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Abstract. To achieve accurate prediction of the remaining useful life of rolling
bearings, a prediction method combining convolutional neural network (CNN)
and long and short-termmemory network (LSTM) is proposed. Firstly, the feature
parameters in the time domain frequency domain are extracted, and the degrada-
tion trend is determined to be characterized using segmentation function, then the
feature parameters are normalized as the input of CNN, and the information is
extracted using CNN, and then these deep-level features are input to LSTM These
deep-level features are then fed into the LSTM for prediction using the predict
function to achieve the goal of rolling bearing life prediction. To verify the ratio-
nality of the proposed method, the PHM2012 dataset was used and its whole life
cycle vibration data was substituted into the proposed method. The experimental
results show that the proposed method has a good fitting effect, and the prediction
results are close to the real-life value.

Keywords: Rolling bearings · Life prediction · Deep learning · Convolutional
neural networks · Long and short-term memory networks

1 Introduction

At present, rolling bearings are widely used in many rotating machinery and equipment,
playing an important role in ensuring the safe and reliable operation of equipment, and
once a failure occurs, it will lead to a series of negative effects, such as prolonging down-
time and causing malicious accidents. Therefore, accurate prediction of the remaining
service life of bearings is of great significance for preventive maintenance decisions on
rotating machinery. Existing failure prediction and health management methods can be
divided into three main categories: physical model-basedmethods, data-drivenmethods,
and a mixture of the two [1]. Of these, data-driven methods, which model degradation
characteristics based on historical sensor data, have a wide range of applications, while
deep learning, as a type of data-driven method, has been used in various fields.

The traditional statistically driven approach is significantly influenced by the choice
of model and is susceptible to engineering experience and subjective factors. Also,
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statistical analysis models are less generalizable for different research objectives and
require repeated modelling. In contrast, machine learning has powerful data processing
capabilities and does not require exact physical models and expert prior knowledge, thus
deep learning shows promise in the field of remaining life prediction.

In terms of deep learning, Lecun [2] first proposed convolutional neural networks.
Later, Li et al. [3] used deep convolutional neural networks for RUL prediction of aero
engines and used Dropout technique to prevent overfitting and obtained good prediction
performance.

For the life prediction of bearings, the vibration signal of bearings contains a lot
of timing information, so the CNN which is insensitive to timing information does
not fully exploit its ability. The most suitable one for processing timing information
in deep learning is recurrent neural network [4], and WANG et al. [5] used recurrent
convolutional neural network for predicting the remaining service life of machines,
breaking the limitation of CNN. However, RNNs suffer from gradient disappearance
when the computational load is high [6], and LSTM, as an improvement of RNN, can
solve this phenomenon well. Wang et al. [7] predict the remaining life of a bearing by
using manually extracted time-domain, frequency-domain, and time-frequency-domain
features as the input to an LSTM network.

2 Theoretical Foundations

2.1 Convolutional Neural Networks

Convolutional neural network is a feed-forward neural network containing convolutional
operations, which excels in feature extraction and is widely used in speech recognition,
image classification, machinery fault diagnosis and other fields.

Figure 1 shows a typical CNN is made up of a stack of multiple convolutional and
pooling layers, consisting of five parts: an input layer, a convolutional layer, a pooling
layer, a fully connected layer and an output layer. The convolutional and pooling layers
are usually used in pairs for convolution and dimensionality reduction of the input feature

Fig. 1. CNN network structure
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information, while the fully connected and output layers are used for the output of the
model training results.

The convolutional neural network operation is a convolutional kernel traversing
the entire input sequence data to produce a higher level, more abstract feature space;
secondly, the pooling layer compresses each generated feature for secondary feature
extraction, dimensionality reduction and selection of higher-level important features;
finally, new sequence features are generated as input to the next convolutional layer
and pooling layer. The specific operations of the convolution and pooling layers are as
follows.

1) Convolutional layer: A portion of the data is selected for calculation by sliding
the size of the convolutional kernel window, and the result of the convolution is
the feature map. Usually, a convolutional layer has multiple convolutional kernels,
resulting in multiple feature maps, and the weights of the same convolutional kernel
are shared. This feature reduces the number of network connections, reduces model
complexity and lowers system memory expenditure. Assuming that the input to
the CNN model is X, Eq. (1) defines the formula for calculating the output of the
convolution layer.

Cn = σ(Wn ⊗ X + bn) (1)

where:Cn is the nth featuremap output from the convolution layer; σ is the activation
function; Wn is the weight matrix of the nth convolution kernel of the current con-
volution layer; bn is the bias of the nth convolution kernel of the current convolution
layer; and ⊗ is the convolution operation.

2) Pooling layer: The pooling layer is mainly used to carry out the down sampling
operation to achieve the purpose of reducing the network parameters and speeding
up the calculation speed. There are generally four types of pooling functions, namely
maximum pooling, average pooling, global average pooling and global maximum
pooling. Equation (2) defines the pooling function when the maximum pooling
operation is used.

Pn = maxCn (2)

where: Pn is the output of the pooling layer; Cn is the input of the pooling layer.

2.2 Long Short-Term Memory Neural Networks

During a convolutional neural network operation, the state always propagates from front
to back, which means that in a CNN network, information flows only in one direction.
At each computational step, the CNN only considers the current input and ignores previ-
ous degradation information. Consequently, convolutional neural networks are good at
extracting data features but are unable to model the backward and forward correlation of
different machine degradation states. The RNNmodel can retain the model’s memory of
input patterns, which can effectively compensate for the shortcomings of CNNs. LSTM
is an improved RNN that introduces memory units, effectively overcomes the gradient
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disappearance problem, and solves the problem of long-term dependence that RNNs
cannot learn.

The hidden layer structure of the LSTM network is the long- and short-termmemory
block, which consists of three control gates and a cellular structure, Fig. 2 shows the
specific structure of the LSTM network. ft , it , ot are the forgetting gates, input gates and
output gates respectively. The LSTM controls the flow of information in the time series
through the action of these three gates, thereby better capturing the long-term depen-
dence problem in the sequence. This allows for better capture of long-term dependency
problems in the sequence and efficient processing of sequence data.

Fig. 2. LSTM network structure

Equations (3), (4), (5), (6), (7) and (8) define the update steps of the LSTM.

1) Calculate the value of the forgetting gate ft. The LSTM controls the memory cell
state by calculating the forgetting gate ft from the input vector [ht−1, Xt] consisting
of the previous moment’s output ht-1 and the current moment’s input xt together

ft = σ(Wxf xt + Whf ht−1 + bf ) (3)

2) Calculate the value of the input gate it. The input gate determines which values are
used to update through the sigmoid function, which controls the effect of the current
data input on the state value of the memory cell

it = σ(Wxixt + Whiht−1 + bi) (4)

3) Calculate the candidate state c
∧

t , which will be generated by the tanh activation
function before generating the new candidate state information value c

∧

t . And c
∧

t is
the result of the joint action in two-time steps

c
∧

t= tanh(Wxcxt + Whcht−1+bc) (5)

4) Calculate the value ct of the memory cell at the current moment

ct = ft ⊗ ct−1 + it ⊗ c
∧

t (6)
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5) Calculate the value of the output gate ot . The main function of the output gate is to
control the message output

ot = σ(Wxoxt + Whoht−1 + bo) (7)

6) LSTM memory cell output

ht = ot tanh(ct) (8)

where: ht−1 is the output at the previousmoment;Wxf ,Wxi,Wxc,Wxo are theweights
of forgetting gates, input gates, memory units and output gates of the hidden layer
at moment t; Whf ,Whi,Whc,Who are the weights of forgetting gates, input gates,
memory units and output gates of the hidden layer between moments t − 1 and t,
respectively bc is the memory node bias; bi, bf , bo correspond to the bias vectors
of the three multiplication gates respectively; σ is the activation function, generally
using the sigmoid function, taking values from 0 to 1.

The long and short-term memory neural network is trained by a time-based back-
propagation algorithm where errors are back-propagated through the time dimension.
The training allows the network to achieve feature extraction of time series data, thus
allowing information on the degradation process of the bearing in the time domain signal
to be reflected and therefore more accurate time series prediction.

3 RUL Prediction Methods

3.1 Data Pre-processing

For the CNN-LSTM neural network model, input and output data are required. The
original vibration signal of the bearing has too many disturbing features and is not
obvious, so it is not suitable to be used as the input of the network model directly.
The time domain and frequency domain features of the vibration signal can reflect
the degradation state of the bearing. The common time domain features are: peak value,
root mean square value, peak-to-peak value, cliffness indicator, etc.; while the frequency
domain features are: Centre frequency, average frequency, etc. Under normal operating
conditions, the bearing condition monitoring signal is normally distributed, while the
cliffness indicator changes when the signal deviates from the normal distribution, and
the magnitude of the change represents the degradation of the bearing.

Figure 3 shows the rootmean square values and root squaremagnitudes of bearing1–1
for the data used in this paper.
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Fig. 3. (a) Bearing1–1 Root mean square values of vibration signals. (b) Bearing1–1 Root square
amplitude of vibration signal
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It is easy to see from Fig. 3 that as the bearing degrades, its indicators such as
root mean square value and root square amplitude also show a clear trend of increasing
amplitude, indicating that it is feasible to extract the characteristic information in the
time and frequency domain for use as life prediction.

Therefore, in this paper, 12 time-domain frequency-domain features, namely mean
value, root mean square value, root square amplitude, cliff value, peak-to-peak value,
waveform indicator, peak indicator, pulse indicator, margin indicator, cliff indicator,
mean frequency and root mean square frequency, are selected as inputs to the neural
network model.

To facilitate the calculation, the remaining bearing life is mapped between 0 and 1.
When RUL = 1, the bearing is intact, when RUL = 0, the bearing is damaged and needs
to be replaced or repaired immediately. Equation (9) defines the formula for calculating
RUL

RUL = X − i

X
(9)

The degradation process of most bearings can be reduced to two processes, the
normal operation phase, and the degradation phase [8], so the remaining life of the
bearing can be considered as a segmental function, with the point at which the vibration
amplitude begins to consistently exceed a threshold value defined as the moment at

Fig. 4. Bearing1-1 Full life vibration signal
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which degradation has begun. Figure 4 shows the 1424th sampling point of bearing1–1
is defined as the moment of the start of degradation.

3.2 CNN-LSTM Model Building

To give full play to the spatial feature extraction ability of CNN and the temporal feature
extraction ability of LSTM, this paper combines the two to propose a CNN-LSTMmodel
to predict the granted service life of bearings, Fig. 5 shows the flow block diagram.

Fig. 5. Prediction flow chart

As shown in the figure, the vibration data of the bearing is first pre-processed to
extract its time and frequency domain features and divide the training and test sets
according to a certain ratio, after which the feature values are normalized so that the
values are mapped to between 0 and 1 and used as feature inputs. The training set is
then fed into a CNN-LSTM network for training, and the test data is fed into the trained
network model for testing, and the prediction results are smoothed to produce the final
RUL prediction results for the bearings.

Figure 6 shows the specific network structure used in this paper, Table 1 shows the
parameters.
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Fig. 6. CNN-LSTM network structure

Table 1. Network model parameters

Network parameters CNN-LSTM

Input dimensions 12

Output dimensions 1

Number of network layers 13

Learning rate 0.005

Time step 10

Rate of decline in learning rates 0.45

The network model in this paper has a 9:1 split between the training and test sets,
uses the mean square error MSE as the cost function, and uses the adam algorithm with
a batch size of 200 and a learning rate of 0.005 as the optimizer.

3.3 Smoothing of Prediction Results

For better prediction results, the predicted data will be smoothed, because the prediction
results obtained using deep learning methods will have large local fluctuations, which
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will lead to bias in the prediction results, so this paper uses an exponential method with
a window size of 30 to smooth the predicted data.

4 Experimental Validations

4.1 Description of the Dataset

In this paper, the validity of the CNN-LSTMmodel for predicting the remaining service
life of rolling bearings is verified by using the publicly available bearing full life cycle
degradation dataset from the IEEE PHM 2012 Data Challenge.

The dataset was provided by the FEMTO-ST Institute in France using the PRONOS-
TIA experimental platform, which uses two acceleration sensors to collect acceleration
data in both horizontal and vertical directions at a sampling frequency of 25.6 kHz,
with each sampling lasting 10 s and sampling at ten-second intervals, respectively. The
bearing is considered damaged when the vibration amplitude exceeds 20 g. From the
literature [9] it is known that the horizontal vibration signal contains more degradation
information and is more suitable for the RUL prediction of the bearing, so the horizontal
vibration signal is chosen for model training and testing in this paper.

4.2 Evaluation Indicators

To quantitatively analyses the goodness of the model prediction results, evaluation indi-
cators need to be introduced. In this paper, root mean square error and score function is
chosen as evaluation indicators, which are defined as follows.

(1) RMSE value: The root mean square error represents the deviation between the
predicted and true values. The weights assigned to the overestimation and under-
estimation of bearing life are the same, which means that the final evaluation result
is the same when the life is overestimated and underestimated, if the difference is
the same. Equation (10) defines the specific formula for calculating RMSE

RMSE =
√
√
√
√ 1

N

N∑

i=1

[f (i) − f
∧

(i)]2 (10)

where: N is the number of samples, f (i) is the true RUL label of the sample, and
f
∧

(i) is the predicted RUL value.
(2) scoring function: scoring function is provided by the 2012 PHM data challenge,

used to evaluate the prediction of good or bad results of the function. Unlike the
RMSE, the scoring function has different evaluation scores for the overestimation
and underestimation of the results. As the underestimation of the bearing life is
more likely to improve the safety of the equipment, the scoring function will give
a higher score for the predicted life than the actual life, Eqs. (11), (12) and (13)
define the specific calculation process of the score function.

Eri = ActRUL − PreRUL

ActRUL
(11)
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Ai =
⎧
⎨

⎩

exp
−ln(0.5)∗

(
Eri
5

)

,Eri ≤ 0

exp
ln(0.5)∗

(
Eri
20

)

,Eri > 0
(12)

Score = 1

N

N∑

i=1

Ai (13)

where: Eri is the percentage error of the ith sample, ActRUL is the actual RLU
value of the bearing, PreRUL is the predicted RUL value of the bearing, and Score
is the final score.

4.3 Analysis of Results

To verify the validity of the model, Bearing1–3 is selected as the test set in this paper to
analyses its prediction results. Figure 7 shows the time domain diagram of the vibration
signals of the bearings in the test set.

Fig. 7. Bearing1–3 Time domain diagram of the vibration signal

The predictions from the model output were smoothed and Fig. 8 shows the
comparison of the processed results with the original data.
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Fig. 8. Predicted results

As canbe seen fromFig. 8, the prediction results of theCNN-LSTMmodel accurately
match the degradation trend of the bearings, but there are local fluctuations in the predic-
tion, and after exponential smoothing the fluctuations are significantly reduced, which
can better match the degradation trend, which proves the feasibility of this smoothing
method.

For the rolling bearing RUL prediction problem, it is quite difficult to obtain very
accurate RUL prediction results throughout the life cycle of the bearing. The CNN-
LSTM network model proposed in this paper can provide an accurate indication of the
degradation trend of the bearing and act as an early warning.

To verify the superiority of the method in this paper, the prediction results were
compared with the literature [10] using the same dataset, comparing their RMSE values
and Score scores, and Table 2 shows the results.

Table 2. Comparison of predicted results

Test bearings CNN GRU CNN-GRU CNN-LSTM

RMSE Score RMSE Score RMSE Score RMSE Score

Score 0.092 0.964 0.153 0.965 0.082 0.974 0.044 0.975

As can be seen from Table 2, the proposed method in this paper has the lowest
RMSE and highest Score compared with other methods, so the CNN-LSTM model can
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effectively predict the RUL of the bearings and has a smaller prediction error than the
other three models, which proves the effectiveness of the model in this paper.

5 Conclusion

In response to the problem that the remaining useful life of bearings is difficult to
predict, this paper proposes a CNN-LSTM method for predicting the RUL of bearings
and verifies the effectiveness of the method with the PHM2012 bearing degradation
dataset. The specific contents are.

1) Pre-process the vibration signals, select 12 time-domain frequency-domain signals
that have a great influence on the prediction results, and input them into the prediction
model after normalization to improve the prediction accuracy.

2) Construct a network structure, build a CNN-LSTM network, and adjust the model
parameters to achieve the best prediction results.

3) Select suitable evaluation indexes and compare the prediction results of this model
with those of other models to verify the effectiveness and superiority of this model.
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