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Stem Cells Therapy for Ischemic Heart 
Disease

Nicola Pradegan and Gino Gerosa

1  Introduction

With more than 17 million deaths worldwide each year, IHD caused by coronary artery 
disease is the most common cause of death and a major cause of hospital admission in 
developed countries. In Europe, IHD is the main cause of death among women >50 years 
of age and men [1, 2].

Conventional therapies have significantly reduced mortality of acute IHD, leaving an 
increasing number of patients with chronic IHD and/or HF without further treatment 
options. An increasing morbidity rate of this nature in an aging population is a huge bur-
den for current society. HF is an expensive disease, both in terms of financial burden ($30 
billion/year in medical expenditures in the US) and reduced quality of life and workdays 
lost [3]. Although HF survival has improved since 1979, the death rate remains very high, 
with more people dying of cardiac disease than cancer and chronic lower respiratory dis-
ease combined. Therapies aimed at restoring the billions of cardiomyocytes lost during 
myocardial infarction or damaged by nonischemic cardiomyopathies are sorely needed.

Among different medical strategies developed in the last decades to relieve symptoms, 
prevent disease progression, and improve survival and quality of life, stem cells therapy 
has emerged as a promising therapeutic approach to promote myocardial repair and regen-
eration. Cardiovascular disease is perhaps the field with the most clinical research on 
cell-based therapeutics, with over 200 clinical trials since 2001 examining multiple stem 
cell products for a diverse array of cardiac syndromes. Despite this extensive body of 
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research, stem cell therapy has yet to transition from research to practice, as there is no 
definitive evidence of an efficacious cell product.

With this chapter, we aim to overview the biology of stem cell types used in cardiovas-
cular research, and current preclinical and clinical applications regarding stem cells use in 
acute and chronic IHD.

2  Stem Cells Source

Stem cells are undifferentiated cells defined by their capacity for both self-renewal and abil-
ity to differentiate into other mature cell types. While embryonic stem cells are the prototypi-
cal pluripotent stem cells, capable of becoming any other cell type in an embryo, there are 
numerous stem cells populations found in adult tissues. These adult stem cells have a more 
limited differentiation potential and generally exist to maintain tissue homeostasis and 
replenish lost cells from that particular tissue. Some of these adult stem cells can naturally 
(albeit rarely) transdifferentiate to form cells outside of their original tissue of origin.

Several studies have shown that various cell types exerted beneficial effects on cardiac 
repair. Overall stem cells effect is summarized in Fig. 1.

• Skeletal myoblast was the first cell type to be clinically tested, but the efficacy was 
unsatisfactory mainly due to the high incidence of arrhythmias [4].

• Bone marrow-derived mononuclear cell contains the undifferentiated HSC and MSC 
as well as other committed cells in various stages of maturation. Its abundance and easy 
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accessibility allow for autologous implantation without expansion in tissue culture, 
which avoids the decline of stem cell differentiation and migration ability, and reduces 
the incidence of immune rejection. Preclinical studies show discordant results in terms 
of angiogenesis and left ventricle function among different animal models [5–10]. 
Clinically, BMMNCs have been evaluated both for AMI and ischemic heart failure. In 
AMI, intracoronary delivery of autologous BMMNCs were evaluated in the 
 REPAIR- AMI clinical trial: this was a large, phase III, double-blinded, placebo- 
controlled study designed to determine the therapeutic efficacy of BMMNCs. There 
were 204 patients randomized to receive either cells or placebo 3–7 days following 
AMI. Initial results at 4-months were encouraging, with LVEF significantly improved 
in the BMMNC-treated group by 5.5% on average, whereas the placebo-treated group 
exhibited a 3.0% in increase in LVEF. At 1-year, there were some encouraging signs. 
There were fewer myocardial infarctions, less need for repeat revascularization and 
fewer incidences of death in the BMMNC compared to the placebo group [11]. 
However, a longer follow- up analysis (5-year follow-up) found out that, despite a pre-
served benefit on mortality, improvement in LVEF was not maintained [12]. These 
mid-term results were also highlighted by other clinical experiences which did not find 
any significant improvement of myocardial function after BMMNCs administration in 
AMI (e.g., TIME trial [13], LateTIME trial [14], SWISS AMI trial [15], BOOST-2 trial 
[16], MiHeart/AMI trial [17]). In patients with post-ischemic HF, results have been 
more promising: in fact, a recent meta-analysis reports a mean improvement of 4.33% 
in LVEF as well as reductions in left ventricle volumes after MBBNCs injection in 
patients with post-ischemic HF [18]. This analysis suggested that overall BMMNCs for 
post-ischemic cardiomyopathy appear to produce positive effects on cardiac function 
and remodeling.

• Hematopoietic stem cell has multiple differentiation potentials and can be autolo-
gously transplanted, but they are limited in abundance, which leads to poor effi-
cacy [19].

• Endothelial progenitor cells are isolated from peripheral blood and bone marrow and 
can give rise to vascular cells. Clinical application of EPC transplantation is expected 
to increase the capillary density and subsequently improve the microcirculation around 
the transplanted sites in infarcted heart. Studies have showed that EPC transplantation 
can also improve heart function, but its effect is restricted, which may result from its 
weak differentiation ability [20].

• Embryonic stem cells have strong proliferation and differentiation capabilities, but it 
has ethical controversies and high risks of teratoma formation, which create hurdles to 
its clinical translation [21].

• Induced pluripotent stem cells can differentiate into multiple cell types, are anti- 
inflammatory, and have therapeutic potential to repair tissues following ischemic dis-
ease. They have great proliferative capacity and might have the potential to be a major 
source for cardiac repair, but preclinical studies are needed to assess potential tumor 
formation and other safety issues [22, 23].

Stem Cells Therapy for Ischemic Heart Disease
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Fig. 2 Laboratory pathway to obtain cardiosphere-derived cells

• Cardiosphere-derived cells: The discovery of small clusters of heart cells express-
ing stem cell antigens (originally called “side population”—SP) capable of sym-
metric (self to identical self) or asymmetric (self to differentiated daughter progeny) 
division prompted the enthusiastic declaration that in situ, adult stem cells exist 
and such cells might have therapeutic potential. These in situ stem cells have been 
obtained by cardiac biopsies and then expanded in particular cultures to generate 
the CDCs (Fig. 2), which have clonogenic potential and express markers indicative 
of progenitor/stem cell  identity [24]. To date, several trials have already tested this 
new population of cells. The CADUCEUS trial was the first to determine if intra-
coronary injection of autologous CDCs to patients soon after myocardial infarction 
was safe [25]. At 1 year of follow-up, CDC-treated patients had smaller scar sizes, 
increased viable myocardium, and improved regional function compared to control 
patients. A subsequent study using allogenic CDCs also confirmed the positive out-
comes in terms of ventricular function improvement (even if no difference was 
found in terms of scar size) [26]. These results are hypothesized to be caused by the 
paracrine anti-inflammatory, immunomodulatory, and anti-fibrotic effect of these 
cells on the injured area rather than a CDC differentiation into local new myocar-
dial cells [27].

• Mesenchymal stem cells are isolates by multiple tissues (e.g., bone marrow, adipose 
tissue, dental pulp, umbilical cord) and can be expanded in vitro. Among the different 
cells studied for these purposes, MSCs are the most widely studied because of their 
abundancy, their easy retrieval and their immune exemption [28]. This type of cell is 
known since early 70s, and it has been called with different names (osteogenic stromal 
cell, stromal stem cell, mesenchymal stem cell, mesenchymal progenitor/precursor 
cell, multipotent mesenchymal stromal cell). It is now called MSC because of the 
hypothesis that postnatal MSC might generate all mesoderm-derived tissues (including 
myocardium). However, the formation of similar differentiated similar cells is still a 
point of controversy. The main and most studied source of MSCs for cardiac regenera-
tion is bone marrow (Fig. 3 summarizes the process to obtain bone marrow MSCs); 
however, further studies have demonstrated favorable results in terms of LVEF improve-
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ment, perfusion, and remodeling for MSCs isolated from adipose tissue and umbilical 
cord in large-animal models [29, 30]. Particularly, adipose-derived MSCs can differen-
tiate into cardiomyocytes, endothelial cells, and vascular smooth muscle cells and 
exhibit immunomodulatory properties that can protect other cell types (e.g., endothelial 
progenitor cells) from rejection.

3  MSCs Mechanisms of Action

MSCs favor cardiac repair by means of fibrosis reduction (Fig. 4), angiogenesis stimu-
lation, and ventricular function improvement. The mechanism of action is heteroge-
nous and includes engraftment and heterocellular coupling (stem and somatic cell 
intercommunication) [31] and paracrine mediated signaling [32]. Figure  5 summa-
rizes all the mechanisms of action. The initial idea that MSCs differentiate and directly 
remuscularize a scarred myocardial area has been disconfirmed since multiple studies 
have shown that cardiomyocyte replacement by MSCs is low and does not represent a 
therapeutically meaningful mechanism of MSC action [33, 34]. Regarding paracrine 
signaling, MSCs release a variety of growth factors, with variability according to 
MSC tissue source. Besides, MSC secretion also includes exosomes and extracellular 
vesicles containing mRNA, miRNA and non-protein encoding RNA, peptides, and 
other bioactive compounds, which produce a wide variety of effects on target tissues 
(e.g., angiogenesis, reduction of infarct size, cardiac function preservation, and anti-
arrhythmic effect) [35]. Further studies are required to determine the extent and dura-
tion of these effects. Heterocellular coupling through gap junctions allows for the 
transfer of small molecules and plays a role in coordinating activities between neigh-
boring cells during tissue function. Mitochondrial transfer is also allowed through 
these gap junctions, and it is involved in rescuing damaged cells, reducing the isch-
emia-reperfusion injury [36].

Stem Cells Therapy for Ischemic Heart Disease
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Fig. 4 Cardiac magnetic resonance showing mesenchymal stem cells effect on myocardial fibrosis 
on short-axis view (a) and long-axis 2-chamber view (b)

Regarding the immunomodulatory action, MSCs lack surface molecules which can 
activate the immune system. Furthermore, they reduce the expression of proinflammatory 
cytokines and lymphocytes proliferation.
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Fig. 5 Mesenchymal stem cells mechanism of action

4  MSCs Preliminary Clinical Outcomes: Acute Myocardial 
Infarction and Post-ischemic Heart Failure

Given the promising preclinical data on MSCs in IHD, multiple studies have investigated 
the clinical application of MSCs in humans. In AMI patients, autologous MSCs were first 
used. Two different trials demonstrated that intracoronary infusion of MSCs (before autol-
ogous bone marrow MSCs expansion and after percutaneous coronary intervention) 
showed better LVEF and ventricular volumes at mid-term follow-up [37, 38]. However, 
other studies did not find any superiority in the autologous MSCs group in terms of ven-
tricular function improvement in patients with coronary artery disease [39]. This discrep-
ancy might be due to different MSCs injection protocols used. Given the absence of MSCs 
immunogenicity and the disadvantages of using autologous cells, allogenic MSCs from 
healthy donors were tested. First clinical experiences show better results in terms of 
arrhythmias reduction [40], but trials are still ongoing.

Clinical experience with MSCs in ischemic HF has been obtained by means of several 
studies. Phase I [41] and Phase II studies [42, 43] using MSCs directly injected into the 
myocardium have demonstrated functional cardiac improvement, reverse remodeling, and 
improved exercise capacity and quality of life. Other studies have also analyzed MSCs 
effect after epicardial injection at the time of other surgical interventions (providing a 
unique opportunity to include cell-based therapies as an adjunct to open surgical proce-
dures), showing an improvement in terms of scar size reduction, perfusion, and contractil-
ity [33]. When comparing autologous vs. allogenic MSCs in ischemic HF, both types 
showed a significant reduction in scar size at 1 year of follow-up as well as a ventricular 
reverse remodeling [34]. However discordant data are available regarding the dose- 
dependent effect.

Stem Cells Therapy for Ischemic Heart Disease



550

5  Stem Cells Delivery: How and When to Do It

Delivery routes in cardiac cell therapy mainly include thoracotomy injection, system infu-
sion, and imaging guide mini-invasive injection (Fig. 6).

 1. Thoracotomy injection: Through this access, cells can be delivered in a trans-epicardial 
intramyocardial fashion directly into the targeted area. Even if this method reduces the 
cells loss, unfortunately it requires anesthesia and a surgical approach. For this reason, 
this delivery might be limited to patients undergoing cardiac surgery (e.g., coronary 
artery bypass grafting). Potential complications are left ventricle perforation, bleeding 
from the myocardium and unbalanced ventricular motion caused by the uneven distri-
bution of cells after injection.

 2. System infusion: It includes intracoronary and intravenous injection. Intracoronary has 
the advantage of increasing the number of cells homing to the ischemia area of the 
myocardium, while avoiding the damage caused by direct injection in the myocardium. 
This approach does not require chest opening and can be done at the time of PCI 
directly [44]. Complications can be cell loss through coronary circulation, and over-
dose of cell injection that can cause coronary artery occlusion. Intravenous injection is 
the easiest and the most economical way of infusing stem cells. Even if some research-
ers argued the real efficacy of this method (primarily due to pulmonary first-pass effect) 
[45], other studies combining intravenous and intracoronary injection demonstrated 
improved cardiac function, increased perfusion, and alleviated ventricular remodeling 
in preclinical ischemia settings [30].

 3. Imaging-guided mini-invasive injection: This strategy includes trans-endocardial 
intramyocardial and trans-epicardial intramyocardial injection. These injections are 

Intracoronary/Intravenous Delivery Intramyocardial Delivery
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Fig. 6 Stem cells delivery
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performed under echo or cardiac magnetic resonance guidance. Advantages are less 
trauma, fewer complications, and multiple transplantation at different time 
points [46].

Regarding the optimal timing of cell therapy in AMI, there is evidence that myocardial 
microenvironment at different time points after infarction has profound influences on stem 
cells survival, homing, and differentiation [47]. In acute infarct stage, the microenviron-
ment is not conducive to the survival and growth of stem cells because of the overwhelm-
ing inflammatory response in the myocardial injury area. It was found that inflammatory 
reaction peaks at 1–4 days, some cytokines (such as VEGF) which were favorable to stem 
cells migration reached the peak of secretion at 7 days, and scars began to form at about 
14 days after AMI. A recent systematic review found that cardiac function parameters 
(e.g., diameters, volumes, and LVEF) were significantly improved when stem cells were 
transplanted between 7 and 10 days after infarction [14]. For chronic IHD, there is no 
obvious time window problem, so we can select the time when the patients are in good 
condition (such as no angina attack and general physical activity without discomfort, 
which denotes that the heart blood supply and heart function are still good), suggesting 
that the patients’ internal environment and myocardial microenvironment are relatively 
favorable for transplantation, so as to facilitate the survival, homing, and differentiation of 
implanted cells.

6  Future Perspectives

Current research is oriented toward different new strategies. First, a novel approach is try-
ing to direct MSCs to a cardiopoietic phenotype (by means of a recombinant mix of growth 
factors, hormones and cytokines which favor the expression of pro-cardiogenic transcrip-
tion factors). Preclinical and clinical studies are available and have already showed their 
efficacy and safety [48, 49], but still need to be evaluated in larger cohorts. Analogously, 
cell combination therapy with different types of stem cells might promote cardiac repair 
through synergistic interaction [50]. Additional strategies will include: MSC “secretome” 
including factors within exosomes; bioengineered cellular and acellular matrices and 
patches that can increase cell/factor retention; repeated injections of stem cells.
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