
A Blockchain-Based Distributed Machine
Learning (BDML) Approach for Resource
Allocation in Vehicular Ad-Hoc Networks

Dajun Zhang1(B) , Wei Shi1 , and Ruizhe Yang2

1 Carleton University, 1125 Colonel By Drive, Ottawa, Canada
dajunzhang9038@gmail.com

2 Beijing Laboratory of Advanced Information Networks,
Beijing University of Technology, Beijing, China

Abstract. Recently, effective allocation of VANET resources is a key
factor in promoting the development of VANETs. Due to high band-
width costs, poor time efficiency, and a high risk of privacy leakage, the
use of traditional centralized data centers to analyze massive data has
proven to be a difficult task. These challenges have prompted a revolu-
tionary change in VANET architectures to scatter computations from a
centralized data center to distributed network edges. Distributed VANET
configurations leverage the computing power of network edges by using
a large number of mobile devices which frequently exchange data with
the edge of the network or among themselves. However, the heterogene-
ity and distrust of the distributed edge hinder the efficient, reliable, and
secure allocation of VANET resources. In this paper, we express the
allocation strategy for both computing and network resources as a joint
optimization problem. We use a local deep reinforcement learning with
a prioritized experience replay mechanism on edge nodes and use the
blockchain for sharing the optimal learning results to optimize the overall
resource allocation problem. Simulation results show that our proposed
scheme is superior to a current machine learning approach.

Keywords: Vehicular ad hoc networks · Blockchain · Deep
reinforcement learning

1 Introduction

Recently, vehicular ad-hoc networks (VANETs) have aroused great interest.
In the VANET environment, the limitations of network resources prevent the
improvement of edge computing. Currently, due to privacy concerns and the
frequent data loss during high-speed streaming data transmission, data shared
between VANET users are limited to only emergency situations. Furthermore,
the limitation of edge computing power brings new challenges and difficulties
to resource allocation in VANETs [1]. For example, the uncertainty of vehicle
movement may lead to competition between VANET nodes (i.e. the computing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Yu et al. (Eds.): GPC 2022, LNCS 13744, pp. 110–121, 2023.
https://doi.org/10.1007/978-3-031-26118-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26118-3_8&domain=pdf
http://orcid.org/0000-0003-2711-5396
http://orcid.org/0000-0002-3071-8350
http://orcid.org/0000-0003-0582-4079
https://doi.org/10.1007/978-3-031-26118-3_8


BDML 111

unit on board of a vehicle) for the computing power of edge nodes (i.e. RSUs)
resulting in the insufficient allocation of computing capability. Considering the
sparse deployment of RSUs, when the number of vehicles within the coverage of a
RSU increases rapidly, the resource spectrum of the RSU cannot meet the needs
of all vehicles. Therefore, fair and effective allocation of computing resources and
network resources to VANET nodes has become an urgent problem to be solved.

At this stage, some scholars have put forward resource allocation mechanisms
in VANETs. The research [2] proposed the allocation of computing resources
for video processing, aiming at improving the quality of service for users. The
authors of [3] proposed a VANET framework for the dynamic adjustment of
network, cache, and computing resources, aiming to improve the joint resource
allocation problem of existing VANETs. The authors of [4] designed a spectrum-
sharing scheme in order to solve the data conflict between the cellular network
of vehicles and users. For the occupation of unlicensed channels, the two can
fairly compete for the right to use the channel. In [5], the author proposes a
new decomposition algorithm that utilizes integer linear programming to fully
allocate computing resources. It provides ideas for the future software-defined
VANET data-sharing architecture. In order to ensure the correct deployment
of the blockchain in the distributed software-defined Internet of Vehicles, the
authors of [6] propose a distributed software-defined VANET architecture based
on the blockchain to ensure the utility of resource allocation.

In this article, we propose an integrated resource allocation scheme for the
VANETs based on the blockchain and Deep Reinforcement Learning (DRL). The
contributions of this article are summarized as follows:

– We propose a new resource (network resource and computing capability) allo-
cation scheme based on blockchain. Each VANET node trains a neural net-
work locally through the DRL algorithm to obtain resource allocation strate-
gies and shares the best local learning results through distributed edge nodes.
Here, we aim to use the communication utility to characterize the quality of
the communication link between the node and the RSU, so as to allocate the
best RSU to neighboring nodes for local training. Meanwhile, the comput-
ing utility is used to characterize the utilization of computing resources. The
VANET node trains the joint resource utility locally within a fixed time, and
then uploads the result to the blockchain system, aiming to improve the joint
resource utility through the parameter sharing of the blockchain system. The
core advantage of using the blockchain for sharing is that the blockchain is
a completely decentralized system, and the local training results are stored
in the transaction. The non-tamperable feature of the blockchain ensures the
safety of local training results. The proposed scheme lays a new foundation
for intelligence sharing between edges.

– We make improvements to the traditional DRL algorithm in local training.
Aiming at solving the problem that the traditional DRLs experience in ineffi-
cient random sampling using replay strategy, we have introduced a prioritized
experience replay strategy to the local training. We define the priority of the



112 D. Zhang et al.

samples and prioritize the samples in the experience replay pool to improve
the efficiency of local training.

– Finally, we have adopted a Redundant Byzantine Fault-Tolerant (RBFT) [7]
mechanism. Since a permissioned-blockchain system is used, RBFT has better
fault tolerance and better overall performance than the Practical Byzantine
Fault-Tolerant (PBFT) consensus mechanism.

The rest of the paper is organized as follows: the system model is described
in Sect. 2. Section 3 illustrate the problem formulation of the local training. In
Sect. 4, we introduce the local training process and blockchain sharing mecha-
nism. In Sect. 5, we present the experiments that have been conducted in this
work. Finally, conclusions are described in Sect. 6.

2 System Description

In this section, we illustrate the system model in our proposed framework. We
discretize the time T into a number of time slot T = {1, 2, ..., t, ..., T}.

2.1 Communication Model

Figure 1 shows that we use collaborative edge computing to balance the loss of
high-speed streaming data transmission and the overhead on transmission. The
proposed framework has C = {R1, R2, ..., Rc, ..., RC} Road Side Units (RSUs)
and E = {M1,M2, ...,Me, ...,ME} mobile edge servers. In our proposed archi-
tecture, U vehicles around multiple RSUs and edge servers communicate with
each other, denoted by U = {V1, V2, ..., Vu, ..., VU}. In this paper, we implement
blockchain sharing of local training results (communication and computation
utilization) of multiple vehicles.

The communication model is defined as finite-state Markov channels
(FSMCs) [8]. The channel state δVu,Rc(t) between Vu and Rc depends on the
received signal-to-noise ratio (SNR), which is divided into K levels that is defined
as F = {F0, F1, ..., Fk−1, ..., FK}.

Since the communication channel is a time-varying channel, we can set the
variation of SNR follow a Markov decision process. Let pk,k′ = Pr{δVu,Rc(t+1) =
Fk′ |δVu,Rc(t)} be the channel state transition probability, where k, k′ ∈ K. Hence,
P = [pk,k′ ]K×K is the channel state transition matrix of the K × K dimension.

We define the available bandwidth allocated to Vu as HVu

Rc
. According to

Shannon’s theorem, the maximum communication rate rVu

Rc
(t) is:

rVu

Rc
(t) = HVu

Rc
(t) log2(1 + δVu,Rc(t)) (1)

Therefore, we define the communication resource utilization of Vu as the ratio
of rVu

Rc
(t) to the available bandwidth HVu

Rc
allocated to Vc. Hence, we have:

DComm
Vu

(t) =
RC∑

Rc=1

aRc

Vu
(t)

σVu
rVu

Rc
(t)

θRc
HVu

Rc
(t)

(2)



BDML 113

Fig. 1. Blockchain-based resource allocation framework of VANETs.

where σVu
means the revenue per unit communication rate that Vu can achieve,

and θRc
denotes the unit payment for using networking resources from Rc. We

will illustrate the action value aRc

Vu
(t) in Sect. 3.

2.2 Computation Model

We use εMe

Vu
(t) to represent the computing capability of each Me assign to Vu

at time slot t, which satisfy the Markov decision process. We discretize random
variable εMe

Vu
(t) into Z state, indexed by Λ = {Λ0, Λ1, ..., ΛZ−1}. The state tran-

sition probability gz′z = Pr{εMe

Vu
(t+1) = Λz|εMe

Vu
(t) = Λz′} determines the state

change of εMe

Vu
(t), where Λz, Λz′ ∈ Λ.

We usually use time delay to characterize the Quality of Service (QoS) in
VANETs. We quantify QoS in terms of queuing delay and propagation delay
[9]. We refer the queuing model proposed in [10], we have:

TVu

qd =
1

εMe

Vu
(t) − λVu

(t)
− 1

λVu
(t)

· QVu

L ρQVu
L

1 − ρQVu
L

(3)

where workload arrival rate is denoted as λVu
(t), ρQVu

L = λVu
(t)/εMe

Vu
(t) is the

utilization, and the maximum queue length is QVu

L .
The propagation delay Tpd can be defined as:

TVu

pd = dMe

Vu
/γ (4)

where γ is propagation speed and dMe

Vu
is the physical distance between Vu(xu, yu)

and Me(xe, ye). Hence, dMe

Vu
can be defined as dMe

Vu
=

√
(xe − xu)2 + (ye − yu)2.



114 D. Zhang et al.

Fig. 2. The workflows of local training.

Finally, we use TVu
= TVu

qd + TVu

pd to characterize the service delay of the
overall system.

Therefore, the computing resource utilization DComp
Vu

(t) is:

DComp
Vu

(t) =
ME∑

Me=1

aMe

Vu
(t)

ζVu
λVu

αVu
kMe

oVu
+ βVu

TVu

(5)

where αVu
and βVu

are the weight ratios of relevant parameters. Here, ζVu
rep-

resents the benefits that Vu can obtain due to the workload of operating unit,
kMe

is the operating overhead per unit CPU cycle, and oVu
is the number of

CPU cycles required for the computation task. We will illustrate the meaning of
action value aMe

Vu
(t) in Sect. 3.

3 Problem Formulation

In this section, we discuss the resource allocation problem of VANET node in
detail by defining the state space, action space and reward function.

3.1 System State

We set a parameter s(t), t ∈ T represent the system state space of proposed
framework at time slot t. s(t) includes two components: δVu,Rc(t) and εMe

Vu
(t).

Here, we have:



BDML 115

s(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δV1,R1(t) · · · δV1,Rc(t) · · · δV1,RC (t)
δV2,R1(t) · · · δV2,Rc(t) · · · δV2,RC (t)

· · · · · · · · · · · · · · ·
δVU ,R1(t) · · · δVU ,Rc(t) · · · δVU ,RC (t)
εM1
V1

(t) · · · εMe

V1
(t) · · · εME

V1
(t)

εM1
V2

(t) · · · εMe

V2
(t) · · · εME

V2
(t)

· · · · · · · · · · · · · · ·
εM1
VU

(t) · · · εMe

VU
(t) · · · εME

VU
(t)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

3.2 System Action

We set a(t), t ∈ T as the action space of the system. The definition of a(t) is:

a(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aR1
V1

(t) · · · aRc

V1
(t) · · · aRC

V1
(t)

aR1
V2

(t) · · · aRc

V2
(t) · · · aRC

V2
(t)

· · · · · · · · · · · · · · ·
aR1

VU
(t) · · · aRc

VU
(t) · · · aRC

VU
(t)

aM1
V1

(t) · · · aMe

V1
(t) · · · aME

V1
(t)

aM1
V2

(t) · · · aMe

V2
(t) · · · aME

V2
(t)

· · · · · · · · · · · · · · ·
aM1

VU
(t) · · · aMe

VU
(t) · · · aME

VU
(t)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where aRc

Vu
(t), and aMe

Vu
(t) are:

1) The value of aRc

Vu
(t) is 1 or 0. For example, if the action value of Rc is 1 at

time t, then RSU and Vc communicate with each other. Otherwise, the action
value of Rc is 0. In this paper, we assume that Vu can only communicate with
one RSU in a time slot. So we can get

∑RC

Rc=1 aRc

Vu
(t) = 1.

2) The value of aMe

Vu
(t) is {0, 1}. For example, if aMe

Vu
(t) = 0 at time slot t,

then Me does not need to calculate the computing task from Vu. Otherwise,
the action value of aMe

Vu
(t) is 0. We assume that only one Me handles the

computation task in a time slot. So we can get
∑ME

Me=1 aMe

Vu
(t) = 1.

3.3 Reward Function

The reward function is accomplished through decision-making in a(t) and s(t).
Then, the immediate reward function (utility) of the system is:

rVu
(t) =

VU∑

Vu=1

(DComm
Vu

(t) + DComp
Vu

(t)) (8)

4 Blockchain-Based Sharing Strategy

In this section, we describe the local training strategy of VANET nodes and the
details of the blockchain-based sharing mechanism.



116 D. Zhang et al.

Fig. 3. The sharing mechanism used in BDML

4.1 Local DRL Training with Prioritized Experience Replay
of VANET Node

In the deep reinforcement learning experience replay pool, random sampling may
repeatedly select redundant samples and reduce training efficiency. Therefore, we
have added the Prioritized Experience Replay mechanism (PER) to local learn-
ing. The core idea of PER is to prioritize samples. In other words, this method
can find samples more efficiently. Figure 2 shows the local training process of the
proposed framework. In PER, the probability of each sample (e.g., (s(t), a(t),
rVu

(t), s(t + 1)) being selected is monotonic according to priority. Specifically,
the probability of extracting the transition marked j is defined as:

P (j) =
pτ

j∑
k pτ

k

(9)

where pτ
j is the priority of sample j.

In PER, temporal-difference (TD) errors are often used to prioritized sam-
ples [11]. In other words, the premise that a sample has higher priority for the
agent to learn is that the TD error is larger. Therefore, we have:

ρj = Rj + γjQtarget (Sj , argmaxQ(Sj , a)) − Q(Sj−1, Aj−1) (10)

where Rj and Q(Sj , a) are the reward value and Q-value of sample j respectively.
After we determine the TD error j, we need to define importance-sampling

weight (IS-weight) as:

wj = (
1
G

· 1
P (j)

)κ (11)

where κ is responsible bias adjustment and G represents the size of experience
replay memory.

4.2 Blockchain Sharing Mechanism

In our proposed architecture, RSUs and internal edge computing nodes form the
basic structure of the blockchain. The block contains a batch of transactions, and



BDML 117

the consensus mechanism is responsible for unified packaging and sequencing.
After receiving a block, the blockchain node executes transactions in sequence
based on the original account status and reads/writes the status data of the
relevant account during this period. The completion of a transaction execution
means that the state of the blockchain has undergone a change.

For each transaction, there will be a corresponding transaction receipt or
illegal transaction record in the blockchain to indicate the final execution result.
If the transaction is a legal transaction, after the execution ends, the result of the
transaction execution will be recorded in the transaction receipt. Otherwise, the
reason for the error will be recorded in an illegal transaction record. For every
illegal transaction, the error information will be encapsulated into an illegal
transaction record and stored locally on the node. In addition to the transaction
data related to it, the illegal record will also record the specific error reason. For
example, if a malicious VANET node sends a false local training result, it will
not have sufficient authority to execute the smart contract.

The transaction is initiated by an external user (VANET node). The locally
trained VANET node encapsulates the training results (DNN parameters and
the training loss) in the transaction and uploads them to the nearby RSU node.
When the blockchain node receives the transaction and verifies it first, the node
will only process the verified request. The node will do the following transaction
verification: (1) Verify the legality of the transaction field, including the transac-
tion format and the legality of the timestamp; (2) Whether the same transaction
has been submitted; (3) Verify the transaction signature. After the transaction
passes the above verification, a consensus is reached between the blockchain
nodes, and the received transaction is broadcast to the consensus nodes of the
entire network.

1) Pre-Prepare: The Pre-Prepare consensus master node will sequence the trans-
actions within a certain period of time (or a certain number), package them
into a block, and then send them to the entire network for consensus.

2) Preparation: Prepare all consensus nodes preprocess the block and broadcast
the resulting hash.

3) Submit : Commit all consensus nodes to write to the block and update the
blockchain ledger.

Illegal transactions discovered during the execution process will be stored
in the illegal transaction records of the database, and will not be recorded on
the blockchain ledger. All legal transactions are stored on the blockchain ledger.
When consensus is reached, the node verifies that the transaction and block
are correct and valid. The node will automatically execute the smart contract.
The node uses its own private key to sign the content of the transaction initia-
tor and the transaction receiver to prevent the content of the transaction from
being tampered with. After verifying the signature, MAC, and smart contract,
the system sends the newly generated block back to the edge learning node
and attaches the block to the blockchain. The edge learning node analyzes the
payload information, that is, each edge learning node learns the parameters of



118 D. Zhang et al.

Table 1. Simulation parameters

Simulation parameter Assigned value

Number of vehicles 8
σVu 8 units/Mbps
θRc 2 units/Mbps
HVu

Rc
4 Mbps

λVu 90 Mbps
ζVu 3 unit/Mbps
αVu 0.5
βVu 0.5
kMe 2 w/Mcycles
oVu 50 Mcycles

Fig. 4. The convergence performance comparison of three schemes.

the deep neural network from other learning nodes to share the optimal neu-
ral network parameters. Figure 3 shows the procedure of the blockchain sharing
mechanism.

5 Simulation Results and Discussions

In this section, we verify the superiority of the proposed framework through
Tensorflow [12] simulation. Deep Q-learning with a prioritized experience replay
mechanism is adopted in the local training process.

5.1 Simulation Setup

Here, we need to point out in particular that the communication utility and
computing utility are the key elements that determine the system resource allo-
cation. The communication utility model determines the RSU assigned to a
certain VANET node and the channel state of this node. The computing util-
ity model determines the computing capability of the edge computing server



BDML 119

Fig. 5. The utility comparison of three schemes.

allocated to the VANET node for local training. Specifically, RSUs with better
channel conditions and higher-power edge computing servers should be used to
perform computing tasks. We use these two factors as the local training reward
function to characterize the local training effect. Share the parameters of the
local training model through the blockchain to enhance the utility of the overall
system. Therefore, we treat the problem of joint resource allocation as proof of
the effectiveness of our proposed architecture.

In our simulation, we use AI-chain [13] as a comparison scheme to demon-
strate the superiority of our proposed scheme. Meanwhile, we have made some
adjustments to the existing AI-chain. First, we apply AI-chain to the VANET
environment. Secondly, we replaced the neural network for the local training part
of AI-chain from the traditional deep neural network to Convolutional Neural
Network (CNN). The purpose of this is to meet the comparison requirements of
our simulation. The configuration of the AI-chain blockchain adopts a consensus
mechanism called learning proof (permissionless), and the local training process
follows the traditional deep neural network. The basic idea of AI-chain is to share
the optimal neural network parameters among edge nodes through the consen-
sus mechanism of learning proof to meet the needs of joint resource allocation.
Therefore, [13] meets the requirements as a comparison scheme. Table 1 shows
the simulation parameters in this paper.

5.2 Simulation Results

Figure 4 shows the fitting effect of the convergence curve characterized by the
loss function under different schemes. We can see that the curve oscillates sig-
nificantly at the beginning of the gradient descent. After a training period, the
amplitude of the curve oscillations tends to flatten, which means that the opti-
mal policy will be found when the training curve converges. The blockchain
shared resource allocation scheme we proposed is different from DRL in that
we use multiple edge computing nodes as providers of training results, and
solve the joint resource allocation problem of the network by sharing learn-
ing results. Through these comparisons, the convergence performance of the
blockchain shared resource allocation scheme we proposed has a better conver-



120 D. Zhang et al.

gence effect, which means that our scheme can obtain the optimal strategy faster
after a short training, as shown in the red curve in Fig. 4 shown. The reason for
the rapid convergence is that the edge computing nodes obtain better DNN
parameters from other consensus nodes through the shared parameter mecha-
nism of the blockchain. The advantage of the sharing mechanism is to reduce
the waste of computing resources during the training process. In addition, the
rapid convergence of the red curve shows that with the help of the sharing mech-
anism, the local training node iterates the actual Q-value faster, and it is easier
to obtain the optimal joint resource allocation strategy, saving a lot of training
time. In addition, the prioritized experience replay mechanism is better than the
scheme without it. This is because the priority experience replay strategy sets
the priority of the system samples, and the system trains according to the prior-
ity of the samples. It avoids the drawbacks of repeated training of samples in the
experience replay pool due to random sampling, thereby reducing the number
of operations and further optimizing the convergence performance.

Figure 5 depicts the fitting of the training curve tracking the reward function
under different schemes. Specifically, Eq. (8) captures the calculation method of
system utility, which is used to measure the performance of the two resource
allocation schemes used in this work. As shown in the figure, the red curve gets
the highest reward, which means that our proposed combination of blockchain
sharing and priority experience replay will have the best utility while converg-
ing quickly. Moreover, with the increase of events, the utility of the red curve
has been significantly improved. This is because the system converges quickly
and improves the utility of computing resources. As the number of elements in
the state space increases, the environment becomes more complex, resulting in
a decrease in convergence performance, so the ascent of the curve slows down
as the plot increases. However, in the case of any number of features, the joint
consideration of network resource and computing resource allocation can allo-
cate more powerful edge computing servers for users, so the resource utilization
rate has been significantly improved compared with traditional DRL resource
allocation schemes.

6 Conclusions and Future Work

In this article, we proposed a novel joint resource allocation scheme based on
sharing mechanism with blockchain for future Internet of Vehicles. We first exe-
cuted the local deep reinforcement learning algorithm with a prioritized expe-
rience replay mechanism on each edge node. Then, each edge node shared its
learning result with others via blockchain in order to optimize the joint resource
allocation problem. Most importantly, we considered channel resources and com-
puting resources as components of a joint resources allocation strategy. Consid-
ering the importance of the samples in the experience replay pool, we used a
prioritized experience replay to accelerate the local training speed. This app-
roach can significantly improve the training efficiency through the simulation
results. Incorporation of intrusion detection systems will be considered in the
future.



BDML 121

Acknowledgements. We gratefully acknowledge the financial support from the Nat-
ural Sciences and Engineering Research Council of Canada (NSERC) under Grants No.
RGPIN-2020-06482.

References

1. Liu, J., Wan, J., Zeng, B., Wang, Q., Song, H., Qiu, M.: A scalable and quick-
response software defined vehicular network assisted by mobile edge computing.
IEEE Commun. Mag. 55(7), 94–100 (2017)

2. Zhang, Z., Wang, R., Yu, F.R., Fu, F., Yan, Q.: QoS aware transcoding for live
streaming in edge-clouds aided HetNets: an enhanced actor-critic approach. IEEE
Trans. Veh. Technol. 68(11), 11295–11308 (2019)

3. He, Y., Yu, F.R., Zhao, N., Yin, H., Boukerche, A.: Deep reinforcement learning
(DRL)-based resource management in software-defined and virtualized vehicular
ad hoc networks. In: Proceedings of the 6th ACM Symposium on Development
and Analysis of Intelligent Vehicular Networks and Applications (DIVANet 2017),
New York, NY, USA, 47C54 (2017)

4. Wang, P., Di, B., Zhang, H., Bian, K., Song, L.: Cellular V2X communications in
unlicensed spectrum: harmonious coexistence with VANET in 5G systems. IEEE
Trans. Wireless Commun. 17(8), 5212–5224 (2018)

5. Luo, G., et al.: Software-defined cooperative data sharing in edge computing
assisted 5G-VANET. IEEE Trans. Mob. Comput. 20(3), 1212–1229 (2021)

6. Zhang, D., Yu, F.R., Yang, R.: Blockchain-based distributed software-defined
vehicular networks: a dueling deep Q -learning approach. IEEE Trans. Cognit.
Commun. Networking 5(4), 1086–1100 (2019)

7. Aublin, P.-L., Mokhtar S.B., Quȩma, V.: RBFT: redundant byzantine fault tol-
erance. In: 2013 IEEE 33rd International Conference on Distributed Computing
Systems, pp. 297–306 (2013)

8. He, Y., Zhao, N., Yin, H.: Integrated networking, caching, and computing for
connected vehicles: a deep reinforcement learning approach. IEEE Trans. Veh.
Technol. 67(1), 44–55 (2018)

9. Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., Han, Z.: Computing resource
allocation in three-tier IoT fog networks: a joint optimization approach combining
stackelberg game and matching. IEEE Internet Things J. 4(5), 1204–1215 (2017)

10. Tian, J., Han, Q., Lin, S.: Improved delay performance in VANET by the priority
assignment. In: IOP Conference Series: Earth and Environmental Science, vol. 234,
no. 1 (2019)

11. Schaul, T., Quan, J., Antonoglou, I., et al.: Prioritized experience replay. arXiv
preprint arXiv:1511.05952 (2015)

12. Abadi, M., Agarwal, A., Barham, P., et al.: Tensorflow: large-scale machine learning
on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

13. Qiu, C., Yao, H., Wang, X., Zhang, N., Yu, F.R., Niyato, D.: AI-chain: blockchain
energized edge intelligence for beyond 5G networks. IEEE Network 34(6), 62–69
(2020)

http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1603.04467

	A Blockchain-Based Distributed Machine Learning (BDML) Approach for Resource Allocation in Vehicular Ad-Hoc Networks
	1 Introduction
	2 System Description
	2.1 Communication Model
	2.2 Computation Model

	3 Problem Formulation
	3.1 System State
	3.2 System Action
	3.3 Reward Function

	4 Blockchain-Based Sharing Strategy
	4.1 Local DRL Training with Prioritized Experience Replay of VANET Node
	4.2 Blockchain Sharing Mechanism

	5 Simulation Results and Discussions
	5.1 Simulation Setup
	5.2 Simulation Results

	6 Conclusions and Future Work
	References




