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Chapter 2

Advance Approximate Analytical Solutions of the
Contact Problem for an Inhomogeneous Layer

Sergei M. Aizikovich, Polina A. Lapina, and Sergei S. Volkov

Abstract The paper considers contact problems on the shear of the surface of an
elastic layers that are inhomogeneous with depth and lie on a non-deformable and
elastic base. Contact problems are reduced to solving integral equations. An analysis
of the proximity of the kernel transforms of integral equations depending on the
parameters of the problem is carried out. The solutions of integral equations are
constructed by asymptotic methods, including the Wiener-Hopf method and the
bilateral asymptotic method. The closeness of contact stresses is investigated. It is
obtained, that when the value of the shear modulus at the lower boundary of the layer
exceeds the value of the shear modulus at the layer surface by more than e times, the
divergence of contact stresses for layers on a non-deformable and elastic base does
not exceed 5 percent.
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2.1 Introduction

Inhomogeneous coatings of various structures have various applications and are of
interest to researchers. The choice of adequate mathematical models for the calculation
of inhomogeneous materials remains an important issue in modern mechanics [1]-[9].

The paper analyzes the equivalence of solutions for two models of a layer inho-
mogeneous with depth. The solution of the problems is carried out on the example
of contact problems on the pure shear of the surface of an elastic layers inhomo-
geneous with depth on a non-deformable and elastic base. The exponential law of
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shear modulus change was chosen for the analysis, that is also considered in various
studies [10]-[18]. The choice of the exponential law made it possible to obtain the
kernels of the integral equations in an analytical form. Models of layers on a non-
deformable and elastic base are close in a certain range of problem parameters. In
this range, the proximity of solutions to contact problems is studied. The problems
were solved approximately analytically using asymptotic methods using the simplest
approximations of the kernel transforms of integral equations.

2.2 Statement of the Problem of a Shear of the Surface of an
Inhomogeneous Layer

Let us consider the contact problem of pure shear of the surface of an inhomogeneous
layer lying on a non-deformable or an elastic base by a strip punch with a flat base.
The equation of the theory of elasticity in the case of antiplane deformation without
taking into account the forces of friction has the form

00— 60—2
X + y

ox ay
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where stresses 0 x (X, y), 0%y (x,y) and deformation w(x, y) are related by the relations
ow ow

T =p(y) o Oy =ﬂ(y)5~ 22

where pu(y) is shear modulus of a layer inhomogeneous by the vertical coordinate.
In the case of a layer lying on a non-deformable base (Fig. 2.1a), the boundary
conditions of the contact problem have the form

w(x,0)=¢ |x| <a, w,H) =0 |x| < oo o)
oy (x,0) = {—tp (x) [x[<a »
0 a< |x| < 00

where ¢ is the value, to which the punch is shifted, a is the half-width of the contact
area, ¢(x) are contact stresses under the punch to be determined, H is the layer
thickness.

A layer lying on an elastic base (Fig. 2.1b) is represented by an inhomogeneous
half-space, the shear modulus of which is given as a piecewise function

{u(y)OSysH 2.5)

Hoo H<y<oo

where ., is elastic base shear modulus. In this case, the boundary conditions of the
contact problem consist of conditions (2.3), (2.4) on the layer surface, to which the
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Fig. 2.1 Layer models on a |
non-deformable (a) and elastic i 7
(b) base. o O a x
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H
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condition of decreasing solution at infinity is added

lim {w, 6_w} =0. (2.6)
ox

x24y2—00

2.3 Integral Equations of Contact Problems

The paper considers the case when the shear modulus of an inhomogeneous layer
changes according to the exponential law

u(y) = poe*®, 0<y < oo, 2.7)

where p is the value of the shear modulus on the upper surface of the inhomogeneous
layer, d is the value that characterizes the rate of change in the shear modulus with
depth.

In this case, in problem (b), the shear modulus of the elastic base is foo = poe>¢H,
and the shear modulus of the elastic base is ¢4 times larger than the shear modulus
of the layer on the surface (uw/uo = ¢**H). For the exponential law of the shear
modulus change, it is possible to construct solutions to contact problems in an
analytical form. Using the integral Fourier transform, the solutions of problems are
reduced to solving integral equations for unknown contact stresses.

For the problem (a), the integral equation in dimensionless form has the form

1

r gy H
/¢p(§)d§/K(a)emeda=27ra_18u0, x| <1, /lzz, (2.8)

-1 —00

1
K(o)=————, V=,/d3+a? do=Hd 2.9
(@) dy+VcothV 0T« 0 (2.9
Integral equation (2.8) is an integral equation of the Fourier convolution type of the
first kind with a difference kernel with respect to unknown contact stresses ¢(&). The

transform K (@) has the following asymptotic properties

K(@)=la|"'+0(@ %) at |a| » o, K(a)=K(0)+0(a?) at |a| -0, (2.10)
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When constructing analytical solutions of integral equation (2.8), asymptotic
methods with respect to the dimensionless parameter A are used in a similar way
to [15]-[17] for the case of an inhomogeneous half-space. For small values of the
parameter A € (0,4p) the solution of the integral equation is constructed in the
framework of the Wiener-Hopf method [19]. The solution is written as the zero term
of the Neumann series with further use of the simplest approximation of the kernel
transform K («) in the following form

1 B*+a? 1 B

For large values of the parameter A € (1¢, o), as in [20], the solution of the integral
equation is written as a double functional series in powers of the parameter A.

In the case of problem (b), the integral equation for unknown contact stresses
according to [18] is written in the same form as (2.8), (2.9), taking into account the
notation

K(a)= LL(cx) (2.12)
la|

The function L(«) is obtained analytically and has the form

(la| = dp) sinhV +V coshV -
L = , V=\d:+a?, dy=Hd 2.13
(@) (Ja]+dp) sinhV +V coshV 0T« 0 2.13)

The function L(«) given by expression (2.13) has the following asymptotic properties
L(a)=1+0(la| ) at |a| > oo, L(a)=L(0)+O0(la)at [a] 0. (2.14)

When solving the integral equation of problem (b), the bilateral asymptotic method
[21]-[24] is used. The kernel transform is approximated by the following product

N o2+ A2
L(a)=LY(a) = ]_[ QZTB‘Z;(B,-—B,() (Ai—Ap) #Owherei £k (2.15)

i=1 i

Based on the proposed approximation, an approximate analytical solution of the
integral equation is constructed, which is effective over the entire range of values of
the dimensionless geometric parameter A.

2.4 Numerical Analysis

Figures 2.2-2.4 show the kernel transforms of integral equations for two models
of a layer that is inhomogeneous with depth at different values of the parameter
do =2,1,0.5, which corresponds to cases where the shear modulus at the lower
boundary of the layer (the shear modulus of the elastic base in problem b) is e*, ¢2,

times greater than the shear modulus at the layer surface respectively. For model
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(a), the graphs show functions |@|K (@), for model (b), the graphs show functions
L(a@). As the a grows, the graphs |a|K (@) for the model (a) and the graphs L(«)
for the model (b) begin to coincide and tend to the value 1 at @ — co. We consider
do > 0, which means that the shear modulus increases with depth. At dy — +0,
the inhomogeneous layer transforms into a homogeneous one. In this case, as the
parameter dy decreases, models (a) and (b) cease to be similar, which is confirmed
by the graphs of the transforms in Figs. 2.2-2.4 .

For values of the shear modulus parameter dy, at which the relative difference
between the kernel transforms || K () and L(«) of the integral equations of problem
(a) and problem (b) is small, the contact stresses are constructed. Note that thin layers
are of interest from the point of view of applications. Figures 2.5 and 2.6 show the
relative contact stresses as™' gy ' P~ () for different values of the parameters do
and A. Here P is the force acting on the punch. In the case of the model (a), the
solution is constructed by the Wiener-Hopf method, which corresponds to the case
of small values of the dimensionless parameter A € (0, Ag) (thin layers). In the case
of the model (b), the solution is constructed by the bilateral asymptotic method.

Numerical results confirm the coincidence of contact stresses for the two layer
models (on a non-deformable and elastic base) in the case when the problem parame-
ters are such that the models are physically close to each other. Thus, at dy > 1, when
the value of the shear modulus at the lower boundary of the layer exceeds the value
of the shear modulus at the upper boundary of the layer by more than a e times,
the contact stresses constructed for the case of a layer on a non-deformable base are
close to the contact stresses constructed for the case of a layer on an elastic base, and
the error between solutions does not exceed 5 percent.

— a: |dK(e)
Fig. 2.2 |a|K (a) for model » b L(a)
(a) and L () for model (b) at
do =2, teo/ o = €*, the solid
black line - problem (a), red
dots - problem (b).
— a:|alK(e)
Fig. 2.3 |a|K («a) for model - b Ll

(a) and L () for model (b) at
do =1, pteo/ o = €2, the solid
black line - problem (a), red
dots - problem (b).
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Fig. 2.4 |a|K («a) for model
(a) and L () for model (b) at
dy=0.5, us/ po = e, the solid
black line - problem (a), red

— a’ |dK(q,
dots - problem (b). _ :A J:&:‘w /
Fig. 2.5 Relative contact
stresses ae™ uy 1Pl (&)
atdp =1, A =1, the solid black 1.2 4
line - problem (a), the solid 1.0
red line - problem (b). 05 ] - (a)

0.6 4 T (b)
0.4
T T T T T T T T X
0.0 0.2 0.4 0.6 0.8
Fig. 2.6 Relative contact
stresses ag™ uy 1Pl (&) 7
at dy =2, = 0.5, the solid 1o
black line - problem (a), the 0.5 1
solid red line - problem (b). | — (@)
0.6 1 - (b)
0.4 1
X

0.0 0.2 0.4 0.6 0.8

2.5 Closure

A comparative analysis of the proximity of solutions and the equivalence of two
contact problems on the shear of the surface of an elastic layers inhomogeneous
with depth on a non-deformable and elastic base is carried out. For the values of the
problem parameter, when the value of the shear modulus at the lower boundary of
the layer exceeds the value of the shear modulus at the layer surface by more than e?
times, the error between solutions does not exceed 5 percent. In the further studies
the solutions are planned to be used for the interpretation of the experimental data,
including shear of the coatings [25]-[27], porous materials [28] and scaffold walls
[29] in the course of in situ tests.
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