
Chapter 11
Representative Volume Element Size and Length
Scale Identification in Generalised
Magneto-Elasticity

Sinan Eraslan, Inna M. Gitman, Mingxiu Xu, Harm Askes, and René de Borst

Abstract A generalised magneto-elastic continuum model with gradients of strain,
magnetic field, and piezo-magnetic coupling terms has been discussed in this
study. Characteristic length scale parameters, accompanying the higher order com-
ponents in the model, have been identified in terms of representative volume ele-
ment (RVE) sizes, in order to introduce the microstructural information to material
properties on the macro-level. Following this qualitative definition, a quantitative
determination, and the analysis of RVE sizes in different physical phenomena, a RVE
and, hence, length-scale enriched generalised gradient magneto-elastic continuum
model has been employed in a benchmark numerical example demonstrating the
removal of singularities from magnetic and mechanical fields.
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11.1 Introduction

Smart composite materials have been the topic of many research investigations in the
last few decades due to being responsive to external stimulus such as temperature, pH,
electric or magnetic field [1, 2]. One type of these responsive materials, known as
magnetorheological elastomers (MREs), consist of magnetic particles embedded in
a silicone-based elastomer, and present a coupling between magnetism and elasticity
via the magnetostriction effect [1]-[4]. Magnetostriction is a phenomenon in which
a magnetic field leads to a change in shape in ferromagnetic materials. In MREs,
particles will exhibit magnetostrictive behaviour when a magnetic field is applied.
Thus, forces will be exerted to the polymer matrix and the composite material will
deform [3, 5]. This coupling phenomena proposes various potential applications in
many engineering fields, including actuators, sensors, vibration isolation and control,
sensing of ultrasonic waves, micro beams/plates in micro-electro-mechanical systems
(MEMS) and dialysis membranes in biomedical applications [1]-[3], [6]-[8]. Various
magnetic materials such as Terfenol-D, cobalt ferrite, certain earth metals and iron
alloys can be used as magnetic filler with several alternatives for the elastic matrix
such as natural rubber, silicone rubber, vinyl rubber or polyurethane [2, 4, 9, 10].

MREs can be categorised as macroscopically isotropic or anisotropic depending on
the particle distribution in the matrix. Polymer and particles are mixed mechanically
with some additives, and then the mixture is cured without or with magnetic field to
obtain isotropic or anisotropic MREs, respectively [2, 4, 9]. Various reviews have
been conducted on the fundamentals of magnetostriction, manufacturing/modelling
of MREs, and their applications. Magnetic responsive polymer composites (MRPCs)
have been reviewed by Thévenot et al. [2] and Filipcsei et al. [1] by presenting
different types of MRPCs, detailed fabrication methods including used products,
preparation steps and chemical processes. Progress after 2000 and the current state
of those materials have been evaluated by Elhajjar et al. [3] with some examples of
different compositions (such as galfenol alloys, cobalt ferrites, Terfenol-D alloys and
carbonyl iron). Ekreem et al. [5] explained how magnetostriction occurs and presented
measurement procedures of this phenomenon. In this overview, the advantages and
disadvantages of the procedures were discussed to conclude the most common and
sensitive methods.

Researchers have proposed various microscopic and macroscopic material models
of MREs and ferrogels since their introduction in the late 1990s. A microscopic
model has been presented by Wood and Camp [10] to study the relationship between
physical properties of the ferrogels and features of the microstructure using Monte
Carlo computer simulations. These authors demonstrated that it is feasible to control
the elastic modulus of the ferrogel by applying a uniform magnetic field to the
samples at the gel-formation stage. Another microscopically motivated approach,
derived from the continuum formulation of a magneto-mechanical boundary value
problem, has been developed by Kalina et al. [11] to study the influence of mechanical
preloads on the deformation behaviour of MREs. Attaran et al. [12] presented
a macroscopic model to capture the mechanical deformation of ferrogels. They
proposed this macroscopic model as a simplified form of a previously developed
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continuum model, and they demonstrated a good agreement between numerically
predicted and experimental results. Further, Raikher and Stolbov [13] have followed a
continuum approach for MREs by considering them as a homogeneous and isotropic
elastic medium. Besides limitations and drawbacks, the model can present practical
and experimentally acceptable results.

It is known that microscopic properties affect the macroscopic behaviour of
heterogeneous materials. Therefore, introducing microstructural information in the
macroscopic continuum results in a significant improvement in accurately describing
and predicting the response of an MRE. Accordingly, a multi-scale approach can
be used in the analysis of these materials as various scales have to be studied
simultaneously [14]. So called analytical homogenisation is a multi-scale approach
in which the material is described as a heterogeneous medium on the micro-level, by
considering each component’s configuration and constitutive properties explicitly;
simultaneously, material is described as homogeneous on the macro-level, and the
constants in constitutive relations of the macrostructure appear in the form of effective
properties (see, among others [15, 16]). The Representative Volume Element (RVE)
approach is typically employed to model the material on the micro-scale. Here, RVE
is the smallest part of a material which is large enough to be constitutively valid
[15]. The unit cell (representative unit cell, or, indeed an RVE) is considered as input
parameter in analytical homogenisation approaches.

On the other hand, several authors have proposed nonlocal continuum theories
to include the information from the micro-scale in the macroscopic continuum via
additional material constants such as characteristic length scale parameters [8, 16, 17].
It was already shown in [15, 16] that there is a link between the RVE size on the
micro-scale and additional characteristic length scale parameters on the macro-scale.
The authors have extended the theory to magneto-elasticity, and derived macro-level
magneto-elastic constitutive relations enriched with higher-order terms accompanied
by characteristic length scale parameters. They also proposed a statistical method to
determine the RVE sizes for different phenomena in an MRE material [18]. However,
they have not used the determined RVE sizes, and hence identified length scale
parameters, in the macro-level magneto-elastic constitutive relations to show the
effects of the additional parameters on static magneto-elastic behavior.

The aim of this study is to present the influence of identified length scale parameters
in removing mechanical and magnetic singularities by using the determined RVE
sizes as model parameters in generalised magneto-elasticy, thereby bridging the gap
between RVE-based approaches and generalised/nonlocal continuum approaches. In
Sect. 11.2, the macro-level magneto-elastic constitutive formulation with identified
length scale parameters and determined RVE sizes will be discussed. In Sect. 11.3,
numerical results will be presented for a two-dimensional in-plane problem to remove
singularities in mechanical and magnetic fields. Finally, some closing remarks are
presented in Sect. 11.4.
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11.2 Formulation

Magnetostrictive materials typically exhibit non-linear material behaviour. However,
mechanical pre-stresses and bias magnetic fields are generally applied in most ap-
plications. These bias conditions allow to use linear piezomagnetic equations to
describe the material behaviour. In a static magnetic field (curl-free), the constitutive
equations of a linear piezomagnetic medium in classical continuum theory can be
given as [8], [18]-[21]

𝜎𝑖 𝑗 = 𝐶𝑖 𝑗𝑘𝑙𝜀𝑘𝑙 −𝑄𝑛𝑖 𝑗𝐻𝑛, 𝐵𝑖 =𝑄𝑖𝑘𝑙𝜀𝑘𝑙 + 𝜇𝑖𝑛𝐻𝑛 (11.1)

with the kinematic relationships

𝜀𝑖 𝑗 =
1
2
(𝑢𝑖, 𝑗 +𝑢 𝑗 ,𝑖) and 𝐻𝑖 = −𝜑,𝑖 (11.2)

where 𝜎𝜎𝜎 and 𝐵𝐵𝐵 are the stress tensor and the magnetic induction vector, 𝐶𝐶𝐶 and 𝑄𝑄𝑄
are the stiffness tensor and the piezomagnetic coupling tensor, 𝜇𝜇𝜇 is the magnetic
permeability, 𝜀𝜀𝜀 and 𝐻𝐻𝐻 are the strain tensor and the magnetic field vector, and 𝑢𝑢𝑢 and
𝜑 are the displacement field vector and the scalar magnetic potential.

11.2.1 Homogenisation and Macroscopic Characteristic Length
Scale Parameters

As discussed above, micro and macro scales are linked to each other by model param-
eters in a multi-scale framework. The MRE material is considered as heterogeneous
to reflect the real structure on the micro-level, but it is modelled as a piezomagnetic
material with homogeneous effective material properties and model parameters on
the macro-level. The concept of an RVE is used to quantify the micro scale behaviour
and, hence, the size of the RVE becomes a model parameter in the multi-scale ap-
proach. This approach combines the advantage of computational efficiency with an
accurate description of the material behaviour on the macro-level.

In the multi-scale analysis, the macroscopic stress and induction in the MRE can
be defined as the volume average of the microscopic counterparts in the RVE:

𝜎M
𝑖 𝑗 =

1
𝑉RVE

∫
𝑉RVE

𝜎m
𝑖 𝑗d𝑉 =

1
𝑉RVE1

∫
𝑉RVE1

𝐶m
𝑖 𝑗𝑘𝑙𝜀

m
𝑘𝑙d𝑉 − 1

𝑉RVE2

∫
𝑉RVE2

𝑄m
𝑛𝑖 𝑗𝐻

m
𝑛 d𝑉

𝐵M
𝑖 =

1
VRVE

∫
𝑉RVE

𝐵m
𝑖 d𝑉 =

1
𝑉RVE3

∫
𝑉RVE3

𝑄m
𝑖𝑘𝑙𝜀

m
𝑘𝑙d𝑉 + 1

𝑉RVE4

∫
𝑉RVE4

𝜇m
𝑖𝑛𝐻

m
𝑛 d𝑉

(11.3)

It can initially be assumed that an MRE has different RVEs as given in Eq. (11.3), with
𝑉RVE1 and 𝑉RVE4 representing purely mechanical and purely magnetic phenomena,
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while 𝑉RVE2 and 𝑉RVE3 correspond to coupling phenomena. The superscripts m and
M denote the micro and the macro level, respectively.

Next, by using a second-order homogenisation scheme and Eq. (11.3), macro-
scopic constitutive and governing equations can be derived. These equations include
gradients in terms of the RVE sizes to introduce the micro-level information into the
macro-level. The associated local coordinate systems are assumed to have their origin
at the centre of the RVE. Before applying second-order homogenisation, linearisa-
tions of spatially dependent stiffness, strain, coupling, permeability and magnetic
field can be presented as

𝐶m
𝑖 𝑗𝑘𝑙 = 𝐶M

𝑖 𝑗𝑘𝑙 +𝐶M
𝑖 𝑗𝑘𝑙,𝑜δ𝑥𝑜, 𝜀m

𝑘𝑙 = 𝜀M
𝑘𝑙 + 𝜀M

𝑘𝑙, 𝑝δ𝑥𝑝 , 𝑄m
𝑛𝑖 𝑗 =𝑄M

𝑛𝑖 𝑗 +𝑄M
𝑛𝑖 𝑗,𝑜δ𝑥𝑜

𝐻m
𝑛 = 𝐻M

𝑛 +𝐻M
𝑛,𝑝δ𝑥𝑝 , 𝜇m

𝑖𝑛 = 𝜇M
𝑖𝑛 + 𝜇M

𝑖𝑛,𝑜δ𝑥𝑜
(11.4)

The constitutive relation for the macroscopic stress and magnetic induction (Eq.
(11.3)) can be rewritten as

𝜎M
𝑖 𝑗 =

1
𝑉RVE1

∫
𝑉RVE1

(
𝐶M
𝑖 𝑗𝑘𝑙𝜀

M
𝑘𝑙 +𝐶M

𝑖 𝑗𝑘𝑙𝜀
M
𝑘𝑙, 𝑝δ𝑥𝑝 +𝐶M

𝑖 𝑗𝑘𝑙,𝑜𝜀
M
𝑘𝑙δ𝑥𝑜 +𝐶M

𝑖 𝑗𝑘𝑙,𝑜𝜀
M
𝑘𝑙, 𝑝δ𝑥𝑜δ𝑥𝑝

)
d𝑉

− 1
𝑉RVE2

∫
𝑉RVE2

(
𝑄M

𝑛𝑖 𝑗𝐻
M
𝑛 +𝑄M

𝑛𝑖 𝑗𝐻
M
𝑛,𝑝δ𝑥𝑝 +𝑄M

𝑛𝑖 𝑗,𝑜𝐻
M
𝑛 δ𝑥𝑜 +𝑄M

𝑛𝑖 𝑗,𝑜𝐻
M
𝑛,𝑝δ𝑥𝑜δ𝑥𝑝

)
d𝑉

𝐵M
𝑖 =

1
𝑉RVE3

∫
𝑉RVE3

(
𝑄M

𝑖𝑘𝑙𝜀
M
𝑘𝑙 +𝑄M

𝑖𝑘𝑙𝜀
M
𝑘𝑙, 𝑝δ𝑥𝑝 +𝑄M

𝑖𝑘𝑙,𝑜𝜀
M
𝑘𝑙δ𝑥𝑜 +𝑄M

𝑖𝑘𝑙,𝑜𝜀
M
𝑘𝑙, 𝑝δ𝑥𝑜δ𝑥𝑝

)
d𝑉

+ 1
𝑉RVE4

∫
𝑉RVE4

(
𝜇M

𝑖𝑛𝐻
M
𝑛 + 𝜇M

𝑖𝑛𝐻
M
𝑛,𝑝δ𝑥𝑝 + 𝜇M

𝑖𝑛,𝑜𝐻
M
𝑛 δ𝑥𝑜 + 𝜇M

𝑖𝑛,𝑜𝐻
M
𝑛,𝑝δ𝑥𝑜δ𝑥𝑝

)
d𝑉

(11.5)
In Eq. (11.5), 𝐶M

𝑖 𝑗𝑘𝑙 , 𝜀
M
𝑘𝑙 ,𝑄

M
𝑛𝑖 𝑗 ,𝑄

M
𝑖𝑘𝑙 , 𝜇

M
𝑖𝑛 and 𝐻M

𝑛 can be taken out of the integral
since they are the values at the centre of the RVEs. Assuming a square RVE with its
centre acting as origin of a Cartesian coordinate system, the linear terms of δ𝑥 cancel
as they consist of odd functions integrated over a symmetric domain. The quadratic
terms are integrated by parts as follows∫
𝑉RVE1

𝐶M
𝑖 𝑗𝑘𝑙,𝑜𝜀

M
𝑘𝑙, 𝑝δ𝑥𝑜δ𝑥𝑝d𝑉 =

∫
𝑆

𝐶M
𝑖 𝑗𝑘𝑙𝜀

M
𝑘𝑙, 𝑝𝑛𝑜δ𝑥𝑜δ𝑥𝑝d𝑆−

∫
𝑉RVE1

(
𝐶M
𝑖 𝑗𝑘𝑙𝜀

M
𝑘𝑙,𝑜𝑝δ𝑥𝑜δ𝑥𝑝

+𝐶M
𝑖 𝑗𝑘𝑙𝜀

M
𝑘𝑙, 𝑝δ𝑥𝑜,𝑜δ𝑥𝑝 +𝐶M

𝑖 𝑗𝑘𝑙𝜀
M
𝑘𝑙, 𝑝δ𝑥𝑜δ𝑥𝑝,𝑜

)
d𝑉∫

𝑉RVE2

𝑄M
𝑛𝑖 𝑗,𝑜𝐻

M
𝑛,𝑝δ𝑥𝑜δ𝑥𝑝d𝑉 =

∫
𝑆

𝑄M
𝑛𝑖 𝑗𝐻

M
𝑛,𝑝𝑛𝑜δ𝑥𝑜δ𝑥𝑝d𝑆−

∫
𝑉RVE2

(
𝑄M

𝑛𝑖 𝑗𝐻
M
𝑛,𝑜𝑝δ𝑥𝑜δ𝑥𝑝

+𝑄M
𝑛𝑖 𝑗𝐻

M
𝑛,𝑝δ𝑥𝑜,𝑜δ𝑥𝑝 +𝑄M

𝑛𝑖 𝑗𝐻
M
𝑛,𝑝δ𝑥𝑜δ𝑥𝑝,𝑜

)
d𝑉∫

𝑉RVE3

𝑄M
𝑖𝑘𝑙,𝑜𝜀

M
𝑘𝑙, 𝑝δ𝑥𝑜δ𝑥𝑝d𝑉 =

∫
𝑆

𝑄M
𝑖𝑘𝑙𝜀

M
𝑘𝑙, 𝑝𝑛𝑜δ𝑥𝑜δ𝑥𝑝d𝑆−

∫
𝑉RVE3

(
𝑄M

𝑖𝑘𝑙𝜀
M
𝑘𝑙,𝑜𝑝δ𝑥𝑜δ𝑥𝑝

+𝑄M
𝑖𝑘𝑙𝜀

M
𝑘𝑙, 𝑝δ𝑥𝑜,𝑜δ𝑥𝑝 +𝑄M

𝑖𝑘𝑙𝜀
M
𝑘𝑙, 𝑝δ𝑥𝑜δ𝑥𝑝,𝑜

)
d𝑉
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𝑉RVE4

𝜇M
𝑖𝑛,𝑜𝐻

M
𝑛,𝑝δ𝑥𝑜δ𝑥𝑝d𝑉=

∫
𝑆

𝜇M
𝑖𝑛𝐻

M
𝑛,𝑝𝑛𝑜δ𝑥𝑜δ𝑥𝑝d𝑆−

∫
𝑉RVE4

(
𝜇M
𝑖𝑛𝐻

M
𝑛,𝑜𝑝δ𝑥𝑜δ𝑥𝑝

+𝜇M
𝑖𝑛𝐻

M
𝑛,𝑝δ𝑥𝑜,𝑜δ𝑥𝑝 + 𝜇M

𝑖𝑛𝐻
M
𝑛,𝑝δ𝑥𝑜δ𝑥𝑝,𝑜

)
d𝑉

(11.6)

Assuming periodic boundary conditions, the boundary integrals vanish and the
last two terms in each of Eq. (11.6) vanish since they consist of odd functions.
Furthermore, the integrals with δ𝑥𝑜δ𝑥𝑝 can be evaluated as

∫
VRVEi

δ𝑥𝑜δ𝑥𝑝d𝑉 =

𝐿𝑖
2∫

− 𝐿𝑖
2

𝐿𝑖
2∫

− 𝐿𝑖
2

𝐿𝑖
2∫

− 𝐿𝑖
2

δ𝑥𝑜δ𝑥𝑝d𝑥1d𝑥2d𝑥3 =
1
12

𝐿5
𝑖 δ𝑜𝑝 (𝑖 = 1,2,3,4) (11.7)

where δ𝑜𝑝 is the Kronecker delta, 𝑉RVE𝑖
= 𝐿3

𝑖 and 𝐿𝑖 is the size of the 𝑖th RVE.
The piezomagnetic macroscopic constitutive equations with gradients of strain,

magnetic field, and magneto-mechanical coupling terms can thus be expressed as

𝜎M
𝑖 𝑗 = 𝐶M

𝑖 𝑗𝑘𝑙

(
𝜀M
𝑘𝑙 −

𝐿2
1

12
𝜀M
𝑘𝑙, 𝑝𝑝

)
−𝑄M

𝑛𝑖 𝑗

(
𝐻M

𝑛 − 𝐿2
2

12
𝐻M

𝑛,𝑝𝑝

)
𝐵M
𝑖 =𝑄M

𝑖𝑘𝑙

(
𝜀M
𝑘𝑙 −

𝐿2
3

12
𝜀M
𝑘𝑙, 𝑝𝑝

)
+ 𝜇M

𝑖𝑛

(
𝐻M

𝑛 − 𝐿2
4

12
𝐻M

𝑛,𝑝𝑝

) (11.8)

As seen in Eq. (11.8), new gradient terms, accompanied with multipliers 𝐿𝑖 , appear in
addition to the material coefficients of the macroscopic constitutive equations. It can
be seen that Eq. (11.8) follows the structure of the gradient enriched piezomagnetic
model proposed by Xu et. al [8], and written in terms of phenomenological parameters
ℓ𝑖:

𝜎𝑖 𝑗 = 𝐶𝑖 𝑗𝑘𝑙

(
𝜀𝑘𝑙 − ℓ2

1𝜀𝑘𝑙,𝑚𝑚

)
− 𝑞𝑖 𝑗𝑘

(
𝐻𝑘 − ℓ2

2𝐻𝑘,𝑚𝑚

)
𝐵𝑖 = 𝑞𝑖 𝑗𝑘

(
𝜀 𝑗𝑘 − ℓ2

3𝜀 𝑗𝑘,𝑚𝑚

)
+ 𝜇𝑖 𝑗

(
𝐻 𝑗 − ℓ2

4𝐻 𝑗 ,𝑚𝑚

) (11.9)

Comparing Eqs. (11.8) and (11.9), it can be seen that the link between phenomeno-
logical parameters, representing internal characteristic length scale parameters ℓ𝑖 ,
and RVE sizes 𝐿𝑖 can be established as follows: ℓ2

𝑖 = 𝐿2
𝑖 /12.

11.2.2 Determination of RVE Sizes and Identification of
Characteristic Length Scale Parameters

In [18], Eqs. (11.3-11.8) were derived to motivate the determination of the RVE
sizes. The detailed methodology to determine the RVE size for magneto-elastic
material has been presented in the previous study of the authors [18], however the
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main steps and results of this analysis will be summarised here. The methodology
consists of a statistical numerical analysis of a heterogeneous material, undergoing
mechanical and magnetic loading via prescribed values of the displacement 𝑢𝑢𝑢 and
the magnetic potential 𝜑 (see Fig. 11.1a). Boundary value problems are solved for
multiple realisations of unit cells (see Fig. 11.1b). Resulting values of stresses and
magnetic induction are then averaged over a unit cell. A statistical analysis is then
performed and the coefficient of variation is compared with a desired accuracy (97%
in our case). If the desired accuracy is reached, the current unit cell can be considered
representative (i.e. the RVE is found); otherwise the unit cell size is increased (see
Fig. 11.1c) and the procedure is repeated for the new larger unit cell size.

As mentioned above, the MRE material, used in this study, consists of circular
magnetic inclusions (where a uniform distribution of 100–300 µm in diameter is
assumed) and a non-magnetisable polymer matrix; the material parameters of the
constituents are presented in Table 11.1. Two hundred different realisations of each
unit cell size (ranging from 0.5 to 2.5 mm) have been analysed and the coefficient of

(a) Boundary value problem of a
unit cell on micro-level.

(b) Different realisations of the unit cell (size 1x1 mm2).

(c) Different sizes of unit cells (from left to right: 0.5x0.5 mm2, 1x1 mm2, 1.5x1.5 mm2, 2x2 mm2).

Fig. 11.1: Determination of RVE size [18].

Table 11.1: Material properties of magnetic inclusions and polymer matrix.

𝐶11 𝐶13 𝐶33 𝐶55 𝑄31 𝑄33 𝑄15 𝜇11 𝜇33

Terfenol-D [22] 35 23 46 4 -32.5 195 68.75 8.9 1.8
Polymer [23] 7.8 4.7 7.8 1.6 0 0 0 𝜇0 𝜇0

𝐶𝑖 𝑗 in GPa, 𝑄𝑖 𝑗 in N/Am, 𝜇𝑖 𝑗 in 10−6N/A2. (𝜇0 = 4𝜋10−6 N/A2)
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variation, which is a statistical measure of relative variability, has been calculated for
each unit cell size. These coefficients have been compared to the value of 0.03 (i.e.
requiring 97% accuracy), and, hence, lower bounds of the RVE sizes (𝐿𝑖) have been
defined (see Fig. 11.2).

For an MRE material, the authors have demonstrated that lower bounds of the
RVE sizes can be defined by following the proposed statistical analysis. As can
be seen from Fig. 11.2, for the analysed MRE material, the difference between the
coupling RVE sizes 𝐿2 and 𝐿3 is negligible in line with thermodynamic consistency
requirements, while RVE sizes 𝐿1 and 𝐿4 are clearly smaller and different. According
to numerical results, it can be seen that the largest determined RVE size for 𝐿2
and 𝐿3 also covers the lower bound condition for 𝐿1 and 𝐿4. Therefore, it can be
concluded that it is sufficient to use only these largest sizes for practical purposes and
set 𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 = max(𝐿𝑖) ≡ 𝐿 to introduce the magneto-elastic information
from micro-level.

Eventually, the field equations of the problem on the macro scale can be obtained
by combining the kinematic relations, balance equations and constitutive equations:

𝜀M
𝑖 𝑗 =

1
2
(𝑢M

𝑖, 𝑗 +𝑢M
𝑗 ,𝑖) and 𝐻M

𝑖 = −𝜑M
,𝑖 (11.10)

𝜎M
𝑖 𝑗 , 𝑗 = 0 and 𝐵M

𝑖,𝑖 = 0 (11.11)

where 𝑢M
𝑖 is the displacement field and 𝜑M is the scalar magnetic potential on the

macro-level. The governing equations in terms of the primary unknowns 𝑢𝑢𝑢 and 𝜑 are

𝐶M
𝑖 𝑗𝑘𝑙

(
𝑢M
𝑘, 𝑗𝑙 −

𝐿2

12
𝑢M
𝑘, 𝑗𝑙 𝑝𝑝

)
+𝑄M

𝑛𝑖 𝑗

(
𝜑M
, 𝑗𝑛 −

𝐿2

12
𝜑M
, 𝑗𝑛𝑝𝑝

)
= 0

𝑄M
𝑖𝑘𝑙

(
𝑢M
𝑘,𝑖𝑙 −

𝐿2

12
𝑢M
𝑘,𝑖𝑙 𝑝𝑝

)
− 𝜇M

𝑖𝑛

(
𝜑M
,𝑖𝑛 −

𝐿2

12
𝜑M
,𝑖𝑛𝑝𝑝

)
= 0

(11.12)

with 𝐿 chosen as the largest of the four RVE sizes as discussed above. In the previous
study, the authors have not addressed the application of macro-level governing

Fig. 11.2 Convergence of the
results [18]
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equations with identified length scale parameters in terms of RVE size. Here, by
using the finite element implementation given in [8], the determined RVE sizes
can be used instead of predefined phenomenological length scale parameters in a
generalised magnetoelasticity example.

11.3 Numerical Results and Discussion

In this section, the standard benchmark numerical example,demonstrating the removal
of singularities in mechanical and magnetic fields, will be analysed to demonstrate
the performance of the model. The detailed finite element implementation of gradient
enriched piezomagnetic continuum model for in-plane problems has been presented
in [8]. For this, the authors extended the Ru-Aifantis approach to gradient magneto-
elasticity by considering only one phenomenological length scale parameter in their
model (Eq. (11.9)) (see [8] for the details of FEM formulation and in particular the
𝜀𝜀𝜀&𝐻𝐻𝐻-RA approach described therein).

In the numerical example, a homogeneous MRE plate was modelled on the
macro-scale with the effective properties (Table 11.2), and external loadings were
applied as shown in Fig. 11.3. The plate is polarized along the 𝑥-direction with a
uniform load 𝑞𝑞𝑞 = 10 MPa and magnetic field 𝐻𝐻𝐻𝑜 = 100 A/m. As discussed, it was
assumed that 𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 ≡ 𝐿 in Eq. (11.12), and 𝐿 is the size of the RVE
determined as 2.3 mm (see Fig. 11.2). The crack in the model has been considered as
an inclusion with vacuum permeability and zero values for elastic constants, piezo-
magnetic constants and RVE size 𝐿. Figure 11.4 presents the distributions of 𝜀𝜀𝜀 and

Fig. 11.3 MRE Plate with
a crack (Units: mm and
thickness = 5 mm)

Table 11.2: Effective material properties of MRE plate.

𝐶11 𝐶13 𝐶33 𝐶55 𝑄31 𝑄33 𝑄15 𝜇11 𝜇33

MRE Plate [8] 31.1 15.2 35.6 13.6 156.8 108.3 -60.9 5.4 5.4

𝐶𝑖 𝑗 in GPa, 𝑄𝑖 𝑗 in N/Am, 𝜇𝑖 𝑗 in 10−6N/A2
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𝐻𝐻𝐻 components in the 𝑥-direction around the crack tip. To investigate the effectiveness
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Fig. 11.4: 𝜀𝜀𝜀 and 𝐻𝐻𝐻 distributions along 𝑥-axis based on 𝜀𝜀𝜀&𝐻𝐻𝐻-RA approach.

of the gradient formulation, two different cases have been considered: one with length
scale ℓ2 = 𝐿2

RVE/12 with the RVE size 2.3 mm that considers the gradient dependence,
and the other with the length scale ℓ𝑖 = 0 that represents classical magneto-elasticity in
which the microstructural information is absent. It can be seen (Fig. 11.4) that using
the gradient enhanced, RVE-based magneto-elasticity formulation can effectively
remove the singularities of all 𝜀𝜀𝜀 and 𝐻𝐻𝐻 components, while singularities appear at the
crack tip for the classical formulation.
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11.4 Conclusions

In this study, an in-plane problem has been addressed by using the previously devel-
oped piezo-magnetic continuum model that includes gradients of strain, magnetic
field and piezo-magnetic coupling accompanied by characteristic length scale param-
eter found in terms of RVE size. With this generalised magneto-elastic continuum
model, a solution scheme is formulated and implemented based on the finite element
method and the Ru-Aifantis theorem adopted from the study by Xu et al. [8]. In the
continuum model, representative volume elements (RVEs) have been defined and
included to introduce the microstructural information into the macroscopic behaviour
of the material. By using the determined model parameter RVE size 𝐿, it was ob-
served that the singularities can be removed in mechanical and magnetic fields for a
homogenised MRE plate on the macro scale.

Acknowledgements This work was supported by International Graduate Education Scholarship
(YLSY) programme funded by The Ministry of National Education of Türkiye.

References

[1] Filipcsei G, Csetneki I, Szilágyi A, Zrínyi M (2007) Magnetic Field-Responsive
Smart Polymer Composites, In: Oligomers - Polymer Composites - Molecular
Imprinting. Advances in Polymer Science, Vol 206, pp 137-189, Springer,
Berlin, Heidelberg.

[2] Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic respon-
sive polymer composite materials, Chem. Soc. Rev. 42:7099-7116.

[3] Elhajjar R, Law CT, Pegoretti A (2018) Magnetostrictive polymer composites:
Recent advances in materials, structures and properties, Progress in Materials
Science 97:204-229.

[4] Liu T, Xu Y (2019) Magnetorheological elastomers: Materials and applica-
tions, In: Xufeng Dong, editor, Smart and Functional Soft Materials, chapter 4.
IntechOpen, Rĳeka.

[5] Ekreem NB, Olabi AG, Prescott T, Rafferty A, Hashmi MSJ (2007) An overview
of magnetostriction, its use and methods to measure these properties, Journal
of Materials Processing Technology 191(1):96-101.

[6] Davis LC (1999) Model of magnetorheological elastomers, Journal of Applied
Physics 85(6):3348-3351.

[7] Liu TY,Chan TY,Wang KS,Tsou HM (2015) Influence ofmagnetic nanoparticle
arrangement in ferrogels for tunable biomolecule diffusion, RSC Adv. 5:90098-
90102.

[8] Xu M, Gitman IM, Askes H (2019) A gradient-enriched continuum model
for magneto-elastic coupling: Formulation, finite element implementation and
in-plane problems, Computers and Structures 212:275-288.



170 Sinan Eraslan, Inna M. Gitman, Mingxiu Xu, Harm Askes, and René de Borst

[9] Bastola AK, Hoang VT, Li L (2017) A novel hybrid magnetorheological
elastomer developed by 3d printing, Materials Design 114:391-397.

[10] Wood DS, Camp PJ (2011) Modeling the properties of ferrogels in uniform
magnetic fields, Phys. Rev. E 83:011402.

[11] Kalina KA, Metsch P, Kästner M (2016) Microscale modeling and simulation
of magnetorheological elastomers at finite strains: A study on the influence
of mechanical preloads, International Journal of Solids and Structures 102-
103:286-296.

[12] Attaran A, Brummund J, Wallmersperger T (2017) Modeling and finite ele-
ment simulation of the magneto-mechanical behavior of ferrogels, Journal of
Magnetism and Magnetic Materials 431:188-191.

[13] Raikher YL, Stolbov OV (2008) Numerical modeling of large field-induced
strains in ferroelastic bodies: a continuum approach, Journal of Physics: Con-
densed Matter 20(20):204126.

[14] Gitman IM, Askes H, Sluys LJ (2004) Representative volume size as a macro-
scopic length scale parameter. Fracture Mechanics for Concrete and Concrete
Structures, 1:483-491.

[15] Gitman IM (2006) Representative volumes and multi-scale modelling of quasi-
brittle materials, Doctoral thesis, Technische Universiteit Delft.

[16] Gitman IM, Askes H, Aifantis EC (2007) Gradient elasticity with internal length
and internal inertia based on the homogenisation of a representative volume
element, Journal of the Mechanical Behavior of Materials 18(1):1-16.

[17] Ke L, Wang Y, Yang J, Kitipornchai S (2014) Free vibration of size-dependent
magneto-electro-elastic nanoplates based on the nonlocal theory, Acta Mechan-
ica Sinica 30:516-525.

[18] Eraslan S, Gitman IM, Askes H, de Borst R (2022) Determination of represen-
tative volume element size for a magnetorheological elastomer, Computational
Materials Science 203:111070.

[19] Lan M, Wei P (2014) Band gap of piezoelectric/piezomagnetic phononic crystal
with graded interlayer, Acta Mechanica 225:1779–1794.

[20] Mane H (2019) Mathematical Modeling and Numerical Simulation of Magne-
toelastic Coupling, Doctoral thesis, Technische Universität Kaiserslautern.

[21] Pang Y, LiuJ, Wang Y, Fang D (2008) Wave propagation in piezoelec-
tric/piezomagnetic layered periodic composites, Acta Mechanica Solida Sinica
21:483-490.

[22] Claeyssen F, Lhermet N, Barillot F, Le Letty R (2006) Giant dynamic strains
in magnetostrictive actuators and transducers, ISAGMM 2006 CONF.

[23] Wang YZ, Li FM, Huang WH, Jiang X, Wang YS, Kishimoto K (2008) Wave
band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals,
International Journal of Solids and Structures 45:4203-4210.


	Chapter 11 Representative Volume Element Size and Length Scale Identification in Generalised Magneto-Elasticity
	11.1 Introduction
	11.2 Formulation
	11.2.1 Homogenisation and Macroscopic Characteristic Length Scale Parameters
	11.2.2 Determination of RVE Sizes and Identification of Characteristic Length Scale Parameters

	11.3 Numerical Results and Discussion
	11.4 Conclusions
	References




