
Chapter 12
Rayleigh Waves in the Cosserat Half-Space
(Reduced Model) and Half-Space of Damaged
Material

Vladimir Erofeev, Artem Antonov, Anna Leonteva, and Alexey Malkhanov

Abstract The peculiarities of propagation of Rayleigh surface waves along the free
boundary of the half-space of the Cosserat medium (reduced model), as well as along
the free boundary of the half-space made of damaged material, are studied. It is shown
that, in contrast to the classical Rayleigh surface wave, a wave propagating along the
boundary of the Cosserat half-space has dispersion. In the plane “phase velocity –
frequency” for such waves, there are two dispersion branches: lower (“acoustic”) and
upper (“optical”). As the frequency increases, the phase velocity of the wave related
to the lower dispersion branch decreases. The phase velocity of the wave belonging to
the upper dispersion branch increases with increasing frequency. The phase velocity
of the surface wave in the entire frequency range exceeds the phase velocity of the
bulk shear wave. The stresses and displacements arising in the zone of propagation
of a surface wave are calculated.

For an isotropic elastic half-space with damage of its material, a self-consistent
problem is formulated that includes the dynamic equation of elasticity theory and the
kinetic equation of damage accumulation in the material of the medium. This system
of equations with boundary conditions expressing the absence of stresses at the
boundary of the half-space reduces to a complex dispersion equation. A surface wave
propagating along the boundary of a damaged half-space decays in the direction of
propagation, and low-frequency perturbations have frequency-dependent dissipation
and dispersion. It is shown that the dispersion has an anomalous character. It has
been established that with a decrease in the value of the damage factor, in the region
of high frequencies, the value of the phase velocity increases, and the group velocity
decreases. At very low frequencies, both velocities increase as the damage factor
decreases.
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12.1 Introduction

In 1885, Lord Rayleigh (John William Strett) theoretically demostrated that along the
plane boundary of a solid elastic half-space with a vacuum or a sufficiently rarefied
medium (for example, with air), waves can propagate, the amplitude of which rapidly
decreases with depth [1]. These waves, called Rayleigh surface waves, depending on
the frequency range, have different applied directions.

Almost immediately it became obvious that Rayleigh waves in the low frequency
range (1–100 Hz) are the main type of waves observed during earthquakes. Therefore,
they have been studied in detail in seismology for nearly 140 years [2].

The main regularities of the propagation of Rayleigh waves are as follows: the
absence of dispersion, i.e. the speed of the wave does not depend on its frequency and
is constant for each material; this speed reaches 0.87–0.96 of the speed of the bulk
shear wave; the displacement vector has longitudinal and transverse components,
while the transverse component always exceeds the longitudinal one.

In the cycle of works by Krylov [3]-[9], awarded by the Acoustics Institute of
Great Britain the Rayleigh Medal (often called the Nobel Prize in Acoustics) in
2000, dedicated to the study of elastic earth vibrations generated by trains and motor
vehicles, a very high level of earth vibrations generated by high-speed railways was
theoretically predicted. These vibrations are generated by high-speed trains moving
at a speed higher than the speed of Rayleigh surface waves in the ground. Krylov’s
theory was experimentally confirmed in 1997–1998 (with his direct participation) on
a new high-speed line in Sweden (Gothenburg-Malmo), where on some sections of
the route the Rayleigh wave speed was only 45 m/s, and the train speed of 160 km/h
was enough to observe the effect. The discovered effect began to be called "ground
vibration shock" (by analogy with the well-known sonic boom from a supersonic
aircraft), and the generation sources began to be called "trans-Rayleigh trains" [10].

It should be noted that the existence of critical speeds of movement of loads along
rail guides, when exceeded, bending waves are generated in the guides, was discussed
in the first half of the 1980s in the works of Vesnitsky and his school [11], as well
as in the works of G.G. Denisov, V.V. Novikov and E.K. Kugusheva [12]. However,
the calculated critical speeds showed the practical unattainability of the effect of
generation of bending waves by the vehicle in the guides. It turned out to be easier
for the load to overcome the speed of the Rayleigh wave in the soil located under the
guide rail, and the guide itself, along with the system of sleepers and ballast, acted
as an intermediary between the source of wave generation and the medium in which
these waves arose.

At present, the problems of the stability of the movement of high-speed objects
along rail guides, the problems of generating bending and bending-torsional waves
in rail guides are recognized as relevant and their results serve as methodological
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and computational support in setting up experiments on high-speed acceleration of
the payload on rocket tracks [13]-[15].

Since the 1950s, Rayleigh waves in the ultrasonic range (frequencies of the order
of 106 Hz) have been widely used. The state of the surface layer of a sample can be
controlled by their assistance (detection of surface and near-surface defects in samples
made of metal, glass, plastic and other materials – ultrasonic surface defectoscopy).
The influence of the properties of the surface layer of the sample on the velocity
and damping of Rayleigh waves makes it possible to use the latter to determine
the residual stresses of the surface layer of the metal, the thermal and mechanical
properties of the surface layer of the sample [16].

Since the early 1970s, Rayleigh waves with frequencies of 107–1010 Hz have
been widely used in miniature solid-state information processing devices (ultrasonic
delay lines, bandpass filters, signal couplers, phase shifters, etc.). At the junction
of ultra- and hypersonic acoustics, on the one hand, and solid-state electronics, on
the other hand, a branch of knowledge called acoustoelectronics has emerged. Such
an important industry as microelectronics based on SAW (i.e., on surface acoustic
waves) is based on the principles of acoustoelectronics [17].

Along with the classical continuum model, generalized continuum models are
widely used in the mechanics of a deformable solid body [18]-[39]. The most
well-known generalized (nonclassical) continuums include the micropolar Cosserat
medium and the gradient elastic medium. When working with a micropolar medium,
one should distinguish between the general model of a continuum proposed by
the brothers Eugène and François Cosserat in 1909, each point of which has three
translational and three rotational degrees of freedom [40], its particular case – a model
of a micropolar medium with constrained rotation of particles [41], and a reduced
model of a micropolar medium, proposed by L. Schwartz, D. Johnson and S. Feng in
1984 [42]-[45]. The model of a gradient elastic medium also appeared at the beginning
of the 20th century and is associated with the names of Leroux (1911, 1913) [46, 47]
and Jaramillo (1929) [48]. A number of authors have studied Rayleigh surface waves
within the framework of the Cosserat continuum [49] and gradient elastic medium
[50] models. Below we study the main regularities of Rayleigh wave propagation
along the free boundary of the half-space of the Cosserat medium (reduced model), as
well as along the free boundary of the half-space made of damaged material (another
version of the generalized continuum model).

12.2 Rayleigh Waves in the Cosserat Half-space (Reduced Model)

Let us consider the problem of propagation of elastic surface wave in a reduced
dynamic model of the Cosserat medium, which take place in the intermediate state
between the classical dynamics theory and the actual model of the Cosserat medium,
which has an asymmetry of the stress tensor and the presence of load moments, are
considered. In contrast to the latter, in the simplified model, the three of six elasticity
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constants are supposed to be equal to zero and, as a result, there is no couple-stress
tensor.

The equations of the dynamics of the Cosserat continuum have the form [41]:

𝜌
𝜕2𝑢𝑢𝑢

𝜕𝑡2
− (𝜆+2𝜇) graddiv𝑢𝑢𝑢 + (𝜇+𝛼) rot rot𝑢𝑢𝑢−2𝛼 rot𝛉 = 0,

𝐼
𝜕2𝛉

𝜕𝑡2
− (𝛽+2𝛾) graddiv𝛉 + (𝛾 + 𝜀) rot rot𝛉−2𝛼 rot𝛉 +4𝛼𝛉 = 0.

(12.1)

Here 𝑢𝑢𝑢 – displacements vector; 𝛉 – rotation vector; 𝜌 – density of the medium, 𝐼 – a
constant characterizing the inertial properties of macrovolume, equal to the product
of the moment of inertia of a particle of a substance around any axis passing through
its center of gravity by the number of particles per unit volume; 𝜆, 𝜇 – Lame constants,
𝛼, 𝛽, 𝛾, 𝜀 – new elastic constants of micropolar material satisfying the constraints
[41]:

𝛼 ≥ 0, 𝛾 + 𝜀 ≥ 0, 3𝛽+2𝛾 ≥ 0, − (𝛾 + 𝜀) ≥ 𝛾− 𝜀 ≥ (𝛾 + 𝜀) . (12.2)

In [49] the following dependence was found between these elastic constants:

𝜇 (2𝛾 + 𝛽) = (𝛼+ 𝜇) (𝛾 + 𝜀) . (12.3)

Along with the general case, a simplified version of the micropolar medium
(Cosserat pseudo-continuum) is also considered, in which a rigid dependence of the
rotation vector on the displacement rotor, which coincides with the relations of the
classical theory of elasticity, is assumed (𝛉 = 1

2 rot𝑢𝑢𝑢 – cramped rotation), but at the
same time, the moment stresses and asymmetry of the stress tensor are preserved. In
such a medium, the symmetric part of the stress tensor depends on the symmetric
strain tensor in the same way as in the classical theory of elasticity.

The equations of dynamics of the Cosserat pseudo-continuum have the form [41]:

𝜌 ¥𝑢𝑢𝑢− (𝜆+ 𝜇) graddiv𝑢𝑢𝑢− 𝜇Δ𝑢𝑢𝑢− 1
4
(𝛾 + 𝜀) rot rotΔ𝑢𝑢𝑢 + 1

4
rot rot ¥𝑢𝑢𝑢 = 0. (12.4)

In addition to this particular case, another special case of the Cosserat medium model
is known – the Cosserat reduced medium model, for which three of the six elastic
constants, specifically 𝛽, 𝛾, 𝜀, are equal to zero and, as a consequence, there is no
moment stress tensor. This model was first proposed in [42] for the description of
bulk materials.

The following system of equations of dynamics is used to describe the reduced
Cosserat medium [42]:

𝜌
𝜕2𝑢𝑢𝑢

𝜕𝑡2
− (𝜆+2𝜇) graddiv𝑢𝑢𝑢 + (𝜇+𝛼) rot rot𝑢𝑢𝑢−2𝛼 rot𝛉 = 0,

𝐼
𝜕2𝛉

𝜕𝑡2
−2𝛼 rot𝛉 +4𝛼𝛉 = 0,

(12.5)

which reduces to a single vector equation in displacements
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(𝜆+2𝜇) ∇ (∇ ·𝑢𝑢𝑢) − 𝜇∇∗ (∇∗𝑢𝑢𝑢) − 𝐽 𝜕
2

𝜕𝑡2
∇∗ (∇∗𝑢𝑢𝑢) = 𝜌 𝜕

2𝑢𝑢𝑢

𝜕𝑡2
. (12.6)

where the following designation ∇ is introduced in order to shorten the notation
(∇ ·𝑢𝑢𝑢 ≡ div𝑢𝑢𝑢, ∇∗𝑢𝑢𝑢 ≡ rot𝑢𝑢𝑢).

Let us introduce scalar 𝜑 and vector 𝛙 potentials thus displacements vector 𝑢𝑢𝑢 can
be written in the following form:

𝑢𝑢𝑢 = ∇𝜑+∇∗𝛙 . (12.7)

In the case of considering a plane problem, the vector potential will have only one
component different from zero. We denote this component by 𝜓.

Let us substitute displacement vector (12.7) into (12.6), we obtain:

∇
[
(𝜆+2𝜇)Δ𝜑− 𝜌 𝜕

2𝜑

𝜕𝑡2

]
+∇∗

[
𝜇Δ𝜓 + 𝐽Δ𝜕

2𝜓

𝜕𝑡2
− 𝜌 𝜕

2𝜓

𝜕𝑡2

]
= 0. (12.8)

Equation (12.8) is satisfied if each term of the expressions in square brackets is zero:

Δ𝜑− 1
𝑐2

1

𝜕2𝜑

𝜕𝑡2
= 0,

Δ𝜓 +𝐺Δ𝜕
2𝜓

𝜕𝑡2
− 1
𝑐2

2

𝜕2𝜓

𝜕𝑡2
= 0.

(12.9)

The following notations are introduced here: 𝑐2
1 =

(𝜆+2𝜇)
𝜌 , 𝑐2

2 =
𝜇
𝜌 , where 𝑐1 – velocity

of longitudinal wave, and 𝑐2 - shear wave velocity in a classical medium, 𝐺 = 𝐽/𝜇.
We will seek a solution to the equations in the form of harmonic waves which

propagate in the direction of the axis 𝑥 and have a heterogeneous structure in 𝑧:

𝜑 = Φ (𝑧) 𝑒−𝑖 (𝜔𝑡−𝑘𝑥 ) , 𝜓 = Ψ (𝑧) 𝑒−𝑖 (𝜔𝑡−𝑘𝑥 ) . (12.10)

Substituting formulas (12.10) into (12.9), we obtain from the latter ordinary differ-
ential equations:

𝜕2Φ

𝜕𝑧2
− 𝜈2

1Φ = 0,
𝜕2Ψ

𝜕𝑧2
− 𝜈2

2Ψ = 0, (12.11)

where

𝜈1 =

(
𝑘2 − 𝜔

2

𝑐2
1

) 1
2

, 𝜈2 =

(
𝑘2 − 𝜔2

𝑐2
2
(
1−𝐺𝜔2) )

1
2

.

From the solutions of Eqs. (12.11) we select only those that correspond to a
decrease in the wave amplitudes with depth:

Φ = 𝐴𝑒−𝜈1𝑧 , Ψ = 𝐵𝑒−𝜈2𝑧 . (12.12)

The postulate adopted here on the extinction of waves with depth entails the assertion
that 𝜈𝛼 (𝛼 = 1,2) should be real and positive values, i.e. 𝜈𝛼 > 0.
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The final solution of equations (12.9) will have the form:

𝜑 = 𝐴𝑒−𝜈1𝑧−𝑖 (𝜔𝑡−𝑘𝑥 ) , 𝜓 = 𝐵𝑒−𝜈2𝑧−𝑖 (𝜔𝑡−𝑘𝑥 ) . (12.13)

Assuming that the boundary 𝑧 = 0 is free of stresses, we have three conditions:

𝜎𝑧𝑧 |𝑧=0 = 0, 𝜎𝑧𝑥 |𝑧=0 = 0, 𝜎𝑧𝑦

��
𝑧=0 = 0. (12.14)

In terms of displacements, these stress components are expressed as follows:

𝜎𝑧𝑥 = 𝜇

(
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤
𝜕𝑥

)
+ 𝐽

(
𝜕3𝑤

𝜕𝑥𝜕𝑡2
− 𝜕3𝑢

𝜕𝑧𝜕𝑡2

)
, 𝜎𝑧𝑧 = 𝜆

(
𝜕𝑢

𝜕𝑥
+ 𝜕𝑤
𝜕𝑧

)
+2𝜇

𝜕𝑤

𝜕𝑧
, (12.15)

and the relation of displacements and potentials (see (12.7)) is given by the expres-
sions:

𝑢 =
𝜕𝜑

𝜕𝑥
− 𝜕𝜓
𝜕𝑧
, 𝑤 =

𝜕𝜑

𝜕𝑧
+ 𝜕𝜓
𝜕𝑥
, (12.16)

stresses can be expressed with the help of potentials in the following form:

𝜎𝑧𝑧 = 𝜆

(
𝜕2𝜑

𝜕𝑥2 + 𝜕
2𝜑

𝜕𝑧2

)
+2𝜇

(
𝜕2𝜑

𝜕𝑧2
+ 𝜕2𝜓

𝜕𝑥𝜕𝑧

)
,

𝜎𝑧𝑥 = 𝜇

(
2
𝜕2𝜑

𝜕𝑥𝜕𝑧
+ 𝜕

2𝜓

𝜕𝑥2 − 𝜕
2𝜓

𝜕𝑧2

)
− 𝐽

(
𝜕4𝜓

𝜕𝑥2𝜕𝑡2
+ 𝜕4𝜓

𝜕𝑧2𝜕𝑡2

)
.

(12.17)

Substituting expressions (12.13) into (12.17) and using boundary conditions
(12.14), we obtain the following system of algebraic equations:[

𝜆
(
𝜈2

1 − 𝑘2
)
+2𝜇𝜈2

1

]
𝐴−2𝜇𝑖𝑘𝜈2𝐵 = 0,

2𝜇𝑖𝑘𝜈1𝐴+
(
𝜇𝑘2 + 𝜇𝜈2

2 − 𝐽𝜈2
2𝜔

2 + 𝐽𝜔2𝑘2
)
𝐵 = 0.

(12.18)

From the compatibility condition of this system we obtain the relation[
𝜆
(
𝜈2

1 − 𝑘2
)
+2𝜇𝜈2

1

] [
𝜇
(
𝑘2 + 𝜈2

2

)
+ 𝐽𝜔2

(
𝑘2 − 𝜈2

2

)]
−4𝜇𝜈1𝜈2𝑘

2 = 0, (12.19)

which by introducing notations

𝜉 =
𝑐2

2

𝑐2
1
< 1, 𝜂 =

𝑐2

𝑐2
2

and account of dependences

𝑐2
1

𝑐2
2
=
𝜆+2𝜇
𝜇

,
𝜆

𝜇
=
𝑐2

1

𝑐2
2
−2, 𝜈2

1 = 𝑘
2 − 𝜔

2

𝑐2
1
, 𝜈2

2 = 𝑘
2 − 𝜔2

𝑐2
2
(
1−𝐺𝜔2) ,

can be transformed to the following form:
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𝜂

[
𝜂3 −8𝜂2 +

(
24−16

𝜉

1− 𝐽
𝜇𝜔

2

)
𝜂−16

(
2− 1

1− 𝐽
𝜇𝜔

2
− 𝜉

)]
= 0. (12.20)

Note that (12.20) is a dispersion equation for calculating the phase velocity (𝑐) of
Rayleigh surface wave.

Figure 12.1 presents the dependence of the square of the phase velocity of the
surface wave 𝜂 = 𝑐2

𝑅 on frequency 𝜔. The curves are given in dimensionless form:
squared surface wave velocity 𝑐2

𝑅 is divided on squared shear velocity 𝑐2
2.

The graph shows that here, in contrast to the classical case, the Rayleigh surface
wave has dispersion. In the plane ”phase velocity - frequency” there are two dispersion
branches: the lower (”acoustic”) and the upper (”optical”). As the frequency increases,
the phase velocity of the wave related to the lower dispersion branch also decreases at
infinity the square of the velocity of the surface wave 𝜂→ 0.7. The phase velocity of
the wave related to the upper dispersion branch increases with increasing frequency.
For frequencies𝜔 > 9 this growth becomes unlimited. Therefore, the upper dispersion
branch describes wave processes in the frequency range 0 < 𝜔 < 9, further, the process
ceases to be wave.

A plane shear wave is described by the second of equations (12.9):

𝜕2𝜓

𝜕𝑥2 +𝐺 𝜕4𝜓

𝜕𝑥2𝜕𝑡2
− 1
𝑐2

2

𝜕2𝜓

𝜕𝑡2
= 0.

The solution to this equation we will look in the form:

𝜓 = 𝐵𝑒𝑖 (𝜔𝑡−𝑘𝑥 ) ,

which leads to dispersion equation

−𝑘2 +𝐺𝑘2𝜔2 + 1
𝑐2

2
𝜔2 = 0. (12.21)

Fig. 12.1 The dependence of
squared phase velocity of the
surface wave on frequency
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From (12.21) we determine the relationship between the frequency and the wave
number of the shear wave:

𝜔2 =
𝑘2𝑐2

2

1+ 𝐺𝑘2

𝑐2
2

and the square of the phase velocity of this wave:

𝑣2ϕ𝜏 =
𝜔2

𝑘2 =
𝑐2

2

1+ 𝐺𝑘2

𝑐2
2

.

Figure 12.2 presents two dependences: the square of the surface wave velocity
𝑐2
𝑅 (red line) and the square of the phase velocity of the shear wave 𝑣2ϕ (blue line).

The curves are given in dimensionless form: the square of the surface wave velocity
is divided on the square of the shear wave velocity of the classical medium 𝑐2

2, and
the square of the phase velocity of the shear wave 𝑣2ϕ𝜏 is divided on 𝑐2

2 as well.
The graph shows that the phase velocity of the surface wave in the entire frequency
range exceeds the phase velocity of the shear wave, which originates in unity and
monotonically decreases to zero when 𝑐2

𝑅 → 0.7, with the condition 𝜔→∞.
Relations (12.13) and (12.16) allow us to calculate the displacements:

𝑢 = (𝑖𝑘 𝐴𝑒−𝜈1𝑧 + 𝜈2𝐵𝑒
−𝜈2𝑧) 𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) , 𝑤 = (−𝐴𝜈1𝑒

−𝜈1𝑧 +𝐵𝑖𝑘𝑒−𝜈2𝑧) 𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) .
(12.22)

The constant 𝐴 can be expressed through 𝐵, with the help of the second equation
from (12.18):

𝐵 = − 2𝑖𝜈1𝑘𝜇

𝜇𝑘2 + 𝜇𝜈2
2 − 𝐽𝜈2

2𝜔
2 + 𝐽𝑘2𝜔2

𝐴,

then components 𝑢 and 𝑤 take the following form:

Fig. 12.2 Dependences of the
squared surface wave velocity
𝑐2
𝑅

(red line) and the square
of the phase velocity of the
shear wave 𝑣2

ϕ (blue line) on
frequency
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𝑢 =

(
𝑖𝑘 𝐴𝑒−𝜈1𝑧 − 2𝑖𝜈1𝑘𝜇

𝜇𝑘2 + 𝜇𝜈2
2 − 𝐽𝜈2

2𝜔
2 + 𝐽𝑘2𝜔2

𝐴𝜈2𝑒
−𝜈2𝑧

)
𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) ,

𝑤 =

(
−𝐴𝜈1𝑒

−𝜈1𝑧 + 2𝜈1𝑘
2𝜇

𝜇𝑘2 + 𝜇𝜈2
2 − 𝐽𝜈2

2𝜔
2 + 𝐽𝑘2𝜔2

𝐴𝑒−𝜈2𝑧

)
𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) .

(12.23)

Taking the real part of Eqs. (12.23), we obtain the final formulas for the displacements:

𝑢 = −𝐴𝑘
(
𝑒−𝜈1𝑧 − 2𝜈1𝜈2𝜇

𝜇𝑘2 + 𝜇𝜈2
2 − 𝐽𝜈2

2𝜔
2 + 𝐽𝑘2𝜔2

𝑒−𝜈2𝑧

)
sin (𝑘𝑥−𝜔𝑡),

𝑤 = −𝐴𝜈1

(
𝑒−𝜈1𝑧 − 2𝑘2𝜇

𝜇𝑘2 + 𝜇𝜈2
2 − 𝐽𝜈2

2𝜔
2 + 𝐽𝑘2𝜔2

𝑒−𝜈2𝑧

)
cos (𝑘𝑥−𝜔𝑡).

(12.24)

Figure 12.3 shows the depth dependences of the displacement amplitudes 𝑢 and 𝑤 of
the Rayleigh wave on depth in Cosserat medium and classic continuum. The curves
are shown in the dimensionless form: the amplitudes of displacements are related to
the amplitude of normal displacement on the surface 𝑤 |𝑧=0 = 0. Depth is shown in
fractions of a wavelength.

Calculations by formulas (12.24) show that the amplitude of the displacement
normal to the surface increased by about 25% compared with the classical case. The
amplitude of movement parallel to the surface also increased by 90% and changed
sign at depth 𝑧 = 0.18𝜆. The graph shows that the offset parallel to the surface can
exceed the transverse component in a thin near-surface layer. The trajectories of
particles motion during the passage of a surface wave, as in the classical case, are
ellipses.

Displacements (12.24) allow us to calculate the components of the stress tensor:

Fig. 12.3 Dependence of
displacement amplitudes 𝑢
and 𝑤 in a Rayleigh wave on
depth: amplitude of normal
displacement to the surface
in the simplified Cosserat
model (blue line), amplitude
of normal displacement to the
surface in the classical model
(burgundy line), amplitude
of parallel displacement to
the surface in the simplified
Cosserat model (red line), am-
plitude of parallel movement
to the surface in the classical
model (green line).
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𝜎𝑥𝑥 = 𝐴

[(
𝜆
(
𝜈2

1−𝑘2
)
+2𝜇𝜈2

1

)
e−𝜈1𝑦+ 4𝜈1𝜈2𝑘

2𝜇2

𝜇𝑘2 + 𝜇𝜈2
2 − 𝐽𝜈2

2𝜔
2 + 𝐽𝑘2𝜔2

e−𝜈2𝑦

]
cos (𝑘𝑥−𝜔𝑡),

𝜎𝑥𝑧 = 2𝐴𝜇𝜈1𝑘 [𝑒−𝜈1𝑦 − 𝑒−𝜈2𝑦] sin (𝑘𝑥−𝜔𝑡),

𝜎𝑧𝑧 = 𝐴

[(
𝜆
(
𝜈2

1− 𝑘2
)
+2𝜇𝜈2

1

)
𝑒−𝜈1𝑦− 4𝜈1𝜈2𝑘

2𝜇2

𝜇𝑘2 + 𝜇𝜈2
2 − 𝐽𝜈2

2𝜔
2 + 𝐽𝑘2𝜔2

𝑒−𝜈2𝑦

]
cos (𝑘𝑥−𝜔𝑡),

𝜎𝑧𝑥 = 2𝐴𝜇𝜈1𝑘

[
𝑒−𝜈1𝑦 − 𝜇𝑘

2 + 𝜇𝜈2
2 + 𝐽𝜈2

2𝜔
2 − 𝐽𝑘2𝜔2

𝜇𝑘2 + 𝜇𝜈2
2 − 𝐽𝜈2

2𝜔
2 + 𝐽𝑘2𝜔2

𝑒−𝜈2𝑦

]
sin (𝑘𝑥−𝜔𝑡).

Figure 12.4 presents stress changes 𝜎𝑥𝑥 ,𝜎𝑥𝑧 ,𝜎𝑧𝑧 ,𝜎𝑧𝑥 in a Rayleigh wave from the
depths of half-space. The curves are presented in a dimensionless form: the stress
amplitudes are related to the amplitude of the normal stress on the surface 𝜎𝑥𝑥 |𝑧=0.
The graphs also show that𝜎𝑥𝑥 changes sign, whereas 𝜎𝑥𝑧 ,𝜎𝑧𝑧 ,𝜎𝑧𝑥 reach a maximum
at approximately 𝑧 = 1.5 and then exponentially decreases with depth. It is also seen
that the stress tensor in this case is asymmetric: the stress 𝜎𝑥𝑧 reaches a greater value
than 𝜎𝑧𝑥 . The normal stresses in this case decrease with the depth of half-space in
the same way as it does with normal stresses for the classical Rayleigh wave.

12.3 Rayleigh Waves in the Half-space of Damaged Material

Currently, the mechanics of damaged media is being intensively developed, which
studies both the stress-strain state of media and the accumulation of damage in their
materials. Damage is usually understood as a reduction in the elastic response of the
body due to a reduction in the effective area that transfers internal forces from one
part of the body to another part of it, which, in turn, is caused by the appearance

Fig. 12.4 Dependences of
stress amplitudes in a surface
wave on depth



12 Rayleigh Waves in the Cosserat Half-Space and Half-Space of Damaged Material 181

and development of a scattered field of microdefects (microcracks – in elasticity,
dislocations – in plasticity, micropores – in creep, surface microcracks in fatigue)
[51, 52, 53].

The continuum damage mechanics has been intensively developed, starting from
the fundamental works of Kachanov, generalized in [54], and Rabotnov, summarized
in [55]. In traditional calculations, a measure of damage in the process of deformation
development can be expressed through the scalar damage parameter 𝜓 (𝑥, 𝑡), which
characterizes the relative density of microdefects uniformly scattered per unit volume.
This parameter is equal to zero when there is no damage, and is close to one at the
moment of destruction.

As a rule, in the mechanics of a deformable solid, the problems of dynamics are
considered separately from the problems of damage accumulation. When developing
such methods, it is customary to postulate in advance that the elastic wave velocity is
a given function of damage, and then experimentally determine the proportionality
coefficients. The phase velocity of the wave and its attenuation are usually considered
to be power functions of frequency and linear damage functions. With undoubted ad-
vantages (simplicity), this approach has a number of disadvantages, like any approach
that is not based on mathematical models of processes and systems.

Let us consider a self-consistent problem with damage to the material, which
includes the dynamic equation of the theory of elasticity and the kinetic equation of
damage accumulation in the material of the medium. We assume that the damage is
uniformly distributed in the material of the medium. Let us study the propagation of
a surface wave along the free boundary of the damaged half-space. We assume that
all processes are homogeneous along the third axis.

In [56, 57, 58] the problem to be self-consistent is considered, which includes,
in addition to the damage development equation, the dynamic equation of elasticity
theory:

𝜌
𝜕2𝑢𝑢𝑢

𝜕𝑡2
=

(
𝐾 + 1

3
𝐺

)
graddiv𝑢𝑢𝑢 +𝐺Δ𝑢𝑢𝑢− 𝛽1 grad𝜓,

𝜕𝜓

𝜕𝑡
+𝛼𝜓− 𝛽2 div𝑢𝑢𝑢 = 0.

(12.25)

Here 𝑢𝑢𝑢 – displacement vector, 𝐾 – modulus of dilatation, 𝐺 – shear modulus, 𝜌 –
density of the material, 𝑡 – time, 𝛼 = 1

𝜏∗ , 𝛽1, 𝛽2 – constant parameters characterizing
the damage of the material and the relationship of cyclic processes with the processes
of damage accumulation (𝛼 > 0); 𝜏∗ – relaxation time.

When considering the problem of the propagation of a Rayleigh surface wave in
an isotropic elastic half-space in the presence of damage to its material, we restrict
ourselves to the two-dimensional case when all processes are homogeneous along
the axis 𝑥2. System of Eqs. (12.25) then becomes two-dimensional and acquires the
following form:

𝜌
𝜕2𝑢1

𝜕𝑡2
− (𝜆+2𝜇) 𝜕

2𝑢1

𝜕𝑥2
1
− 𝜇 𝜕

2𝑢1

𝜕𝑥2
3
− (𝜆+ 𝜇) 𝜕2𝑢3

𝜕𝑥1𝜕𝑥3
= −𝛽1

𝜕𝜓

𝜕𝑥1
, (12.26)
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𝜌
𝜕2𝑢3

𝜕𝑡2
− (𝜆+2𝜇) 𝜕

2𝑢3

𝜕𝑥2
3
− 𝜇 𝜕

2𝑢3

𝜕𝑥2
1
− (𝜆+ 𝜇) 𝜕2𝑢1

𝜕𝑥1𝜕𝑥3
= −𝛽1

𝜕𝜓

𝜕𝑥3
, (12.27)

𝜕𝜓

𝜕𝑡
+𝛼𝜓 = 𝛽2 (𝜆+2𝜇)

(
𝜕𝑢1
𝜕𝑥1

+ 𝜕𝑢3
𝜕𝑥3

)
, (12.28)

where 𝑢1 (𝑥1, 𝑥3, 𝑡), 𝑢3 (𝑥1, 𝑥3, 𝑡) – displacement vector components along the axes 𝑥1
and 𝑥3 respectively; 𝜆, 𝜇 – Lamé’s constants.

System of Eqs. (12.26)–(12.27) must be supplemented with boundary conditions
expressing the absence of stresses on the boundary of the half-space:[

𝜕𝑢1
𝜕𝑥3

+ 𝜕𝑢3
𝜕𝑥1

] ����
𝑥3=0

= 0, (12.29)

[
𝜕𝑢3
𝜕𝑥3

+
(
1−2

𝑐2
𝜏

𝑐2
𝑙

)
𝜕𝑢1
𝜕𝑥1

] �����
𝑥3=0

= 0, (12.30)

where 𝑐𝑙 =
√︃

𝜆+2𝜇
𝜌 and 𝑐𝜏 =

√︃
𝜇
𝜌 – propagation velocities of dilation and shear waves

in an infinite medium.
Eliminating the damage function from system of Eqs. (12.26)–(12.27), we obtain

two equations for longitudinal and transverse displacements:

𝜕2𝑢1

𝜕𝑡2
− 𝑐2

𝑙

(
1− 𝛽1𝛽2

𝛼

)
𝜕2𝑢1

𝜕𝑥2
1
− 𝑐2

𝜏

𝜕2𝑢1

𝜕𝑥2
3
−

(
𝑐2
𝑚− 𝑐2

𝑙

𝛽1𝛽2
𝛼

)
𝜕2𝑢3
𝜕𝑥1𝜕𝑥3

+

+ 1
𝛼

𝜕3𝑢1

𝜕𝑡3
− 𝑐

2
𝑙

𝛼

𝜕3𝑢1

𝜕𝑥2
1𝜕𝑡

− 𝑐
2
𝜏

𝛼

𝜕3𝑢1

𝜕𝑥2
3𝜕𝑡

− 𝑐
2
𝑚

𝛼

𝜕3𝑢3
𝜕𝑥1𝜕𝑥3𝜕𝑡

= 0,
(12.31)

𝜕2𝑢3

𝜕𝑡2
− 𝑐2

𝑙

(
1− 𝛽1𝛽2

𝛼

)
𝜕2𝑢3

𝜕𝑥2
3
− 𝑐2

𝜏

𝜕2𝑢3

𝜕𝑥2
1
−

(
𝑐2
𝑚− 𝑐2

𝑙

𝛽1𝛽2
𝛼

)
𝜕2𝑢1
𝜕𝑥1𝜕𝑥3

+

+ 1
𝛼

𝜕3𝑢3

𝜕𝑡3
− 𝑐

2
𝑙

𝛼

𝜕3𝑢3

𝜕𝑥2
3𝜕𝑡

− 𝑐
2
𝜏

𝛼

𝜕3𝑢3

𝜕𝑥2
1𝜕𝑡

− 𝑐
2
𝑚

𝛼

𝜕3𝑢1
𝜕𝑥1𝜕𝑥3𝜕𝑡

= 0,
(12.32)

where 𝑐𝑚 =
√︃

𝜆+𝜇
𝜌 (𝑐𝜏 < 𝑐𝑚 < 𝑐𝑙), note that 𝑐2

𝑚 = 𝑐2
𝑙 − 𝑐2

𝜏 .
Consider a perturbation that propagates along the boundary 𝑥3 = 0 and attenuates

in the direction of the axis 𝑥3. The components of the displacement vector takes the
following form:

𝑢1 =
𝜕𝜑

𝜕𝑥1
− 𝜕𝜃

𝜕𝑥3
, 𝑢3 =

𝜕𝜑

𝜕𝑥3
+ 𝜕𝜃

𝜕𝑥1
, (12.33)

where 𝜑 – scalar potential (rotgrad𝜑 = 0), 𝜃 – nonzero component of the vector
potential 𝛉 = {0, 𝜃,0} (divrot𝛉 = 0). The expressions for the potentials are as follows:

𝜑 = 𝐴1𝑒
−𝑞1𝑥3+𝑖 (𝑘𝑥1−𝜔𝑡 ) , 𝜃 = 𝐴2𝑒

−𝑞2𝑥3+𝑖 (𝑘𝑥1−𝜔𝑡 ) , (12.34)
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where 𝜔 – frequency, 𝑘 – wave number, 𝑞1, 𝑞2 – positive coefficients characterizing
the decay of perturbations deep into the half-space, 𝐴1, 𝐴2 – arbitrary constants.

From system (12.29)–(12.32), taking into account (12.33)–(12.34), we find the
dispersion equation

−𝑐2
𝑙

(
𝑘2 − 𝑞2

1

) (
𝑘2 + 𝑞2

2

)
+2𝑐2

𝜏𝑘
2
(
𝑘2 + 𝑞2

2 −2𝑞1𝑞2

)
= 0, (12.35)

in which the coefficients 𝑞1, 𝑞2 are defined with the following relations

𝑞2
1 = 𝑘

2 − (𝑖𝜔−𝛼)𝜔2

(𝑖𝜔−𝛼+ 𝛽1𝛽2) 𝑐2
𝑙

, 𝑞2
2 = 𝑘

2 − 𝜔
2

𝑐2
𝜏

. (12.36)

From relations (12.35), (12.36) it follows that the wave number 𝑘 is a complex valued
𝑘 = 𝑘1 + 𝑖𝑘2. Substituting this expression into the complex dispersion equation and
separating the real and imaginary parts, we obtain a system of two nonlinear algebraic
equations.

In the limiting case, when there is no damage in the material, the system of
algebraic equations is reduced to the dispersion equation for the Rayleigh wave, and
the frequency dependence of the wave number is given by the expression

𝜔6 −8𝑘2
1𝜔

4 +8𝑘4
1

(
3−2𝑎2

1

)
𝜔2 −16𝑘6

1

(
1− 𝑎2

1

)
= 0 (12.37)

where 𝑎1 =
𝑐𝜏
𝑐𝑙

. Dispersion equation (12.37) is written in dimensionless variables𝜔, 𝑘
(𝜔 = 𝛼𝜔, 𝑘 = 𝛼

𝑐𝜏
𝑘). The dimensionless propagation velocity of the Rayleigh wave is

defined as 𝑐𝑅 = 𝜔
𝑘1

. It is known that the classical Rayleigh wave propagates along the
free boundary of the half-space without attenuation and does not have dispersion, its
velocity is a constant value for each material.

It can be seen from (12.35) and (12.36) that in the presence of damage in the
material, the Rayleigh wave attenuates during propagation. Frequency dependences
of the real and imaginary parts of the wavenumber for a change in the damage
parameter and a fixed parameter 𝑎1 are shown in the Figs. 12.5 and 12.6. Parameter
𝑎1 can be expressed through Poisson coefficient (𝜈):

𝑎1 =

√︂
1−2𝜈
2−2𝜈

and its value varies within

0 ≤ 𝑎1 ≤
√

2
2
.

Dimensionless parameter
𝑎2 =

𝛽1𝛽2
𝛼

characterizes the damage of the material, the sign of this parameter depends on the
signs of the initial parameters 𝛽1, 𝛽2, more often 𝑎2 < 0. The dispersion curves have
fundamentally different forms for positive and negative values of this parameter.
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Fig. 12.5: Frequency dependences of the real part of the wave number 𝑘1 (𝜔) for different values
of the parameter 𝑎2: 𝑎 (1)

2 = −1 (solid line), 𝑎 (2)
2 (dashed line), 𝑎 (3)

2 = 0 (dashed line with spaces),
𝑎 (1)

2 < 𝑎 (2)
2 < 𝑎 (3)

2 .

When 𝑎2 ≠ 0 the dispersion curves of the real and imaginary parts of the frequency
have two branches, and the positive values 𝑘1 correspond to positive values 𝑘2, and
for negative values 𝑘1 – negative values 𝑘2. Therefore, it is sufficient to consider
these dependences in the first quarter. Figure 12.5 shows the dependences 𝑘1 (𝜔) for
different values of the parameter 𝑎2, here are depicted two dependences

𝑓𝑖 = 𝑘1

(
𝜔, 𝑎2 = 𝑎

(𝑖)
2

)
− 𝑘1 (𝜔,𝑎2 = 0) , 𝑖 = 1,2,

which clearly show the existing deviations of the curve under consideration from the
dispersion line corresponding to the classical Rayleigh wave.

From Figs. 12.6 and 12.7 it can be seen that the dependence 𝑘2 (𝜔), has a horizontal
asymptote at 𝜔→+∞, and the damping factor 𝛾 = 𝑘2

𝑘1
tends to zero at large values

𝜔. When 𝑎2 = 0 the graph of the dependence of the real part of the wave number on
frequency is a straight line, while the imaginary part is absent.

The dependences of phase
𝑣𝑝ℎ =

𝜔

𝑘1

and group
𝑣𝑔𝑟 =

𝑑𝜔

𝑑𝑘1

velocities on frequency are shown in Fig. 12.8. It can be seen that for a fixed non-zero
value of the parameter 𝑎2 the group velocity curve is located above the phase velocity
curve; dispersion is evident at low frequencies. With a decrease in the absolute
value of the damage factor, the amplitudes of both curves decrease, while the value
of the phase velocity in the entire frequency range increases, and the value of the
group velocity increases at lower frequencies and decreases at higher frequencies; the
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Fig. 12.6: Frequency dependences of the
imaginary part of the wave number 𝑘2 (𝜔) for
different values of the parameter 𝑎2: 𝑎 (1)

2 = −1
(solid line), 𝑎 (2)

2 (dashed line), 𝑎 (1)
2 < 𝑎 (2)

2 < 0.

Fig. 12.7: Attenuation coefficient dependences
𝛾 (𝜔) for different values of the parameter 𝑎2:
𝑎 (1)

2 = −1 (solid line), 𝑎 (2)
2 (dashed line),

𝑎 (1)
2 < 𝑎 (2)

2 < 0.

Fig. 12.8 Dependences of
phase 𝑣𝑝ℎ (𝜔) (1) and group
velocities 𝑣𝑔𝑟 (𝜔) (2) veloc-
ities at different values of
the parameter 𝑎2: 𝑎 (1)

2 = −1
(solid line), 𝑎 (2)

2 (dashed line),
𝑎 (3)

2 = 0 (dashed line with
spaces), 𝑎 (1)

2 < 𝑎 (2)
2 < 𝑎 (3)

2

maximum of the group velocity function drops and shifts towards low frequencies.
When 𝑎2 = 0 curves of phase and group velocities coincide 𝑣𝑝ℎ = 𝑣𝑔𝑟 = const, where
the constant is given by equation (12.37) and depends only on Poisson coefficient.

12.4 Conclusion

We consider a simplified (reduced) dynamic model of a Cosserat medium, which
occupies an intermediate position between the classical dynamic theory of elasticity
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and the proper Cosserat medium model, which has asymmetry in the stress tensor
and the presence of moment stresses. In contrast to the latter, in the simplified model,
three of the six elastic constants are zero and, as a result, there is no moment stress
tensor.

In the two-dimensional formulation for the model of a reduced medium, the
problem of the propagation of an elastic surface wave along the half-space boundary
was solved. The solution of the equations was described as the sum of the scalar
and vector potentials, and only one component of the vector potential is nonzero. It
is shown that such a wave, in contrast to the classical surface Rayleigh wave, has
a dispersion. The phase velocity of the surface wave in the entire frequency range
exceeds the phase velocity of the bulk shear wave. The stresses and displacements
arising in the zone of propagation of the surface wave are calculated.

In the presence of damage in the medium, surface waves attenuate in the process of
propagation along the boundary of the half-space and have dispersion. The presence of
damage contributes to the appearance of insignificant dispersion in the low-frequency
range. The smaller the value of the damage coefficient, the less its manifestation. The
dispersion is anomalous. In the absence of damage in the medium, the surface wave
propagates without dispersion and attenuation.
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