
Chapter 19
Multistability of Convective Flows in a Porous
Enclosure

Vasily Govorukhin, Mezhlum Sumbatyan, and Vyacheslav Tsybulin

Abstract We discuss multistability for the problem of convection in a porous medium.
Nontrivial phenomena of extreme multistability arise in the mathematical model of
the Darcy convection with a linear temperature profile on the boundary. It manifests
in the appearance of one-parameter families of steady states. An illustrative example
concerns the anisotropic convection problem. We review here some issues of transition
from extreme to standard multistability. Then we describe numerical and algorithmic
aspects of the extreme multistability and provide necessary references.
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19.1 Introduction

Investigation of the convective motions of fluids in porous media is an important
subject of interest to many researchers [1]-[4]. Geophysics and some branches of
industry require new models, to describe various observed phenomena [5, 6]. Nonlin-
earity of the corresponding mathematical models typically leads to the multistability –
a phenomenon of coexistence of different solutions.

Often, multistability is a consequence of some symmetry group in a system.
Existence of a one–parameter family of solutions (extreme multistability) may be
caused by a continuous symmetry group (translational or rotational invariance).
Another reason for this phenomena is cosymmetry,which was introduced by Yudovich,
to explain the existence of one–parameter family of steady states in the problem with
no continuous symmetry [7]-[9]. Such an extreme multistability was found in the
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planar Darcy convection problem [7], [10]-[12]. The cosymmetry is a vector field
which is orthogonal to a given vector field in a Hilbert space 𝐻. For example,
cosymmetry of a differential equation ¤𝑢 = Φ(𝑢), 𝑢 ∈ 𝑅𝑛 is a nontrivial vector field
𝐿 (𝑢), such that (Φ(𝑢), 𝐿 (𝑢)) = 0 at each point of 𝑅𝑛. In [7] there are formulated the
conditions for existence of the family of equilibria in the system with cosymmetry.
Assume 𝑢0 to be a solution of Φ(𝑢0) = 0, and 𝐽 = ∇Φ is the Jacobian matrix. Let
the zero be a simple eigenvalue of the operator 𝐽 (𝑢0), and 𝜙0 is the basis vector
in ker 𝐽 (𝑢0). Then the given differential equation has the one–parameter family
of solutions: 𝑢𝛼 = 𝑢0 +𝛼𝜙0 +𝑂 (𝛼2), for a sufficiently small 𝜃. This family of the
equilibria cannot be a result of any symmetry group [8]. Moreover, the stability
spectrum of the equilibria 𝑢𝛼 depends on parameter 𝛼. The cosymmetry differs
from the symmetry case, where the spectrum is identical for all equilibria. The
nontrivial cosymmetry indicates that the system has a hidden free parameter, i.e. it
is underdetermined.

An analytic study of the one-parameter cosymmetric family of steady-state regimes
is possible only for those values of parameters which are close to a bifurcation in
its appearance [7, 8]. For other situations only numerical approaches can be used as
a rule. Some special numerical methods, to study cosymmetric dynamical systems,
were developed in [13, 14] and continued in [14]-[25].

Yudovich proposed a selective function for studying the situation when the cosym-
metry does not takes place and the continuous families of steady states break down
or disappear [9]. Two scenarios are possible for a family of equilibria: the disin-
teg,ration of the family to a finite number of equilibria (ordinary multistability) or
the appearance of slow periodic motions. The destruction of the family of steady
states was investigated in [10, 19, 26, 27]. There is observed a memory effect about
broken cosymmetry: relaxation oscillations and slow dynamics in a vicinity of the
disappeared family of equilibria [19, 28].

Let us present a short survey of some results in this field, where authors’ papers
play a key role. We outline the numerical approaches for investigation both cosym-
metric and close to cosymmetric problems. This permits the study of scenarios of
bifurcations for some families [29, 30]. A spectral-difference method was derived for
the convection in the rectangle [20]. The convection of a multi-component fluid is
studied in [31]. A discretization in cylindrical coordinates is applied in [25, 32, 33]. A
three–dimensional problem is studied in [24, 34, 35]. An anisotropy in a gravitational
convection for rectangular enclosure is analyzed in [15, 26, 36, 37]. A selection of
states under extreme multistability is considered in [17, 19, 38].

We consider the gravitational convection in a porous medium saturated by the
heat-conducting fluid. The enclosure is heated from below. We are interested in an
appearance of convective flows when the quiescent state (mechanical equilibrium)
loses its stability. The resulting system is cosymmetric under some additional con-
ditions for the parameters of the problem. It means that the continuous family of
stationary regimes branches off from the quiescent state. After discretization with
preserving the cosymmetry we obtain a system of ordinary differential equations. To
compute the extreme multistability, a special continuation procedure is developed.
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19.2 Mathematical Formulation of the Problem

Let us consider the problem of heating a rectangular container

Ω = [0, 𝑎] × [0, 𝑏],

see Fig. 19.1. Let us set the impermeability conditions on the boundary 𝜕Ω, as well as
a linear temperature profile. The gravity acts in the direction opposite to coordinate
𝑦:

𝑢(0, 𝑦, 𝑡) = 𝑢(𝑎, 𝑦, 𝑡) = 0,
𝑣(𝑥,0, 𝑡) = 𝑣(𝑥, 𝑏, 𝑡) = 0,
𝑇∗ (𝑦) = 𝑇0 + 𝐴− 𝑦

𝑏
𝐴,

where 𝑢, 𝑣 are the horizontal and vertical velocities respectively, 𝑇0 and 𝑇0 + 𝐴
correspond to the temperature at the upper (𝑦 = 𝑏) and lower (𝑦 = 0) boundaries. The
following system describes anisotropic convection in the porous medium:

0 =
𝜕𝑝

𝜕𝑥
+ 𝜇(𝑀11𝑢 +𝑀12𝑣), (19.1)

0 =
𝜕𝑝

𝜕𝑦
+ 𝜇(𝑀21𝑢 +𝑀22𝑣) − 𝜌0𝛽(𝑇 −𝑇)𝑔, (19.2)

0 =
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦
, (19.3)

(𝜌𝑐𝑝)𝑚 𝜕𝑇
𝜕𝑡

= −(𝜌𝑐𝑝) 𝑓
(
𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣 𝜕𝑇
𝜕𝑦

)
+ 𝜕

𝜕𝑥

(
Λ11

𝜕𝑇

𝜕𝑥
+Λ12

𝜕𝑇

𝜕𝑦

)
+ 𝜕

𝜕𝑦

(
Λ21

𝜕𝑇

𝜕𝑥
+Λ22

𝜕𝑇

𝜕𝑦

)
. (19.4)

Here 𝑡 is time,𝑥, 𝑦 are the Cartesian coordinates, 𝑝 is the pressure,𝑇 is the temperature,
𝜇 is the fluid viscosity, 𝜌 is the density, 𝑔 is the gravity acceleration, Λ𝑖 𝑗 and 𝑀𝑖 𝑗 are
the components of tensors of the temperature conduction and the inverse permeability,

Fig. 19.1 Flow region
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correspondingly. Then, 𝜌0 is the density at the reference temperature𝑇0, the parameter
(𝜌𝑐𝑝)𝑚 characterizes the product of the density by the specific heat at constant
pressure averaged for the fluid and the porous medium, and (𝜌𝑐𝑝) 𝑓 is an analogous
characteristics for the fluid; 𝛽 is the thermal expansion coefficient.

We introduce the deviation of the temperature 𝜃 as

𝑇 (𝑥, 𝑦, 𝑡) = 𝑇∗ (𝑦) + 𝜃 (𝑥, 𝑦, 𝑡)

and dimensionless variables and parameters, as follows:

𝑡 = 𝑡∗𝑡, 𝑥 = ℎ∗𝑥, 𝑦 = ℎ∗ �̃�, 𝑢 = 𝑣∗�̃�, 𝑣 = 𝑣∗ �̃�, 𝜃 = 𝜏∗𝜃,

�̂� = 𝑃∗�̃�, �̂� = 𝑝−
𝑦∫

0

𝜌0𝛽𝑔(𝑇∗−𝑇)𝑑𝑦, 𝑀𝑖 𝑗 = 𝑀22𝜇𝑖 𝑗 , 𝑑𝑖 𝑗 =
1
Λ22

Λ𝑖 𝑗 .

The physical characteristics of length ℎ∗, velocity 𝑣∗, pressure 𝑃∗, time 𝑡∗, and tem-
perature 𝜏∗ are, respectively:

ℎ∗ = 𝑏, 𝑣∗ =
Λ22

(𝜌𝑐𝑝) 𝑓 𝑏 , 𝑃∗ =
𝜇Λ22𝑀22
(𝜌𝑐𝑝) 𝑓 𝜏∗ = 𝐴𝑡∗ =

𝑏2 (𝜌𝑐𝑝)𝑚
Λ22

(19.5)

The Rayleigh number 𝜆 is defined by the formula

𝜆 =
(𝜌𝑐𝑝) 𝑓 𝐴𝑏𝜌0𝛽𝑔

𝑀22𝜇Λ22
. (19.6)

As a result, for dimensionless quantities (the “tilde” sign above the variables is
omitted), the following system is obtained:

𝜕𝑝

𝜕𝑥
+ 𝜇11𝑢 + 𝜇12𝑣 = 0,

𝜕𝑝

𝜕𝑦
+ 𝜇21𝑢 + 𝜇22𝑣−𝜆𝜃 = 0.

(19.7)

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

= 0,

𝜕𝜃

𝜕𝑡
+𝑢 𝜕𝜃

𝜕𝑥
+ 𝑣 𝜕𝜃
𝜕𝑦

− 𝑣 = 𝐿𝐷𝜃,
(19.8)

Here operator 𝐿𝐷 contains the dimensionless thermal conductivity coefficients 𝑑𝑖 𝑗 ,
being given by the formula

𝐿𝐷 =
𝜕

𝜕𝑥

(
𝑑11

𝜕

𝜕𝑥
+ 𝑑12

𝜕

𝜕𝑦

)
+ 𝜕

𝜕𝑦

(
𝑑21

𝜕

𝜕𝑥
+ 𝑑22

𝜕

𝜕𝑦

)
. (19.9)

The resulting system of equations for velocity, pressure, and temperature deviation
can be written in the vector form, as follows:
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∇𝑝 +𝑀𝑀𝑀 ·𝑉𝑉𝑉 +𝜆𝜃𝛾𝛾𝛾 = 0, (19.10)

with
∇ ·𝑉𝑉𝑉 = 0

and
¤𝜃 = 𝐿𝐷𝜃 −𝑉𝑉𝑉 ·𝛾𝛾𝛾− (𝑉𝑉𝑉 · ∇)𝜃. (19.11)

Here dot-sign denotes differentiation with respect to time 𝑡, 𝑀𝑀𝑀 represents the tensor
of dimensionless inverse permeability coefficients 𝜇𝑖 𝑗 , 𝛾𝛾𝛾 = (0,−1) is a unit vector
which determines the direction of the gravity.

These equations are supplemented with the boundary conditions of impermeability
and homogeneity of the temperature deviation at the boundary 𝜕Ω

𝑢(0, 𝑦, 𝑡) = 𝑢(𝑎, 𝑦, 𝑡) = 0,
𝑣(𝑥,0, 𝑡) = 𝑣(𝑥, 𝑏, 𝑡) = 0,

(19.12)

𝜃 (𝑥,0, 𝑡) = 𝜃 (0, 𝑦, 𝑡) = 𝜃 (𝑎, 𝑦, 𝑡) = 𝜃 (𝑥, 𝑏, 𝑡) = 0. (19.13)

To analyze the two-dimensional problem, it is convenient to introduce the stream
function𝜓 by𝑢 =𝜓𝑦 , 𝑣 =−𝜓𝑥 , to come to a system for two unknowns functions: stream
function 𝜓 and temperature 𝜃 (temperature deviation). By applying differentiation to
first equation (19.7) with respect to 𝑦, and to second one – with respect to 𝑥, and then
taking their difference, one obtains the following equation:

0 = 𝜇11𝜓𝑦𝑦 − (𝜇12 + 𝜇21)𝜓𝑥𝑦 + 𝜇22𝜓𝑥𝑥 +𝜆𝜃𝑥 , (19.14)

Besides, Eq. (8) is reduced to:

¤𝜃 = 𝐿𝐷𝜃 −𝜓𝑥 − 𝐽 (𝜓, 𝜃), 𝐽 = 𝜃𝑥𝜓𝑦 − 𝜃𝑦𝜓𝑥 (19.15)

The boundary conditions follow from (19.12):

𝜓(𝑥,0, 𝑡) = 𝜓(0, 𝑦, 𝑡) = 𝜓(𝑎, 𝑦, 𝑡) = 𝜓(𝑥, 𝑏, 𝑡) = 0. (19.16)

The system for the isotropic porous medium follows from equations (19.14)-(19.16),
(19.9) with

𝜇𝑖𝑖 = 𝑑𝑖𝑖 = 1, (𝑖 = 1,2)
and

𝜇𝑖 𝑗 = 𝑑𝑖 𝑗 = 0, (𝑖 ≠ 𝑗).
It is shown in [7] that in this case the problem has a cosymmetry, and there may arise
a family of stationary convective motions.

The following properties of the Jacobian 𝐽 (𝜓, 𝜃) hold∫
Ω
𝐽 (𝜓, 𝜃)𝜓𝑑𝑥𝑑𝑦 = 0,

∫
Ω
𝐽 (𝜓, 𝜃)𝜃𝑑𝑥𝑑𝑦 = 0. (19.17)
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To discretize the equations (19.14)-(19.15) properly, we must preserve the discrete
analogues of the integral identities (19.17). The numerical schemes constructed
appear to be conservative.

The system (19.14)-(19.15) is invariant under transformation

𝑅𝑥𝑦 : {𝑥, 𝑦,𝜓, 𝜃} ↦→ {𝑎− 𝑥, 𝑏− 𝑦,𝜓,−𝜃}.

If 𝜇12 = 𝜇21 = 𝑑12 = 𝑑21 = 0, then there is also an invariance

𝑅𝑥 : {𝑥, 𝑦,𝜓, 𝜃} ↦→ {𝑎− 𝑥, 𝑦,−𝜓, 𝜃}.

To analyze convective motions, system (19.9), (19.14)-(19.16) must be supple-
mented with the initial temperature distribution

𝜃 (𝑥, 𝑦,0) = 𝜃0 (𝑥, 𝑦). (19.18)

The initial condition for the stream function is not required, and the corresponding
distribution for 𝑡 = 0 is found from problem (19.14), (19.16) applied to the given func-
tion 𝜃0 (𝑥, 𝑦). The resulting initial-boundary problem describes the non–stationary
gravitational anisotropic convection of a heat-conducting fluid in a porous rectangle
heated from below.

The formulated problem demonstrates nontrivial effects of thermal and mass
transfer. In the isotropic case, the onset of the convection is accompanied with
an extreme multistability. Such phenomena make clear that there appears a one-
parameter continuum family of the steady convective regimes. It means that there
exist a hidden parameter in the system. The reason for this is the cosymmetry, the
conditions for its existence are established in [7].

In the anisotropic case, the cosymmetry is the vector function

𝐿 = (𝜃,−𝜓)

and this exists if the following conditions are fulfilled

𝜇11 = 𝑑22, 𝜇22 = 𝑑11, 𝜇21 = −𝑑21, 𝜇12 = −𝑑12 , (19.19)

see [36]. In primitive variables the cosymmetry is given by the vector (𝜃𝑦 ,−𝜃𝑥 ,0,𝜓).
If the conditions for parameters (19.19) are violated, then vector-function

𝐿 = (𝑑22𝜃,−𝜇11𝜓)

is not a cosymmetry. As a result, only the finite number of convective regimes (steady
or time-dependent) exist, instead of the one-parametric family. To analyze this case,
Yudovich developed the selective function techniques [9]. In the considered problem,
the selective function has the form

𝑆(𝑠) =
∫
Ω
𝜓(𝑠)𝜃 (𝑠) (𝑑22𝜇22 − 𝜇11𝑑11)𝑑𝑥𝑑𝑦. (19.20)



19 Multistability of Convective Flows in a Porous Enclosure 311

Here 𝑠 is a hidden parameter, 𝜓(𝑠) and 𝜃 (𝑠) are the members of a family. Thus, for
the analysis of destruction, one needs to calculate solutions for any 𝑠.

19.3 Numerical Methods and Extreme Multistability

Numerical analysis of cosymmetric and near-cosymmetric systems results in specific
computational problems. First, the numerical method should preserve the funda-
mental properties of the problem. This includes preserving cosymmetry through
discretization of the partial differential equations. Violation of the cosymmetry by
discretization can lead to a wrong behavior, such as destruction of the family of
steady states. Another challenging problem arises, due to an inability to apply stan-
dard methods to study cosymmetric problems because of its strong degeneration
[39, 40].

Based on the Galerkin method, the study of the continuum family of stationary
solutions in isotropic convection problems in porous media has been started in
[16, 17]. To analyze dynamics in a wide range of parameters, some special methods
for calculation of convective steady states and continuation along a hidden parameter
are developed in [18, 41, 42]. Subsequently, finite-difference and spectral-difference
approaches preserving cosymmetry were derived in [21]-[23].

With all above mentioned variants of discretization, one obtains a system of
ordinary differential equations in the form

¤Θ = Φ(Θ) + 𝛿𝐾 (Θ) (19.21)

The right-hand side of this equation contains both cosymmetric (Φ) and noncosym-
metric (𝛿𝐾) parts. Vector Θ(𝑡) is a discrete approximation of 𝜃 (𝑥, 𝑦, 𝑡). Cosymmetry
�̂� for Φ follows from the approximation of 𝐿. So, the case 𝛿 = 0 corresponds to a
cosymmetric finite-dimensional problem. Further, we define a discrete version of the
selective function as 𝑆 = (𝐾, �̂�).

19.3.1 Spectral Global Galerkin Method

Let us briefly describe the Galerkin method for analysis of problem (19.14)–(19.15),
see [17, 42]. Functions 𝜓 and 𝜃 are approximated by the series

𝜓 =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝜓𝑖, 𝑗 (𝑡)𝜙𝑖, 𝑗 (𝑥, 𝑦), 𝜃 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝜃𝑖, 𝑗 (𝑡)𝜙𝑖, 𝑗 (𝑥, 𝑦), (19.22)

with
𝜙𝑖, 𝑗 (𝑥, 𝑦) = 2√

𝑎𝑏
sin

(
𝑖
𝜋𝑥

𝑎

)
sin

(
𝑗
𝜋𝑦

𝑏

)
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Substitution of (19.22) to (19.14)–(19.15) and projection operations lead to a
system of ODEs of the order 𝑁 = 𝑛2 in form (19.21). Here

Θ = (𝜃11, 𝜃12, . . . , 𝜃1𝑛, 𝜃21, . . . , 𝜃𝑛𝑛)

Similarly, one obtains an approximating system for the selective function (19.20). It
is easy to prove that approximation (19.22) preserves the cosymmetry of the isotropic
problem.

19.3.2 Cosymmetry Preserving Finite-Difference Approximations

The approximation of the problem in primitive variables (19.9)-(19.11) is carried out
based on the staggered grids. The implementation for the isotropic case is presented
in [22]. Firstly, we introduce the mesh on coordinates 𝑥 and 𝑦:

0 = 𝑥0 < 𝑥1 < . . . < 𝑥𝑛 < 𝑥𝑛+1 = 𝑎,0 = 𝑦0 < 𝑦1 < . . . < 𝑦𝑚 < 𝑦𝑚+1 = 𝑏.

The nodes (𝑥𝑖 , 𝑦 𝑗 ) form the main grid on which the temperature 𝜃 𝑗𝑖 is determined:

𝜔𝜃 = { (𝑥𝑖 , 𝑦 𝑗 ), 𝑖 = 0, · · · , 𝑛+1, 𝑗 = 0, · · · ,𝑚 +1}.

We place auxiliary nodes in the middle of the intervals formed by neighboring nodes
of the main grid

𝑥𝑖+1/2 =
1
2
(𝑥𝑖 + 𝑥𝑖+1), 𝑦 𝑗+1/2 =

1
2
(𝑦 𝑗 + 𝑦 𝑗+1).

As a result, three additional grids are obtained, offset relative to the main one:

𝜔𝑢 = { (𝑥𝑖 , 𝑦 𝑗+1/2) , 𝑖 = 0, · · · , 𝑛+1, 𝑗 = 0, · · · ,𝑚 },
𝜔𝑣 = { (𝑥𝑖+1/2, 𝑦 𝑗 ) , 𝑖 = 0, · · · , 𝑛, 𝑗 = 0, · · · ,𝑚 +1 },
𝜔𝑝 = { (𝑥𝑖+1/2, 𝑦 𝑗+1/2) , 𝑖 = 0, · · · , 𝑛, 𝑗 = 0, · · · ,𝑚 }.

The horizontal and vertical components of the velocity vector are calculated at grids
𝜔𝑢 and 𝜔𝑣, and the pressure at node 𝜔𝑝 is calculated. The following notation is used
for grid variables:

𝑢
𝑗+1/2
𝑖 = 𝑢(𝑥𝑖 , 𝑦 𝑗+1/2), 𝑣

𝑗
𝑖+1/2 = 𝑢(𝑥𝑖+1/2, 𝑦 𝑗 ),

𝑝
𝑗+1/2
𝑖+1/2 = 𝑢(𝑥𝑖+1/2, 𝑦 𝑗+1/2), 𝜃

𝑗
𝑖 = 𝑢(𝑥𝑖 , 𝑦 𝑗 ).

To approximate (19.9)-(19.11), discrete analogues of differential operators are
used. First-order difference operators are introduced on the two-point stencil
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(𝛿𝑥 𝑓 ) 𝑗+1/2
𝑖+1/2 =

𝑓
𝑗+1/2
𝑖+1 − 𝑓 𝑗+1/2

𝑖

𝑥𝑖+1 − 𝑥𝑖 , (19.23)

(𝛿𝑦 𝑓 ) 𝑗+1/2
𝑖+1/2 =

𝑓
𝑗+1
𝑖+1/2 − 𝑓

𝑗
𝑖+1/2

𝑦 𝑗+1 − 𝑦 𝑗 . (19.24)

and operators for calculating the weighted average on the interval

(𝛿𝑥0 𝑓 ) 𝑗+1/2
𝑖+1/2 =

(𝑥𝑖+1 − 𝑥𝑖+1/2) 𝑓 𝑗+1/2
𝑖+1 + (𝑥𝑖+1/2 − 𝑥𝑖) 𝑓 𝑗+1/2

𝑖

𝑥𝑖+1 − 𝑥𝑖 , (19.25)

(𝛿𝑦0 𝑓 )
𝑗+1/2
𝑖+1/2 =

(𝑦 𝑗+1 − 𝑦 𝑗+1/2) 𝑓 𝑗+1
𝑖+1/2 + (𝑦 𝑗+1/2 − 𝑦 𝑗 ) 𝑓 𝑗𝑖+1/2
𝑦 𝑗+1 − 𝑦 𝑗 . (19.26)

Formulas (19.23)-(19.26) are valid for integer and half-integer values of indices 𝑖
and 𝑗 . With the help of the introduced operators, the difference relations on the
three-point templates are determined:

(𝐷𝑥 𝑓 ) 𝑗𝑖 =
(
𝛿𝑥𝛿

𝑥
0 𝑓

) 𝑗
𝑖 , (𝐷𝑦 𝑓 ) 𝑗𝑖 =

(
𝛿𝑦𝛿

𝑦
0 𝑓

) 𝑗
𝑖
.

Using the introduced operators, differential operator 𝐿𝐷 (19.9) is approximated
as follows:

𝐿ℎ
𝐷 = 𝛿𝑥𝑑11𝛿𝑥 + 𝑑𝑥𝑑12𝑑𝑦 + 𝑑𝑦𝑑21𝑑𝑥 + 𝛿𝑦𝑑22𝛿𝑦 , (19.27)

since
𝑑𝑥𝑑𝑦 = 𝐷𝑥𝐷𝑦

and the operators 𝑑𝑥 , 𝑑𝑦 and 𝐷𝑥 , 𝐷𝑦 are commutative. It should be noted that for the
calculation of terms with 𝑑11 and 𝑑22, respective operators on three-dot templates
are used, and the use of operators 𝑑𝑥𝑑𝑥 and 𝑑𝑦𝑑𝑦 leads to the loss of cosymmetry
for the grid analogue of the problem.

Next, first-order difference derivatives and operators for calculating the average
on a rectangular template are introduced:

𝑑0 = 𝛿
𝑥
0 𝛿

𝑦
0 ≡ 𝛿𝑦0 𝛿𝑥0 , 𝑑𝑥 = 𝛿𝑥𝛿

𝑦
0 ≡ 𝛿𝑦0 𝛿𝑥 , 𝑑𝑦 = 𝛿𝑦𝛿

𝑥
0 ≡ 𝛿𝑥0 𝛿𝑦 . (19.28)

Due to the non-uniformity of the grid, the operators on the rectangles are different
for half-integer and integer index values, see [23].

To approximate the Jacobian 𝐽, a linear combination

(1−𝛼)𝐽𝐷 +𝛼𝐽𝑑
of two discrete analogs of 𝐽 is used

𝐽𝐷 = 𝐷𝑥 (𝜃𝐷𝑦𝜓) −𝐷𝑦 (𝜃𝐷𝑥𝜓), 𝐽𝑑 = 𝑑𝑥 (𝑑0𝜃𝑑𝑦𝜓) − 𝑑𝑦 (𝑑0𝜃𝑑𝑥𝜓). (19.29)
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The value of the parameter 𝛼 = 1/3 makes it possible to satisfy the cosymmetry.
To approximate the problem (19.14)–(19.15), we use the approach [21, 23]. There

are introduced the uniform grids

𝑥𝑖 = 𝑖ℎ, 𝑖 = 0,1, . . . , 𝑛+1, ℎ = 𝑎/(𝑛+1), 𝑦 𝑗 = 𝑗𝑔, 𝑗 = 0,1, . . . ,𝑚 +1, 𝑔 = 𝑏/(𝑚 +1),

with respective values of the stream functions 𝜓 𝑗𝑖 and the temperatures 𝜃 𝑗𝑖 at
gridpoints (𝑥𝑖 , 𝑦 𝑗 ).

The resulting system of ordinary differential equations can be written as:

¤Θ = 𝐴Θ+𝐵Ψ−𝐹 (Θ,Ψ), Ψ = 𝜆𝐴−1𝐵Θ (19.30)

where the block-three-diagonal matrix 𝐴 corresponds to the approximation of the
Laplacian, and matrix 𝐵 corresponds to the differential operator of the first order. The
nonlinear vector-function 𝐹 (Θ,Ψ) comes from a finite-difference approximation of
the Jacobian. The problem at hand can also be reduced to (19.21).

19.3.3 Continuation on the Hidden Parameter Method

The continuation method is based on the cosymmetric implicit function theorem, see
[43]. The first version of this method is presented in [14]. The one-parameter family
of steady state regimes corresponds to the curve of equilibria Θ̂(𝑠) (here 𝑠 is a hidden
parameter) of approximating system of ordinary differential equations (19.21). This
equilibrium curve may be continued with respect to parameter 𝑠 from the point Θ̂0,
solving the following Cauchy problem

𝑑Θ̂(𝑠)
𝑑𝑠

= 𝜙(𝑠), Θ̂(0) = Θ̂0 (19.31)

Here 𝜙(𝑠) is a vector from the kernel of the linearized operator Φ ′Θ̂(𝑠).
Let us briefly describe the algorithm step by step, as follows:

1. Find any point Θ̂0 on the curve by the modified Newton method.
2. Calculate the kernel of Jacobi matrix Φ ′Θ̂0 (SVD method), check whether this is

not degenerated (otherwise all next calculations are impossible) and choose the
direction of the continuation along the curve.

3. Do one step of the Runge-Kutta method for the problem (19.31), where respective
right-hand-side is an eigenvector corresponding to a trivial eigenvalue of Φ ′Θ̂(𝑠).

4. Accuracy checking. If the accuracy of calculations is not satisfactory, correct the
solution.

5. Calculation of the selection function 𝑆(𝑠), stability analysis, verification of the
exit conditions, then go to step 3 to find next point on the equilibria curve.

The described algorithm was applied to analyze a number of problems of filtration
convection with various functions 𝐾 (Θ).
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19.4 Multistability

When conditions (19.19) are satisfied, the extreme multistability occurs simultane-
ously with convection. This results in the formation of a family of stationary states,
see Fig. 19.2. Firstly, all stationary regimes are stable, but differ by the flow structure
and heat distribution. At the same time, selection mechanisms, i.e. realizations of
certain convective states, are very complicted, see [42]. As the Rayleigh parameter
increases, the family of stationary flows becomes more complex: the structure of
streamlines, the stability spectrum, etc. A further increase in heating leads to the
appearance of instability on the family, see the right side of Fig. 19.2. Unstable states
can form arcs, see [16]-[18], [20].

In the presence of heat sources inside and at the boundary, the fluid penetrates
through the boundaries, with other influences, that leads to violation of the cosym-
metry. In such cases the extreme multistability is lost [9, 19, 38]. Here, different
scenarios for the transformation of convective movements are possible. The most
typical is a multistability, which is expressed in the coexistence of a finite set of
convective regimes. The selective function technique [9] allows one to determine
the number of remaining regimes. An example of the destruction of the family is the
inclusion of internal heat sources [19]. In Fig. 19.2 the signs on the central curves
mark the regimes which are implemented for various options, if placing heat sources
inside the region. With so doing, bold signs correspond to stable states.

The number of regimes which remain, when the cosymmetry is broken, can be
different. It depends on the type of perturbation and the Rayleigh number. Figure 19.3
shows the results of exploring selective function (19.20) when the conditions (19.19)
are violated. The analysis shows that there remain eight different convective regimes
in this case. Thus, the presented examples show the transition from extreme to
ordinary multistability.
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Fig. 19.2: Families of steady states and streamlines of convective flows: at top – after branching off
from a quiescent state, at bottom – close to loss of stability on the family. Filled circle marks stable
state, and unstable one is depicted by empty circle. .
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