
Chapter 6
On the Coercivity of Strain Energy Functions in
Generalized Models of 6-Parameter Shells

Mircea Bîrsan and Patrizio Neff

Abstract In this paper we consider geometrically nonlinear 6-parameter shell models.
We establish some existence proofs by the direct methods of the calculus of variations.
In contrast to more classical approaches, we also investigate models up to order ℎ5 in
the shell thickness, where the form of the equations is determined by a dimensional
descent from a three-dimensional Cosserat model.
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6.1 Introduction

The theory of shells is a vast subject. It is useful to distinguish three types of models:
the shells of Kirchhoff–Love–Koiter type (with normality assumption, see e.g. [1]-
[6]), the 5-parameter shells of Reissner–Mindlin type (allowing for transverse shear,
see e.g. [7]-[9]), and the 6-parameter shells (in addition allowing for in-plane drill
[10]-[12]). In the linearized setting, all these models are well-posed: one can prove
existence and uniqueness of solutions (see, e.g., [13]-[16]).

However, in the geometrically nonlinear setting astounding differences appear.
Indeed, as will be shown in a forthcoming paper, the Koiter and the Reissner–Mindlin
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models (based on quadratic strain and curvature energies) are both not well-posed
in the sense that global minimizers do not exist. This may come as a surprise since
they are often used by engineers. On the contrary, the general 6-parameter (Cosserat,
micropolar) shell model is well-posed. This has been shown for the first time in
[17] for the flat shell problem (see also [18, 19]) and in general in [20], and here we
will expand on our knowledge of that. Also from an engineering point of view, 6-
parameter shells have certain advantages, e.g. the imposition of boundary conditions
is transparent, and these shells can easily be coupled with beam elements. Therefore,
we strongly advocate the use of 6-parameter shell models, although it means that a
numerical code implementing such models must be able to handle the rotation map.

Outline of the paper. In Sect. 6.2 we present briefly the governing equations of
6-parameter shells, including the differential geometry of the reference midsurface,
the strain measures and the general stress-strain relations. In Sect. 6.3 we introduce
the isotropic Cosserat 6-parameter shell model of order𝑂 (ℎ3) and show that the strain
energy function is coercive under certain conditions on the constitutive coefficients.
Then, we apply the direct methods of the calculus of variations to prove the existence
of minimizers to the variational problem. In Sect. 6.4 we consider the higher order
Cosserat 6-parameter shell model and show the coercivity of the areal strain energy
density. Also, we use this coercivity property to prove existence results for the
minimization problem associated to equilibrium of Cosserat (6-parameter) shells of
order 𝑂 (ℎ5).

Summary of notations. We present first some useful notations which will be
used throughout this paper. The Latin indices 𝑖, 𝑗 , 𝑘, ... range over the set {1,2,3},
while the Greek indices 𝛼, 𝛽, 𝛾, ... range over the set {1,2}. The Einstein summation
convention over repeated indices is used. A subscript comma preceding an index
𝑖 (or 𝛼) designates partial differentiation with respect to the variable 𝑥𝑖 (or 𝑥𝛼 ,
respectively), e.g. 𝑓 ,𝑖 = 𝜕 𝑓

𝜕𝑥𝑖
. We denote by 𝛿

𝑗
𝑖 the Kronecker symbol and employ

the direct tensor notation. Thus, ⊗ designates the dyadic product, while axl(𝑾)
stands for the axial vector of any skew-symmetric tensor 𝑾. For any second order
tensor 𝑿, let tr(𝑿) designate the trace, sym(𝑿) the symmetric part, and skew(𝑿)
the skew-symmetric part of 𝑿. The scalar product between any second order tensors
𝑨 and 𝑩 is denoted by ⟨𝑨 ,𝑩⟩ = tr

(
𝑨𝑇𝑩

)
. For any vector 𝒗 and second order tensor

𝑨 we write also 𝒗𝑨 = 𝑨𝑇𝒗 .

6.2 General 6-Parameter Elastic Shells. Governing Equations

Let us present first the geometry and kinematics of general 6-parameter shells. Denote
by S𝑐 the deformed (current) configuration of the shell and by S𝜉 its reference
configuration. The midsurface of the reference configuration is denoted by 𝜔𝜉 . This
surface is determined by the position vector 𝒚0 (𝑥1, 𝑥2), where 𝒚0 :𝜔 ⊂ R2 →𝜔𝜉 ⊂ R3

is a parametric representation. The curvilinear coordinates (𝑥1, 𝑥2) are convected
coordinates on the surface 𝜔𝜉 .
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Concerning the differential geometry of the midsurface 𝜔𝜉 , we introduce the
covariant base vectors 𝒂𝛼 and the contravariant base vectors 𝒂𝛼 by

𝒂𝛼 =
𝜕𝒚0
𝜕𝑥𝛼

, 𝒂𝛼 · 𝒂𝛽 = 𝛿𝛼𝛽 (𝛼, 𝛽 = 1,2). (6.1)

Moreover, we introduce the vectors

𝒂3 = 𝒂3 = 𝒏0 , where 𝒏0 =
𝒂1 × 𝒂2

∥𝒂1 × 𝒂2∥ (6.2)

is the unit normal vector to the surface 𝜔𝜉 . Let 𝒂 and 𝒃 be the first fundamental
tensor and the second fundamental tensor of the midsuface 𝜔𝜉 , respectively, i.e.

𝒂 = Grad𝑠 𝒚0 = 𝒂𝛼 ⊗ 𝒂𝛼 = 𝑎𝛼𝛽𝒂𝛼 ⊗ 𝒂𝛽 = 𝑎𝛼𝛽𝒂𝛼 ⊗ 𝒂𝛽 ,

𝒃 = −Grad𝑠 𝒏0 = −𝒏0,𝛼 ⊗ 𝒂𝛼 = 𝑏𝛼𝛽 𝒂𝛼 ⊗ 𝒂𝛽 = 𝑏𝛼𝛽 𝒂𝛼 ⊗ 𝒂𝛽 ,
(6.3)

where Grad𝑠 is the surface gradient operator defined by Grad𝑠 𝒇 = 𝒇 ,𝛼 ⊗ 𝒂𝛼 for any
𝒇 . Also, we employ the surface divergence operator given by Div𝑠𝑻 = 𝑻,𝛼 𝒂

𝛼 for
any second order tensor 𝑻. The so-called alternator tensor 𝒄 of the surface is

𝒄 =
1√
𝑎
𝜖𝛼𝛽 𝒂𝛼 ⊗ 𝒂𝛽 =

√
𝑎 𝜖𝛼𝛽 𝒂

𝛼 ⊗ 𝒂𝛽 , (6.4)

where
𝑎 = det

(
𝑎𝛼𝛽

)
2×2 > 0

and 𝜖𝛼𝛽 is the two-dimensional alternator

𝜖12 = −𝜖21 = 1 , 𝜖11 = 𝜖22 = 0.

Let
𝐻 =

1
2

tr 𝒃 =
1
2
𝑏𝛼𝛼

be the mean curvature and

𝐾 = det 𝒃 = det
(
𝑏𝛼𝛽

)
2×2

be the Gauß curvature of the surface 𝜔𝜉 . Then, the relation of Cayley-Hamilton type
holds

𝒃2 −2𝐻𝒃 +𝐾𝒂 = 0. (6.5)

The last relation is equivalent to 𝒃(2𝐻𝒂− 𝒃) = 𝐾𝒂 . Hence, we introduce the tensor

𝒃∗ = 2𝐻𝒂− 𝒃, (6.6)
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which can be regarded as the cofactor of 𝒃 in the tangent plane. We also denote by
𝜅1 , 𝜅2 the principal curvatures of the reference midsurface and we assume as usual
that |𝜅𝛼ℎ| < 1 (𝛼 = 1,2).

To describe its deformation, we refer the shell to a Cartesian coordinate frame
𝑂𝑥1𝑥2𝑥3 with orthonormal base vectors {𝒆1, 𝒆2, 𝒆3}. The reference configuration is
characterized by the position vector 𝒚0 and the initial microrotation tensor 𝑸0 as

𝒚0 : 𝜔 ⊂ R2 → 𝜔𝜉 ⊂ R3, 𝒚0 = 𝒚0 (𝑥1, 𝑥2),
𝑸0 : 𝜔 ⊂ R2 → SO(3), 𝑸0 = 𝒅0

𝑖 (𝑥1, 𝑥2) ⊗ 𝒆𝑖 .
(6.7)

The parameter domain 𝜔 is a bounded open domain with Lipschitz boundary 𝜕𝜔 in
the 𝑂𝑥1𝑥2 plane. The reference directors {𝒅0

1, 𝒅
0
2, 𝒅

0
3} are orthonormal and the third

director 𝒅0
3 is chosen to coincide with the unit normal in the reference configuration,

i.e. 𝒅0
3 = 𝒏0 . The shell deformation is characterized by the deformation function 𝒎

and the microrotation tensor 𝑸𝑒 given by

𝒎 : 𝜔→ 𝜔𝑐 , 𝒎 = 𝒎(𝑥1, 𝑥2),
𝑸𝑒 : 𝜔→ SO(3), 𝑸𝑒 = 𝑸𝑒 (𝑥1, 𝑥2) = 𝒅𝑖 ⊗ 𝒅0

𝑖 .
(6.8)

Here, 𝜔𝑐 is the deformed midsurface and {𝒅1, 𝒅2, 𝒅3} is the orthonormal triad of
directors in the deformed configuration.

We introduce the strain measures of 6-parameter shells as follows [10, 11, 21]:
the shell strain tensor is

𝑬𝑒 = 𝑸𝑇
𝑒 Grad𝑠𝒎− 𝒂 (6.9)

and the shell bending-curvature tensor is

𝑲𝑒 = axl
(
𝑸𝑇

𝑒𝑸𝑒,𝛼

) ⊗ 𝒂𝛼 . (6.10)

The local equilibrium equations for 6-parameter shells have the following form
(see, e.g. [21, 22])

Div𝑠𝑵 + 𝒇 = 0, Div𝑠𝑴 + axl
(
𝑵𝑭𝑇 −𝑭𝑵𝑇 ) + 𝒍 = 0, (6.11)

where 𝑵 is the internal surface stress tensor and 𝑴 the internal surface couple stress
tensor (of the first Piola-Kirchhoff type). The tensor

𝑭 = Grad𝑠𝒎 = 𝒎,𝛼 ⊗ 𝒂𝛼

is the shell deformation gradient, while the vectors 𝒇 and 𝒍 are the external body
forces and body couples, respectively. We consider the following boundary conditions
of mixed type prescribed on the boundary curve 𝜕𝜔𝜉 [23, 24, 20]
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𝑵𝝂 = 𝑵∗, 𝑴𝝂 = 𝑴∗ along 𝜕𝜔 𝑓 ,

𝒎 = 𝒎∗, 𝑸𝑒 = 𝑸∗ along 𝜕𝜔𝑑 ,
(6.12)

where 𝜕𝜔 𝑓 ∪ 𝜕𝜔𝑑 = 𝜕𝜔𝜉 is a disjoint partition of the boundary curve 𝜕𝜔𝜉 . Here,
𝑵∗ and 𝑴∗ are the external boundary force and couple vectors respectively, applied
along the deformed boundary curve, but measured per unit length of 𝜕𝜔 𝑓 . The vector
𝝂 is the outer unit normal to the boundary curve 𝜕𝜔𝜉 , lying in the tangent plane.

Let the areal strain energy density for 6-parameter shells be given as a function of
the strain measures in the form

Wshell =Wshell (𝑬𝑒,𝑲𝑒). (6.13)

Under hyperelasticity assumptions, the stress and couple stress tensors are expressed
by the following constitutive relations

𝑸𝑇
𝑒 𝑵 =

𝜕Wshell
𝜕𝑬𝑒 , 𝑸𝑇

𝑒 𝑴 =
𝜕Wshell
𝜕𝑲𝑒 . (6.14)

To obtain the explicit form of the stress-strain relations we need the specific
expression of the strain energy functionWshell . In [21],Eremeyev and Pietraszkiewicz
have presented the general form of a quadratic energy density for isotropic shells,
but the constitutive coefficients are not determined in terms of three-dimensional
material constants. For instance, the following simplified expression of the energy
density is proposed [21]

2Ŵshell (𝑬𝑒,𝑲𝑒) = 𝛼1
[
tr(𝒂𝑬𝑒)]2 +𝛼2tr

[(𝒂𝑬𝑒)2] +𝛼3∥𝒂𝑬𝑒∥2 +𝛼4∥𝒏0𝑬
𝑒∥2

+𝛽1
[
tr(𝒂𝑲𝑒)]2 + 𝛽2tr

[(𝒂𝑲𝑒)2] + 𝛽3∥𝒂𝑲𝑒∥2 + 𝛽4∥𝒏0𝑲
𝑒∥2,

or equivalently, in view of the relation tr(𝑿2) = ∥sym(𝑿)∥2 − ∥skew(𝑿)∥2,

2Ŵshell (𝑬𝑒,𝑲𝑒) = (𝛼2 +𝛼3)∥sym(𝒂𝑬𝑒)∥2 + (𝛼3 −𝛼2)∥skew(𝒂𝑬𝑒)∥2

+𝛼1
[
tr(𝒂𝑬𝑒)]2 +𝛼4∥𝒏0𝑬

𝑒∥2 + (𝛽2 + 𝛽3)∥sym(𝒂𝑲𝑒)∥2

+(𝛽3 − 𝛽2)∥skew(𝒂𝑲𝑒)∥2 + 𝛽1
[
tr(𝒂𝑲𝑒)]2 + 𝛽4∥𝒏0𝑲

𝑒∥2,

(6.15)

where 𝛼𝑘 and 𝛽𝑘 (𝑘 = 1,2,3,4) are constant constitutive coefficients.
Let us introduce the surface deviator operator dev𝑠 defined in [25] by

dev𝑠𝑻 = 𝑻 − 1
2
(tr𝑻)𝒂

for any 𝑻. Then, we can decompose any tensor of the type 𝑿 = 𝑋𝑖𝛼𝒂𝑖 ⊗ 𝒂𝛼 as a direct
sum (orthogonal decomposition) in the form

𝑿 = dev𝑠 (sym𝑿) + skew𝑿 + 1
2
(tr𝑿)𝒂. (6.16)
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Hence, it follows that

∥sym𝑿∥2 = ∥dev𝑠 (sym𝑿)∥2 + 1
2
(tr𝑿)2 (6.17)

and relation (6.15) can be written in the form

2Ŵshell (𝑬𝑒,𝑲𝑒) = (𝛼2 +𝛼3)∥dev𝑠sym(𝒂𝑬𝑒)∥2 + (𝛼3 −𝛼2)∥skew(𝒂𝑬𝑒)∥2

+
(
𝛼1 + 𝛼2 +𝛼3

2

) [
tr(𝒂𝑬𝑒)]2 +𝛼4∥𝒏0𝑬

𝑒∥2

+(𝛽2 + 𝛽3)∥dev𝑠sym(𝒂𝑲𝑒)∥2 + (𝛽3 − 𝛽2)∥skew(𝒂𝑲𝑒)∥2

+
(
𝛽1 + 𝛽2 + 𝛽3

2

) [
tr(𝒂𝑲𝑒)]2 + 𝛽4∥𝒏0𝑲

𝑒∥2.

(6.18)
From the last relation we see that the strain energy functionŴshell (𝑬𝑒,𝑲𝑒) is coercive
in terms of 𝑬𝑒 and 𝑲𝑒 provided that the coefficients verify the conditions

2𝛼1 +𝛼2 +𝛼3 > 0, 𝛼2 +𝛼3 > 0, 𝛼3 −𝛼2 > 0, 𝛼4 > 0,
2𝛽1 + 𝛽2 + 𝛽3 > 0, 𝛽2 + 𝛽3 > 0, 𝛽3 − 𝛽2 > 0, 𝛽4 > 0.

(6.19)

Indeed, if we denote by

𝑐1 = min{2𝛼1 +𝛼2 +𝛼3 , 𝛼2 +𝛼3 , 𝛼3 −𝛼2 , 𝛼4} > 0

and
𝑐2 = min{2𝛽1 + 𝛽2 + 𝛽3 , 𝛽2 + 𝛽3 , 𝛽3 − 𝛽2 , 𝛽4} > 0,

then from (6.16) and (6.18) we obtain

2Ŵshell (𝑬𝑒,𝑲𝑒) ≥ 𝑐1

(
∥dev𝑠sym(𝒂𝑬𝑒)∥2 + ∥skew(𝒂𝑬𝑒)∥2 + 1

2
[
tr(𝒂𝑬𝑒)]2

+ ∥𝒏0𝑬
𝑒∥2

)
+ 𝑐2

(
∥dev𝑠sym(𝒂𝑲𝑒)∥2 + ∥skew(𝒂𝑲𝑒)∥2

+ 1
2
[
tr(𝒂𝑲𝑒)]2 + ∥𝒏0𝑲

𝑒∥2
)

≥ 𝑐1

(
∥𝒂𝑬𝑒∥2 + ∥𝒏0𝑬

𝑒∥2
)
+ 𝑐2

(
∥𝒂𝑲𝑒∥2 + ∥𝒏0𝑲

𝑒∥2
)

= 𝑐1∥𝑬𝑒∥2 + 𝑐2∥𝑲𝑒∥2,
(6.20)

i.e., the strain energy function is coercive. Remark that the same conditions (6.19)
have been imposed in [15] to establish existence results for linear 6-parameter shells,
see also [26, 27].

The energy function Ŵshell has been employed to solve shell problems in [11, 28].
To this aim, the following values of the coefficients 𝛼𝑘 and 𝛽𝑘 have been chosen for
isotropic shells made of a material with Poisson ratio 𝜈 and Young modulus 𝐸 :
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𝛼1 = 𝐶 𝜈, 𝛼2 = 0, 𝛼3 = 𝐶 (1− 𝜈), 𝛼4 = 𝛼𝑠𝐶 (1− 𝜈),
𝛽1 = 𝐷 𝜈, 𝛽2 = 0, 𝛽3 = 𝐷 (1− 𝜈), 𝛽4 = 𝛼𝑡 𝐷 (1− 𝜈).

(6.21)

Here, we denote by 𝐶 = 𝐸 ℎ/(1− 𝜈2) the stretching (membrane) stiffness of the
shell, 𝐷 = 𝐸 ℎ3/12(1− 𝜈2) is the bending stiffness, ℎ is the thickness, and 𝛼𝑠 = 5/6 ,
𝛼𝑡 = 7/10 are two shear correction factors. Inserting (6.21) into (6.15) and using the
relations

𝐶
1+ 𝜈

2
= ℎ

𝜇(3𝜆+2𝜇)
𝜆+2𝜇

, 𝐶 (1− 𝜈) = 2𝜇ℎ ,

𝐷
1+ 𝜈

2
=
ℎ3

12
𝜇(3𝜆+2𝜇)
𝜆+2𝜇

, 𝐷 (1− 𝜈) = 𝜇ℎ3

6
,

(6.22)

where 𝜆 and 𝜇 are the Lamé constants of the isotropic elastic material, we see that
the specific form of the strain energy density for 6-parameter shells commonly used
in the literature is

Ŵshell (𝑬𝑒,𝑲𝑒) = ℎ
[
𝜇 ∥𝒂𝑬𝑒∥2 + 𝜆𝜇

𝜆+2𝜇
[
tr(𝒂𝑬𝑒)]2 + 𝜇𝛼𝑠 ∥𝒏0𝑬

𝑒∥2
]

+ ℎ
3

12

[
𝜇 ∥𝒂𝑲𝑒∥2 + 𝜆𝜇

𝜆+2𝜇
[
tr(𝒂𝑲𝑒)]2 + 𝜇𝛼𝑡 ∥𝒏0𝑲

𝑒∥2
]
.

(6.23)

In view of inequalities (6.19) and relations (6.21) and (6.22), we deduce that strain
energy density (6.23) is coercive, provided that the Lamé constants satisfy the
conditions

𝜇 > 0, 3𝜆+2𝜇 > 0. (6.24)

These conditions are usually assumed to hold for isotropic elastic materials.
In the next sections we consider two generalized models of 6-parameter shells

made of Cosserat material, in which the constitutive relations are more elaborate. For
these models we investigate the coercivity of the strain energy functions.

6.3 The Order 𝒉3 Model of 6-Parameter Shells made of Cosserat
Material

Starting from an isotropic three-dimensional Cosserat parent model, we have per-
formed in [29, 30] a dimensional reduction and have obtained a generalized 6-
parameter shell model of higher order, which has been investigated mathematically
in [31]. Then, using a different method suggested by the classical shell theory [5, 6],
we have derived in [22] a related 6-parameter Cosserat shell model of order 𝑂 (ℎ3),
which will be analysed in details in this section.

Thus, the explicit form of the areal strain energy density Wshell has been obtained
in [22] as a quadratic function of (𝑬𝑒,𝑲𝑒), in which the coefficients are expressed in
terms of the three-dimensional material constants and depend also on the curvature
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of the reference midsurface. Let 𝜆, 𝜇, and 𝜇𝑐 denote the Lamé constants and the
Cosserat couple modulus, respectively, of the three-dimensional Cosserat material.
We introduce the bilinear form 𝑊Coss ( · , · ) defined for any tensors 𝑿 = 𝑋𝑖𝛼𝒂𝑖 ⊗ 𝒂𝛼,
𝒀 = 𝑌𝑖𝛼𝒂𝑖 ⊗ 𝒂𝛼 by

𝑊Coss (𝑿,𝒀) = 𝜇⟨sym(𝒂𝑿), sym(𝒂𝒀)⟩ + 𝜇𝑐 ⟨skew(𝒂𝑿), skew(𝒂𝒀)⟩

+ 𝜆 𝜇

𝜆+2𝜇
tr(𝒂𝑿) tr(𝒂𝒀) + 2𝜇 𝜇𝑐

𝜇+ 𝜇𝑐
(
𝒏0𝑿

) · (𝒏0𝒀
)
,

(6.25)

as well as the associated quadratic form

𝑊Coss (𝑿) = 𝜇 ∥sym(𝒂𝑿)∥2 + 𝜇𝑐 ∥skew(𝒂𝑿)∥2 + 𝜆 𝜇

𝜆+2𝜇
[
tr(𝒂𝑿)]2

+ 2𝜇 𝜇𝑐
𝜇+ 𝜇𝑐 ∥𝒏0𝑿∥2.

(6.26)

Moreover, let𝑊curv ( · , · ) be the bilinear form defined by

𝑊curv (𝑿,𝒀) = 𝜇 𝐿2
𝑐

[
𝑏1⟨sym𝑿 , sym𝒀⟩ + 𝑏2⟨skew𝑿 , skew𝒀⟩

+(
𝑏3 − 𝑏1

3
) (tr𝑿) (tr𝒀)] (6.27)

and the associated quadratic form

𝑊curv (𝑿) = 𝜇 𝐿2
𝑐

[
𝑏1 ∥ sym𝑿∥2 + 𝑏2 ∥ skew𝑿∥2 + (

𝑏3 − 𝑏1
3

) (
tr𝑿

)2
]
, (6.28)

where the coefficients 𝑏1 , 𝑏2 , 𝑏3 are dimensionless constitutive coefficients and
the parameter 𝐿𝑐 > 0 introduces an internal length (characteristic for the Cosserat
material, see details in [17]-[19], [32]).

With these notations, the explicit form of the shell strain energy density for the
order ℎ3 model is given by (see [22, Eq. (68)])

W (3)
shell (𝑬𝑒,𝑲𝑒) =

(
ℎ−𝐾 ℎ3

12

) [
𝑊Coss

(
𝑬𝑒

) +𝑊curv
(
𝑲𝑒

) ]
+ ℎ

3

12

[
𝑊Coss

(
𝑬𝑒𝒃 + 𝒄𝑲𝑒

) −2𝑊Coss
(
𝑬𝑒, 𝒄𝑲𝑒𝒃∗

) +𝑊curv
(
𝑲𝑒𝒃

) ]
,

(6.29)

Notice that this strain energy function satisfies the invariance properties required by
the local symmetry group of isotropic 6-parameter shells, which have been established
by Eremeyev and Pietraszkiewicz in [21, Sect. 9].
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6.3.1 Coercivity Results for the Model of Order 𝑶(𝒉3)

With a view toward proving the coercivity of the strain energy function, let us verify
first that the quadratic forms 𝑊Coss (𝑿) and 𝑊curv (𝑿), which appear in (6.29), are
coercive. Indeed, using (6.17), (6.26) and (6.28) we can write the equivalent forms

𝑊Coss (𝑿) = 𝜇 ∥devssym(𝒂𝑿)∥2 + 𝜇𝑐 ∥skew(𝒂𝑿)∥2 + 𝜇(3𝜆+2𝜇)
2(𝜆+2𝜇)

(
tr𝑿

)2

+ 2𝜇 𝜇𝑐
𝜇+ 𝜇𝑐 ∥𝒏0𝑿∥2,

𝑊curv (𝑿) = 𝜇𝐿2
𝑐

(
𝑏1∥devssym(𝒂𝑿)∥2+ 𝑏2∥skew(𝒂𝑿)∥2+ (

𝑏3+ 𝑏1
6

) (
tr𝑿

)2

+ 𝑏1 + 𝑏2
2

∥𝒏0𝑿∥2
)
.

(6.30)

Then, under the usual assumptions on material constants (6.24) from classical elas-
ticity, together with the conditions 𝜇𝑐 > 0 and 𝑏𝑖 > 0 for the Cosserat material, we
see that quadratic forms (6.30) are coercive, since it holds

𝑊Coss (𝑿) ≥ 𝐶̄1 ∥𝑿∥2 and 𝑊curv (𝑿) ≥ 𝐶̄2 ∥𝑿∥2, (6.31)

where the positive constants are

𝐶̄1 = min
{
𝜇 , 𝜇𝑐,

𝜇(3𝜆+2𝜇)
𝜆+2𝜇

,
2𝜇 𝜇𝑐
𝜇+ 𝜇𝑐

}
> 0

and
𝐶̄2 = 𝜇𝐿

2
𝑐 min

{
𝑏1, 𝑏2,2𝑏3+ 𝑏1

3
,
𝑏1 + 𝑏2

2

}
> 0.

For the sake of brevity and for later convenience, let us denote by 𝚽𝑒 the mixed
bending tensor

𝚽𝑒 = 𝑬𝑒𝒃 + 𝒄𝑲𝑒 . (6.32)

Then, using (6.5) and (6.32) we can decompose the strain energy density (6.29) as
follows

W (3)
shell (𝑬𝑒,𝑲𝑒) = W (3)

memb,bend (𝑬𝑒,𝑲𝑒) +W (3)
bend,curv (𝑲𝑒), (6.33)

where the membrane-bending part is given by

W (3)
memb,bend (𝑬𝑒,𝑲𝑒) =

(
ℎ+𝐾 ℎ3

12

)
𝑊Coss

(
𝑬𝑒) + ℎ3

12
𝑊Coss

(
𝚽𝑒)

− 2
ℎ3

12
𝑊Coss

(
𝑬𝑒,𝚽𝑒𝒃∗

)
.

(6.34)

and the bending-curvature part is
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W (3)
bend,curv (𝑲𝑒) =

(
ℎ−𝐾 ℎ3

12

)
𝑊curv

(
𝑲𝑒) + ℎ3

12
𝑊curv

(
𝑲𝑒𝒃

)
. (6.35)

Firstly, the bending-curvature part W (3)
bend,curv of the energy density is obviously

coercive, since for |𝜅𝛼ℎ| < 1 we have

|𝐾 | ℎ2 = |𝜅1ℎ| · |𝜅2ℎ| < 1 , (6.36)

so we can write using (6.31)2

W (3)
bend,curv (𝑲𝑒) ≥

(
ℎ−𝐾 ℎ

3

12

)
𝑊curv

(
𝑲𝑒) ≥ (

ℎ− ℎ

12

)
𝑊curv

(
𝑲𝑒) ≥ 11

12
ℎ𝐶̄2∥𝑲𝑒∥2.

(6.37)
Secondly, for the membrane-bending part of the energy we establish the following

result.

Lemma 6.1. Assume that the constitutive coefficients satisfy the conditions

𝜇 > 0, 3𝜆+2𝜇 > 0, and 𝜇𝑐 > 0. (6.38)

Let 𝜅 be the maximum of the absolute value of the principal curvatures |𝜅𝛼 | on the
midsurface 𝜔𝜉 , i.e. 𝜅 = max𝜔𝜉 {|𝜅1 | , |𝜅2 |}. Assume that the product 𝜅ℎ satisfies

𝜅 ℎ < min

{
1
2
,

(
47
32

· min{𝜆+2𝜇 ,3𝜆+2𝜇}
𝜆+ 𝜇

)1/2
,

(
47
8

· min{𝜇, 𝜇𝑐}
𝜇+ 𝜇𝑐

)1/2}
. (6.39)

Then, there exists a positive constant 𝐶1 > 0 such that

W (3)
memb,bend (𝑬𝑒,𝑲𝑒) ≥ 𝐶1 ∥𝑬𝑒∥2 . (6.40)

Proof. We notice first that the radicands in (6.39) are always positive, in view of the
conditions (6.38).

In order to estimate the coupling term in energy function (6.34) we employ a similar
technique as in the classical shell theory (see, e.g. [6]). Using the Cauchy-Schwarz
inequality for the scalar product𝑊Coss

(· , ·) we can write��𝑊Coss
(
𝑬𝑒,𝚽𝑒𝒃∗

) �� ≤ √︃
𝑊Coss

(
𝑬𝑒

) √︃
𝑊Coss

(
𝚽𝑒𝒃∗

)
. (6.41)

To express the last term, we use the spectral representation of the tensor 𝒃 in the form

𝒃 = 𝜅1 𝒖1 ⊗ 𝒖1 + 𝜅2 𝒖2 ⊗ 𝒖2 , (6.42)

where 𝒖1 and 𝒖2 are the orthonormal principal vectors. Then, we have

𝒂 = 𝒖1 ⊗ 𝒖1 +𝒖2 ⊗ 𝒖2

and the cofactor 𝒃∗ given by (6.6) can be written as
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𝒃∗ = 𝐻𝒂 + (𝐻𝒂− 𝒃)

= 𝐻𝒂 +
[ 𝜅1 + 𝜅2

2
(𝒖1 ⊗ 𝒖1 +𝒖2 ⊗ 𝒖2) − (𝜅1 𝒖1 ⊗ 𝒖1 + 𝜅2 𝒖2 ⊗ 𝒖2)

]
= 𝐻𝒂 + 𝜅1 − 𝜅2

2
(𝒖2 ⊗ 𝒖2 −𝒖1 ⊗ 𝒖1).

(6.43)

Thus, we obtain
𝚽𝑒𝒃∗ = 𝐻𝚽𝑒 + 𝜅1 − 𝜅2

2
𝚽𝑒𝜹 (6.44)

where
𝜹 := 𝒖2 ⊗ 𝒖2 −𝒖1 ⊗ 𝒖1.

We notice that ( 𝜅1 − 𝜅2
2

)2
=

( 𝜅1 + 𝜅2
2

)2
− 𝜅1𝜅2 = 𝐻2 −𝐾 ,

so we can estimate

𝑊Coss
(
𝚽𝑒𝒃∗

)
= 𝑊Coss

(
𝐻𝚽𝑒 + 𝜅1 − 𝜅2

2
𝚽𝑒𝜹

)
≤ 2

[
𝐻2𝑊Coss

(
𝚽𝑒

) + (𝐻2 −𝐾)𝑊Coss
(
𝚽𝑒𝜹

) ]
.

(6.45)

With the notation
𝜅 = max

𝜔 𝜉

{|𝜅1 | , |𝜅2 |}

we can write

𝐻2 =
( 𝜅1 + 𝜅2

2

)2
≤ 𝜅2

1 + 𝜅2
2

2
≤ 𝜅2

and

𝐻2 −𝐾 =
( 𝜅1 − 𝜅2

2

)2
≤ 𝜅2

1 + 𝜅2
2

2
≤ 𝜅2 .

(6.46)

Hence, relation (6.45) yields

𝑊Coss
(
𝚽𝑒𝒃∗

) ≤ 2 𝜅2 [𝑊Coss
(
𝚽𝑒) +𝑊Coss

(
𝚽𝑒𝜹

) ]
. (6.47)

To estimate the sum in the last brackets we decompose

𝑊Coss
(
𝚽𝑒

)
= 𝑊Coss

(
𝚽𝑒 (𝒖1 ⊗ 𝒖1 +𝒖2 ⊗ 𝒖2)

)
= 𝑊Coss

(
𝚽𝑒𝒖1 ⊗ 𝒖1

) +𝑊Coss
(
𝚽𝑒𝒖2 ⊗ 𝒖2

)
+ 2𝑊Coss

(
𝚽𝑒𝒖1 ⊗ 𝒖1 ,𝚽𝑒𝒖2 ⊗ 𝒖2

) (6.48)

and



74 Mircea Bîrsan and Patrizio Neff

𝑊Coss
(
𝚽𝑒𝜹

)
= 𝑊Coss

(
𝚽𝑒 (𝒖2 ⊗ 𝒖2 −𝒖1 ⊗ 𝒖1)

)
= 𝑊Coss

(
𝚽𝑒𝒖2 ⊗ 𝒖2

) +𝑊Coss
(
𝚽𝑒𝒖1 ⊗ 𝒖1

)
− 2𝑊Coss

(
𝚽𝑒𝒖1 ⊗ 𝒖1 ,𝚽𝑒𝒖2 ⊗ 𝒖2

)
,

(6.49)

so we get by addition

𝑊Coss
(
𝚽𝑒) +𝑊Coss

(
𝚽𝑒𝜹

)
= 2𝑊Coss

(
𝚽𝑒𝒖1 ⊗ 𝒖1

) +2𝑊Coss
(
𝚽𝑒𝒖2 ⊗ 𝒖2

)
. (6.50)

Then, inequality (6.47) becomes

𝑊Coss
(
𝚽𝑒𝒃∗

) ≤ 4 𝜅2 [𝑊Coss
(
𝚽𝑒𝒖1 ⊗ 𝒖1

) +𝑊Coss
(
𝚽𝑒𝒖2 ⊗ 𝒖2

) ]
. (6.51)

Inserting this in (6.41), we obtain for membrane-bending energy (6.34) the inequality

W (3)
memb,bend (𝑬𝑒,𝑲𝑒) ≥

(
ℎ+𝐾 ℎ3

12

)
𝑊Coss

(
𝑬𝑒) + ℎ3

12
𝑊Coss

(
𝚽𝑒)

−4 𝜅
ℎ3

12

√︃
𝑊Coss

(
𝑬𝑒

) ·√︃𝑊Coss
(
𝚽𝑒𝒖1 ⊗ 𝒖1

) +𝑊Coss
(
𝚽𝑒𝒖2 ⊗ 𝒖2

)
.

(6.52)

To show that the right-hand side is positive, let us decompose the tensor 𝚽𝑒 using
the orthonormal basis {𝒖1 ,𝒖2 , 𝒏0} : denoting its components by 𝜑𝑖𝛼 , we have

𝚽𝑒 = 𝜑𝛼𝛽 𝒖𝛼 ⊗ 𝒖𝛽 +𝜑3𝛽 𝒏0 ⊗ 𝒖𝛽 .

Then,
𝚽𝑒𝒖1 ⊗ 𝒖1 = 𝜑𝛼1 𝒖𝛼 ⊗ 𝒖1 +𝜑31 𝒏0 ⊗ 𝒖1

and
𝚽𝑒𝒖2 ⊗ 𝒖2 = 𝜑𝛼2 𝒖𝛼 ⊗ 𝒖2 +𝜑32 𝒏0 ⊗ 𝒖2 ,

and using definitions (6.25), (6.26) we compute directly

𝑊Coss
(
𝚽𝑒𝒖1 ⊗ 𝒖1

)
=

2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

𝜑2
11 +

𝜇+ 𝜇𝑐
2

𝜑2
21 +

2𝜇𝜇𝑐
𝜇+ 𝜇𝑐 𝜑

2
31 ,

𝑊Coss
(
𝚽𝑒𝒖2 ⊗ 𝒖2

)
=

2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

𝜑2
22 +

𝜇+ 𝜇𝑐
2

𝜑2
12 +

2𝜇𝜇𝑐
𝜇+ 𝜇𝑐 𝜑

2
32 ,

𝑊Coss
(
𝚽𝑒𝒖1 ⊗ 𝒖1 ,𝚽𝑒𝒖2 ⊗ 𝒖2

)
=

𝜆𝜇

𝜆+2𝜇
𝜑11 𝜑22 + 𝜇− 𝜇𝑐

2
𝜑12 𝜑21 .

(6.53)

Substituting (6.53) in (6.48) we obtain

𝑊Coss
(
𝚽𝑒

)
=

2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

(𝜑2
11 +𝜑2

22) +
2𝜆𝜇
𝜆+2𝜇

𝜑11 𝜑22 + 𝜇+ 𝜇𝑐2
(𝜑2

12 +𝜑2
21)

+(𝜇− 𝜇𝑐) 𝜑12 𝜑21 + 2𝜇𝜇𝑐
𝜇+ 𝜇𝑐 (𝜑2

31 +𝜑2
32).

(6.54)
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Since
|𝜅𝛼ℎ| < 1

2
we have

|𝐾 | ℎ2 = |𝜅1ℎ| · |𝜅2ℎ| < 1
4

and |𝐻 | ℎ ≤ 1
2

( |𝜅1ℎ| + |𝜅2ℎ|
)
<

1
2
, (6.55)

so we can write the inequality

ℎ+𝐾 ℎ3

12
> ℎ− ℎ

48
=

47
48
ℎ =

𝛿

48
ℎ + 47− 𝛿

48
ℎ (6.56)

for any 𝛿 > 0. The choice of 𝛿 will be specified later in (6.61). Using relations (6.53),
(6.54) and (6.56) we can transform inequality (6.52) as follows

W (3)
memb,bend (𝑬𝑒,𝑲𝑒) ≥ 𝛿ℎ

48
𝑊Coss (𝑬𝑒) + ℎ

[
47− 𝛿

48
𝑊Coss (𝑬𝑒) − ℎ

2𝜅

3
√︁
𝑊Coss (𝑬𝑒)

×
(
2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

(𝜑2
11 +𝜑2

22) +
𝜇+ 𝜇𝑐

2
(𝜑2

12 +𝜑2
21) +

2𝜇𝜇𝑐
𝜇+ 𝜇𝑐 (𝜑2

31 +𝜑2
32)

)1/2

+ ℎ
2

12

(2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

(𝜑2
11 +𝜑2

22) +
2𝜆𝜇
𝜆+2𝜇

𝜑11 𝜑22 + 𝜇+ 𝜇𝑐2
(𝜑2

12 +𝜑2
21)

+(𝜇− 𝜇𝑐) 𝜑12 𝜑21 + 2𝜇𝜇𝑐
𝜇+ 𝜇𝑐 (𝜑2

31 +𝜑2
32)

)]
.

(6.57)
To prove that the expression in square brackets in (6.57) is positive, we regard it as a
quadratic function in √︃

𝑊Coss
(
𝑬𝑒

)
and show that its discriminant Δ is negative. Indeed, the discriminant is

Δ =
ℎ4𝜅2

9

(
2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

(𝜑2
11 +𝜑2

22) +
𝜇+ 𝜇𝑐

2
(𝜑2

12 +𝜑2
21) +

2𝜇𝜇𝑐
𝜇+ 𝜇𝑐 (𝜑2

31 +𝜑2
32)

)
−47− 𝛿

12
ℎ2

12

(2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

(𝜑2
11 +𝜑2

22) +
2𝜆𝜇
𝜆+2𝜇

𝜑11 𝜑22 + 𝜇+ 𝜇𝑐2
(𝜑2

12 +𝜑2
21)

+(𝜇− 𝜇𝑐) 𝜑12 𝜑21 + 2𝜇𝜇𝑐
𝜇+ 𝜇𝑐 (𝜑2

31 +𝜑2
32)

)
.

Then, we can combine the terms and write
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9
ℎ2 Δ =

[(
𝜅2ℎ2 − 47− 𝛿

16

) 2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

(𝜑2
11 +𝜑2

22) −
47− 𝛿

16
2𝜆𝜇
𝜆+2𝜇

𝜑11 𝜑22

]
+

[(
𝜅2ℎ2 − 47− 𝛿

16

) 𝜇+ 𝜇𝑐
2

(𝜑2
12 +𝜑2

21) −
47− 𝛿

16
(𝜇− 𝜇𝑐) 𝜑12 𝜑21

]
+

(
𝜅2ℎ2 − 47− 𝛿

16

) 2𝜇𝜇𝑐
𝜇+ 𝜇𝑐

(
𝜑2

31 +𝜑2
32

)
,

or, equivalently,

9
ℎ2 Δ =

(
𝜅2ℎ2 − 47− 𝛿

16

) [
2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

(
𝜑2

11 +𝜑2
22 −

47− 𝛿
16 𝜅2ℎ2 − (47− 𝛿)

× 𝜆

𝜆+𝜇 𝜑11 𝜑22

)
+ 𝜇+𝜇𝑐

2

(
𝜑2

12 +𝜑2
21 −

47− 𝛿
16 𝜅2ℎ2 − (47− 𝛿)

𝜇− 𝜇𝑐
𝜇+ 𝜇𝑐 2𝜑12 𝜑21

)
+ 2𝜇𝜇𝑐
𝜇+ 𝜇𝑐

(
𝜑2

31 +𝜑2
32

) ]
.

(6.58)
Notice that it holds

min{𝜆+2𝜇 ,3𝜆+2𝜇}
2(𝜆+ 𝜇) = 1− |𝜆 |

2(𝜆+ 𝜇)
and

2min{𝜇, 𝜇𝑐}
𝜇+ 𝜇𝑐 = 1− |𝜇−𝜇𝑐 |

𝜇+ 𝜇𝑐 .
(6.59)

Then, inequality (6.39) can be written equivalently

𝜅 ℎ < min

{
1
2
,

√
47
4

(
1− |𝜆 |

2(𝜆+ 𝜇)

)1/2
,

√
47
4

(
1− |𝜇− 𝜇𝑐 |

𝜇+ 𝜇𝑐

)1/2}
. (6.60)

From the last relation we deduce

47−16𝜅2ℎ2
(
1− |𝜆 |

2(𝜆+ 𝜇)

)−1
> 0 and 47−16𝜅2ℎ2

(
1− |𝜇−𝜇𝑐 |

𝜇+ 𝜇𝑐

)−1
> 0.

Hence, we can choose the positive constant 𝛿 > 0 such that

𝛿 < min

{
43 , 47−16 𝜅2ℎ2

(
1− |𝜆 |

2(𝜆+ 𝜇)

)−1
, 47−16 𝜅2ℎ2

(
1− |𝜇− 𝜇𝑐 |

𝜇+ 𝜇𝑐

)−1
}
.

(6.61)
From 𝛿 < 43 and 𝜅ℎ < 1

2 it follows that

𝜅2ℎ2 − 47− 𝛿
16

< 𝜅2ℎ2 − 4
16

< 0. (6.62)
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Further, from (6.61) we also derive that��� 47− 𝛿
16 𝜅2ℎ2−(47−𝛿) ·

𝜆

2(𝜆+𝜇)
��� < 1 and

��� 47− 𝛿
16 𝜅2ℎ2−(47−𝛿) ·

𝜇−𝜇𝑐
𝜇+𝜇𝑐

��� < 1.

(6.63)
Using inequalities (6.62) and (6.63) in (6.58) we deduce that

9
ℎ2 Δ <

(
𝜅2ℎ2 − 47− 𝛿

16

) [2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

( |𝜑11 | − |𝜑22 |
)2 + 𝜇+ 𝜇𝑐

2
( |𝜑12 | − |𝜑21 |

)2

+ 2𝜇𝜇𝑐
𝜇+ 𝜇𝑐

(
𝜑2

31 +𝜑2
32

) ] ≤ 0.

(6.64)
Thus, the discriminant Δ is negative, so the expression in square brackets in (6.57) is
positive. Hence, relations (6.57) and (6.31)1 infer

W (3)
memb,bend (𝑬𝑒,𝑲𝑒) ≥ 𝛿

48
ℎ𝑊Coss

(
𝑬𝑒) ≥ 𝐶1 ∥𝑬𝑒∥2 ,

for some positive constant 𝐶1 > 0. The proof is complete.

Let us present now another auxiliary result (a variant of Lemma 6.1), in which
inequality (6.39) is replaced by an alternative assumption. Thus, we prove the
following coercivity result which is complementary to the previous lemma.

Lemma 6.2. Assume that the constitutive coefficients fulfil the conditions (6.38) and
that the product 𝜅ℎ < 1 is small enough such that

𝜅ℎ < min

{(
12 min{𝜆+2𝜇 ,3𝜆+2𝜇}

8(𝜆+𝜇) +min{𝜆+2𝜇 ,3𝜆+2𝜇}

)1/2
,

(
12 min{𝜇, 𝜇𝑐}

2(𝜇+𝜇𝑐) +min{𝜇, 𝜇𝑐}

)1/2}
.

(6.65)
Then, the membrane-bending energy W (3)

memb,bend (𝑬𝑒,𝑲𝑒) satisfies the inequality
(6.40) for some positive constant 𝐶1 .

Proof. We begin the proof in the same way as in the case of Lemma 6.1 and establish
relations (6.41)-(6.54). If we insert (6.53) and (6.54) into Eq. (6.52) and use the
relation

1+𝐾 ℎ2

12
≥ 1− 𝜅2ℎ2

12
= 𝜖 +

(
1− 𝜅2ℎ2

12
− 𝜖

)
for any 𝜖 > 0, (6.66)

then we obtain the inequality
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W (3)
memb,bend (𝑬𝑒,𝑲𝑒) ≥ ℎ 𝜖𝑊Coss (𝑬𝑒) + ℎ

[(
1− 𝜅2ℎ2

12
− 𝜖

)
𝑊Coss (𝑬𝑒)

− ℎ
2𝜅

3
√︁
𝑊Coss (𝑬𝑒)

(
2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

(𝜑2
11 +𝜑2

22) +
𝜇+ 𝜇𝑐

2
(𝜑2

12 +𝜑2
21)

+ 2𝜇𝜇𝑐
𝜇+ 𝜇𝑐 (𝜑2

31 +𝜑2
32)

)1/2
+ ℎ2

12

(
2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

(𝜑2
11 +𝜑2

22) +
2𝜆𝜇
𝜆+2𝜇

𝜑11 𝜑22

+ 𝜇+ 𝜇𝑐
2

(𝜑2
12 +𝜑2

21) + (𝜇− 𝜇𝑐) 𝜑12 𝜑21 + 2𝜇𝜇𝑐
𝜇+ 𝜇𝑐 (𝜑2

31 +𝜑2
32)

)]
.

(6.67)

We regard the expression in square brackets in (6.67) as a quadratic function in√︃
𝑊Coss

(
𝑬𝑒

)
and denote by 𝐷 its discriminant. To show that the discriminant 𝐷 is

negative, we compute

𝐷 =
𝜅2ℎ4

9

(
2𝜇(𝜆+𝜇)
𝜆+2𝜇

(𝜑2
11+𝜑2

22) +
𝜇+𝜇𝑐

2
(𝜑2

12+𝜑2
21) +

2𝜇𝜇𝑐
𝜇+𝜇𝑐 (𝜑2

31+𝜑2
32)

)
− ℎ

2

3

(
1− 𝜅2ℎ2

12
− 𝜖

) (2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

(𝜑2
11 +𝜑2

22) +
2𝜆𝜇
𝜆+2𝜇

𝜑11 𝜑22

+ 𝜇+ 𝜇𝑐
2

(𝜑2
12 +𝜑2

21) + (𝜇− 𝜇𝑐) 𝜑12 𝜑21 + 2𝜇𝜇𝑐
𝜇+ 𝜇𝑐 (𝜑2

31 +𝜑2
32)

)
,

or, equivalently,

9
ℎ2 𝐷 =

2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

[(
𝜅2ℎ2 − (

3− 𝜅2ℎ2

4
−3𝜖

) ) (𝜑2
11 +𝜑2

22) −
(
3− 𝜅2ℎ2

4
−3𝜖

)
× 𝜆

𝜆+ 𝜇 𝜑11 𝜑22

]
+ 𝜇+ 𝜇𝑐

2

[(
𝜅2ℎ2 − (

3− 𝜅2ℎ2

4
−3𝜖

) ) (𝜑2
12 +𝜑2

21)

−(
3− 𝜅

2ℎ2

4
−3𝜖

) 𝜇−𝜇𝑐
𝜇+𝜇𝑐 2𝜑12𝜑21

]
+ 2𝜇𝜇𝑐
𝜇+𝜇𝑐

(
𝜅2ℎ2− (

3− 𝜅
2ℎ2

4
−3𝜖

) ) (
𝜑2

31+𝜑2
32

)
.

Hence, we get
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3
ℎ2 𝐷 = −

(
1− 5

12
𝜅2ℎ2 − 𝜖

){2𝜇(𝜆+ 𝜇)
𝜆+2𝜇

[
(𝜑2

11 +𝜑2
22) +

1− 1
12 𝜅

2ℎ2 − 𝜖
1− 5

12 𝜅
2ℎ2 − 𝜖

× 𝜆

𝜆+𝜇 𝜑11𝜑22

]
+ 𝜇+𝜇𝑐

2

[
(𝜑2

12 +𝜑2
21) +

1− 1
12 𝜅

2ℎ2 − 𝜖
1− 5

12 𝜅
2ℎ2 − 𝜖 ·

𝜇−𝜇𝑐
𝜇+𝜇𝑐 2𝜑12 𝜑21

]
+ 2𝜇𝜇𝑐
𝜇+ 𝜇𝑐

(
𝜑2

31 +𝜑2
32

)}
.

(6.68)
Now, we want to choose a positive number 𝜖 such that the following inequalities are
fulfilled

1− 5
12
𝜅2ℎ2 − 𝜖 > 0 and

1− 1
12 𝜅

2ℎ2 − 𝜖
1− 5

12 𝜅
2ℎ2 − 𝜖 ·

|𝜆 |
𝜆+ 𝜇 < 1

and
1− 1

12 𝜅
2ℎ2 − 𝜖

1− 5
12 𝜅

2ℎ2 − 𝜖 ·
|𝜇− 𝜇𝑐 |
𝜇+ 𝜇𝑐 < 1 .

(6.69)

If we solve inequations (6.69) with respect to 𝜖 , then we find, respectively

𝜖 < 1− 5
12
𝜅2ℎ2 and 𝜖 < 1− 𝜅

2ℎ2

3

[
1
4
+

(
1− |𝜆 |

2(𝜆+ 𝜇)

)−1
]

and 𝜖 < 1− 𝜅
2ℎ2

3

[
1
4
+

(
1− |𝜇− 𝜇𝑐 |

𝜇+ 𝜇𝑐

)−1
]
.

(6.70)

Further, using relations (6.59) we can write

1
4
+

(
1− |𝜆 |

2(𝜆+ 𝜇)

)−1
=

8(𝜆+ 𝜇) +min{𝜆+2𝜇 ,3𝜆+2𝜇}
4min{𝜆+2𝜇 ,3𝜆+2𝜇} and

1
4
+

(
1− |𝜇− 𝜇𝑐 |

𝜇+ 𝜇𝑐

)−1
=

2(𝜇+ 𝜇𝑐) +min{𝜇 , 𝜇𝑐}
4min{𝜇 , 𝜇𝑐} .

(6.71)

Substituting (6.71) into (6.70) we find the equivalent form

𝜖 < 1− 5
12
𝜅2ℎ2 and 𝜖 < 1− 𝜅2ℎ2 · 8(𝜆+𝜇) +min{𝜆+2𝜇 ,3𝜆+2𝜇}

12min{𝜆+2𝜇 ,3𝜆+2𝜇}

and 𝜖 < 1− 𝜅2ℎ2 · 2(𝜇+ 𝜇𝑐) +min{𝜇 , 𝜇𝑐}
12min{𝜇 , 𝜇𝑐} .

(6.72)

By virtue of assumptions (6.65), we see that the right-hand sides of inequalities
(6.72) are all positive, so there exists a constant 𝜖 > 0 having properties (6.72), i.e.,
𝜖 satisfies inequalities (6.69). Then, using (6.69) in Eq. (6.68) we derive
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3
ℎ2 𝐷 < −

(
1− 5

12
𝜅2ℎ2− 𝜖

) [2𝜇(𝜆+𝜇)
𝜆+2𝜇

( |𝜑11 | − |𝜑22 |
)2 + 𝜇+𝜇𝑐

2
(|𝜑12 | − |𝜑21 |

)2

+ 2𝜇𝜇𝑐
𝜇+ 𝜇𝑐

(
𝜑2

31 +𝜑2
32

) ] ≤ 0.

Thus, the discriminant 𝐷 is negative and, hence, the expression in square brackets in
relation (6.67) is always positive. Consequently,inequations (6.67) and (6.31)1 imply
that there exists a constant 𝐶1 > 0 such that

W (3)
memb,bend (𝑬𝑒,𝑲𝑒) ≥ ℎ 𝜖𝑊Coss

(
𝑬𝑒) ≥ 𝐶1 ∥𝑬𝑒∥2 ,

which completes the proof.

We are now able to prove the coercivity of the strain energy density W (3)
shell (𝑬𝑒,𝑲𝑒).

We obtain the following result as a consequence of the above lemmas.

Theorem 6.1. Assume that the constitutive coefficients fulfil the inequalities

𝜇 > 0, 3𝜆+2𝜇 > 0, 𝜇𝑐 > 0, and 𝑏𝑖 > 0, (6.73)

and that 𝜅ℎ satisfies at least one of the conditions (6.39) and (6.65). Then, the areal
strain energy density W (3)

shell (𝑬𝑒,𝑲𝑒) given by (6.33)-(6.35) is coercive, i.e. there
exist some positive constants 𝐶1 > 0, 𝐶2 > 0 such that

W (3)
shell (𝑬𝑒,𝑲𝑒) ≥ 𝐶1 ∥𝑬𝑒∥2 +𝐶2 ∥𝑲𝑒∥2 . (6.74)

Proof. In view of the hypotheses of the theorem, we can apply Lemma 6.1 or Lemma
6.2. In both case, inequality (6.40) holds true. Then, taking into account relations
(6.37) and (6.40) we obtain

W (3)
shell (𝑬𝑒,𝑲𝑒) =W (3)

memb,bend (𝑬𝑒,𝑲𝑒) +W (3)
bend,curv (𝑲𝑒) ≥ 𝐶1∥𝑬𝑒∥2 +𝐶2∥𝑲𝑒∥2

for some positive constants 𝐶1 ,𝐶2 . The proof is complete.

Remark 6.1. We mention that Theorem 6.1 is the main original result in this work. It
improves a similar coercivity result established for a related Cosserat shell model of
order 𝑂 (ℎ3). This related Cosserat shell model has been derived and investigated in
[29, 30, 31] and the comparison with the present model has been presented in [22,
Sect. 5.2]. More precisely, Theorem 6.1 improves the result in [31, Proposition 4.1]
in two ways: Firstly, the conditions on constitutive coefficients given by (6.73) are
less restrictive, since in [31, Proposition 4.1] the inequalities 𝜇 > 0 and 2𝜆 + 𝜇 > 0
are assumed, which are more restrictive. Secondly, the conditions on the product 𝜅ℎ
given by (6.39) and (6.65) are more convenient to check, since they involve only the
constitutive coefficients. In contrast, the corresponding conditions (i) and (ii) listed in
[31, Proposition 4.1] involve also the smallest and largest eigenvalues of the quadratic
forms𝑊curv (𝑿),𝑊shell (𝑿) and, hence, they are more difficult to check.
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Remark 6.2. Notice that hypothesis (6.65) in Lemma 6.2 can be written in the
equivalent form

𝜅 ℎ < min

{
1 , 2

√
3
(

2(𝜆+ 𝜇) − |𝜆 |
10(𝜆+ 𝜇) − |𝜆 |

)1/2
, 2
√

3
(
𝜇+ 𝜇𝑐 − |𝜇− 𝜇𝑐 |

5(𝜇+ 𝜇𝑐) − |𝜇− 𝜇𝑐 |

)1/2}
. (6.75)

Indeed, by a straightforward calculation we verify that

1
4
+

(
1− |𝜆 |

2(𝜆+ 𝜇)

)−1
=

1
4
· 10(𝜆+ 𝜇) − |𝜆 |

2(𝜆+ 𝜇) − |𝜆 | and

1
4
+

(
1− |𝜇− 𝜇𝑐 |

𝜇+ 𝜇𝑐

)−1
=

1
4
· 5(𝜇+ 𝜇𝑐) − |𝜇− 𝜇𝑐 |
𝜇+ 𝜇𝑐 − |𝜇− 𝜇𝑐 | .

(6.76)

Then, from relations (6.71) and (6.76) we deduce

8(𝜆+ 𝜇) +min{𝜆+2𝜇 ,3𝜆+2𝜇}
min{𝜆+2𝜇 ,3𝜆+2𝜇} =

10(𝜆+ 𝜇) − |𝜆 |
2(𝜆+ 𝜇) − |𝜆 | and

2(𝜇+ 𝜇𝑐) +min{𝜇 , 𝜇𝑐}
min{𝜇 , 𝜇𝑐} =

5(𝜇+ 𝜇𝑐) − |𝜇− 𝜇𝑐 |
𝜇+ 𝜇𝑐 − |𝜇− 𝜇𝑐 | .

(6.77)

Hence, conditions (6.65) and (6.75) are indeed equivalent.

Remark 6.3. In the case 𝜆 ≥ 0 the hypotheses of Theorem 6.1 (namely relations
(6.39) and (6.65)) simplify. Indeed, for 𝜆 ≥ 0 we get(

47
32

· min{𝜆+2𝜇 ,3𝜆+2𝜇}
𝜆+ 𝜇

)1/2
=

(
47
32

· 𝜆+2𝜇
𝜆+ 𝜇

)1/2
> 1

and condition (6.39) in the statements of Lemma 6.1 and Theorem 6.1 reduces to the
simpler form

𝜅 ℎ < min

{
1
2
,

(
47
8

· min{𝜇, 𝜇𝑐}
𝜇+ 𝜇𝑐

)1/2}
. (6.78)

Also, if 𝜆 ≥ 0 the inequalities (6.38) imply

12 min{𝜆+2𝜇 ,3𝜆+2𝜇}
8(𝜆+𝜇) +min{𝜆+2𝜇 ,3𝜆+2𝜇} =

12(𝜆+2𝜇)
8(𝜆+𝜇) +𝜆+2𝜇

> 1.

Hence, in the case 𝜆 ≥ 0 condition (6.65) can be reduced to

𝜅 ℎ < min

{
1 ,

(
12 min{𝜇, 𝜇𝑐}

2(𝜇+𝜇𝑐) +min{𝜇, 𝜇𝑐}

)1/2}
. (6.79)

Remark 6.4. In the case 𝜆 < 0 condition (6.39) from Lemma 6.1 takes the following
form
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𝜅 ℎ < min

{
1
2
,

(
47
32

· 3𝜆+2𝜇
𝜆+ 𝜇

)1/2
,

(
47
8

· min{𝜇, 𝜇𝑐}
𝜇+ 𝜇𝑐

)1/2}
, (6.80)

while condition (6.65) from Lemma 6.2 reduces to

𝜅 ℎ < min

{
1 , 2

√
3
(

3𝜆+2𝜇
11𝜆+10𝜇

)1/2
,

(
12 min{𝜇, 𝜇𝑐}

2(𝜇+𝜇𝑐) +min{𝜇, 𝜇𝑐}

)1/2}
. (6.81)

6.3.2 Existence of Minimizers

Let us write the variational formulation for equilibrium of Cosserat shells. To this
aim, we consider the usual Lebesgue and Sobolev spaces for vectors and tensors

𝐿 𝑝 (𝜔,R3) = {𝒗 = 𝑣𝑖𝒆𝑖 | 𝑣𝑖 ∈ 𝐿 𝑝 (𝜔)},
𝐿 𝑝 (𝜔,R3×3) = {𝑻 = 𝑇𝑖 𝑗 𝒆𝑖 ⊗ 𝒆 𝑗 |𝑇𝑖 𝑗 ∈ 𝐿 𝑝 (𝜔)} (𝑝 ≥ 1),
𝐻1 (𝜔,R3) = {𝒗 = 𝑣𝑖𝒆𝑖 | 𝑣𝑖 ∈ 𝐻1 (𝜔)},

𝐻1 (𝜔,R3×3) = {𝑻 = 𝑇𝑖 𝑗 𝒆𝑖 ⊗ 𝒆 𝑗 |𝑇𝑖 𝑗 ∈ 𝐻1 (𝜔)},

(6.82)

We also introduce the subsets

𝐿 𝑝 (
𝜔,SO(3)) = {

𝑸 ∈ 𝐿 𝑝 (𝜔,R3×3) | 𝑸(𝑥1, 𝑥2) ∈ SO(3) for a.e. (𝑥1, 𝑥2) ∈ 𝜔
}

by abuse of notation, with the induced strong topology of 𝐿 𝑝 (𝜔,R3×3), as well as

𝐻1 (𝜔,SO(3)) = {
𝑸 ∈ 𝐻1 (𝜔,R3×3) | 𝑸(𝑥1, 𝑥2) ∈ SO(3) for a.e. (𝑥1, 𝑥2) ∈ 𝜔

}
with the induced strong and weak topologies of 𝐻1 (𝜔,R3×3).

We assume that the boundary data in (6.12) satisfy the regularity 𝒎∗ ∈ 𝐻1 (𝜔,R3)
and 𝑸∗ ∈ 𝐻1 (𝜔,SO(3)) , and we define the set of admissible pairs (𝒎,𝑸𝑒) by

A =
{(𝒎,𝑸𝑒) ∈ 𝐻1 (𝜔,R3) ×𝐻1 (𝜔,SO(3)) �� 𝒎��𝜕𝜔𝑑

= 𝒎∗ , 𝑸𝑒
��𝜕𝜔𝑑

= 𝑸∗ }, (6.83)

where the boundary conditions hold in the sense of traces. For boundary-value
problem (6.11), (6.12) we assume the existence of the potential Λ(𝒎,𝑸𝑒) of external
surface loads 𝒇 , 𝒍 and boundary loads 𝑵∗, 𝑴∗ (cf. [23]), such that the total energy
functional can be written as
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E (3) (𝒎,𝑸𝑒) =
∬
𝜔𝜉

W (3)
shell (𝑬𝑒,𝑲𝑒) d𝑎−Λ(𝒎,𝑸𝑒)

=
∬
𝜔

W (3)
shell (𝑬𝑒,𝑲𝑒) 𝑎(𝑥1, 𝑥2) d𝑥1d𝑥2 −Λ(𝒎,𝑸𝑒) ,

(6.84)

where the tensors 𝑬𝑒,𝑲𝑒 are given in terms of 𝒎,𝑸𝑒 by Eqs. (6.9), (6.10). Here, the
external loading potential has the form

Λ(𝒎,𝑸𝑒) =
∬
𝜔𝜉

𝒇 ·𝒖d𝑎 + Π𝜔𝜉
(𝑸𝑒) +

∫
𝜕𝜔 𝑓

𝑵∗ ·𝒖d𝑠 + Π𝜕𝜔 𝑓
(𝑸𝑒), (6.85)

where 𝒖 := 𝒎− 𝒚0 is the displacement vector and we assume that 𝒇 ∈ 𝐿2 (𝜔,R3) and
𝑵∗ ∈ 𝐿2 (𝜕𝜔 𝑓 ,R

3). The potential Π𝜔𝜉
: 𝐿2 (𝜔,SO(3)) → R of the external surface

couples 𝒍 and the potential Π𝜕𝜔 𝑓
: 𝐿2 (𝜕𝜔 𝑓 ,SO(3)) → R of the external boundary

couples 𝑴∗ are assumed to be continuous and bounded operators.
We can prove now the existence of minimizers for the shell model of order 𝑂 (ℎ3)

following closely the initial idea presented in [17].

Theorem 6.2. Consider the minimization problem for the equilibrium of Cosserat
6-parameter elastic shells:

minimize E (3) (𝒎,𝑸𝑒) w.r.t. (𝒎,𝑸𝑒) ∈ A , (6.86)

where the total energy functional E (3) is given by (6.84) and the admissible set A is
defined by (6.83). Assume that the constitutive coefficients satisfy inequalities (6.73)
and that 𝜅ℎ is small enough such that at least one of conditions (6.39) and (6.65)
holds. Moreover, the external loads and boundary data are assumed to satisfy the
regularity conditions

𝒇 ∈ 𝐿2 (𝜔,R3), 𝑵∗ ∈ 𝐿2 (𝜕𝜔 𝑓 ,R
3), 𝒎∗ ∈ 𝐻1 (𝜔,R3), 𝑸∗ ∈ 𝑯1 (𝜔,𝑆𝑂 (3)),

(6.87)
while the reference configuration of the shell fulfils the regularity conditions

𝒚0 ∈ 𝐻2 (𝜔,R3), 𝑸0 ∈ 𝐻1 (𝜔,SO(3)), 𝒂𝛼 ∈ 𝐿∞ (𝜔,R3), 𝑎(𝑥1, 𝑥2) ≥ 𝑎0 > 0,
(6.88)

where 𝑎0 is a positive constant. Then, minimization problem (6.86) admits at least
one minimizing solution pair (𝒎̂, 𝑸̂𝑒) in the admissible set A.

Proof. To prove this assertion we employ the general existence result established in
[20] for 6-parameter shells. We can verify that the hypotheses of Theorem 6 from
[20] are satisfied, i.e. that the strain energy density W (3)

shell is a coercive and uniformly
convex quadratic function of (𝑬𝑒,𝑲𝑒).

Indeed, in view of Theorem 6.1 the function W (3)
shell (𝑬𝑒,𝑲𝑒) is coercive. Since

W (3)
shell is a quadratic form in terms of (𝑬𝑒,𝑲𝑒), which is also positive definite, we

see that it is also convex. Thus, all the hypotheses of Theorem 6 from [20] are
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fulfilled. Applying this general result, we can derive the existence of a minimizing
pair (𝒎̂, 𝑸̂𝑒) ∈ A. In what follows, we present only the main steps of the existence
proof and refer to [20, Theorem 6] for further details.

We estimate first the external loading potential and show that

|Λ(𝒎,𝑸𝑒) | ≤ 𝑐1
( ∥𝒎∥𝐻1 (𝜔) +1

)
for any (𝒎,𝑸𝑒) ∈ A, (6.89)

for some positive constant 𝑐1 . Then, using coercivity relation (6.74) we deduce that
there exist some constants 𝑐2 > 0 and 𝑐3 , 𝑐4 such that

E (3) (𝒎,𝑸𝑒) ≥ 𝑐2 ∥ ∇𝒎 ∥2
𝐿2 (𝜔) − 𝑐3∥𝒎 ∥𝐻1 (𝜔) − 𝑐4 . (6.90)

Here, we denote by ∥ · ∥𝐿2 (𝜔) and ∥ · ∥𝐻1 (𝜔) the norms in the Lebesgue and Sobolev
spaces, respectively. Using the Poincaré–inequality we deduce from (6.90) that

E (3) (𝒎,𝑸𝑒) ≥ 𝑐5 ∥𝒎−𝒎∗∥2
𝐻1 (𝜔) −𝑐6∥𝒎−𝒎∗∥𝐻1 (𝜔) +𝑐7 for any (𝒎,𝑸𝑒) ∈ A,

(6.91)
where 𝑐5 > 0 and 𝑐6 , 𝑐7 are some constants. Hence, the functional E (3) (𝒎,𝑸𝑒)
is bounded from below over A. Therefore, there exists an infimizing sequence
(𝒎𝑛,𝑸𝑛)𝑛∈N such that

lim
𝑛→∞E (3) (𝒎𝑛,𝑸𝑛) = inf

{E (3) (𝒎,𝑸𝑒)
�� (𝒎,𝑸𝑒) ∈ A}

. (6.92)

For this infimizing sequence we show that
(
𝒎𝑛

)
is bounded in 𝐻1 (𝜔,R3) and

(
𝑸𝑛

)
is bounded in 𝐻1 (𝜔,R3×3). Then, there exist some subsequences (not relabeled) and
the limit pair (𝒎̂, 𝑸̂𝑒) ∈ A such that the following weak and strong convergences
hold

𝒎𝑛 ⇀ 𝒎̂ in 𝐻1 (𝜔,R3) and 𝒎𝑛 → 𝒎̂ in 𝐿2 (𝜔,R3),
𝑸𝑛 ⇀ 𝑸̂𝑒 in 𝐻1 (𝜔,R3×3) and 𝑸𝑛 → 𝑸̂𝑒 in 𝐿2 (𝜔,R3×3).

(6.93)

Since the pairs (𝒎𝑛,𝑸𝑛) and (𝒎̂, 𝑸̂𝑒) are elements of the admissible set A, we can
construct the corresponding shell strain measures (𝑬𝑒

𝑛,𝑲
𝑒
𝑛) and (𝑬𝑒,𝑲𝑒), respectively,

using definitions (6.9), (6.10). Then,we can extract some subsequences (not relabeled)
such that we have the following weak convergences

𝑬𝑒
𝑛 ⇀ 𝑬𝑒 in 𝐿2 (𝜔,R3×3) and 𝑲𝑒

𝑛 ⇀ 𝑲𝑒 in 𝐿2 (𝜔,R3×3). (6.94)

We use now the convexity of the energy density function W (3)
shell and obtain∬

𝜔

W (3)
shell (𝑬𝑒,𝑲𝑒) 𝑎d𝑥1d𝑥2 ≤ liminf

𝑛→∞

∬
𝜔

W (3)
shell (𝑬𝑒

𝑛,𝑲
𝑒
𝑛) 𝑎d𝑥1d𝑥2 . (6.95)

Finally, by virtue of (6.84) and (6.95) we get
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E (3) (𝒎̂, 𝑸̂𝑒) ≤ liminf
𝑛→∞ E (3) (𝒎𝑛,𝑸𝑛), (6.96)

so (𝒎̂, 𝑸̂𝑒) is a minimizing solution pair of minimization problem (6.86).

6.4 The Higher Order Model of Cosserat 6-Parameter Shells

The first Cosserat 6-parameter shell model of order 𝑂 (ℎ5) has been established in
[29, 30, 31] by a dimensional descent from the three-dimensional nonlinear Cosserat
elasticity. Then, using an alternative derivation procedure suggested by the classical
shell theory [5, 6], we have derived in [33] a refined higher order Cosserat shell
model, in which we have optimized some terms.

Let us investigate in this section the 6-parameter shell model of order 𝑂 (ℎ5)
derived in [33] for shells made of Cosserat material. Thus, the following areal strain
energy density has been obtained (see [33, Eq. (119)])

W (5)
shell (𝑬𝑒,𝑲𝑒) =

(
ℎ−𝐾 ℎ

3

12

) [
𝑊Coss

(
𝑬𝑒

) +𝑊curv
(
𝑲𝑒

) ] − ℎ3

6
𝑊Coss

(
𝑬𝑒, 𝒄𝑲𝑒𝒃∗

)
+
( ℎ3

12
−𝐾 ℎ5

80

) [
𝑊Coss

(
𝑬𝑒𝒃 + 𝒄𝑲𝑒

) +𝑊curv
(
𝑲𝑒𝒃

) ]
+ ℎ

5

80

[
𝑊Coss

((𝑬𝑒𝒃 + 𝒄𝑲𝑒)𝒃) +𝑊curv
(
𝑲𝑒𝒃2) ] .

(6.97)
If we employ relation (6.5) and notation (6.32), we can decompose the above energy
density in the form

W (5)
shell (𝑬𝑒,𝑲𝑒) = W (5)

memb,bend (𝑬𝑒,𝑲𝑒) +W (5)
bend,curv (𝑲𝑒) with (6.98)

W (5)
memb,bend (𝑬𝑒,𝑲𝑒) =

(
ℎ+𝐾 ℎ3

12

)
𝑊Coss

(
𝑬𝑒) −2

ℎ3

12
𝑊Coss

(
𝑬𝑒,𝚽𝑒𝒃∗

)
+
( ℎ3

12
−𝐾 ℎ5

80

)
𝑊Coss

(
𝚽𝑒) + ℎ5

80
𝑊Coss

(
𝚽𝑒𝒃

)
, (6.99)

W (5)
bend,curv (𝑲𝑒) =

(
ℎ−𝐾 ℎ3

12

)
𝑊curv

(
𝑲𝑒) + ( ℎ3

12
−𝐾 ℎ5

80

)
𝑊curv

(
𝑲𝑒𝒃

)
+ ℎ

5

80
𝑊curv

(
𝑲𝑒𝒃2) . (6.100)

Let us consider first the bending-curvature part W (5)
bend,curv (𝑲𝑒) and prove its

coercivity. Since |𝜅𝛼ℎ| < 1, we have |𝐾ℎ2 | < 1 (cf. (6.36)) and, hence,

ℎ−𝐾 ℎ
3

12
> ℎ− ℎ

12
=

11
12
ℎ and

ℎ3

12
−𝐾 ℎ

5

80
>
ℎ3

12
− ℎ

3

80
=

17
240

ℎ3. (6.101)

Then, Eqs. (6.100), (6.101) and (6.31)2 yield
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W (5)
bend,curv (𝑲𝑒) ≥ 11

12
ℎ𝑊curv

(
𝑲𝑒

) + 17
240

ℎ3𝑊curv
(
𝑲𝑒𝒃

) + ℎ5

80
𝑊curv

(
𝑲𝑒𝒃2)

≥ 11
12
ℎ𝑊curv

(
𝑲𝑒

) ≥ 𝐶3 ∥𝑲𝑒∥2,

(6.102)
for some positive constant 𝐶3 . Thus, the energy function W (5)

bend,curv (𝑲𝑒) is coercive.
We turn our attention now to membrane-bending part (6.99) and establish an

auxiliary result.

Lemma 6.3. Assume that the condition

|𝜅𝛼ℎ| < 1
2

holds and the constitutive coefficients satisfy inequalities (6.38). Then, there exist
some positive constants 𝐶4 > 0, 𝐶5 > 0 such that the membrane-bending energy
density (6.99) satisfies inequality

W (5)
memb,bend (𝑬𝑒,𝑲𝑒) ≥ 𝐶4 ∥𝑬𝑒∥2 +𝐶5 ∥𝚽𝑒∥2 . (6.103)

Proof. We can put the membrane-bending energy density (6.99) in the form

W (5)
memb,bend (𝑬𝑒,𝑲𝑒) =

(
ℎ+𝐾 ℎ3

12

)
𝑊Coss

(
𝑬𝑒) −2

ℎ3

12
𝑊Coss

(
𝑬𝑒,𝚽𝑒𝒃∗

)
+
( ℎ3

12
+(4𝐻2−𝐾) ℎ

5

80

)
𝑊Coss

(
𝚽𝑒

)+ ℎ5

80
𝑊Coss

(
𝚽𝑒𝒃∗

)−4𝐻
ℎ5

80
𝑊Coss

(
𝚽𝑒,𝚽𝑒𝒃∗

)
=

(11
36
ℎ+𝐾 ℎ3

12

)
𝑊Coss

(
𝑬𝑒

) + ℎ [25
36
𝑊Coss

(
𝑬𝑒

) −2
ℎ2

12
𝑊Coss

(
𝑬𝑒,𝚽𝑒𝒃∗

)
+4

5
ℎ4

80
𝑊Coss

(
𝚽𝑒𝒃∗

) ] + ( ℎ3

12
− (16𝐻2 +𝐾) ℎ

5

80

)
𝑊Coss

(
𝚽𝑒

)
+ ℎ

5

80

[
20𝐻2𝑊Coss

(
𝚽𝑒

) −4𝐻𝑊Coss
(
𝚽𝑒,𝚽𝑒𝒃∗

) + 1
5
𝑊Coss

(
𝚽𝑒𝒃∗

) ]
=
ℎ

12

(11
3

+𝐾ℎ2
)
𝑊Coss

(
𝑬𝑒) + ℎ𝑊Coss

( 5
6
𝑬𝑒 − ℎ

2

10
𝚽𝑒𝒃∗

)
+
( ℎ3

12
−𝐻2 ℎ

5

5
−𝐾 ℎ

5

80

)
𝑊Coss

(
𝚽𝑒

) + ℎ5

16
𝑊Coss

(
2𝐻𝚽𝑒 − 1

5
𝚽𝑒𝒃∗

)
.

(6.104)
In view of

|𝜅𝛼ℎ | < 1
2

we have

|𝐾 | ℎ2 = |𝜅1ℎ| · |𝜅2ℎ| < 1
4

and |𝐻 | ℎ ≤ 1
2

( |𝜅1ℎ| + |𝜅2ℎ|
)
<

1
2
, (6.105)

so it holds
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11
3

+𝐾ℎ2 >
11
3

− 1
4
=

41
12

and
ℎ3

12
−𝐻2 ℎ

5

5
−𝐾 ℎ

5

80
> ℎ3

( 1
12

− 1
4
· 1
5
− 1

4
· 1
80

)
=

29
960

ℎ3.

(6.106)

Using inequalities (6.106) and (6.31)1 , from relation (6.104) we get

W (5)
memb,bend (𝑬𝑒,𝑲𝑒) ≥ 41

144
ℎ𝑊Coss

(
𝑬𝑒

) + 29
960

ℎ3𝑊Coss
(
𝚽𝑒

)
≥ 𝐶4 ∥𝑬𝑒∥2 +𝐶5 ∥𝚽𝑒∥2 ,

(6.107)

for some positive constants 𝐶4 , 𝐶5 . The lemma is proved.

We are now able to prove the coercivity of the shell strain energy function for the
higher order model.

Theorem 6.3. Assume that
|𝜅𝛼ℎ| < 1

2
and the constitutive coefficients satisfy inequalities (6.73). Then, the areal strain
energy densityW (5)

shell given by (6.98)-(6.100) is coercive, i.e. there exist some positive
constants 𝐶3 > 0, 𝐶4 > 0 such that

W (5)
shell (𝑬𝑒,𝑲𝑒) ≥ 𝐶4 ∥𝑬𝑒∥2 +𝐶3 ∥𝑲𝑒∥2 . (6.108)

Proof. By virtue of the relation (6.102) and the Lemma 6.3 we deduce that

W (5)
memb,bend (𝑬𝑒,𝑲𝑒) +W (5)

bend,curv (𝑲𝑒) ≥ 𝐶4 ∥𝑬𝑒∥2 +𝐶5 ∥𝚽𝑒∥2 +𝐶3 ∥𝑲𝑒∥2 ,

so coercivity inequality (6.108) holds true.

In a similar way as in Subsect. 6.3.2 we can prove the existence of minimizers for
the Cosserat 6-parameter shell model of order 𝑂 (ℎ5). In this case, the total energy
functional is expressed by

E (5) (𝒎,𝑸𝑒) =
∬
𝜔

W (5)
shell (𝑬𝑒,𝑲𝑒) 𝑎(𝑥1, 𝑥2) d𝑥1d𝑥2 −Λ(𝒎,𝑸𝑒) , (6.109)

where the areal strain energy densityW (5)
shell is given by (6.98)-(6.100) and the external

loading potential Λ has the form (6.85).

Theorem 6.4. Consider the minimization problem for the equilibrium of Cosserat
6-parameter elastic shells:

minimize E (5) (𝒎,𝑸𝑒) w.r.t. (𝒎,𝑸𝑒) ∈ A , (6.110)
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where the total energy functional E (5) is given by (6.109) and the admissible set A
is defined by (6.83). Assume that |𝜅𝛼ℎ| < 1

2 and the constitutive coefficients satisfy
the inequalities (6.73). Also, the reference configuration of the shell is assumed to
satisfy regularity conditions (6.88), while the external loads and boundary data fulfil
regularity conditions (6.87). Then, the minimization problem (6.110) admits at least
one minimizing solution pair (𝒎̂, 𝑸̂𝑒) in the admissible set A.
Proof. We proceed similarly as in the proof of Theorem 6.2. Since all the hypotheses
of Theorem 6.3 are satisfied, we deduce that the strain energy density W (5)

shell (𝑬𝑒,𝑲𝑒)
is coercive. Further, from relations (6.98)-(6.100) we see that this function is a
quadratic form in (𝑬𝑒,𝑲𝑒), which is positive definite. Then, W (5)

shell (𝑬𝑒,𝑲𝑒) is also
convex. We can apply the general existence theorem in [20], since all its hypotheses
are fulfilled. From [20, Theorem 6] we obtain the existence of minimizers to our
minimization problem (6.110) for the Cosserat 6-parameter shell model of order
𝑂 (ℎ5). We refer to [20] for the details of the proof.

Remark 6.5. We mention that Theorem 6.4 is similar to the existence result presented
previously in [31, Theorem 3.3] for a related Cosserat shell model including terms up
to order𝑂 (ℎ5). This related Cosserat shell model has been investigated in [30, 31, 34]
using the matrix formulation. A detailed comparison between the two Cosserat
approaches to 6-parameter shells (which employ either matrix formulation or tensorial
notation) can be found in [33, Sect. 5.3].
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