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Pharmacological Treatment of Ischemic 
Heart Disease

Alberto Giannoni, Francesco Gentile, and Chiara Borrelli

Few things are more distressing to a physician than to stand beside a suffering patient who is 
anxiously looking to him for that relief from pain which he feels himself utterly unable to 
afford. His sympathy for the sufferer, and the regret he feels for the impotence of his art, 
engrave the picture indelibly on his mind, and serve as a constant and urgent stimulus in his 
search after the causes of the pain, and the means by which it may be alleviated.

—T. Lauder Brunton, July 27, 1867.

1	� Introduction

Chronic myocardial ischemia may be a consequence of obstructive coronary artery disease 
(CAD), secondary to luminal stenosis and reduced coronary flow reserve, and/or of other 
conditions, such as vasospasm, microvascular dysfunction, and energetic mismatch [1–3]. 
According to the latest European guidelines, whenever a macro- or microvascular coronary 
disorder is documented, the clinical condition could be denoted as chronic coronary syn-
drome (CCS) [1].
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Of note, myocardial ischemia is often but not always accompanied by chest pain or 
angina. Indeed, angina is only the final clinical manifestation of a series of pathophysio-
logical changes induced by myocardial energetic unbalance and named the “ischemic cas-
cade,” including diminished left ventricular compliance, decreased contractility, increased 
left ventricular end-diastolic pressure, and electrocardiographic changes [4]. The thresh-
old of ischemia associated with symptoms may vary among patients and within the same 
patient, or may also be absent in conditions of neuropathic functional denervation (i.e., 
diabetes) [5, 6]: therefore, episodes of silent ischemia may occur.

Although observational studies suggested that silent myocardial ischemia could com-
promise contractile function and electrical stability, with negative hemodynamic conse-
quences [7], and life-threatening arrhythmias [8–11], there is currently no evidence 
showing a prognostic benefit of anti-ischemic therapies in this context. Therefore, current 
guidelines discourage functional testing in asymptomatic individuals [1] and highlight that 
the main aim of medical therapy in CCS is to target angina rather than ischemia [1].

As for symptomatic patients, while meta-analyses show that all antianginal drugs are 
similarly efficacious in alleviating angina and increasing exercise tolerance, evidence for 
improvement in event-free survival is generally missing, apart from beta-blockers (BBs) 
in patients with heart failure and reduced ejection fraction, and nicorandil for angina-
related hospitalization [12, 13].

Nonetheless, treating ischemia may prove value in specific subsets (e.g., in the presence 
of an extensive ischemic burden and/or of left ventricular systolic dysfunction) [1], and 
this topic still remains a matter of debate [14, 15].

2	� Pathophysiological Mechanisms of Ischemia 
and Potential Targets

As detailed in the chapter “Pathophysiology of Ischemic Syndromes in Coronary Artery 
Disease”, in the last century, a plethora of elegant physiological and pharmacological stud-
ies have outlined the heterogenous pathophysiological determinants of myocardial isch-
emia [16]. Whereas an impaired oxygen/nutrients’ supply due to either coronary (e.g., 
epicardial artery stenosis, vasospasm, microvascular dysfunction) or noncoronary causes 
(e.g., anemia, hypoxia, toxic and metabolic disorders) and an unbalanced increase in ener-
getic demand (secondary to increased myocardial contractility, wall stress, or heart rate) 
are key determinants of myocardial ischemia, more subtle abnormalities in cardiomyocyte 
metabolism have been observed as well [16–19]. Importantly, these mechanisms are not 
exclusive but could be variously intertwined and declined in the single patient, fostering 
the research for a tailored and integrated therapeutic approach (Fig. 1) [20, 21].

Beyond its conduit function, coronary circulation is responsible for modulating myo-
cardial blood flow to match energetic demand across a wide spectrum of physiological 
conditions, through the mechanisms of autoregulation and autonomic control [22, 23]. 
Accordingly, in conditions of increased myocardial requests (e.g., physical exercise, emo-
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Fig. 1  Pathophysiology-driven pharmacological management of myocardial ischemia. ACE-i 
angiotensin-converting enzyme inhibitors; CCBs calcium channel blockers; DHP dihydropyridines

tional stress), coronary flow increases proportionally [24]. On the other hand, in the pres-
ence of a significant luminal obstruction in an epicardial artery, the downstream flow is 
usually maintained at rest at the price of exhausting the vasodilatory reserve, so that myo-
cardial ischemia may emerge when a further increase in energetic demand is not ade-
quately counterbalanced [25]. Nevertheless, a certain degree of vasodilation may be 
obtained through some drugs (e.g., nitric oxide (NO) donors, nicorandil, and calcium 
channel blockers (CCBs)), which are therefore effective anti-ischemic agents in this  
setting [26–28].

Although such a hydraulic mechanism has long been considered the fundament of 
chronic myocardial ischemia and angina, it is nowadays established that this may occur 
also in the absence of obstructive CAD and persist also after successful revascularization 
[29–31]. In this regard, vasospasm has been identified as a potential contributor. Although 
the so-called resting vasospastic or Prinzmetal angina, as originally described [32], repre-
sents a rare condition, macro- and/or microvascular spasm may be frequently observed 
independently of the concomitant atherosclerotic burden [33, 34]. A paradoxical vasocon-
strictive response to acetylcholine, which is normally associated with a NO-mediated 
vasodilation, characterizes coronary vasospasm, implying a pivotal role of endothelial 
dysfunction [35, 36]. In this context, CCBs (both dihydropyridines—DHP and non-DHP) 
are a well-established first-line therapy [37, 38], while other vasodilators such as nitrates 
and nicorandil represent possible alternatives or add-on therapies in refractory cases [39, 
40]. On the contrary, BBs are usually not recommended since vasospasm could be exacer-
bated by the blockage of the “vasodilative” β2-adrenergic receptors and a paradoxical 
overstimulation of the “vasoconstrictive” α1-adrenergic receptors on coronaries’ walls [41].

Microvascular disease may underlie myocardial ischemia and angina, also in the 
absence of detectable epicardial coronary stenosis and vasospasm or other cardiac condi-
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tions, due to endothelial and autonomic dysfunction, exaggerated vasoconstrictive and 
nociceptive responses, and pro-inflammatory signals [3, 42, 43]. Although NO-mediated 
pathways and Ca2+ inflow modulate microvascular tone, too [44], both nitrates and CCBs 
are poorly effective on microvascular angina [45, 46], particularly when no vasospasm 
could be detected [47]. Conversely, more promising findings have been obtained for 
angiotensin-converting enzyme inhibitors, since angiotensin II is a direct modulator of 
microvascular tone [48] and for xanthines, which may favor flow redistribution toward 
ischemic areas (by inhibiting the arteriolar vasodilator effects of adenosine) and antago-
nize adenosine-mediated pain afferents, relieving angina [49].

As anticipated, also the reduction of myocardial energetic demand is an effective strat-
egy to alleviate ischemia and angina and may be achieved by lowering blood pressure and, 
most importantly, heart rate [50]. Beyond reducing oxygen consumption, a lower heart 
rate prolongs coronary diastolic perfusion, so that the net effect of negative chronotropic 
drugs may be an improved contractility of ischemic regions, despite their possible negative 
inotropic action [51]. Therefore, BBs and non-DHP CCBs play a central role among anti-
anginal therapies [52], while their anti-ischemic efficacy in asymptomatic patients is still 
controversial [50, 53]. Alternatively, a lower heart rate may be achieved by inhibiting the 
If current with ivabradine, considered a second-line antianginal drug, with no negative 
inotropic or lusitropic effect [52, 54].

Finally, further targets for anti-ischemic therapies have been identified by shifting the 
focus on the cardiomyocyte. Indeed, whereas its energetic metabolism is primarily based on 
mitochondrial oxidation of fatty acids and other substrates (e.g., glucose, ketones) are less 
utilized in physiological condition [55], in the presence of ischemia, such pathways may be 
corrupted and anaerobic glycolysis favored, resulting in acidosis, Na+ and Ca2+ overload, and 
decreased cardiac function [19, 55]. Promoting the shift toward a more efficient energetic 
asset has therefore emerged as an intriguing strategy and may be achieved by favoring glu-
cose instead of fatty acid utilization. As detailed below in this chapter, two anti-ischemic 
drugs, i.e., trimetazidine and ranolazine, act in modulating these pathways [56, 57].

3	� Medical Therapy of Ischemic Heart Disease

Historically, the first class of drugs that have been used as antianginal were nitrates, fol-
lowed almost a century after by BBs, then CCBs, trimetazidine, nicorandil, ivabradine, 
and, finally, ranolazine [58–64] (Fig. 2).

Considering the number of antianginal drugs now available for clinical use, it may be 
difficult to identify the optimal treatment. Ideally, the best option should control symp-
toms, improve quality of life, maximize patient’s adherence, and minimize drug-related 
side effects. Furthermore, as suggested by the current guidelines, the therapeutic choice 
should also be adapted to the patient’s characteristics, such as cardiac and noncardiac 
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Fig. 2  Antianginal medications through the decades

comorbidities, to improve (soft) outcomes and avoid undesirable side effects [1, 18, 19]. 
Furthermore, targeting the pathophysiological substrate of myocardial ischemia may fur-
ther improve therapeutic efficacy [65].

Antianginal drugs are classified as being first-line (BBs, CCBs, and short-acting nitrates 
on request) or second-line (long-acting nitrates, nicorandil, ivabradine, trimetazidine, and 
ranolazine) [1]. Second-line medications are usually destinated to patients who have con-
traindications, do not tolerate, or remain symptomatic despite first-line agents. However, 
no randomized clinical trial (RCT) has shown superiority of first-line over second-line 
treatments [1, 21]. A recent systematic review and meta-analysis has also showed that no 
one antianginal drug is superior to another and that equivalence has only been demon-
strated for the use of BBs (atenolol), DHP CCBs (amlodipine, nifedipine), and If current 
inhibitors (ivabradine) [21].

Another meta-analysis supports the combination of DHP CCBs with BBs over mono-
therapy and to ranolazine added to either BBs or CCBs [66]. According to the same meta-
analysis, adding long-acting nitrates and trimetazidine may be effective as well, although 
the evidence seems more scattered [66]. Similarly, ivabradine was shown to increase exer-
cise time, angina attacks, and use on nitrates when added to BBs in the ASSOCIATE [67] 
and ADDITIONS [68] trials. There are no significant data for nicorandil as far as combina-
tion therapy is concerned [69].

Some authors have also highlighted that each drug/combination may have beneficial or 
detrimental effects on patients’ specific characteristics, and thus a “diamond” approach 
similar to that employed in hypertension (i.e., leaving physician free to choose the most 
appropriate drug/combination according to patient-specific needs) has been proposed [18]. 
Considering the mechanisms of action, association of BBs or ivabradine with non-DHP 
CCBs is not recommended, whereas other combinations (i.e., nitrates/nicorandil with 
CCBs or ranolazine with trimetazidine) might be partially redundant, unless specific 
pathophysiology is considered (e.g., vasospastic angina) [18].
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3.1	� Vasodilators

3.1.1	� Nitrates
Short- and long-acting nitrates represent an established class of antianginal drugs, whose 
effects depend on the release of NO through an enzymatic process (i.e., denitrification) 
taking place in the vessel walls [70]. By stimulating the soluble guanylyl cyclase of smooth 
muscle cells, NO promotes the production of cyclic guanosine monophosphate, leading to 
membrane hyperpolarization and reduction of Ca2+ inflow, with consequent vasodilation 
[70]. Whereas at low doses nitrates act mostly on the venous system (hence reducing pre-
load), arterial vasodilation occurs at higher doses, favoring epicardial coronaries and col-
lateral blood flow perfusion (even in the presence of luminal obstruction) and reducing 
post-load [71]. Although the potential reduction of myocardial oxygen consumption sec-
ondary to reduced pre- and post-load may be partially counterbalanced by an autonomic 
mediated increase in heart rate, the concomitant use of negative chronotropic drugs (e.g., 
BBs) may result in synergetic anti-ischemic effect [72]. Furthermore, thanks to their 
NO-dependent action, nitrates are also effective in relieving vasospastic [73] but not 
microvascular angina, probably because of the lower sensitivity of resistance arterioles to 
such signals at clinically used dosages [74].

As recommended by the current guidelines, short-acting nitrates are the first-line ther-
apy to relieve effort angina (class of recommendation (CoR) I, level of evidence (LoE) B), 
while long-acting nitrates are second-line choices in the long term compared to BBs and 
non-DHP CCBs (CoR IIa, LoE B) [52]. Indeed, several RCTs have examined the efficacy 
of nitrates, and in a meta-analysis of 51 studies including a total of 3595 patients with 
stable angina, their long-term administration was found to be beneficial in preventing 
angina and improving exercise tolerance but not the overall quality of life [75]. On the 
other hand, only a few studies have evaluated the survival benefits of chronic nitrate 
administration in different subsets, yielding substantially neutral results [76–78].

Finally, because of their intense systemic vasodilator action, the use of nitrates may exac-
erbate various adverse effects, including headache, flushing, and hypotension, while they are 
not indicated in patients with intraventricular obstruction, severe aortic or mitral stenosis, 
and constrictive pericarditis, and they should be used with caution in concomitance with 
other vasodilators [71]. Another limitation for the use of nitrates is the risk of tolerance, with 
a reduction in their anti-ischemic efficacy [79], so that nitrate-free or low-nitrate intervals are 
suggested in patients on chronic therapy (CoR IIa, LoE B) [52]. Although the underlying 
mechanisms are still to be completely clarified, oxidative stress may contribute [79], while 
the use of alternative molecules may overcome such problem [80].

3.1.2	� Nicorandil
Nicorandil is a nicotinamide-nitrate ester holding anti-ischemic properties related to its 
NO-donor capacity and to a direct stimulation of adenosine triphosphate-sensitive K+ 
channels on arterial walls, together leading to vasodilatation, but also to possible metabolic 
effects [81–83]. Moreover, nicorandil may be effective in alleviating vasospasm [84], and 
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growing evidence sustains a possible role also in the context of microvascular dysfunction, 
even though further research seems necessary to confirm such assumption and to clarify 
the biological mechanisms involved [85, 86].

The use of nicorandil in patients with stable angina has been evaluated in various RCTs, 
demonstrating good efficacy [20, 52]. Most notably, among 5126 patients with stable 
angina, nicorandil, compared to placebo, significantly reduced a composite endpoint of 
cardiovascular events, but not cardiac death or nonfatal myocardial infarction [87]. 
Therefore, it is considered a second-line treatment to reduce angina frequency and improve 
exercise tolerance (CoR IIa, LoE B) [52].

Despite the similar mechanisms of action, the use of nicorandil is associated with a 
lower risk of tolerance than nitrates, whereas nausea, vomiting, mucosal ulcerations, and, 
most importantly, headache are potential adverse effects, which could affect therapeutic 
adherence [52, 87].

3.1.3	� Dihydropyridine Calcium Channel Blockers
CCBs are a heterogenous class of drugs, characterized by the inhibition of high-voltage-
activated L-type Ca2+ channels on vascular smooth muscle cells and cardiomyocytes [88]. 
DHP CCBs (e.g., amlodipine, nicardipine, nifedipine) act more specifically on vascular 
channels, causing an intense coronary and systemic vasodilation, while they do not act on 
cardiomyocytes [89].

Beyond vasodilatation, DHP CCBs reduce myocardial oxygen demand by lowering 
systemic blood pressure (i.e., cardiac post-load) [88, 90] and are effective also in the case 
of vasospastic [91] and microvascular angina [92, 93], whereas the reflex increase in heart 
rate could be blunted by the use of BBs, further improving their anti-ischemic efficacy 
(CoR IIa, LoE B) [52, 94, 95]. In patients with stable angina, the use of nifedipine was 
associated with a reduced need for coronary angiography and intervention, despite no dif-
ference in cardiac death or myocardial infarction [96], while the use of amlodipine reduced 
the risk of adverse cardiovascular events and of atherosclerosis progression [97].

Although headache, ankle swelling, and hypotension represent possible side effects 
[89], DHP CCBs are usually well tolerated and represent first-line antianginal therapies 
(CoR I, LoE A) [52].

3.2	� Drugs Reducing Myocardial Oxygen Consumption

3.2.1	� Non-dihydropyridine Calcium Channel Blockers
Differently from DHP CCB, diltiazem and verapamil (i.e., non-DHP CCB) show a higher 
selectivity for myocardial than for vascular Ca2+ channels, and their anti-ischemic efficacy 
mostly relies upon the reduction of myocardial oxygen demand secondary to a negative 
inotropic and heart rate-dependent chronotropic effects [88, 89, 98]. The use of these 
drugs is therefore recommended to control heart rate and symptoms in patients with stable 
effort angina (CoR I, LoE A) [1], while they are routinely used also in patients with vaso-
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spastic angina [99] and may be effective in the case of microvascular dysfunction [100], 
where ongoing studies (e.g., NCT04777045) are expected to confirm such findings.

Although generally safe, RCTs failed to show any survival benefit with the use of diltia-
zem [101], while verapamil was shown to reduce adverse events only in patients after 
myocardial infarction and without heart failure [102]. Moreover, they share similar side 
effects with DHP CCBs, and they should be used with caution in patients at risk of sinus 
bradycardia or atrioventricular blocks and in those with systolic dysfunction [52, 88, 89].

3.2.2	� Beta-Blockers
BBs are very effective antianginal therapies, as demonstrated by the high rate of patients 
free from anginal events after optimization of medical therapy in both the COURAGE 
(87% receiving BBs) [103] and the ORBITA (77% receiving BBs) [104] trials, and thus 
represent a first-line treatment to control heart rate and symptoms in patients with stable 
effort angina (CoR I, LoE A) [1].

Similarly to non-DHP CCBs, BBs’ antianginal action mainly relies on the reduction of 
myocardial oxygen demand [19]. Their primary action is to decrease heart rate and thus to 
increase diastolic duration and coronary perfusion, in particular blood flow per heartbeat 
[105]. Although BBs have negative inotropic effects (less than non-DHP CCBs), by 
decreasing oxygen consumption in the healthy myocardium, they may increase perfusion 
to the post-stenotic myocardium and also its regional contractility [106, 107], but only if 
heart rate reduction is achieved [51]. However, they may also favor coronary vasoconstric-
tion by blocking β2-adrenergic receptors, so β1-selective compounds, or BBs with vasodi-
latation capability, such as carvedilol—an α-β-blocker [108] [109]—or nebivolol, through 
NO release [110], are usually preferred in the treatment of CCS, unless a vasospastic 
component is hypothesized. In that case, BBs should be used with caution (i.e., low dose 
or adding a vasodilator) or avoided, similarly to other conditions such as asthma, baseline 
bradycardia, or evidence of atrioventricular conduction abnormalities.

Although several studies have investigated the prognostic effects of BBs, according to 
the main RCTs and meta-analyses [111], this seems limited to patients receiving BBs early 
after myocardial infarction [112] or with left ventricular systolic dysfunction [113].

3.2.3	� Ivabradine
As non-DHP CCBs and BBs, also ivabradine’s antianginal capacity derives from a reduc-
tion of heart rate. This is obtained through a selective inhibition of the If (or “funny,” 
inward Na+-K+) current of the sinoatrial node [114, 115], which has a key role in the gen-
eration of spontaneous depolarization of pacemaker cells and in mediating the autonomic 
control of heart rate [116]. By inhibiting If current, ivabradine causes a decrease in the 
slope of depolarization, lowering heart rate [105] and promoting a proportionate improve-
ment in ischemic regional blood flow and contractile function [117].

The risk of bradycardia with ivabradine is low, since its effect is heart rate dependent by 
acting on open channels [118]. Furthermore, ivabradine does not affect myocardial work or 
vascular tone, favoring its use when such effects would be undesirable (i.e., patients with 
hypotension) [119].

A. Giannoni et al.



353

Despite those premises, the increased risk of cardiovascular death and nonfatal myocar-
dial infarction observed in patients with CCS treated with ivabradine in the SIGNIFY trial 
[120] raised some concerns, which could have been at least partially explained by the 
concomitant use of non-DHP CCBs (which may inhibit the ivabradine-metabolizing cyto-
chrome p450, i.e., CYP3A4) causing bradycardia in a relevant proportion of patients. 
Hence, this association should be avoided. On the contrary, no safety concerns were 
observed when administering ivabradine with BBs, in the BEAUTIFUL trial, in which 
ivabradine was however shown not to improve outcome in patients with CCS and left 
ventricular systolic dysfunction [121], apart from decreasing the risk of hospitalization for 
myocardial infarction or coronary revascularization in patients with a heart rate ≥70 bpm.

Of note, ivabradine may also be useful in improving symptoms in patients with micro-
vascular dysfunction [122], even though future studies should confirm such findings. 
Finally, outside the CCS scenario, ivabradine was found to decrease the combined out-
come of cardiovascular mortality and hospitalization (mainly driven by reduced hospital-
izations for worsening heart failure) in patients with heart failure and reduced ejection 
fraction (89% on BBs) [123].

3.3	� Myocyte Metabolism Modulators

3.3.1	� Trimetazidine
Trimetazidine increases cellular tolerance to ischemia by decreasing fatty acid metabolism 
through the inhibition of 3-ketoacyl CoA thiolase, shifting myocardial metabolism toward 
pyruvate oxidation [56, 61]. Trimetazidine also stimulates glucose metabolism and insulin 
sensitivity [124].

The antianginal/anti-ischemic effects of trimetazidine are similar to those obtained 
with BBs or CCBs [125]. Of note, the absence of relevant hemodynamic consequences 
[126] prompts the use of this molecule as a second-line treatment in patients that do not 
tolerate, have contraindications to, or whose symptoms are not adequately controlled by 
BBs, CCBs, and long-acting nitrates (CoR IIa, LoE B) [1]. When used in combination 
with metoprolol, trimetazidine was shown to decrease angina and increase exercise dura-
tion and time to ST-segment depression compared to metoprolol alone in 426 patients with 
stable, effort-induced angina and documented CAD (TRIMPOL II trial) [127]. Similar 
findings were obtained adding trimetazidine to atenolol in the VASCO trial [128] or to 
diltiazem [129]. The overall beneficial effect of trimetazidine on anginal attacks, daily use 
of nitrates, exercise duration, and time to ST-segment depression has been confirmed also 
in three meta-analyses [130–132]. Trimetazidine prolonged exercise time and time to ST 
depression also in patients with microvascular angina in a small placebo-controlled RCT 
[133]. On the contrary, ranolazine seems ineffective on major cardiovascular adverse 
events or angina recurrence in patients who have undergone successful percutaneous 
coronary intervention from the ATPCI trial (n = 6007) [134]. Trimetazidine remains con-
traindicated in Parkinson’s disease and motion disorders, such as tremor (shaking), muscle 
rigidity, walking disorders, and restless leg syndrome [1].
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3.3.2	� Ranolazine
Ranolazine, similarly to trimetazidine, is a metabolic antianginal agent, which inhibits 
fatty acid oxidation in the mitochondria and favors glucose metabolism [135]. Its main 
mechanism of action is however to increase myocardial relaxation by reducing Ca2+ over-
load caused by inhibition of late Na+ currents [136]. Like trimetazidine, also ranolazine 
does not affect heart rate or blood pressure and therefore may be used in patients with 
hypotension or bradycardia [137, 138].

The antianginal properties of ranolazine have been evaluated in several RCTs. In 
patients with CCS, the use of ranolazine was associated with fewer angina episodes and 
longer exercise duration compared to placebo [138], in both patients without other anti-
anginal therapies or already on standard treatment [139–141]. Ranolazine was shown to 
improve angina and use of nitrate in patients with diabetes compared to placebo [142], but 
did not reduce angina, need for repeated revascularization, or angina-related hospitaliza-
tions in patients with incomplete revascularization: a high nonadherence to the drug may 
partly explain such findings [143]. Likewise, ranolazine seems ineffective in patients with 
microvascular disease [144]. An exception seems to be represented by women with micro-
vascular angina, in whom ranolazine was shown to improve angina and myocardial isch-
emia, albeit only in those with reduced coronary flow reserve [145]. Ranolazine seems to 
be also not beneficial in patients with acute coronary syndrome as shown in the MERLIN-
TIMI trial [146], even though a possible antiarrhythmic effect has been observed in this 
scenario [147].

In 2017, a Cochrane systematic review and meta-analysis on the use of ranolazine in 
patients with CCS has been published, highlighting the positive effect of ranolazine on 
angina (moderate quality of data), some evidence of increased risk of nonserious side 
effects (low quality of data), and an uncertain effect on both overall and cardiovascular 
mortality (low quality of data) [148].

Side effects of ranolazine, such as dizziness, nausea, and constipation, are dose depen-
dent [149]. The inhibition of late sodium currents, together with its effect on delayed recti-
fier potassium currents, also causes prolongation of QT interval [149], and thus ranolazine 
should be avoided in patients with long QT interval or already taking QT-prolonging 
drugs. However, no significant increase in life-threatening arrythmias has been noticed in 
multiple safety studies [150].

4	� Novel Perspectives from Animal Models and Human Studies

Therapeutic efficacy, safety profile, and cost-effectiveness are essential factors to be con-
sidered when designing a novel drug [151]. Standing this premise, several anti-ischemic 
compounds are on the pipeline. Novel vasodilators, metabolic modulators, as well as 
angiogenetic factors and cell therapies represent possible opportunities, especially for 
patients with refractory angina (Fig. 3).
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Fig. 3  Novel antianginal targets and drugs. CPT1i inhibitor of carnitine palmitoyltransferase I; 
FGF fibroblast growth factor; MCDi inhibitor of malonyl-CoA decarboxylase; PDE3i inhibitor of 
phosphodiesterase 3; RANKL-i inhibitor of the receptor activator of nuclear factor kappa-Β ligand; 
RCTs randomized controlled trials; SGLT2i inhibitor of sodium glucose transporter 2; VEGF vascu-
lar endothelial growth factor

4.1	� Novel Compounds with Vasodilatory Effects

The small guanosine triphosphatase RhoA and its downstream effector Rho-kinase are 
involved in the regulation of vascular contractility, leading through inhibition myosin 
light-chain phosphatase to Ca2+ sensitization in response to vasoconstrictor stimuli [152]. 
Fasudil, a Rho-kinase inhibitor approved in Japan for the prevention of cerebral artery 
vasospasm in the setting of subarachnoid hemorrhage [153], has been tested in animal 
studies and in small trials in patients with microvascular spasm [154] and in patients with 
stable angina [155]. While fasudil intracoronary infusion was shown to prevent Ach-
mediated vasoconstriction [153], fasudil oral administration only increased time to ST 
depression and had no effect on symptoms in humans [155]. To date, no Rho-kinase 
inhibitor has been approved for the treatment of vasospastic angina, and more clinical 
evidence is needed.

A selective phosphodiesterase-3-inhibitor, cilostazol, has also been shown to be effica-
cious in vasospastic angina in small clinical trials [156, 157], although its mechanism of 
action remains to be elucidated. In 49 patients with vasospastic angina, cilostazol decreased 
weakly angina episodes, proportion of angina-free period of angina severity compared to 
placebo, at the cost of increased rate of headache [157]. Still, its efficacy, dosage, and 
safety should be confirmed in larger RCTs.
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4.2	� Novel Modulators of Myocardial Metabolism

Since alterations in myocardial substrate preference contribute to energetic inefficiency, 
contractile dysfunction, and severity of ischemia, novel drugs inhibiting fatty acid oxida-
tion or increasing the coupling of glycolysis to glucose oxidation represent promising 
approaches in CCS [158].

Decreasing myocardial fatty acid uptake may be obtained by acting on CD-36 (a sarco-
lemmal transporter responsible for up to 50% of cardiac fatty acid uptake) [159], and 
sulfo-N-succinimidyl-oleate was shown to inhibit fatty acid uptake in vitro in various cell 
lines including cardiomyocytes [160]. Interestingly, its infusion increased the glycolytic 
rate by 46% and pyruvate-dehydrogenase activity by 53%, while it decreased lactate efflux 
rate by 56% in the hearts of diabetic rats during hypoxia, compared with untreated rats, 
preventing cardiac dysfunction in hypoxic conditions. Although promising, whether this 
compound might be beneficial in CCS is still to be demonstrated.

The rate of cardiac fatty acid oxidation is regulated by the activity of carnitine palmitoyl-
transferase-I. While the use of direct inhibitors (e.g., etomoxir, perhexiline, oxfenicine, 
teglicar) may be burdened by hepatotoxic and cardiotoxic effects due to unspecific mito-
chondrial effects [161], an indirect inhibition of this pathway by malonyl-CoA may be a 
promising approach. CBM-301106 inhibits malonyl-CoA decarboxylase, which catalyzes 
degradation of malonyl-CoA converting it to acetyl-CoA and thus decreases long-chain 
fatty acid metabolism [161]. This molecule reduced fatty acid oxidation and lactate pro-
duction during demand-induced ischemia in various rat and pig models of ischemic heart 
disease [162–164], but it has to be tested in humans.

The role of ketones in cardiac energetics may be important in the condition of limited 
energy supply, as in the case of the failing heart [165]. Whether ketone metabolism may 
be a “super-fuel,” increasing cardiac efficiency or changing fatty acid oxidation or glucose 
metabolism, is still debated [166, 167]. In this respect, the positive effects of Na+-glucose-
cotransporter-2-inhibitors (SGLT2-i) on cardiovascular outcomes in diabetic patients and 
in those with heart failure could be partially ascribed to an increased cardiac consumption 
of ketone bodies [168, 169]. However, the increase in ketone bodies following administra-
tion of SGLT2-i is usually mild and higher during fasting (i.e., at night) [169]. Therefore, 
it is currently unknown whether this may be sufficient to change myocardial metabolism 
(especially during daily activity), so as to have favorable effects on patients with CCS. Of 
note, empagliflozin has been recently shown to decrease contractile dysfunction and 
arrhythmias following ischemia in Langendorff-perfused rabbit heart [170], but the effects 
on ketone bodies were not assessed. This topic should be then addressed by dedicated 
studies.
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4.3	� Angiogenetic Factors

Vascular endothelial growth factors (VEGF) and fibroblast growth factors (FGF) have 
been tested in a few studies mainly in the setting of refractory angina [171], starting from 
the pioneering works in rabbit with hindlimb ischemia by Takeshita [172] and in humans 
by the group of Isner [173]. However, in the setting of RCTs, the percutaneous intracoro-
nary administration or epicardial injection of VEGF (during bypass surgery) via naked 
plasmid or adenoviral vectors failed to deliver significant clinical effects, although no 
significant long-term side effect was observed [174].

On the other hand, intracoronary adenoviral mediated FGF-4 delivery improved exer-
cise time in postmenopausal women as shown in a pooled analysis of the AGENT-3 and 
AGENT-4 trials [171]. The results of two similar trials, the Russian ASPIRE trial 
(NCT01550614) [174] based on intracoronary administration of Ad5FGF-4 (open-label 
design, no placebo, completed in 2016) and the AWARE trial [174] based on intracoronary 
administration of AdFGF-4 only in women with stable angina, have never been published.

Finally, intramyocardial adenoviral delivery of VEGF-D showed promising results in 
the KAT301 (phase I–IIa, n = 60) trial [175], where VEGF-D administration was associ-
ated with a significant improvement of myocardial perfusion reserve, reduction of angina, 
and improvement of quality of life, differently from placebo, especially in patients with 
high lipoprotein (a) levels. A larger phase IIb multicentric trial on VEFG-D is currently 
ongoing [171].

4.4	� Cell Therapy

Similarly to angiogenetic factors, cell therapy has also been tested in refractory angina 
[171], but also in myocardial infarction and heart failure [176]. Although bone marrow-
derived progenitors do not transform into myocytes, they may exert paracrine effects. 
Different pro-angiogenic cells were administered in an autologous setting, including 
unfractionated bone marrow-derived mononuclear cells, selected endothelial progenitors 
(i.e., CD34+ and CD133+ cells), or mesenchymal stem [177].

In the ACT34-CMI placebo-controlled trial (n = 167), patients with refractory angina 
receiving intramyocardial injection of CD34+ stem cells showed improved exercise toler-
ance (p = 0.01) and angina frequency (p = 0.02), also after a 2-year follow-up, where a 
trend of reduction in major events was observed as well [178]. Conversely, the RENEW 
trial was prematurely terminated by the sponsor for strategic consideration after enrolling 
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only 112 of the 444 patients originally planned, showing a borderline reduction (p = 0.05) 
in angina frequency and only a trend toward an increase in exercise time at 3 months 
(p = 0.06), lost at 6 and 12 months. In a meta-analysis [179] including 3 phase II trials and 
269 patients, intramyocardial therapy with CD34+ stem cells was superior to placebo in 
improving angina frequency, increasing exercise time, and decreasing mortality, without 
significant adverse events, thus supporting future larger trials in refractory angina patients.

5	� Conclusions

Various anti-ischemic medications are currently available and extensively used in the rou-
tine clinical practice. Although their prognostic benefits are poor or scarcely investigated, 
they seem to be equally effective in relieving angina and improving quality of life. 
However, considering the multifactorial pathophysiology of myocardial ischemia and the 
heterogeneity of patients with CCS, a more rational patient-tailored use of anti-ischemic 
drugs may yield further benefits. Finally, various promising molecules are emerging from 
exploratory animal and preliminary clinical studies and may prove their value in the 
next future.
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