
Chapter 3
The Direct Approach for Plates Considering
Hygrothermal Loading and Residual Kinetics

Marcus Aßmus, Zia Javanbakht, and Holm Altenbach

Abstract The direct approach for plates is based on Cosserat continuum theory, or
rather on the Cosserat surface. The same principles as used in classical continuum
mechanics are applied whereby a restriction to two-dimensional body manifolds is
imposed. At the same time independent rotational degrees of freedom are introduced.
Pavel Andreevich Zhilin then proposed a reduced treatment that is widely used in
engineering, especially in composite mechanics. However, the approach still lacks
important extensions to include significant quantities influencing the mechanical
behaviour. These quantities result from moisture exposure, temperature changes
and initial tense in the material. We here delineate extensions based on physical
justifications while discussing three-dimensional causation and two-dimensional
impact. A resulting set of equations for the combined loading is derived and discussed.

Key words: Generalized plate theory · Hygroscopic impact · Thermal effects ·
Residual kinetics

3.1 Introduction

We consider a rectangular plate of length 𝐿1, width 𝐿2 and constant thickness 𝐻
with arbitrary supports at four edges, cf. Fig. 3.1. The plate is subjected to moisture
exposure and temperature change. Within the plate, fields exist that result from
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residual quantities, namely residual forces and moments. Such influences are to be
treated in the context of the direct approach for homogeneous thin-walled structures.
A first attempt was successfully utilized in [1] where a three-layered plate was
considered with reduced influence quantities. We here sharpen our reflections and
reduce ourselves to a single layer.

The direct approach for plates is strongly associated with the ideas of Zhilin, cf. [2],
even if other scientists have had similar thoughts before, cf. Cosserat & Cosserat [3]
and Ericksen & Truesdell [4]. We here reduce our considerations to an initially
plane (undeformed) surface on which in analogy to the procedure at classical three-
dimensional continua, kinematic and kinetic measures are defined and constitutive
relations are introduced. The resulting theory is an analogy to a generalized plate
theory in accordance with the works of Kirchhoff [5], Reissner [6], and Mindlin [7].
The generalization is meant in the spirit of [8], i.e., where in-plane, out-of-plane and
transverse shear state of a plate may superimpose.

We are considering a monolithic conventional material with isotropic and purely
elastic material behaviour. Thereby, we restrict ourselves to the small deformation
setting. We furthermore consider

• the thermo-static case (Δ ¤𝜃 = 0 ∧ ¤□ = 0 ∀ □ ∈ {𝑣𝛼, 𝑤, 𝜑𝛼}),
• the hygro-static case (Δ ¤𝜇 = 0 ∧ ¤□ = 0 ∀ □ ∈ {𝑣𝛼, 𝑤, 𝜑𝛼}), and what we call
• the residual-static case ( ¤□0

𝛼𝛽 = 0∀□ ∈ {𝑁, 𝐿} ∧ ¤□ = 0 ∀ □ ∈ {𝑞0
𝛼, 𝑣𝛼, 𝑤, 𝜑𝛼})

for the entire plate at any time. Herein, 𝜃, 𝜇, 𝑁0
𝛼𝛽 , 𝐿0

𝛼𝛽 , 𝑞0
𝛼, 𝑣𝛼, 𝑤, 𝜑𝛼 are the

degrees of freedom, which we will specify in more detail in the further course. Their
consideration results in a description for two-dimensional body manifolds which
is similar to the description of classical three-dimensional Cauchy continuum in a
hygrothermal environment with residual stresses. With this analogy we formulate a
generalized plate theory for hygro-thermo-elastostatics with preload.

Notation: Throughout present treatise, a direct tensor notation is used. First- and
second-order tensors are denoted by lowercase and uppercase bold letters, e.g., 𝒂 and
𝑨∼ , respectively. Fourth-order tensors are designated by uppercase calligraphic letters,
e.g. A. Sets groups and spaces are written in blackboard bold letters, e.g. Sym. If
index notation is required, we will make use of implicit summation over indices 1 to 3
in case of latin letters, and over indices 1 to 2 in case of greek letters. Furthermore,
· , : , ⊗, and × are the scalar product, the double scalar product, the dyadic product,
and the cross product. We additionally introduce the three-dimensional ∇3= 𝒆𝑖 𝜕□/𝜕𝑋𝑖

and the two dimensional Hamiltonian ∇2 = 𝒆𝛼 𝜕□/𝜕𝑋𝛼. With its help the operations
divergence ∇·□ and gradient ∇□ of a tensor □ can be specified compactly. Also,
the symmetric part of a gradient ∇sym□ = 1/2[∇□+∇⊤□] can be given. For detailed
penetrations of these operations we refer to [9] or [10].
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Fig. 3.1: A plate exposed to moisture (𝜇) and temperature (𝜃) as well as as kinetic quantities (𝑁 0,
𝐿0, 𝑞0) which are already present in the interior of the unloaded state.

3.2 Frame of Reference

In plate theory it is generally accepted that the plate can be represented by a de-
formable plane. Such considerations can traced back to Germain [11], Lagrange [12],
Navier [13], Poisson [14], and of course Kirchhoff [5], among others (for further
discussion see [15]). Hence, all contemplations are reduced to a two-dimensional
problem due to the slenderness of the body considered. For this reason, one selects
a surface 𝔖 related to planar dimensions. It is reasonable to choose the mid surface
due to material and geometrical symmetries in transverse direction. We reduce our
concern to coplanarity of all material points of this surface, i.e. initially plane surfaces.
For present treatise we furthermore assume that each material point is an infinitesimal
rigid body with five kinematic degrees of freedom, cf. Fig. 3.2 at the right-hand
side. As will be described in more detail later, these are three translations and two
rotations. Thus, we introduce a plate theory as proposed by Zhilin [2]. We directly
enter the topic by introducing the degrees of freedom. In present case these are three
translations 𝒂 and two rotations 𝝍, which components are visualized in Fig. 3.2 on
the ride-hand-side.

𝒂 = 𝒗 +𝑤𝒏 with𝒗 = 𝑣𝛼𝒆𝛼, (3.1)
𝝍 = −𝜑2𝒆1 +𝜑1𝒆2. (3.2)
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Fig. 3.2: Mid surface 𝔖 in context of a three-dimensional body 𝔅 with degrees of freedom
assigned.

Herein,our tripod is still a set of orthogonal unit vectors with longitudinal directions 𝒆𝛼
and one direction perpendicular to the plane spanned by the longitudinal ones, called 𝒏.
However, rotations around the surface normal remain unconsidered since they have
no physical justification due to the fact that the in-plane shear stiffness of classical
engineering structures is much larger that the bending stiffness, cf. [2]. However,
instead of employing the rotational vector 𝝍, we introduce the vector 𝝋 = 𝜑𝛼𝒆𝛼,
which is related via 𝝋 = 𝝍× 𝒏.

Typical deformation measures are the membrane strains 𝑮∼ , the curvature
changes 𝑲∼ , and the transverse shear strains 𝒈. In a geometrically linear framework,
we can define these measures as follows.

𝑮∼ = ∇sym𝒗 = 𝐺𝛾𝛿𝒆𝛾 ⊗ 𝒆𝛿 , (3.3)
𝑲∼ = ∇sym𝝋 = 𝐾𝛾𝛿𝒆𝛾 ⊗ 𝒆𝛿 , (3.4)
𝒈 = ∇𝑤+𝝋 = 𝑔𝛽𝒆𝛽 . (3.5)

The decoupling of the constitutive equations is reasonable due to

• coplanarity of all material points of the surface considered,
• geometrical symmetry in thickness direction,
• material symmetry in thickness direction, and
• isotropic material behaviour.
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We can now introduce a decoupled, which means the in-plane, out-of-plan and
transverse shear behaviour not influencing each other, strain energy function of the
deformable plane surface in terms of a Taylor series limited to quadratic terms where
positive definiteness holds true.

𝑊 (𝑮∼ ,𝑲∼ , 𝒈) =
1
2
(
𝑮∼ :A :𝑮∼ +𝑲∼ :D :𝑲∼ + 𝒈 ·𝒁∼ · 𝒈

)
(3.6)

Therein, we have introduced the constitutive tensors, whereby A = 𝐴𝛼𝛽𝛾𝛿𝒆𝛼 ⊗ 𝒆𝛽 ⊗
𝒆𝛾 ⊗ 𝒆𝛿 is the fourth-order in-plane stiffness tensor, D = 𝐷𝛼𝛽𝛾𝛿𝒆𝛼 ⊗ 𝒆𝛽 ⊗ 𝒆𝛾 ⊗ 𝒆𝛿
is the fourth-order out-of-plane stiffness tensor, and 𝒁∼ = 𝑍𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽 is the second-
order transverse shear stiffness tensor. They depend on the material and geometrical
properties. In the isotropic case, they depend on two material parameters only and
the thickness of the plate. The kinetic measures arising from this potential.

𝜕𝑊

𝜕𝑮∼
= A :𝑮∼ ,

𝜕𝑊

𝜕𝑲∼
= D :𝑲∼ ,

𝜕𝑊

𝜕𝒈
= 𝒁∼ · 𝒈. (3.7)

Hence we have found dual quantities, i.e. the in-plane forces 𝑵∼ , the moments 𝑳∼ , and
the transverse shear forces 𝒒.

𝜕𝑊

𝜕𝑮∼
= 𝑵∼ = 𝑁𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽 , (3.8)

𝜕𝑊

𝜕𝑲∼
= 𝑳∼ = 𝐿𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽 , (3.9)

𝜕𝑊

𝜕𝒈
= 𝒒 =𝑄𝛼𝒆𝛼 . (3.10)

The constitutive equations are then given as linear mappings.

𝑵∼ = A :𝑮∼ , (3.11)
𝑳∼ = D :𝑲∼ , (3.12)
𝒒 = 𝒁∼ · 𝒈. (3.13)

The isotropic stiffness tensors can be given in following form [16].

A = 2𝐵ℎ P𝔖
1 +2𝐺ℎ P𝔖

2 , (3.14)

D = 2𝐵
ℎ3

12
P𝔖

1 +2𝐺
ℎ3

12
P𝔖

2 , (3.15)

𝒁∼ = 𝜅𝐺ℎ 𝑷∼ . (3.16)

Herein we have introduced the compression modulus of the surface 𝐵 = 𝑌/2(1− 𝜈) [16]
with Young’s modulus𝑌 , Poisson’s ratio 𝜈 and a correction factor 0 < 𝜅 ≤ 1 accounting
for transverse shear, cf. [6, 7] and the discussion in [17]. The fourth-order isotropic
projectors are given as follows.
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P𝔖
1 =

1
2
𝑷∼ ⊗ 𝑷∼ , P𝔖

2 = Psym −P𝔖
1 . (3.17)

Herein, 2Psym = 𝒆𝛼 ⊗ 𝒆𝛽 ⊗
(
𝒆𝛼 ⊗ 𝒆𝛽 + 𝒆𝛽 ⊗ 𝒆𝛼

)
is the symmetric part of the fourth-

order identity of the surface.
Finally, the equilibrium equations of the two-dimensional planar continuum are

written as

∇·𝑵∼ +𝒔 = o, (3.18a)
∇· 𝒒 +𝑝 = 0, (3.18b)
∇· 𝑳∼ −𝒒 +𝒎× 𝒏 = o. (3.18c)

where 𝑵∼ , 𝑳∼ are the tensors of in-plane forces and out-of-plane moments, respectively,
𝒒 is the vector of transverse shear forces, 𝒎 is the surface moment vector (excluding
drilling moments in line with the assumptions of a five degree of freedom continuum).
The vector of surface forces 𝒕 is split in two parts: 𝒔 and 𝒑, where the first one is the
vector of tangent surface forces and the second one is the vector transverse surface
loads.

𝒕 = 𝒔+ 𝒑 with 𝒑 = 𝑝𝒏 and 𝒔 = −𝑠𝛼𝒆𝛼 (3.19)

It is worth mentioning that any general body forces are applied as surface loads to
the planar structure (𝔖):

𝒕 :=

+𝐻
2∫

− 𝐻
2

𝜌𝒃 d𝑋3 = 𝒔+ 𝒑. (3.20)

where 𝒕 is the general surface load (tangent and transverse) and 𝜌 is the mass density
of the body 𝔅. In a similar fashion, the moment of the body loads along directions 1
and 2 are applied as a surface moment vector (per unit area):

𝒎 := −
+𝐻

2∫
− 𝐻

2

𝜌𝑋3𝑷∼ · 𝒃 d𝑋3. (3.21)

By excluding any mixed boundary conditions on the surface 𝔖, only independent
Drichlet (on 𝜕𝔖D) and Neumann boundary conditions (on 𝜕𝔖N) are considered over
the boundary of the domain 𝜕𝔖:

𝜕𝔖D ∪ 𝜕𝔖N = 𝜕𝔖, 𝜕𝔖D ∩ 𝜕𝔖N = ∅. (3.22)

where 𝜕𝔖D and 𝜕𝔖N are non-intersecting non-trivial subsets of the boundary 𝜕𝔖
over which an outward normal direction vector 𝝊 is defined, i.e., 𝝊 ·𝒏 = 0. In addition,
the arc-length variable ℓ parametrises the distance along the contour 𝜕𝔖.
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Consequently, the Drichlet boundary conditions consist of prescribed kinematic
values for in-plane displacements 𝒗★(ℓ), deflections 𝑤★(ℓ), and rotations 𝝋★(ℓ):

on 𝜕𝔖D : 𝒗
!
= 𝒗★(ℓ), (3.23a)

𝑤
!
= 𝑤★(ℓ), (3.23b)

𝝋
!
= 𝝋★(ℓ), (3.23c)

In addition, the Neumann boundary conditions consists of prescribed static values
(distributed per unit length) for in-plane forces 𝒔★(ℓ), transverse forces 𝒑★(ℓ), and
in-plane moments 𝒎★(ℓ):

on 𝜕𝔖N : 𝝊 ·𝑵∼
!
= 𝒔★(ℓ), (3.24a)

𝝊 · 𝒒 !
= 𝑝★(ℓ), (3.24b)

𝝊 · 𝑳∼ !
= 𝒎★(ℓ). (3.24c)

3.3 Thermal Effects and Hygroscopic Impact

Environmental thermal cycles result in expansion/contraction of materials with non-
zero coefficients of thermal expansion (𝛼𝜃 ≠ 0). A homogeneous temperature change
in an unconstraint isotropic material results in a volumetric change, i.e., it nullifies the
thermal curvature change tensor 𝑲∼

𝜃 = 0∼ and thermal transverse shear vector 𝒈𝜃 = o.
Thus, the following Duhamel-Neumann form [18, 19, 20] can be written if only
normal in-plane thermal strains are considered:

𝑵∼ = A : (𝑮∼ −𝑮∼
𝜃 ), (3.25a)

𝑳∼ = D :𝑲∼ , (3.25b)
𝒒 = 𝒁∼ · 𝒈, (3.25c)

where 𝑮∼
𝜃 is the tensor of thermal in-plane strains:

𝑮∼
𝜃 = 𝛼𝜃Δ𝜃𝑷∼ . (3.26)

Polymeric materials can absorb moisture and undergo swelling. Such a volumetric
change is similar to what happens during thermal expansion in the sense that both
are considered to be dilatoric eigenstrains (𝒒𝜇 = o). By assuming a uniform through-
thickness moisture absorption (Δ𝑚), an isotropic plane will experience no
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curvature change (𝑲∼
𝜇 = 0) but only planar eigenstrains:

𝑵∼ = A : (𝑮∼ −𝑮∼
𝜇), (3.27a)

𝑳∼ = D :𝑲∼ , (3.27b)
𝒒 = 𝒁∼ · 𝒈, (3.27c)

where 𝑮∼
𝜇 includes the in-plane moisture strains:

𝑮∼
𝜇 = 𝛼𝜇Δ𝑚𝑷∼ , (3.28)

where 𝛼𝜇 is the coefficient of moisture expansion, and Δ𝑚 is the change in the
moisture mass (absorption/desorption) per unit mass of the plate.
It is noteworthy that the mechanical properties of the material are deemed independent
of the hygrothermal effects. Moreover, this smeared representation does not include
individual constituents (e.g., fibres within a matrix) and their mesoscopic structures.
More importantly, the hygroscopic component does not entail any residual stresses
due to violating the compatibility condition—hence, it is a stress-free eigenstrain,
see [21, 22].

3.4 Residual Kinetics

Based on the concept of residual stresses, we also introduce residual kinetic quantities,
i.e. in-plane forces, moments, and transverse shear forces. Such quantities may be
present even in the absence of any external loading, thermal gradients etc. These
quantities are often associated with plastic deformations, inhomogeneous micro-
structural transformations or hygrothermal effects.

In the context of present approach, a general set of incompatible strains results
in residual fields for in-plane forces 𝑵∼

0, moments 𝑳∼
0, and transverse shear forces

𝒒0. In analogy to the problems of three-dimensional continua, these quantities can
only be measured by the available non-destructive and destructive methods where
the deformations corresponding to the residual stresses are measured. In order not to
lapse into details, we refer to [23] or [24] and only disclose the transfer of measured
residual Cauchy stresses 𝑻∼

0 = 𝑇0
𝑖 𝑗 𝒆𝑖 ⊗ 𝒆 𝑗 to the quantities introduced here. In this

sense, the following residual forces and moments are introduced:

𝑵∼
0 =

+𝐻
2∫

− 𝐻
2

𝑷∼ ·𝑻∼ 0 ·𝑷∼ d𝑋3, (3.29a)

𝑳∼
0 =

+𝐻
2∫

− 𝐻
2

𝑋3𝑷∼ ·𝑻∼ 0 ·𝑷∼ d𝑋3, (3.29b)
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𝒒0 =

+𝐻
2∫

− 𝐻
2

𝑷∼ ·𝑻∼ 0 ·𝒏 d𝑋3. (3.29c)

The strain energy function now should be extended:

𝑊 (𝑮∼ ,𝑲∼ , 𝒈) =
1
2
(
𝑮∼ :A :𝑮∼ +𝑲∼ :D :𝑲∼ + 𝒈 ·𝒁∼ · 𝒈

)
+ 𝑵∼

0 :𝑮∼ + 𝑳∼
0 :𝑲∼ + 𝒒0 · 𝒈 (3.30)

Considering the constitutive equations originally introduced, we can now extend this
set as follows.

𝑵∼ = A :𝑮∼ +𝑵∼ 0 (3.31a)
𝑳∼ = D :𝑲∼ +𝑳∼ 0 (3.31b)
𝒒 = 𝒁∼ · 𝒈 +𝒒0 (3.31c)

3.5 Conclusion

In present treatise, the direct approach was adopted to set up the field equations
of a generalized plate theory under various influences. More specifically, thermal
and hygroscopic effects along with residual quantities are considered. When all the
quantities taken into account are combined, the Duhamel-Neumann analogy takes
subsequent form.

𝑵∼ = A : (𝑮∼ −𝑮∼
𝜃 −𝑮∼

𝜇) +𝑵∼
0, (3.32a)

𝑳∼ = D : (𝑲∼ ) + 𝑳∼
0, (3.32b)

𝒒 = 𝒁∼ · (𝒈 ) + 𝒒0. (3.32c)

Obviously, hygroscopic and thermal loads effects the in-plane force tensor solely,
at least in present case. Contrary, residual quantities effect all three states. The field
equations of Eq. (3.18) my then be rearranged with the reduced forces and moments
of Eqs. (3.32) to set up the linear hygro-thermo-static equilibrium with residual
quantities. A concise visual representation can be found in Fig. 3.3.

To be honest, present execution concerns the simplest case of a two-dimensional
theory where the reference surface halves the plate thickness. In absence of such
geometrical symmetry, quantities like thermal moments etc. also occur then. Future
work should take these quantities into account. Moreover, we are here limited to
purely static considerations. In continuation, fluctuations, at least of temperature and
moisture, should find entrance in the direct approach.

However, potential applications of present ansatz can be found in the analysis of
composite structures as presented for example in [25].
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kinetics material kinematics

kinetic quantities

𝑵, 𝑳, 𝒒, 𝑵0, 𝑳0, 𝒒0

constitutive laws
𝑵 = A : (𝑮 − 𝑮 𝜃 − 𝑮𝜇) + 𝑵0

𝑳 = D : (𝑲 ) + 𝑳0

𝒒 = 𝒁 · (𝒈 ) + 𝒒0

strains/curvature changes

𝑮, 𝑲, 𝒈, 𝑮 𝜃 , 𝑮𝜇

equations of motion
∇· 𝑵 +𝒔 = o
∇· 𝑳−𝒒 + 𝒎 × 𝒏 = o
∇· 𝒒 +𝑝 = 0

deformation

𝑮 = ∇sym𝒗
𝑲 = ∇sym𝝋
𝒈 = ∇𝑤 + 𝝋

𝑮 𝜃 = 𝛼𝜃Δ𝜃𝑷
𝑮𝜇 = 𝛼𝜇Δ𝑚𝑷

loads

𝒕 = 𝑓 (𝒔, 𝑝𝒏)
𝒎 = 𝑔(𝒔)

initial conditions

Δ𝜃,Δ𝑚

𝒗, 𝝋, 𝑤

Neumann boundary conditions

𝒔★, 𝑝★,𝒎★

Dirichlet boundary conditions

𝒗★, 𝑤★, 𝝋★

surface 𝔖

boundary 𝜕𝔖

Fig. 3.3: Tonti diagram [26] for the composed plate problem of present treatise.
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