
Chapter 14
Size Effects in Cosserat Crystal Plasticity

Samuel Forest and Flavien Ghiglione

Abstract Some Cosserat elastoplasticity models for single crystals are reviewed in the
present chapter. Their size-dependent response is evaluated in the case of a simple one-
dimensional shear test involving one single slip system and vanishing microrotation
prescribed at the boundaries of a material strip of width 2𝐿. The inhomogeneous
distribution of slip in the channel mimics the piling-up of dislocations against the
boundaries. The free energy density function depends on the elastic strain and
Cosserat curvature tensors. Two types of potentials are examined with respect to the
curvature tensor, namely a quadratic function of its norm, on the one hand, and the
norm itself, on the second hand. The first model is very often used but turns out to be
non-physical since, according to physical metallurgy, the stored energy is proportional
to the dislocation density (here the density of geometrically dislocations) rather than
its square. The scaling laws predicted by these models are shown to be 𝐿−2 or 𝐿−1,
respectively. The latter scaling is reminiscent of Orowan’s law of yielding [24]. The
chapter ends with the combination of both quadratic and rank one contributions in a
unified formulation applied to grain boundary modelling.

Key words: Crystal plasticity · Cosserat elasticity · Cosserat plasticity · Micropolar
media · Dislocation density tensor · Dislocation pile-up · Phase field model · Grain
boundary

14.1 Introduction

Cosserat modelling has been recognized as a good candidate for continuum modelling
of plasticity in crystals due to the relation between inhomogeneous dislocation
distributions and lattice curvature [1, 2]. Alternative generalized continuum theories
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to the Cosserat approach are gradient or micromorphic plasticity, as discussed in
[3, 4].

Cosserat crystal plasticity constitutive equations involve elastic contributions, a
generalized Schmid law and size–dependent hardening induced by the curvature
development, as exposed in the formulations presented in the references [5]-[9]. A
critical ingredient of the model is the choice of the dependence of the Helmholtz free
energy potential on the curvature tensor. Quadratic dependence has been classically
used, especially in strain gradient plasticity models [10, 11]. The quadratic choice
was questioned in several contributions like [12, 13], because it predicts unrealistic
scaling laws. Alternative potentials include energy functions proportional to the
norm of the curvature or dislocation density tensor or its logarithm [14, 15]. Both
rank one and logarithmic potentials are non-differentiable at zero curvature which
leads to difficulties in implementing these models and requires the consideration of
discontinuities in analytical solutions.

To evaluate the various available Cosserat models of elastoplasticity, a simple shear
test of a material strip with constrained boundaries is considered, for which analytical
solutions can be derived. The microrotation is clamped at the two boundaries,
𝜃 (−𝐿) = 𝜃 (𝐿) = 0 and an overall glide amount 𝛾̄ is applied to the strip. In the
following, analytical solutions are provided for quadratic, rank one and combined
potentials, considering pure elasticity first, and then crystal plasticity. One single
slip system is considered for simplicity and the usual Schmid law is extended to
the Cosserat case. In particular the scaling laws with respect to the system size
are derived and solutions are compared to existing ones in strain gradient plasticity
models involving the dislocation density tensor [15, 16].

In the last section, it is shown that the combined quadratic and rank one potential
can be incorporated in a phase field model to describe grain boundary formation in a
crystal following [17].

14.2 Problem Setting

14.2.1 Field Equations

Cosserat material points are characterized by their displacement,𝒖 , and microrotation
degrees of freedom [18, 19]. The latter microrotation is represented by the axial vector
𝜽 . Within the small strain, small rotation and small curvature assumption, the Cosserat
deformation measures are the relative deformation and curvature tensors defined as

𝒆 = 𝒖 ⊗∇+ 𝝐
∼
· 𝜽 , 𝑒𝑖 𝑗 = 𝑢𝑖, 𝑗 + 𝜖𝑖 𝑗𝑘𝜃𝑘 (14.1)

𝜿∼ = 𝜽 ⊗∇, 𝜅𝑖 𝑗 = 𝜃𝑖, 𝑗 (14.2)

in an orthonormal basis.
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The conjugate stress quantities to the previous deformation measures are the
simple stress tensor, 𝝈∼ , and the couple stress tensor, 𝒎∼ , which fulfil the static balance
laws for momentum and moment of momentum

𝝈∼ ·∇ = 0, 𝜎𝑖 𝑗 , 𝑗 = 0 (14.3)

𝒎∼ ·∇− 𝝐∼ : 𝝈∼ = 0, 𝑚𝑖 𝑗 , 𝑗 − 𝜖𝑖 𝑗𝑘𝜎𝑗𝑘 = 0 (14.4)

in the absence of body forces and couples. These field equations are accompanied by
appropriate Neumann boundary conditions in the form

𝒕 = 𝝈∼ .𝒏 , 𝑡𝑖 = 𝜎𝑖 𝑗𝑛 𝑗 , 𝒎 = 𝒎∼ .𝒏 , 𝑚𝑖 = 𝑚𝑖 𝑗𝑛 𝑗 (14.5)

where 𝒕 and 𝒎 are surface traction and couple stress vectors.

14.2.2 Constitutive Equations

The Cosserat deformation tensor is decomposed into elastic and plastic contributions

𝒆∼ = 𝒆∼
𝑒 + 𝒆∼ 𝑝 (14.6)

In the present work, no such decomposition is introduced for curvature, for the sake
of simplicity following [20, 21].

The Helmholtz free energy density function 𝜓(𝒆∼𝑒, 𝜿∼) is here assumed to depend
on elastic deformation and total curvature. Stress–deformation relations are derived
from this free energy potential in the form

𝝈∼ =
𝜕𝜓

𝜕𝒆∼
𝑒
, 𝒎∼ =

𝜕𝜓

𝜕𝜿∼
(14.7)

Special forms of the free energy function will be considered in the proposed analysis,
including a quadratic potential and more general power law potentials.

Crystal plasticity is based on Schmid’s yield function, written here for a single
slip system

𝑓 (𝝈∼ ,ℓ , 𝒏 ) = |𝜏 | − 𝜏𝑐, with 𝜏 = 𝝈∼ : (ℓ ⊗ 𝒏 ) (14.8)

where 𝜏 is the resolved shear stress and 𝜏𝑐 the critical resolved shear stress. The
plastic slip system is characterized by the slip direction ℓ and the normal to the slip
plane 𝒏 . Normality is a property of the crystal plasticity flow rule

¤𝒆∼ 𝑝 = ¤𝛾 𝜕 𝑓

𝜕𝝈∼
= ¤𝛾 ℓ ⊗ 𝒏 (sign𝜏) (14.9)

where ¤𝛾 is the plastic multiplier.
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The Schmid law is generalized here for Cosserat media accounting for generally
non-symmetric stress tensor [3]-[5], [9]. A special case limiting the Schmid law to the
symmetric part of the stress tensor will also be considered in the following analysis.

14.2.3 Studied Boundary Value Problem

The one-dimensional simple shear problem of Fig. 14.1 is considered successively
for several choices of the free energy potential and Schmid law. It involves a single
slip system (ℓ , 𝒏 ) respectively parallel to the two first vectors of the orthonormal
basis (𝒆 1, 𝒆 2, 𝒆 3). The origin is located at the centre of the strip of width 2𝐿 and
height 𝐻. The length 𝐻 is regarded as infinite so that the solution is invariant along
the 𝑦−direction.

The unknown displacement and microrotation fields takes the simple form:

𝒖 = 𝛾̄𝑦 𝒆 1 +𝑢(𝑥)𝒆 2, 𝜽 = 𝜃 (𝑥)𝒆 3 (14.10)

where the mean shear amount 𝛾̄ is prescribed to the strip. The total deformation and
curvature tensors follow

𝒆∼ = (𝛾̄ + 𝜃)𝒆 1 ⊗ 𝒆 2 + (𝑢′ − 𝜃)𝒆 2 ⊗ 𝑒1, 𝜿∼ = 𝜃′𝒆 3 ⊗ 𝒆 1 (14.11)

where 𝑢(𝑥) and 𝜃 (𝑥) are the main unknowns of the problem. The notation 𝑢′ is set
for the derivative of 𝑢(𝑥) with respect to 𝑥.

The following boundary conditions are enforced:

𝑢(0) = 0, 𝑢(−𝐿) = 𝑢(𝐿), 𝜃 (−𝐿) = 𝜃 (𝐿) = 0 (14.12)

The first condition sets the rigid body translation and the second conditions correspond
to periodicity requirement of the fluctuation 𝑢(𝑥). The micro-clamping conditions for
the Cosserat rotation mimic the piling-up of dislocations at the left and boundaries.

Fig. 14.1 Geometry of the
simple shear boundary value
problem in crystal plasticity
involving a single slip system.
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14.3 Cosserat Elastoplasticity Based on a Quadratic Potential

In this section, the Helmholtz free energy potential is assumed to be a quadratic
function of the deformation measures

𝜓(𝒆∼𝑒, 𝜿∼) =
1
2
𝒆∼
𝑒 : 𝚲∼∼ : 𝒆∼

𝑒 + 1
2
𝜿∼ : 𝑪∼∼ : 𝜿∼ (14.13)

where 𝚲∼∼
and 𝑪∼∼

are the fourth order tensors of Cosserat elastic moduli. Point sym-
metry was assumed, thus excluding coupling terms between elastic deformation and
curvature. The Cosserat elastic laws follow from Eq. (14.7)

𝝈∼ = 𝚲∼∼
: 𝒆∼

𝑒, 𝒎∼ = 𝑪∼∼
: 𝜿∼ (14.14)

14.3.1 Simple Glide in Isotropic Elasticity

The boundary value problem of Sect. 14.2.3 is first solved in the case of linear
isotropic elasticity, i.e. in the absence of plasticity. The isotropic elasticity laws read

𝝈∼ = 𝜆trace (𝒆∼)1∼ +2𝜇sym(𝒆∼) +2𝜇𝑐skew(𝒆∼), (14.15)
𝒎∼ = 𝛼trace (𝜿∼)1∼ +2𝛽sym(𝜿∼) +2𝛽2skew(𝜿∼) (14.16)

where 𝜆, 𝜇, 𝜇𝑐, 𝛼, 𝛽, 𝛽2 are the six Cosserat elastic moduli required in the isotropic
case. In the examples given in the present work, the parameter 𝛼 is not active and we
will assume 𝛽2 = 𝛽 for simplicity [22].
In the particular case of simple shear, the non-vanishing components of the stress
tensors are

𝜎12 = (𝜇+ 𝜇𝑐)𝛾̄ + (𝜇− 𝜇𝑐)𝑢′ +2𝜇𝑐𝜃, (14.17)
𝜎21 = (𝜇− 𝜇𝑐)𝛾̄ + (𝜇+ 𝜇𝑐)𝑢′ −2𝜇𝑐𝜃, (14.18)
𝑚31 = 2𝛽𝜃′ (14.19)

The force stress balance tells that 𝜎12,2 = 𝜎21,1 = 0 so that 𝜎21 is uniform. This
provides a first differential equation

(𝜇+ 𝜇𝑐)𝑢′′ −2𝜇𝑐𝜃′ = 0 =⇒ 𝑢′′ =
2𝜇𝑐
𝜇+ 𝜇𝑐

𝜃′ (14.20)

On the other hand, the couple stress balance equation yields

𝑚31,1 − (𝜎12 −𝜎21) = 0 (14.21)

𝛽𝜃′′ − 𝜇𝑐 (𝛾̄−𝑢′ +2𝜃) = 0 (14.22)
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The combination of the previous equations leads to the following differential equation
for 𝜃

𝜃′′′ = 𝜔2𝜃′, with 𝜔 =

√︄
2𝜇𝜇𝑐

𝛽(𝜇+ 𝜇𝑐) (14.23)

from which the microrotation function is deduced, after consideration of the boundary
conditions (14.12)3,

𝜃 (𝑥) = 𝑎(cosh(𝜔𝑥) − cosh(𝜔𝐿)) (14.24)

The displacement function then follows from Eq. (14.20):

𝑢(𝑥) = 2𝜇𝑐
𝜇+ 𝜇𝑐

𝑎

𝜔
sinh(𝜔𝑥) + 𝑏𝑥 + 𝑐 (14.25)

The boundary conditions (14.12)1,2 are used to determine the constants 𝑏 and 𝑐:

𝑢(𝑥) = 2𝜇𝑐
𝜇+ 𝜇𝑐

𝑎

𝜔
(sinh(𝜔𝑥) − 𝑥

𝐿
sinh(𝜔𝐿)) (14.26)

The integration constant 𝑎 is finally determined by inserting the found functions in
Eq. (14.22):

𝑎 =
𝛾̄

2(cosh(𝜔𝐿) − 𝜇𝑐
𝜇+𝜇𝑐

sinh(𝜔𝐿)
𝜔𝐿 )

(14.27)

Numerical simulations are carried out using the finite element code Z-Set [23].
More details regarding the implementation of the Cosserat element are given in
reference [6]. The parameters given in Table 14.1 are used throughout this work,unless
explicitly specified otherwise. Comparisons of the analytical and FEM solutions for
the displacement and microrotation fields are plotted in Fig. 14.2, which shows a
perfect agreement between the solutions.

Table 14.1: Parameters used for computing analytical and numerical solutions.

Parameter value
2L [mm] 20
H [mm] 1
E [MPa] 70000

𝜈 0.3
𝜇𝑐 [MPa] 10000
𝛼 [N] 0
𝛽 [N] 26923.8
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Fig. 14.2: Cosserat elasticity, displacement and microrotation fields. Finite Element simulations
are compared to the analytical solution, based on the material parameters of Table 14.1.

14.3.2 Crystal Plasticity Based on the Full Stress Tensor

The resolved shear stress is computed as

𝜏 = 𝝈∼ : (ℓ ⊗ 𝒏 ) = 𝝈∼ : (𝒆 1 ⊗ 𝒆 2) = 𝜎12 (14.28)

In the plastic regime, assuming positive shear, 𝜏 = 𝜏𝑐, the critical resolved shear
stress is taken as a constant parameter (no hardening). Assuming that this plasticity
threshold is reached in the whole specimen, the stress components 𝜎12 and 𝜎21 are
therefore uniform during further straining. Space derivation of Eq. (14.21) implies
that

𝑚′′
31 = 0 =⇒ 𝜃′′′ = 0 (14.29)

It follows that the microrotation distribution in the strip is parabolic:

𝜃 (𝑥) = 𝑎(𝑥2 − 𝐿2) (14.30)

with the integration constant 𝑎. The plastic and elastic deformation tensors take the
form

𝒆∼
𝑝 = 𝛾 ℓ ⊗ 𝒏 = 𝛾 𝒆 1 ⊗ 𝒆 2 (14.31)
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𝒆∼
𝑒 = 𝒆∼ − 𝒆∼

𝑝 = (𝛾̄ + 𝜃 −𝛾)𝒆 1 ⊗ 𝒆 2 + (𝑢′ − 𝜃)𝒆 2 ⊗ 𝒆 1 (14.32)

where 𝛾(𝑥) is the plastic slip distribution to be determined. In the presence of
plasticity, the equations (14.17) and (14.18) are replaced by

𝜎12 = (𝜇+ 𝜇𝑐) (𝛾̄−𝛾) + (𝜇− 𝜇𝑐)𝑢′ +2𝜇𝑐𝜃 = 𝜏𝑐, (14.33)
𝜎21 = (𝜇− 𝜇𝑐) (𝛾̄−𝛾) + (𝜇+ 𝜇𝑐)𝑢′ −2𝜇𝑐𝜃 (14.34)

Elimination of 𝛾 in the previous equation and recalling that𝜎′
21 = 0 due to equilibrium,

leads to the following relation

𝑢′′ = 𝜃′ =⇒ 𝑢(𝑥) = 𝑎
𝑥

3
(𝑥2 − 𝐿2) (14.35)

where the displacement boundary conditions have been taken into account. The slip
distribution is obtained from (14.33) and the found expressions for microrotation and
displacement:

𝛾(𝑥) = 𝛾̄− 𝜏𝑐
𝜇+ 𝜇𝑐

+ 𝑎
(
𝑥2 − 𝜇+5𝜇𝑐

𝜇+ 𝜇𝑐

𝐿2

3

)
(14.36)

The coefficient 𝑎 is determined after insertion of 𝑢(𝑥) and 𝜃 (𝑥) in the moment of
momentum equation Eq. (14.21) which can be worked out as

(𝜇+ 𝜇𝑐)𝛽𝜃′′ − 𝜏𝑐𝜇𝑐 +2𝜇𝜇𝑐 (𝑢′ − 𝜃) = 0 (14.37)

Finally

𝑎 =
𝜏𝑐

2𝛽(1+ 𝜇/𝜇𝑐) +4𝜇𝐿2/3 =
𝜏𝑐/2𝜇

𝛽(1/𝜇+1/𝜇𝑐) +2𝐿2/3 (14.38)

To highlight the size effect induced by the Cosserat model, the stress component 𝜎21
is computed as a function of the parameter 𝛽 and structural length 𝐿:

𝜎21 =
𝜇− 𝜇𝑐
𝜇+ 𝜇𝑐

𝜏𝑐 + 4𝜇𝜇𝑐
𝜇+ 𝜇𝑐

(𝑢′ − 𝜃) (14.39)

=
𝜇− 𝜇𝑐
𝜇+ 𝜇𝑐

𝜏𝑐 + 8
3

𝜇𝜇𝑐
𝜇+ 𝜇𝑐

𝑎𝐿2 (14.40)

= 𝜏𝑐

(
𝜇− 𝜇𝑐
𝜇+ 𝜇𝑐

+ 4𝜇𝜇𝑐
𝜇+ 𝜇𝑐

𝐿2

3𝛽(1+ 𝜇/𝜇𝑐) +2𝜇𝐿2

)
(14.41)

The limit case 𝜇𝑐 →∞ can be more easily interpreted:

lim
𝜇𝑐→∞𝜎21/𝜏𝑐 = −1+ 4𝜇𝐿2

3𝛽+2𝜇𝐿2 = 𝜏𝑐
1−3𝛽/2𝜇𝐿2

1+3𝛽/2𝜇𝐿2 (14.42)

Where 𝛽 → 0, the classical limit 𝜎21 = 𝜎12 = 𝜏𝑐 with a symmetric stress tensor, is
retrieved. For vanishing system size 𝐿 → 0, 𝜎21 = −𝜎12 = −𝜏𝑐 and the stress tensor
is skew-symmetric.



14 Size Effects in Cosserat Crystal Plasticity 219

14.3.3 Schmid Law Limited to the Symmetric Part of the Stress
Tensor

A variant of the previous analysis is the consideration of a modification of the
generalized Schmid law (14.8):

𝑓 (𝝈∼ ,ℓ , 𝒏 ) = |𝜏 | − 𝜏𝑐, with sym(𝝈∼ ) : (ℓ ⊗ 𝒏 ) (14.43)

According to this variant, the resolved shear stress is computed from the projection
of the symmetric part of the stress tensor instead of the full stress tensor.

The analysis of the one-dimensional shear layer problem is modified as follows.

𝜏 = (𝜎12 +𝜎21)/2 = 𝜏𝑐 (14.44)

assuming positive shear loading. This yield condition combined with balance of
momentum implies that both 𝜎12 and 𝜎21 are uniform as in the previous section. It
follows that the microrotation profile (14.30) is unchanged in the analysis. This holds
true for Eqs. (14.31) and (14.32).

A difference arises in the evaluation of the resolved shear stress

𝜎12 +𝜎21 = 2𝜇(𝛾̄−𝛾) +2𝜇𝑢′ = 2𝜏𝑐 (14.45)

but the same relation 𝑢′′ = 𝜃′ is finally obtained, implying the same displacement
profile (14.35). The constant 𝑎 is determined from Eq. (14.37) which is modified
here as

𝛽𝜃′′ − 𝜇𝑐
𝜇
𝜏𝑐 +2𝜇𝑐 (𝑢′ − 𝜃) = 0 (14.46)

and finally

𝑎 =
𝜏𝑐/2𝜇

𝛽/𝜇𝑐 +2𝐿2/3 (14.47)

𝛾(𝑥) = 𝛾̄− 𝜏𝑐
𝜇
+ 𝑎(𝑥2 − 𝐿2/3) (14.48)

which are slightly different from (14.38) and (14.36).
The stress components are then computed as

𝜎12 = 𝜏𝑐 (1+ 𝜇𝑐
𝜇
) − 4

3
𝜇𝑐𝑎𝐿

2 (14.49)

𝜎21 = 𝜏𝑐 (1− 𝜇𝑐
𝜇
) + 4

3
𝜇𝑐𝑎𝐿

2 (14.50)

The first equation yields the following scaling with the size 𝐿 of the system

𝜎12/𝜏𝑐 = 1+ 𝛽/𝜇
𝛽/𝜇𝑐 +2𝐿2/3 (14.51)

In the limit case,
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lim
𝜇𝑐→∞𝜎12/𝜏𝑐 = 1+ 3𝛽

2𝜇𝐿2 (14.52)

making the 1/𝐿2 scaling clearly visible. This scaling is rather questionable according
to physical metallurgy which rather predicts 1/𝐿 (Orowan) or 1/√𝐿 (Hall-Petch)
scaling laws in plasticity [13, 24].

14.3.4 Comparison with the Curl𝑯 𝒑 Model

According to the theory developed in [15], the displacement gradient is split into
elastic and plastic contributions:

𝑯∼ = grad𝒖 = 𝑯∼
𝑒 +𝑯∼ 𝑝 (14.53)

The free energy density of the Curl𝐻 𝑝 model is taken as a quadratic form

𝜓(𝜺∼𝑒,curl𝑯∼
𝑝) = 1

2
𝜺∼
𝑒 : 𝚲∼∼ : 𝜺∼

𝑒 + 𝐴∥curl𝑯∼
𝑝 ∥2 (14.54)

where the elastic strain 𝜺∼
𝑒 is the symmetric part of 𝑯∼

𝑒 and 𝐴 the higher order modulus.
The curl𝐻 𝑝 model involves a size-dependent back-stress

𝑥 = −𝐴(curlcurl𝐻 𝑝) : (ℓ ⊗ 𝒏 ) (14.55)

The Schmid law is generalized into

𝑓 (𝝈∼ , 𝑥,ℓ , 𝒏 ) = |𝜏− 𝑥 | − 𝜏𝑐 (14.56)

and
¤𝑯∼ 𝑝

= ¤𝛾 ℓ ⊗ 𝒏 sign (𝜏− 𝑥) with 𝜏 = 𝝈∼ : (ℓ ⊗ 𝒏 ) (14.57)

When applied to the studied boundary value problem, the Curl𝐻 𝑝 model predicts
the following:

𝑯∼ = 𝛾̄𝒆 1 ⊗ 𝒆 2 +𝑢′𝒆 2 ⊗ 𝒆 1, 𝑯∼
𝑝 = 𝛾 𝒆 1 ⊗ 𝒆 2 (14.58)

curl𝑯∼
𝑝 = −𝛾′ 𝒆 1 ⊗ 𝒆 3, curlcurl𝐻 𝑝 = −𝛾′′𝒆 1 ⊗ 𝒆 2, 𝑥 = −𝐴𝛾′′ (14.59)

The single non-vanishing component of the stress tensor is

𝜎12 = 𝜎21 = 𝜇(𝛾̄−𝛾 +𝑢′) (14.60)

The Schmid law then stipulates that

𝜎12 + 𝐴𝛾′′ = 𝜏𝑐 (14.61)
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Equilibrium 𝜎21,1 = 0 requires that the shear stress is uniform. The previous equations
then implies that 𝛾′′′ = 0 so that the slip distribution is parabolic as in the Cosserat
case. Boundary conditions must be chosen to represent the fact that no plasticity
occurs at the boundaries:

𝛾(±𝐿) = 0 =⇒ 𝛾(𝑥) = 𝑎(𝐿2 − 𝑥2) (14.62)

Note that these conditions are only approximately equivalent to those chosen for the
Cosserat medium, namely vanishing lattice rotation 𝜃 (±𝐿) = 0.

The stress is then related to coefficient 𝑎 by

𝜎12 = 𝜏𝑐 − 𝐴𝑎 (14.63)

The displacement is derived from Eq. (14.60):

𝑢′ =
𝜎12
𝜇

− 𝛾̄ +𝛾

𝑢 = ( 𝜏𝑐 − 𝐴𝑎

𝜇
− 𝛾̄ + 𝑎𝐿2)𝑥− 𝑎

𝑥3

3
+𝐶𝑠𝑡𝑒 (14.64)

The constant vanishes since 𝑢(0) = 0. The condition 𝑢(−𝐿) = 𝑢(𝐿) is used to deter-
mine the remaining constant 𝑎:

𝑎 =
3

2𝐿2

(
𝜏𝑐
𝜇
− 𝛾̄

)
(14.65)

and finally, the shear stress value

𝜎12 = 𝜏𝑐 − 3𝐴
2𝐿2

(
𝜏𝑐
𝜇
− 𝛾̄

)
(14.66)

The 1/𝐿2 scaling is clearly observed and is in agreement with the Cosserat solutions
[16]. Quadratic potentials in Cosserat or strain gradient plasticity therefore suffer
from the same limitations compared to common knowledge in mechanical metallurgy.

14.4 Rank One Energy Potential

In this section, a non-quadratic free energy potential is adopted

𝜓(𝒆∼𝑒, 𝜿∼) =
1
2
𝒆∼
𝑒 : 𝚲∼∼ : 𝒆∼

𝑒 + 𝐴∥𝜿∼ ∥, with ∥𝜿∼ ∥ =
√
𝜿∼ : 𝜿∼ (14.67)

involving the norm of the curvature tensor. The simple and couple stress tensors are
then given by
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𝝈∼ =
𝜕𝜓

𝜕𝒆∼
𝑒
= 𝚲∼∼

: 𝒆∼
𝑒 (14.68)

𝒎∼ =
𝜕𝜓

𝜕𝜿∼
= 𝐴

𝜿∼
∥𝜿∼ ∥

(14.69)

It is apparent that the couple stress tensor is singular in the case of vanishing curvature.
In the one-dimensional shear problem studied here, the single non-vanishing

component of the couple stress tensor is

𝑚31 = 𝐴
𝜃′

|𝜃′ | (14.70)

14.4.1 Elasticity Solution

In the elastic case, 𝒆∼
𝑒 ≡ 𝒆∼ . The microrotation profile is searched for in the following

form:

𝜃 (𝑥) = 𝜃 (𝐻 (𝑥 + 𝐿) −𝐻 (𝑥− 𝐿)) (14.71)
𝜃′ (𝑥) = 𝜃 (𝛿(𝑥 + 𝐿) − 𝛿(𝑥− 𝐿)) (14.72)

which means that the microrotation takes the unknown uniform value 𝜃 in ] − 𝐿 : 𝐿]
and is indeterminate at the ends of the interval. The expression involves the Heaviside
function and the Dirac distribution such that

𝐻′ (𝑥− 𝑎) = 𝛿(𝑥− 𝑎) (14.73)

The uniform rotation field corresponds to the classical solution in the absence
of curvature. The difference in the Cosserat case is that curvature energy is now
concentrated at the boundaries.

It follows that the couple stress component is indeterminate due to the vanishing
of 𝜃′. The total work balance equation is therefore used for a suitable treatment of
the distribution functions:∫

𝑉
𝝈∼ : (𝒖 ⊗∇+ 𝝐

∼
· 𝜽 ) +𝒎∼ : 𝜿∼ 𝑑𝑉 =

∫
𝜕𝑉

𝒕 ·𝒖 +𝒎 · 𝜽 𝑑𝑆 (14.74)

The volume 𝑉 is the infinite ribbon [−𝐿 : 𝐿] × IR and invariance along 𝑦 is assumed.
The application of the divergence theorem and the Neumann condition 𝒕 = 𝝈∼ · 𝒏 are
used to eliminate the 𝒖 ⊗∇ and 𝒕 ·𝒖 terms Eq. (14.74), while the last term vanishes
due to the vanishing microrotation boundary conditions. It remains∫

𝑉
𝝈∼ : 𝝐∼ · 𝜽 +𝒎∼ : (𝜽 ⊗∇) 𝑑𝑉 = 0 (14.75)

Keeping only the non-vanishing components, the latter becomes
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−𝐿
(𝜎12 −𝜎21)𝜃 +𝑚31𝜃

′ 𝑑𝑥 =
∫ 𝐿

−𝐿
(𝜎12 −𝜎21)𝜃 + 𝐴|𝜃′ | 𝑑𝑥 = 0 (14.76)

where 𝑚31𝜃
′ = 𝐴𝜃′2/|𝜃′ | has been used. After considering Eq. (14.72), the last

integral is evaluated as∫ 𝐿

−𝐿
𝐴|𝜃′ |𝑑𝑥 = 𝐴|𝜃 |

∫
| (𝛿(𝑥 + 𝐿) − 𝛿(𝑥− 𝐿)) |𝑑𝑥 = 2𝐴|𝜃 | (14.77)

The first contribution in Eq. (14.76) is then evaluated as∫ 𝐿

−𝐿
(𝜎12 −𝜎21)𝜃 𝑑𝑠 =

∫ 𝐿

−𝐿
2𝜇𝑐 (𝛾̄−𝑢′ +2𝜃)𝜃 𝑑𝑠 = 4𝜇𝑐𝜃𝐿 (𝛾̄ +2𝜃) (14.78)

taking the periodicity of 𝑢 into account. Finally, the combination of the two found
relations provides the value

𝜃 = − 𝛾̄

2
− 𝐴

4𝜇𝑐𝐿
sign𝜃 = − 𝛾̄

2
+ 𝐴

4𝜇𝑐𝐿
sign𝛾̄ (14.79)

where 𝜃 and 𝛾̄ have opposite signs for sufficiently high values of 𝜇𝑐. The limit case
𝜇𝑐 →+∞ constrains 𝜃 to coincide with the material rotation −𝛾̄/2.

Finally, the displacement field is obtained from the shear stress component

𝜎21 = (𝜇+ 𝜇𝑐)𝑢′ + (𝜇− 𝜇𝑐)𝛾̄−2𝜇𝑐𝜃 (14.80)

According to equilibrium, this component is uniform from which we deduce that
𝑢′′ = 0 so that 𝑢(𝑥) is linear.

The couple stress component 𝑚31 is indeterminate in the interval ] − 𝐿 : 𝐿 [ where
𝜃′ vanishes. Let us assume that it is uniform in this interval. This, combined with the
balance of moment of momentum equation, implies that the skew symmetric part of
the stress tensor also vanishes. Finally,

𝑢 = (𝛾̄ +2𝜃)𝑥 = 𝐴

2𝜇𝑐𝐿
𝑥 sign 𝛾̄, ∀𝑥 ∈] − 𝐿 : 𝐿 [ (14.81)

This fluctuation vanishes for 𝜇𝑐 →∞ or vanishing length scale.

14.4.2 Crystal Plasticity

In the crystal plasticity case, the shear stress component 𝜎12 is equal to the critical
resolved shear stress value. Eq. (14.76) is still valid and now provides the relation

(𝜏𝑐 −𝜎21)𝜃2𝐿 +2𝐴|𝜃 | = 0 (14.82)

Equilibrium still implies that 𝜎21 is uniform. Its value follows
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𝜎21 = 𝜏𝑐 + 𝐴

𝐿
sign𝜃 (14.83)

The scaling in 1/𝐿 is clearly visible and is distinct from the 1/𝐿2 scaling law found
for the quadratic potential.

On the other hand, the elasticity law tells us that

𝜎12 −𝜎21 = 2𝜇𝑐 (𝛾̄−𝛾(𝑥) −𝑢′ (𝑥)) +4𝜇𝑐𝜃 (14.84)

Averaging this relation over the interval [−𝐿 : 𝐿] and assuming periodicity of dis-
placement give

𝜏𝑐 −𝜎21 = 2𝜇𝑐 < 𝛾̄−𝛾 > +4𝜇𝑐𝜃 (14.85)

The average < 𝛾̄−𝛾 > is deduced from Eq. (14.33) as

< 𝛾̄−𝛾 >= (𝜏𝑐 −2𝜇𝑐𝜃)/(𝜇+ 𝜇𝑐) (14.86)

and finally
2𝜇𝑐
𝜇+ 𝜇𝑐

(𝜏𝑐 +2𝜇𝜃) = − 𝐴

𝐿
sign𝜃 (14.87)

from which the constant 𝜃 is derived:

𝜃 = − 𝜏𝑐
2𝜇

− 𝐴

𝐿

𝜇+ 𝜇𝑐
4𝜇𝜇𝑐

sign𝜃 (14.88)

14.4.3 Comparison with the Curl𝑯 𝒑 Model

A rank one potential was also considered in [15, 25]:

𝜓(𝜺∼𝑒,curl𝑯∼
𝑝) = 1

2
𝜺∼
𝑒 : 𝚲∼∼ : 𝜺∼

𝑒 + 𝐴∥curl𝑯∼
𝑝 ∥ (14.89)

involving the norm of the dislocation density curl∼ 𝐻 𝑝 . The symmetric stress tensor
and the higher order stress are then computed as

𝝈∼ = 𝚲∼∼
: 𝜺∼

𝑒, 𝒎∼ = 𝐴
curl𝑯∼

𝑝

∥curl𝑯∼
𝑝 ∥ (14.90)

In the studied problem,

curl𝑯∼
𝑝 = −𝛾′ 𝒆 1 ⊗ 𝒆 3, 𝒎∼ = −𝐴sign𝛾′ (14.91)

It was shown in [15, 25] that the total work balance reduces to the integral∫
𝑉
𝒔∼ : 𝑯∼

𝑝 +𝒎∼ : curl𝐻 𝑝 𝑑𝑉 = 0 (14.92)
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where the involved generalized stress tensors fulfil the balance law, 𝒔∼ + curl𝒎∼ = 0.
For the studied problem, this amounts to∫ 𝐿

−𝐿
𝑠12𝛾 + 𝐴|𝛾′ | 𝑑𝑥 = 0 (14.93)

According to the Schmid law,
𝜎12 + 𝑠12 = 𝜏𝑐 (14.94)

where both 𝜎12 and 𝑠12 are uniform.
The plastic slip distribution is uniform in ] − 𝐿 : 𝐿 [:

𝛾(𝑥) = 𝛾̄(𝐻 (𝑥 + 𝐿) −𝐻 (𝑥− 𝐿)) (14.95)
𝛾′ (𝑥) = 𝛾̄(𝛿(𝑥 + 𝐿) − 𝛿(𝑥− 𝐿)) (14.96)

Finally, the previous integral is calculated as

(𝜏𝑐 −𝜎12)2𝐿𝛾̄ +2𝐴𝛾̄ = 0 (14.97)

so that the stress value
𝜎12 = 𝜏𝑐 + 𝐴

𝐿
(14.98)

exhibits a 1/𝐿 size dependence, in the same way as the previous Cosserat model.

14.5 Combined Potential

In this section,a free energy involving bothquadratic andnorm potentials is considered

𝜓(𝒆∼𝑒, 𝜿∼) =
1
2
𝒆∼
𝑒 : 𝚲∼∼ : 𝒆∼

𝑒 + 1
2
𝜿∼ : 𝑪∼∼ : 𝜿∼ + 𝐴∥𝜿∼ ∥, with ∥𝜿∼ ∥ =

√
𝜿∼ : 𝜿∼ (14.99)

The simple and couple stress tensors are then given by

𝝈∼ =
𝜕𝜓

𝜕𝑒𝑒
= 𝚲∼∼

: 𝒆∼
𝑒 (14.100)

𝒎∼ =
𝜕𝜓

𝜕𝜿∼
= 𝑪∼∼

: 𝜿∼ + 𝐴
𝜿∼
∥𝜿∼ ∥

(14.101)

In the problem considered in this work, the only non-vanishing component of the
couple-stress tensor is

𝑚31 = 2𝛽𝜃′ + 𝐴
𝜃′

|𝜃′ | (14.102)

More precisely,

𝑚31 (𝑥) = 2𝛽𝜃 − 𝐴, if 𝑥 < 0 (14.103)
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𝑚31 (𝑥) = 2𝛽𝜃 + 𝐴, if 𝑥 > 0 (14.104)

considering the situation where 𝜃 (𝑥) is decreasing (resp. increasing) on [−𝐿,0] (resp.
[0, 𝐿]). In that case, the curvature is indeterminate only at 𝑥 = 0. The field equations
(14.21) to (14.23) from section 14.3.1 are valid in the present context. The solution
has cosh form but there is a jump of sign 𝜃′ at zero. The micro-rotation field is
therefore assumed to be of the following form:

𝜃 (𝑥) = 𝑎+ cosh(𝜔𝑥) + 𝑏+ sinh(𝜔𝑥) + 𝑐+, if 𝑥 > 0 (14.105)
= 𝑎− cosh(𝜔𝑥) + 𝑏− sinh(𝜔𝑥) + 𝑐− , if 𝑥 < 0 (14.106)

The microtation field is an even function, 𝜃 (𝑥) = 𝜃 (−𝑥), which results in

𝑎+ = 𝑎− = 𝑎, 𝑏+ = −𝑏− = 𝑏, 𝑐+ = 𝑐− (14.107)

The boundary conditions, 𝜃 (−𝐿) = 𝜃 (𝐿) = 0, give

𝑐 = −(𝑎 cosh(𝜔𝐿) + 𝑏 sinh(𝜔𝐿)) (14.108)

The integration constant 𝑏 can be found by ensuring the continuity of the couple
stress at 𝑥 = 0, 𝑚31(0−) = 𝑚31 (0+), due to the unhindered transmission of the couple
stress vector,

2𝛽𝜔𝑏 + 𝐴 = −2𝛽𝜔𝑏− 𝐴 =⇒ 𝑏 =
−𝐴
2𝛽𝜔

(14.109)

According to Eqs. (14.103) and (14.104), the continuity of 𝑚31 results in a jump of
𝜃′ at 𝑥 = 0. Finally, the last integration constant 𝑎 is obtained after integrating the
equilibrium equation for the couple-stress∫ 𝐿

−𝐿
𝑚31,1𝑑𝑥 =

∫ 𝐿

−𝐿
𝜎12 −𝜎21𝑑𝑥 (14.110)

The couple stress 𝑚31 (𝑥) being an odd function, the left hand-side of the above
equation is evaluated as ∫ 𝐿

−𝐿
𝑚31,1𝑑𝑥 = 2 lim

𝜖→0

∫ 𝐿

𝜖
𝑚+

31,1𝑑𝑥 (14.111)∫ 𝐿

−𝐿
𝑚31,1𝑑𝑥 = 4𝛽𝜔 (𝑎 sinh(𝜔𝐿) + 𝑏 cosh(𝜔𝐿)) +2𝐴 (14.112)

whereas the second integral to be evaluated gives∫ 𝐿

−𝐿
𝜎12 −𝜎21𝑑𝑥 =

∫ 𝐿

−𝐿
2𝜇𝑐 (𝛾̄−𝑢′ +2𝜃) 𝑑𝑥 (14.113)∫ 𝐿

−𝐿
𝜎12 −𝜎21𝑑𝑥 = 4𝜇𝑐

[
𝛾̄𝐿 +2

(
𝑎

𝜔
sinh(𝜔𝐿) + 𝑏

𝜔
(cosh(𝜔𝐿) −1) + 𝑐𝐿

)]
(14.114)
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where the periodicity of 𝑢 and 𝜃 has been accounted for. Eq. (14.110) now becomes

4𝛽𝜔 (𝑎 sinh(𝜔𝐿) + 𝑏 cosh(𝜔𝐿)) +2𝐴

= 4𝜇𝑐
[
𝛾̄𝐿 +2

(
𝑎

𝜔
sinh(𝜔𝐿) + 𝑏

𝜔
(cosh(𝜔𝐿) −1) + 𝑐𝐿

)] (14.115)

After replacing the constants 𝑏 and 𝑐 by their found values one gets

𝑎 =
2𝜇𝜇𝑐𝐿𝛾̄ + 𝐴(𝐿𝜔(𝜇+ 𝜇𝑐) sinh(𝜔𝐿) + 𝜇𝑐 (1− cosh(𝜔𝐿))

4𝜇𝜇𝑐𝐿 cosh(𝜔𝐿) −2𝜇𝑐𝛽𝜔 sinh(𝜔𝐿) (14.116)

The microrotation field is continuous at 𝑥 = 0 but its first derivative experiences a
jump at this location.

14.6 Application to Grain Boundary Behaviour

The Cosserat model can be combined with a phase field approach to model grain
boundary migration in polycrystals [26]. It originates from Kobayashi, Warren
and Carter’s model [17, 29] which relies on two phase field variables, the crystal
orientation 𝜃 and the order parameter, called cristallinity parameter, 𝜙. The KWC
model is limited here to the 2D case, for which the orientation pseudo-vector reduces
to the scalar 𝜃 and curvature vector ∇𝜃, for the sake of brevity. After showing the
connections between the KWC and Cosserat models, we report on an analytical
solution for a sharp grain boundary and smooth order parameter profile, after [29, 30].
The KWC model is interpreted as a Cosserat-phase field model of grain boundaries
[26].

14.6.1 Cosserat-Phase Field Model of Grain Boundaries

The Helmholtz free energy function of the KWC model is

𝜓(𝜙,∇𝜙,∇𝜃) = 𝑓 (𝜙) + 𝛼2

2
∥∇𝜙∥2 + 𝑠𝑔(𝜙)∥∇𝜃∥ + 𝜀2

2
ℎ(𝜙)∥∇𝜃∥2 (14.117)

using the original notations of the authors. The potential (14.117) involves the two
functions

𝑓 (𝜙) = 𝑤2

2
(1−𝜙)2, 𝑔(𝜙) = ℎ(𝜙) = 𝜙2 (14.118)

and the material parameters 𝑤,𝛼, 𝑠, 𝜀2. The situation 𝜙 = 1 corresponds to the perfect
crystal whereas 𝜙 is minimal inside the grain boundary as a sign of disorder.

It is apparent that the potential combines a quadratic part for the curvature ∇𝜃 and
rank one part of the potential. The non-differentiability of the potential at ∇𝜃 = 0 is
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the source of mathematical difficulties, already seen in the Sect. 14.4 dedicated to
the similar rank-one potential. A mathematical discussion can be found in [31].

The field equations can be derived from the method of virtual power by introducing
the following power densities of generalized internal and contact forces:

𝑝 (𝑖) = 𝑎 ¤𝜙+ 𝒃 ·∇ ¤𝜙+2
×
𝜎 ¤𝜃 +𝒎 ·∇ ¤𝜃 (14.119)

𝑝 (𝑐) = 𝑎𝑐 ¤𝜙+𝑚 ¤𝜃 (14.120)

The balance laws are derived in the form

𝑎 = div 𝒃 , 2
×
𝜎 = div𝒎 (14.121)

The second equation can be interpreted as part of the moment of momentum balance
equation for a Cosserat medium, with 𝒎 having the physical dimension of couple
stresses. They are complemented by the Neumann conditions

𝑎𝑐 = 𝒃 · 𝒏 , 𝑚 = 𝒎 · 𝒏 (14.122)

The Clausius-Duhem inequality can be exploited to propose the following state laws:

𝒃 =
𝜕𝜓

𝜕∇𝜙
, 𝒎 =

𝜕𝜓

𝜕∇𝜃 , 𝑎 =
𝜕𝜓

𝜕𝜙
+ 𝑎𝑑𝑖𝑠 (14.123)

The introduction of the dissipative contribution 𝑎𝑑𝑖𝑠 was proposed by Fried and
Gurtin [27, 28]. The residual dissipation rate then is

𝑎𝑑𝑖𝑠 ¤𝜙+2
×
𝜎 ¤𝜃 ≥ 0 (14.124)

The following dissipation potential is introduced

Ω(𝑎𝑑𝑖𝑠 , ×𝜎) = 1
2𝑀

(𝑎𝑑𝑖𝑠)2 +
×
𝜎

2

𝜂
(14.125)

from which the evolution equations are derived

¤𝜙 =
𝜕Ω

𝜕𝑎𝑑𝑖𝑠
= 𝑎𝑑𝑖𝑠/𝛽 = (𝑎− 𝜕𝜓

𝜕𝜙
)/𝛽 (14.126)

¤𝜃 =
𝜕Ω

𝜕
×
𝜎

= 2
×
𝜎/𝜂 = (div𝒎 )/𝜂 = (div

𝜕𝜓

𝜕∇𝜃 )/𝜂 (14.127)

After substitution of the state laws derived from the free energy potential (14.117),
the evolution equations are explicited as

𝛽 ¤𝜙 = 𝛼2Δ𝜙+𝑤2 (1−𝜙) −2𝑠𝜙∥∇𝜃∥ − 𝜀2𝜙∥𝜃∥2 (14.128)

2𝜂 = div
(
𝑠𝜙2 ∇𝜃

∥∇𝜃∥ + 𝜀
2𝜙2∇𝜙

)
(14.129)
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The fields 𝜙 = 1,∇𝜃 = 0 are stationary solutions of the previous evolution equations.
It corresponds to bulk crystal without lattice rotation and perfectly ordered crystal
𝜙 = 1.

14.6.2 Analytical Solution of a Single Flat Grain Boundary

Analytical solutions of grain boundary formation with the KWC model is not an easy
task. Such a solution can be worked out in the case 𝜀 = 0, assuming a sharp interface
with respect to orientation and smooth with respect to the order parameter, see [29, 30].
The problem is 1D along 𝑥 with an infinite flat grain boundary perpendicular to the
-axis. The orientation is assumed to be piece-wise uniform with a jump at 𝑥 = 0 in
the 1D system. The orientation profile is taken of the form

[[𝜃]] = 𝜃+− 𝜃− , ∇𝜃 (𝑥) = [[𝜃]]𝛿(𝑥) (14.130)

We then search for the order parameter field 𝜙(𝑥), solution of Eq. (14.128):

𝛼2𝜙′′ +𝑤2 (1−𝜙) −2𝑠𝜙 |𝜃′ | = 0 (14.131)

The second equation (14.129) becomes

div
(
𝑠𝜙2 𝜃′

|𝜃′ |

)
= 0 (14.132)

It is identically fulfilled almost everywhere.
For 𝑥 ≠ 0, Eq. (14.131) becomes

𝛼2𝜙′′ +𝑤2 (1−𝜙) = 0 (14.133)

which provides the solution

𝜙(𝑥) = 𝐶+
1 exp(−𝑤𝑥/𝛼) +𝐶+

2 exp(𝑤𝑥/𝛼) +1, ∀𝑥 > 0 (14.134)
𝜙(𝑥) = 𝐶−

1 exp(−𝑤𝑥/𝛼) +𝐶−
2 exp(𝑤𝑥/𝛼) +1, ∀𝑥 < 0 (14.135)

Full cristallinity is enforced at 𝑥 = ±∞, 𝜙(±∞) = 1 so that 𝐶+
2 = 𝐶−

1 = 0. Continuity
of 𝜙 is assumed at 𝑥 = 0, 𝜙(0+) = 𝜙(0−) = 𝜙𝑚𝑖𝑛 so that 𝐶+

1 = 𝐶−
2 and finally

𝜙(𝑥) = 1−𝐶 exp(−𝑤 |𝑥 |/𝛼), 𝐶 = 1−𝜙𝑚𝑖𝑛 (14.136)

𝜙′ (𝑥) = 𝐶
𝑤

𝛼
exp(−𝑤 |𝑥 |/𝛼)sign (𝑥) (14.137)

Determination of 𝜙𝑚𝑖𝑛
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For that purpose, the field equation (14.131) is integrated over the interval [−𝜖 : 𝜖]:∫ 𝜖

−𝜖
𝛼2𝜙′′𝑑𝑥 +

∫ 𝜖

−𝜖
𝑤2 (1−𝜙)𝑑𝑥−2𝑠

∫ 𝜖

−𝜖
𝜙|𝜃′ | = 0 (14.138)

Letting 𝜖 → 0, the second term vanishes due to continuity of the integrand and it
remains

𝛼2 [[𝜙′]] = 2𝑠𝜙(0) [[𝜃]] (14.139)

and finally

𝛼2 (𝜙′ (0+) −𝜙′ (0−)) = 2𝛼2 (1−𝜙𝑚𝑖𝑛)𝑤
𝛼
= 2𝑠𝜙𝑚𝑖𝑛 [[𝜃]] (14.140)

The last equation provides the value of 𝜙𝑚𝑖𝑛:

𝜙𝑚𝑖𝑛 =
𝑤𝛼

𝑤𝛼+ 𝑠[[𝜃]] =
(
1+ 𝑠

𝑤𝛼
[[𝜃]]

)−1
(14.141)

This expression displays two limit cases: vanishing orientation jump gives
𝜙𝑚𝑖𝑛 ( [[𝜃]] = 0) = 1, as it should be, and

lim
[[ 𝜃 ]]→∞

𝜙𝑚𝑖𝑛 = 0 (14.142)

which means that lower values of the order parameter are reached for higher misori-
entation between the grains.

14.6.3 Grain Boundary Energy

The energy of the diffuse grain boundary is computed from the following integral of
the energy density over the entire domain

𝛾𝐺𝐵 =
∫ +∞

−∞

𝑤2

2
(1−𝜙)2 + 𝛼2

2
𝜙′2 + 𝑠𝜙2 |𝜃′ | 𝑑𝑥 (14.143)

The first two integrals are computed as follows∫ +∞

−∞
(1−𝜙)2 𝑑𝑥 = 𝐶2

∫ +∞

−∞
exp(−2𝑤

𝛼
|𝑥 |) 𝑑𝑥

=
∫ 0

−∞
exp( 2𝑤

𝛼
𝑥) 𝑑𝑥 +

∫ +∞

0
exp(−2𝑤

𝛼
𝑥) 𝑑𝑥

= 𝐶2 𝛼

𝑤
(14.144)∫ +∞

−∞
𝜙′2 𝑑𝑥 = 𝐶2 𝑤

𝛼
(14.145)
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Finally

𝛾𝐺𝐵 = 𝐶2𝛼𝑤+ 𝑠[[𝜃]]𝜙2
𝑚𝑖𝑛

= (1−𝜙𝑚𝑖𝑛)2𝛼𝑤+ 𝑠[[𝜃]]𝜙2
𝑚𝑖𝑛 (14.146)

=

(
1

𝑠[[𝜃]] +
1
𝑤𝛼

)−1

This energy vanishes when [[𝜃]], as expected. This formula and the choice of the
diffuse interface width enable calibration of the parameters 𝑠,𝑤,𝛼. It is complemented
by proper fitting to the Read-Shockley energy profile for low angle grain boundaries.

After proper non-dimensionalising of the model with respect to𝜔 and introduction
of time and length scales [29], the profiles of phase-fields 𝜙 and 𝜃 are given in Fig.
14.3 for arbitrarily chosen parameters 𝑤 = 1, 𝛼 = 0.3, 𝑠 = 2. A dimensionless grain
boundary energy-misorientation curve is given in Fig. 14.4.

A calibration of the phase-field parameters can also be carried out. Whereas
parameter 𝜖 is a choice allowing to change the interfaces width, parameters 𝑤,𝛼, 𝑠
are given by an optimisation procedure aiming to fit the grain boundary energy-
misorientation curve of the model to the Read-Shockley part of the one given by real
data. For more details on the calibration procedure the reader is referred to Appendix
B of reference [26].

Fig. 14.3: Profiles of 𝜙 and 𝜃 in the sharp interface case.
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Fig. 14.4: Dimensionless grain boundary energy-misorientation curve.

References

[1] McClintock F, André P, Schwerdt K, Stoeckly R (1958) Interface couples in
crystals, Nature 4636:652–653.

[2] Kröner E (1963) On the physical reality of torque stresses in continuum me-
chanics, Int J Engng Sci 1:261–278.

[3] Mayeur JR, McDowell DL, Forest S (2018) Micropolar crystal plasticity, In:
GZ Voyiadjis (Ed) Handbook of Nonlocal Continuum Mechanics for Materials
and Structures, pp 1–47, Springer International Publishing. DOI 10.1007/978-
3-319-22977-5_48-1

[4] Forest S, Mayeur JR, McDowell DL (2018) Micromorphic crystal plasticity, In:
GZ Voyiadjis (Ed) Handbook of Nonlocal Continuum Mechanics for Materials
and Structures, pp 1–44, Springer International Publishing. DOI 10.1007/978-
3-319-22977-5_49-1

[5] Forest S, Cailletaud G, Sievert R (1997) A Cosserat theory for elastoviscoplastic
single crystals at finite deformation, Archives of Mechanics 49(4):705–736.

[6] Forest S, Barbe F, Cailletaud G (2000) Cosserat modelling of size effects in the
mechanical behaviour of polycrystals and multiphase materials, International
Journal of Solids and Structures 37:7105–7126.



14 Size Effects in Cosserat Crystal Plasticity 233

[7] Mayeur J, McDowell D, Bammann D (2011) Dislocation–based micropolar
single crystal plasticity: Comparison of multi– and single criterion theories,
Journal of the Mechanics and Physics of Solids 59:398–422.

[8] Mayeur J, McDowell D (2014) A comparison of Gurtin type and micropolar
theories of generalized single crystal plasticity, International Journal of Plasticity
57:29–51. DOI http://dx.doi.org/10.1016/j.ĳplas.2014.01.010

[9] Rys M, Stupkiewicz S, Petryk H (2022) Micropolar regularization of crystal
plasticity with the gradient-enhanced incremental hardening law, International
Journal of Plasticity 156:103355. DOI 10.1016/j.ĳplas.2022.103355

[10] Gurtin M (2003) On a framework for small–deformation viscoplasticity: free
energy, microforces, strain gradients, International Journal of Plasticity 19:47–
90.

[11] Gurtin M, Anand L (2009) Thermodynamics applied to gradient theories in-
volving the accumulated plastic strain: The theories of Aifantis and Fleck &
Hutchinson and their generalization, Journal of the Mechanics and Physics of
Solids 57:405–421.

[12] Ohno N, Okumura D (2007) Higher–order stress and grain size effects due to
self–energy of geometrically necessary dislocations, Journal of the Mechanics
and Physics of Solids 55:1879–1898.

[13] Forest S (2013) Questioning size effects as predicted by strain gradient plasticity,
Journal of the Mechanical Behavior of Materials 22:101–110.

[14] Forest S, Guéninchault N (2013) Inspection of free energy functions in gradient
crystal plasticity, Acta Mechanica Sinica 29:763–772.

[15] Wulfinghoff S, Forest S, Böhlke T (2015) Strain gradient plasticity modeling
of the cyclic behavior of laminate microstructures, Journal of the Mechanics
and Physics of Solids 79:1–20. DOI 10.1016/j.jmps.2015.02.008

[16] Cordero NM, Gaubert A, Forest S, Busso E, Gallerneau F, Kruch S (2010)
Size effects in generalised continuum crystal plasticity for two–phase laminates,
Journal of the Mechanics and Physics of Solids 58:1963–1994.

[17] Kobayashi R, Warren JA, Carter WC (2000) A continuum model of grain
boundaries, Physica D 140(1-2):141–150.

[18] Nowacki W (1986) Theory of Asymmetric Elasticity, Pergamon.
[19] Eringen A (1999) Microcontinuum Field Theories, Springer, New York (1999)
[20] Ghiglione F, Forest S (2022) On the torsion of isotropic elastoplastic Cosserat

circular cylinders, Journal of Micromechanics and Molecular Physics 6:1–14.
DOI 10.1142/S2424913021420078

[21] Russo R, Girot Mata FA, Forest S (2020) Thermomechanics of cosserat medium:
Modeling adiabatic shear bands in metals, Continuum Mechanics and Thermo-
dynamics. DOI 10.1007/s00161-020-00930-z

[22] deBorst R (1993) A generalization of 𝐽2-flow theory for polar continua, Com-
puter Methods in Applied Mechanics and Engineering 103: 347–362. DOI
10.1016/0045-7825(93)90127-J

[23] Besson J, Foerch R (1997) Large scale object–oriented finite element code
design, Computer Methods in Mechanical Engineering 142:165–187.

[24] Hirth J, Lothe J (1982) Theory of Dislocations, Wiley Intersciences.



234 Samuel Forest and Flavien Ghiglione

[25] Mesarovic S, Forest S, Zbib H (Eds) (2019) Mesoscale Models. From Micro-
Physics to Macro-Interpretation, Springer, CISM International Centre for Me-
chanical Sciences, Vol 587. DOI 10.1007/978-3-319-94186-8

[26] Ask A, Forest S, Appolaire B, Ammar K, Salman OU (2018) A Cosserat
crystal plasticity and phase field theory for grain boundary migration,
Journal of the Mechanics and Physics of Solids 115:167-194. DOI
https://doi.org/10.1016/j.jmps.2018.03.006

[27] Fried E, Gurtin M (1993) Continuum theory of thermally induced phase transi-
tions based on an order parameter, Physica D 68:326–343.

[28] Gurtin M (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations
based on a microforce balance, Physica D 92:178–192.

[29] Warren JA, Kobayashi R, Lobkovsky AE, Carter W (2003) Extending phase
field models of solidification to polycrystalline materials, Acta Materialia
51:6035–6058.

[30] Lobkovsky AE, Warren JA (2001) Sharp interface limit of a phase-field model
of crystal grains, Physical Review E 63:051605.

[31] Giga MH, Giga Y (1998) Evolving graphs by singular weighted curvature, Arch
Rational Mech Anal 141:117–198. DOI 10.1007/s002050050075


	Chapter 14 Size Effects in Cosserat Crystal Plasticity
	14.1 Introduction
	14.2 Problem Setting
	14.2.1 Field Equations
	14.2.2 Constitutive Equations
	14.2.3 Studied Boundary Value Problem

	14.3 Cosserat Elastoplasticity Based on a Quadratic Potential
	14.3.1 Simple Glide in Isotropic Elasticity
	14.3.2 Crystal Plasticity Based on the Full Stress Tensor
	14.3.3 Schmid Law Limited to the Symmetric Part of the Stress Tensor
	14.3.4 Comparison with the CurlH^p Model

	14.4 Rank One Energy Potential
	14.4.1 Elasticity Solution
	14.4.2 Crystal Plasticity
	14.4.3 Comparison with the CurlH^p Model

	14.5 Combined Potential
	14.6 Application to Grain Boundary Behaviour
	14.6.1 Cosserat-Phase Field Model of Grain Boundaries
	14.6.2 Analytical Solution of a Single Flat Grain Boundary
	14.6.3 Grain Boundary Energy

	References




