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1  Introduction

The execution and interpretation of CCT by highly experienced specialists allow to under-
stand in depth the normal and pathological cardiac anatomy: the normal coronary tree 
(Fig. 1) and CAD; the morphological and functional characteristics of the cardiac cham-
bers and valves; congenital anomalies; and the characteristic appearance of the heart 
linked to aging or pathogens.

Particular attention must be paid to the knowledge of the technical and technological 
part, which is an indispensable requirement in order to obtain sophisticated diagnoses. The 
planning of the acquisition phases without and with contrast medium, the use of three- 
dimensional cardiac-specific interpretation software, and the ability to identify and over-
come image artifacts in the available image dataset [1, 2] provide the basis of the training 
process currently recommended to achieve the appropriate proficiency [3].

a b c

Fig. 1 Coronary CT angiography curved multiplanar reconstruction of the left anterior descending 
artery (LAD) showing a critical >70% luminal narrowing at the proximal segment due to a mixed 
plaque with spotty calcium (a). CT angiography dual-energy iodine color map in short-axis view 
showing the myocardial perfusion defect at the anteroseptal and anterior wall. Note the reduction of 
iodine content (iodine density: −0.9 mg/mL, −26%) with respect to the remote myocardium (b), 
Complete view on the heart (c)
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2  Coronary Anatomy Segmentation

The AHA recommended a schematic coronary tree segmentation classification that can be 
used to create a schematic CCT scoring system similarly to that used in conventional coro-
nary angiography [4]. The coronary tree should be initially examined for the course and 
branching of the main coronary vessels and secondary branches following the 15- or 
16-segment pattern.

The SCCT guidelines recommend an axial model of coronary segmentation, adapted 
for CCT [3]. This pattern varies from standard AHA segmentation in the following ways: 
an intermediate branch has been added as segment 17, and a left posterolateral branch is 
identified as segment 18.

Attention should initially be focused on the axial plane on the aortic root to confirm the 
normal origin of the coronaries. Any anomalies of origin and course and the relationship 
with surrounding structures such as the heart chambers, the aorta, the pulmonary artery, 
the cardiac veins, and the interventricular septum may require the use of evaluation plans 
other than the axial plane up to the need for unusual planes generated by the stretched 
centerline of the vessels.

3  Congenital Coronary Artery Anomalies

Coronary CT is considered an important and appropriate imaging modality for the evalu-
ation of adult congenital heart disease, particularly of the coronary arteries. Congenital 
coronary anomalies are of great importance in clinical cardiology and cardiac surgery due 
to their association with myocardial ischemia and sudden death. These anomalies are 
detectable noninvasively by CCT and, according to various definitions, their prevalence 
ranges from 0.21% to 5.79%. The most commonly used classification is based solely on 
anatomical considerations [5, 6]. The working group of Anatomy and Pathology of the 
European Society of Cardiology has published a position statement (2016) in order to 
provide a classification linked to the mechanisms of coronary embryonic development and 
to congenital coronary anomalies [7].

The high spatial resolution of CCT allows us to evaluate the intrinsic mechanisms of 
the coronary artery anomalies generating dysfunction (stenosis) and clinical or prognostic 
relevance.
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The correct knowledge of the normal coronary origin and course and the coronary 
anomalies related to ischemia represents a key role in the operative planning, and highly 
detailed anatomical images are crucial to define the surgical indication. Consequently, 
CCT allows us to verify the surgical result by highlighting all anatomical details of the 
surgical techniques employed [8].

Angelini P. (2019) pointed out that among all coronary anomalies, the intramural course 
of an anomalous coronary artery from the opposite sinus of Valsalva (ACAOS-IM) can 
cause coronary insufficiency (i.e., myocardial ischemia) in young adults involved in stren-
uous exertion [9].

The main cause of ischemia in these patients is generally the narrowing of the initial 
segment of the coronary artery as it enters or exits the aortic wall, at an intramural course 
by compression in between the inner and outer layers of the aortic tunica media [10, 11]. 
This morphologic variation during the cardiac cycle of the coronary morphology at the 
level of the intramural course is usually seen by IVUS, but nowadays a retrospective CCT 
acquisition permits a noninvasive evaluation of systolic to diastolic variations in terms of 
both morphology and degree of stenosis (Fig. 2).

In recent years, CCT has also acquired a role of increasing importance in the diagnosis 
and preoperative planning of congenital heart defects [12], allowing the study of the coro-
nary tree together with structural abnormalities. In adult GUCH undergoing multiple surgi-
cal procedures during their life, the role of CCT becomes crucial in defining the relationship 
between cardiac structures, the coronary distribution, and the anterior chest wall in order to 
plan the surgical approach and avoid complications. In this scenario, the development of 
tenacious cardio-sternal adhesions represents an element of considerable bleeding risk dur-
ing the chest reopening phase. Therefore, CCT imaging becomes a fundamental aid in guid-
ing the reopening procedure allowing the adoption of the strategy with less surgical risk [13].

a c e f

b d

Fig. 2 Anomalous origin of the right coronary artery (RCA) from the left sinus of Valsalva with 
interarterial course and “slit-like ostium” (a) showing oval shape during diastole (b) and compres-
sion during systole (d). Hybrid SPECT/CCT volume rendering (e) and bull’s eye (c) showing the 
segmental ischemia and its relationship with the anomalous coronary origin. The conventional angi-
ography (f) confirms the “slit-like ostium”
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Another field of application is represented by the group of congenital anomalies concern-
ing systemic and pulmonary venous returns. In particular, for the correct preoperative diag-
nostic definition of partial and total anomalous pulmonary venous connections, 
echocardiography is often insufficient to guide surgical planning, and a second-level imag-
ing examination such as CCT becomes essential. Especially in the total and mixed forms of 
anomalous pulmonary venous connection, the questions that CCT must answer are the 
anatomy of the vein confluence and the course and draining site of the venous collector [14].

The choice of the best surgical technique is the consequence of a perfect and exhaustive 
preoperative anatomical definition.

4  Coronary Atherosclerosis

The SCCT recommends performing preliminary non-contrast CT examination for coro-
nary artery and other cardiac structural calcifications [3, 15].

Calcified lesions are usually quantified using the “Agatston score” [16, 17].
The SCCT and the STR have produced a consensus document regarding the prognostic 

value of CACS [18] because the coronary calcium quantification has been shown to be the 
best predictor of future cardiovascular events in the general population, in the elderly, and 
in the diabetics.

After intravenous injection of contrast agent, CCT can visualize the coronary artery 
lumen and the lesions involved in the stenosis [19, 20].

Atherosclerotic lesions should be considered in relationship to their segmental position 
to determine the overall myocardium risk [21, 22]. The impact of luminal plaque should 
be evaluated in terms of resultant maximal diameter stenosis [3]. CCT can visualize the 
coronary wall alterations related to CAD and plaque remodeling, and it can differentiate 
the calcified and noncalcified components of the plaque (mixed) [18].

Maurovich-Horvat et  al. [23] proposed a qualitative assessment of plaque features 
related to histopathologic findings. Plaque attenuation pattern-based classification has 
been proposed distinguishing noncalcified plaque with or without “napkin-ring” sign.

SCOT-Heart Study [22] assessed the association between coronary plaque features and 
clinical outcome defining four types of adverse plaque: positive remodeling, low- attenuation 
plaque, spotty calcification, and “napkin-ring” sign. These specific plaque features are 
detectable and should be annotated because of their prognostic significance [24, 25].

The qualitative and quantitative grading of the coronary stenosis severity and the plaque 
features along the vessel are the main information to be reported [26, 27]. The SCOT- 
Heart study modified SCCT Guidelines stenosis grading defining as normal coronary seg-
ment with or without nonobstructive plaque; moreover, obstructive disease was defined as 
>70% stenosis in one or more epicardial vessels or 50% stenosis in the LM.

On the basis of clinical trials [21, 22], the SCCT, the ACR, and the NASCI have evaluated 
the clinical utility and the relevance of CCT findings in the context of suspected stable CAD 
and in patients with acute chest pain. In order to describe a standardized reporting system for 
patients undergoing CCT, CAD-RADS (Coronary Artery Disease Reporting and Data 
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System) was proposed with the aim to improve the communication between interpreting and 
referring physicians, facilitate research, and offer mechanisms to contribute to peer review 
and quality assurance, ultimately resulting in improvements to the quality of care [28].

The current European Guidelines advocate the use of CCT in patients with suspected CAD 
with a Class I recommendation (Level of Evidence B) due to its diagnostic and prognostic 
performance [29]. CCT is considered a first-line tool for all patients presenting with chest pain 
of suspected cardiac origin and the most cost-effective imaging-based strategy [30].

From the 64-slice CCT systems which have a temporal resolution of 175 ms, nowadays 
the temporal resolution has increased up to 66 ms; the spatial resolution reaches isotropic 
dimensions of ~0.2–0.3 mm, which allow a good assessment of significant coronary artery 
stenosis and plaque characterization [31].

The last-generation CCT scanners allow a spatial resolution of up to 0.1 mm combined 
with photon counting technology [32].

A strength of CCT is the exclusion of the presence of CAD or the identification of 
patients with nonobstructive CAD, in order to restratify the clinical risk stratification (an 
intermediate risk of hard events and may represent the target population) [33, 34].

The prognosis related to CAD is related to the presence, extent, and severity of the 
lesions. The anatomical coronary evaluation can nowadays be supported by myocardial 
CT perfusion, FFR-CT, and high-risk plaque feature quantification in order to refine and 
improve risk assessment for future cardiac events [35–38].

5  CCT Prognostic Value

Several longitudinal studies demonstrated that CCT holds important prognostic value in 
both patients with known and suspected CAD [39–44].

In a meta-analysis including 29,243 patients (median follow-up of 25 months), adverse 
cardiovascular events among patients with normal findings on CCT were demonstrated to 
be rare (annual MACE rate of 0.21%) [45].

Nonobstructive (<50% stenosis) or obstructive (≥50% stenosis) CAD was demon-
strated to predict increasing future MACE (annualized event rates of 1.24–6.21%, respec-
tively, p < 0.05) [45]. Most of the key answers on the prognostic utility of CCT are derived 
from the CONFIRM registry that includes more than 32,000 consecutive adults with sus-
pected CAD who underwent ≥64-slice CCT at 12 centers in 6 countries between 2005 and 
2009, investigating the link between cardiovascular risk factors, symptoms, coronary ath-
erosclerotic plaque burden, and outcome. Some studies from this registry have demon-
strated that the presence, extent, and severity of CAD on CCT result in increased future 
risk to the patient, across age, gender, and other several clinical sub-analyses [46–48].

A very low annual event rate for those with normal CCT findings has been consistently 
demonstrated, which is comparable to the background event rate among healthy low-risk 
individuals (<1%). In risk-adjusted analysis, both per-patient nonobstructive (hazard ratio 
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[HR]: 1.60; 95% confidence interval [CI]: 1.18–2.16; p = 0.002) and obstructive (>50% ste-
nosis) (HR: 2.60; 95% CI: 1.94–3.49; p < 0.0001) CAD conferred increased risk of mortality 
compared with patients without evidence of CAD [46]. The clinical importance of nonob-
structive CAD and its strong relationship with all-cause mortality were evidenced. Moreover, 
the total coronary plaque burden has emerged as an important predictor of outcomes (Fig. 3).

The CT screening can be used cost effectively to reduce morbidity and mortality from 
CHD in symptomatic patients [47].

Moreover, as the definition of clinically significant atherosclerosis includes asymptom-
atic disease, the identification of individuals at risk requires a screening strategy and CCT 
seems to express adequate characteristics to be used for this purpose in this area also in 
order to evaluate the drug therapy efficacy (Fig. 4) [48].

Fig. 3 Example of 
semiautomatic coronary 
plaque burden 
quantification

a b

Fig. 4 Proximal right coronary artery mixed heterogeneous plaque with positive remodeling at 
baseline (a) and calcification after 7 years of statin and acetylic salicylic acid (ASA) treatment (b). 
(☆: coronary lumen)
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6  CCT Plaque Characterization

Some features of the coronary plaque seen at CCT have been demonstrated to be corre-
lated with the risk of rupture and subsequent risk of ACS [35]. These high-risk features 
include the low-attenuation plaque, positive remodeling, spotty calcification, “napkin- 
ring” sign, and dishomogeneity of the plaque components [35–51].

Low-attenuation plaque features (<60 HU) and “napkin-ring” sign were the most pow-
erful MACE predictors (HR 4.96; 95% CI: 2.0–12.2 and HR 3.85; 95% CI: 1.7–8.6; 
p < 0.0001) in a study by Feuchtner et al. (mean follow-up of 7.8 years) [52].

Adverse features such as positive remodeling, low-attenuation plaque, or “napkin ring” 
were demonstrated to be associated with increased risk of death, MI, or hospitalization for 
unstable angina at 2 years (HR 2.73, 95% CI 1.89–3.93) [53].

Accordingly, the low-attenuation plaque burden (i.e., % plaque to vessel volume) was 
demonstrated to be the strongest predictor of fatal or nonfatal MI irrespective of cardiovas-
cular risk score, CACS, or coronary artery area stenosis (HR 1.60, 95% CI: 1.10–2.34 per 
doubling; p = 0.014) [54].

7  Myocardial CT Perfusion and FFR-CT

The new-generation CT scanners permit both the static (single-phase) and the dynamic 
(multiphase) myocardial CTP acquisition. The qualitative and quantitative evaluation with 
the assessment of perfusion parameters of ischemia, such as the myocardial blood flow 
and volume [55], is evaluable together with coronary anatomy evaluation. CFD algorithms 
could enable prediction of changes in coronary flow and pressure for the noninvasive 
estimation of FFR (FFR-CT) [55, 56].

The inability of the traditional ICA to assess the functional significance of coronary 
stenosis and determine the need of revascularization [52] has led to the development of 
techniques that are able to assess the functional severity of coronary stenoses. FFR was 
introduced to the clinical setting in the mid-1990s and was established as a crucial enhance-
ment to ICA for clinical decision-making in CAD [53] based on a linear relationship 
between flow and pressure. The FFR was initially presented as a pressure-derived assess-
ment index of the impairment of coronary flow due to the presence of arterial stenoses. 
When the FFR value is close to 1, a normal coronary physiology is assumed with no need 
for revascularization. The well-accepted FFR cutoff value has been set to 0.75, under 
which myocardial ischemia occurs with an overall accuracy that reaches 97% [57]. 
However, there is a so-called gray zone which ranges from 0.75 to 0.80, at which the clini-
cian has to assess every parameter in order to decide on a possible revascularization pro-
cedure. Due to the noninvasive nature of CCT, the application of CFD algorithms on 
CCT-derived 3D arterial models has received wide clinical interest regarding the noninva-
sive FFR assessment. According to this approach, hemodynamic factors such as flow and 
pressure are not known a priori, so lumped parameter models regarding the cardiac output, 
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the resistance of the coronary microcirculation, and the pressure of the systemic circula-
tion are coupled with the flow domain of the aortic root and the epicardial arteries, where 
the governing equations of flow dynamics are solved and can consequently provide FFR 
calculations. DISCOVER-FLOW, DeFACTO, and HeartFlow NXT studies compared 
their computational FFR results to the measured FFR values, producing promising results 
and making the method a valuable tool in the clinical settings [58–60].

The DISCOVER-FLOW study exhibited a good correlation between FFR-CT and FFR 
(r = 0.68) with the respective diagnostic accuracy, sensitivity, specificity, positive predic-
tive value, and negative predictive value for predicting hemodynamically significant ste-
noses (FFR ≤0.8) being 84, 88, 82, 74, and 92% [60]. Furthermore, when compared to 
cases of ≥50% stenosis detected solely by CCT, FFR-CT showed superior discrimination 
(AUC: 0.90 vs. 0.75, p = 0.001). In the DeFACTO study, stable CAD patients underwent 
CCT, FFR-CT, and invasive coronary angiography with FFR measurement [58]. The per 
patient diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative 
predictive value for predicting an FFR ≤0.8 were 73, 90, 54, 67, and 84%, respectively. 
Good correlation was also found between the two methods (r = 0.68). The most recent 
HeartFlow NXT further validated FFR-CT, by making use of updated proprietary software 
which included refined mathematical models and further increased automation, image 
quality assessment, and better image segmentation [59]. Diagnostic accuracy, sensitivity, 
specificity, positive predictive value, and negative predictive value for predicting an FFR 
≤0.8 were 81, 86, 79, 65, and 93%, respectively, on a per-patient basis and 86, 84, 86, 61, 
and 95%, respectively, on a per-vessel basis. Finally, good correlation was found between 
FFR-CT and FFR (r = 0.82). The PLATFORM study focused on the clinical outcomes of 
FFR by CCT-guided diagnostic strategies compared to the common care in CAD-suspected 
patients, providing insight on the clinical utilization of FFR-CT [61]. Following the find-
ings of the PLATFORM trial, the PROMISE study concluded that if ICA is performed 
only in patients with FFR-CT ≤0.8, then selected ICA with obstructive stenosis could 
decrease by 44% and the total number of patients with ICA requiring appropriate revascu-
larization would increase by 24% [57]. Sensitivity and specificity have been shown to vary 
through different cohorts (DISCOVER-FLOW, DeFACTO, NXT [58–60], Kim et al. [62], 
Renker et al. [63], Coenen et al. [64], Kruk et al. [65], Ko et al. [66]) due to differences in 
sample sizes and study population characteristics [67]. Nowadays, there are four 
approaches in noninvasive, in silico CCT-derived FFR estimation: full-order model com-
putations, reduced-order/steady-state modeling, hybrid models, and deep machine learn-
ing algorithms, including commercially available solutions and technologies still in 
progress [68]. These techniques are applied to a patient-specific anatomic coronary artery 
3D model, obtained via a preliminary segmentation and contouring of the vessels. The 
full-order approaches require a complete model of the entire coronary tree, and an addi-
tional physiology model of the coronary microcirculation fluid dynamics (derived from 
patient-specific boundary conditions), from which a coronary blood flow model is com-
puted. This process is computationally demanding, requiring off-site supercomputers in 
core laboratories. In order to simplify the processes, lean models have been introduced, 
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which are either segment specific and/or rely on a generalized (nonpatient-specific) hemo-
dynamic model. For these reasons, CCT together with CTP or FFR-CT potentially should 
be the method to combinedly evaluate CAD phenotype and ischemic functional signifi-
cance of the stenosis. Initial evidence on the prognostic value and improvement in risk 
stratification of CTP has been shown in the CORE-320 trial demonstrating that a com-
bined approach with coronary CCT and CTP enables similar prediction of 2-year major 
adverse cardiac events and event-free survival, when compared to invasive coronary angi-
ography and SPECT combined [55]. Moreover, stress dynamic CTP has incremental pre-
dictive value for future major adverse cardiac events over clinical risk factors and detection 
of coronary stenosis at CCT [56, 69–71]. On the other side, FFR-CT, besides an improved 
accuracy for the detection of hemodynamically relevant lesions, may have favorable clini-
cal outcomes, similar quality of life, and lower costs and radiation exposure, when com-
pared with usual care over 1-year follow-up [69, 72, 73]. However, despite efforts to create 
an artificial score similar to the useful value of FFR but through noninvasive imaging of 
the CCT to decide which stenosis should be revascularized, the inherent limitation of this 
method remains its inability to discriminate whether a stenosis is severe, that is, if it is flow 
limiting, around the value 0.8, which is exactly in the gray zone around the value of 0.8, 
which corresponds to the uncertainty value of the CCT (i.e., stenosis between 50 and 
70%). So, these models may have a clinical role as their performance improves along with 
technology. On the other hand, motion or beam hardening artifacts that may occur during 
CTP acquisition can create erroneous signals of ischemia; therefore, in the near future, the 
technology will improve its performance in this regard.

8  Dual-Energy CT and Multi-Energy CT

Rapid advances in CT hardware and software technology have occurred and have been 
applied to last-generation scanners DECT and multi-energy CT imaging [74–76].

Four different technical approaches have been used to develop DECT technology: 1) 
two X-ray tubes operating at two different energy levels (70–80–90/140–150 kVp); 2) fast 
switching of kVp between low- and high-energy spectra; 3) two temporally sequential 
scans (not applied in cardiac imaging); and 4) multilayer detector for spectral separa-
tion [74].

DECT systems allow the signal differentiation of different materials by evaluating the 
attenuation characteristics at two different energy levels of the photons.

DECT can improve the diagnostic performance of CT in myocardial perfusion and scar 
imaging by improving iodine contrast-to-noise ratio (CNR) (Fig. 5) [76].

DECT allows the quantification of iodine distribution within the myocardium 
through the direct correlation with myocardial blood flow, thus being useful for dif-
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a b

Fig. 5 Coronary CT angiography curved multiplanar reconstruction of the left anterior descending 
artery (LAD) showing a critical >70% luminal narrowing at the proximal segment due to a mixed 
plaque with spotty calcium (a). CT angiography dual-energy iodine color map in short-axis view 
showing the myocardial perfusion defect at the anteroseptal and anterior wall. Note the reduction of 
iodine content (iodine density: −0.9 mg/mL, −26%) with respect to the remote myocardium (b)

ferentiating between normal, ischemic, and necrotic myocardium providing color-
coded iodine images. In this way, a measurement of myocardial per-voxel iodine 
concentration expressed in mg/mL is provided, improving accuracy over the standard 
visual analysis.

Furthermore, DECT acquisition can reduce artifacts such as beam hardening and 
blooming artifacts usually present in single-energy CT acquisitions, without increasing 
the radiation dose [75, 76].

More recently, new energy-sensitive PCD has been developed allowing to directly 
count the number of incident photons and measure their photon energies separately. 
Multi- energy CT with PCD can provide more spectral information than DECT systems, 
but they are the subject of ongoing research and their commercialization is only now 
starting. A recent preclinical experimental model demonstrated the feasibility and accu-
racy of PCDs with respect to MRI and histology as the gold standard for quantitative 
separation of blood pool, scar, and remote myocardium using a simultaneous protocol of 
multi-contrast agents [77].
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9  Conclusions

CCT has been shown to provide diagnostic and prognostic information regarding CAD 
and ischemia. CCT, if used with the most advanced technology by expert operators, is able 
to offer at the same time the accurate anatomical evaluation of the heart and coronaries and 
the phenotype of the coronary plaque, quantify the atherosclerotic plaque burden, simulate 
the coronary flow alterations, and guide revascularization. CCT is therefore a useful tool 
to stratify the risk of CAD in the population as suggested by international guidelines and 
to study the pathophysiology of human atherosclerosis with a noninvasive method that is 
well accepted by patients. The certain exclusion of CAD, the main prerogative of CCT, 
and the characterization of the nonobstructive disease are certainly a necessary aid to 
guide preventive therapy and modify the risk of events. The evaluation of CAD using 
advanced imaging and with the help of radiomics, machine learning, and deep learning 
features [78] is being proposed as an integrated system that generates new knowledge to 
be used in the near future.
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