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Abstract. Defect detection has a wide range of applications in industry, and
previous work has tended to be supervised learning, which typically requires a
large number of samples. In this paper, we propose an unsupervised learning
method that learns knowledge about normal images by distilling knowledge from
a pre-trained expert network on ImageNet to a learner network of the same size.
For a given input image, we use the differences in the features of the different
layers of the expert network and learner network to detect and localize defects.
We show that using comprehensive knowledge makes the differences between the
two networks more apparent and that combining the differences in multi-level
features can make the networks more generalizable. It’s worth noting that we
don’t need to split the picture into patches to train, and we don’t need to design the
learner network additionally. Our general framework is relatively simple, yet has
a good detection effect. We provide very competitive results on the MVTecAD
dataset and DAGM dataset.

Keywords: Defect detection · Unsupervised learning · Knowledge distillation ·
Multi-level fusion

1 Introduction

During the manufacturing process of industrial products, various unavoidable defects
may appear in the products, such as spots, scratches, cracks, etc. Previous defect detection
methods use a supervised learning approach, which requires expensive annotation costs
and a low probability of defect occurrence, which can lead to a serious imbalance in the
ratio of normal to defective images in the dataset. In recent years, unsupervised defect
detection methods have become increasingly popular in industry [1, 2].

Usually, in unsupervised defect detection, the defect detection problem is treated as
an anomaly detection problem. During training, only normal samples (samples without
defects) are used, with the aim that the network learns only the features of normal
samples. In the testing phase, when the input samples contain defects, the network will
output resultswith significant differences from the normal samples, and the identification
of abnormal samples (defective samples) can be achieved by detecting the differences
from the normal samples. Attention was also directed to the localization of anomaly
detection, expecting pixel-level localization of defective regions in the image, which is
a challenging task, but it has extraordinary significance for practical applications.
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Much of the existing work is mainly embodied in generative models, such as autoen-
coders (AE) [3–6] and generative adversarial networks (GAN) [7–10]. However, due to
the powerful generalization ability of the deep autoencoder, even anomalous samples
containing defects can be well reconstructed, which defeats the original purpose. The lit-
erature [6] mentions that the GAN-based approach has the following two shortcomings:
non-reproducibility of the results [11, 12] and data hungriness. Recent studies [13–15]
have shown that these methods do not extract the semantic features well.

Using pre-trained networks can greatly increase the training speed of the model and
effectively improve the accuracy of the model [16, 17]. Salehi et al. [18] proposedMKD,
they extract knowledge from multiple layers of the pre-trained source network, which
can better exploit the knowledge of the source network and expand the discrepancy
compared to using only the last layer of information. The loss function is the similarity
of the multi-layer feature maps of the source and cloner networks, using a weighted
sum of MSE and cosine similarity. Moreover, the localization uses a gradient-based
interpretable method, where they consider the anomalous region to be the region that
makes the sudden and large change in the value of this loss, find the back-propagation
gradient of the loss, and use the gradient to find the region that causes the anomaly that
increases its value. We found that this method is not effective in detecting tiny defects
as well as defects in texture-based products.

Fig. 1. Visualized results of our method on MVTecAD dataset and DAGM dataset.

To be able to better detect small defects as well as defects in textured products, we
offer an alternative strategy. First, we follow the framework of knowledge distillation,
distilling knowledge from one network to another. Our expert network is a pre-trained
VGG16 network model [19] on the ImageNet dataset [20], and the learner network is
the same size as the expert network, but the learner network is not pre-trained. In the
training phase, the normal images without any defects are sent to the expert network and
the learner network respectively, and the learner network will acquire different semantic
information at multiple levels in the expert network, and it should not be neglected
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that the learner network only learns the manifold of normal data sufficiently. When an
image with defects is input, the learner network and the expert network will diverge, and
the greater the difference between the features of the defective and normal images, the
greater their divergence will be, and the two networks will show different divergences at
different layers. We only use MSE Loss to distill knowledge during the training period.
In the testing phase, we use cosine similarity to obtain anomaly maps between the two
networks at different levels. The value of each pixel on the anomaly maps represents
the degree to which the expert network diverges from the learner network, and the
more pronounced this divergence is, the more likely it is that a defect exists. By fusing
multiple levels of anomalymaps, we can have excellent detection and localization effects
on different types of defects (see Fig. 1). Compared with MKD [18], our method can
effectively detect and locate different types of defects, especially in textured products,
and has a significant improvement in the accuracy of detection. In addition to using
the MVTecAD dataset, we also tested our experimental results on the DAGM dataset
containing various types of texture patterns, and the data showed that our method can
have excellent results in detecting defects in texture-based products.

2 Related Work

2.1 Image Reconstruction

A typical reconstruction-based approach uses an autoencoder to compress the input
image. During training, the model only reconstructs the normal samples for learning,
and the defective regions cannot be reconstructed well, and the presence of defects is
determinedbasedon the reconstruction error between the input data and the reconstructed
data. Bergmann et al. [3] introduced structural similarity SSIM to a general autoencoder,
integrating luminance, contrast and structural information to compensate for the visual
inconsistency caused by reconstruction errors using the Euclidean distance metric alone.
Some other methods [7–9, 21] use Generative Adversarial Network to constrain the data
distribution.

Some approaches use self-supervised learning to force the model to learn semantic
features of the image itself from restricted information. Golan et al. [22] subjected the
normal samples tomultiple geometric transformations. Similarly, Fei et al. [14] proposed
that ARNet adds an attribute erasure module to the autoencoder framework to erase the
color information and perform geometric transformations. Puzzle-AE [6] introduces
another common self-supervised learning task, puzzle decryption. RIAD [23] based on
image restoration for anomaly detection.

2.2 Feature Modeling

Yi et al. [24] improved on SVDD [25] andDeep SVDD [26] by dividing the whole image
into several patches. Shi et al. [27] develop an effective feature reconstructionmechanism
for anomaly detection. Cohen et al. [28] combined the idea of KNN and extraction of
multilevel features to achieve good results in pixel-level localization. Wang et al. [29]
achieved superior results in localization accuracy by extracting features from the ResNet
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intermediate layer and using a step-by-step phase multiplication method. CAVGA [30]
makes clever use of the attentionmechanismand expects themodel to focus on the normal
regions of the image. Bergmann et al. [15] first applied the knowledge distillationmethod
to anomaly detection, since the training is based on patches, the training cost is too high
and heavily depends on the size of patches.
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Fig. 2. Overview of our framework. During the training phase, the learner network learns the
manifold of the normal data from the expert network. During the testing phase, detect and locate
defects by fusing anomaly maps from multiple layers of both networks.

3 Method

This section describes in detail our proposedmethod for defect detection.Given a training
dataset Dtrain = {I1, I2, . . . , In} without any defective images, we will use a pre-trained
expert network E to distill knowledge to the learner network L, that detects defects in the
test set,Dtest . Once L learns the manifold of the normal data, it can assign a score to each
pixel indicating how much it deviates from the training data manifold. Therefore, it has
to try to learn the complete knowledge of E. The previous work related to knowledge
distillation simply taught the final output information. The knowledge of the middle
layer of the expert network is sometimes even better than the knowledge of the last layer
[31]. For this, we encourage L to learn multi-level of knowledge, which will enable it
to fully learn the normal data in the manifold. As we all know, in deep neural networks,
different levels of features represent different meanings. For example, the output of the
first convolutional layer is just some very simple line information, followed by possibly
some shape-related information. The deeper the hierarchy goes, the easier it is to get
some semantically relevant information.

Figure 2 illustrates our proposed framework.
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3.1 Knowledge Distillation

In this section, we focus on how L learns the manifold of the normal data from E.
The network we use is VGG16, and the features extracted by the VGG network

have demonstrated superior performance in many application directions in the field of
computer vision. We call the layer where knowledge needs to be distilled the reserve
layer, and define the i-th reserve layer as Ri. The features output by E at the reserve layer
are called aRiE ∈ R

w×h×d , where w, h, and d denote the width, height and channel number

of the feature, the features output by L at the reserve layer are called aRiL ∈ R
w×h×d , we

define the distillation loss li of the i-th layer as

li = 1

w × h
(aRiE − aRiL )

2
. (1)

In order to distill multiple levels of knowledge, then the total distillation loss can be
defined as

l =
∑NR

i=1
λi(

1

w × h
(aRiE − aRiL )

2
), (2)

where NR represents the number of reserve layers, and λi indicates the impact of the
i-th feature scale on anomaly detection. We set all the weights by default to λ1 = λ2 =
. . . = λNR = 1

To prevent some undesirable effects and additional interference factors caused by
inconsistent network structures, such as inconsistent network structures leading to some
differences in the output of the middle layer itself, etc. The structure of L we use is
identical to that of E, the only difference being that E is pre-trained, whereas L is not.
During training, we input only normal image samples and no abnormal image samples
containing defects, and we keep the parameters of E unchanged while updating only the
parameters of L.

The framework used for the training process is shown in Fig. 3.

3.2 Anomaly Detection

To detect possible defects contained in the images and where they are located, we feed
each image into both E and L. For a normal image input without defects, the two have
almost the same viewof the normal image becauseL iswell equippedwith the knowledge
about the normal image instilled by E. Therefore the features output by the two networks
are almost identical. But for an image that contains defects, since E is pre-trained on
ImageNet, and L only learns the knowledge about normal images taught by E. So the
features output by the two networks for the defective image may not be consistent, and
the inconsistent area is the area where the defect is located. Based on this feature, we
can discern whether an image is a defective image or not, and to find the location where
the defect is located.

In convolutional neural networks, local features extracted by convolutional layers
are combined by subsequent convolutional layers to formmore complex features. In this
learning process, a hierarchy of features emerges, where lower-level convolutional layers
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Fig. 3. The process of knowledge distillation. Knowledge from the middle and last layers of the
expert network is distilled into the learner network. This knowledge is about the manifold of the
normal data.

may learn lower-level features (edges, corners, etc.), while higher-level convolutional
layers may learn more advanced features (dog heads, bird tails, etc.). The output of
different layers of a convolutional neural network corresponds to different levels of
features, and the different levels of features also represent different meanings. Intuition
tells us that when an image with defects is input to the network, the features aRL output
by each level of L will differ to a different degree from the features aRE output by each
level of E, and we combine the differences in the features of multiple levels as a way to
improve the detection accuracy of the network, and the experiments prove that our idea
is correct.

In the testing phase, we use the cosine similarity to measure the difference between
the features output by the two networks. The difference exhibited by two features aRL
and aRE of dimension d × w × h is represented by an image of size w × h, this image is
the anomaly map Mi of the current layer. Mi is formulated as

Mi = CosineSimilarity
(
aRiE , aRiL

)
. (3)

Since the size of the anomaly maps generated by each layer is inconsistent, it is nec-
essary to upsample all the anomaly maps to a uniform size, noted asM ∗

i , for subsequent
fusion. M ∗

i is formulated as

M ∗
i = Upsampling(Mi). (4)

The final generated anomaly map M is formulated as

M =
∑N

1
βiM

∗
i , (5)
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where βi indicates the impact of the i-th anomaly map, N represents the number of
anomaly maps to be fused.

4 Experiments

In this section, we investigate the performance of our model in different datasets, and
in each dataset, we test the performance of the model in defect detection and the per-
formance of the model in defect region localization, respectively. The results of the
experiments show that we achieve good performance in both the anomaly detection task
and the anomaly localization task.

4.1 Dataset

MVTecAD. MVTecAD is a dataset for anomaly detection. Unlike previous anomaly
detection datasets, which mimic actual industrial production scenarios and are primarily
used for unsupervised anomaly detection, this dataset is more focused on real-world
applications. The dataset contains 5354 high-resolution color images of different objects
(ten categories) and texture categories (five categories). The dataset is further divided into
normal images for training and anomalous images for testing, with 73 anomaly types,
such as scratches, dents, contamination and various structural changes, all of which are
labeled at the pixel level.

DAGM2007. The DAGM2007 dataset [32] is a dataset for fabric defect detection that
contains ten different classes of images. Since the DAGM2007 dataset was originally
prepared for supervised andweakly supervised tasks, which contains some classification
annotations, we need to discard this part of annotations and rearrange the DAGM2007
dataset to keep it consistent with the MVTec AD dataset so that it can successfully com-
plete the task of unsupervised anomaly detection. Our reproduced DAGM2007 dataset
contains 3858 images, and all ten categories are texture-based images with different
sizes of defects in different categories.

4.2 Experimental Setup

Both E and L use the VGG16 network model with the same structural size. During the
training phase, we choose the four final layers of each convolutional block, i.e. max-
pooling layers, to be the reserve layer. Unlike the training phase, in the testing phase,
for an input image of 224 × 224, the size of the anomaly maps output through these
four storage layers are 56 × 56, 28 × 28, 14 × 14, and 7 × 7, and finally we have to
upsample all the anomaly maps to the same size as the input image, which is 224 × 224.
So for too small sizes, the upsampling process will produce some errors, which we do
not want to see, so in the test phase to ensure that there is not too much interference, we
discarded the output of the last storage layer 7 × 7, i.e. only 56 × 56, 28 × 28 and 14
× 14 anomaly maps are used.
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Table 1. Image-level detection results on MVTecAD.

Category L2_AE AnoGAN LSA CAVGA VAE MKD PatchSVDD STFPM OURS

Textures Leather 46.0 52.0 70.0 71.0 71.0 95.1 90.9 – 99.8

Wood 83.0 68.0 75.0 85.0 89.0 94.3 96.5 – 99.3

Carpet 67.0 49.0 74.0 73.0 67.0 79.3 92.9 – 98.5

Tile 52.0 51.0 70.0 70.0 81.0 91.6 97.8 – 96.9

Grid 69.0 51.0 54.0 75.0 83.0 78.0 94.6 – 99.3

Objects Bottle 88.0 69.0 86.0 89.0 86.0 99.4 98.6 – 99.2

Hazelnut 54.0 50.0 80.0 84.0 74.0 98.4 92.0 – 98.5

Capsule 61.0 58.0 71.0 83.0 86.0 80.5 76.7 – 95.8

Metal Nut 54.0 50.0 67.0 67.0 78.0 73.6 94.0 – 99.6

Pill 60.0 62.0 85.0 88.0 80.0 82.7 86.1 – 98.4

Cable 61.0 53.0 61.0 63.0 56.0 89.2 90.3 – 92.3

Transistor 52.0 67.0 50.0 73.0 70.0 85.6 91.5 – 91.8

Toothbrush 74.0 57.0 89.0 91.0 89.0 92.2 100 – 88.3

Screw 51.0 35.0 75.0 77.0 71.0 83.3 81.3 – 93.3

Zipper 80.0 59.0 88.0 87.0 67.0 93.2 97.9 – 97.1

Mean 63.0 55.0 73.0 78.0 77.0 87.8 92.1 95.5 96.5

Table 2. Pixel-level detection results on MVTecAD.

Category SSIM_AE L2_AE AnoGAN CNN_Dict VAE MKD PatchSVDD STFPM OURS

Textures Leather 78.0 75.0 64.0 59.0 92.5 98.1 97.4 99.3 98.6

Wood 73.0 73.0 62.0 91.0 83.8 84.8 90.8 97.2 94.5

Carpet 87.0 59.0 54.0 72.0 73.5 95.6 92.6 98.8 99.0

Tile 59.0 51.0 50.0 93.0 65.4 82.8 91.4 97.4 96.7

Grid 94.0 90.0 58.0 59.0 96.1 91.8 96.2 99.0 98.9

Objects Bottle 93.0 86.0 86.0 78.0 92.2 96.3 98.1 98.8 98.5

Hazelnut 97.0 95.0 87.0 72.0 97.6 94.6 97.5 98.5 98.3

Capsule 94.0 88.0 84.0 84.0 91.7 95.9 95.8 98.3 91.0

Metal Nut 89.0 86.0 76.0 82.0 90.7 86.4 98.0 97.6 96.5

Pill 91.0 85.0 87.0 68.0 93.0 89.6 95.1 97.8 97.0

Cable 82.0 86.0 78.0 79.0 91.0 82.4 96.8 95.5 94.8

Transistor 90.0 86.0 80.0 66.0 91.9 76.5 97.0 82.5 80.0

Tootbrush 92.0 93.0 90.0 77.0 98.5 96.1 98.1 98.9 99.0

Screw 96.0 96.0 80.0 87.0 94.5 96.0 95.7 98.3 96.7

Zipper 88.0 77.0 78.0 76.0 86.9 93.9 95.1 98.5 97.6

Mean 87.0 82.0 74.0 78.0 89.3 90.7 95.7 97.0 95.8

For all the following experiments, we will use the framework shown in Fig. 2. In
which, we do a Batch Normalization operation after each convolutional layer, not only
for E but also for L. Batch Normalization allows each layer of the network to learn
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itself slightly more independently of the other layers. The SGD optimizer is used in the
experiment, the learning rate is set to 0.3, the batch size is 32, all the input images are
resized to 224 × 224, and the final output image is also 224 × 224 in size.

4.3 MVTec Anomaly Detection Dataset

As in previous work, the area under the receiver operating characteristic curve (AUROC)
was used as the metric used to evaluate the experiments.
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Fig. 4. Samples of bad results.

Detection. The results in Table 1 show that the multi-level feature fusion approach we
used inMVTecAD has a significant improvement in detection performance compared to
MKD. Especially in the texture class data, we can have good detection results regardless
of the class of texture defects. However, in the Objects category, we find that the four
categories of Cable, Transistor, toothbrush, and screw prevent us from going further,
especially the toothbrush category, in which the detection is even worse than most of the
previous methods. Observing the output anomaly maps of sizes 56, 28, and 14, as shown
in Fig. 4, we found that the anomaly maps of sizes 28 and 14 judged the background
region as anomalous, and after upsampling, this wrong determination was amplified, so
that the accuracy of detection was greatly affected when the three were fused.

Localization. The results in Table 2 show that although our method is not optimal
compared to other methods, a closer look shows that our method copes well with the
various defects in the texture category. However, in the Objects category, our method
does not perform well in Capsule and Transistor, especially transistor, which is less
accurate than all other categories by a dozen, a very bad effect for the final average. It is
easy to see that the MKD method also performs very poorly in the transistor category,
so perhaps the problem arises in the VGG network itself. For the Capsule category, by
observing its anomaly maps of sizes 56, 28, and 14, we find that the problem still occurs
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in the two small-sized anomaly maps of 28 and 14, especially the 14-sized anomaly
map, which thinks that almost all the backgrounds are anomalous, and then upsampled
to further expand this wrong determination result, causing the final result to become
poor.

Table 3. Image-level detection results and pixel-level detection results on DAGM.

Detection Localization

Category MKD STFPM OURS OURS* MKD STFPM OURS OURS*

Class1 56.3 97.8 94.9 98.6 56.7 90.9 88.7 88.1

Class2 90.6 93.8 95.7 99.9 97.0 94.4 97.1 97.4

Class3 74.6 90.6 57.6 75.9 83.8 88.0 78.7 83.3

Class4 100 100 100 100 95.4 98.6 97.5 97.4

Class5 68.8 83.5 95.2 97.2 68.9 88.9 93.2 94.4

Class6 90.7 99.8 67.6 98.3 76.1 88.9 75.8 80.4

Class7 49.0 100 98.8 100 71.4 94.6 89.5 90.6

Class8 55.0 97.9 82.5 97.3 75.6 97.1 94.5 96.7

Class9 66.0 87.5 68.8 100 91.1 97.2 79.0 94.3

Class10 94.5 99.0 95.6 97.8 96.8 98.4 98.2 98.4

Mean 74.6 95.0 85.7 96.5 81.3 93.7 89.2 92.1

4.4 DAGM Dataset

For the DAGM dataset, we adopt AUROC as the evaluation index used for detection as
well as localization.

As shown in Table3, what can be seen is that MKD performs poorly in datasets
containing complex texture class datasets and small defects, and inmany of these classes,
MKD does not perform well for defect detection. In contrast, our method of fusing
multiple anomaly maps at different scales performs well in the datasets of these texture
classes. For the default way of assigning 1/3 weight to anomaly maps of sizes 56, 28,
and 14 respectively, it improves nearly 11% over MKD in terms of defect detection
effect and about 8% in terms of defect localization effect. The other way of assigning
1/2, 1/3 and 1/6 weights to 56, 28 and 14 respectively, has a substantial improvement in
the detection effect of defects. The weight assignment method is discussed more in Sec.
5.1. The second way of assigning weights greatly reduces the errors generated in the
process of sampling to 224 on the anomaly maps of two small sizes, 28 and 14, resulting
in a significant improvement of the final average effect. The table also shows that after
the weight adjustment, for class6 and class9, the defect detection effect has a qualitative
leap, and the defect location effect has a considerable improvement.
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5 Ablation Study

5.1 Fusing Weights of Multi-scale Anomaly Maps

The outputs of our three selected convolutional blocks are 56× 56, 28× 28, and 14× 14,
respectively, with default weights of 1/3 (β) for each of the three anomaly maps, along
with a set of weights of 1/2, 1/3, and 1/6 (β*), corresponding to the layers where 56, 28,
and 14 are located, respectively. Our original intention of designing the second set of
weights was to worry that the size of the anomaly map output from the latter two layers
was too small. In the upsampling process, because it is filling the non-existent pixel
points by interpolation, it is not really detecting the presence of defects, then for these
two small sizes, there is definitely an error in the upsampling process. To reduce this
error, we penalize the weights of anomaly maps of small size, the smaller the anomaly
map the smaller the weights assigned. In Table 4, for DAGM datasets with various
complex texture classes, some defects are relatively small and some defects are not very
obvious compared to normal data, the second weight assignment method avoids errors
in upsampling for small anomaly maps and effectively ensures the accuracy of detection.
But for the MVTecAD, many defects are relatively large, small size anomaly map in the
process of upsampling by interpolation method of filling the part does not produce much
error, and the integration of a variety of size anomaly map more to ensure the accuracy
of the detection effect. So we use β for MVTecAD and β* for DAGM.

Table 4. Image-level detection results and pixel-level detection results on DAGM. β is the default
weight of 1/3 for each of the three layers, and β* represents the weights of 1/2, 1/3, and 1/6.

β β*

Dataset Detection Localization Detection Localization

MVtecAD 96.5 95.8 90.5 95.9

DAGM 85.7 89.2 96.5 92.1

5.2 Number of Layers During Training

In the exception detection phase we use the output of the first three blocks of the last four
blocks instead of using the output of the last block. Sowe thought about a question: Since
we only use the first three blocks, do we need to learn about the last block? The results in
Table 5 can show that even if only three blocks are used, in the learning phase, that is, the
training phase, the learner network learns the complete four blocks of knowledge of the
expert network, which still has some improvement for the final overall defect detection
as well as localization effect.
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Table 5. Ablation studies for training layers.

3 layers 4 layers

Dataset Detection Localization Detection Localization

MVtecAD 96.2 95.0 96.5 95.8

DAGM 85.7 89.2 96.5 92.1

5.3 Individual Layer v.s. Multi-level Layers

The experiments performed in this section are to demonstrate the necessity of our pro-
posed fusion of multiple scale anomaly maps, and it can be clearly seen that the three
different sizes of anomalymaps, 56, 28 and 14, have different detection effects for defects
in different categories. For small-sized anomaly maps, the detection accuracy may be
higher, but they inevitably have errors in the upsampling process, while for large-sized
anomaly maps, although the detection effect is not very good, there is not much error in
the upsampling process. So taking all these factors into consideration, we fused multiple
scales of anomaly maps (Table 6).

Table 6. Performance with different sizes of anomaly maps.

56 28 14 Multilevel

AUROC 87.3 89.8 88.1 95.8

6 Conclusion and Discussion

We show that comprehensive knowledge propagation from a pre-trained expert network
to a learner network with the same structure and combining the differences in multi-
ple intermediate layer features of the two networks are effective in detecting defects
contained in images, especially for texture-like images. Our approach avoids designing
learner networks and does not require the expensive training time cost based on patch.

It is worth noting that we are pre-trained on ImageNet, which may have unexpected
effects if self-supervised learning is used, and that some of the network’s problems
present in VGG could perhaps be improved by adding some modules; nevertheless, we
provide a promising direction.
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