The inverse of A is determined from the determinant of A and the adjugate of A. That 
is, 

A−1 = 1 
det A 

Adj A = 1 
det A 

(Cof A)T 

A matrix is invertible if and only if its determinant is nonzero: i.e., A is invertible 
if and only if det(A) /=0. 

Cramer’s Rule 
Cramer’s rule is a theorem that expresses the solution to a system of linear equations 
with several unknowns using the determinant of a matrix. There is a unique solution 
if the determinant of the matrix is nonzero. 

For a system of linear equations of the Ax = v where x and v are n-dimensional 
column vectors, then if det A /= 0 then the unique solution for each xi is 

xi = 
det Ui 

det A 

where Ui is the matrix obtained from A by replacing the ith column in A by the 
v-column. 

Characteristic Equation 
For every n × n matrix A there is a polynomial equation of degree n satisfied by A. 
The characteristic polynomial of A is a polynomial in x of degree n. It is given by: 

cA(x) = det(x I  − A). 

Cayley-Hamilton Theorem 
Every matrix A satisfies its characteristic polynomial: i.e., p(A) = 0 where p(x) is the 
characteristic polynomial of A. 

27.5 Eigen Vectors and Values 

A number λ is an eigenvalue of a n × n matrix A if there is a nonzero vector v 
such that the following equation holds: 

Av = λv 

The vector v is termed an eigenvector and the equation is equivalent to: 

( A − λI )v = 0
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This means that (A − λI) is a zero divisor, and hence, it is not an invertible 
matrix. Therefore, 

det( A − λI ) = 0 

The polynomial function p(λ) = det (A − λI) is called the characteristic poly-
nomial of A, and it is of degree n. The characteristic equation is p(λ) = 0 and 
as the polynomial is of degree n there are at most n roots of the characteristic 
equation, and so there at most n eigenvalues. 

The Cayley-Hamilton theorem states that every matrix satisfies its characteristic 
equation: i.e., the application of the characteristic polynomial to the matrix A yields 
the zero matrix. 

p( A) = 0 

27.6 Gaussian Elimination 

Gaussian elimination with backward substitution is an important method used in 
solving a set of linear equations. A matrix is used to represent the set of linear 
equations, and Gaussian elimination reduces the matrix to a triangular or reduced 
form, which may then be solved by backward substitution. 

This allows the set of n linear equations (E1–En) defined below to be solved 
by applying operations to the equations to reduce the matrix to triangular form. 
This reduced form is easier to solve and it provides exactly the same solution as 
the original set of equations. The set of equations is defined as: 

E1 : a11x1 + a12x2 +  · · ·  +  a1nxn = b1 
E2 : a21x1 + a22x2 + · · ·  +  a2nxn = b2 
: :  : :  :  

En : an1x1 + an2x2 +  · · ·  +  annxn = bn 

Three operations are permitted on the equations, and these operations transform 
the linear system into a reduced form. They are: 

(a) Any equation may be multiplied by a nonzero constant. 
(b) An equation Ei may be multiplied by a constant and added to another equation 

Ej, with the resulting equation replacing Ej 

(c) Equations Ei and Ej may be transposed with Ej replacing Ei and vice versa. 

This method for solving a set of linear equations is best illustrated by an example, 
and we consider an example taken from [1]. Then the solution to a set of linear 
equations with four unknowns may be determined as follows: 

E1 : x1 + x2 + 3x4 = 4 
E2 : 2x1 + x2 − x3 + x4 = 1
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E3 : 3x1 − x2 − x3 + 2x4 = −3 

E4 : −x1 + 2x2 + 3x3 − x4 = 4 

First, the unknown x1 is eliminated from E2, E3, and E4 and this is done by 
replacing E2 with E2 − 2E1; replacing E3 with E3 – 3E1; and replacing E4 with 
E4 + E1. The resulting system is 

E1 : x1 + x2 + 3x4 = 4 
E2 : −x2 − x3 − −5x4 = −7 
E3 : −4x2 − x3 − 7x4 = −15 
E4 : 3x2 + 3x3 + 2x4 = 8 

The next step is then to eliminate x2 from E3 and E4. This is done by replacing 
E3 with E3 – 4E2 and replacing E4 with E4 + 3E2. The resulting system is now 
in triangular form, and the unknown variable may be solved easily by backward 
substitution. That is, we first use equation E4 to find the solution to x4 and then 
we use equation E3 to find the solution to x3. We then use equations E2 and E1 
to find the solutions to x2 and x1. 

E1 : 
E2 : 
E3 : 
E4 : 

x1 + x2 + 3x4 = 4 
−x2 − x3 − 5x4 = −7 

3x3 + 13x4 = 13 
−13x4 = −13 

The usual approach to Gaussian elimination is to do it with an augmented 
matrix. That is, the set of equations is a n×n matrix and it is augmented by 
the column vector to form the augmented n ×n + 1 matrix. Gaussian elimination 
is then applied to the matrix to put it into triangular form, and it is then easy to 
solve the unknowns. 

The other common approach to solving a set of linear equation is to employ 
Cramer’s rule, which was discussed in Sect. 27.4. Finally, another possible (but 
computationally expensive) approach is to compute the determinant and inverse of 
A and to then compute x = A−1v. 

27.7 Review Questions 

1. Show how 2×2 matrices may be added and multiplied. 
2. What is the additive identity for 2×2 matrices? The multiplicative 

identity? 
3. What is the determinant of a 2×2 matrix? 
4. Show that a 2× 2 matrix is invertible if its determinant is nonzero. 
5. Describe general matrix algebra including addition and multiplication, 

determining the determinant and inverse of a matrix.
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6. What is Cramer’s rule? 
7. Show how Gaussian elimination may be used to solve a set of linear 

equations. 
8. Write a program to find the inverse of a 3× 3 and then a (n × n) matrix. 

27.8 Summary 

A matrix is a rectangular array of numbers that consists of horizontal rows and 
vertical columns. A matrix with m rows and n columns is termed an m× n matrix, 
where m and n are its dimensions. A matrix with an equal number of rows and 
columns (e.g., n rows and n columns) is termed a square matrix. 

Matrices arose in practice as a means of solving a set of linear equations, and 
matrices of the same dimensions may be added, subtracted, and multiplied by 
a scalar. Two matrices A and B may be multiplied provided that the number of 
columns of A equals the number of rows in B. 

Matrices have an identity matrix under addition and multiplication, and a square 
matrix has an inverse provided that its determinant is nonzero. The inverse of a 
matrix involves determining its determinant, constructing the cofactor matrix, and 
transposing the cofactor matrix. 

The solution to a set of linear equations may be determined by Gaussian 
elimination to convert the matrix to upper triangular form and then employing 
backward substitution. Another approach is to use Cramer’s rule. Eigenvalues and 
eigenvectors lead to the characteristic polynomial and every matrix satisfies its 
characteristic polynomial. 
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Key Topics 

Complex numbers 

Argand diagram 

Polar representation 

De Moivre’s theorem 

Complex conjugate 

Quaternions 

28.1 Introduction 

A complex number z is a number of the form a + bi where a and b are real num-
bers and i2 = −  1. Cardona, who was a sixteenth century Italian mathematician, 
introduced complex numbers, and he used them to solve cubic equations. The set 
of complex numbers is denoted by C, and each complex number has two parts 
namely the real part Re(z) = a, and the imaginary part Im(z) = b. The set of com-
plex numbers is an extension of the set of real numbers, and this is clear since 
every real number is a complex number with an imaginary part of zero. A com-
plex number with a real part of zero (i.e., a = 0) is termed an imaginary number. 
Complex numbers have many applications in physics, engineering, and applied 
mathematics.
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Fig. 28.1 Argand diagram 

X Axis 
(Real) 

Y Axis 
(Imaginary) 

a 

b 
z = a+bi 

r 

0 

A complex number may be viewed as a point in a two-dimensional Carte-
sian coordinate system (called the complex plane or Argand diagram), where the 
complex number a + bi is represented by the point (a, b) on the complex plane 
(Fig. 28.1). The real part of the complex number is the horizontal component, and 
the imaginary part is the vertical component. 

Quaternions are an extension of complex numbers. A quaternion number is a 
quadruple of the form (a + bi + cj + dk) where i2 = j2 = k2 = ijk = −  1. 
The set of quaternions is denoted by H, and the quaternions form an algebraic 
system known as a division ring. The multiplication of two quaternions is not 
commutative: i.e., given q1, q2 ∈ H then q1, q2 /=q2, q1. Quaternions were one 
the first non-commutative algebraic structures to be discovered (as matrix algebra 
came later). 

The Irish mathematician, Sir William Rowan Hamilton,1 discovered quater-
nions. Hamilton was trying to generalize complex numbers to triples without 
success. He had a moment of inspiration along the banks of the Royal Canal in 
Dublin, and he realized that if he used quadruples instead of triples that a general-
ization from the complex numbers was possible. He was so overcome with emotion 
at his discovery that he traced the famous quaternion formula2 on Brooms Bridge 
in Dublin. This formula is given by: 

i2 = j2 = k2 = i jk  = −1

1 There is a possibility that the German mathematician, Gauss, discovered quaternions earlier, but 
he did not publish his results. 
2 Eamonn DeValera (a former taoiseach and president of Ireland) was previously a mathemat-
ics teacher, and his interests included maths physics and quaternions. He carved the quaternion 
formula on the door of his prison cell in Lincoln Jail, England, during the Irish struggle for 
independence. He escaped from Lincoln Jail in February 1919. 
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Quaternions have many applications in physics and quantum mechanics and 
are applicable to the computing field. They are useful and efficient in describing 
rotations and are therefore applicable to computer graphics, computer vision, and 
robotics. 

28.2 Complex Numbers 

There are several operations on complex numbers such as addition, subtraction, 
multiplication, division, and so on (Table 28.1). Consider two complex numbers 
z1 = a + bi and z2 = c + di. Then, 

Properties of Complex Numbers 
The absolute value of a complex number z is denoted by |z| = 

√
(a2 + b2) and is just 

its distance from the origin. It has the following properties: 

(i) |z| ≥ 0 and |z| = 0 if and only if z = 0. 
(ii) |z| = |z* | 
(iii) |z1 + z2| ≤ |z1| + |z2| (This is known as the triangle inequality) 
(iv) |z1z2| = |z1| |z2| 
(v) |1/z|= 1/ |z| 
(vi) | z1/z|2 = |z1|/ |z2|

Table 28.1 Operations on Complex Numbers 

Operation Definition 

Addition z1 + z2 = (a + bi) + (c + di) = (a + c) + (b + d)i 
The addition of two complex numbers may be interpreted as the addition of 
two vectors 

Subtraction z1 − z2 = (a + bi) − (c + di) = (a − c) + (b − d)i 
Multiplication z1 z2 = (a + bi) · (c + di) = (ac − bd) + (ad + cb)i 
Division This operation is defined for z2 /= 0 

z1 
z2 

= a+bi 
c+di  = ac+bd 

c2+d2 
+ bc−ad 

c2+d2 
i 

Conjugate The conjugate of a complex number z = a + bi is given by z* = a − bi 
Clearly, z** = z and (z1 + z2)* = z1 * + z2 * Further, Re(z) = z + z*/ 2 and  
Im(z) = z − z*/ 2i 

Absolute value The absolute value or modulus of a complex number z = a + bi is given by |z| 
= 

√
(a2 + b2). Clearly, z. z* = |z|2 

Reciprocal The reciprocal of a complex number z is defined for z /= 0 and is given by: 
1 
z = 1 

a+bi = a−bi 
a2+b2 

= z∗ 

|z|2 
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Fig. 28.2 Interpretation of 
complex conjugate 

Y Axis 

a 

b z = a+bi  
r

-b 
r 

z* = a - bi

-0 
X Axis 

Proof (iii) 

|z1 + z2|2 = (z1 + z2)(z1 + z2)∗ 

= (z1 + z2)
(
z∗1 + z∗2

)

= z1z∗1 + z1z∗2 + z2z∗1 + z2z∗2 
= |z1|2 + z1z∗2 + z2z∗1 + |z2|2 
= |z1|2 + z1z∗2 +

(
z1z

∗
2

)∗ + |z2|2 
= |z1|2 + 2Re

(
z1z

∗
2

) + |z2|2 
≤ |z1|2 + 2

||z1z∗2
|| + |z2|2 

= |z1|2 + 2|z1|
||z∗2

|| + |z2|2 
= |z1|2 + 2|z1||z2| + |z2|2 
= (|z1| + |z2|)2 

Therefore, |z1 + z2| ≤ |z1|+ |z2 and so the triangle inequality is proved. 
The modulus of z is used to define a distance function between two complex 

numbers, and d(z1, z2) = |z1 − z2|. This turns the complex numbers into a metric 
space.3 

Interpretation of Complex Conjugate 
The complex conjugate of the complex number z = a + bi is defined as z* = a − 
bi, and this is the reflection of z about the real axis in Fig. 28.2. 

The modulus |z| of the complex number z is the distance of the point z from the 
origin.

3 A non-empty set X with a distance function d is a metric space if

(i) d(x, y) ≥ 0 and  d(x, y) = 0 ⇔ x = y 
(ii) d(z,y) = d(y,x) 
(iii) d(x, y) ≤ d(x, z) + d(z, y) 
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Polar Representation of Complex Numbers 
The complex number z = a + bi may also be represented in polar form (r, θ ) in terms 
of its modulus |z| and the argument θ. 

cos θ = a √
a2 + b2 

= 
a 

|z| 

sin θ = b √
a2 + b2 

= 
b 

|z| 

Let r denote the modulus of z: i.e., r = |z|. Then, z may be represented by z = 
(r cos θ + ir sin θ ) = r (cos θ + i sin θ ). Clearly, Re(z) = r cos θ and Im(z) = 
r sin θ. Euler’s formula (discussed below) states that reiθ = r (cos θ + i sin θ ). 

Each real number θ for which z = |z| (cos θ + i sin θ ) is said to be an argument 
of z (denoted by arg z). There is, of course, more than one argument θ that will 
satisfy z = r (cos θ + i sin θ ), and the full set of arguments is given by arg z = 
θ + 2kπ, where k ∈Z and satisfies z = rei(θ + 2kπ). 

The principle argument of z (denoted by Arg z = θ ) is the unique real number 
chosen so that θ ∈ (− π, π]. That is, arg z denotes a set of arguments, whereas 
Arg z denotes a unique argument. The following are properties of arg z: 

arg
(
z−1) = − arg z 

arg(zw) = arg z + arg w 

Euler’s Formula 
Euler’s remarkable formula expresses the relationship between the exponential 
function for complex numbers and trigonometric functions. It is named after the 
eighteenth century Swiss mathematician, Euler. 

It may be interpreted as the function eiθ traces out the unit circle in the complex 
plane as the angle θ ranges through the real numbers (Fig. 28.3). Euler’s formula 
provides a way to convert between Cartesian coordinates and polar coordinates (r, 
θ ). It states that: 

ei θ = cos θ + i sin θ.  

Fig. 28.3 Interpretation of 
Eulers’ formula

1 

i 

cos 
sin 

ei =cos + isin 
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Further, the complex number z = a + bi may be represented in polar 
coordinates as z = r(cos θ + i sin θ ) = reiθ . 

Next, we prove Euler’s formula: i.e., eiθ = cos θ + i sin θ. 

Proof Recall the exponential expansion for ex: 

ex = 1 + x + x2/2! +  x3/3! + · · · +  xr /r ! +  . . . .  

The expansion of eiθ is then given by: 

ei θ = 1 + i θ + 
(iθ)2 

2! + 
(i θ)3 

3! + · · ·  +  
(iθ)r 

r ! + . . . .  

= 1 + iθ − 
θ 2 

2! − 
i θ 3 

3! + 
θ 4 

4! + 
i θ 5 

5! + . . .  
(iθ)r 

r ! + . . .  

=
[
1 − 

θ 2 

2! + 
θ 4 

4! − 
θ 6 

6! + . . .
]

+ i

[

θ − 
θ 3 

3! + 
θ 5 

5! − 
θ 7 

7! + . . .

]

= cos θ + i sin θ 

(This follows from the Taylor Series expansion of sin θ and cos θ ). 

Euler’s Identity 
This remarkable identity follows immediately and is stated as: 

ei π = −1 (it is also written as ei π + 1 = 0) 

De Moivre’s Theorem 

(cos θ + i sin θ)n = (cos nθ + i sin nθ) (where n ∈ Z) 

Proof This result is proved by mathematical induction, and the result is clearly true 
for the base case n = 1. 

Inductive Step: 

The inductive step is to assume that the theorem is true for n = k and to then show 
that it is true for n = k + 1. That is, we assume that 

(cos θ + i sin θ)k = (cos kθ + i sin kθ) (for some k > 1) 

We next show that the result is true for n = k + 1: 

(cos θ + i sin θ)k+1 =
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= (cos θ + i sin θ)k (cos θ + i sin θ) 
= (cos kθ + i sin kθ)(cos θ + i sin θ) (from inductive step) 
= (cos kθ cos θ − sin kθ sin θ) + i(cos kθ sin θ + sin kθ cos θ) 
= cos(kθ + θ) + i sin(kθ + θ) 
= cos(k + 1)θ + i sin(k + 1)θ 

Therefore, we have shown that if the result is true for some value of n say n = 
k, then the result is true for n = k + 1. We have shown that the base case of n = 
1 is true, and it therefore follows that the result is true for n = 2, 3, … and for all 
natural numbers. The result may also be shown to be true for the integers. 

Complex Roots 
Suppose that z is a nonzero complex number and that n is a positive integer. Then z 
has exactly n distinct complex nth roots and these roots are given in polar form by: 

n
√ |z|

[
cos

{
Arg z + 2kπ 

n

}
+ i sin

{
Arg z + 2kπ 

n

}]

for k = 0, 1, 2, …. , n − 1 

Proof The objective is to find all complex numbers w such that wn = z where w = 
|w|(cos Φ + i sin Φ). Using De Moivre’s Theorem this results in: 

|w|n(cos nΦ + i sin nΦ) = |z|(cos θ + i sin θ) 

Therefore, |w| = n
√
|z| and nΦ = θ + 2kπ for some k. That is,

Φ = (θ + 2kπ)/n = (Arg z + 2kπ)/n 

The choices k = 0, 1, …, n − 1 produce the distinct nth roots of z. 
The principle nth root of z (denoted by n

√
z) is obtained by taking k = 0. 

Fundamental Theorem of Algebra 
Every polynomial equation with complex coefficients has complex solutions, and 
the roots of a complex polynomial of degree n exist, and the n roots are all complex 
numbers. 

Example Describe the set S of complex numbers that satisfy |z − 1| = 2|z + 1|. 

Solution 

Let z = x + iy then we note that z ∈S.

⇨ |z − 1| = 2|z + 1|
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⇨ |z − 1|2 = 4|z + 1|2
⇨ |z|2 − 2Re(z) + 1 = 4(|z|2 + 2Re(z) + 1)
⇨ |z|2 − 2Re(z) + 1 = 4|z|2 + 8Re(z) + 4
⇨ 3|z|2 + 10Re(z) + 3 = 0
⇨ 3(x2 + y2) + 10x = −  3
⇨ x2 + y2 + 10/3x = −  1
⇨ x2 + 10/3x + (5/3)2 + y2 = −  1 + (5/3)2…………(completing the square)
⇨ (x + 5/3)2 + y2 = (16/9)
⇨ (x + 5/3)2 + y2 = (4/3)2 

This is the formula for a circle with radius 4/3 and centre (−5/3, 0). 

Exponentials and Logarithms of Complex Numbers 
We discussed Euler’s formula and noted that any complex number z = x + iy may 
be written as z = r (cos θ + i sin θ ) = reiθ . This leads naturally 

exp(z) = ez = ex+iy  = ex eiy  = ex (cos y + i sin y) where z = x + iy. 

There are several properties of exponentials: 

(i) e0 = 1 
(ii) ew = 1 ⇔ w = 2kπ i k k  = 0,±1,±2,….. 
(iii) |ez | = eRe z 
(iv) arg (ez) = Im (z) 
(v) (ez)n = ezn 
(vi) (ez)−1 = e−z 

(vii) ezew = ez+w 
(viii) ez = ew ⇔ w = z + 2kπ i 

We say that w is a logarithm of z (there are an infinite number of them) if 

ln z = w ⇔ ew = z 

The principal logarithm of z (denoted by Log z) is given by: 

Log z = w = ln|z| + i Arg z 

ew = eln|z|+i Arg z 

= eln|z|ei Arg z 

= |z|(Cosθ + iSinθ) 
= z
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Further, the complete set of logarithms of z may be determined since any logarithm 
w of z (log z) satisfies: 

ew = eLog z

⇨ w = Log z + 2kπ i
⇨ w = ln |z| + iArg z + 2kπ i
⇨ w = ln |z| + i(Arg z + 2kπ ) 

Raising Complex Numbers to Complex Powers 
The value of xt may be determined by the exponential and logarithm functions for 
real numbers 

ln xt = t ln x 
x t = et ln x 

The principal λ power of z is defined in terms of the principal logarithm as follows: 

zλ = eλ Log z 

The general λ power of z is of the form: 

zλe2kπλi 

Complex Derivatives 
A function f : A→ C is said to be differentiable at a point z0 if f is continuous at z0 

f ,(z0) = lim 
z→z0 

f (z) − f (z0) 
z − z0 

and if the limit below exists. The derivative at z0 is denoted by f ,(z0). 
It is often written as 

f ,(z0) = lim 
h→0 

f (z0 + h) − f (z0) 
h
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28.3 Quaternions 

The Irish mathematician, Sir William Rowan Hamilton, discovered quaternions 
in the nineteenth century (Fig. 28.4). Hamilton was born in Dublin in 1805 and 
attended Trinity College, Dublin. He was appointed professor of astronomy in 
1827 while still an undergraduate. He made important contributions to optics, 
classical mechanics, and mathematics. 

Hamilton had been trying to generalize complex numbers to triples without 
success. However, he had a sudden flash of inspiration on the idea of quaternion 
algebra at Broom’s Bridge in 1843 while he was walking with his wife from his 
home at Dunsink Observatory to the Royal Irish Academy in Dublin. This route 
followed the towpath of the Royal Canal, and Hamilton was so overcome with 
emotion at his discovery of quaternions that he carved the quaternion formula 
into the stone on the bridge. Today, there is a plaque at Broom’s Bridge that 
commemorates Hamilton’s discovery (Fig. 28.5). 

i2 = j2 = k2 = i jk  = −1 

Quaternions are an extension of complex numbers, and Hamilton had been try-
ing to extend complex numbers to three-dimensional space without success from

Fig. 28.4 William Rowan 
Hamilton 

Fig. 28.5 Plaque at Broom’s 
Bridge 
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the 1830s. Complex numbers are numbers of the form (a + bi) where i2 = −  1 
and may be regarded as points on a 2-dimensional plane. A quaternion number is 
of the form (a + bi + cj + dk) where i2 = j2 = k2 = ijk = −  1 and may be 
regarded as points in 4-dimensional space. 

The set of quaternions is denoted H by and the quaternions form an algebraic 
system known as a division ring. The multiplication of two quaternions is not 
commutative: i.e., given q1, q2 ∈H then q1q2 /= q2q1. Quaternions were the first 
non-commutative algebraic structure to be discovered, and other non-commutative 
algebras (e.g., matrix algebra) were discovered in later years. 

Quaternions have applications in physics, quantum mechanics, and theoretical 
and applied mathematics. Gibbs and Heaviside later developed the vector analysis 
field from quaternions (see Chap. 29), and vector analysis replaced quaternions 
from the 1880s. Quaternions have become important in computing in recent years, 
as they are useful and efficient in describing rotations. They are applicable to 
computer graphics, computer vision, and robotics. 

28.4 Quaternion Algebra 

Hamilton had been trying to extend the 2-dimensional space of the complex num-
bers to a 3-dimensional space of triples. He wanted to be able to add, multiply, 
and divide triples of numbers but he was unable to make progress on the problem 
of the division of two triples. 

The generalization of complex numbers to the 4-dimensional quaternions rather 
than triples allows the division of two quaternions to take place. The quaternion is 
a number of the form (a + bi + cj + dk) where 1, i, j, k are the basis elements 
(where 1 is the identity) and satisfy the following properties: 

i2 = j2 = k2 = i jk  = −1 (Quaternion Formula) 

This formula leads to the following properties: 

i j  = k = −  j i  
jk  = i = −k j  

ki  = j = −ik  

These properties can be easily derived from the quaternion formula. For example: 

i jk  = −1 
⇒ i jkk  = −k (Right multiplying by k) 
⇒ i j  (−1) = −k (since k2 = −1) 
⇒ i j  = k
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Table 28.2 Basic quaternion multiplication 

× 1 i j k 

1 1 i j k 

i i − 1 k − j 
j j − k − 1 i 

k k j − i − 1 

Similarly, from 

i j  = k 
⇒ i2 j = ik (Left multiplying by i ) 
⇒ −  j = ik (since i2 = −1) 
⇒ j = −ik  

Table 28.2 represents the properties of quaternions under multiplication. 
Hamilton saw that the i, j, k terms could represent the three Cartesian unit 

vectors i, j, k. The quaternions (H) are a 4-dimensional vector space over the 
real numbers with three operations: addition, scalar multiplication, and quaternion 
multiplication. 

Addition and Subtraction of Quaternions 
The addition of two quaternions q1 = (a1 + b1i + c1j + d1k) and q2 = (a2 + b2i + 
c2j + d2k) is given by 

q1 + q2 = (a1 + a2) + (b1 + b2)i + (c1 + c2) j + (d1 + d2)k 
q1 − q2 = (a1 − a2) + (b1 − b2)i + (c1 − c2) j + (d1 − d2)k 

Identity Element 
The addition identity is given by the quaternion (0 + 0i + 0j + 0k), and the 
multiplicative identity is given by (1 + 0i + 0j + 0k). 

Multiplication of Quaternions 
The multiplication of two quaternions q1 and q2 is determined by the product of 
the basis elements and the distributive law. It yields (after a long calculation that 
may be simplified with a representation of 2 ×2 matrices over Complex Numbers as 
described later in the chapter): 

q1.q2 = a1a2 + a1b2i + a1c2 j + a1d2k 
+ b1a2i + b1b2i i  + b1c2i j  + b1d2ik  
+ c1a2 j + c1b2 j i  + c1c2 j j  + c1d2 jk  
+ d1a2k + d1b2ki + d1c2k j  + d1d2kk
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This may then be simplified to: 

q1.q2 = a1a2 − b1b2 − c1c2 − d1d2 
+ (a1b2 + b1a2 + c1d2 − d1c2)i 
+ (a1c2 − b1d2 + c1a2 + d1b2) j 
+ (a1d2 + b1c2 − c1b2 + d1a2)k 

The multiplication of two quaternions may be defined in terms of matrix multi-
plication. It is easy to see that the product of the two quaternions above is equivalent 
to: 

q1q2 = 

⎛ 

⎜ 
⎜ 
⎝ 

a1 −b1 −c1 −d1 
b1 a1 −d1 c1 
c1 d1 a1 −b1 
d1 −c1 b1 a1 

⎞ 

⎟ 
⎟ 
⎠ 

⎛ 

⎜ 
⎜ 
⎝ 

a2 
b2 
c2 
d2 

⎞ 

⎟ 
⎟ 
⎠ 

This may also be written as: 

(a2b2c2d2) 

⎛ 

⎜ 
⎜ 
⎝ 

a1 b1 c1 d1 
−b1 a1 d1 −c1 
−c1 −d1 a1 b1 
−d1 c1 −b1 a1 

⎞ 

⎟ 
⎟ 
⎠ = q1q2 

Property of Quaternions Under Multiplication 
The quaternions are not commutative under multiplication. That is, 

q1q2 /= q2q1 

The quaternions are associative under multiplication. That is, 

q1(q2q3) = (q1q2)q3 

Conjugation 
The conjugation of a quaternion is analogous to the conjugation of a complex number. 
The conjugate of a complex number z = (a + bi) is given by z* = (a − bi). Similarly, 
the conjugate of a quaternion is determined by reversing the sign of the vector part 
of the quaternion. That is, the conjugate of q = (a + bi + cj + dk) (denoted by q*) 
is given by q* = (a − bi − cj − dk). Similarly, q** = q. 

Scalar and Vector Parts of Quaternion 
A quaternion (a + bi + cj + dk) consists of a scalar part a, and a vector part bi + 
cj + dk. The scalar part is always real, and the vector part is imaginary. That is, the 
quaternion q may be represented q = (s, v) where s is the scalar part and v is the
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vector part. The scaler part of a quaternion is given by s = (q + q*)/2, and the vector 
part is given by v = (q − q*)/2. 

The vector part of a quaternion may be regarded as a coordinate vector in 
three-dimensional space R3, and the algebraic operations of quaternions reflect the 
geometry of three-dimensional space. The elements i, j, k represents imaginary basis 
vectors of the quaternions and the basis elements in R3. 

The norm of a quaternion q (denoted by q ) is given by:

||q|| = 
√ 
qq∗ = 

√ 
q∗q =

√ 
a2 + b2 + c2 + d2 

A quaternion of norm one is termed a unit quaternion (i.e., u = 1). Any quater-
nion u where u is defined by u = q/ q is a unit quaternion. Unit quaternions may 
be identified with rotations in R3. Given  α ∈ R then αq = |α| q . 

The product of two quaternions may also be given in terms of the scalar and vector 
parts. That is, if q1 = (s1, v1) and q2 = (s2, v2) then the product of q1 and q2 is given 
by: 

q1q2 = (s1s2 − v1.v2, s1v2 + s2.v1 + v1 × v2) 

where “.” is the dot product and “ ×” is the cross product as defined in Chap. 29. 

Inverse of a Quaternion 
The inverse of a quaternion q is given by q−1 where 

q−1 = q∗/||q||2 

and qq−1 = q−1q = 1 
Given two quaternions p and q we have:

||pq|| = ||p||||q||

The norm is used to define the distance between two quaternions, and the distance 
between two quaternions p and q (denoted by d(p, q)) is given by:

||p − q||

Representing Quaternions with 2×2 Matrices Over Complex Numbers 
The quaternions have an interpretation under the 2 × 2 matrices where the basis 
elements i, j, k may be interpreted as matrices. Recall, that the multiplicative identity 
for 2 × 2 matrices is 

1 =
[
1 0  
0 1

]
− 1 =

[−1 0  
0 −1

]
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Consider then the quaternion basis elements defined as follows: 

i =
[

0 1  
−1 0

]
j =

[
0 i 
i 0

]
k =

[
i 0 
0 −i

]

Then a simple calculation shows that: 

i2 = j2 = k2 = i jk  =
[−1 0  

0 −1

]
= −1 

Then the quaternion q = (a + bi + cj + dk) may also be defined as 

a

[
1 0  
0 1

]
+ b

[
0 1  

−1 0

]
+ c

[
0 i 
i 0

]
+ d

[
i 0 
0 −i

]

This may be simplified to the complex matrix 

q =
[
a + di b  + ci 
−b + ci a − di

]

and this is equivalent to: 

q =
[
u v  
−v∗ u∗

]

where u = a + di and v = b + ci. 
The addition and multiplication of quaternions are then just the usual matrix 

addition and multiplication. Quaternions may also be represented by 4× 4 real 
matrices. 

28.4.1 Quaternions and Rotations 

Quaternions may be applied to computer graphics; computer vision, and robotics, 
and unit quaternions provide an efficient mathematical way to represent rotations 
in three dimensions (Fig. 28.6). They offer an alternative to Euler angles and 
matrices.

The unit quaternion q = (s, v) that computes the rotation about the unit vector 
u by an angle θ is given by: 

(Cos(θ/2), u Sin(θ/2)) 

The scalar part is given by s = Cos(θ /2), and the vector part is given by v = u 
Sin(θ /2).
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Fig. 28.6 Quaternions and 
Rotations

A point p in space is represented by the quaternion P = (0, p). The result of 
the rotation of p is given by: 

Pq = qPq−1 

The norm of q is 1, and so q−1 is given by (Cos(θ /2), − u Sin(θ /2)). 
Suppose we have two rotations represented by the unit quaternions q1 and q2, 

and that we first wish to perform q1 followed by the rotation q2. Then, the com-
position of the two relations is given by applying q2 to the result of applying q1. 
This is given by the following: 

P(q◦
2 q1) = q2

(
q1 Pq

−1 
1

)
q−1 
2 

= q2 q1 Pq−1 
1 q

−1 
2 

= (q2 q1)P(q2 q1)
−1 

28.5 Review Questions 

1. What is a complex number? 
2. Show how a complex number may be represented as a point in the 

complex plane. 
3. Show that |z1z2| = |z1| |z2|. 
4. Evaluate the following 

(a) (–1)1/4 

(b) 11/5 

5. What is the fundamental theorem of algebra? 
6. Show that d/dz zn = nzn−1. 
7. What is a quaternion?
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8. Investigate the application of quaternions to computer graphics, computer 
vision, and robotics. 

28.6 Summary 

A complex number z is a number of the form a + bi where a and b are real num-
bers and i2 = −  1. The set of complex numbers is denoted by C, and a complex 
number has two parts namely its real part a and imaginary part b. The complex 
numbers are an extension of the set of real numbers, and complex numbers with 
a real part a = 0 are termed imaginary numbers. Complex numbers have many 
applications in physics, engineering, and applied mathematics. 

The Irish mathematician, Sir William Rowan Hamilton, discovered quaternions. 
Hamilton had been trying to extend the 2-dimensional space of the complex num-
bers to a 3-dimensional space of triples. He wanted to be able to add, multiply, and 
divide triples of numbers, but he was unable to make progress on the problem of 
the division of two triples. His insight was that if he considered quadruples rather 
than triples that this structure would give him the desired mathematical properties. 
Hamilton also made important contributions to optics, classical mechanics, and 
mathematics. 

The generalization of complex numbers to the 4-dimensional quaternions rather 
than triples allows the division of two quaternions to take place. The quaternion is 
a number of the form (a + bi + cj + dk) where 1, i, j, k are the basis elements 
(where 1 is the identity) and satisfy the quaternion formula: 

i2 = j2 = k2 = i jk  = −1
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Key Topics 

Addition and subtraction of vectors 

Scalar multiplication 

Dot product 

Cross product 

29.1 Introduction 

A vector is an object that has magnitude and direction, and the origin of the term 
is from the Latin word ‘vehere’ meaning to carry or to convey. Vectors arose 
out of Hamilton’s discovery of quaternions in 1843, and quaternions arose from 
Hamilton’s attempts to generalize complex numbers to triples, where a quaternion 
consists of a scalar part and a vector part (see Chap. 28). They were subsequently 
refined by Gibbs who treated the vector part of a quaternion as an independent 
object in its own right. Gibbs defined the scalar and dot product of vectors using 
the relevant part of quaternion algebra, and his approach led to the new disci-
pline of vector analysis. Gibbs’s vector notation became dominant with quaternion 
algebra fading into obscurity until more recent times. 

A vector is represented as a directed line segment such that the length represents 
the magnitude of the vector, and the arrow indicates the direction of the vector. It 
is clear that velocity is a vector in the example of a jogger running at 9 km/h in a 
westerly direction, whereas speed is not a vector since the direction is not specified 
when we state that a runner travelled 6 km at an average speed of 9 km/h. The 
magnitude of the velocity vector (9 km/h) indicates how large it is and the direction 
is 270° (the direction is usually given by a unit vector).
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magnitude 

direction 

Vector 
v 

The magnitude of a vector v is denoted by ||v||, and all vectors (apart from the 
zero vector 0 which has magnitude 0 and does not point in any particular direction) 
have a positive magnitude. The vector - v represents the same vector as v except 
that it points in the opposite direction. The unit vector u has a magnitude of 1. 
Two vectors are equal if they have the same magnitude and direction. 

The addition of two vectors a and b may be seen visually below (triangle law), 
and the addition of two vectors is commutative with a + b = b + a (parallelogram 
law). Similarly, vectors may be subtracted with a − b = a + (-b). 

a 
b 

a+b 

The multiplication of a vector by a scalar changes its magnitude (length) but 
not its direction, except that the multiplication by a negative scalar reverses the 
direction of the vector. For example, the multiplication of a vector by 0.5 results 
in a vector half as large in the same direction, whereas multiplication by –2 results 
in a vector twice as large pointing in the opposite direction. 

There are two ways of multiplying two vectors v and w together namely the 
cross product (v× w) and the dot product (v · w). The cross product (or vector 
product) is given by the formula v ×w = ||v|| ||w|| Sin θ n, where θ is the angle 
between v and w, and n is the unit vector perpendicular to the plane containing v 
and w. The cross product is anti-commutative: i.e., v × w = - w × v. 

The dot product (or scalar product) of two vectors is given by the formula v.w 
= ||v|| ||w|| Cos θ, where θ is the angle between v and w. The dot product is 
often employed to find the angle between the two vectors, and the dot product is 
commutative with v.w = w.v. 

Example 29.1 An aircraft can fly at 300 and a 40 kph wind is blowing in a south 
easterly direction. The aircraft sets off due north. What is its velocity with respect to 
the ground? 

Solution 
The aircraft is flying at 300 kph N and the wind is blowing at 40 kph SE and so 
the resulting velocity is the vector v.
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The magnitude of v is given from the cosine rule:

||v||2 = 3002 + 402 − 2 ∗ 300 ∗ 40Cos45◦

||v|| = 213.2 kph 

The direction of v is given by the angle ϕ which is determined from the sine 
rule. 

Sin45 

273.2 
= 

Sinϕ 
40 

0.1035 = Sinϕ 
ϕ = 5.96◦ 

Thus the velocity of the aircraft is 273.2 kph in the direction of (90 − 5.96) = 
84.04°. 

29.2 Vectors in Euclidean Space 

A vector in Euclidean space is represented as an ordered pair (tuple) in R2, an  
ordered triplet (3-tuple) of numbers in R3, and an ordered n-tuple in Rn. For  
example, the point (a, b) is a vector in two-dimensional space and the triple (a, b, 
c) is a vector in three-dimensional space. The vector is drawn by joining an arrow 
from the origin to the point (in 2-dimensional or 3-dimensional space) (Fig. 29.1) 

The addition and subtraction of two vectors v = (a, b, c) and w = (x, y, z) are 
given by:

v + w = (a + x, b + y, c + z)

Fig. 29.1 The Vector (a,b) in  
Euclidean Plane 

a 

b (a, b) 
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v − w = (a − x, b − y, c − z)

The multiplication of a vector v by a scalar k is given by: 

kv = (ka, kb, kc) 

For any vector v = (a, b) in 2-dimensional space then from Pythagoras’s Theorem 
we have that the magnitude of v is given by:

||v|| = √(
a2 + b2

)
. 

Similarly, for any vector v = (a, b, c) in 3-dimensional space then from 
Pythagoras’s Theorem we have:

||v|| = √(
a2 + b2 + c2

)
. 

We can create the unit vector along v in 2-dimensional space by: 

v
||v|| =

(
a

||v|| , 
b

||v||
)

The zero vector 0 is (0, 0) in 2-dimensional space and (0, 0, 0) in 3-dimensional 
space. 

The standard basis for three-dimensional space is i = (1, 0, 0), j = (0, 1, 0), 
and k = (0, 0, 1), and any vector v = (a, b, c) may be expressed as a linear 
combination of the basis elements: 

v = ai + bj + ck 

Example 29.2 Calculate the magnitude of v where v is (2,3,1). Determine the unit 
vector along v. 
Solution 
The magnitude of v (or ||v||) is given by:

||v|| = √(
a2 + b2 + c2

)

= √(
22 + 32 + 12

)

= √14 

= 3.74 

The unit vector along v is given by: 

v
||v|| =

(
a

||v|| , 
b

||v|| , 
c

||v||
)

=
(
2/
3.74, 3

/
3.74, 1

/
3.74

)

= (0.53, 0.8, 0.27)
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29.2.1 Dot Product 

The result of the dot product (also called scalar product) of two vectors is a scalar, 
and the dot product of two vectors v = (a, b, c) and w = (x, y, z) is given by: 

v · w = ax + by + cz 

We previously defined the dot product as. 

v · w = ||v||||w|| Cos θ 

where θ is the angle between v and w 
The dot product of the basis elements is given by 

i · j = 1.1.Cos π/2 = 0 
j · k = 1.1.Cos π/2 = 0 
k · i = 1.1.Cos π/2 = 0 

The two expressions for the calculation of the dot product allow the angle 
between v and w to be determined:

||v||||w||Cosθ = ax + by + cz 

Cosθ = 
ax + by + cz

||v||||w||
θ = Cos−1

(
ax + by + cz

||v||||w||
)

Example 29.3 Calculate the dot product of v and w where v is (2,3,1) and w is 
(3,4,1). Determine the angle between v and w. 
Solution 
The dot products of v and w are given by: 

v · w = ax + by + cz 
= 2.3 + 3.4 + 1.1 
= 19 

The magnitudes of v and w are given by:

||v|| = √(
a2 + b2 + c2

) == √(
22 + 32 + 12

) = 3.74
||w|| = √(

x2 + y2 + z2
) == √(

32 + 42 + 12
) = √26 = 5.1 

||v|| ||w|| Cosθ = ax + by + cz

⇨ 3.74 * 5.1 Cosθ = 19
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⇨ 19.07 Cosθ = 19
⇨ Cosθ = 0.9963
⇨ θ = 4.92° 

29.2.2 Cross Product 

The result of the cross product (also called vector product) of two vectors v and w 
is another vector that is perpendicular to both v and w. The cross product of the 
vectors v = (a, b, c) and w = (x, y, z) is given by: 

v × w = (bz − cy, cx − az, ay − bx) 

The cross product is also defined by: 

v × w = ||v||||w|| Sin θ n 

θ is the angle between v and w 
n is the unit vector perpendicular to the plane containing v and w. 

The cross product is anti-commutative 

v × w = −w × v 

The cross product of the basis elements is given by 

i × j = k 
j × k = i 
k × i = j 

The cross product may also be expressed as the determinant of a 3-dimensional 
matrix which has the basis elements on the first row, and the vectors in the 
remaining rows. This is seen as follows: 

v × w =
|
|
|
|
||

i j  k  
a b  c  
x y  z

|
|
|
|
||

The magnitude of v× w may be interpreted as the area of a parallelogram 
having v and w as sides.
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Example 29.4 Calculate the cross product of v and w where v is (2,3,1) and w 
is (3,4,1). Show that its cross product is anti-commutative. Show that v× w is 
perpendicular to v and w. 

Solution 
The cross product of v and w is given by: 

v × w =
|
|
|
||
|

i j  k  
2 3 1  
3 4 1

|
|
|
||
|

= (3 − 4)i − (2 − 3)j + (8 − 9)k 
= −i + j − k 
= (−1, 1, −1) 

The cross product of w and v is given by: 

w × v =
||
|
|
|
|

i j  k  
3 4 1  
2 3 1

||
|
|
|
|

= (4 − 3)i − (3 − 2)j + (9 − 8)k 
= i − j + k 
= (1, −1, 1) 
= −v × w 

Finally, to show that v×w is perpendicular to both v and w we compute the 
dot product of v × w with v and w (if they are perpendicular the dot product will 
be zero) and we get: 

(v × w) · v = (−1, 1, −1) · (2, 3, 1) = −2 + 3 − 1 = 0 
(v × w) · w = (−1, 1, −1) · (3, 4, 1) = −3 + 4 − 1 = 0 

29.2.3 Linear Dependent and Independent Vectors 

A set of vectors v1,v2,… vn in a vector space V are said to be linearly dependent 
if there is a set of values λ1, λ2,… λn (where not all of the λi are zero) and 

λ1v1 + λ2v2 + · · ·  +  λnvnλ = 0 

A set of vectors v1,v2,… vn in a vector space V are said to be linearly inde-
pendent if whenever λ1v1 + λ2v2 +  · · ·  +  λn vnλ = 0 then λ1 = λ2 = … = λn 
= 0.
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Example 29.5 Determine whether the following pairs of vectors are linearly 
independent or linearly dependent. 

(i) v is (1, 2, 3) and w is (2,4,6). 
(ii) v is (2,3,1) and w is (3,4,1). 

Solution 

(i) We are seeking λ1 and λ2 such that λ1v + λ2w = 0. 

λ1v + λ2w 
= λ1(1, 2, 3) + λ2(2, 4, 6) 
= (λ1 + 2λ2, 2λ1 + 4λ2, 3λ1 + 6λ2) 

Thus when λ1v + λ2w = 0 we have: 
λ1 + 2λ2 = 0, 2λ1 + 4λ2 = 0 and 3λ1 + 6λ2 = 0. 
That is, λ1 + 2λ2 = 0 or  λ1 = -2λ2 and so we may take λ1 = 2, λ2 = -1. 
That is, v is (1, 2, 3) and w is (2,4,6) are linearly dependent. 

(ii) λ1v + λ2w 
= λ1(2, 3, 1) + λ2(3, 4, 1). 
= (2λ1 + 3λ2, 3λ1 + 4λ2, λ1 + λ2). 

Thus when λ1v + λ2w = 0 we have three equations with two unknowns and so 
we solve for λ1 and λ2: 

a. 2λ1 + 3λ2 = 0 
b. 3λ1 + 4λ2 = 0 
c. λ1 + λ2 = 0 

We deduce λ1 = −λ2 from equation (c) and we substitute for λ1 in equation (a) 
to get: 

2(−λ2) + 3λ2 = 0.
⇨ λ2 = 0
⇨ λ1 = 0 

That is, v = (2, 3, 1) and w = (3, 4, 1) are linearly independent.
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29.3 Review Questions 

1. What is a vector? 
2. Explain the triangle and parallelogram laws. 
3. An aircraft is capable of flying at 500 kph and a 60 kph wind is blowing 

in a south westerly direction. The aircraft sets off due north. What is its 
velocity with respect to the ground? 

4. Determine the dot product of u and v where u = (3, 1, 5) and v = (2, 4, 
3). 

5. Determine the angle between u and v where u = (3, 1, 5) and v = (2, 4, 
3). 

6. Determine the cross product of u and v where u = (2, 1, 4) and v = (1, 
3, 3). 

7. Determine if the vectors u and v are linearly independent. 

29.4 Summary 

A vector is an object that has magnitude and direction, and it is represented as a 
directed line segment such that the length represents the magnitude of the vector 
and the arrow indicates the direction of the vector. A vector in Euclidean space is 
represented as an ordered pair in R2, an ordered triplet of numbers in R3, and an 
ordered n-tuple in Rn. 

The dot product of two vectors is a scalar, whereas the cross product of two 
vectors v and w results in another vector that is perpendicular to both v and w. 

A set of vectors v1,v2,… vn in a vector space V are said to be linearly dependent 
if there is a set of values λ1, λ2,… λn (where not all of the λi are zero) and λ1v1 
+ λ2v2 +  · · ·  +  λn vnλ = 0. Otherwise, they are said to be linearly independent.
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Key Topics 

Simple interest 

Compound interest 

Treasury bills 

Promissory notes 

Annuities 

Present and future values 

Equivalent values 

30.1 Introduction 

Banks are at the heart of the financial system, and they play a key role in facili-
tating the flow of money throughout the economy. Banks provide a service where 
those with excess funds (i.e., the savers) may lend to those who need funds (i.e., 
the borrowers). Banks pay interest to its savers1 and earn interest from its borrow-
ers, and the spread between the interest rate given to savers and the interest rate 
charged to borrowers provides banks with the revenue to provide service to their 
clients, and to earn a profit from the provision of the services.

1 We are assuming that the country is not in a cycle of negative interest rates where investors are 
essentially charged to place their funds on deposit with the bank. 
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We distinguish between simple and compound interest, with simple interest cal-
culated on the principal only, whereas compound interest is calculated on both the 
principal and the accumulated interest of previous compounding periods. That is, 
simple interest is always calculated on the original principal, whereas for com-
pound interest, the interest is added to the principal sum, so that interest is also 
earned on the added interest for the next compounding period. 

The future value is what the principal will amount to in future at a given rate 
of interest, whereas the present value of an amount to be received in future is the 
principal that would grow to that amount at a given rate of interest. 

An annuity is a sequence of fixed equal payments made over a period of time, 
and it is usually paid at the end of the payment interval. For example, for a hire 
purchase contract the buyer makes an initial deposit for an item and then pays an 
equal amount per month (the payment is generally at the end of the month) up to 
a fixed end date. Personal loans from banks are paid back in a similar manner but 
without an initial deposit. 

An interest-bearing debt is amortized if both the principal and interest are repaid 
by a series of equal payments (except for possibly the last payment) made at 
equal intervals of time. The debt is repaid by an amortization annuity, where each 
payment consists of both the repayment of the capital borrowed and the interest 
due on the capital for that time interval. 

30.2 Simple Interest 

Savers receive interest for placing deposits at the bank for a period of time, 
whereas lenders pay interest on their loans to the bank. Simple interest is gen-
erally paid on term deposits (these are usually short-term fixed-term deposits for 
3, 6, or 12 months) or short-term investments or loans. The interest earned on a 
savings account depends on the principal amount placed on deposit at the bank, 
the period of time that it will remain on deposit, and the specified rate of interest 
for the period. 

For example, if Euro 1000 is placed on deposit at a bank with an interest rate 
of 10% per annum for two years, then it will earn a total of Euro 200 in simple 
interest for the period. The interest amount is calculated by 

1000 ∗ 10 ∗ 2 

100
= EURO 200 

The general formula for calculating the amount of simple interest A due for 
placing principal P on deposit at a rate r of interest (where r is expressed as a 
percentage) for a period of time T (in years) is given by: 

I = 
P × r × t 

100
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If the rate of interest r is expressed as a decimal then the formula for the interest 
earned is simply: 

I = P × r × t 

It is essential in using the interest rate formula that the units for time and rate 
of interest are the same: 

Example 30.1 (Simple Interest) Calculate the simple interest payable for the 
following short-term investments. 

1. £5000 placed on deposit for six months (1/2 year) at an interest rate of 4%. 
2. £3000 placed on deposit for one month (1/12 year) at an interest rate of 5%. 
3. £10,000 placed on deposit for one day (1/365 year) at an interest rate of 7%. 

Solution (Simple Interest) 

1. A= 5000 * 0.04 * 0.5 = £100 
2. A = 3000 * 0.05 * 0.08333 = £12.50 
3. A = 10000 * 0.07 * 0.00274 = £1.92 

We may derive various formulae from the simple interest formula A = P× r ×T. 

P = 
I 

r t  
r = 

I 

Pt  
t = 

I 

Pr  

Example 30.2 (Finding the Principal, Rate or Time) Find the value of the principal 
or rate or time in the following. 

1. What principal will earn interest of e24.00 at 4.00% in eight months? 
2. Find the annual rate of interest for a principal of e800 to earn e50 in interest in 

nine months. 
3. Determine the number of months required for a principal of e2000 to earn e22 

in interest at a rate of 5%. 

Solution 

We use the formulae derived from the simple interest formula to determine these. 

1. P = I 
r t  = 24 

0.04×0.6666 = e900 
2. r = I 

Pt  = 50 
800×0.75 = 0.0833 = 8.33% 

3. t = I 
Pr  = 22 

2000×0.05 = 0.22 years = 2.64 months
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30.2.1 Computing Future and Present Values 

The future value is what the principal will amount to in future at a given rate of 
interest, whereas the present value of an amount to be received in future is the 
principal that would grow to that amount at a given rate of interest. 

30.2.2 Computing Future Value 

A fixed-term account is an account that is opened for a fixed period of time (typi-
cally 3, 6, or 12 months). The interest rate is fixed during the term, and thus, the 
interest due at the maturity date is known in advance. That is, the customer knows 
what the future value (FV) of the investment will be and knows what is due on the 
maturity date of the account (this is termed the maturity value). 

On the maturity date both the interest due and the principal are paid to the 
customer, and the account is generally closed on this date. In some cases, the 
customer may agree to roll over the principal, or the principal and interest for a 
further fixed period of time, but there is no obligation on the customer to do so. 
The account is said to mature on the maturity date, and the maturity value (MV) 
or future value (FV) is given by the sum of the principal and interest: 

MV = FV = P + I 

Further, since I = Prt we can write this as MV = P + Prt or 

FV = MV = P(1 + r t) 

Example 30.3 (Computing Maturity Value) Jo invests e10,000 in a short-term 
investment for three months at an interest rate of 9%. What is the maturity value of 
her investment? 

Solution (Computing Maturity Value) 

MV = P(1 + r t) 
= 10,000(1 + 0.09 ∗ 0.25) 

= e10,225 

30.2.3 Computing Present Values 

The present value of an amount to be received at a given date in future is the 
principal that will grow to that amount at a given rate of interest over that period 
of time. We computed the maturity value of a given principal at a given rate of 
interest r over a period of time t as: 

MV = P(1 + r t)
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Therefore, the present value (PV = P) of an amount V to be received t years 
in future at an interest rate r (simple interest) is given by: 

PV = P = V 

(1 + r t) 

Example 30.4 (Computing Present Value) Compute the present value of an invest-
ment eight months prior to the maturity date, where the investment earns interest of 
7% per annum and has a maturity value of e920. 

Solution (Computing Present Value) 

V = 920, r = 0.07, t = 8/12 = 0.66 

PV = P = V 

(1 + r t) 
= 920 

(1 + 0.07 ∗ 0.66) 
= e879.37 

Example 30.5 (Equivalent Values) Compute the payment due for the following: 

1. A payment of $2000 is due in one year. It has been decided to repay early and 
payment is to be made today. What is the equivalent payment that should be made 
given that the interest rate is 10%? 

2. A payment of $2000 is due today. It has been agreed that payment will instead be 
made six months later. What is the equivalent payment that will be made at that 
time given that the interest rate is 10%? 

Solution (Equivalent Values) 

1. The original payment date is 12 months from today and is now being made 
12 months earlier than the original date. Therefore, we compute the present value 
of $2000 for 12 months at an interest rate of 10%. 

PV = P = V 

(1 + r t) 
= 2000 

(1 + 0.1 ∗ 1) 
= e1818.18 

2. The original payment date is today but has been changed to six months later, and 
so we compute the future value of $2000 for six months at an interest rate of 10%. 

FV = P(1 + r t) = 2000(1 + 0.1 ∗ 0.5) = 2000(1.05) = $2100 

Example 30.6 (Equivalent Values) A payment of e5000 that is due today is to be 
replaced by two equal payments (we call the unknown payments value x) due in four 
and eight months, where the interest rate is 10%. Find the value of the replacement 
payments.
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Solution (Equivalent Values) 

The sum of the present value of the two (equal but unknown) payments is e5000. 

The present value of x (received in four months) is 

PV = P = V 

(1 + r t) 
= x 

(1 + 0.1 ∗ 0.33) 
= x 

1.033 
= 0.9678x 

The present value of x (received in eight months) is 

PV = P = V 

(1 + r t) 
= x 

(1 + 0.1 ∗ 0.66) 
= x 

1.066 
= 0.9375x 

Therefore, 

0.9678x + 0.9375x = e5000 
⇒ 1.9053x = e5000 
⇒ x = e2624.26 

30.3 Compound Interest 

The calculation of compound interest is more complicated as may be seen from 
the following example: 

Example 30.7 (Compound Interest) Calculate the interest earned and what the new 
principal will be on Euro 1000, which is placed on deposit at a bank, with an interest 
rate of 10% per annum (compound) for three years. 

Solution 
At the end of year 1, Euro 100 of interest is earned, and this is added to the existing 
principal making the new principal (at the start of year 2) e1000 + e100 = Euro 
1100. At the end of year 2, Euro 110 is earned in interest, and this is added to the 
principal making the new principal (at the start of year 3) e1100 + e110 = Euro 
1210. Finally, at the end of year 3 a further Euro 121 is earned in interest, and 
so the new principal is Euro 1331 and the total interest earned for the three years 
is the sum of the interest earned for each year (i.e., Euro 331). This may be seen 
from Table 30.1.

The new principal each year is given by a geometric sequence (recall a geometric 
sequence is a sequence in the form a, ar, ar2, …  arn). For this example, we have a 
= 1000, and as the interest rate is 10% = 1/10 = 0.1 we have r = (1 + 0.1), and so 
the sequence is: 

1000, 1000(1.1), 1000(1.1)2, 1000(1.1)3 . . .
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Table 30.1 Calculation of 
compound interest 

Year Principal Interest earned New principal 

1 e1000 e100 e1100 

2 e1100 e110 e1210 

3 e1210 e121 e1331

That is, if a principal amount P is invested for n years at a rate r of interest (r is 
expressed as a decimal) then it will amount to: 

A = FV = P(1 + r )n 

For our example above, A = 1000, t = 3 and r = 0.1 Therefore, 

A = 1000(1.1)3 

= e1331 (as before) 

A principal amount P invested for n years at a rate r of simple interest (r is 
expressed as a decimal) will amount to: 

A = FV = P(1 + r t) 

The principal e1000 invested for three years at a rate of interest of 10% (simple 
interest) will amount to: 

A = 1000
(
1 + 0.1∗3

) = 1000(1.3) = e1300 

There are variants of the compound interest formula to cover situations where 
there are m-compounding periods per year. For example, interest may be compounded 
annually, semi-annually (with two compounding periods per year), quarterly (with 
four compounding periods per year), monthly (with 12 compounding periods per 
year), or daily (with 365 compounding periods per year). 

The periodic rate of interest (i) per compound period is given by the nominal 
annual rate of interest (r) divided by the number of compounding periods (m) per 
year: 

i = Nominal Rate 

# compounding periods 
= 

r 

m 

For example, if the nominal annual rate is 10% and interest is compounded quar-
terly then the period rate of interest per quarter is 10/4 = 2.5%. That is, a compound 
interest of 2.5% is calculated at the end of each quarter and applied to the account. 

The number of compounding periods for the total term of a loan or investment is 
given by the number of compounding periods per year (m) multiplied by the number 
of years of the investment or loan. 

n = #years × m
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Example 30.8 (Compound Interest—Multiple Compounding Periods) An investor 
places £10,000 on a term deposit that earns interest at 8% per annum compounded 
quarterly for three years and nine months. At the end of the term the interest rate 
changes to 6% compounded monthly and it is invested for a further term of two years 
and three months. 

1. How many compounding periods are there for three years and nine months? 
2. What is the value of the investment at the end of three years and nine months? 
3. How many compounding periods are there for two years and three months? 
4. What is the final value of the investment at the end of the six years? 

Solution (Compound Interest—Multiple Compounding Periods) 

1. The initial term is for three years and nine months (i.e., 3.75 years), and so the 
total number of compounding periods is given by n = #years * m, where #years 
= 3.75 and m = 4. Therefore, n = 3.75 * 4 = 15. 

2. The nominal rate of interest r is 8% = 0.08, and so the interest rate i per quarterly 
compounding period is 0.08/4 = 0.02. 

Therefore at the end of the term the principal amounts to: 

A = FV1 = P(1 + i )n 

= 10,000(1 + 0.02)15 

= 10,000(1.02)15 

= 10,000(1.3458) 
= £13,458 

3. The term is for two years and three months (i.e., 2.25 years), and so the total 
number of compounding periods is given by n = #years * m, where #years = 
2.25 and m = 12. Therefore, n = 2.25 * 12 = 27. 

4. The new nominal interest rate is 6% = 0.06 and so the interest rate i per com-
pounding period is 0.06/12 = 0.005. Therefore at the end of the term the principal 
amounts to: 

A = FV2 = FV1(1 + i)n 

= 13,458(1 + 0.005)27 

= 13,458(1.005)27 

= 13,458 ∗ 1.14415 
= £15,398
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30.3.1 Present Value Under Compound Interest 

The time value of money is the concept that the earlier that cash is received the 
greater its value to the recipient. Similarly, the later that a cash payment is made, 
the lower its value to the payee, and the lower its cost to the payer. 

This is clear if we consider the example of a person who receives $1000 now 
and a person who receives $1000 five years from now. The person who receives 
$1000 now is able to invest it and to receive compound interest on the principal, 
whereas the other person who receives $1000 in five years earns no interest during 
the period. Further, inflation during the period means that the purchasing power of 
$1000 is less in five years’ time than it is today. 

We presented the general formula for what the future value of a principal 
P invested for n compounding periods at a compound rate r of interest per 
compounding period as: 

A = P(1 + r)n 

The present value of a given amount A that will be received in future is the 
principal (P = PV) that will grow to that amount where there are n compounding 
periods and the rate of interest is r for each compounding period. The present 
value of an amount A received in n compounding periods at an interest rate r for 
the compounding period is given by: 

P = A 

(1 + r )n 

We can write also write the present value formula as PV = P = A (1 + r)−n. 

Example 30.9 (Present Value) Find the principal that will amount to $10,000 in five 
years at 8% per annum compounded quarterly. 

Solution (Present Value) 

The term is five years = 5 * 4  = 20 compounding period. The nominal rate of interest 
is 8% = 0.08 and so the interest rate i per compounding period is 0.08/4 = 0.02. The 
present value is then given by: 

PV = A(1 + i )−n = FV(1 + i)−n 

= 10,000(1.02)−20 

= $6729.71 

The difference between the known future value of $10,000, and the computed 
present value (i.e., the principal of $6729.71) is termed the compound discount and
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represents the compound interest that accumulates on the principal over the period 
of time. It is given by: 

Compound Discount = FV − PV 

For this example the compound discount is $10,000 − 6729.71 = $3270.29. 

Example 30.10 (Present Value) Elodie is planning to buy a home entertainment 
system for her apartment. She can pay £1500 now or pay £250 now and £1600 in two 
years’ time. Which option is better if the nominal rate of interest is 9% compounded 
monthly? 

Solution (Present Value) 

There are 2 * 12 = 24 compounding periods and the interest rate i for the compound-
ing period is 0.09/12 = 0.0075. The present value of £1600 in two years time at an 
interest rate of 9% compounded monthly is: 

PV = FV(1 + i )−n 

= 1600(1.0075)−24 

= 1600/1.1964 

= £1337.33 

The total cost of the second option is £250 + 1337.33 = £1587.33. 
Therefore, Elodie should choose the first option since it is cheaper by £87.33 (i.e., 

£1587.33 − 1500). 

30.3.2 Equivalent Values 

When two sums of money are to be paid/received at different times they are not 
directly comparable as such, and a point in time (the focal date) must be chosen 
to make the comparison (Fig. 30.1).

The choice of focal date determines whether the present value or future value 
formula will be used. That is, when computing equivalent values we first determine 
the focal date, and then depending on whether the payment date is before or after 
this reference date we apply the present value or future value formula. 

If the due date of the payment is before the focal date then we apply the future 
value FV formula: 

FV = P(1 + i )n 

If the due date of the payment is after the focal date then we apply the present 
value PV formula: 

PV = FV(1 + i )−n
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Fig. 30.1 Equivalent 
weights

Example 30.11 (Equivalent Values) A debt value of e1000 that was due three 
months ago, e2000 that is due today, and e1500 that is due in 18 months are to be 
combined into one payment due six months from today at 8% compounded monthly. 
Determine the amount of the single payment. 

Solution (Equivalent Values) 

The focal date is six months from today and so we need to determine the equivalent 
value E1, E2, and E3 of the three payments on this date, and we then replace the three 
payments with one single payment E = E1 + E2 + E3 that is payable six months 
from today. 

The equivalent value E1 of e1000 which was due three months ago in six months 
from today is determined from the future value formula where the number of interest 
periods n = 6 + 3 = 9. The interest rate per period is 8%/12 = 0.66% = 0.00667. 

FV = P(1 + i)n 

= 1000(1 + 0.00667)9 

= 1000(1.00667)9 

= 1000 ∗ 1.0616 

= e1061.60 

The equivalent value E2 of e2000 which is due today in six months is determined 
from the future value formula, where the number of interest periods n = 6. The 
interest rate per period is = 0.00667. 

FV = P(1 + i)n
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= 2000(1 + 0.00667)6 

= 2000(1.00667)6 

= 2000 ∗ 1.0407 

= e2081.40 

The equivalent value E3 of e1500 which is due in 18 months from today is 
determined from the present value formula, where the number of interest periods n 
= 18 − 6 = 12. The interest rate per period is = 0.00667. 

PV = FV(1 + i )−n 

= 1500(1 + 0.0067)−12 

= 1500(1.0067)−12 

= e1384.49 

E = E1 + E2 + E3 

= 1061.60 + 2081.40 + 1384.49 
= e4527.49 

Example 30.12 (Equivalent Values—Replacement Payments) Liz was due to make 
a payment of £2000 today. However, she has negotiated a deal to make two equal 
payments: the first payment is to be made one year from now and the second payment 
two years from now. Determine the amount of the equal payments where the interest 
rate is 9% compounded quarterly and the focal date is today. 

Solution (Equivalent Values—Replacement Payments) 

Let x be the value of the equal payments. The first payment is made in one year and 
so there are n = 1 * 4  = 4 compounding periods, and the second payment is made 
in two years and so there are n = 2 * 4  = 8 compounding periods. The interest rate 
i is 9%/4 = 2.25% = 0.0225. 

The present value E1 of a sum x received in one year is given by: 

PV = FV(1 + i)−n 

= x(1 + 0.0225)−4 

= x(1.0225)−4 

= 0.9148x 

The present value E2 of a sum x received in two years is given by: 

PV = FV(1 + i )−n 

= x(1 + 0.0225)−8 

= x(1.0225)−8
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= 0.8369x 

The sum of the present value of E1 and E2 is £2000 and so we have: 

0.9148x + 0.8369x = 2000 
1.7517x = 2000 
x = £1141.75 

30.4 Basic Mathematics of Annuities 

An annuity is a sequence of fixed equal payments made over a period of time, 
and it is usually paid at the end of the payment interval. For example, for a hire 
purchase contract the buyer makes an initial deposit for an item and then pays an 
equal amount per month (the payment is generally at the end of the month) up to 
a fixed end date. Personal loans from banks are paid back in a similar manner but 
without an initial deposit. 

An investment annuity (e.g., a regular monthly savings scheme) may be paid 
at the start of the payment interval. A pension scheme involves two stages, with 
the first stage involving an investment of regular payments at the start of the pay-
ment interval up to retirement, and the second stage involving the payment of the 
retirement annuity. The period of payment of a retirement annuity is usually for 
the remainder of a person’s life (life annuity), or it could be for a period of a fixed 
number of years. 

We may determine the final value of an investment annuity by determining the 
future value of each payment up to the maturity date and then adding them all 
together. Alternately, as the future values form a geometric series we may derive 
a formula for the value of the investment by using the formula for the sum of a 
geometric series. 

We may determine the present value of an annuity by determining the present 
value of each payment made and summing these, or we may also develop a formula 
to calculate the present value. 

The repayment of a bank loan is generally with an amortization annuity, where 
the customer borrows a sum of money from a bank (e.g., a personal loan for a car 
or a mortgage for the purchase of a house). The loan is for a defined period of time, 
and its repayment is with a regular annuity, where each annuity payment consists 
of interest and capital repayment. The bulk of the early payments go on interest 
due on the outstanding capital with smaller amounts going on capital repayments. 
However, the bulk of the later payments go on repaying the capital with smaller 
amounts going on interest. 

An annuity is a series of equal cash payments made at regular intervals over a 
period of time, and they may be used for investment purposes or paying back a 
loan or mortgage. We first consider the example of an investment annuity.
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Example 30.13 (Investment Annuity) Sheila is investing e10,000 a year in a savings 
scheme that pays 10% interest every year. What will the value of her investment be 
after five years? 

Solution (Invested Annuity) 

Sheila invests e10,000 at the start of year 1 and so this earns five years of compound 
interest of 10% and so its future value in five years is given by 10,000 * 1.15 = 
e16,105. The future value of the payments that she makes is presented in Table 
30.2. 

Therefore, the value of her investment at the end of five years is the sum of the 
future values of each payment at the end of five years = 16,105 + 14,641 + 13,310 
+ 12,100 + 11,000 = e67,156. 

We note that this is the sum of a geometric series and so in general if an investor 
makes a payment of A at the start of each year for n years at a rate r of interest then 
the investment value at the end of n years is: 

A(1 + r)n + A(1 + r )n−1 + . . .  A(1 + r) 
= A(1 + r )

[
1 + A(1 + r) +  · · ·  +  A(1 + r)n−1]

= A(1 + r) 
(1 + r )n − 1 
(1 + r ) − 1 

= A(1 + r) 
(1 + r)n − 1 

r 

We apply the formula to check our calculation. 

10000(1 + 0.1) 
(1 + 0.1)5 − 1 

0.1 

= 11000 
(1.1)5 − 1 

0.1 

= 11000 
(1.61051 − 1) 

0.1 
= e67,156

Table 30.2 Calculation of 
future value of annuity 

Year Amount Future value (r = 0.1) 

1 10,000 10,000 * 1.15 = e16,105 
2 10,000 10,000 * 1.14 = e14,641 
3 10,000 10,000 * 1.13 = e13,310 
4 10,000 10,000 * 1.12 = e12,100 
5 10,000 10,000 * 1.11 = e11,000 
Total e67,156 
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Note 30.1 

We assumed that the annual payment was made at the start of the year. However, 
for ordinary annuities payment is made at the end of the year (or compounding 
period) and so the formula would be slightly different: 

FV = A 
(1 + r )n − 1 

r 

The future value formula is adjusted for multiple (m) compounding periods per 
year, where the interest rate for the period is given by i = r /m, and the number 
of payment periods n is given by where n = tm (where t is the number of years). 
The future value of a series of payments of amount A (made at start of the com-
pounding period) with interest rate i per compounding period, where there are n 
compounding periods, is given by: 

FV = A(1 + i ) 
(1 + i)n − 1 

i 

The future value of a series of payments of amount A (made at end of the 
compounding period) with interest rate i per compounding period, where there are 
n compounding periods, is given by: 

FV = A 
(1 + i)n − 1 

i 

An annuity consists of a series of payments over a period of time, and so it is 
reasonable to consider its present value with respect to a discount rate r (this is 
applicable to calculating the present value of the annuity for mortgage repayments 
discussed in the next section). 

The net present value of an annuity is the sum of the present value of each of 
the payments made over the period, and the method of calculation is clear from 
Table 30.3. 

Example 30.14 (Present Value Annuities) Calculate the present value of a series of 
payments of $1000 with the payments made for five years at a discount rate of 10%.

Table 30.3 Calculation of 
present value of annuity 

Year Amount Present value (r = 0.1) 

1 1000 $909.91 

2 1000 $826.44 

3 1000 $751.31 

4 1000 $683.01 

5 1000 $620.92 

Total $3791 
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Solution (Present Value Annuities) 

The regular payment A is 1000, and the rate r is 0.1 and n = 5. The present value of 
the first payment received is 1000/1.1 = 909.91 at the end of year of year 1; at the 
end of year 2 it is 1000/(1.1)2 = 826.45; and so on. At the end of year 5 its present 
value is 620.92. The net present value of the annuity is the sum of the present value 
of all the payments made over the five years, and it is given by the sum of the present 
values from Table 30.3. That is, the present value of the annuity is 909.91 + 826.44 
+ 751.31 + 683.01 + 620.92 = $3791. 

We may derive a formula for the present value of a series of payments A made 
over a period of n years at a discount rate of r as follows: Clearly, the present value 
is given by: 

A 

(1 + r ) 
+ A 

(1 + r)2 
+  · · ·  + A 

(1 + r)n 

This is a geometric series where the constant ratio is 1 
1+r and the present value of 

the annuity is given by its sum: 

PV = 
A 

r

[
1 − 1 

(1 + r)n

]

For the example above we apply the formula and get 

PV = 
1000 

0.1

[
1 − 

1 

(1.1)5

]

= 10000(0.3791) 
= $3791 

The annuity formula is adjusted for multiple (m) compounding periods per year, 
and the interest rate for the period is given by i = r /m, and the number of payment 
periods n is given by where n = tm (where t is the number of years). For example, 
the present value of an annuity of amount A, with interest rate i per compounding 
period, where there are n compounding periods, is given by: 

P = 
A 

i

[
1 − 1 

(1 + i )n

]

Example 30.15 (Retirement Annuity) Bláithín has commenced employment at a 
company that offers a pension in the form of an annuity that pays 5% interest per 
annum compounded monthly. She plans to work for 30 years and wishes to accumu-
late a pension fund that will pay her e2000 per month for 25 years after she retires. 
How much does she need to save per month to do this? 

Solution (Retirement Annuities)



30.5 Loans and Mortgages 481 

First, we determine the value that the fund must accumulate to pay her e2000 per 
month, and this is given by the present value of the 25-year annuity of e2000 per 
month. The interest rate r is 5% and as there are 12 compounding periods per year 
there are a total of 25 * 12 = 300 compounding periods, and the interest rate per 
compounding period is 0.05/12 = 0.004166. 

P = 2000/0.004166
[
1 − (1.004166)−300]

= e342,174. 

That is, her pension fund at retirement must reach e342,174 and so we need to 
determine the monthly payments necessary for her to achieve this. The future value 
is given by the formula: 

FV = A 
(1 + i)n+1 − 1 

i 

and so 

A = FV  ∗i /
[
(1 + i)n+1 − 1

]

where m = 12, n = 30 * 12  = 360 and i = 0.05/12 = 0.004166 and FV = 342,174. 

A = 342,174 ∗ 0.004166/3.4863 

= e408.87 

That is, Bláithín needs to save e408.87 per month into her retirement account 
(sinking fund) for 30 years in order to have an annuity of e2000 per month for 
25 years (where there is a constant interest rate of 5% compounded monthly). 

30.5 Loans and Mortgages 

The purchase of a home or car requires a large sum of money, and so most 
purchasers need to obtain a loan from the bank to fund the purchase. Once the 
financial institution has approved the loan, the borrower completes the purchase 
and pays back the loan to the financial institution over an agreed period of time 
(the term of the loan). For example, a mortgage is generally paid back over 
20−25 years, whereas a car loan is usually paid back in five years (Fig. 30.2).

An interest-bearing debt is amortized if both the principal and interest are repaid 
by a series of equal payments (except for possibly the last payment) made at equal 
intervals of time. That is, the amortization of loans refers to the repayment of 
interest-bearing debts by a series of equal payments made at equal intervals of 
time. The debt is repaid by an amortization annuity, where each payment consists
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Fig. 30.2 Loan or mortgage

of both the repayment of the capital borrowed and the interest due on the capital 
for that time interval. 

Mortgages and many consumer loans are repaid by this method, and the stan-
dard problem is to calculate what the annual (or monthly) payment should be to 
amortize the principal P in n years where the rate of interest is r. 

The present value of the annuity is equal to the principal borrowed: i.e., the 
sum of the present values of the payments must be equal to the original principal 
borrowed. That is: 

P = A 

(1 + r) 
+ A 

(1 + r)2 
+ · · ·  + A 

(1 + r )n 

We may also use the formula that we previously derived for the present value 
of the annuity to get: 

P = 
A 

r

[
1 − 1 

(1 + r)n

]

We may calculate A by manipulating this formula to get: 

A = Pr
[
1 − 1 

(1+r)n

]

A = Pr /
[
1 − (1 + r )−n]

Example 30.16 (Amortization) Joanne has taken out a e200,000 mortgage over 
20 years at 8% per annum. Calculate her annual repayment amount to amortize the 
mortgage. 

Solution (Amortization) 

We apply the formula to calculate her annual repayment: 

A = Pr
[
1 − 1 

(1+r )n

]
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A = 
200,000 ∗ 0.08
[
1 − 1 

(1+0.08)20

]

= 
16,000

[
1 − 1 

4.661

]

= e20,370 

We adjust the formula for the more common case where the interest is compounded 
several times per year (usually monthly), and so n = # years * # compoundings and 
the interest i = r/# compoundings. 

A = Pi
[
1 − 1 

(1+i)n

]

Example 30.17 (Amortization) A mortgage of £150,000 at 6% compounded 
monthly is amortized over 20 years. Determine the following: 

1. Repayment amount per month 
2. Total amount paid to amortize the loan. 
3. The cost of financing 

Solution (Amortization) 

The number of payments n = #years * payments per year = 20 * 12  = 240. 
The interest rate i = 6%/12 = 0.5% = 0.005. 

1. We calculate the amount of the repayment A by substituting for n and i and obtain: 

A = 
150,000 ∗ 0.005
[
1 − 1 

(1+0.005)240

]

= 750
[
1 − 1 

3.3102

]

= £1074.65 

2. The total amount paid is the number of payments * amount of each payment = 
n * A = 240 * 1074.65 = £257,916 

3. The total cost of financing = total amount paid − original principal = 257,916 
− 150,000 = £107,916. 

Example 30.18 (Amortization) For the previous example determine the following 
at the end of the first period: 

1. The amount of interest repaid.
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2. The amount of the principal repaid. 
3. The amount of the principal outstanding. 

Solution (Amortization) 

The amount paid at the end of the first period is £1074.65. 

1. The amount paid in interest for the first period is 150,000 * 0.005 = £750. 
2. The amount of the principal repaid is £1074 − 750 = £324.65. 
3. The amount of the principal outstanding at the end of the first interest period is 

£150,000–324.65 = £149,675.35. 

The early payments of the mortgage mainly involve repaying interest on the 
capital borrowed, whereas the later payments mainly involve repaying the capital 
borrowed with less interest due. We can create an amortization table which shows 
the interest paid, the amount paid in capital repayment, and the outstanding prin-
cipal balance for each payment interval. Often, the last payment is different to the 
others due to rounding errors introduced and carried through. 

Each entry in the amortization table includes interest, the principal repaid, 
and outstanding principal balance. The interest is calculated by the principal bal-
ance * periodic interest rate i; the principal repaid is calculated by the payment 
amount − interest; and the new outstanding principal balance is given by the 
principal balance − principal repaid. 

30.6 Review Questions 

1. Explain the difference between simple and compound interest? 
2. Calculate the simple interest payable on an investment of £12,000 placed 

on deposit for nine months at an interest rate of 8%. 
3. An investor places £5000 on a term deposit that earns interest at 8% per 

annum compounded quarterly for two years and three months. Find the 
value of the investment on the maturity date. 

4. Find the principal that will amount to $12,000 in three years at 6% per 
annum compounded quarterly. 

5. How many years will it take a principal of $5000 to exceed $10,000 at a 
constant annual growth rate of 6% compound interest? 

6. What is the present value of $5000 to be received in five years time at a 
discount rate of 7%? 

7. Explain the concept of equivalent values and when to use the present 
value/future value in its calculation. 

8. A debt value of e2000 due six months ago, e5000 due today and e3000 
due in 18 months are to be combined into one payment due three months
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from today at 6% compounded monthly. Determine the amount of the 
single payment. 

30.7 Summary 

Simple interest is calculated on the principal only whereas compound interest is 
calculated on both the principal and the accumulated interest of previous periods. 
Compound interest is generally used for long-term investments and loans, and its 
calculation is more complicated than that of simple interest. 

The time value of money is the concept that the earlier that cash is received 
the greater its value to the recipient, and vice versa for late payments. The future 
value of a principal P invested for n-year compounding periods at a compound 
rate r of interest per compounding period is given by A = P(1 + r)n. The present 
value of a given amount A that will be received n years in future, at an interest 
rate r for each compounding period is the principal that will grow to that amount 
and is given by P = A(1 + r)−n. 

A long-term promissory note has a term greater than one year and may be 
bought or sold prior to its maturity date. The calculation of the value of a promis-
sory note is similar to that used in the calculation of the value of short-term 
promissory notes. 

The future value is what the principal will amount to in future at a given rate 
of interest, whereas the present value of an amount to be received in future is the 
principal that would grow to that amount at a given rate of interest. 

An annuity is a sequence of fixed equal payments made over a period of time, 
and it is usually paid at the end of the payment interval. An interest-bearing debt is 
amortized if both the principal and interest are repaid by a series of equal payments 
(with the exception of possibly the last payment) made at equal intervals of time. 
The debt is repaid by an amortization annuity, where each payment consists of 
both the repayment of the capital borrowed and the interest due on the capital for 
that time interval.
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Key Topics 

Linear programming 

Constraints 

Variables 

Optimization 

Objective function 

Cost volume profit analysis 

Game theory 

31.1 Introduction 

Operations research is a multidisciplinary field that is concerned with the appli-
cation of mathematical and analytic techniques to assist in decision-making. It 
includes techniques such as mathematical modelling, statistical analysis, and math-
ematical optimization as part of its goal to achieve optimal (or near optimal) 
solutions to complex decision-making problems. The modern field of operations 
research includes various other disciplines such as computer science, industrial 
engineering, business practices in manufacturing and service companies, supply 
chain management, and operations management. 

Pascal did early work on operations research in the seventeenth century. He 
attempted to apply early work on probability theory to solve complex decision-
making problems. Babbage’s work on the transportation and sorting of mail 
contributed to the introduction of the uniform “Penny Post” in England in the
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nineteenth century. The origins of the operations research field are from the work 
of military planners during the First World War, and the field took off during the 
Second World War as it was seen as a scientific approach to decision-making using 
quantitative techniques. It was applied to strategic and tactical problems in mili-
tary operations, where the goal was to find the most effective utilization of limited 
military resources through the use of quantitative techniques. It played an impor-
tant role in solving practical military problems such as determining the appropriate 
convoy size in the submarine war in the Atlantic. 

Numerous peacetime applications of the field of operations research emerged 
after the Second World War, where operations research and management science 
were applied to many industries and occupations. It was applied to procurement, 
training, logistics, and infrastructure in addition to its use in operations. The 
progress that has been made in the computing field means that operations research 
can now solve problems with thousands of variables and constraints. 

Operations research (OR) is the study of mathematical models for complex 
organizational systems, where a model is a mathematical description of a system 
that accounts for its known and inferred properties, and it may be used for the 
further study of its properties, and a system is a functionally related collection of 
elements such as a network of computer hardware and software. Optimization is a 
branch of operations research that uses mathematical techniques to derive values 
from system variables that will optimize system performance. 

Operations research has been applied to a wide variety of problems includ-
ing network optimization problems, designing the layouts of the components on 
a computer chip, supply chain management, critical path analysis during project 
planning to identify key project activities that effect the project timeline, schedul-
ing project tasks and personnel, and so on. Several of the models used in operations 
research are described in Table 31.1.

Mathematical programming involves defining a mathematical model for the 
problem and using the model to find the optimal solution. A mathematical model 
consists of variables, constraints, the objective function to be maximized or 
minimized, and the relevant parameters and data. The general form is: 

Min or Max f (x1, x2, . . .  xn) (Objective function) 

g(x1, x2, . . .  xn) ≤ (or >, ≥, =<) bi (Constraints) 

x ∈ X 
f , g are linear and X is continuous (for linear programming LP) 

A feasible solution is an assignment of values to the variables such that the con-
straints are satisfied. An optimal solution is one whose objective function exceeds 
all other feasible solutions (for maximization optimization). We now discuss linear 
programming in more detail.
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Table 31.1 Models used in operations research 

Model Description 

Linear programming These problems aim to find the best possible outcome (where 
this is expressed as a linear function) such as to maximize a 
profit or minimize a cost subject to various linear constraints. 
The function and constraints are linear functions of the decision 
variables, and modern software can solve problems containing 
millions of variables and thousands of constraints 

Network flow programming This is a special case of the general linear programming problem 
and includes problems such as the transportation problem, the 
shortest path problem, the maximum flow problem, and the 
minimum cost problem. There are very efficient algorithms 
available for these (faster and more efficient than standard linear 
programming) 

Integer programming This is a special case of the general linear programming problem, 
where the variables are required to take on discrete values 

Nonlinear programming The function and constraints are nonlinear, and these are much 
more difficult to solve than linear programming. Many 
real-world applications require a nonlinear model, and the 
solution is often approximated with a linear model 

Dynamic programming A dynamic programming (DP) model describes a process in 
terms of states, decisions, transitions, and a return. The process 
begins in some initial state, a decision is made leading to a 
transition to a new state, the process continues through a 
sequence of states until final state is reached. The problem is to 
find a sequence that maximizes the total return 

Stochastic processes A stochastic process models practical situations where the 
attributes of a system randomly change over time (e.g., number 
of customers at an ATM machine, the share price), and the state 
is a snapshot of the system at a point in time that describes its 
attributes. Events occur that change the state of the system 

Markov chains A stochastic process that can be observed at regular intervals 
(such as every day or every week) can be described by a matrix, 
which gives the probabilities of moving to each state from every 
other state in one-time interval. The process is called a Markov 
Chain when this matrix is unchanging over time 

Markov processes A Markov process is a continuous time stochastic process in 
which the duration of all state-changing activities is 
exponentially distributed 

Game theory Game theory is the study of mathematical models of strategic 
interaction among rational decision-makers. It is concerned with 
logical decision-making by humans, animals, and computers 

Simulation Simulation is a general technique for estimating statistical 
measures of complex systems 

Time series and forecasting A time series is a sequence of observations of a periodic random 
variable and is generally used as input to an OR decision model

(continued)
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Table 31.1 (continued)

Model Description

Inventory theory Aims to optimize inventory management: e.g., determining when 
and how much inventory should be ordered 

Reliability theory Aims to model the reliability of a system from probability theory

31.2 Linear Programming 

Linear programming (LP) is a mathematical model for determining the best possi-
ble outcome (e.g., maximizing profit or minimizing cost) of a particular problem. 
The problem is subject to various constraints such as resources or costs, and the 
constraints are expressed as a set of linear equations and linear inequalities. The 
best possible outcome is expressed as a linear equation. For example, the goal may 
be to determine the number of products that should be made to maximize profit 
subject to the constraint of limited available resources. 

The constraints for the problem are linear, and they specify regions that are 
bounded by straight lines. The solution will lie somewhere within the regions 
specified, and a feasible region is a region where all of the linear inequalities are 
satisfied. Once the feasible region is found the challenge is then to find where 
the best possible outcome may be maximized in the feasible region, and this will 
generally be in a corner of the region. The steps involved in developing a linear 
programming model include: 

• Formulation of the problem 
• Solution of the problem 
• Interpretation of the solution 

Linear programming models seek to select the most appropriate solution from the 
alternatives that are available subject to the specified constraints. Often, graphical 
techniques are employed to sketch the problem and the regions corresponding to 
the constraints. 

The graphical techniques identify the feasible region where the solution lies, 
and then the maximization or minimization function is employed within the region 
to search for the optimal value. The optimal solution will lie at one or more of the 
corner points of the feasible region. 

31.2.1 Linear Programming Example 

We consider an example in an industrial setting where a company is trying to 
decide how many of each product it should make to maximize profits subject to 
the constraint of limited resources.
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Table 31.2 Square deal 
furniture 

Table Chair Hours available 

Carpentry 3 h 4 h 2400 

Painting 2 h 1 h 1000 

Profit contribution 7 Euros 5 Euros 

Square Deal Furniture produces two products, namely chairs and tables, and it 
needs to decide on how many of each to make each month in order to maximize 
profits. The amount of time to make tables and chairs and the maximum hours 
available to make each product, as well as the profit contribution of each prod-
uct, is summarized in Table 31.2. There are additional constraints that need to be 
specified: 

• At least 100 tables must be made 
• The maximum number of chairs to be made is 450 

We use variables to represent tables and chairs and formulate an objective function 
to maximize profits subject to the constraints. 

T = Number of tables to make 

C = Number of chairs to make 

The objective function (to maximize profits) is then specified as 

Maximize the value of 5C + 7T 

The constraints on the hours available for carpentry and painting may be 
specified as: 

3T + 4C ≤ 2400 (carpentry time available) 
2T + C ≤ 1000 (painting time available) 

The constraints that at least 100 tables must be made and the maximum number 
of chairs to be made is 450 may be specified as: 

T ≥ 100 (number of tables) 
C ≤ 450 (number of chairs 

Finally, it is not possible to produce a negative number of chairs or tables and 
this is specified as: 

T ≥ 0 (non-negative) 

C ≥ 0 (non-negative)
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The model is summarized as 

Max 5C + 7T (Maximation problem) 
3T + 4C ≤ 2400 (carpentry time available) 
2T + C ≤ 1000 (painting time available) 
T ≥ 100 (number of tables) 
C ≤ 450 (number of chairs) 
T ≥ 0 (non-negative) 
C ≥ 0 (non-negative) 

We graph the LP model and then use the graph to find a feasible region for 
where the solution lies, and we then identify the optimal solution. The feasible 
region is an area where all of the constraints for the problem are satisfied, and the 
optimal solution lies at one or more of the corner points of the feasible region. 

First, for the constraints on the hours available for painting and carpentry 3T + 
4C ≤ 2400 and 2T + C ≤1000, respectively, we draw the two lines 3T + 4C = 
2400 and 2T + C = 1000. We choose two points on each line and then join both 
points to form the line, and we choose the intercepts of both lines as the points. 

For the line 3T + 4C = 2400 when T is 0 C is 600 and when C is 0T is 800. 
Therefore, the points (0, 600) and (800, 0) are on the line 3T + 4C = 2400. For 
the line 2T + C = 1000 when T = 0 then C = 1000 and when C = 0 then T = 
500. Therefore, the points (0, 1000) and (500, 0) are on the line 2T + C = 1000. 

Figure 31.1 is the first step in developing a graphical solution and we note that 
for the first two constraints 3T + 4C ≤2400 and 2T + C ≤1000 that the solution 
lies somewhere in the area bounded by the lines 3T + 4C = 2400, 2T + C = 
1000, the T axis and the C axis. 

Next, we add the remaining constraints (T ≥100, C ≤ 450, T ≥ 0, C ≥0) to the 
graph, and this has the effect of reducing the size of the feasible region in Fig. 31.1 
(which placed no restrictions on T and C). The feasible region can be clearly seen 
in Fig. 31.2, and the final step is to find the optimal solution in the feasible region 
that maximizes the profit function 5C + 7T.

Fig. 31.1 Linear 
programming—developing a 
graphical solution 
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Fig. 31.2 Feasible region of 
solution 
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Figure 31.3 shows how we find the optimal solution by drawing the line 7T + 
5C = k within the feasible region, and this forms a family of parallel lines where 
the slope of the line is –5/7 and k represents the profit. Each point in the feasible 
region is on one of the lines in the family, and to determine the equation of that 
line we just input the point into the equation 7T + 5C = k. For example, the point 
(200, 0) is in the feasible region and it satisfies the equation 7T + 5C = 7 * 200 
+ 5 * 0  = 1400. 

We seek to maximize k and it is clear that the value of k that is maximal is at 
one of the corner points of the feasible region. This is the point of intersection of 
the lines 2T + C = 1000 and 3T + 4C = 2400, and we solve for T and C to 
get T = 320 and C = 360. This means that the equation of the line containing the 
optimal point is 7T + 5C = 2240 + 1800 = 4040. That is, its equation is 7T + 
5C = 4040 and so the maximum profit is e4040.

Fig. 31.3 Optimal solution C 
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31.2.2 General Formulation of LP Problem 

The more general formulation of the linear programming problem can be stated as 
follows. Find variables x1, x2, …., xn to optimize (i.e., maximize or minimize) the 
linear function: 

Z = c1x1 + c2x2 + · · ·  , cnxn 

where the problem is subject to the linear constraints: 

a11x1 + a12x12 + · · ·  ., a1 j x j + · · ·  . + a1nxn (≤=≥)b1 
a21x1 + a22x12 + · · ·  ., a2 j x j +  · · ·  . + a2nxn (≤=≥)b2 

:  : : : :  
am1x1 + am2x12 +  · · ·  ., amj  x j + · · ·  . + amnxn (≤=≥)bm 

and to non-negative constraints on the variables such as: 

x1, x2, . . . ,  xn ≥ 0 

where aij, bj, and ci are constants and xi are variables. 
The variables x1, x2, …,  xn whose values are to be determined are called 

decision variables. 
The coefficients ci, c2, …,  cn are called cost (profit) coefficients. 
The constraints b1, b2, …., bm are called the requirements. 
A set of real values (x1, x2, …,  xn) which satisfies the constraints (including 

the non-negative constraints) is said to be a feasible solution. 
A set of real values (x1, x2, …,  xn) which satisfies the constraints (including 

the non-negative constraints) and optimizes the objective function is said to be an 
optimal solution. 

There may be no solution, a unique solution, or multiple solutions. 
The constraints may also be formulated in terms of matrices as follows: 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎝ 

a11 a12 a13 . . .  a1n 
a21 a22 a23 . . .  a2n 
a31 a32 a33 . . .  a3n 
. . .  · · ·  · · ·  · · ·  · · ·  
· · ·  · · ·  · · ·  · · ·  · · ·  
am1 am2 am3 . . .  amn 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

x1 
x2 
x3 
· · ·  
· · ·  
· · ·  
xn 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

(≤=≥) 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

b1 
b2 
b3 
· · ·  
· · ·  
· · ·  
bm 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

This may also be written as AX (≤ =  ≥ ) B  and the optimization function may 
be written as Z = CX where C = (c1, c2, …., cn) and X = (x1, x2, …., xn)T and 
X ≥0. 

Linear programming problems may be solved by graphical techniques (when 
there are a small number of variables) or analytic techniques using matrices. There
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are techniques that may be employed to find the solution of the LP problem that are 
similar to finding the solution to a set of simultaneous equations using Gaussian 
elimination (see Chap. 29). 

31.3 Cost Volume Profit Analysis 

A key concern in business is profitability, and management need to decide on the 
volume of products to produce, including the costs and total revenue. Cost volume 
profit analysis (CVPA) is a useful tool in the analysis of the relationship between 
the costs, volume, revenue, and profitability of the products produced. The rela-
tionship between revenue and costs at different levels of output can be displayed 
graphically, with revenue behaviour and cost behaviour shown graphically. 

The breakeven point (BP) is where the total revenue is equal to the total costs, 
and breakeven analysis is concerned with identifying the volume of products that 
need to be produced to break even. 

Example (CVPA) 
Pilar is planning to set up a business that makes pottery cups, and she has been offered 
a workshop to rent for e800 per month. She estimates that she needs to spend e10 
on the materials to make each pottery cup and that she can sell each cup for e25. 
She estimates that if she is very productive that she can make 500 pottery cups in a 
month. 

Prepare a table that shows the profit or loss that Pilar makes based on the sales of 
0, 100, 200, 300, 400, and 500 pottery cups. 

Solution (CVPA) 

Each entry in the table consists of the revenue for the volume sold, the material costs 
per volume of the pottery cups, the fixed cost of renting the workshop per month, 
the total cost per month, and the net income per month (Table 31.3). 

The total sales (revenue) are determined from the volume of sales multiplied by 
the unit sales price of a pottery cup (e25). There are two types of cost that may be 
incurred namely fixed costs and variable costs. 

Fixed costs are incurred irrespective of the volume of items produced, and so the 
cost of renting of the workshop is a fixed cost. Variable costs are constant per unit of

Table 31.3 Projected profit or loss per volume 

#Cups 0 100 200 300 400 500 

Revenue (sales) 0 2500 5000 7500 10,000 12,500 

Materials (var cost) 0 1000 2000 3000 4000 5000 

Workshop (fix cost) 800 800 800 800 800 800 

Total cost 800 1800 2800 3800 4800 5800 

Net income − e800 e700 e2200 e3700 e5200 e6700 
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Table 31.4 Revenue and 
costs 

Item Amount 

Total revenue (TR) SP * X 

Total variable cost (TVC) VC * X 

Fixed cost (FC) FC 

Total cost (TC) FC + TVC 
= FC + (VC*X) 

Net income (profit) TR – TC − (SP * X) − FC − 
(VC * X) 

Fig. 31.4 Breakeven point TR 
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output and include the direct material and labour costs, and so the total variable cost 
increases as the volume increases. That is, the total variable cost is directly related 
to the volume of items produced, and Table 31.4 summarizes the revenue and costs. 

We may represent the relationships between volume, cost, and revenue graphically 
and use it to see the relationship between revenue and costs at various levels of output 
(Fig. 31.4). We may then use the graph to determine the breakeven point for when 
total revenue is equal to total cost. 

We may also determine the breakeven point algebraically by letting X represent 
the volume of cups produced for breakeven. Then breakeven is when the total revenue 
is equal to the total cost. That is, 

SP ∗ X = FC + VC ∗ X 

⇒ 25X = 800 + 10X 
⇒ 15X = 800 

⇒ X = 800
/
15 = 53.3 units 

The breakeven amount in revenue is 25 * 53.3 = e1333.32. 
Next, we present an alternate way of calculating the breakeven point in terms of 

contribution margin and sales. Contribution margin is the monetary value that each 
extra unit of sales makes towards profitability, and it is given by the selling price per 
unit minus the variable cost per unit.
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Each additional pottery cup sold increases the revenue by e25 whereas the 
increase in costs is just e10 (the materials required). This, the contribution margin 
per unit is the selling price minus the variable cost per unit (i.e., SP – VC = e15), 
and so the total contribution margin is the total volume of units sold multiplied by 
the contribution margin per unit (i.e., X * (SP  − VC) = 15X). 

The breakeven volume is reached when the total contribution margin covers the 
fixed cost (i.e., the cost of renting the workshop which is e800 is covered by the 
total contribution). That is, the breakeven volume is reached when: 

X ∗ (SP − VC) = FC 

X = FC 

SP − VC 
X = 800

/
(25 − 10) = 800

/
15 = 53.3 

Example Suppose that the rent of the workshop is increased to e1200 per month 
and that it also costs e12 (more than expected) to make each cup, and that she can 
sell each cup for just e20. What is her new breakeven volume and revenue? 

Solution 
The breakeven volume is reached when: 

X ∗ (SP − VC) = FC 
X ∗ (20 − 12) = 1200 
8X = 1200 
X = 150 

Further, the breakeven revenue is: 

X ∗ SP 

= 150 ∗ 20 

= e3000. 

31.4 Game Theory 

Game theory is the study of mathematical models of strategic interaction among 
rational decision-makers, and it was originally applied to zero sum games where 
the gains or losses of each participant are exactly balanced by those of the other 
participants. 

Modern game theory emerged as a field following John von Neumann’s 1928 
paper on the theory of games of strategy [1]. The Rand corporation investigated 
possible applications of game theory to global nuclear strategy in the 1950s. Game
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Table 31.5 Network 
viewing figures 

Network 2 

Network 1 Western Soap opera Comedy 

Western 35 15 60 

Soap Opera 45 58 50 

Comedy 38 14 70 

theory has been applied to many areas including economics, biology, and the social 
sciences. It is an important tool in situations where a participant’s best outcome 
depends on what other participants do, and their best outcome depends on what 
he/she does. We illustrate the idea of game theory through the following example. 

Example (Game Theory) 
We consider an example of two television networks that are competing for an audi-
ence of 100 million on the 8 to 9 pm night-time television slot. The networks announce 
their schedule ahead of time, but do not know of the other network’s decision until 
the program begins. A certain number of viewers will watch Network 1, with the 
remainder watching Network 2. Market research has been carried out to show the 
expected number of viewers for each network based on what will be shown by the 
networks (Table 31.5). 

Problem to Solve (Viewing Figures) 
Determine the best strategy that both networks should employ to maximize their 
viewing figures. 

Table 31.5 shows the number of viewers of Network 1 for each type of film that 
also depends on the type of film that is being shown by Network 2. For example, 
if Network 1 is showing a western while Network 2 is showing a comedy then 
Network 1 will have 60 million viewers, and Network 2 will have 100 – 60 = 40 
million viewers. However, if Network 2 was showing a soap opera then the viewing 
figures for Network 1 are 15 million, and 100 – 15 = 85 million will be tuned into 
Network 2. 

Solution (Game Theory) 

Network 1 is a row player whereas Network 2 is a column player, and the table 
above is termed a payoff matrix. This is a constant-sum game (as the outcome for 
both players always adds up to a constant 100 million). 

The approach to finding the appropriate strategy for Network 1 is to examine each 
option. If Network 1 decides to show a western then it can get as many as 60 million 
viewers if Network 2 shows a comedy, or as few as 15 million viewers if Network 
2 shows a soap opera. That is, this choice cannot guarantee more than 15 million 
viewers. Similarly, if Network 1 shows a soap opera it may get as many as 58 million 
viewers if Network 2 shows a soap opera as well, or as few as 45 million viewers 
should Network 2 show a western. That is, this choice cannot guarantee more than 
45 million viewers. Finally, if Network 1 shows a comedy it would get 70 million
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viewers if Network 2 is showing a comedy as well, or as few as 14 million viewers if 
Network 2 is showing a soap opera. That is, this option cannot guarantee more than 
14 million viewers. Clearly, the best option for Network 1 would be to show a soap 
opera, as at least 45 million viewers would tune into Network 1 irrespective of what 
Network 2 does. 

In other words, the strategy for Network 1 (being a row player) is to determine the 
row minimum of each row and then to choose the row with the largest row minimum. 

Similarly, the best strategy for Network 2 (being a column player) is to determine 
the column maximum of each column and then to choose the column with the smallest 
column maximum. For Network 2 the best option is to show a western and so 45 
million viewers will tune into Network 1 to watch the soap opera, and 55 million 
will tune into Network 2 to watch a western. 

It is clear from the table that the two outcomes satisfy the following inequality: 

Max(rows)
(
row minimum) ≤ Min(cols) (col maximum)) 

This choice is simultaneously best for Network 1 and Network 2 [as max(row min-
imum) = min(col maximum)], and this is called a saddle point, and the common 
value of both sides of the equation is called the value of the game. An equilibrium 
point of the game is where there is a choice of strategies for both players where 
neither player can improve their outcome by changing their strategy, and a saddle 
point of a game is an example of an equilibrium point. 

Example (Prisoner Dilemma) 
The police arrest two people who they know have committed an armed robbery 
together. However, they lack sufficient evidence for a conviction for armed robbery, 
but they have sufficient evidence for a conviction of two years for the theft of the 
getaway car. The police make the following offer to each prisoner: 

If you confess to your part in the robbery and implicate your partner and he does not confess, 
then you will go free and he will get ten years. If you both confess you will both get five 
years. If neither of you confess you will get each get two years for the theft of the car 

Model the prisoners’ situation as a game and determine the rational (best possible) 
outcome for each prisoner. 

Solution (Prisoner’s Dilemma) 

There are four possible outcomes for each prisoner: 

• Go Free (He confesses, Other does not) 
• 2-year sentence (Neither confess) 
• 5-year sentence (Both confess) 
• 10 years (He does not confess. Other does)
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Table 31.6 Outcomes in 
prisoners’ dilemma 

Prisoner 1 Prisoner 2 

Confess Refuse confess 

Confess 
Refuse confess 

5, 5 0, 10 

10, 0 2, 2 

Each prisoner has a choice of confessing or not, and Table 31.6 summarizes the 
various outcomes depending on the choices that the prisoners make. The first entry 
in each cell of the table is the outcome for prisoner 1, and the second entry is the 
outcome for prisoner 2. For example, the cell with the entries 10, 0 states that prisoner 
1 is sentenced for 10 years and prisoner 2 goes free. 

It is clear from Table 31.6 that if both prisoners confess they both will receive a 
5-year sentence; if neither confesses then they will both receive a 2-year sentence; 
if prisoner 1 confesses and prisoner 2 does not then prisoner 1 goes free whereas 
prisoner 2 gets a 10-year sentence; and finally, if prisoner 2 confesses and prisoner 
1 does not then prisoner 2 goes free and prisoner a 1 gets a 10-year sentence. 

Each prisoner evaluates his two possible actions by looking at the outcomes in 
both columns, as this will show which action is better for each possible action of their 
partner. If prisoner 2 confesses then prisoner 1 gets a 5-year sentence if he confesses or 
a 10-year sentence if he does not confess. If prisoner 2 does not confess then prisoner 
1 goes free if he confesses or 2 years if he does not confess. Therefore, prisoner 1 
is better off confessing irrespective of the choice of prisoner 2. Similarly, prisoner 
2 comes to exactly the same conclusion as prisoner 1, and so the best outcome for 
both prisoners is to confess to the crime, and both will go to prison for 5 years. 

The paradox in the prisoners’ dilemma is that two individuals acting in their 
own self-interest do not produce the optimal outcome. Both parties choose to protect 
themselves at the expense of the other, and as a result both find themselves in a worse 
state than if they had cooperated with each other in the decision-making process and 
received two years. For more detailed information on operations research see [2]. 

31.5 Review Questions 

1. What is operations research? 
2. Describe the models used in operations research. 
3. What is linear programming and describe the steps in developing a linear 

programming model? 
4. What is cost volume profit analysis? 
5. Suppose the fixed costs are rent of £1,500 per month and that the cost 

of making each item is £20 and it may then be sold for £25. How many 
items must be sold to breakeven and what is the breakeven revenue?
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6. What is game theory? 
7. What is a zero sum game? 

31.6 Summary 

Operations research is a multidisciplinary field concerned with the application of 
mathematical and analytic techniques to assist in decision-making. It employs 
mathematical modelling, statistical analysis, and mathematical optimization to 
achieve optimal (or near optimal) solutions to complex decision-making prob-
lems. The modern field of operations research includes other disciplines such as 
computer science, industrial engineering, business practices in manufacturing and 
service companies, supply chain management, and operations management. 

Linear programming is a mathematical model for determining the best possible 
outcome such as maximizing profit or minimizing cost of a particular problem. 
The problem is subject to various constraints such as resources or costs, and the 
constraints are expressed as a set of linear equations and linear inequalities. The 
best possible outcome is expressed as a linear equation. For example, the goal may 
be to determine the number of products that should be made to maximize profit 
subject to the constraint of limited available resources. 

Cost volume profit analysis (CVPA) is used in the analysis of the rela-
tionship between the costs, volume, revenue, and profitability of the products 
produced. The relationship between revenue and costs at different levels of output 
can be displayed graphically, with revenue behaviour and cost behaviour shown 
graphically. 

Game theory is the study of mathematical models of strategic interaction among 
rational decision-makers. Von Neumann was the founder of modern game theory 
with his 1928 paper on the theory of games of strategy. The Rand Corporation 
applied game theory to global nuclear strategy in the 1950s, and the original 
applications of game theory were to zero sum games. 
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32Mathematical Software for Software 
Engineers 

32.1 Introduction 

The goal of this appendix is to introduce essential software to support software 
engineering mathematics. We discuss a selection of software including Excel, 
Python, Maple, Mathematica, MATLAB, Minitab, and R (Table 32.1).

32.2 Microsoft Excel 

Microsoft Excel is a spreadsheet program created by the Microsoft Corporation, 
and it consists of a rectangular grid of cells in rows and columns that may be 
used for data manipulation and arithmetic operations. It includes functionality for 
statistical, engineering, and financial applications, and it has graphical functionality 
to display lines, histograms, and charts (Fig. 32.1).

This software program was initially called MultiPlan when it was released in 
1982, and it was Microsoft’s first Office application. It was developed as a com-
petitor to Apple’s VisiCalc, and it was initially released on computers running the 
CP/M operating system.1 It was renamed to Excel when it was released on the 
Macintosh in 1985, and the first version of Excel for the IBM PC was released in 
1987. 

It provides support for user-defined macros, and it also allows the user to 
employ Visual Basic for Applications (VBA) to perform numeric computation 
and report the results back to the Excel spreadsheet. Lotus 1–2–3 was the leading 
spreadsheet tool of the 1980s, but Excel overtook it from the early 1990s.

1 The CP/M operating system was developed by Gary Kildall at Digital Research, and Kildall did a 
lot of early work on operating systems for microprocessors. The award of the operating system for 
the original IBM PC to Microsoft was highly controversial, as the operating system that Microsoft 
provided to IBM was essentially Kildall’s CP/M. 
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Table 32.1 Software for business mathematics 

Software Description 

Excel This is a spreadsheet program created by Microsoft that consists of a grid of 
cells in rows and columns 

Python Python is an interpreted high-level programming language that has been applied 
to many areas including web development, game development, machine learning 
and artificial intelligence, and data science and visualization 

Maple Maple is a computer algebra system that can manipulate mathematical 
expressions and find symbolic solutions to certain kinds of problems in calculus, 
linear algebra, etc. 

Minitab Minitab is a statistical software package that provides a powerful and 
comprehensive set of statistics to investigate the data 

R R is an open-source statistical computing environment that is used for 
developing statistical software and for data analysis 

Mathematica Mathematica is a computer algebra program that is used in the scientific, 
engineering, and computer fields 

MATLAB MATLAB is a numeric computing environment that supports matrix 
manipulation, plotting of data and functions, and the implementation of 
algorithms

Fig. 32.1 Excel spreadsheet screenshot. Used with permission of Microsoft

Excel is used to organize data and to perform financial analysis. It is used by 
both small and large companies and across all business functions. The main uses 
of Excel include: 

Data entry 
Data management 
Accounting 
Financial analysis
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Charts and graphs 
Financial modelling. 

Excel is used extensively for financial analysis, and many businesses use Excel for 
budgeting, forecasting, and accounting. Spreadsheet software may be used to fore-
cast future performance, as well as calculating revenue and tax due and completing 
the payroll. Excel may be used to generate financial reports and charts. 

An Excel workbook consists of a collection of worksheets, where each work-
sheet is a spreadsheet page (i.e., a collection of cells organized in rows and 
columns). A workbook may contain as many sheets as required, and the columns in 
a sheet are generally labelled with letters, whereas the rows are generally labelled 
with numbers. Each cell contains one piece of data or information. 

A cell may contain a formula that refers to values in other cells (e.g., the effect 
of the formula = B3 + C3 in cell B1 is to add cells B3 and C3 together and 
to place the result in the cell B1). A formula may include a function, a refer-
ence to other cells, constants, as well as arithmetic operators. Excel uses standard 
mathematical operators such as + , −, *, /, and it employs ^ for the exponential 
function. An Excel formula always commences with an equals sign (=), and some 
of the functions employed include: 

AVERAGE, COUNT, SUM, MAX, MIN, and IF. 
Excel is very useful in recording, analysing, and storing numeric data, and 

various calculations may be performed on the numeric data, or graph tools may 
be employed for visualization of the data. That is, it allows easy manipulation of 
the data and graphing of the data for visualization. It may be used to create a wide 
range of graphs and charts from the data in the spreadsheet, and there is a chart 
wizard to assist with building the desired chart. Some of the charts that may be 
displayed include: 

Bar charts 
Histograms 
Pie charts 
Scatter plots 
Lines. 

Excel may be used for data analysis, and the ability to analyse data is essential in 
order to make better decisions. This generally involves the use of pivot tables, and 
pivot tables are a technique in data processing that is used to arrange or rearrange 
statistics in order to identify useful information. They may be employed to aggre-
gate the individual items of a more extensive table (e.g., a database or another 
spreadsheet) within one or more discrete categories. 

32.3 Python
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Python is an interpreted high-level programming language that was designed by 
Guido van Rossum in the Netherlands in the early 1990s. The design of Python was 
influenced by the ABC programming language, which was designed as a teaching 
language, and developed at CWI in Amsterdam. Python has become a very pop-
ular programming language, and today the Python Software Foundation (PSF) is 
responsible for the language and its development. It is an object-oriented language 
that is based on the C programming language, and the language is versatile with 
applications in many areas including: 

Rapid web development 
Scientific and numeric computing 
Machine learning applications 
Image processing applications 
Game development 
Artificial intelligence 
Gathering data from websites 
Data science and data analytics 
Data visualization 
Business applications such as ERP 
Education on programming. 

The language has become very popular especially for machine learning and artifi-
cial intelligence, as it is reasonably easy to use especially for those who are new 
to programming. Its syntax is relatively simple, and the language is readable and 
easy to understand. Python applications can run on any operating system for which 
a Python interpreter exists. 

Python includes many libraries such as libraries for web development, libraries 
for the development of interactive games, and libraries for machine learning and 
artificial intelligence. Python includes libraries that enable the development of 
applications that can multitask and output video and audio media. 

Python supports data science and data visualization, and its libraries allow the 
data to be studied and information to be extracted. The data may be visualized 
such as in plotting graphs. 

Python is able to gather a large amount of data from websites, which enables 
operations such as price comparison and job listings to be performed. For more 
information on Python see https://www.python.org/. 

32.4 Maple 

Maple is math software that includes a powerful math engine and a user interface 
that makes it easy to analyse, explore, visualize, and solve mathematical problems. 
It allows problems to be solved easily and quickly in most areas of mathematics. 
It is a commercial general-purpose computer algebra system that can manipulate 
mathematical expressions and find symbolic solutions to certain kinds of problems

https://www.python.org/
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including those that arise in ordinary and partial differential equations. It supports 
symbolic mathematics, numerical analysis, data processing, and visualization. The 
Canadian software company, Maplesoft™, developed Maple, and its initial release 
was in the early 1980s (Fig. 32.2). 

Maple supports several areas of mathematics including calculus, linear algebra, 
differential equations, equation solving, and symbolic manipulation of expres-
sions. Maple has powerful visualization capabilities including support for two-
dimensional or three-dimensional plotting as well as animation. Further, Maple 
includes a high-level programming language that enables users to create their own 
applications. 

Maple makes use of matrix manipulation tools along with sparse arrays, and 
it has a wide range of special mathematical libraries. Maple supports 2D image 
processing and supports several probability distributions. It has functionality for 
code generation in languages such as C, Fortran, Python, and Java. 

Maple includes the standard arithmetic operators such as +, −, *, /, and ^ for 
exponential; it includes the relational operators <, >, <=, >=, <>, and =; the logical 
operators AND, OR, XOR, implies, and NOT; and the set operators intersect,

Fig. 32.2 Maple user interface. Creative commons 
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union, minus, subset, and member. A value may be assigned to a variable with 
the assign command (:=). It includes special constants such as Pi, infinity, and the 
complex number I. For more information on Maple see https://www.maplesoft. 
com/. 

32.5 Minitab Statistical Software 

Minitab is a statistical software package that was originally developed at the Uni-
versity of Pennsylvania in the early 1970s. Minitab, LLC, was formed in the 
early 1980s, and the company is based in Pennsylvania. It is responsible for the 
Minitab statistical software and its associated products, and it distributes the suite 
of commercial products around the world (Fig. 32.3). 

Minitab statistical software is used by thousands of organizations around the 
world. The software helps companies and institutions to identify trends, solve 
problems, and discover valuable insights in data by delivering a comprehensive 
suite of data analysis and process improvement tools. The software is easy to use 
and makes it easy for business and organizations to gain insights from the data and 
to discover trends and predict patterns. It assists in identifying hidden relationships 
between variables as well as providing dazzling visualizations. Minitab has a team 
of data analytic experts and services to ensure that users get the most out of their 
analysis, enabling them to make better, faster, and more accurate decisions. 

Minitab includes a complete set of statistical tools including descriptive statis-
tics, hypothesis testing, confidence intervals, and normality tests. It provides a 
powerful and comprehensive set of statistics to investigate the data. It includes 
functionality to support regression thereby identifying relationships between 
variables, as well as functionality to support the analysis of variance (ANOVA). 

Minitab supports several statistical tests such as t tests, one and two propor-
tions tests, normality test, chi-square, and equivalence tests. Minitab’s advanced 
analytics provides modern data analysis and allows the data to be explored fur-
ther. Minitab’s predictive analytics techniques allow predictions and forecasts to 
be made, and Minitab’s powerful visualizations allow the user to decide which 
graph that best displays the data and supports the analysis.

Fig. 32.3 Minitab screenshot. Created by and used with permission of Minitab LLC 

https://www.maplesoft.com/
https://www.maplesoft.com/
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Minitab includes functionality for control charts that allows processes to be 
monitored over time, thereby ensuring that they are performing between the lower 
and upper control limits for the process. That is, Minitab may be used for statisti-
cal process control thereby ensuring process stability and for data-driven process 
improvement to transform the business. Minitab Engage is a tool for manag-
ing innovation and may be used for managing six-sigma and lean manufacturing 
deployments. 

For more detailed information on Minitab LLC (the makers of Minitab 
Statistical Software) see https://www.minitab.com/. 

32.6 R Statistical Software Environment 

R is a free open-source statistical computing environment that is used by statisti-
cians and data scientists for developing statistical software and for data analysis. 
R includes various libraries that implement various statistical and graphical tech-
niques such as statistical tests, linear and nonlinear modelling, and time series 
analysis. It allows the user to clean, analyse, plot, and communicate all of their 
data all in one place (Fig. 32.4). 

Fig. 32.4 RStudio

https://www.minitab.com/
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R is an interpreted language, and the user generally accesses it through a com-
mand line interpreter, and it has thousands of packages to assist the user. R is a 
popular statistical software tool, and it is widely used in academia and industry. It 
can produce high-quality graphs, and the advantages of R include: 

Free open-source software 
Large community 
Integrates with other languages (e.g., C and C++). 

R was created in the 1990s by Ross Ihaka and Robert Gentleman at the University 
of Auckland in New Zealand, and it was based on the S statistical programming 
language that was developed by John Chambers and others at Bell Labs in the 
1970s. The R Development Core Team is now responsible for its development, and 
R programming plays a key role in statistics, machine learning, and data analysis. 

RStudio is an integrated development environment (IDE) for R, and its func-
tional user interface provides an easier way of using R. Programs may be written 
using the RStudio IDE. R may be downloaded from the Comprehensive R Archive 
Network (CRAN) https://cloud.r-project.org, and RStudio may be downloaded 
from http://www.rstudio.com/download. After installing RStudio there will be two 
key regions in the interface, and R code is typed in the console panel. 

R packages may then be installed where an R package consists of functions, 
data, and documentation that extend the capabilities of R. The use of packages 
is the key to the successful use of R in data science, as it has a large number of 
packages available, and it is easy to install and use them. A core set of packages 
is included with the basic installation, and other packages may be installed as 
required. For example, the package tidyverse may be installed with a single line 
of code that is typed in the console. 

install.packages(“tidyverse”) 
library(“tidyverse”) 

The package must then be loaded with the library command before the functions, 
objects, and help files may be used. The statistical features of R include: 

Basic statistics including measures of central tendency 
Static graphics 
Probability distributions (e.g., binomial and normal) 
Data analytics (tools for data analysis). 

For more information on R and RStudio see https://www.r-project.org/. 

32.7 Mathematica

https://cloud.r-project.org
http://www.rstudio.com/download
https://www.r-project.org/
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Mathematica is a powerful tool for problem solving, and it includes symbolic cal-
culations with nice graphical output. It is a way for doing mathematics with a 
computer, and this powerful computer algebra program is used in the scientific, 
engineering, and computer fields. Symbolic mathematics involves the use of com-
puters to manipulate equations and expressions in symbolic form, as distinct from 
manipulating the numerical quantities represented by the symbols (Fig. 32.5). 

Mathematica was developed by Stephan Wolfram of Wolfram Research in the 
late 1980s, and it supports many areas of mathematics including basic arithmetic, 
algebra, geometry and trigonometry, calculus, complex analysis, vector analysis, 
matrices and linear algebra, and probability and statistics. 

It has a large number of predefined functions for mathematics and other disci-
plines and includes functionality for the visualization of data and functions. This 
includes good graphical capabilities that are useful in plotting functions and data 
in two or three dimensions. For example, the Mathematica command Revolution-
Plot3D constructs the surface formed by revolving an expression around an axis, 
and Fig. 32.6 is generated from the command: 

RevolutionPlot3D[x4 − x2, {x, − 1, 1}]

Fig. 32.5 Mathematica in operation. Provided courtesy of Wolfram Research, Inc., the makers of 
Mathematica, www.wolfram.com 

Fig. 32.6 Surface generated 
with RevolutionPlot3D. 
Provided courtesy of 
Wolfram Research, Inc., the 
makers of Mathematica, 
www.wolfram.com 

http://www.wolfram.com
http://www.wolfram.com
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Mathematica may be used to solve very simple arithmetic problems, as well as 
solving complex problems in differential equations. It has approximately 5000 
built-in functions covering the vast majority of areas in technical computing and 
that work together in the integrated system. The Wolfram programming was 
developed by Wolfram Research, and this multiparadigm language emphasizes 
functional programming and symbolic computation. 

The language can perform integration, differentiation, matrix manipulation and 
solve differential equations using a set of rules. Mathematica has been applied to 
many areas of computing including: 

Machine learning 
Neural networks 
Image processing 
Data science 
Geometry 
Visualization. 

Mathematica has also been applied to many other areas, and it produces docu-
ments as well as code. Its visualizations of results are aesthetically pleasing and 
powerful, and Mathematica also produces publication quality documents, and it has 
thousands of examples in its documentation centre. It has built-in powerful algo-
rithms across many areas that aim to be of industrial strength. Finally, Mathematica 
is integrated with the cloud, and this allows sharing as well as cloud computing. 
There is more detailed information on Mathematica at Wolfram Research, Inc. (see 
https://www.wolfram.com/mathematica/). 

32.8 MATLAB 

MATLAB is a commercial high-level programming language that is used to 
perform mathematical computing, and this numeric computing environment was 
developed by MathWork. It is used by engineers and scientists to organize, explore, 
and analyse the data, and the MATLAB language may be employed to develop pro-
grams based on algorithms from a variety of domains. MATLAB allows the user 
to create customized visualizations and to automatically generate the MATLAB 
code to reproduce them with new data. 

MATLAB manages array and matrix problems, and it may be used to solve 
complex algebraic equations as well as analysing data and plotting graphs. It 
allows the user to create customized visualizations, as well as using the built-in 
charts. MATLAB has many applications including: 

Machine learning 
Deep learning 
Robotics 
Computer vision

https://www.wolfram.com/mathematica/
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Image processing 
Control systems. 

At the heart of MATLAB is a high-level programming language that allows engi-
neers and scientists to express matrix and array mathematics directly. MATLAB 
has a large library of toolboxes from everything from wireless communication, to 
control systems, to signal and image processing, to robotics, and to AI. It is easy to 
use and learn, and it allows ideas to be explored with the results and visualizations 
seen quickly. 

It includes pre-built apps and allows the user to create their own apps. It 
includes App Designer, which allows a non-specialist to create professional apps 
by laying out the visual components of the GUI as well as programming the app 
behaviour. MATLAB may be extended with thousands of packages and tools, and 
its capabilities include: 

Data analysis 
Graphics 
Algorithm development 
App building. 

There is more detailed information on MATLAB at MathWorks (see https://www. 
mathworks.com/products/matlab.html). 

32.9 Summary 

The goal of this chapter was to discuss a selection of software available to support 
software engineering mathematics, including Excel, Python, Maple, Mathematica, 
MATLAB, Minitab, and R. 

Excel is a spreadsheet program that consists of a grid of cells in rows and 
columns. Python is an interpreted high-level programming language with appli-
cations in web development, artificial intelligence, and data science. Maple is 
a computer algebra system that can find symbolic solutions to certain kinds of 
problems. Minitab is a statistical software package with a comprehensive set 
of statistics to investigate the data. R is an open-source statistical computing 
environment that is used for developing statistical software and for data anal-
ysis. Mathematica is a computer algebra program that is used in the scientific, 
engineering, and computer fields. 

MATLAB is a computing environment that supports matrix manipulation, 
plotting of data and functions, and the implementation of algorithms.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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