
Chapter 17
Geometrically Nonlinear Cosserat Elasticity with
Chiral Effects Based upon Granular
Micromechanics

Ivan Giorgio, Anil Misra, and Luca Placidi

Abstract In this short contribution, we exemplify how the Cosserat kinematics,
introduced into classical continuum mechanics at the turn of the 𝑋𝑋 th century,
arises when we consider the granular microstructure inherent in all matter. The
discussed discrete-continuum identification, that follows Piola’s ansatz, is utilized to
develop kinematic measures in the framework of finite deformations. These kinematic
measures are then utilized to express the internal deformation (strain) energy in terms
of both grain-scale and continuum kinematic measures. As a result, we have identified
the macroscopic elastic constants of geometrically nonlinear Cosserat continuum
model in terms of the grain scale parameters.
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17.1 Introduction

All materials are characterized by hierarchies of microstructures, which at some
spatial scale, can be described as composed of discrete sub-bodies or structural
elements [1]-[8]. The relative geometrical arrangements and inter-connectivity (inter-
phases or interfaces) of these discrete elements (grains) forms the microstructure
of the matter irrespective of the spatial scale [9]-[15]. Furthermore, the geometri-
cal/mechanical attributes of the interconnections informs the micromechanics of the
grain motions [16]-[19]. The symbiotic effects produced through interaction of the
microstructure and micromechanics can be termed as micro-mechano-morphology
[20]-[25]. The mathematical description of the material deformation by accounting
for the micro-mechano-morphological effects requires introduction of additional
kinematical descriptors in continuum models [26]-[32]. At the turn of the XXth cen-
tury, the Cosserat brothers developed the continuum model of deformable bodies by
introducing the rotational kinematic degree-of-freedom associated with every contin-
uum material point [33]-[35]. The Cosserat model and its refinements/modifications,
known as the micro-polar continuum theory, have come to play an essential role
in explaining certain size-dependent phenomena exhibited by the so-called “micro-
structured” solids [36]-[43], including materials with granular microstructures [35].
In this sense, the Cosserat or the micro-polar models are considered an important
step in the endeavor to capture in greater details the effect of the microstructure in
continuum models of material deformation [20].

In this paper, we derive a geometrically nonlinear Cosserat continuum theory
on the basis of granular micromechanics by linking the grain-scale deformation to
the continuum kinematic measures [44]-[47]. In this regard, we first employ Piola’s
ansatz to make the discrete-continuum identification [26],[48]-[53] such that the
objective relative motion between grains can be related to the continuum strain
measures. Moreover, we can then define the elastic strain energy at the grain-scale
utilizing the objective relative motion between grains, thus laying the foundation
for the micro-macro identification of the elastic constants for a hemitropic Cosserat
media exhibiting chirality.

17.2 Discrete and Continuous Models for Granular Systems

17.2.1 Identification via Piola’s Ansatz

In the discrete model, the reference configuration of the considered set of 𝑛 grains is
given by their position

{𝑋1, 𝑋2, . . . , 𝑋𝑛} ∈
(
𝐸2

)𝑛
,

where 𝐸2 is the Euclidean two dimensional space and reference angular arrangement,
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{ℜ1 = 𝐼,ℜ2 = 𝐼, . . . ,ℜ𝑛 = 𝐼} ∈ (
Orth+

)𝑛
,

where Orth+ is the space of orthogonal tensor with positive determinant (thus, the
space of rotation). For the sake of simplicity, the reference angular arrangement is
assumed to be constant in space and equal to the identity tensor 𝐼.

They displace, respectively, with the following displacement functions

𝑢1 (𝑋1) = 𝜒1 (𝑋1) − 𝑋1, 𝑢2 (𝑋2) = 𝜒2 (𝑋2) − 𝑋2, . . . , 𝑢𝑛 (𝑋𝑛) = 𝜒𝑛 (𝑋𝑛) − 𝑋𝑛,

and rotate as
{𝑅1, 𝑅2, . . . , 𝑅𝑛} ∈

(
Orth+

)𝑛
,

where 𝜒𝑖 (𝑋𝑖) is the placement of the 𝑖-th grain eventually depending on time 𝑡 and
where Orth+ is the space of orthogonal tensor with positive determinant (thus, the
space of rotation).

In the continuum model, we have a continuous body 𝔅 which, in the reference
configuration, is constituted by infinite particles having position 𝑋 , i.e. 𝑋 ∈ B. Each
particle has displacement 𝑢 (𝑋) = 𝜒 (𝑋) − 𝑋 , where 𝜒 (𝑋) is the placement function
of the continuous body 𝔅 and rotation 𝑅 (𝑋).

In the continuum-discrete models identification, the following Piola’s ansatz will
be assumed

𝑢 (𝑋1) = 𝑢1 (𝑋1) , 𝑢 (𝑋2) = 𝑢2 (𝑋2) , . . . 𝑢 (𝑋𝑛) = 𝑢𝑛 (𝑋𝑛) ,
𝑅 (𝑋1) = 𝑅1 (𝑋1) , 𝑅 (𝑋2) = 𝑅2 (𝑋2) , . . . 𝑅 (𝑋𝑛) = 𝑅𝑛 (𝑋𝑛) ,

which means that the displacements and rotation of the 𝑛 grains correspond to the
displacement 𝑢 (𝑋) and rotation 𝑅 (𝑋) of the continuous body 𝔅 evaluated at the
points 𝑋𝑖 with 𝑖 = 1, ..., 𝑛 where the grains are located in the reference configuration.

17.2.2 Relative Intergranular Displacement and Related
Continuum Deformation Measures

Let us assume that the distance between the particles at 𝑋𝑛 and 𝑋𝑝 is 𝐿 and the unit
vector 𝑐 is defined as follows,

𝑋𝑛 − 𝑋𝑝 = 𝑐𝐿. (17.1)

In the reference configuration, therefore, the vector attached to the position 𝑋𝑛 and
pointing to the position 𝑋𝑝 is 𝑐𝐿 and is given in (17.1).

In the current configuration, the positions of the two particles at 𝑋𝑛 and 𝑋𝑝 are,
respectively, 𝜒 (𝑋𝑛) and 𝜒

(
𝑋𝑝

)
. The vector in (17.1) in the current figuration yields

𝜒 (𝑋𝑛) − 𝜒
(
𝑋𝑝

)
. (17.2)

The difference between the vectors in (17.1) and (17.2) is called the relative displace-
ment 𝛿𝑛𝑝 of the two grains 𝑛 and 𝑝,
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𝛿𝑛𝑝 = 𝜒 (𝑋𝑛) − 𝜒
(
𝑋𝑝

) − (
𝑋𝑛 − 𝑋𝑝

)
= 𝑢𝑛 (𝑋𝑛) −𝑢𝑝

(
𝑋𝑝

)
. (17.3)

In order to define an objective relative displacement (i.e. a relative displacement that
is a measure of the contribution of the 𝑛− 𝑝 pair to the deformation of the granular
assembly), we consider both the deformation gradient

𝐹 = F (
𝑋𝑝

)
= ∇𝜒, (17.4)

as the gradient of the placement function 𝜒 and the rotation

𝑅 = R (
𝑋𝑝

)
. (17.5)

Thus, we define two objective relative displacements, i.e. the objective macro relative
displacement𝑢𝑛𝑝 and the objective micro-macro relative displacement 𝛾𝑛𝑝 as follows,

𝑢𝑛𝑝 = F 𝑇 (
𝑋𝑝

) [
𝜒 (𝑋𝑛) − 𝜒

(
𝑋𝑝

) ] − (
𝑋𝑛 − 𝑋𝑝

)
, (17.6)

𝛾𝑛𝑝 = R𝑇 (
𝑋𝑝

) [
𝜒 (𝑋𝑛) − 𝜒

(
𝑋𝑝

) ] − (
𝑋𝑛 − 𝑋𝑝

)
. (17.7)

In the current configuration, the rotations of the two particles at 𝑋𝑛 and 𝑋𝑝 are,
respectively, R (𝑋𝑛) and R (

𝑋𝑝
)
. Thus, we define an objective relative tensor,

𝑚𝑛𝑝 = R𝑇 (
𝑋𝑝

)R (𝑋𝑛) − 𝐼 (17.8)

that is called the intergranular micro deformation. Let us now assume that the two
grains 𝑛 and 𝑝 are neighboring grains. Let us restrict the present model to the case
they place and rotate similarly in the present configuration, and therefore the following
Taylor’s series expansions are possible and yield

𝜒 (𝑋𝑛) � 𝜒
(
𝑋𝑝

) + (∇𝜒)𝑋𝑝

(
𝑋𝑛 − 𝑋𝑝

)
= 𝜒

(
𝑋𝑝

) +F (
𝑋𝑝

) (
𝑋𝑛 − 𝑋𝑝

)
. (17.9)

𝑅 (𝑋𝑛) � R (
𝑋𝑝

) + (∇R)𝑋𝑝

(
𝑋𝑛 − 𝑋𝑝

)
. (17.10)

It is notable that this simplification may loose applicability for materials that pos-
sess strong variations and discontinuities of stiffnesses or have highly disordered
geometries, which could be deliberately designed as in pantographic metamaterials
[11, 21, 49], [54]-[68] or in granular (meta)materials [69]. In these cases, Taylor ex-
pansion is not representative and additional kinematic descriptors may be introduced
to accurately describe the response as in Cosserat or micromorphic media [20, 36].

The Green–Saint-Venant tensor 𝐺,

𝐺 =
1
2

(
𝐹𝑇𝐹 − 𝐼

)
, (17.11)

is defined in terms of the deformation gradient 𝐹 as well as a relative micro-macro
Green–Saint-Venant tensor Υ

Υ =
1
2

(
𝑅𝑇𝐹 − 𝐼

)
. (17.12)
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The last four equations (17.9-17.11-17.10-17.12) involve third order tensors and it is
more convenient to show them in index notation

𝜒𝑛
𝑖 = 𝜒𝑝

𝑖 +𝐹 𝑝
𝑖 𝑗𝑐 𝑗𝐿, 𝐺 𝑝

𝑖 𝑗 =
1
2

(
𝐹 𝑝
𝑎𝑖𝐹

𝑝
𝑎 𝑗 − 𝛿𝑖 𝑗

)
,

𝑅𝑛
𝑎 𝑗 = 𝑅𝑝

𝑎 𝑗 +𝑅𝑝
𝑎 𝑗,ℎ𝑐ℎ𝐿, Υ𝑝

𝑖 𝑗 =
1
2

(
𝑅𝑝
𝑎𝑖𝐹

𝑝
𝑎 𝑗 − 𝛿𝑖 𝑗

)
, (17.13)

where superscripts 𝑛 or 𝑝 denote that the functions are evaluated, respectively, at the
points 𝑋𝑛 or 𝑋𝑝 . Thus, the objective relative displacements in (17.6) and (17.7) and
tensor (17.8) are in index form,

𝑢𝑛𝑝𝑖 = 𝐹 𝑝
𝑎𝑖

(
𝜒𝑛
𝑎 − 𝜒𝑝

𝑎

) − (
𝑋𝑛
𝑖 − 𝑋 𝑝

𝑖

)
,

𝛾𝑛𝑝𝑖 = 𝑅𝑝
𝑎𝑖

(
𝜒𝑛
𝑎 − 𝜒𝑝

𝑎

) − (
𝑋𝑛
𝑖 − 𝑋 𝑝

𝑖

)
,

𝑚𝑛𝑝
𝑖 𝑗 = 𝑅𝑝

𝑎𝑖𝑅
𝑛
𝑎 𝑗 − 𝛿𝑖 𝑗 ,

that, from (17.1) and (17.13)1 yields

𝑢𝑛𝑝𝑖 = 𝐹 𝑝
𝑎𝑖

(
𝐹 𝑝
𝑎 𝑗𝑐 𝑗𝐿

)
− 𝑐𝑖𝐿 = 𝐹 𝑝

𝑎𝑖𝐹
𝑝
𝑎 𝑗𝑐 𝑗𝐿− 𝛿𝑖 𝑗𝑐 𝑗𝐿 = 2𝐺 𝑝

𝑖 𝑗𝑐 𝑗𝐿, (17.14)

𝛾𝑛𝑝𝑖 = 𝑅𝑝
𝑎𝑖

(
𝐹 𝑝
𝑎 𝑗𝑐 𝑗𝐿

)
− 𝑐𝑖𝐿 =

[
𝑅𝑝
𝑎𝑖𝐹

𝑝
𝑎 𝑗 − 𝛿𝑖 𝑗

]
𝑐 𝑗𝐿 = 2Υ𝑝

𝑖 𝑗𝑐 𝑗𝐿, (17.15)

𝑚𝑛𝑝
𝑖 𝑗 = 𝑅𝑝

𝑎𝑖𝑅
𝑛
𝑎 𝑗 − 𝛿𝑖 𝑗 = 𝑅𝑝

𝑎𝑖

(
𝑅𝑝
𝑎 𝑗 +𝑅𝑝

𝑎 𝑗,ℎ𝑐ℎ𝐿
)
− 𝛿𝑖 𝑗 = 𝑅𝑝

𝑎𝑖𝑅
𝑝
𝑎 𝑗,ℎ𝑐ℎ𝐿, (17.16)

where 𝛿𝑖 𝑗 is the Kronecker symbol. In absolute notation (17.14), (17.15) and (17.16)
are

𝑢𝑛𝑝 = 2𝐿𝐺𝑐, 𝛾𝑛𝑝 = 2𝐿Υ𝑐, 𝑚𝑛𝑝 = 𝐿𝑅𝑇 (∇𝑅) 𝑐, (17.17)

where all the superscripts 𝑝 have been omitted because all the quantities are locally
evaluated at 𝑋 = 𝑋𝑝 .

17.2.3 On the Objective (Macro and Micro-macro) Displacement
Vectors

The projections of the objective relative displacements on the unit vector 𝑐, de-
fined in (17.1), is the so called normal displacement 𝑢𝜂 , and normal micro relative
displacement that are defined,

𝑢𝜂 =
1
2
𝑢𝑛𝑝 · 𝑐, 𝛾𝜂 =

1
2
𝛾𝑛𝑝 · 𝑐. (17.18)

Insertion of (17.14) and (17.15) into (17.18) provides

𝑢𝜂 = 𝐿𝐺𝑖 𝑗𝑐𝑖𝑐 𝑗 , 𝛾𝜂 = 𝐿Υ𝑖 𝑗𝑐𝑖𝑐 𝑗 . (17.19)
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Their squares are,

𝑢2
𝜂 = 𝐿2𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏𝐺𝑖 𝑗𝐺𝑎𝑏, 𝛾2

𝜂 = 𝐿2𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏Υ𝑖 𝑗Υ𝑎𝑏 . (17.20)

The objective relative displacement vectors 𝑢𝑛𝑝 and 𝛾𝑛𝑝 projected orthogonally
to the unit vector 𝑐, defined in (17.1), are the so called tangent displacements 𝑢𝜏 and
𝛾𝜏 that are vectors and defined as follows,

𝑢𝜏 = 𝑢𝑛𝑝 − (𝑢𝑛𝑝 · 𝑐) 𝑐, 𝛾𝜏 = 𝛾𝑛𝑝 − (𝛾𝑛𝑝 · 𝑐) 𝑐. (17.21)

The only objective quantities derived from 𝑢𝜏 , 𝛾𝜏 and 𝑐 are the squares of both 𝑢𝜏

and 𝛾𝜏 and their scalar product, i.e.

𝑢2
𝜏 = [𝑢𝑛𝑝 − (𝑢𝑛𝑝 · 𝑐) 𝑐] · [𝑢𝑛𝑝 − (𝑢𝑛𝑝 · 𝑐) 𝑐] = 𝑢𝑛𝑝 ·𝑢𝑛𝑝 − (𝑢𝑛𝑝 · 𝑐)2 , (17.22)

𝛾2
𝜏 = [𝛾𝑛𝑝 − (𝛾𝑛𝑝 · 𝑐) 𝑐] · [𝛾𝑛𝑝 − (𝛾𝑛𝑝 · 𝑐) 𝑐] = 𝛾𝑛𝑝 · 𝛾𝑛𝑝 − (𝛾𝑛𝑝 · 𝑐)2 , (17.23)

𝑢𝜏 · 𝛾𝜏 = [𝑢𝑛𝑝 − (𝑢𝑛𝑝 · 𝑐) 𝑐] · [𝛾𝑛𝑝 − (𝛾𝑛𝑝 · 𝑐) 𝑐]
= 𝑢𝑛𝑝 · 𝛾𝑛𝑝 − (𝑢𝑛𝑝 · 𝑐) (𝛾𝑛𝑝 · 𝑐) , (17.24)

or, in index notation and taking (17.20) into account,

𝑢2
𝜏 =

(
2𝐺𝑖 𝑗𝑐 𝑗𝐿

) (2𝐺𝑖𝑘𝑐𝑘𝐿) −4𝑢2
𝜂 , (17.25)

𝛾2
𝜏 =

(
2Υ𝑖 𝑗𝑐 𝑗𝐿

) (2Υ𝑖𝑘𝑐𝑘𝐿) −4𝛾2
𝜂 , (17.26)

𝑢𝜏 · 𝛾𝜏 =
(
2𝐺𝑖 𝑗𝑐 𝑗𝐿

) (2Υ𝑖𝑘𝑐𝑘𝐿) −4𝑢𝜂𝛾𝜂 , (17.27)

or in a more compact form,

𝑢2
𝜏 = 4𝐿2𝐺𝑖 𝑗𝐺𝑎𝑏

(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
, (17.28)

𝛾2
𝜏 = 4𝐿2Υ𝑖 𝑗Υ𝑎𝑏

(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
, (17.29)

𝑢𝜏 · 𝛾𝜏 = 4𝐿2𝐺𝑖 𝑗Υ𝑎𝑏
(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
. (17.30)

17.2.4 On the Objective Tensor

In the 2D case, the rotation tensor 𝑅 is assumed to be a rotation of an angle 𝜑 around
the third axis orthogonal to the 2D plane. Besides, the unit vector 𝑐 is parameterized
by the anticlockwise angle 𝜃 with respect to the horizontal axis within the 2D plane
and the displacement vector 𝑢 has only two components, i.e. 𝑢3 = 0. Finally, the
deformation gradient 𝐹 is an in-plane tensor. In formulas we have,

𝑅 =
©«

cos𝜑 sin𝜑 0
−sin𝜑 cos𝜑 0

0 0 1

ª®®®¬ , 𝑐 =
©«

cos𝜃
sin𝜃

0

ª®®®¬ ,
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𝑢 =
©«
𝑢1

𝑢2

0

ª®®®¬ , 𝐹 =
©«

1+𝑢1,1 𝑢1,2 0
𝑢2,1 1+𝑢2,2 0
0 0 0

ª®®®¬ . (17.31)

The gradient of the rotation tensor is a third order tensor but its projection along the
unit vector 𝑐 is a second order tensor with the following components

[(∇𝑅) 𝑐]𝑖 𝑗 = (∇𝑅)𝑖 𝑗ℎ 𝑐ℎ = 𝑅𝑖 𝑗 ,ℎ𝑐ℎ . (17.32)

Thus, evaluating component by component the second order tensor defined in (17.32)
we have,

[(∇𝑅) 𝑐]11 = 𝑅11,1𝑐1 +𝑅11,2𝑐2 = −sin𝜑
(
𝜑,1

)
cos𝜃 − sin𝜑

(
𝜑,2

)
sin𝜃,

[(∇𝑅) 𝑐]12 = 𝑅12,1𝑐1 +𝑅12,2𝑐2 = cos𝜑
(
𝜑,1

)
cos𝜃 + cos𝜑

(
𝜑,2

)
sin𝜃,

[(∇𝑅) 𝑐]21 = 𝑅21,1𝑐1 +𝑅21,2𝑐2 = −cos𝜑
(
𝜑,1

)
cos𝜃 − cos𝜑

(
𝜑,2

)
sin𝜃,

[(∇𝑅) 𝑐]22 = 𝑅22,1𝑐1 +𝑅22,2𝑐2 = −sin𝜑
(
𝜑,1

)
cos𝜃 − sin𝜑

(
𝜑,2

)
sin𝜃,

or in a matrix compact form,

(∇𝑅) 𝑐 =
©«
−sin𝜑

(
𝜑,1 cos𝜃 +𝜑,2 sin𝜃

)
cos𝜑

(
𝜑,1 cos𝜃 +𝜑,2 sin𝜃

)
0

−cos𝜑
(
𝜑,1 cos𝜃 +𝜑,2 sin𝜃

) −sin𝜑
(
𝜑,1 cos𝜃 +𝜑,2 sin𝜃

)
0

0 0 0

ª®®®¬ ,
that can be reduced as follows,

(∇𝑅) 𝑐 = ∇𝜑 · 𝑐
©«
−sin𝜑 cos𝜑 0
−cos𝜑 −sin𝜑 0

0 0 0

ª®®®¬
Keeping this in mind, the objective relative tensor in (17.16) is easily represented
from (17.31)1 as follows,

𝑚𝑛𝑝 = 𝐿𝑅𝑇 (∇𝑅) 𝑐 = 𝐿∇𝜑 · 𝑐
©«

cos𝜑 −sin𝜑 0
sin𝜑 cos𝜑 0

0 0 1

ª®®®¬
©«
−sin𝜑 cos𝜑 0
−cos𝜑 −sin𝜑 0

0 0 0

ª®®®¬
= 𝜅

©«
0 1 0
−1 0 0
0 0 1

ª®®®¬ , (17.33)

where,
𝜅 = 𝐿∇𝜑 · 𝑐. (17.34)
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The representation (17.33) of the objective relative tensor in terms of a single scalar
is worth noting.

17.2.5 The Objective Scalar Deformation Measures

Finally, we can list the scalar quantities of the relative deformation measures of the
pairs (17.6), (17.7) and (17.8),

𝑢𝜂 , 𝛾𝜂 , 𝑢
2
𝜏 , 𝛾

2
𝜏 , 𝜅,𝑢𝜏 · 𝛾𝜏 . (17.35)

from (17.18), (17.28), (17.29), (17.30) and (17.34).

17.3 Elastic Energy Function

The elastic energy function 𝑈𝑛𝑝 for a given couple of particles, say the couple 𝑛− 𝑝
considered in Section 17.2.2, is assumed to be, in the discrete and (because of the
Piola’s ansatz) in the continuum models, a quadratic form of normal and tangent
parts components of the objective relative displacements listed in (17.35),

𝑈𝑛𝑝 =
1
2
𝑘𝜂

(
1−𝐷𝜂

)
𝑢2
𝜂 +

1
2
𝑘𝛾𝜂

(
1−𝐷𝛾𝜂

)
𝛾2
𝜂 +

1
2
𝑘𝜏 (1−𝐷𝜏) 𝑢2

𝜏+

+ 1
2
𝑘𝛾𝜏

(
1−𝐷𝛾𝜏

)
𝛾2
𝜏 +

1
2
𝑘𝜅 (1−𝐷𝜅 ) 𝜅2+

+ 𝑘𝑢𝜏𝛾𝜏𝑢𝜏 · 𝛾𝜏 + 𝑘𝑢𝜂𝛾𝜂𝑢𝜂𝛾𝜂 + 𝑘𝑢𝜂𝜅𝑢𝜂𝜅 + 𝑘𝛾𝜂𝜅𝛾𝜂𝜅, (17.36)

where the coefficients of this quadratic form are the stiffness of the grain pair elastic
interaction, that can be divided into the coefficients of the quadratic terms,

𝑘𝜂 , 𝑘𝛾𝜂 , 𝑘𝜏 , 𝑘𝛾𝜏 , 𝑘𝜅 , (17.37)

and that of the coupling terms,

𝑘𝑢𝜏𝛾𝜏 , 𝑘𝑢𝜂𝛾𝜂 , 𝑘𝑢𝜂𝜅 , 𝑘𝛾𝜂𝜅 . (17.38)

For the sake of simplicity, we have assumed that damage affects only the stiffness
listed in (17.37) with the following, and respectively, damage variables

𝐷𝜂 , 𝐷𝛾𝜂 , 𝐷𝜏 , 𝐷𝛾𝜏 , 𝐷𝜅 .

The total elastic energy density, for a given position 𝑋 , is the some of that of every
pairs or, in the continuum approximation, the integral over all the orientation
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𝑈 =
∫
S1

1
2
𝑘𝜂

(
1−𝐷𝜂

) (
𝐿2𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏𝐺𝑖 𝑗𝐺𝑎𝑏

)
+
∫
S1

1
2
𝑘𝛾𝜂

(
1−𝐷𝛾𝜂

)
𝐿2𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏Υ𝑖 𝑗Υ𝑎𝑏

+
∫
S1

1
2
𝑘𝜏 (1−𝐷𝜏)

(
4𝐿2𝐺𝑖 𝑗𝐺𝑎𝑏

(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

) )
+
∫
S1

1
2
𝑘𝛾𝜏

(
1−𝐷𝛾𝜏

)
4𝐿2Υ𝑖 𝑗Υ𝑎𝑏

(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
+
∫
S1

1
2
𝑘𝜅 (1−𝐷𝜅 ) 𝐿2𝜑,𝑖𝜑, 𝑗𝑐𝑖𝑐 𝑗

+
∫
S1

𝑘𝑢𝜏𝛾𝜏4𝐿2𝐺𝑖 𝑗Υ𝑎𝑏
(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
+
∫
S1

𝑘𝑢𝜂𝛾𝜂2𝐿𝑐𝑖𝑐 𝑗𝐺𝑖 𝑗2𝐿Υ𝑎𝑏𝑐𝑎𝑐𝑏

+
∫
S1

𝑘𝑢𝜂𝜅2𝐿𝑐𝑖𝑐 𝑗𝑐ℎ𝐺𝑖 𝑗𝜑,ℎ

+
∫
S1

𝑘𝛾𝜂𝜅𝐿Υ𝑖 𝑗𝑐𝑖𝑐 𝑗𝜑,ℎ𝑐ℎ (17.39)

where insertion of (17.18), (17.28), (17.29), (17.30) and (17.34) have been used and
the integral over the unit circle is intended as follows,∫

S1

(•) =
2𝜋∫

0

(•) 𝑑𝜃.

Grouping the terms of (17.39), we have

𝑈 =
∫
S1

1
2
𝐿2 [𝑘𝜂 (1−𝐷𝜂

) (
𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

) ]
𝐺𝑖 𝑗𝐺𝑎𝑏

+
∫
S1

1
2
𝐿2 [𝑘𝜏 (1−𝐷𝜏)

( (
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 + 𝛿𝑖𝑏𝑐 𝑗𝑐𝑎 + 𝛿 𝑗𝑎𝑐𝑖𝑐𝑏 + 𝛿 𝑗𝑏𝑐𝑖𝑐𝑎

)
−4𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

) ]
𝐺𝑖 𝑗𝐺𝑎𝑏

+
∫
S1

1
2
𝐿2 [𝑘𝛾𝜂 (1−𝐷𝛾𝜂

)
𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

+ 𝑘𝛾𝜏
(
1−𝐷𝛾𝜏

)
4
(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

) ]
Υ𝑖 𝑗Υ𝑎𝑏



282 Ivan Giorgio, Anil Misra, and Luca Placidi

+
∫
S1

1
2
𝐿2𝑘𝜅 (1−𝐷𝜅 ) 𝑐𝑖𝑐 𝑗𝜑,𝑖𝜑, 𝑗

+
∫
S1

𝐿24
[
𝑘𝑢𝜏𝛾𝜏

(
1
2
(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 + 𝛿 𝑗𝑎𝑐𝑖𝑐𝑏

) − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
+ 𝑘𝑢𝜂𝛾𝜂𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

]
𝐺𝑖 𝑗Υ𝑎𝑏

+
∫
S1

𝑘𝑢𝜂𝜅2𝐿𝑐𝑖𝑐 𝑗𝑐ℎ𝐺𝑖 𝑗𝜑,ℎ

+
∫
S1

𝑘𝛾𝜂𝜅𝐿𝑐𝑖𝑐𝑎𝑐𝑏Υ𝑎𝑏𝜑,𝑖

or, in a compact form, it yields

𝑈 =
1
2
C𝑖 𝑗𝑎𝑏𝐺𝑖 𝑗𝐺𝑎𝑏 + 1

2
C𝛾

𝑖 𝑗𝑎𝑏Υ𝑖 𝑗Υ𝑎𝑏 + 1
2
K𝑖 𝑗𝜑,𝑖𝜑, 𝑗

+K𝑢𝛾
𝑖 𝑗𝑎𝑏𝐺𝑖 𝑗Υ𝑎𝑏 +K𝑢𝜅

𝑖 𝑗ℎ𝐺𝑖 𝑗𝜑,ℎ +K𝜅𝛾
𝑖𝑎𝑏𝜑,𝑖Υ𝑎𝑏, (17.40)

where the elastic stiffness C, C𝛾 , K, K𝑢𝛾 , K𝑢𝜅 , and K𝜅𝛾 are identified in (17.40) as
follows, with the symmetrization induced by the symmetry of the strain tensor 𝐺,

C𝑖 𝑗𝑎𝑏 = 𝐿2
∫
S1

𝑘𝜂
(
1−𝐷𝜂

) (
𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
+4𝐿2

∫
S1

𝑘𝜏(1−𝐷𝜏)
(
1
4
(𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 + 𝛿𝑖𝑏𝑐 𝑗𝑐𝑎 + 𝛿 𝑗𝑎𝑐𝑖𝑐𝑏 + 𝛿 𝑗𝑏𝑐𝑖𝑐𝑎)−𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
(17.41)

C𝛾
𝑖 𝑗𝑎𝑏 = 𝐿2

∫
S1

𝑘𝛾𝜂
(
1−𝐷𝛾𝜂

) (
𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
+4𝐿2

∫
S1

𝑘𝛾𝜏
(
1−𝐷𝛾𝜏

) (
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
(17.42)

K𝑖 𝑗 = 𝐿2
∫
S1

𝑘𝜅 (1−𝐷𝜅 ) 𝑐𝑖𝑐 𝑗 (17.43)

K
𝑢𝛾
𝑖 𝑗𝑎𝑏 = 4𝐿2

∫
S1

(
𝑘𝑢𝜂𝛾𝜂𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
+4𝐿2

∫
S1

{
𝑘𝑢𝜏𝛾𝜏

[
1
2
(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 + 𝛿 𝑗𝑎𝑐𝑖𝑐𝑏

) − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

]}
(17.44)

K𝑢𝜅
𝑖 𝑗ℎ = 2𝐿

∫
S1

(
𝑘𝑢𝜂𝜅𝑐𝑖𝑐 𝑗𝑐ℎ

)
(17.45)
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K
𝜅𝛾
𝑖𝑎𝑏 = 𝐿

∫
S1

(
𝑘𝛾𝜂𝜅𝑐𝑖𝑐𝑎𝑐𝑏

)
(17.46)

17.4 Identification of the Undamaged Isotropic Case

17.4.1 Characterization of the Undamaged Isotropic Case

In the non-damaged isotropic case, we have both

𝐷𝜂 = 𝐷𝜏 = 𝐷𝛾𝜂 = 𝐷𝛾𝜏 = 𝐷𝜅 = 0,

and constant distribution of stiffnesses with respect to the orientation

𝑘𝜂 = �̃�𝜂 (𝜃) =
�̄�𝜂

2𝜋
, 𝑘𝜏 = �̃�𝜏 (𝜃) = �̄�𝜏

2𝜋
,

𝑘𝛾𝜂 = �̃�𝛾𝜂 (𝜃) =
�̄�𝛾𝜂

2𝜋
, 𝑘𝛾𝜏 = �̃�𝛾𝜏 (𝜃) =

�̄�𝛾𝜏

2𝜋
,

𝑘𝜅 = �̃�𝜅 (𝜃) = �̄�𝜅
2𝜋

,

𝑘𝑢𝜂𝛾𝜂 = �̃�𝑢𝜂𝛾𝜂 (𝜃) =
�̄�𝑢𝜂𝛾𝜂

2𝜋
, 𝑘𝑢𝜏𝛾𝜏 = �̃�𝑢𝜏𝛾𝜏 (𝜃) =

�̄�𝑢𝜏𝛾𝜏

2𝜋
,

𝑘𝑢𝜂𝜅 = �̃�𝑢𝜂𝜅 (𝜃) =
�̄�𝑢𝜂𝜅

2𝜋
, 𝑘𝛾𝜂𝜅 = �̃�𝛾𝜂𝜅 (𝜃) =

�̄�𝛾𝜂𝜅

2𝜋

where �̄�𝜂 , �̄�𝜏 �̄�𝛾𝜂 , �̄�𝛾𝜏 �̄�𝜅 , �̄�𝑢𝜂𝛾𝜂 , �̄�𝑢𝜏𝛾𝜏 , �̄�𝑢𝜂𝜅 and �̄�𝛾𝜂𝜅 are the integrated stiffness
over the set of possible orientations, that are defined in the general anisotropic case
as follows,

�̄�𝜂 =

2𝜋∫
0

�̃�𝜂 (𝜃) 𝑑𝜃, �̄�𝜏 =

2𝜋∫
0

�̃�𝜏 (𝜃) 𝑑𝜃,

�̄�𝛾𝜂 =

2𝜋∫
0

�̃�𝛾𝜂 (𝜃) 𝑑𝜃, �̄�𝛾𝜏 =

2𝜋∫
0

�̃�𝛾𝜏 (𝜃) 𝑑𝜃,

�̄�𝜅 =

2𝜋∫
0

�̃�𝜅 (𝜃) 𝑑𝜃,

�̄�𝑢𝜂𝛾𝜂 =

2𝜋∫
0

�̃�𝑢𝜂𝛾𝜂 (𝜃) 𝑑𝜃, �̄�𝑢𝜏𝛾𝜏 =

2𝜋∫
0

�̃�𝑢𝜏𝛾𝜏 (𝜃) 𝑑𝜃,
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�̄�𝑢𝜂𝜅 =

2𝜋∫
0

�̃�𝑢𝜂𝜅 (𝜃) 𝑑𝜃, �̄�𝛾𝜂𝜅 =

2𝜋∫
0

�̃�𝛾𝜂𝜅 (𝜃) 𝑑𝜃.

With these hypotheses, stiffness tensors (17.41), (17.42), (17.43), (17.44), and (17.46)
reduce to the following simplified form

C𝑖 𝑗𝑎𝑏 = 2𝐿2 �̄�𝜂

𝜋

∫
S1

(
𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
+2𝐿2 �̄�𝜏

𝜋

∫
S1

[
1
4
(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 + 𝛿𝑖𝑏𝑐 𝑗𝑐𝑎 + 𝛿 𝑗𝑎𝑐𝑖𝑐𝑏 + 𝛿 𝑗𝑏𝑐𝑖𝑐𝑎

) − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

]
(17.47)

C𝛾
𝑖 𝑗𝑎𝑏 = 2𝐿2 �̄�𝛾𝜂

𝜋

∫
S1

(
𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

) +2𝐿2 �̄�𝛾𝜏

𝜋

∫
S1

(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
(17.48)

K𝑖 𝑗 =
�̄�𝜅
2𝜋

𝐿2
∫
S1

(
𝑐𝑖𝑐 𝑗

)
(17.49)

K
𝑢𝛾
𝑖 𝑗𝑎𝑏 = 2𝐿2 �̄�𝑢𝜂𝛾𝜂

𝜋

∫
S1

(
𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)
+2𝐿2 �̄�𝑢𝜏𝛾𝜏

𝜋

∫
S1

[(
1
2
(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 + 𝛿 𝑗𝑎𝑐𝑖𝑐𝑏

) − 𝑐𝑖𝑐 𝑗𝑐𝑎𝑐𝑏

)]
(17.50)

K𝑢𝜅
𝑖 𝑗ℎ = 0 (17.51)

K
𝜅𝛾
𝑖𝑎𝑏 = 0. (17.52)

It is worth noting that the coupling tensor

K
𝑢𝛾
𝑖 𝑗 [𝑎𝑏] = 𝐿2 �̄�𝑢𝜏𝛾𝜏

𝜋

∫
S1

[
1
2
(
𝛿𝑖𝑎𝑐 𝑗𝑐𝑏 + 𝛿 𝑗𝑎𝑐𝑖𝑐𝑏

) − 1
2
(
𝛿𝑖𝑏𝑐 𝑗𝑐𝑎 + 𝛿 𝑗𝑏𝑐𝑖𝑐𝑎

) ]
is null for the isotropic case,

K
𝑢𝛾
𝑖 𝑗 [𝑎𝑏] = 𝐿2 �̄�𝑢𝜏𝛾𝜏

2𝜋
[
𝜋𝛿𝑖𝑎𝛿 𝑗𝑏 + 𝜋𝛿𝑖𝑏𝛿 𝑗𝑎 − 𝜋𝛿𝑖𝑏𝛿 𝑗𝑎 − 𝜋𝛿𝑖𝑎𝛿 𝑗𝑏

]
= 0.

17.4.2 Macroscopic Isotropic Stiffness Matrices

The standard isotropic representation of 2nd and 4th order stiffness tensors, for the
2D case, is given by following expressions (17.53), (17.55), (17.57), and (17.59),



17 Geometrically Nonlinear Cosserat Elasticity with Chiral Effects . . . 285

K𝑖 𝑗 = 𝜅𝛿𝑖 𝑗 (17.53)
𝜅 = K11 (17.54)

C𝑖 𝑗𝑎𝑏 = 𝜇𝛿𝑖𝑎𝛿 𝑗𝑏 + 𝜇𝛿𝑖𝑏𝛿 𝑗𝑎 +𝜆𝛿𝑖 𝑗𝛿𝑎𝑏 (17.55)
C1212 = 𝜇, C1122 = 𝜆, (17.56)

C
𝛾
𝑖 𝑗𝑎𝑏 = 𝜇

𝛾
1 𝛿𝑖𝑎𝛿 𝑗𝑏 + 𝜇

𝛾
2 𝛿𝑖𝑏𝛿 𝑗𝑎 +𝜆𝛾𝛿𝑖 𝑗𝛿𝑎𝑏 (17.57)

C
𝛾
1212 = 𝜇

𝛾
1 , C

𝛾
1221 = 𝜇

𝛾
2 , C

𝛾
1122 = 𝜆𝛾 , (17.58)

K
𝑢𝛾
𝑖 𝑗𝑎𝑏 = 𝜇

𝑢𝛾
1 𝛿𝑖𝑎𝛿 𝑗𝑏 + 𝜇

𝑢𝛾
2 𝛿𝑖𝑏𝛿 𝑗𝑎 +𝜆𝑢𝛾𝛿𝑖 𝑗𝛿𝑎𝑏 (17.59)

K
𝑢𝛾
1212 = 𝜇

𝑢𝛾
1 , K

𝑢𝛾
1221 = 𝜇

𝑢𝛾
2 , K

𝑢𝛾
1122 = 𝜆𝑢𝛾 (17.60)

where identifications of Lamè coefficients in terms of the stiffness matrix components
have also been expressed in (17.54), (17.56), (17.58) and (17.60).

17.4.3 Identification of the Macroscopic Isotropic Stiffness Matrices

In the 2D case, a standard representation of the unit vector 𝑐 is

𝑐1 = cos𝜃, 𝑐2 = sin𝜃, (17.61)

where 𝜃 is the anti-clockwise angle from the first unit vector 𝑒1 of the frame of
reference to 𝑐. Besides, trivial analytical results are as follows

2𝜋∫
0

(
sin2 𝜃

)
𝑑𝜃 =

2𝜋∫
0

(
cos2 𝜃

)
𝑑𝜃 = 𝜋, (17.62)

2𝜋∫
0

(
sin2 𝜃 cos2 𝜃

)
𝑑𝜃 =

1
4
𝜋, (17.63)

2𝜋∫
0

sin4 𝜃𝑑𝜃 =

2𝜋∫
0

cos4 𝜃𝑑𝜃 =
3
4
𝜋. (17.64)

From (17.54), (17.49) and (17.62)

𝜅 = K11 =
�̄�𝜅
2𝜋

𝐿2
2𝜋∫

0

(
cos2 𝜃

)
=
�̄�𝜅
2
𝐿2. (17.65)
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From (17.56)1, (17.47) and (17.63)

𝜇 = C1212 = 2𝐿2 �̄�𝜂

𝜋

2𝜋∫
0

(
sin2 𝜃 cos2 𝜃

)
+2𝐿2 �̄�𝜏

𝜋

2𝜋∫
0

[
1
4
− sin2 𝜃 cos2 𝜃

]
=

1
2
𝐿2 (�̄�𝜂 + �̄�𝜏 ) . (17.66)

From (17.56)2, (17.47) and (17.63)

𝜆 = C1122 = 2𝐿2 �̄�𝜂

𝜋

2𝜋∫
0

(
sin2 𝜃 cos2 𝜃

)
+2𝐿2 �̄�𝜏

𝜋

2𝜋∫
0

[−sin2 𝜃 cos2 𝜃
]
=

1
2
𝐿2 (�̄�𝜂 − �̄�𝜏

)
. (17.67)

From (17.58)1, (17.57), (17.64) and (17.63)

𝜇
𝛾
1 = C𝛾

1212 = C
𝛾
2121 = 2𝐿2 �̄�𝛾𝜂
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]
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1
2
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)
. (17.68)

From (17.58)2, (17.57) and (17.63)

𝜇
𝛾
2 = C𝛾

1221 = 2𝐿2 �̄�𝛾𝜂

𝜋

2𝜋∫
0

(
sin2 𝜃 cos2 𝜃

)
+2𝐿2 �̄�𝛾𝜏

𝜋

2𝜋∫
0

[−sin2 𝜃 cos2 𝜃
]
=

1
2
𝐿2 (�̄�𝛾𝜂 − �̄�𝛾𝜏

)
. (17.69)

From (17.58)3, (17.57) and (17.63)

𝜆𝛾 = C𝛾
1122 = 2𝐿2 �̄�𝛾𝜂

𝜋

2𝜋∫
0

(
sin2 𝜃 cos2 𝜃

)
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+2𝐿2 �̄�𝛾𝜏

𝜋

2𝜋∫
0

[−sin2 𝜃 cos2 𝜃
]
=

1
2
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)
. (17.70)

From (17.60)1, (17.50), (17.64) and (17.63)

𝜇
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. (17.71)

From (17.60)2, (17.50), (17.64) and (17.63)
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=
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. (17.72)

From (17.60)2, (17.50), (17.64) and (17.63)

𝜆𝑢𝛾 = K𝑢𝛾
1122 = 2𝐿2 �̄�𝑢𝜂𝛾𝜂

𝜋
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)
. (17.73)

17.5 Conclusion

The primary result of the presented work is the deduction of a set of elastic material
constants for a isotropic Cosserat media derived by exploiting micro-macro identifi-
cation of granular micro-mechano-morphology. To this end, we have utilized Piola’s
ansatz to make the identification of a discrete granular system with a continuum body
to develop relationships between grain-scale and continuum kinematic measures in
the framework of finite deformations. The internal deformation (strain) energy is then
expressed in terms of these kinematic measures leading to the mentioned Cosserat
model.
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