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Abstract The use of Artificial Intelligence (AI) is growing in areas where decisions 
and consequences have high-stakes such as larger scale software, critical infrastruc-
ture, and real-time systems. This transition in recent years has been accompanied 
by the growth of research in AI assurance in fields such as ethical, explainable, 
and trustworthy AI. In this work, we survey the literature to find the state of AI 
assurance for cyberbiosecurity systems as they exist now, particularly for water and 
agricultural supply systems; future directions are also presented. We focus on papers 
at the intersection of cyberbiosecurity, AI assurance, and water/agricultural supply 
systems, discuss how assurance techniques improve these systems, and provide 
pointers for future research into the application of AI for the cyberbiosecurity 
field. Current cyberbiosecurity solutions do not focus much on AI, but existing AI 
solutions for water supply and cyber or Cyber-Physical Systems (CPS) exist and can 
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be applied to benefit cyberbiosecurity. The inclusion of AI assurances help alleviate 
issues of applying AI to high-stakes human-centered infrastructure. 

CCS Concepts Computing methodologies . → Artificial intelligence, Security and 
privacy, General and reference . → Cross-computing tools and techniques, 
Computer systems organization . → Embedded and Cyber-physical systems 

Keywords Cyberbiosecurity · AI assurance · Water supply systems 

1 Introduction 

The deployment of AI is outpacing the adoption of assurances that commit to 
its responsible use as policies and regulations lag behind. Assurances validate AI 
systems to assess the risk of failure, misuse, and even abuse, helping establish 
the trust needed for the adoption of AI. The risks of AI in infrastructure (e.g., 
agricultural supply chains, biological systems, and water supply systems) are 
significant, potentially affecting millions of citizens and resulting in loss of life, 
well-being, and economic opportunity. 

For example, take a city-wide water distribution system that pumps in water from 
a reservoir and ensures every citizen has equal access to drinkable water. Imagine 
the city adopts an AI system that predicts demand and supplies regions of the system 
as needed. The system works fine to start, but years later it is not properly validated 
after new pumps are installed, so the sensor data changes and no longer predicts 
accurately. As a result there are large swaths of the city that are no longer receiving 
drinking water because the system forecasts are off. Or, maybe the system was 
trained with bias data because poorer neighborhoods had less data collected, so 
the system favors keeping the water supply greater for affluent regions resulting in 
poorer regions having intermittent supply issues. 

For this water supply AI system to work properly assurances must validate 
outcomes are correct, fair, and that users can understand why the system has made its 
decisions. These concepts form the basis of AI assurance, which details the broad 
ways of verifying and validating AI systems, much the same way that traditional 
programming software (i.e., not machine learning) is verified and validated during 
its development process [1]. AI assurance applied during development would help 
avoid the mentioned issues of robustness and bias. 

Water supply systems are a form of CPS, as physical sensors, pumps, and tanks 
act as data collectors to track the flow of water and relay data to a central computer. 
This data processing exposes the water supply to cyber-attacks. Additionally, water 
supply systems are part of the bioeconomy (the supply chain infrastructure that is 
tied to critical commodities like food, water, and medicine) meaning any impact 
to the system can have an effect on the livelihood of thousands or millions of 
people. The imagined water supply AI not only ensures proper water distribution, 
but there are additional security concerns, moving it into the relatively new realm
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of cyberbiosecurity, which is a discipline at the intersection of life science and 
information technology (IT) [2]. Cyberbiosecurity is defined in greater detail in 
Sect. 1.1. 

Existing cyberbiosecurity research mostly focuses on the IT side of biology, 
or cybersecurity for biology labs and databases is a succinct way to put it. The 
cyberbiosecurity field, however, is lacking much research in applied AI for supply 
chain infrastructure, as most papers only identify vulnerabilities and propose high-
level frameworks for addressing them. Our goal for this survey is to find papers 
at the intersections of cyberbiosecurity, AI assurance, and water and food supply 
systems and connect that to the bioeconomy. Our work searches for and discusses 
the applications of AI assurance to existing solutions within the cybersecurity and 
CPS to help ensure the proper function of cyberbiosecurity-related systems. 

1.1 Relevant Terminology and Definitions 

Proper use of AI assurances verifies and validates the outputs of those systems, 
convincing users that they are reliable. AI assurance codifies the process, so when 
changes occur to the water supply system, validation can be re-run to satisfy the AI 
is working properly or needs to be retrained. Definitions are intentionally broad in 
order to apply them to a wider range of applications. From Batarseh et al. [1], AI 
assurance is defined as: 

A process that is applied at all stages of the AI engineering lifecycle ensuring that any 
intelligent system is producing outcomes that are valid, verified, data-driven, trustworthy 
and explainable to a layman, ethical in the context of its deployment, unbiased in its 
learning, and fair to its users. 

The importance of AI assurance is that it applies a process to all stages of the AI 
lifecycle, from the start of development all the way through deployment. Assurances 
are not merely tests of AI to check some boxes that it is okay to use. In order to trust 
the AI is working properly engineers need to validate it meets all the criteria of 
assurance: 

• Ethical—the AI system can make “right” decisions that benefit the people 
impacted and not just the people in power of the technology [3]. 

• Fair—the AI system makes decisions without considering demographics, back-
grounds, affiliations, or individual preferences (i.e., does not inherently value 
some citizens over others). 

• Safe—the AI system ensures the life and well-being of those who are using it 
and impacted by it. 

• Explainable—the AI system can explain, or be interpreted, to understand why it 
came to a decision or how the algorithm works. 

• Secure—the AI system can prevent or mitigate attacks or other threats to the 
proper operation of the system. 

• Trustworthy—users have confidence the AI system works properly.
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For infrastructure systems in the bioeconomy, AI must be ethical to make the 
right decisions, safe to protect users it potentially impacts, explainable so humans 
can understand it, fair in the decisions it makes, trustworthy so we have confidence 
in its abilities, and secure to prevent cyber-attacks and threats. 

The bioeconomy refers to the sector of the economy that relates to research 
or innovations in the life and biological sciences and fields related to biotechnol-
ogy [2, 4–6]. This sector grows as progress continues in technology relating to 
computing and information sciences [7], including most crop production, especially 
as big data, AI, and machine learning become more involved for enhancing land 
use and water management via precision farming [4]. As the bioeconomy grows, 
cyber threats against it increase and require mitigation to safeguard investments in 
the bioeconomy [8]. 

Richardson et al. [2] described cyberbiosecurity as the intersection of IT and life 
sciences, but Duncan et al. [9] specified it further as the intersection of cybersecurity, 
cyber-physical security, and biosecurity. Each discipline with its own existing 
challenges and new vulnerabilities appearing where they overlap. 

By its nature, cyberbiosecurity is grounded in IT and with that brings the risk 
of cyber-attacks. This is the traditional realm of cybersecurity, or the shielding of 
computer networks and information from damage, exploitation, and unauthorized 
use [10–15]. Linking any computer system to a network increases risk. This is 
compounded in the bioeconomy as more remote monitoring and controlling is added 
to existing physical infrastructure, because of this interaction of cyber and physical 
the security needs “safety and reliability requirements qualitatively different from 
those in general-purpose computing.” [16]. A CPS integrates digital computing and 
physical processes, where a network monitors and controls a physical system via 
sensors and actuators, to interact with the real world [16, 17]. Communication 
and networking multiple devices is important because the components are often 
disparate and there is a back and forth of physical processes affecting the computer 
and vice versa, but this opens new vulnerabilities [16, 17]. 

The third aspect of cyberbiosecurity moves fully into the physical space for 
securing biological systems. Biosecurity is the protection of any form of life from 
the threat of disease and pests, including the protection of agriculture and food, 
or simply put the “re-branding of the centuries-old battle with disease” [18–20]. 
This includes threats that are natural, such as livestock and crop diseases, or 
intentional attacks, such as the deliberate use of smallpox and anthrax weapons [18]. 
The incorporation of biosecurity in the realm of cybersecurity and cyber-physical 
security is what sets cyberbiosecurity apart. 

Traditional cyber-attacks are not necessary to impact biological systems, because 
there are physical, biological interactions outside the computer systems. We need to 
ensure that the biological aspects are operating properly, be it from natural causes 
(diseases, pests, etc.) or intentional cyber and physical attacks. There are three layers 
of interactions to protect: the cyber, the interactions of cyber and physical, and the 
biological. 

Included in these biological systems are water supply systems, which can refer 
to distribution, treatment, agricultural, or storm water systems. Distribution systems
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control the transport and delivery of water through a network of pipes and pumps 
to ensure consistent supply, they are focused on the logistics of water transportation 
and storage. Treatment systems take raw or wastewater, unsafe for humans or the 
environment, and through a series of chemical and biological processing, filtering, 
and sanitizing produce either safe drinking water or water that can be released into 
the environment. Agricultural water systems focus on the distribution of water to 
crops and livestock. Unlike distribution systems, this water does not have to be 
safe for human drinking, but it must ensure the production of food for human use. 
This also closely ties agricultural water systems to food supply systems. Finally, 
storm water systems deal with the drainage of runoff water to prevent flooding or 
contamination of other water systems from the pollutants that it picks up. 

These systems allow for the automation of critical infrastructure by adding more 
technology for monitoring and controlling human and agricultural water use. These 
water and food systems are not only cyber-physical but also biological as well. Their 
proper functioning is required for human livelihood, either through the supply of 
safe water or the growth of adequate food supplies. Water and food systems are 
cyber-physical and bio-infrastructure systems that are open to attacks (cyber and 
physical) and anomalies (such as maintenance issues, severe weather, sensor or 
equipment breakdowns). 

Going back to our hypothetical city-wide water distribution system. If it were 
attacked by a bad actor who wanted to poison the water, they could give commands 
to add too much of a chemical or too little of a cleaning agent that would result in 
undrinkable water. In fact, there was an attack in 2021 on a Tampa, Florida water 
supply system where attackers increased the levels of lye in the water by 110 times 
before they were stopped [21]. We discuss this example further in Sect. 5.4, but it  
serves as a great example of the cyberbiosecurity threats to water supply systems. 
Threats can combine unauthorized access of computer systems to control physical 
processes; in the Tampa case, the lye controllers pose a biological threat to everyone 
that relies on the system for safe drinking water. The next section introduces the 
inclusion and exclusion criteria of the papers surveyed. 

1.2 Description of Included Articles 

In this survey, we used multiple online repositories and research paper search 
engines to find relevant papers on the topics of cyberbiosecurity, AI assurance, and 
water supply systems. Our focus was to find peer-reviewed papers at the intersection 
of two or more topics. We include papers from journals, conference proceedings, 
dissertations, books and book chapters, and industry white papers published from 
2000 through April 2022. A complete repository of papers included in this study 
can be found here: https://github.com/AI-VTRC/CyberbiosecuritySurveyPaper. 

Key search terms included the following to find papers: 

• Cyberbiosecurity; Cyber-Biosecurity; Biocybersecurity; Bio-Cybersecurity

https://github.com/AI-VTRC/CyberbiosecuritySurveyPaper
https://github.com/AI-VTRC/CyberbiosecuritySurveyPaper
https://github.com/AI-VTRC/CyberbiosecuritySurveyPaper
https://github.com/AI-VTRC/CyberbiosecuritySurveyPaper
https://github.com/AI-VTRC/CyberbiosecuritySurveyPaper
https://github.com/AI-VTRC/CyberbiosecuritySurveyPaper
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• Water Supply System; Water Distribution System; Water Treatment System; 
Water System 

• AI Assurance (see assurance list in Sect. 1.1) 
• Artificial Intelligence 

Because cyberbiosecurity is a new research field, we kept search criteria as broad 
as possible to include enough papers for a survey. Some focus on the medical 
fields, but we tried to find relevant discussions that could apply to AI assurance 
or water supply systems as much as possible. Some focus just on the concept of 
cyberbiosecurity in general, but we focus on how best to apply the concept to AI 
assurance and water supply systems. 

2 Survey Landscape 

The papers surveyed for this research included publications between 2000 and 2022 
(as of April 2022), but most are from 2016 onward. Figure 1 shows a histogram by 
publication year, and until 2016 there was not more than three publications per year 
that covered cyberbiosecurity, water systems, and AI assurance. There is a steady 
trend upward for the count of publications, and as cyberbiosecurity and AI assurance 

50 

40 

30 

20 

10 

0 
2000 

2001 

2002 

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

2020 

2021 

2022 
Publication Year 

C
ou

nt
 

Fig. 1 Count of the number of publications by year that were used in this survey
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Fig. 2 The count of publications by year for the sectors of cyberbiosecurity and water supply 
(either water treatment or water distribution) systems. Papers are not confined to a single sector, 
and some are counted both as cyberbiosecurity and water supply papers. Most papers published 
since 2012, so older publications omitted from this figure 

research continues to grow we expect the number of publications to continue to grow 
each year. 

Figure 2 shows the breakdown of publications by cyberbiosecurity and water 
sectors. Publications on water systems had a low but steady trend from the early 
2000s until about 2017 when they increased and held since. The year 2017 was also 
when the cyberbiosecurity term started showing in the scientific literature, and there 
is a sharp peak in 2019 before cyberbiosecurity publications return to a more steady 
pace. 

We break down the AI assurance publications by assurance pillars in Fig. 3. Here, 
a majority of the papers deal with safe and trustworthy AI, especially just before 
the term of cyberbiosecurity starts showing in 2017. As AI becomes more popular, 
especially with deep learning (since 2015), we see an increase in publications for all 
the pillars of AI assurance. 

Figure 4 shows a citation graph we created using Citation Gecko.1 The yellow 
nodes are surveyed papers, gray nodes are other papers which cite our surveyed 
papers, and edges (lines that connect the nodes) are the citation link between two 
papers. The cyberbiosecurity literature is relatively disjointed from the literature 
on water supply systems and attack/anomaly detection. Most of the AI assurance 
papers remain independent in this view from each other and other sectors, with the 
exception of some trustworthy AI papers that form a small network. This graph 
shows the relative separation of the cyberbiosecurity literature from water system 
security and attack/anomaly detection (which includes secure AI). There is one 
citation chain from cyberbiosecurity to water system security via Mueller [22], 
Schmale III et al. [23], Moyer et al. [24], and Housh and Ohar [25]. (note that Moyer 
et al. [24] is the oldest link in that chain.)

1 https://www.citationgecko.com/. 

https://www.citationgecko.com/
https://www.citationgecko.com/
https://www.citationgecko.com/
https://www.citationgecko.com/
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Fig. 3 The count of publications by year for the pillars of AI assurance. Papers are not confined 
to a single pillar, and some are counted for multiple. Most papers published since 2012, so older 
publications omitted from this figure 

Fig. 4 Connected citation graph of the papers survey for this work. Yellow nodes are surveyed 
papers, gray nodes are other cited papers, and edges represent a citation between two papers. The 
cyberbiosecurity literature is relatively disjointed from the literature on water supply systems, AI 
assurance, and attack/anomaly detection. Graph generated using and courtesy of CitationGecko 
https://www.citationgecko.com/

https://www.citationgecko.com/
https://www.citationgecko.com/
https://www.citationgecko.com/
https://www.citationgecko.com/
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3 AI Assurances for Cyberbiosecurity 

In the introduction section, we described cyberbiosecurity as the intersection of life 
sciences and IT, and to be a little more specific it is the intersection of cybersecurity, 
cyber-physical security, and biosecurity [2, 9]. One of the best definitions we found 
is from Murch and DiEuliis [26], who defined cyberbiosecurity as the 

understanding [of] the vulnerabilities to unwanted surveillance, intrusions, and malicious 
and harmful activities which can occur within or at the interfaces of commingled life and 
medical sciences, cyber, cyber-physical, supply chain and infrastructure systems, and  
developing and instituting measures to prevent, protect against, mitigate, investigate and 
attribute such threats as it pertains to security, competitiveness, and resilience. (emphasis 
ours). 

It is the vulnerabilities at the intersections of these cyber, physical, and biological 
systems that make cyberbiosecurity what it is, complex interactions between 
machines and biology that are open to disruption. This interaction creates unique 
vulnerabilities open to biological systems that make detection, attribution, and 
mitigation difficult in a timely manner [27]. Bernal et al. [28] recreated a Distributed 
Denial-of-Service (DDoS) attack using bacteria “engineered to act as biosensors” 
in a novel cyberbioattack, demonstrating the unique risks of the field and that 
traditional cybersecurity measures are not always adequate for cyberbiosecurity 
applications. The literature addresses these issues with a widespread call for 
action and collaboration—“We call for analyses and publications to fully scope 
cyberbiosecurity and identify a comprehensive strategy to establish the discipline’s 
goals and objectives” [2] and others, as called out by [29] and seen in [26]. 

The purpose of our survey is to find how cyberbiosecurity intersects with AI 
assurance; there are applications that go beyond applying security to biological 
applications, and here we are interested in answering the question: what makes 
cyberbiosecurity different than cybersecurity for biology? It is the assurances a 
cyberbiosecurity system brings to the continuing function of the bioeconomy and 
relevant infrastructure. This is summed up well in the paper from Schmale III 
et al. [23], and while cyberbiosecurity is only mentioned briefly, the goal of 
the water supply system discussed is to ensure the safety of the drinking water 
from naturally occurring harmful algal blooms and cyber-attacks. Cyberbiosecurity 
“models must capture the physical dynamics of the system as well as the cyber-
interconnections” [23]. 

Cyberbiosecurity systems that deal with supply chain and infrastructure systems 
have, or the potential to have, large impacts on the livelihood of people who rely 
on the system. All the residents of a city rely on its water distribution system to 
bring them water for drinking, cooking, and cleaning. A break down is not merely 
inconvenient but could be life-threatening, especially if the system is down for a long 
time or the water is contaminated. Even if AI is not considered for a cyberbiosecurity 
system, assurances are important to what cyberbiosecurity attempts to accomplish. 
AI brings an opportunity to add security or corrective actions in the event of any 
issues, and AI assurances validate their use for cyberbiosecurity applications. The
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end goal of any assurance (AI or not) is validating and verifying a system is working 
properly, so people have trust and adopt that system for use. 

Turning back to the example of a water distribution in a city, suppose an AI 
monitors the system for cyber-attacks or natural anomalies (e.g., low levels from 
draught, bacterial growth, broken equipment, etc.) and takes corrective actions. If 
the hypothetical water distribution AI meets all the criteria listed in Sect. 1.1, then 
there is assurance that it behaves in a way that benefits everyone it impacts (people 
in the city who rely on the system providing drinkable water on demand) and 
minimizes unintended consequences. There is also some assurance the AI mitigates 
issues or threats to the system that would endanger city residents. 

All these AI assurances are relevant to cyberbiosecurity, especially the secure 
assurance because the objective of cyberbiosecurity is “understanding the vulnera-
bilities” and developing “measures to prevent, protect against, mitigate, investigate 
and attribute such threats as it pertains to security. . . ” [26]. There is also the human 
side of cyberbiosecurity, Perakslis [30] included the field in their list of public 
interest technologies, which are technologies that focus on public good. Further 
emphasizing the need for assurances to validate any AI systems involved with 
cyberbiosecurity and help promote their adoption in cyberbiosecurity. AI systems 
need to be trustworthy and explainable so people want to use them knowing they 
can rely on them to operate correctly, and because cyberbiosecurity systems focus 
on biological systems, safety is a big issue in order to ensure people impacted are 
not threatened by AI making a wrong decision. Ethics and fairness are a large part 
of the safety assurance too, as AI needs to ensure it does not favor some people over 
others, that it is not designed to favor its developers and investors over everyone 
else. Ethics and fairness are ensuring equal safety for everyone impacted. 

4 AI Assurances for Open-Source Water Supply Testbeds 

Open-source information engages more researchers allowing them to build better 
tools, frameworks, and operational systems such as Git, PyTorch, or Linux. 
Similarly, open-source testbeds allow the community to contribute, propose, test, 
and improve upon ideas. Lack of real-world water and CPS datasets prevented 
significant research in security of these systems [31]. Data from real facilities cannot 
be shared for both security concerns and lack of accurate ground truth, so the 
availability of reliable, open-source water testbeds is critical for research. Open-
source datasets also allow hands-on experience and training scenarios needed for 
collaboration and understanding the security requirements of these systems [32]. 

Assurances for water systems closely match those of cyberbiosecurity systems 
discussed in Sect. 3. The two major assurances are the safety of the water quality 
and the security of the system’s operations. Explainability is another key assurance 
for water systems, so we can understand how the water and AI systems operate in 
order to ensure consistent and safe water supplies. This emphasizes the importance 
of open-source datasets to help the AI research community better understand the
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operation of water systems and develop explainable and interpretable AI that is open 
to the water industry. Here we present some open-source water distribution and 
treatment system (as defined in Sect. 1.1) testbeds available to researchers across 
the world [33]. 

4.1 Secure Water Treatment (SWaT) Dataset 

SWaT is a scaled down water treatment plant with real cyber and physical equipment 
to investigate cybersecurity research, which started in 2015 by Singapore University 
of Technology and Design [31]. The testbed consists of a six-stage water treatment 
process with modern-day components. The data collected from the testbed consists 
of eleven days of continuous operation, including seven days’ worth of data under 
normal operation and four days’ worth of data under attack. All network traffic, 
sensor, and actuator data was stored in the database. 

4.2 Water Distribution (WADI) Dataset 

Due to the success of the SWaT testbed, Singapore University of Technology and 
Design launched WADI in 2016 as an extension of SWaT to form a complete water 
treatment, storage, and distribution system [34]. Similar to SWaT, data collected 
for the WADI testbed consists of sixteen days of continuous operation, including 
fourteen days’ worth of data under normal operation and three days with attack 
scenarios. All network traffic, sensor, and actuator data were collected. 

4.3 Battle of the Attack Detection Algorithms (BATADAL) 
Dataset 

The BATADAL dataset is not based on real-world data, though it is considered 
realistic since it was constructed using the de facto standard simulation tool for water 
distribution system modeling, namely the open-source Matlab software package 
EPANET [35]. EPANET is a Windows based software application for simulating 
and representing water distribution systems used world-wide by engineers and 
researches to design new water infrastructure, update existing water systems, and 
develop more efficient solutions to solve water quality problems. The BATADAL 
dataset was constructed for a competition to compare the performance of algorithms 
for the detection of cyber-attacks on water distribution systems. BATADAL simu-
lates a fictional C-Town water distribution network, first introduced for the Battle 
of the Water Calibration Networks by Ostfeld et al. [36]. C-Town is based on a
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real-world, medium-size network which contains 388 nodes, 429 pipes, 7 tanks, 11 
pumps, and one actionable valve. 

4.4 Modbus Penetration Testing Framework (Smod) Dataset 

Laso et al. [37] created the Smod dataset was produced in 2017 to investigate 
how data and information quality estimation can detect anomalies and malicious 
acts in a CPS. The data were acquired using a cyber-physical subsystem con-
sisting of liquid fuel or water containers, along with its automated control and 
data acquisition infrastructure. The data consist of temporal series representing 
five operational scenarios—normal, anomalies, breakdown, sabotages, and cyber-
attacks—corresponding to fifteen different situations. To acquire the data, Laso et 
al. [37] used two tanks of different volumes for storage, one ultrasound depth sensor, 
four discrete sensors, and two pumps. 

4.5 Digital Hydraulic Simulation (DHALSIM) Framework 

DHALSIM is an upgraded framework of the BATADAL Framework, which uses 
the Water Network Tool for Resilience (WNTR) EPANET wrapper to simulate 
the behavior of the water distribution systems [38]. DHALSIM uses Mininet and 
MiniCPS to emulate the behavior of the Industrial Control System (ICS) controlling 
a water distribution system. This means that in addition to physical data, DHALSIM 
also provides network captures of the Programmable Logic Controller (PLCs), 
Supervisory Control And Data Acquisition (SCADA) server, and other network and 
industrial devices present in the system. Similar to BATADAL, DHALSIM can be 
integrated into a C-Town Network, using a Mininet network that connects the C-
Town PLCs and SCADA servers through Local and Wide Area Networks (LANs 
and WANs). In DHALSIM, each ICS equipment is a Mininet node running a script 
that represents the behavior of such equipment. In the C-Town network PLCs have 
private Internet Protocol (IP) addresses and NAT and port forwarding is used to 
connect the LANs. 

4.6 Datasets Comparison 

Figure 5 compares the number of total citations (labeled “General Citations”) to 
the number of cyberbiosecurity citations (labeled “Cyberbiosecurity Citations”) for 
the five datasets above. We obtained the number of cyberbiosecurity citations and 
general citations by counting the numbers of papers citing these datasets in our 
survey and by the count of citations from Google Scholar, respectively. We see the
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Fig. 5 Comparison between five open-sources water datasets in term of data usage 

SWaT dataset is used the most, while DHALSIM dataset is used the least in both 
types of citations. This difference could be explained due to the early deployment of 
the SWaT dataset and the continuing collection and publishing of more data to that 
dataset by the University of Singapore in the years since its initial release. Although 
SMOD, BATADAL, and WADI are all water distribution systems published in 2017, 
the SMOD dataset is used significantly less. This could be explained by the scale 
of the datasets, specifically, both BATADAL and WADI simulate water distribution 
systems of large towns with multiple sensors, nodes, pipes, and a large recording 
time. On the other hand, SMOD only simulates a two-tank system, although SMOD 
is focused on different attack and anomaly scenarios than BATADAL and WADI. 
This shows that the research community prefers a dataset that can simulate a large 
scale, high quality real-world water distribution systems (WADI and BATADAL) 
and water treatment plant (SWaT) as benchmarks for model development. 

5 AI Assurance Pillars 

AI offers both opportunity and risk to cyberbiosecurity systems. It has the potential 
to detect and mitigate cybersecurity threats [2, 39–42], but at the same time offers 
an avenue for attacks [43–45], such as “poison” and “evasion” attacks on data or 
“inversion” attacks on AI models [43]. The current state of the cyberbiosecurity 
literature, however, focuses more on creating awareness and calls for collaboration 
to mitigate security threats rather than discussing the direct use of AI or AI 
assurance. 

This supposition is not uniform, as Reed and Dunaway [40] praised the use of AI 
to “assist decision making. . . through the identification of cyberbiosecurity vulnera-
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bilities and by providing recommendations for their elimination and/or mitigation.” 
AI already brings a lot of benefit to the field of cyber and cyber-physical security, 
so the extension to cyberbiosecurity seems inevitable. However, with different 
physical, biological, and safety considerations required for cyberbiosecurity, there 
are no guarantees of success. This is where AI assurances come in to play a role, 
as they can help validate AI systems function as intended and aid in the responsible 
adoption of AI for the field of biology [1, 2, 46]. 

The multifaceted issues and solutions cyberbiosecurity systems face require 
interdisciplinary teams [47]. Solutions, therefore, cannot only be technical but 
require just as much of a human element [2, 47–49], and this is a more common 
topic in the surveyed papers than direct mentions of AI for cyberbiosecurity. 

Assurances aid the adoption of AI by evaluating them for the benefit of humans 
and not because they make a solution more efficient, cheaper, or faster. The pillars 
of assurance are ethical, fair, safe, secure, explainable, and trustworthy. With the 
exception of secure, they are completely human focused. Clark et al. [48] claimed 
that cyber-defense is comprised of three aspects: technology, people, and physical 
protection and that these applications rely on people merging their knowledge 
rather than solely relying on automation. AI assurance is the way of merging 
the technological solutions of AI with the human values of the people within the 
cyberbiosecurity ecosystem. Aguilar et al. [49] argued a more holistic approach 
is required to solve the issues with the bioeconomy, one that includes “science, 
technology, economy, environmental issues, rural and industrial development, 
regulatory processes and social sciences.” 

5.1 Ethical and Fair AI 

The most important question we can ask about AI is whether it works as intended 
or not. If not, how bad can the results be? And what kind of measures can we 
take in case of such a failure? In March of 2018, “an autonomous car operated by 
Uber—and with an emergency backup driver behind the wheel—struck and killed a 
woman on a street in Tempe, Arizona. It was believed to be the first pedestrian death 
associated with self-driving technology” [50]. This incident is a crucial example 
of when AI fails to make a safe decision. Although writing detailed contracts 
can legally reduce a manufacturer’s liability, it might be morally unethical for the 
company to avoid legitimate liability. 

With the growth of AI there are ethical and legal concerns regarding technology 
in areas, including how we can eliminate AI biases, ensure privacy, facilitate safety, 
and much more. AI should be made trustworthy, should be created and used with 
“an ethical purpose,” and created to do good in society, but there are lots of questions 
that come up with AI and robots, such as if we “[assume that] the robots cannot be 
morally responsible—who will be responsible?” [51]. Furthermore, AI is already 
used in automated decision-making, and in high-stakes scenarios their decisions can 
be impactful. One issue with algorithmic decisions is bias, which can be “cognitive
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biases of programmers,” “unrepresentative datasets used for training,” or “bias in 
the data used to make the decision” [51]. It is just as important to start with ethical 
considerations before AI is designed, let alone deployed, to ensure it is making fair 
and ethical decisions [51]. 

The concerns of inclusive, equitable, and correct decisions from AI are not 
solely left to industry, in fact it is gaining more ground in research from large 
tech companies and academics. The ambiguity of “fairer” decision-making systems, 
however, leaves fair AI as a broad open ended question without a real solution. 
Besides defining what “fair” means, researchers must deal with how to train systems 
for fair decisions or the fact that systems made fairer for one group can result in bias 
against another. 

One of the most common reasons for biased results is the under-representation 
of certain groups within a dataset. Increasing the representation of that group, for 
example, oversampling a certain demographic in certain areas predominantly held 
another, may be a solution to rectifying the data. When it is not possible to modify 
or edit data, the objectivity of the decision-making process can be resolved by 
adjusting the AI algorithm. For algorithms that learn from discriminatory practices 
it is possible to change the internal weights in a way that makes decisions more 
neutral. It is also possible to modify the decisions of AI algorithms directly to create 
more equitable outcomes. 

In some instances, it is not the lack of representation, but rather, the over-
representation on certain groups that can created biased results. In such fairness 
related cases, openness in the development and deployment of AI is required [52– 
55]. 

In short, it is possible for AI technologies to be more equitable, but this requires 
the cooperation of different stakeholders and a lot of work. Arnold et al. [56] pointed 
out the importance of ethical decision-making while raising critical questions for 
every AI developer. The authors also refer to relevant answers for these questions 
from the literature, making this article serve as a guidebook for comprehensive AI 
assurance deployment. 

Laplante et al. [57] investigated the causes that lead to unethical AI and its poten-
tial results. The authors saw the main reason as unbalanced or underrepresented 
data. [57] also emphasized the importance of ethical considerations for AI over its 
importance for classical software. 

Zicari et al. [58] provided a framework to assess the trustworthiness of AI 
systems. The parameters the authors investigated include, but are not limited to, 
ethical and fair AI. The article provided a lifecycle to ensure ethics in AI decision-
making. The authors emphasized the required absence of conflict for a reasonable 
assessment of ethical AI. 

Grady et al. [59] proposed an epistemic, ethical analysis framework; as the 
name suggests, the authors proposed ways to detect and analyze ethical issues in 
cyber-physical infrastructures including, but not limited to, water treatment and 
distribution systems. The article investigated the importance of ethical decision-
making and the roots of the problems in this topic.
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Freeman et al. [46] proposed a framework to investigate AI using AI assurance 
metrics. The authors brought together many AI measures on common ground in this 
work, challenged the readers, and provided answers to these AI assurance problems. 

Calvo et al. [60] investigated the algorithmic, environmental, and human impact 
assessment of AI systems. They proposed a measurement algorithm called Human 
Impact Assessment for Technology (HIAT) and discussed ways to build trust into 
the algorithm using this method. 

5.2 Safe AI 

One goal of cyberbiosecurity is ensuring the safety and well-being of those impacted 
by the system. This stems from the biosecurity aspect of the field [61] but naturally 
extends to any form of safety ensured by systems like water and food supply chains 
(and agriculture [62] as an aspect of these supply changes). The goal of the safe AI 
assurance is for AI to guarantee some level of safety to ensure the life and well-
being of anyone impacted by the AI. These two forms merge to, as Mueller [22] 
described cyberbiosecurity, develop, validate, and implement safety measures. 

Physical consequences, including harm to humans, are what separates cyber-
biosecurity from most forms of technological security. Walsh and Streilein [43] 
pointed out that “a successful cyber intrusion within the bioeconomy may yield 
a result that causes physical harm, something generally associated with biosafety 
and biosecurity but not cybersecurity.” Any interference with the bioeconomy 
has potential to harm, and while Walsh and Streilein [43] focused on illicit 
interference, this extends to unintentional interference as well. It is the ability for 
any cyberbiosecurity system to cause physical harm, intentional or otherwise, that 
safe AI and safety assurances need fortifying. 

Water and food supply systems are a prime example of a cyberbiosecurity 
systems where safety is a priority. Quality and supply from the system impact 
everyone in a service region, and both are affected by natural anomalies (algal 
blooms, weather, draughts, and floods) or cyber-attacks. Water supply systems 
require constant monitoring and threat mitigating to ensure safety of the water 
quality and supply [23, 63–79]. On the other hand, food supply relies less on 
technological innovations, whereas water systems have standardized the use of 
SCADA systems [48], food supply and agriculture have seen a more limited and 
hesitant adoption of technology, especially for small-scale farmers [9]. A more 
standardized approach to tech adoption helps by “securely sharing and interpreting 
data across sectors and identifying cyberbiosecurity risks,” ultimately improving 
food supply chains by designing “agricultural and food systems to better meet 
consumers’ need and protection of life science data” [80]. Data privacy is also 
a concern any time personal health information may be involved with genomic 
databases with the potential for cyber-attacks on lab automation [81, 82]. 

We found in the literature that water and wastewater sectors vary greatly in 
size, complexity, organization, security protocols, available resources, and even in
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imposed regulations [47, 48]. While the end goal of each water system is to supply 
clean water on demand, the approach each system takes is unique and requires 
different considerations, including adopting security measures specific to their 
organization [48]. This means that each system needs to take unique considerations 
to ensure to the quality of the water and consistency of the supply, posing a 
challenge to the field as a whole because standardized approaches to safety cannot 
be developed or relied on for all situations. 

The bioeconomy, too, consists of large and complex systems that intertwine and 
connect, and it “harbors unique features that have to be more critically assessed 
for their potential to unintentionally cause harm to human health or environment” 
[22]. Water systems supply water to farms that impact agricultural production 
which in turn impacts food supplies to retails (grocery stores), prices, and the 
ag-economy. Any hiccup along the way can have unforeseen consequences. The 
complexity, however, makes it difficult for any one person, or even organization, 
to understand what consequences their actions have. This means that changes 
for the sake of mitigating external threats could lead to unintended consequences 
[39]. Cyberbiosecurity cannot focus solely on cybersecurity and attack detection 
or, as mentioned in the previous section, on monitoring natural phenomena as 
interference. We need to implement assurances to guarantee the safety of a system 
(e.g., quality of water or food for human consumption) at all times. 

AI and other emerging technologies’ reliance on data provides both benefit 
and potential harm. The concern of unintentional errors can arise in the data 
used for Safe AI. Caswell et al. [83] pointed out the potential issues of errors in 
biological databases, but the concern is applicable to any data-driven analysis in 
cyberbiosecurity. While referring to synthetic biology, Li et al. [84] emphasized 
that unintentional risks can lead to food scarcity despite the efforts of biosafety 
and biosecurity to provide more. Similar concerns for unintended consequences of 
dealing with biological data have been expressed in [84, 85]. As these technologies 
are implemented more into cyberbiosecurity systems (such as precision agriculture) 
more emphasis needs to be placed on quality assurance of the data and safety 
assurances for the final product. 

5.3 Explainable AI 

In the introduction section we defined explainable AI as AI that can “explain, 
or be interpreted, to understand why it came to a decision or how the algorithm 
works.” Here, we expand this to include cyberbiosecurity systems in general because 
that is the environment the AI system operates in, the AI’s behavior is dependent 
on the larger system, and the end user needs to understand both in order to 
operate the system correctly. Even if a cyberbiosecurity system does not incorporate 
AI, human understanding is crucial to its operation. Therefore, we expand the 
definition of explainability to include “the process of making complex systems 
human intelligible.”
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The literature surveyed often mentions the lack of training, understanding, and 
even awareness of cyberbiosecurity and cybersecurity risks as a vulnerability. This 
means a lack of knowledge and human understanding of threats, how to recognize 
them, and what to do about them is one of the biggest hurdles for the cyberbiosecu-
rity field to overcome. Accordingly, a framework for making these complex systems 
understandable in order to avoid and mitigate risks is recommended. However, even 
in the biotechnology and cybersecurity realms “cyberbiosecurity is not well-known 
or understood” [86] and there is “a failure to recognize vulnerabilities” [40]. This 
lack of awareness is detrimental because cyberbiosecurity relies on understanding 
the vulnerabilities, threats, and risks to mitigate impacts [22, 26]. Even with the 
conventional cybersecurity approach, a “good cybersecurity plan is understanding 
the threat and establishing cybersecurity governance protocols” [47]. The mentioned 
approaches are not fully implemented or are done so inadequately resulting in 
“the failure of individuals to identify and address cybersecurity vulnerabilities” in 
cyberbiosecurity systems [40]. 

Part of this lack of awareness is from lack of education or training available in 
cyberbiosecurity [87]. Drape et al. [29] surveyed researchers from the agricultural 
sector attending a cyberbiosecurity workshop and found that no participants had 
cybersecurity training or resources, and attendees were uncertain about obtaining 
training or implementing solutions. Despite the research going into cyberbiosecurity 
vulnerabilities, there is no “one size fits all” solution, the difference in educational 
resources for agricultural security varies from county to county in the USA [29]. 
It is no stretch of the imagination to see that disparities exist country to country 
for agriculture, water supply, and food supply chains. These sectors are critical 
everywhere around the world, but the resources for cyberbiosecurity are not equally 
distributed, so a solution needs to be general and easy to implement and maintain. 
Authors in Duncan et al. [88], by focusing on the US food supply chain, stated that 
“this gap in education and training increases risks to the domestic [U.S.] food supply 
chain and the ultimate mission of securing the U.S. and global food supply.” 

Lack of understanding is a significant risk for any cyberbiosecurity system, 
but especially for small farms where available knowledge and resources are 
less than large infrastructure organizations (e.g., utility companies, and industrial 
farms). More needs to be done to explain cyberbiosecurity as a concept and raise 
awareness of the vulnerabilities it creates. Richardson et al. [2] point out that 
as agricultural becomes more reliant cyber-enabled systems the security of these 
systems is “unclear from a cyberbiosecurity perspective.” This is at the same time 
that technology is increasingly incorporated into water supply and food supply 
systems, creating similar vulnerabilities [9, 34, 43, 48, 89–91]. Although, Reed and 
Dunaway [40] were optimistic that technology would bring solutions without any 
vulnerabilities. 

As the size of an organization increases (e.g., industrial farms, utility water 
supplies, and the bioeconomy) so does complexity and difficulty in understanding 
how the system operates. Lack of understanding of minute details and intercon-
nectedness are a vulnerability, as even changes to mitigate external threats can lead 
to unintended consequences [39]. Imagine updating security software and a bug
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prevents water tanks in a system form relaying fill levels to the central control. 
More effort needs to be placed on understanding how the system actually operates 
and how best to explain that operation to the people it matters most. 

This approach needs to be done on a case by case basis, as the variability in 
each individual systems differs. Germano [47] and Clark et al. [48] both point 
out that differences among organizations and utilities in the water and wastewater 
sectors include size (employee count and water processed), management, available 
resources, regulatory oversight, and even security protocols. These differences make 
a unified approach to cyberbiosecurity in the water sector unfeasible, as each 
organization or utility needs to build their own approach to match their unique 
operation and threats. The water distribution system for a large city is going to 
vary in size, available resources, and security measures from that of a small rural 
county. This disparity exists in the other sectors of the cyberbiosecurity as well, no 
two farms, food supply chains, or any other large-scale infrastructure are going to be 
the same as the issues each one deals with greatly varies. Understanding the needs 
and shortcomings of each system is critical for cyberbiosecurity. 

Awareness of threats and how cyberbiosecurity systems operates is a form of 
threat mitigation, and several papers make the case for simply making people aware 
of the risks [26, 44, 45, 47, 92, 93]. Even something as simple as “understanding 
the threat and establishing cybersecurity governance protocols” is all it can take 
to protect these systems [47]. That said, understanding these complex systems is 
no trivial tasks. Both cyberbiosecurity and AI can benefit from the explainability 
assurance to make them human intelligible. Explainable AI systems are easier to 
understand how they operate and therefore understand what might negatively impact 
the system cyberbiosecurity systems, on the other hand, could be explained via 
machine learning techniques like clustering or even learning a Directed Acyclic 
Graph (DAG) of the data like Lin et al. [94] did for the SWaT dataset. 

The next step for building understanding of cyberbiosecurity systems is through 
education and training. Richardson et al. [87] call for a standardization of the 
training process, in the same manner as biosafety and cybersecurity, through creden-
tialing. They also called for integrating training into existing programs or relying 
on existing programs, as did [29], while others merely made a call for increasing 
education and awareness [95]. Another theme that emerged in the literature was a 
need for training across sectors in the water and agricultural industries, so employers 
training employees [45, 47], cross-sector training [80, 96, 97], government or 
university curated resources and training, both formal and informal [48, 88, 97], 
and even war-gaming [98]. 

5.4 Secure AI 

Undoubtedly, one of the most important factors in ensuring the security of water 
distribution systems is to detect anomalies that may occur in these systems or 
malicious attacks that may come from adversaries. Water treatment and distribution
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systems have been increasingly targeted by cyber-physical attacks in recent years 
[99]. This is partially due to the expansion of the Internet of Things (IoT) and 
proliferation of AI increasing the digitization of the decision-making processes 
and creating an adversarial attack opportunity following recent development in the 
machine learning field, which led to black-box adversarial methods that work well 
even with limited information [100]. 

The Kemuri Water Company (KWC) [101] attack in 2016 is a very important 
example of the risk these national infrastructures are under. The attack has resulted 
in more than 2.5 million records stolen, but more importantly, the attackers were 
able to change control data to manipulate the water supplied to the area. The attacks 
were halted before any public health damage occurred, nonetheless, it showed how 
vulnerable these infrastructures are and how important it is to ensure their safety. 

Another recent, important incident was the Florida Water Supply hack in 2021 
[21]. In this malicious attack, the hacker was able to gain remote access to the PLC 
(Programmable Logic Controller) unit that controls the sodium hydroxide level (also 
known as lye) of the water supplied to more than 15,000 residents in Tampa, Florida. 
The hacker was able to increase the amount of sodium hydroxide content of the 
water by 110 fold. Fortunately, the attack was mitigated before the poisonous levels 
of chemical diffused into the distribution network. 

Both of these incidents show how important it is to detect any anomaly or 
malicious attacks early to mitigate, or hopefully prevent, any damage. Taormina 
et al. [35] investigated the vulnerabilities of these critical infrastructures in-depth in 
their research. 

Pasqualetti et al. [102] investigated the detection and identification of CPS 
attacks from two different perspectives in their 2013 paper. They categorized 
the monitoring limitations from “graph-theoretic” and “system-theoretic” while 
proposing a mathematical framework for the problem’s solution. The framework 
they proposed considers the CPS as a linear time-invariant descriptor system. 
They then defined a comprehensive set of assumptions and equation systems to 
measure and detect the corrupted signals in the system. They have also made 
a theoretical quantification of the limitations of both monitoring approaches to 
determine undetectable and unidentifiable attacks boundaries. Their paper is also 
one of the earliest attempts to formally describe the attack detection against CPSs 
and in this sense, its importance in the field is substantial. 

Machine learning is a powerful and important tool for ensuring cyber-physical 
security. It is not surprising to see deep learning, more specifically Long-Short 
Term Memory Recurrent Neural Networks (LSTM-RNN), as efficient solutions 
to a problem with a time-dependent and high sequential relations such as attack 
detection [103]. Goh et al. [104] used the SWaT dataset [105] as a small-scale 
representation of a water treatment plant to detect anomalies and identify the sensors 
affected by this anomaly. They proposed to use the Cumulative Sum (CUSUM) 
method to mitigate the effects of an extremely unbalanced distribution of positive 
and negative classes (millions of negative samples to only thousands of positive 
samples with a sequential dataset). The SWaT dataset is a comprehensive and very
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important dataset for cyber-physical security research and the contributions of the 
authors and supporting organizations to the field should not be left unacknowledged. 

Inoue et al. [106] applied another deep learning approach in their 2017 paper. The 
authors used a Deep Neural Network (DNN) to evaluate the Support Vector Machine 
(SVM) method’s performance for anomaly detection problems. The paper also made 
a side-by-side comparison of the two models while discussing their advantages 
and disadvantages. Unlike Goh et al. [104], the authors did not address the data 
imbalance in the paper. The researchers used the SWaT dataset and the simulation 
to test the models. 

BATADAL is a planning and management competition for Water Infrastructures 
and it takes place as part of the Water Distribution Systems Analysis Symposium. 
This competition presents an imaginary C-Town as a water distribution network 
dataset to detect the real-life size and real-time, simulated data from this town 
(SCADA) [107]. The paper includes seven well-performing solutions to the problem 
on this dataset from the competitors. Others (Aghashahi et al. [108]) used a two-
stage approach to solve the anomaly detection problem. In the first stage they make 
a feature extraction, and in the second stage they use a supervised classification 
method, Random Forests, to detect attack instances. 

Brentan et al. [109] proposed a statistical approach to the problem. They used 
the sectioned nature of the problem environment and trained Recurrent Neural 
Networks (RNNs) to learn each district’s normal behaviors and then calculated the 
deviation from these expected normals to measure the anomaly levels on the system. 

Chandy et al. [110] used a similar two-staged approach to Aghashahi et al. [108]. 
Chandy et al. [110], however, first make a detection of the anomaly and then confirm 
or reject this detection is with a second model, a Convolutional Neural Network 
(CNN) Auto-Encoder, by calculating reconstruction probabilities. 

Giacomoni et al. [111] proposed another two-stage approach. In the first stage, 
the authors created a set of rules and calculated the integrity of the rules for 
each instance. In the second stage, they analyzed the dataset to calculate certain 
thresholds of normalcy. They also proposed using Principal Component Analysis 
(PCA) and convex optimization routine to perform this analysis [112]. 

Abokifa et al. [113] proposed a three-stage model and they classified different 
types of attacks on each stage of the process. In the first stage, the authors used 
statistical methods to detect local outlier events. In the second stage, they introduced 
a neural network to the process to detect operational outliers. In the third stage, they 
focused on the global scope to detect events that might affect more than one aspect 
of the system with PCA. 

Pasha et al. [114] introduced another three-stage method for anomaly detection. 
The first stage checked the consistency of the underlying rules of the water 
distribution system. The second stage checked each component for behavioral 
patterns to see if the system is following the normal patterns it is supposed to do. If 
any anomaly is detected in the first two stages, the third stage confirms the detections 
by comparing the estimations of the system made by the method. 

Housh and Ohar [25] used EPANET to create a simulation of a water distribution 
system’s behavior to calculate the difference between the SCADA and the expected
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values from the simulation to detect and locate anomalies in the systems. Housh 
and Ohar [115] also used a similar approach to detect contamination attacks against 
water distribution systems with successful results. 

Taormina et al. [107] have comparatively investigated all these proposed 
approaches, and many more, are discussed along with the advantages and 
disadvantages of the models. Even though the methods are very diverse, one 
common factor should not be unnoticed: each of the major competitors followed a 
direction of first discovering underlying behavioral principles of the system in some 
manner and then proposed ways to measure the diversion from these principles in 
anomalous scenarios. 

The BATADAL competition provides immense contributions to the cyber-
physical security field by providing a great dataset to the researchers as well as 
creating a valuable comparative environment for all the approaches to provide 
assurances methods for cyber-physical security [107], an approach (competitions) 
that proved successful in other areas of AI. Kravchik and Shabtai [116] investigated 
the attack detection problem from an ICS perspective in their 2018 paper. They used 
the SWaT dataset to train CNN and Long-Short Term Memory (LSTM) models to 
compare their effectiveness to detect anomalies. The experimental results showed 
that 1D CNNs can outperform RNN and LSTMs in more complex multivariate 
tasks. 

Umer et al. [117] investigated attack detection from a distributed system. In 
their work, they separated the endeavor into two categories: “design-centric” and 
“data-centric,” while proposing a model for each category. The research used the 
SWaT dataset [105] as a small-scale representation of a water treatment plant. The 
methods they proposed utilize Association Rule Mining (ARM). They also compare 
the advantages and disadvantages of the two approaches proposed in the paper. 

Junejo and Goh [118] proposed a behavior-based machine learning approach for 
the detection and classification of cyber-physical attacks. Their approach promised a 
low false-positive rate, which some of the other approaches discussed earlier suffer 
from, and still provided high recall and precision. They used the SWaT dataset 
to evaluate the effectiveness of nine different algorithms from supervised machine 
learning literature ranging from Bayesian networks, naive Bayes, logistic regression, 
neural networks, SVM, and more while making comparisons between models for 
advantages and disadvantages. 

Adepu and Mathur [119] proposed a Single-Stage Multi-Point (SSMP) type of 
attack with a distributed detection method. Even though they focus on single-stage 
attacks in their paper, the authors noted that they found it more effective to detect 
this kind of attack using the information from neighboring stages. The researchers 
used the SCADA dataset to create two invariants: State-Dependent (SD) and State-
Agnostic (SA). Later the authors combined both invariants to create a more efficient 
tool for distributed detection problems. 

In another paper, by Adepu and Mathur [120] authors used the SWaT dataset to 
investigate ways to improve cyber-physical security and attack detection problems 
by asking the following questions: “What attacker and attack models should be used 
to understand the behavior of a CPS?”, “How do cyber-attacks impact a specific CPS
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with respect to the number of actuators affected, state of a CPS when the attack is 
launched, and duration of the attack?”, and “Given the response of a CPS to one 
or more cyber-attacks, how does one design attack detection mechanisms using the 
physical properties of the system?”. While trying to answer these questions with 
experimental results the authors disclaimed the generalizability of their findings and 
stated that this research only targets the SWaT testbed. 

This disclaimer shows a very important direction that requires more attention in 
the field, which is the generalization of the proposed methods since almost all of 
the methods we discussed so far require prior knowledge of the attack samples to be 
effective in the first place. The need for generalizability of the proposed approach 
is the utmost importance since solutions cannot wait until the attacks happen on the 
real systems to collect the necessary data to train the models. 

Adepu and Mathur [121] must have seen this problem as well, as they tried to 
address it in their next work with a case study of their earlier distributed attack 
detection proposal [119]. Adepu and Mathur replicated real-life scenarios to test 
their improved attack detection mechanism and shared their findings with the 
strength and weaknesses of the model with an in-depth discussion [121]. 

As we pointed out earlier, fast adoption of automation and networking tech-
nology does not come without drawbacks. Al-Abassi et al. [122] tried to remark 
these issues and address the vulnerabilities created by another attack detection 
method while promising generalizability on the way. The researchers propose a 
combined model of DNN and Decision Tree with results that outperformed most of 
the conventional machine learning models including DNN and Random Forest. The 
authors also addressed the imbalanced class distribution and effective performance 
of the proposed approach with experimental results. 

5.5 Trustworthy AI 

AI is used in an increasing number of different systems, for example, autonomous 
vehicles, search engines, recommendation systems, medical imaging [123], public 
health [124], and others. It appears well-developed, yet there are still a lot of issues 
that need to be addressed and discussed, especially when it comes to the question 
can AI be trusted in “these scenarios that have life-critical consequences?” [125]. 
The foundation of societies, economies, and sustainable development is based 
on trust. If there is no trust the whole societal system would not grow or be 
stable [126, 127], and the same applies to cyberbiosecurity applications. Inderwildi 
et al. [128] discussed the impact of intelligent CPSs in energy provision and gave 
policy recommendations to lower potential risks. The same applies to AI systems, 
the idea of trustworthy AI is to build trust between users, developers, and the system 
itself [129]. 

Trust is a concept that is difficult to build, and trust in AI is even harder to 
address. The “black-box” characteristic is one of the most important reasons of 
mistrusting AI [130]. It is hard to build trust without knowing why the system
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makes its decision. We need to be able to explain the results, and this leads to the 
importance of explainable AI (see Sect. 5.3). Another situation where trust in AI 
faces scrutiny is ethical decisions, such as the trolley problem. What is the priority 
that the system should follow? Are there any guidelines to follow? There are so 
many different questions to address in order to build trust. 

In recent years, a significant amount of research on trustworthy AI has been 
conducted in different academic and industry areas (see Fig. 3). Each study 
focused on different aspects of trustworthy AI, for example, [131] focused on 
government guidelines, which advise how to establish a trustworthy AI system 
through rules and regulations, and other studies focused on the computational aspect 
of achieving trustworthy AI [132–137]. Most of the research agrees that trustworthy 
AI systems should include a set of properties: reliability, safety, security, privacy, 
availability, usability and can be extended to the following dimensions: accuracy, 
robustness, fairness, accountability, transparency, interpretability/explainability, and 
ethics [56, 125, 126, 129, 131–133, 138–141]. 

Trust is a complicated concept that combines numerous factors, and different 
researchers from various backgrounds would also see trustworthy AI from a diverg-
ing perspectives. Liu et al. [132] defined trustworthy AI from three perspectives: 
technical, user, and social. The system should focus on accuracy, robustness, and 
explainability from a technical perspective; while it should focus on availability, 
usability, safety, privacy, and autonomy from the user’s perspective. Whereas from 
the social perspective, there should be a guideline or regulation regarding legality, 
ethics, fairness, accountability, and environmental-friendliness. To have more clear 
guidelines for accomplishing trustworthy AI, the EU established the High-Level 
Expert Group (HLEG) to provide ethical guidelines, not just principles to follow 
but also concrete operational steps that allow an AI developer to examine when 
building and deploying an AI system [131]. Zicari et al. [58] proposed a state-
of-the-art process to evaluate the trustworthy AI based on applied ethics called 
“Z-Inspection,” which is also first process in practice that HLEG defined to evaluate 
the trustworthiness of AI. Z-Inspection consists of three processes: set-up, access, 
and resolve, and each phase breaks down into different aspects to examine whether 
the AI systems are trustworthy. 

Toreini et al. [133] pointed out that there are various AI policy frameworks to 
follow from different nations and organizations, and categorize those objectives into 
eight qualities: privacy, accountability, safety & security, transparency & explain-
ability, fairness & nondiscrimination, human control of technology, professional 
responsibility and promotion of human values. They further mapped these eight 
qualities with four principles, including fairness, explainability, auditability, and 
safety. The authors separate two main technologies of trustworthiness: Data-Centric 
Trustworthiness and Model-Centric Trustworthiness. 

Liu et al. [132] stated “Trustworthy AI are programs and systems built to solve 
problems like a human, which bring benefits and convenience to people with no 
threat or risk of harm.” They focused on six dimensions in achieving trustworthy AI 
including safety & robustness, nondiscrimination & fairness, explainability, privacy, 
accountability & auditability, and environmental well-being. Instead of focusing on
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policy framework or guidelines, they worked on specific computational solutions 
for each dimension for realizing trustworthy AI. 

Li et al. [138] mentioned AI practitioners, including researchers and developers, 
should focus on pursuing system performance as the main goal, whereas this is not 
sufficient to reflect the trustworthiness of an AI system. Therefore, they proposed 
a methodology that takes the entire lifecycle of AI systems into consideration, 
from data management to model development, deployment, and all the way to 
monitoring and governance. For the future research direction, while adopting this 
systematic approach, there are side-effects due to increased learning time and 
slowed development by using this new approach. 

We mentioned that the trustworthiness of AI is essential when it comes to AI 
systems related to life-critical consequences. There were incidences where critical 
CPSs came under attack [142] and affected the overall trust in CPSs. For example, 
an attack happened on a water treatment plant in Florida in 2021 and the level of 
sodium hydroxide in the water supply was increased over 100 times higher than 
usual [143]. There were also numerous cyber-attacks on Israel’s water system in 
2020 [144]. That exposes how vulnerable those CPSs are and the importance of 
the security of those systems [145–155]. There has been no lack of related research 
done in the area of anomaly detection in water system or its security challenges 
using machine learning methods [33, 107, 116, 156–190], statistical methods [191– 
198], or other tangential methods [106, 199–213]. 

Wang et al. [214] applied probabilistic model learning to probabilistically 
validate a real-world CPS. MR and Mathur [215] proposed “AICrit” to effectively 
detect anomalies in real-time with low false alarms. Another factor contributing 
to the complication of evaluating trustworthiness is that most of the research or 
review that discusses how to achieve trustworthy AI focuses more on social science 
topics, such as ethics and policy [59, 139]. Most of the frameworks or guidelines 
they proposed, however, do focus on the human factor. Uslu et al. [216] proposed 
a decision-making framework to manage Food-Energy-Water (FEW) resources. 
While developing the optimal solutions under different scenarios, they included 
humans in the framework to make the solutions more trustworthy. They introduced 
two new metrics, trust sensitivity and trust pressure, in the framework and used a 
game-theoretical tool to explore the relationship between trust sensitivity and the 
distance of community-desirable solutions. 

6 Discussion 

6.1 Attack Detection Models for Water Systems 

Cyberbiosecurity attack/anomaly detection research in the literature mainly focused 
on three datasets SWaT, WADI, and BATADAL which have been introduced in 
Sect. 4. These three datasets have become field leading benchmarks. As a part
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of the survey, we have created tables for each dataset. In order to make a fair 
comparison, we have used the most commonly reported statistical metrics to rank 
models proposed by researchers for attack/anomaly detection problem. For SWaT 
(Table 1) and WADI (Table 2) datasets it was F-Score (also known as F-measure, 
more specifically . F1 score) and for BATADAL (Table 3) we have used S score  
defined by Aghashahi et al. [108] and listed .ST T D (Time Taken for Detection) as 
well. For each dataset, state of the art over the years has been marked with bold 
fonts on Tables 1, 2, 3. 

Table 1 SWaT F1-Scores. a

Authors Model F1-Score Year 

Ayas and Ayas [63] Modified DenseNet 0.9999 2020 
Alqurashi et al. [184] MLP 0.9900 2021 

Krithivasan et al. [217] EPCA-HG-CNN 0.9805 2020 

Xu et al. [218] ATTAIN 0.9759 2021 

Li et al. [219] MAD-GAN 0.9517 2019 
Kravchik and Shabtai [116] 1D CNN 0.9200 2018 
Abdelaty et al. [220] DAICS 0.8890 2021 

Elnour et al. [221] DIF 0.8820 2020 

Kravchik and Shabtai [222] AE Frequency 0.8730 2019 

Kravchik and Shabtai [116] 1D CNN 0.8710 2018 

Sapkota et al. [163] CNN + LSTM w/ WT 0.8610 2020 

Perales Gómez et al. [223] MADICS 0.8510 2020 

Lin et al. [94] TABOR 0.8230 2018 

Zizzo et al. [224] LSTM 0.8170 2019 

Shalyga et al. [225] MLP 0.8120 2018 

Li et al. [226] GAN 0.8100 2019 

Shalyga et al. [225] CNN 0.8080 2018 

Inoue et al. [106] DNN 0.8030 2017 

Faber et al. [227] CNN 1D.b 0.8000 2021 

Inoue et al. [106] One-class SVM 0.7960 2017 
Shalyga et al. [225] RNN 0.7960 2018 

Inoue et al. [106] SVM 0.7960 2017 

Faber et al. [227] USAD 0.7900 2021 

Faber et al. [227] CNN 1D 0.7800 2021 

Goh et al. [104] LSTM-CUSUM 0.7754 2017 

Chakraborty et al. [228] Random Forest 0.7700 2021 

Li et al. [229] GAN-AD 0.7500 2018 

Toe et al. [70] MARS 0.7480 2020 

Faber et al. [227] LSTM-VAE 0.7200 2021 

Shalyga et al. [225] RNN 0.6900 2018 

Sapkota et al. [163] CNN 0.6500 2020 
a Disclaimer: These results are not validated as a part of this research
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Table 2 WADI F1-Scores.a Authors Model F1-Score Year 

Xu et al. [218] ATTAIN 0.7444 2021 
Goh et al. [104] LSTM-CUSUM 0.6595 2017 
Li et al. [219] MAD-GAN 0.5945 2019 

Faber et al. [227] CNN 1D 0.5400 2021 

Faber et al. [227] CNN 1D 0.5200 2021 

Faber et al. [227] USAD 0.4300 2021 

Faber et al. [227] LSTM-VAE 0.2800 2021 
a Disclaimer: These results are not validated as a part of this 

research 

Table 3 BATADAL S Scores. a

Authors Model S Score  .ST T D Score Year 

Brentan et al. [230] Statistical analysis 0.9730 0.1900 2021 
Housh and Ohar [25] MILP 0.9700 0.9650 2018 
Abokifa et al. [160] ANN and PCA 0.9660 0.9840 2019 

Abokifa et al. [113] ANN 0.9490 0.9580 2017 
Ramotsoela et al. [231] QDA 0.9400 0.9500 2019 

Tsiami and Makropoulos 
[232] 

TGCN 0.9310 0.9340 2021 

Giacomoni et al. [111] PCA 0.9270 0.9360 2017 

Ramotsoela et al. [231] MD 0.9100 0.9000 2019 

Ramotsoela et al. [231] iForest 0.9000 0.8600 2019 

Brentan et al. [109] RNN 0.8940 0.8570 2017 

Ramotsoela et al. [231] LOF 0.8700 0.8500 2019 

Ramotsoela et al. [231] SOD 0.8600 0.8300 2019 

Mahmoud et al. [233] SVM 0.8200 0.8400 2022 

Mahmoud et al. [233] 3NN 0.8200 0.7500 2022 

Mahmoud et al. [233] RForest 0.8200 0.7800 2022 

Mahmoud et al. [233] XGBoost 0.8200 0.7500 2022 

Mahmoud et al. [233] BOSS 0.8200 0.7100 2022 

Chandy et al. [110] Convolutional variational auto-encoder 0.8000 0.8300 2017 

Gjorgiev and Gievska 
[193] 

VAE-D 0.8000 0.9750 2020 

Gjorgiev and Gievska 
[193] 

VAE-D-C 0.7780 0.9870 2020 

Gjorgiev and Gievska 
[193] 

LSTM-VAE-C 0.7780 0.9990 2020 

Pasha et al. [114] Statistical analysis 0.7730 0.8850 2017 

Gjorgiev and Gievska 
[193] 

LSTM-VAE-2E-C 0.7610 1.0000 2020

(continued)
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Table 3 (continued)

Authors Model S Score  .ST T D Score Year 

Mahmoud et al. [233] 5NN 0.7600 0.6430 2022 

Choi et al. [234] SVM 0.7540 0.7220 2020 

Gjorgiev and Gievska [193] VAE-ReEncoder 0.7520 0.9350 2020 

Mahmoud et al. [233] 7NN 0.7500 0.6345 2022 

Ramotsoela et al. [231] Naive Bayes 0.7500 1.0000 2019 

Choi et al. [234] ANN 0.7490 0.7590 2020 

Gjorgiev and Gievska [193] LSTM-VAE 0.7350 0.9790 2020 

Mahmoud et al. [233] 1NN 0.7300 0.5720 2022 

Gjorgiev and Gievska [193] VAE-ReEncoder-C 0.7260 0.9400 2020 

Gjorgiev and Gievska [193] CNN-VAE-C 0.7130 0.9310 2020 

Ramotsoela et al. [231] OSVM 0.7100 0.6900 2019 

Ramotsoela et al. [231] LDA 0.6700 0.6500 2019 

Gjorgiev and Gievska [193] LSTM-VAE-2E 0.6640 0.8200 2020 

Choi et al. [234] ELM 0.5910 0.9410 2020 

Aghashahi et al. [108] RForest 0.5340 0.4290 2017 

Gjorgiev and Gievska [193] CNN-VAE 0.5230 0.5430 2020 

Choi et al. [234] 5NN 0.4180 0.3230 2020 
a Disclaimer: These results are not validated as a part of this research 

Throughout the years efficiency of the neural network based models have 
drastically increased over numerous problems and attack/detection is one of them 
as well. Looking at highest ranked models on the SWaT F1-Scores Table 1, it can  
be seen that deep learning had a huge impact on the problem and following the 
success of Inoue et al. [106] with One-class SVM, in last 4 years breakthroughs 
were achieved using Deep Learning models Kravchik and Shabtai [116], Li et al. 
[219] and Ayas and Ayas [63]. This dominance can further be verified with the 
successful state of the art models developed by Goh et al. [104] and Xu et al. [218], 
once again using DNN models. 

When it comes to the BATADAL dataset the picture slightly changes. Neural 
Network based models are still very effective on solving attack detection problem 
with BATADAL as well but they are not as dominant as they are with the other two 
datasets. Various types of approaches to the problem from many researchers provide 
a great understanding of the chaotic nature of data-driven problems on large physical 
systems. Dynamical essence of these systems requires researchers to approach the 
problem from many angles to ensure the models they would create to be trustworthy 
and secure. Some of the most successful researches to achieve these feats were, 
Abokifa et al. [113], Housh and Ohar [25] and Brentan et al. [230] as the state of  
the art holders.
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6.2 Assessing the Cyberbiosecurity Literature 

In this section, we discuss cyberbiosecurity further because it is a new discipline and 
there are different takes on exactly what it is. Unfortunately, most of the literature 
writes about cyberbiosecurity in a manner similar to cybersecurity for biological 
applications [8, 39, 81, 84, 90, 92, 95, 235–239]. 

This is not a fault, the focus of cyberbiosecurity is biology or related applications; 
however, most of the literature does not adequately define what sets cyberbiosecurity 
apart from IT or Computer Science in the life sciences. Gillum et al. [97] expressed a 
similar concern with the issues in the term “biosecurity,” established fourteen years 
prior to their work. Multiple papers in the literature call for action or collaboration— 
“We call for analyses and publications to fully scope cyberbiosecurity and identify 
a comprehensive strategy to establish the discipline’s goals and objectives” [2] and 
others, as called out by Drape et al. [29] and seen in Murch and DiEuliis [26]. 
This call from Richardson et al. [2] makes it seem like the field is still in the early 
planning stages, but this is not entirely true as there are papers that focus on concrete 
examples, lie case studies, surveys, and even one where the authors initiated an 
attack on a synthetic DNA supply chain that went undetected [29, 80, 86, 93, 97, 
238]. 

Cyberbiosecurity systems are rooted in the physical sciences, but they can 
include pure information systems like databases for pathogens, genomics data, and 
land use data [4, 44, 83, 235]. We focus, however, on the physical supply chains and 
infrastructure, specifically water and food supply systems. Here, cyberbiosecurity 
secures supply through “the design of digital strategies, business models, technolo-
gies, standards and regulations” [240]. This does not exclude systems that rely on 
data, as even food systems depend on sharing and gathering insights from data. 
For example, in Duncan et al. [80] the authors discuss the need for sharing and 
protecting data to “design promising agricultural and food systems to better meet 
consumers’ need.” Data is just as much a part of physical systems. 

Water systems are open to both natural anomalies and intentional attacks, 
something highlighted by Schmale III et al. [23], in their paper on a water supply 
system that is subject to harmful algal blooms, remote monitoring and control are 
incorporated to help ensure the water stays safe for drinking. However, this opens 
the system up to cyber-attacks, so cyberbiosecurity measures need to be taken to 
monitor and mitigate both sources of issues to ensure the safety of the water. 

These systems are complex and multifaceted, which makes protections harder to 
implement and formalize, and this sentiment is highlighted in Duncan et al. [9] 
where the authors state current protections are not enough and “do not broadly 
exist across the food and agricultural system,” and the “conversation on cyber 
security on the U.S. food and agricultural system (cyberbiosecurity) is incomplete 
and disjointed.” There is a critical need to better incorporate cyberbiosecurity into 
the water and food supply chain infrastructures. Something easier said than done 
as these systems have multiple layers of weaknesses at the software level, the 
interface of cyber and physical, and the biological level. A sentiment that was
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expressed in Farbiash and Puzis [238] for the synthetic DNA supply chain, as those 
authors demonstrated an attack can bypass cybersecurity and biosecurity screenings 
to generate an attack based on gene editing in the synthetic data. In Bernal et 
al. [28], the work presented used bacteria in a DDoS style attack to demonstrate 
the unique risks to cyberbiosecurity that traditional cybersecurity measures cannot 
accommodate. These papers highlight the fact that there are biological exploits 
available to cyberbiosecurity systems an attacker can use without ever having 
physical access to a system. The multifaceted supply chains allow for multifaceted 
attacks that can slip through the cracks of traditional cybersecurity and biosecurity 
efforts. 

6.3 Adoption of AI Assurance for Cyberbiosecurity 

The goal of AI assurance is to mitigate any potential drawbacks or failures of 
AI in high-stakes applications. Assurance is a way of validating AI operates in a 
human-centered manner, and likewise the goals of cyberbiosecurity are to protect 
people from biological threats in many forms, they just happen to focus on cyber-
systems and CPSs specifically. Despite this alignment of goals, we see little direct 
connections between cyberbiosecurity and AI in the surveyed papers (see the 
separation of cyberbiosecurity from the other papers in Fig. 4). There are, however, 
a handful of cyberbiosecurity papers we found that do overlap in topic with AI 
assurance, even if there is no connection via citations. Most of these papers deal 
with trustworthiness and safety [8, 28, 84, 241], and in fact these are also the 
most common assurances in the literature (see Fig. 3). Two of these papers also 
focus on fairness [84, 241], a little more surprising because fair AI was the least 
common assurance we found (again, see Fig. 3). There is one paper that focuses on 
explainability, specifically data and model transparency, in cyberbiosecurity [44], 
and how explainability ties more to security. The last paper focuses solely on 
trustworthiness in cyberbiosecurity [242]. 

Safety is a key AI assurance pillar (see Sect. 5.2), followed closely by trust-
worthiness (Sect. 5.5), that applies to cyberbiosecurity. The efforts of all the others 
are done in order to ensure the safety of the system or in the trust that the system 
operates in a safe manner. Ethical and fair AI (Sect. 5.1) ensures the AI system 
makes decisions that are correct and benefit everyone impacted equally, letting 
users trust that the AI makes safe decisions. Explainability (Sect. 5.3) gives us 
understanding of how the system operates and why it makes the decisions it does, 
letting users trust that the AI operates as it should to ensure the safety of those 
impacted. Secure AI (Sect. 5.4) ensures that if problems arise (anomalies or attacks) 
that the AI can handle them, either by correcting or mitigating negative effects, 
letting users trust that the AI system negates or limits possible harm to those 
impacted. Everything is done so we can trust the safety of the system. 

Safety in cyberbiosecurity is mostly concerned with biosafety, or the protection 
from biological threats. We believe there should be more focus in the literature
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on food and water safety from a cyberbiosecurity perspective, especially as more 
technology is adopted in the water and agriculture sectors. However, there are some 
existing safety measures that can be adopted, like the Hazard Analysis and Critical 
Control Points (HACCP) for food safety and management which could be used as a 
starting point for safety assurances [9, 88]. 

Policy and regulations need to be part of the cyberbiosecurity solution, in part 
for the need of creating standard practices and metrics across the whole bioecon-
omy, and in part because cyberbiosecurity threats pose national and international 
security risks [243]. Cyberbiosecurity should be part of the national strategy for 
cybersecurity, part of the “Defend Forward” idealogy of national security [244]. 
This approach, however, requires the need for understanding the cyberbiosecurity 
field to create regulation and policy for federal agencies, something which is still 
lacking as “cyberbiosecurity roles, practices and metrics have not been defined and 
federal agencies appear uncertain regarding how to proceed” [93, 245]. 

The current state of the cyberbiosecurity literature focuses more on creating 
systems of awareness or best practices for mitigating security or safety threats, 
and there is little direct discussion on using explainable AI for cyberbiosecurity. 
Explainable AI lacks discourse in the cyberbiosecurity literature but is discussed 
frequently in the medical AI domain, where the goal is to create trust in AI in 
order to facilitate adoption by medical practitioners and to create transparency and 
traceability in the decisions made by the AI [246]. Explainable AI also allows 
for the combination of an interpretable, knowledge-based approach with that of 
an efficient neural based approach [247]. This means explainable AI is a way of 
augmenting human understanding of a problem when it uses models designed for 
human comprehension. 

The augmentation of human intelligent via explainable AI feels like a particularly 
fitting application of AI for cyberbiosecurity. There is still more challenges to 
be addressed in the domain of explainable AI to show applicability in real-world 
deployments [246]; however, it does offer a lot of promise in applications where 
decisions are high-stakes, such as critical infrastructure including agricultural, food, 
and water supply chains. Richardson et al. [2] called for the implementation of 
“frameworks to facilitate responsible application of AI techniques to biology” and 
explainable AI is one way to do so. 

This is particularly important to cyberbiosecurity and parts of the bioeconomy, 
where the sheer size and complexity of systems creates the potential for uninten-
tional harm when trying to mitigate threats [22, 39]. Training and education of 
these systems (AI or otherwise) become a form of ensuring the continued safe 
operation of these complex systems. Training and education are also a form of 
creating awareness of threat mitigation to help ensure security. This is a common 
theme in the cyberbiosecurity literature [26, 29, 44, 45, 47, 80, 87, 88, 92, 95, 97]. 

All the pillars eventually boil down to ensuring trust that AI and cyberbiosecurity 
systems operate as intended. Section 5.5 discussed the connection of AI assurance 
to trustworthy AI. Society and the bioeconomy, in general, are built on trust, and 
if we do not trust them we will not use or participate in their activities. The same
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goes for AI in cyberbiosecurity, trust needs to be built so operators and all parties 
involved use them. 

Developments in AI for cybersecurity and cyber-physical security could protect 
water, food, or other supply chains from intentional interference, while devel-
opments in AI for anomaly detection could protect the supply from natural 
phenomena [23, 25, 94, 102, 104, 106, 114, 119, 121, 225, 248–254]. Despite a clear 
alignment of incentives, there is not much direct overlap between these approaches 
in the cyberbiosecurity literature (see the separation of between cyberbiosecurity 
and attack/anomaly detection in Fig. 4). We conclude that although more of the 
cyberbiosecurity papers clearly make a call for action [2, 26, 29, 255], there is at best 
merely a brief attempt over existing solutions like the National Institute of Standards 
and Technology (NIST) cybersecurity framework [43, 47, 95, 256]. The safety and 
continuing function of any and all systems in the bioeconomy are important but 
“currently protections are minimal and do not broadly exist across the food and 
agricultural system” [9]. 

6.4 Merging the Water Security and Cyberbiosecurity Fields 

Similar to AI assurance, there is not a large direct link in the literature between 
cyberbiosecurity and water systems. There is one series of links from cyberbiose-
curity to water systems via Mueller [22], Schmale III et al. [23], Moyer et al. [24], 
and Housh and Ohar [25]. When we broadened our definition of cyberbiosecurity 
a little more from the literature we see a broader connection of papers that link 
the topic with water supply systems [6, 9, 23, 47, 48, 257]. What is also interesting 
to note is that none of these papers uses the open-source datasets we discussed in 
Sect. 4, instead these papers focus on broad topics of water within the food and 
agriculture sector [6, 9, 257] or the security of water sources [23, 47, 48]. Most of 
the water supply-related papers deal with security and attack/anomaly detection, 
aligning them more with AI assurance, but we feel they apply just as much to 
cyberbiosecurity as well. 

There is not much existing cyber or cyber-physical security knowledge within the 
cyberbiosecurity field [2, 8, 29, 45, 86–88, 97]. This makes the openness of water 
supply testbeds and AI research critical, as these technologies can be developed 
and tested open-source in view of researchers focusing on cyberbiosecurity. More 
emphasis of the cyberbiosecurity research should be placed on using the open-
source water testbeds from Sect. 4. This is the only way that water security (as 
a form of cyberbiosecurity) research can be performed using relevant data, and it 
also allows for training and hands-on experience, something a large portion of the 
literature called for [26, 29, 44, 45, 47, 80, 87, 88, 92, 95, 97]. This development 
of human understanding of cyberbiosecurity and water systems is a form of 
explainability and it significantly benefits from open-source data on how these 
systems operate.
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6.5 Recommendations and Future Direction 

Much of the work regarding AI assurance and cyberbiosecurity occurred in the 
last few years and developed separately. Figure 4 shows one link connecting 
cyberbiosecurity to water systems, which is then tied to the large web of anomaly 
and attack detection papers. Cyberbiosecurity research, however, still has a long 
way to meet its goal of wider adoption, and while we cannot speak for all possible 
sources of cross-collaboration, the expansion of cyberbiosecurity into the domains 
of water supply systems and AI assurance is wide open for future research. 

Continuing the thread of expanding the research outside its immediate domain, 
cyberbiosecurity has a lot to gain from embracing open-source water supply 
testbeds. For one, the domain of water security is directly applicable to cyberbiose-
curity, despite not making up much of the research. The literature mostly focuses 
on biology applications, but this feels narrow and collaborating with the established 
field of water security would be a great way to apply all those lessons learned to 
cyberbiosecurity. Many of the papers in the cyberbiosecurity literature call for more 
training, education, and hands-on experience. Open-source testbeds are ideal for 
developing resources for training and education, as well as developing new research 
into secure AI and other forms of AI assurance. 

The goals of assurance are to validate AI aligns with the values of users impacted 
by an AI system, and likewise the goal of cyberbiosecurity is to protect users and 
citizens impacted by a biological system. AI has been instrumental in multiple 
agricultural applications [258–260] and offers many solutions to the threats of 
cyberbiosecurity but also includes several downsides; assurance nonetheless offers 
a way to apply AI to maximize its benefits while mitigating potential pitfalls. AI 
assurance should also be broadened to focus on the entirety of the system AI is 
deployed in, not just the assurance of the AI itself. For example, both applying AI 
to ensure the safety of drinking water via water quality monitoring and applying 
evaluation procedures to ensure the AI is operating properly are forms of assurance. 
In short, the cyberbiosecurity field should adopt AI measures to meet its goals and 
use AI assurance to validate both the AI employed is working properly and that the 
larger system the AI is used in is also operating properly. 

7 Conclusions 

In this survey, we investigated academic papers at the intersection of AI assurance, 
cyberbiosecurity, water and food supply systems. We assessed the application, both 
current and potential, of AI assurance to problems in cyberbiosecurity, specifically 
focusing on water and food supply systems. The survey focused on journal articles, 
conference proceedings, dissertations, books and book chapters, and industry white 
papers published from 2000 to April 2022 and at the intersection of two or more of 
the mentioned sectors.
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A survey landscape (Sect. 2) was performed for an overview of the literature, 
showing most of the papers included were published since 2016, as researchers 
started applying AI more broadly and investigating AI assurance. Soon after in 2017, 
the field of cyberbiosecurity had traction and more water supply system papers were 
published. The increase in water supply papers since 2016 seems in part due to the 
start of open-source testbeds (SWaT in 2015, WADI in 2016, BATADAL in 2016, 
Smod in 2017, and DHALSIM in 2020), and because we specifically focused on 
papers that intersected with AI and cyberbiosecurity fields, both of which have 
seen sharp increases in the past few years. Although, looking at Fig. 4, we see  
there is little connection between the literature of cyberbiosecurity with the other 
sectors. We discussed how the papers covering these topics connected and how 
AI assurances apply in these fields, followed by our recommendations for future 
directions. 

In the previous sections, we discussed the six pillars of AI assurance [1], the 
importance of each pillar, and the effects of the papers surveyed on water distribu-
tion systems and their applications. Figure 3, however, shows this distribution is not 
uniform. The pillars of Ethical AI and Fair AI were neglected, while the importance 
of these aspects kept growing over the last several years. This shows a great gap and 
opportunity for research in Ethical and Fair AI for agricultural and water systems. 

We found less collaboration among the fields of AI assurance, cyberbiosecurity, 
and water or food supply systems than we initially expected. Figure 4 shows this 
disjoint well, and the literature for cyberbiosecurity does not directly discuss AI 
much, let alone AI assurance. The cyberbiosecurity definition should adapt a little 
more, as it feels too focused on cybersecurity for the life sciences. There is some 
acknowledgement that the current literature is not broad enough [9], especially when 
there are biological processes that can be exploited [28, 238]. 

Further research should emphasize collaboration across sectors and the use of 
open-source datasets and testbeds. The call for collaboration already exists with 
the cyberbiosecurity field, and one of our proposed solutions to that is publishing 
open-source datasets online. These open the field to broader research and hands-
on training and experience, both of which have been expressed as needs for the 
cyberbiosecurity field. There are unique challenges, though these require expertise 
from biology, CPSs, and other domain specific knowledge for a desired application. 

Lastly, we recommend that the cyberbiosecurity field adopts AI and AI assur-
ances practices for better security while maintaining safe and trustworthy operations 
of these complex biological systems. There has been a lot of prior research applying 
AI for cybersecurity, and this would be a natural extension to incorporate into 
cyberbiosecurity. AI also offers more robust monitoring and an ability to make 
corrective actions, but this is not without issue as AI creates new vulnerabilities 
or failure modes. AI assurance can help mitigate these and help ensure the proper 
function of the overall cyberbiosecurity system. 
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76. M. Florjanič, J. Kristl, Microbiological quality assurance of purified water by ozonization of 
storage and distribution system. Drug Dev. Ind. Pharm. 32(10), 1113–1121 (2006) 

77. U. Gentile, S. Marrone, F. De Paola, R. Nardone, N. Mazzocca, M. Giugni, Model-
based water quality assurance in ground and surface provisioning systems, in 2015 10th 
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC) 
(IEEE, 2015), pp. 527–532 

78. D. Ghernaout, B. Ghernaout, On the concept of the future drinking water treatment plant: 
algae harvesting from the algal biomass for biodiesel production—a review. Desalin. Water 
Treat. 49(1-3), 1–18 (2012) 

79. I. Montalvo, J. Izquierdo, R. Pérez, M.M. Tung, Particle swarm optimization applied to the 
design of water supply systems. Comput. Math. Appl. 56(3), 769–776 (2008) 

80. S.E. Duncan, B. Zhang, W. Thomason, M. Ellis, N. Meng, M. Stamper, R. Carneiro, T. Drape, 
Securing data in life sciences—a plant food (edamame) systems case study. Front. Sustain., 
10 (2020) 

81. A. Adler, J. Beal, M. Lancaster, D. Wyschogrod, Cyberbiosecurity and public health in the 
age of covid-19, in Emerging Threats of Synthetic Biology and Biotechnology (Springer, 
Dordrecht, 2021), pp. 103–115 

82. D. Greenbaum, Cyberbiosecurity: An emerging field that has ethical implications for clinical 
neuroscience. Camb. Q. Healthc. Ethics 30(4), 662–668 (2021) 

83. J. Caswell, J.D. Gans, N. Generous, C.M. Hudson, E. Merkley, C. Johnson, C. Oehmen, 
K. Omberg, E. Purvine, K. Taylor, et al., Defending our public biological databases as a 
global critical infrastructure. Front. Bioeng. Biotechnol. 7, 58 (2019) 

84. J. Li, H. Zhao, L. Zheng, W. An, Advances in synthetic biology and biosafety governance. 
Front. Bioeng. Biotechnol. 9, 173 (2021) 

85. P.M. Ney, Securing the future of biotechnology: A study of emerging bio-cyber security 
threats to dna-information systems. Ph.D. thesis (2019) 

86. K. Millett, E. Dos Santos, P.D. Millett, Cyber-biosecurity risk perceptions in the biotech 
sector. Front. Bioeng. Biotechnol. 7, 136 (2019)



AI for Cyberbiosecurity in Water Systems—A Survey 255

87. L.C. Richardson, S.M. Lewis, R.N. Burnette, Building capacity for cyberbiosecurity training. 
Front. Bioeng. Biotechnol. 7, 112 (2019b) 

88. S. Duncan, R. Carneiro, J. Braley, M. Hersh, F. Ramsey, R. Murch, Beyond ransomware: 
Securing the digital food chain (2021) 

89. X.L. Palmer, E. Powell, L. Potter, Biocyberwarfare and crime: A juncture of rethought, in 
European Conference on Cyber Warfare and Security (Academic Conferences International 
Limited, 2021), pp. 517–XIV 

90. R.J. Hester, Bioveillance: A techno-security infrastructure to preempt the dangers of informa-
tionalised biology. Sci. Culture 29(1), 153–176 (2020) 

91. K.M. Berger, P.A. Schneck, National and transnational security implications of asymmetric 
access to and use of biological data. Front. Bioeng. Biotechnol. 7, 21 (2019) 

92. J. Peccoud, J.E. Gallegos, R. Murch, W.G. Buchholz, S. Raman, Cyberbiosecurity: from naive 
trust to risk awareness. Trends Biotechnol. 36(1), 4–7 (2018) 

93. G. Turner, The growing need for cyberbiosecurity, in InSITE 2019: Informing Science+ IT 
Education Conferences: Jerusalem (2019), pp. 207–215 

94. Q. Lin, S. Adepu, S. Verwer, A. Mathur, Tabor: A graphical model-based approach for 
anomaly detection in industrial control systems, in Proceedings of the 2018 on Asia 
Conference on Computer and Communications Security (2018), pp. 525–536 

95. J.L. Mantle, J. Rammohan, E.F. Romantseva, J.T. Welch, L.R. Kauffman, J. McCarthy, 
J. Schiel, J.C. Baker, E.A. Strychalski, K.C. Rogers, et al., Cyberbiosecurity for biophar-
maceutical products. Front. Bioeng. Biotechnol. 7, 116 (2019) 

96. C.O. Adetunji, O.T. Olugbemi, O.A. Anani, D.I. Hefft, N. Wilson, A.S. Olayinka, K.E. 
Ukhurebor, Cyberespionage: Socioeconomic implications on sustainable food security, in AI, 
Edge and IoT-based Smart Agriculture (Elsevier, 2022), pp. 477–486 

97. D. Gillum, L.A.O. Carrera, I.A. Mendoza, P. Bates, D. Bowens, Z. Jetson, J. Maldonado, 
C. Mancini, M. Miraldi, R. Moritz, et al., The 2017 arizona biosecurity workshop: an open 
dialogue about biosecurity. Applied Biosafety 23(4), 233–241 (2018) 

98. L. Potter, X.L. Palmer, Human factors in biocybersecurity wargames, in Future of Information 
and Communication Conference (Springer, 2021), pp. 666–673 

99. S. Adepu, A. Mathur, Introducing cyber security at the design stage of public infrastructures: 
A procedure and case study, in Complex Systems Design & Management Asia (Springer, 
2016a), pp. 75–94 

100. A. Ilyas, L. Engstrom, A. Athalye, J. Lin, Black-box adversarial attacks with limited queries 
and information, in Proceedings of the 35th International Conference on Machine Learning, 
ICML 2018 (2018). https://arxiv.org/abs/1804.08598 

101. A. Hassanzadeh, A. Rasekh, S. Galelli, M. Aghashahi, R. Taormina, A. Ostfeld, M.K. Banks, 
A review of cybersecurity incidents in the water sector. J. Environ. Eng. 146(5), 03120003 
(2020) 

102. F. Pasqualetti, F. Dörfler, F. Bullo, Attack detection and identification in cyber-physical 
systems. IEEE Trans. Automatic Control 58(11), 2715–2729 (2013) 

103. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Computation 9(8), 1735– 
1780 (1997) 

104. J. Goh, S. Adepu, M. Tan, Z.S. Lee, Anomaly detection in cyber physical systems using 
recurrent neural networks, in 2017 IEEE 18th International Symposium on High Assurance 
Systems Engineering (HASE) (IEEE, 2017), pp. 140–145 

105. A.P. Mathur, N.O. Tippenhauer, Swat: A water treatment testbed for research and training 
on ics security, in 2016 International Workshop on Cyber-Physical Systems for Smart Water 
Networks (CySWater) (IEEE, 2016), pp. 31–36 

106. J. Inoue, Y. Yamagata, Y. Chen, C.M. Poskitt, J. Sun, Anomaly detection for a water treatment 
system using unsupervised machine learning, in 2017 IEEE International Conference on Data 
Mining Workshops (ICDMW) (IEEE, 2017), pp. 1058–1065 

107. R. Taormina, S. Galelli, N.O. Tippenhauer, E. Salomons, A. Ostfeld, D.G. Eliades, 
M. Aghashahi, R. Sundararajan, M. Pourahmadi, M.K. Banks, et al., Battle of the attack 
detection algorithms: Disclosing cyber attacks on water distribution networks. J. Water Res. 
Plann. Manag. 144(8), 04018048 (2018)

https://arxiv.org/abs/1804.08598
https://arxiv.org/abs/1804.08598
https://arxiv.org/abs/1804.08598
https://arxiv.org/abs/1804.08598
https://arxiv.org/abs/1804.08598
https://arxiv.org/abs/1804.08598


256 D. Sobien et al.

108. M. Aghashahi, R. Sundararajan, M. Pourahmadi, M.K. Banks, Water distribution systems 
analysis symposium–battle of the attack detection algorithms (batadal), in World Environ-
mental and Water Resources Congress 2017 (2017), pp. 101–108 

109. B.M. Brentan, E. Campbell, G. Lima, D. Manzi, D. Ayala-Cabrera, M. Herrera, I. Montalvo, 
J. Izquierdo, E. Luvizotto Jr, On-line cyber attack detection in water networks through state 
forecasting and control by pattern recognition. in World Environmental and Water Resources 
Congress 2017 (2017), pp. 583–592 

110. S.E. Chandy, A. Rasekh, Z.A. Barker, B. Campbell, M.E. Shafiee, Detection of cyber-attacks 
to water systems through machine-learning-based anomaly detection in scada data, in World 
Environmental and Water Resources Congress 2017 (2017), pp. 611–616 

111. M. Giacomoni, N. Gatsis, A. Taha, Identification of cyber attacks on water distribution 
systems by unveiling low-dimensionality in the sensory data, in World Environmental and 
Water Resources Congress 2017 (2017), pp. 660–675 

112. M. Mardani, G. Mateos, G.B. Giannakis, Recovery of low-rank plus compressed sparse 
matrices with application to unveiling traffic anomalies. IEEE Trans. Inf. Theory 59(8), 5186– 
5205 (2013) 

113. A.A. Abokifa, K. Haddad, C.S. Lo, P. Biswas, Detection of cyber physical attacks on water 
distribution systems via principal component analysis and artificial neural networks, in World 
Environmental and Water Resources Congress 2017 (2017), pp. 676–691 

114. M.F.K. Pasha, B. Kc, S.L. Somasundaram, An approach to detect the cyber-physical attack 
on water distribution system, in World Environmental and Water Resources Congress 2017 
(2017), pp. 703–711 

115. M. Housh, Z. Ohar, Integrating physically based simulators with event detection systems: 
Multi-site detection approach. Water Research 110, 180–191 (2017) 

116. M. Kravchik, A. Shabtai, Detecting cyber attacks in industrial control systems using 
convolutional neural networks, in Proceedings of the 2018 Workshop on Cyber-Physical 
Systems Security and PrivaCy (2018), pp. 72–83 

117. M.A. Umer, A. Mathur, K.N. Junejo, S. Adepu, Generating invariants using design and data-
centric approaches for distributed attack detection. Int. J. Crit. Infrastruct. Prot. 28, 100341 
(2020) 

118. K.N. Junejo, J. Goh, Behaviour-based attack detection and classification in cyber physical 
systems using machine learning, in Proceedings of the 2nd ACM International Workshop on 
Cyber-Physical System Security (2016), pp. 34–43 

119. S. Adepu, A. Mathur, Distributed detection of single-stage multipoint cyber attacks in a 
water treatment plant, in Proceedings of the 11th ACM on Asia Conference on Computer 
and Communications Security (2016), pp. 449–460 

120. S. Adepu, A. Mathur, An investigation into the response of a water treatment system to cyber 
attacks, in 2016 IEEE 17th International Symposium on High Assurance Systems Engineering 
(HASE) (IEEE, 2016), pp. 141–148 

121. S. Adepu, A. Mathur, Distributed attack detection in a water treatment plant: Method and case 
study. IEEE Trans. Dependable Secure Comput. 18(1), 86–99 (2018) 

122. A. Al-Abassi, H. Karimipour, A. Dehghantanha, R.M. Parizi, An ensemble deep learning-
based cyber-attack detection in industrial control system. IEEE Access 8, 83965–83973 
(2020) 

123. M. Sermesant, H. Delingette, H. Cochet, P. Jaïs, N. Ayache, Applications of artificial 
intelligence in cardiovascular imaging. Nat. Rev. Cardiol. 18(8), 600–609 (2021) 
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