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Abstract Numerical simulations of several planar failure modes of masonry structures
are presented, based on the model and solving code from a recent hemivariational
block-based model inspired from granular micromechanics (Tran et al. [33]). The
numerical tests include a comparison with literature results for a constant shearing
load, a parametric study of the influence of mortar thickness, and the simulation of
common failures such as bending, shear sliding, and rocking. The results show that
the studied model is able to capture common failure modes. Conclusions and insights
towards the extension of the studied model are then given.

Key words: Masonry structures · Block-Based model · Masonry failure · Variational
model · Hemivariational model · numerical simulations

13.1 Introduction

Masonry or infill walls, formed by brick units joined together by mortar, has been
used since ancient times and is still common today, including in reinforced concrete
buildings. Generally, masonry elements are used to close or delimit certain spaces,
although in some cases they help to support the loads to which a structure is attached,
fulfilling the function of a bearing wall. When analyzing structures and evaluating
their performance in response to a seismic event, it is very common not to take into
account the fill walls, since they are frequently categorized as non-structural elements,
assuming that they do not contribute to the rigidity of the structure, and therefore
become considered as secondary elements. However, post-quake assessments show
that the failure or detachment of the infill walls are responsible for large losses of
human life or require large investments for repair [1].

Therefore, it is necessary to provide a more in-depth investigation into the behavior
of masonry, which is a very complex issue to address, given that its behavior involves
a number of factors that present a great variability, such as: the properties of mortar,
the properties of bricks or masonry elements, the quality of labor, the thickness of
the mortar layer, the type of bricks, etc. [2].

There were several attempts to incorporate infill walls in the analysis of a structure,
such as the contribution of [3], which is still used in certain analyses. According to
this proposal, the masonry enclosed between two adjacent columns could be replaced
by connecting rod-type elements working under axial load. This approach can be
considered as a macro-modeling of masonry walls.

However, thanks to computational advances, it is feasible to resort to micro-
modeling, where it is possible to replace the bricks with homogeneous units joined
by a layer of mortar with homogeneous properties. In this way, the origin of the faults
and the monitoring of these faults in a wall could be detected in a much more precise
way, using numerical methods such as finite elements [4, 5] or other ones. More
specifically, mixed finite element methods have also been used for the elastoplastic
[6] and multiscale [7] analysis of historical masonry structures.
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There are several forms of micro-modeling that have been developed, as well as
various approaches to model the way masonry units interact with mortar. One such
modeling approach lies in using variational principles. Those principles have had a
fundamental historical role in deriving mechanical models; we refer the interested
reader to [8]-[10] for general historical information about those approaches, [11] for a
synthetic presentation and interpretation, and [12, 13] for specific insights regarding
the development generalized theories derived from variational principles. One of the
advantages of such principles is their self-consistency: they lead to mathematically
well-posed problems, as presented in [14, 15]. Variational principles can be declined
into different specific versions, depending on how refined one wants their model
to be. The simplest example would be the principle of minimum potential energy
[16]. It can be generalized into other minimization principles, such as least action
principle [17]-[19]. As presented by [20], least action principles can themselves
be generalized into virtual work or power principles [21]-[23] or, in the case of
variational inequalities, maximum-energy release principles [14, 24].

One way to take advantage of the modeling capabilities of variational principles
while accounting for a precise geometrical description of the studied system is to base
such principles on discrete kinematics. Indeed, the resulting models allow a refined
description of the specific characteristics of the system to be modeled [25]-[28].
This makes them most useful when complex behaviours are arising from complex
structures [29]-[32]. The specific example of discrete description which is used in
the present work is the “block-based” approach to masonry modeling.

The present work gathers precisely the contributions of Tran et al. [33], who
propose the micro-modeling of masonry with a discrete approach, where the base
element is an “augmented brick” made of a brick (which is assumed rigid) and a
layer of surrounding mortar. Such augmented masonry units kinematically have the
possibility of planar translations and rotations in response to an external action that
can act on the wall. In this approach, given the rigidity of masonry units, it can be
considered that there are certain energy barriers that impose fault behaviors only in
the mortar.

In fact, many recent studies on the numerical modeling of masonry have been
based on the consideration of rigid blocks that interact with each other through their
contact surfaces [34]-[36]. These surfaces, when interacting, tend to compress the
mortar at the same time that a cutting effect is generated that tries to cause the sliding
of one unit over another, so the role of friction is vital. The development of these
approaches is based on variational calculation and Heyman’s limit analysis.

The interest of this work has focused on expanding the proposal of Tran et al.
[33], which is a numerical modeling of masonry walls based on micro-modeling.
Indeed, the model proposed in their work was adapted from continuous granular
micromechanics models. Such models have been studied in many recent research
efforts [37]-[41], in order to model precisely the grain interactions and their effect
on the global behavior [42]-[44]. More specifically, the model studied by Tran et
al. is inspired from a recent hemivariational approach to granular micromechanics
[24]-[45].
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In the present work, we will study how such a model is able to predict several
types of faults which have been reported as common in the evaluation of walls. In
this way, different masonry walls will be subjected to a progressive monotonous load,
evidencing different types of failures, as well as validate the model with other studies.

13.2 Mathematical Formulation

The present mathematical formulation is based on the model reported in [33], where
more details can be seen for this approach. First, a masonry structure is considered as
being formed by rigid bricks with a layer of mortar around. As seen in Fig. 13.1, each
of these mortar brick blocks that make up the structure will be regular and identical,
and will be called augmented bricks. Since the (internal) bricks are rigid, only the
mortar will suffer deformations and damage.

13.2.1 Vertex Springs and Stiffnesses

The elastic behavior of the mortar will be modeled using two springs at the extremities
of the contact surface between every pair of neighboring augmented bricks. The
elongation of the spring, applying elementary operations of linear algebra, can be
calculated as:

Δ𝑟𝜈 =
[
𝑅˜𝜃 ′ − 𝐼

]̃ ·𝐶′𝑆′ − [
𝑅˜𝜃 − 𝐼

]̃ ·𝐶𝑆 + 𝑢𝜂 𝜂 + 𝑢𝜏 𝜏 (13.1)

Fig. 13.1: An augmented-brick is defined as a rigid brick together with its surrounding layer of
elastic mortar [33].



13 Validation of a Hemi-Variational Block-Based Model for Masonry Failures 195

Where Δ𝑟𝜈 represents the elongation of a vertex spring 𝜈, and 𝑅˜𝜃 , 𝑅˜𝜃 ′ are rotation
matrices. The rest of the parameters correspond to geometric values that can be
observed in Figure 13.2. This equation indicates that if we know the relative rotations
and the relative displacements between a pair of augmented bricks, we can know the
elongation of the two vertex springs that join them.

The stiffnesses 𝑘 𝜂,𝑡𝜈,𝑑 , 𝑘 𝜂,𝑐𝜈,𝑑 and 𝑘 𝜏𝜈,𝑑 are now defined. The indices 𝜂, 𝑡, 𝑐, 𝜈, 𝜏, 𝑑
mean: normal, tension,compression,vertex spring, tangential anddamage respectively.
In addition, damages 𝐷𝜂,𝑡

𝜈 , 𝐷𝜂,𝑐
𝜈 and 𝐷𝜏

𝜈 are introduced as belonging to [0,1]. They
are the normal (tension and compression) and tangential damages, respectively,
associated with each stiffness. 𝑓𝑆 is a surface factor that takes into account the contact
surface area between the augmented bricks. It can be expressed as half the ratio of

(a) Vertex springs for horizontal neighbours.

(b) Vertex springs for vertical neighbours.

Fig. 13.2: Vertex springs for a pair of augmented-bricks (𝑛, 𝑛′ ) [33].
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the length of the shared segment and the total length of the associated brick.

𝑘
𝜂,𝑡
𝜈,𝑑 = 𝑓𝑆 𝑘

𝜂,𝑡
𝜈

(
1−𝐷𝜂,𝑡

𝜈

)
, (normal, tension)

𝑘
𝜂,𝑐
𝜈,𝑑 = 𝑓𝑆 𝑘

𝜂,𝑐
𝜈

(
1−𝐷𝜂,𝑐

𝜈

)
, (normal, compression)

𝑘 𝜏𝜈,𝑑 = 𝑓𝑆 𝑘
𝜏
𝜈

(
1−𝐷𝜏

𝜈

)
, (tangential)

(13.2)

13.2.2 Deformation Energy and Impenetrability Potential

Because the internal bricks are rigid, an energy barrier will be used to prevent them
from overlapping. For this purpose, the elastic deformation energy associated with
the relative displacement of a vertex spring is defined as:

(𝑛,𝑛′ )U𝜈 =
𝐶𝜈

Δ𝑟𝜈 · 𝜂−𝜎 + 1
2
𝑘 𝜏𝜈,𝑑

(
Δ𝑟𝜈 · 𝜏

)2
(13.3)

The compression component of this potential energy referred to a fixed pair of
augmented bricks (𝑛,𝑛′) can have two forms. It shall be quadratic until the normal
relative displacement Δ𝑟𝜈 · 𝜂 reaches a limit 𝑢∗𝜂 (defined as negative by being in
compression). Beyond that limit, the normal potential energy becomes an inverse
function, which has its asymptote equal to 𝜎, whose absolute value is equal to half
the thickness of the mortar. So, as normal relative displacement tends to 𝜎, potential
energy tends to infinity. In this way, the normal potential energy, depending on its
relative displacement, becomes:

U𝜈
𝜂,wall =

𝐶𝜈(
Δ𝑟𝜈 · 𝜂−𝜎

) +E0 if 𝑠 < Δ𝑟𝜈 · 𝜂 < 𝑢∗𝜂

U𝜈
𝜂,quad =

1
2
𝑘
𝜂
𝜈,𝑑

(
Δ𝑟𝜈 · 𝜂

)2
if 𝑢∗𝜂 < Δ𝑟𝜈 · 𝜂

(13.4)

𝐶𝜈 and E0 are parameters that adjust the potential for impenetrability. It can be shown
that, when the values of these new parameters are:

𝑢∗𝜂 =
𝜎

3
, 𝐶𝜈 =

4
27
𝑘
𝜂
𝜈,𝑑

|𝜎 |3, E0 = −1
6
𝑘
𝜂
𝜈𝜎

2,

the resulting function becomes twice continuously differentiable. This will allow the
calculation of local rigidities detailed in later sections.
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13.2.3 Damage Laws

The dissipated energy can be defined for each vertex spring as a function of the
damage introduced in the stiffness of the Eq. (13.2). These functions are described
by Timofeev et al. [45] where the formulation can be seen in more detail. The main
idea of this dissipated energy is that it takes into account the anisotropic behavior
that exists in granular materials, where it is known that there is a greater resistance
in compression than in tension and/or shear (tangential). As described in [45], when
applying the considered hemivariational principle, the dissipated energy leads to the
following damage thresholds, in the normal (tension and compression) and tangential
directions: 

𝐷
𝜂,𝑡
𝜈 = 1− exp

(
−
Δ𝑟𝜈 · 𝜂
𝐵
𝜂,𝑡
𝜈

)
𝐷

𝜂,𝑐
𝜈 =

2
𝜋

arctan

(
−
Δ𝑟𝜈 · 𝜂
𝐵
𝜂,𝑐
𝜈

)

𝐷𝜏
𝜈 = 1− exp

©«−
���Δ𝑟𝜈 · 𝜏���
𝐵𝜏
𝜈

ª®®¬
(13.5)

where:

𝐵𝜏
𝜈 =


𝐵𝜏
𝜈0, if Δ𝑟𝜈 · 𝜂 > 0

𝐵𝜏
𝜈0 −𝛼2Δ𝑟𝜈 · 𝜂, if

1−𝛼1
𝛼2

𝐵𝜏
𝜈0 ≤ Δ𝑟𝜈 · 𝜂 ≤ 0

𝛼1 𝐵
𝜏
𝜈0, if Δ𝑟𝜈 · 𝜂 < 1−𝛼1

𝛼2
𝐵𝜏
𝜈0

(13.6)

The displayed values of 𝐵𝜏
𝜈 allow damage to continue to increase or to be maintained.

The values of 𝐵𝜏
𝜈0, 𝛼1 and 𝛼2 model the asymmetry between tension and compression.

It is also important to understand the behavior of these functions in the evolution
of damage. It can be observed graphically that the tension damage function 𝐷𝜂,𝑡

𝜈

converges to 1 faster than the compression damage function 𝐷𝜂,𝑐
𝜈 , when the spring

elongation takes large values (positive in tension, negative in compression).

13.2.4 Principle of Minimum Potential Energy

Although the base model presented by Timofeev et al. [45] considered a hemivari-
ational principle, in the present work we will follow the same presentation as Tran
et al. [33], who take the damage equations as damage laws independently from the
elastic equations. Thus, for a fixed damage state of the masonry system, the elastic
equations can be derived from a usual principle of minimum potential energy. Such
a separation is legitimate since it is used in the solving algorithm on which is based
the program used for the numerical simulations presented in the Results section.
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The total potential energy is thus defined as the sum of all deformation energies
for every augmented brick pairs (𝑛,𝑛′) having 𝜈𝐴 and 𝜈𝐵 as pairs of vertex springs.

E =
∑︁
(𝑛,𝑛′ )

(
(𝑛,𝑛′ )U𝜈𝐴 + (𝑛,𝑛′ )U𝜈𝐵

)
(13.7)

Thus, the stationarity condition for the total potential energy shall be given by
equalizing the gradient of the total energy to the null vector: ∇E = 0.

13.2.5 Numerical Model

For the numerical model used by Tran et al. [33] a system of 𝑁 = 𝑛𝑥 × 𝑛𝑦 bricks
arranged in a regular pattern is considered, as seen in Figure 13.3. Each augmented
brick is 𝑙𝑥 wide and 𝑙𝑦 high. The mortar layer between two bricks is 𝑙𝑚 thick. A
ratio 𝛼 ∈ (0,1) is defined to represent the horizontal space or overlap between two
adjacent rows.

The numerical variables for the calculation of iteration 𝑖 are: 𝑈𝑖 the list of all
kinematic variables (displacements and rotations), 𝐷𝑖 the list of all damages, 𝐾 𝑖

the stiffness matrix and 𝑏𝑖 the loads. Those loads will be calculated from imposed
displacements, instead of external forces.

Fig. 13.3: Numerical masonry model considered in this work [33].
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13.2.6 Stiffness Matrix

The local stiffnesses for a fixed pair of augmented bricks (𝑛,𝑛′) and a fixed pair of
vertex springs 𝜈 are calculated from the second order gradient of the deformation
energy (𝑛,𝑛′ )U𝜈 . Then, each of these local stiffnesses are assembled into a global
stiffness matrix.

(𝑛,𝑛′ )𝐾𝜈 (𝑢𝜂 , 𝑢𝜏 , 𝜃, 𝜃′) := ∇2
[
(𝑛,𝑛′ )U𝜈 (𝑢𝜂 , 𝑢𝜏 , 𝜃, 𝜃′)

]
(13.8)

13.2.7 Algorithm

The algorithm forperforming numerical calculations is now described. For an iteration
𝑛 that has already been calculated, the global displacements and rotations 𝑈𝑛, the
damages 𝐷𝑛, the stiffness matrix 𝐾𝑛 and the load matrix 𝑏𝑛, are known.

For the next step (𝑛+1), the displacements𝑈𝑛+1 are unknown, so the increment
of the displacement 𝛿𝑈𝑛+1 will be calculated. It is defined such that:

𝑈 (𝑛+1) =𝑈 (𝑛) + 𝛿𝑈 (𝑛+1) (13.9)

In addition, the loads shall be held as follows:

𝑏 (𝑛+1) = 𝑏 (𝑛) + 𝛿𝑏 (𝑛+1) (13.10)

By elementary matrix operations and by relating the stiffness matrix to displacements
and loads, the displacement increase is obtained:

𝛿𝑈 (𝑛+1) =
( [
𝐾 (𝑛)

]−1
−

[
𝐾 (𝑛−1)

]−1
)
· 𝑏 (𝑛) +

[
𝐾 (𝑛)

]−1
· 𝛿𝑏 (𝑛+1) (13.11)

In this way, with equation (11) we can calculate the increment of the displacement
𝛿𝑈𝑛+1 and with it, perform the calculation of the displacement 𝑈𝑛+1, which then
allows to update the damage 𝐷𝑛+1 and the stiffness matrix 𝐾𝑛+1.

13.3 Results

In this section, four case studies will be described with the aim of expanding the
descriptive results that can be obtained with the model described by Tran et al. [33].
The first corresponds to a comparative result of a simple wall. The second assesses
the influence of mortar on masonry behavior, while the last two aim to visualize and
explain some common in-plane failure phenomena.
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13.3.1 Comparative Result

In order to numerically compare the model formulated by Tran et al. [33], it is
intended to evaluate a simple masonry wall subjected to a lateral monotone force on
its superior side. Preciado [46] evaluated this scenario by the finite element method
in order to validate its proposed model. The study model can be seen graphically in
Fig. 13.4.

The geometric parameters of this model are detailed below. The width 𝑙𝑥 and
height 𝑙𝑦 correspond to 0.31 meters and 0.20 meters, respectively. In addition, the
mortar thickness 𝑙𝑚 is equal to 0.01 meters. It should be taken into account that both
the width and height correspond to dimensions of the augmented bricks. The elastic
rigidities and damage parameters used in the model can be seen in Table 13.1. In
this way, the results were obtained in a Force-Displacement graph of the top of the
masonry wall. The result shows a similar behavior with the one evaluated in [46],

Fig. 13.4: Masonry: (a) Masonry model of the present work. (b) Masonry wall studied in [46].

Table 13.1: Elastic stiffnesses and damage parameters..

Parameter Value Unit
𝑘
𝜂,𝑡
𝜈 2.05× 108 N/m

𝑘
𝜂,𝑐
𝜈 2.05× 108 N/m
𝑘𝜏
𝜈 2.271× 108 N/m

𝐵
𝜂,𝑡
𝜈 6× 10−5 m

𝐵
𝜂,𝑐
𝜈 6× 10−5 m
𝐵𝜏
𝜈0 6× 10−5 m
𝛼1 20 –
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where a maximum load of 47 kN is observed with a displacement of approximately 0.8
mm, and a maximum displacement of 1.75 mm, which are graphically compared in
Fig. 13.5. As Lourenço indicated in his doctoral thesis [4], the normal and tangential
rigidities are directly related to Young’s module and the shear modulus, respectively.
Where it is also known that the shear modulus is smaller than the Young module in
masonry, which is also reflected in the values of the normal and tangential stiffnesses
indicated in Table 13.1. On the other hand, it is valid to mention the presence of
friction, which is characteristic in masonry, due to the 𝛼1 parameter.

In addition, by analyzing Fig. 13.6 of the evolution of damage in masonry, the
behavior of the Force-Displacement curve can be explained. As iterations progress,
damage in the normal (compression) and tangential direction increases until the
maximum force is reached. Then, damage in the normal direction remains constant,
while tangential damage continues to increase until it reaches its maximum, leading
to softening.

Fig. 13.5 Comparison of
force-displacement graphs.

Fig. 13.6: Evolution of damage with respect to iterations in a specific part of the masonry.
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13.3.2 Influence of Mortar Thickness on Masonry Performance

In order to evaluate the influence of the mortar thickness on the masonry, three
scenarios will be evaluated, where each will have different mortar thicknesses, but the
rest of parameters will remain constant (Fig. 13.7). These thicknesses correspond to
10, 20 and 30 mm (Table 13.2). In addition, the elastic rigidities and the parameters
constituting the damage correspond to the values of Table 13.1. For the three cases,
a standard brick geometry corresponding to 215 x 65 mm in width and height
respectively shall be used, where a horizontal monotone force shall be applied to the
upper left corner.

When evaluating these scenarios, Force-Displacement curves were obtained for
each case. As can be seen in Figure 13.8, as the mortar thickness is reduced, the
maximum horizontal force that the masonry supports is reduced. It is common to
observe in some studies as in Caldeira et al. [47], where it is reported that a high
mortar thickness may be susceptible to cause a weakening in the structural behavior

Fig. 13.7: Masonry with different mortar thicknesses. (a) 10 mm (b) 20 mm (c) 30 mm.
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Table 13.2: Geometric parameters corresponding to the augmented bricks.

Thickness (𝑙𝑚 ) Width (𝑙𝑥 ) Height (𝑙𝑦 )
10 mm 0.225 m 0.075 m
20 mm 0.235 m 0.085 m
30 mm 0.245 m 0.095 m

Fig. 13.8 Force-Displacement
graphics according to mortar
thickness.

of masonry in general. In the model, this could be reflected in the decrease of the
maximum force in the Force-Displacement curves.

13.3.3 Bending and Shear Sliding

With the aim of studying the bending and shear sliding phenomena in masonry walls
reported in several studies as in [48]-[50], a scenario will be evaluated where the
characteristic length of damage 𝐵 will be modified. In the same way, the reference
values of Table 13.1 will be taken for a first case and, for the second case, the value of
B that will be the same in the normal and tangential direction, will be reduced. The
graphical result is shown in Fig. 13.9, where, in the case of the reference value B,
the wall tends to produce a bending, whereas, in the case of the reduced value B, the
wall tends to slide by shear. It is then said that, the wall will fail by shear as long as
the value of the characteristic length of the damage B is reduced, which has a direct
relation with the properties of the mortar. Figure 13.10 shows in greater detail the
movement of the bricks for each type of wall failure evaluated.

This is corroborated in some studies [51], where it is mentioned that this phe-
nomenon of sliding by shear is produced when poor or weak mortar mixtures are
present and there are low axial forces on the top of the wall.
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Fig. 13.9: Masonry and its respective Force-Displacement curves. (a) Bending 𝐵 = 6× 10−5 m (b)
Shear sliding 𝐵 = 6× 10−6 m.

Fig. 13.10 Row number five
(from the top): (a) bending, (b)
shear sliding.

13.3.4 Rocking

The rocking phenomenon has also been reported in numerous studies evaluating
in-plane failures of simple masonry walls [48]-[50]. For the present work, it will be
sought to simulate the same behavior, depending on the parameters used previously
and the displacements imposed on the wall, which are calculated as forces.

The parameters correspond to those of Table 13.1 and Table 13.2 for a masonry
of 10 mm thick mortar. The imposed displacements (𝑢𝑥 , 𝑢𝑦) correspond to (0.02 m,
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0.02 m). In addition, the damage characteristic length values in Table 13.3 were used.
The results in Fig. 13.11 show that due to the vertical and horizontal displacements
imposed, the masonry tends to balance with respect to the lower right, where in
addition a failure in the base is observed. It is important to note that this also occurs
due to the embedding of the base with respect to the wall.

13.4 Conclusions and Future Challenges

The study that has been developed is an extension of what was done by Tran et al.
[33], who worked on a structure of nine bricks, while the present work has been
developed on structures with a greater number of bricks. Thus, it has been possible
to monitor each of the augmented bricks, allowing to detect various types of shear,
bending and rocking failures.

The results obtained show an acceptable approximation by the proposal of Tran et
al. [33] of previous investigations made in this regard, as is the case of Preciado [46].
From this, it has been possible to detect some characteristic properties in masonry
as the case of friction and a tangential stiffness less than the normal stiffness.

The thickness of the mortar layer influences the structural behavior of a wall,
although this behavior will depend on whether the wall is subjected to compression
or tension. In the case of a wall subjected to compression, as is the case with the
load-bearing walls, it has been observed that, the smaller the thickness of the mortar

Table 13.3: Characteristic lengths of damage.

Parameter Value Unit
𝐵

𝜂,𝑡
𝜈 3× 10−5 m

𝐵
𝜂,𝑐
𝜈 3× 10−5 m
𝐵𝜏
𝜈0 3× 10−5 m

Fig. 13.11 Rocking in ma-
sonry wall.
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layer, the lower the damage. This has been observed in the present work, for the case
of the evaluation of the influence of the mortar thickness on the walls.

While it is true that anti-seismic structures require a certain ductility that allows a
controlled deformation, and thereby reduce seismic energy, a sharp reduction in the
rigidity of the mortar could cause its resistance to shearing to decrease, causing a
potential displacement of one row or set of rows from others, as evidenced by the
results of shear sliding.

The model of Tran et al. [33] assumes that a brick has an infinite rigidity, so that
the only element that has the possibility of failure is the mortar. This hypothesis
should be reviewed and the rigidity of a brick and its possible fracture incorporated
into the model. Therefore, the proposed model does not explain the diagonal failure
that a wall may present, due to a failure by shearing of the bricks. In this respect,
it would be desirable for the model consider the failure lines of the bricks and the
evolution of these during the iterations.
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