
Chapter 3 
Large-Eddy Simulation of Smooth 
Channel Flow with a Stochastic Wall 
Model 

Livia S. Freire 

Abstract Large Eddy Simulation (LES) is a useful tool in the study of smooth 
channel flows of high Reynolds number, but when the domain is large enough compu-
tational cost restricts the correct representation of the viscous sublayer. In this study, 
we test the use of a one-dimensional stochastic model (ODT) as an alternative to 
simulate the flow close to the wall within the LES. This approach comprises the use 
of one independent ODT (a vertical line) inside each LES grid close to the wall, 
driven by the LES at the top and providing the lower boundary condition to the LES 
(two-way coupling). Results of mean velocity and total stress for Reτ = 590 and 
5200 are similar to Direct Numerical Simulation, and they have the correct order of 
magnitude for velocity variances. 

Keywords Large-eddy simulation · One-dimensional turbulence · Smooth channel 
flow 

3.1 Introduction 

Smooth, pressure-driven channel flows correspond to one of the classical problems 
highly studied in the field of turbulence. In addition to its relative simplicity in terms 
of dimensional analysis, combined with many interesting features due to the wall-
blockage effect, channel flows are present in a diverse set of applications in the 
environment (e.g., rivers and the atmospheric boundary layer) and industry (e.g., 
rectangular ducts). 

In this study, we consider a channel with no lateral walls and with a distance 
δ from the bottom wall to the free stream at the top. The flow is fully developed, 
stationary, and horizontally homogeneous, and the mean flow is parallel to the wall 
(in the streamwise direction x). Statistics of the flow change only in the vertical 
direction, y, and the bottom wall is smooth, i.e., the velocity vector −→u = ⟨u, v, w⟩
goes to zero at y = 0 (u, v, and w correspond to streamwise, vertical, and spanwise
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velocities, respectively). From the continuity and momentum equations, it can be 
shown that the total stress 

τ(y) ≡ ρν 
du 

dy  
− ρu'v' (1) 

varies linearly with y because dτ/dy  is constant (Pope 2000). In Eq. (1) ρ and ν are 
the fluid density and kinematic viscosity, respectively (both assumed as constants), 
over bars correspond to Reynolds average, and primes are the fluctuating part. The 
total stress is the sum of the viscous stress (first term on the RHS of Eq. (1)) and 
the Reynolds stress (second term). Noting that τ(y = δ) = 0, due to the free stream 
condition with no stress (similarly if considered an axisymmetric flow with another 
wall at y = 2δ), we have that 

τ(y) = τw

(
1 − 

y 

δ

)
, (2) 

were τw is the shear stress at the wall. Since at the wall u = v = 0, τw = 
ρν(du/dy)|y=0. A velocity scale known as friction velocity can be defined from τw, 
namely uτ ≡ (τw/ρ)1/2 , which allows the definition of a friction Reynolds number 
Reτ = uτ δ/ν. In addition, uτ and ν can be used as viscous (or wall) scales to define 
nondimensional variables such as u+ = u/uτ and y+ = yuτ /ν. 

Figure 1 shows the statistics of smooth channel flows from Direct Numerical 
Simulation (DNS, the numerical solution of the Navier–Stokes equation) with Reτ = 
590 (from Moser et al. 1999) and Reτ = 5200 (from Lee and Moser 2015). Notice 
the linear behavior predicted by Eq. (2) for  τ(y) in Fig. 1f (it goes from 1 to 0 
when normalized by uτ ), which is a signature that all assumptions are met by the 
simulation, including the steady-state condition. In terms of dimensional analysis, 
the flow can be divided into two layers (Pope 2000): (i) the inner layer (y/δ < 0.1), 
where uτ and y+ are the dominant scales (white background in Fig. 1a–c) and (ii) the 
outer layer (y/δ > 0.1), where ub and δ are the dominant scales (grey background 
in Fig. 1a–c). The inner layer can be further subdivided into three sublayers: (i) the 
viscous sublayer (y+ < 5), where the viscous stress dominates over the Reynolds 
stress and u+ = y+; (ii) the logarithmic layer (30 < y+ < 200) where the Reynolds 
stress dominates over the viscous stress and u+ = logy+/κ + B; and (iii) the buffer 
sublayer where both viscous and Reynolds stresses are relevant (see Fig. 1c for  the  
relative importance of each stress). These equations for the nondimensional mean 
streamwise velocity (u+) come from dimensional analysis, and the values of the 
constants κ = 0.4 and B = 5.2 were obtained experimentally (Pope 2000).

The analysis and equations described above and corroborated by experiments and 
DNS set the overall picture of canonical channel flows. Some interesting features can 
be observed when increasing the Reynolds number of the flow: in wall units (y+), 
the inner layer remains the same (same viscous stress in Fig. 1c) and the outer layer 
increases in length, presenting a region with higher streamwise velocity (Fig. 1a). 
Variances peak at the buffer or logarithmic sublayers, and their values increase with
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Fig. 1 Direct Numerical Simulation of smooth channel flows with Reτ = 590 (black lines, from 
Moser et al. 1999) and  Reτ = 5200 (gray lines, from Lee and Moser 2015); a and d: mean 
streamwise velocity, b and e: variances of streamwise (upper lines), spanwise (middle lines) and 
vertical (lower lines) velocities, c and f: total (thick lines), viscous (dotted lines) and Reynolds 
(thin lines) stresses; a–c are displayed as a function of y+ = yuτ /ν, whereas d–f use y/δ. In  a–c 
vertical lines separate the viscous, buffer, and logarithmic layers (from left to right); the outer layer 
corresponds to the gray area

Reτ at all layers except the viscous sublayer (Fig. 1b). When looking at these statistics 
as a function of the distance from the wall (y/δ), the important feature to notice is 
that as Reτ increases, the inner layer is “pushed” closer to the wall (Fig. 1d, e). 

Simulation of Reτ = 5200 from Lee and Moser (2015) already corresponds to one 
of the highest Reτ values allowed by current computational capabilities for DNS, but 
some applications (such as the atmospheric boundary layer) require values of Reτ one 
order of magnitude higher or more. In these situations, an alternative is to use another 
numerical tool known as Large-Eddy Simulation (LES), in which all variables are 
filtered for small-scale removal, significantly reducing the computational cost while 
maintaining most of the kinetic energy of the flow. 

The governing equations of LES are obtained by filtering Navier–Stokes and 
continuity equations, which (for incompressible flow) corresponds to (Pope 2000) 

∂ ̃ui 
∂t 

+ 
∂ ũi u j 
∂x j 

= − 1 

ρ 
∂ p̃ 
∂xi 

+ ν 
∂2 ũi 

∂x j ∂ x j 
+ Fi , (3) 

∂ ̃ui 
∂xi 

= 0, (4) 

where ũi is the filtered velocity field, p̃ is the filtered pressure field, and Fi is the mean 
streamwise pressure forcing (traditional index notation is used). In order to close this
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set of equations, the second term on the LHS of Eq. (3) needs to be rewritten as a 
function of the resolved velocity ũi and pressure p̃. By defining the residual stress 
tensor and the residual kinetic energy as 

τ R i j  ≡ ũi u j − ũi ũ j , (5) 

eR ≡ 
1 

2 
τ R i i  , (6) 

it is possible to write

ũi u j = τi j  + 
2 

3 
eR δi j  + ũi ũ j , (7) 

where τi j  is the anisotropic part of the residual stress tensor (τi j  = τ R i j  − 2eRδi j  /3), 
also known as subgrid-scale (SGS) stress tensor. The final Navier–Stokes equation 
for LES can be written as (Bou-Zeid et al. 2005) 

∂ ̃ui 
∂t 

+ 
∂ ̃ui ũ j 
∂x j 

= −  
1 

ρ 
∂ p̃∗ 

∂xi 
+ 

∂τi j  

∂x j 
+ Fi , (8) 

where p̃∗ = p̃ + 2 3 ρe
R is a modified pressure. Note that because molecular viscosity 

can be neglected in the resolved scales of high Reynolds number flows, it was removed 
from Eq. (8). The impact of the unsolved part of the flow on the resolved velocity field 
is represented by τi j  , which is the term that needs to be parameterized as a function 
of the resolved velocity field. A diverse set of parameterizations, known as SGS 
models, has been developed for different applications and numerical approaches, 
most of them based on the eddy-viscosity and mixing-length assumptions. 

When using LES to simulate smooth channel flows, it is possible to adopt a 
vertically stretched grid so that the first grid points are within the viscous sublayer, 
and a no-slip boundary condition can be enforced at the wall (e.g., Lund et al. 1998; 
Schlatter et al. 2010). This option, however, restricts the size of the domain, because 
the number of points to be used in the vertical direction is limited by the computational 
cost, the stretching function, and the assumptions of the SGS model used. Another 
option is to have the lowest LES grid points at the logarithmic region, and to use the 
log-law equation for the mean flow in this region (u+ = logy+/κ + B) to relate the 
instantaneous streamwise velocity at the lowest grid point to the expected velocity 
gradient at the wall (used as a Neumann boundary condition). This is done through 
the value of uτ , which carries the value of du/dy|y=0 (see prior definitions of u+, 
uτ and τw). The main issue with this approach is that the log-law is true for the 
mean streamwise velocity u+ = u/uτ , but not for the instantaneous filtered velocity 
ũ being resolved by the LES. Therefore, errors from this misuse of the log-law are 
present. Nevertheless, this method provides reasonable results, and it is widely used 
in cases in which the size of the domain is too large for the stretched grid approach 
(e.g., Bou-Zeid et al. 2005; Brasseur and Wei 2010).
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An alternative to the use of the log-law when the first LES grid points are in 
the logarithmic sublayer was proposed by Schmidt et al. (2003). In this approach, 
a one-dimensional stochastic model is used to simulate the instantaneous flow field 
in the viscous and buffer sublayer, two-way coupled with the resolved flow field in 
the LES. In this study, we reproduce this method in a different LES code, comparing 
it again with DNS results of Reτ = 590 by Moser et al. (1999) and performing 
a new comparison with the most recent DNS results of Reτ = 5200 by Lee and 
Moser (2015). Positive and negative aspects of this method are discussed, and future 
applications for the model are envisioned. 

3.2 Methods 

3.2.1 One-Dimensional Stochastic Model 

The one-dimensional stochastic model used in this study, known as ODT (One-
Dimensional Turbulence model), was developed by Kerstein (1999) and success-
fully used as a stand-alone model to simulate different types of turbulent flows, 
including homogeneous turbulence, shear layers, buoyancy-driven flows (Kerstein 
1999), mixing-layer and wakes (Kerstein et al. 2001), jet diffusion flames (Echekki 
et al. 2001), the stable atmospheric boundary layer (Kerstein and Wunsch 2006), 
particle dispersion in homogeneous flows (Sun et al. 2014) and flow through plant 
canopies (Freire and Chamecki 2018). The model corresponds to the one-dimensional 
diffusion equation of all variables of interest (which in this study are the three velocity 
components, but temperature, gas, and particle concentration can be included in the 
same way), i.e., 

∂ui 
∂t 

= ν 
∂2ui 
∂y2 

+ Fi + stochastic  eddies (9) 

where stochastic eddies correspond to the effect of three-dimensional turbulence in 
this one-dimensional field. The simulation is performed by evolving the diffusion 
equation in time, and at each time-step, a stochastic eddy is selected from a probability 
distribution of eddy size and location in the domain. When a stochastic eddy is 
selected, all variables at the position y within the eddy are replaced by the value of the 
same variable at the position M(y). This mapping function is a model for advection, 
mixing the variables and creating small-scale fluctuations in such a way that mimics 
the energy cascade of turbulent flows. It is conservative (i.e., it preserves the total 
amount of the quantity being transported) and it does not introduce discontinuities. 
Mathematically, it is defined as
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M(y) = yb + 

⎧⎪⎪⎨ 

⎪⎪⎩ 

3(y − yb), if yb ≤ y ≤ (yb + l/3), 
2l − 3(y − yb), if(yb + l/3) ≤ y ≤ (yb + 2l/3), 
3(y − yb) − 2l, if(yb + 2l/3) ≤ y ≤ (yb + l), 
y − yb, otherwise, 

(10) 

where l and yb are the size and bottom position of the eddy, respectively. As described 
by Kerstein and Wunsch (2006), the mapping function “takes a line segment, shrinks 
it to a third of its original length, and then places three copies on the original domain. 
The middle copy is reversed, which maintains continuity of advected fields and 
introduces the rotational folding effect of turbulent eddy motion.” In addition to this 
mixing effect, when a stochastic eddy is selected, a second term creates redistribu-
tion of energy among velocity components, mimicking a pressure-induced tendency 
toward isotropy on the flow. The final model for the occurrence of stochastic eddies 
is 

ui (y) → ui (M(y)) + ci (y − M(y)), (11) 

where ci is the amplitude of the energy redistribution (calculated from the flow energy 
within the eddy). For more details on its calculation, see Kerstein (1999) and Kerstein 
et al. (2001). 

The final piece of information needed for the ODT is the probability distribution 
of eddy size and location, λ(l, yb, t), which also evolves in time with the flow. It is 
calculated as proportional to the instantaneous amount of kinetic and potential energy 
in the flow (through dimensional analysis), adding another physical aspect to the 
stochastic model. For example, regions of high shear will have a higher probability 
of having stochastic eddies. A proportionality constant Cλ is used to regulate the 
number of eddies for a given amount of energy, effectively setting the turbulence 
intensity. Another constant, Zλ, adjusts the damping effect of viscosity, because any 
eddy with a time scale longer than the viscous time scale should be prohibited. The 
values of Cλ and Zλ are the only tunable parameters of the model, which are usually 
different for different types of flows, but they are not expected to vary with Reτ . 
A detailed description of λ and its mathematical formulation can also be found in 
Kerstein (1999) and Kerstein et al. (2001). 

When used as a bottom boundary condition for the LES, an independent ODT 
model is inserted inside each LES grid next to the wall. In this case, each ODT 
corresponds to a vertical line centered at the LES grid, refining the flow field in the 
vertical direction from the wall to the top of the grid. The LES velocity field provides 
a top boundary condition to the ODT, and the ODT provides the momentum flux 
across the first and second grid layers as a bottom boundary condition for the LES, 
which results in an instantaneous two-way coupling between the models.
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Table 1 Simulation parameters for LES and ODT 

Reτ = 590 Reτ = 5200 
Domain size (X × Y × Z ) 2πδ  × δ × 2πδ 2πδ  × δ × 2πδ  
Number of grid points 
(Nx × Ny × Nz , NODT) 

32 × 16 × 32, 32 32 × 32 × 32, 96 

Mean pressure gradient force 
(Fi = ⟨(1/ρ)(d p/dx), 0, 0⟩)

⟨u2 τ /δ, 0, 0⟩ ⟨u2 τ /δ, 0, 0⟩

Simulation time step (
t) 0.0005δ/uτ 0.0005δ/uτ 

Number of simulation time steps (Nt ) 100, 000 100, 000 
Eddy rate distribution parameters 
(Cλ, Zλ) 

23, 15 23, 15 

3.2.2 Large-Eddy Simulation Code 

The LES code used in this study solves the filtered Navier–Stokes equation in 
a vertically-staggered grid with fixed size, in which the first grid points are located 
in the logarithmic sublayer. The numerical discretization combines a fully dealiased 
pseudo-spectral method in the horizontal directions and a second-order centered finite 
difference in the vertical direction. The fully explicit second-order Adams–Bashforth 
scheme is used for time integration. The SGS model is the planar averaging, scale-
invariant dynamic model (Germano et al. 1991). More details of the code can be 
found in Bou-Zeid et al. (2005). A constant mean pressure gradient force is imposed 
in the streamwise direction and horizontal boundary conditions are periodic, while 
a stress-free boundary condition is applied at the top of the domain. 

3.2.3 Simulation Setup 

Two simulations are tested here, corresponding to Reτ = 590 and 5200. Simulation 
parameters are listed in Table 1. Both simulations were run for 50 eddy turnover 
times (defined as δ/uτ ), and results presented in the next section correspond to the 
averaging of the last 15 eddy turnover times. 

3.3 Results 

Figure 2 shows the results of flow statistics for the two Reτ tested. After the adjust-
ment of the parameters Cλ and Zλ (by trial and error), the mean flow is well repre-
sented by the model, with ODT providing the velocity field in the viscous and buffer 
sublayers in the Reτ = 590 case (Fig. 2a), and in most of the inner layer in the case
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Fig. 2 Smooth channel flow simulation results from ODT-LES coupling for Reτ = 590 (a– 
c) and  Reτ = 5200 (d–f); LES (ODT) results in empty (filled) symbols; gray lines correspond 
to DNS results; a and d: mean streamwise velocity, b and e: variances of streamwise (upper 
lines/symbols), spanwise (middle lines/symbols), and vertical (lower lines/symbols) velocities, c 
and f: total (circles), viscous and SGS (squares), and stochastic eddies and resolved (triangles) 
stresses 

of Reτ = 5200 (Fig. 2d). The fact that these tunable parameters do not change with 
Reτ is useful in terms of the applicability of the model to different studies. 

Overall, variances are well represented by the LES in the outer layer; this is 
also obtained when using wall models based on the log-law, and it is likely not 
significantly impacted by the use of the ODT. The variances at the viscous sublayer 
are also well represented by the ODT, but ODT results in the buffer and logarithmic 
sublayers show discrepancies when compared to DNS results (Fig. 2b, e). Even 
as a stand-alone model, variances from ODT are usually not correct, which has 
been consistently observed for different types of flows (Kerstein et al. 2001; Freire  
and Chamecki 2018). Nevertheless, having an estimate that has the correct order of 
magnitude can be useful in some applications where an instantaneous flow field close 
to the wall is needed. 

Finally, stresses are well represented by the ODT-LES coupling. Note in Fig. 2c, 
f that the ODT viscous stress is similar to DNS values, and that the stochastic eddies 
emulate the Reynolds stress in the viscous and part of the buffer sublayers. The sum 
of them gives the correct total stress at these layers, and it provides the value of the 
stress in the second LES grid point (which enters as an SGS stress). The total stress in 
the LES is divided into SGS and resolved parts (both corresponding to the Reynolds 
stress), and no viscous stress exists as it is negligible in this part of the domain. As 
expected, the total stress matches the linear profile (from theory and DNS) in both 
ODT and LES parts, indicating a well-developed, steady-state simulation.
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3.4 Conclusion 

In this study, we tested the use of a one-dimensional stochastic model as an alternative 
to simulate, in LES, the lowest part of the inner layer of a smooth channel flow. This 
approach provides good results for mean velocity and total stress, in addition to 
reasonable results (in terms of order of magnitude) for the variances of the flow. 
Despite the errors in variances, this option is likely more robust than the use of 
the log-law as a wall model for the instantaneous resolved velocity, given that the 
latter is an equation defined for the mean flow. The trade-off of this correction, 
however, comes in a significant increase in the computational cost of the simulation. 
Perhaps the application in which the ODT-LES coupling will be most useful is when 
the information of the instantaneous flow field very close to the wall is needed in 
addition to a large domain (too large for the stretched grid approach), such as studies 
of particle transport at the surface of the atmospheric boundary layer under conditions 
of strong convective flows. 
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