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Abstract. Lensless image reconstruction is an ill-posed inverse problem
in computational imaging, having several applications in machine vision.
Existing approaches rely on large datasets for learning to perform decon-
volution and are often specific to the point spread function of a particular
lensless imager. Generating pairs of lensless images and their correspond-
ing ground truths requires a specialized laboratory setup, thus making
the dataset collection procedure challenging. We propose a reconstruc-
tion method using untrained neural networks that relies on the under-
lying physics of lensless image generation. We use an encoder-decoder
network for reconstructing the lensless image for a known PSF. The
same network can predict the PSF when supplied with a single example
of input and ground-truth pair, thus acting as a one-time calibration
step for any lensless imager. We used a physics-guided consistency loss
function to optimize our model to perform reconstruction and PSF esti-
mation. Our model generates accurate non-blind reconstructions with a
PSNR of 24.55dB.

Keywords: Lensless image reconstruction - Untrained neural
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1 Introduction

Cameras have evolved into an important part of human life, acting as external
sensors for observing the physical environment. Cameras of with various func-
tional attributes are used for several purposes, ranging from macro photography
to astronomical photography. The recent advancements in technologies like com-
puter vision-based wearables, augmented reality, and microrobotics were essen-
tial factor that demanded the miniaturizing of imaging systems. The volume
and size of cameras have decreased over time for various applications, but the
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dependence on lenses prevents further reductions in size because the conven-
tional lens-based optical elements contribute to more than 90% of the volume of
the imager. Computational imaging research is attempting to eliminate the need
for lenses in the camera arrangement to drastically reduce camera size [1-4].
Removing lenses reduces the size of the camera nearly to the flat form-factor,
and various sensor shapes are possible to use.

The lensless imaging setup captures the object information by multiplexing
light rays onto the sensors, and the image is then reconstructed by solving an
inverse problem. Different optical elements are used for multiplexing, such as
diffusers, coded apertures, or diffraction gratings. Existing research in lensless
image reconstruction work has produced results comparable to lensed images
utilizing two different approaches: optimization-based and learning-based [5].
Lensless cameras have potential use-cases in 3D microscopy [6,7], monocular
depth estimation, and other such fields [8]. They are being employed for privacy-
protecting applications [9,10] because, without the knowledge of the point spread
function, the mother image can not be robustly reconstructed with the currently
available methods.

Image reconstruction using a lensless setup can be understood as the inverse
computational imaging problem. Traditionally, domain-specific recovery algo-
rithms have been utilized to create hand-crafted mathematical models that draw
conclusions from their understanding of the basic forward model related to the
measurement. These techniques often do not rely on a dataset to learn the map-
ping, and because the problem is ill-posed, the models frequently show poor
discriminative performance [11]. On the other side, deep learning-based meth-
ods provide a breakthrough compared to the hand-crafted methods to solve
the inverse computational imaging problem [12]. The most recent advancement
in Generative Adversarial Networks(GANSs) has demonstrated its capability to
recreate high-resolution pictures with lesser information from the sample data.
With hand-crafted methods, it was impossible to achieve this high compression
ratio. However, the success of the deep-learning-based approaches majorly rely
on large labelled datasets, and medical imaging and microscopic imaging are a
few of the applications in which the enriched labelled data is not available. In
contrast to the earlier training-based deep learning approaches, untrained neu-
ral networks are able to estimate the faithful reconstruction using the corrupted
measurement as an input, without having any prior exposure to the ground
truth.

Various optimization algorithms are used to solve inverse problems to recover
the original image. The alternating direction method of multipliers (ADMM)
[13], regularised L1 [14], or total variation regularisation [15] are common vari-
ations that have been modified for lensless imaging [1,2]. The main advantage
of this method is that they are data-agnostic, but there is a trade-off between
computational complexity and reconstruction quality. The deep-learning based
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ResNet architecture is utilized with raw sensor measurements to create the
image [16]. However, the reconstruction of the image is only possible if the
acquired image was taken up close since this makes it easier to project high-
intensity features onto the sensor. In continuation, deep learning for lensless
optics has been coupled with spatial light modulators, scattering media [17], and
glass diffusers [18] to produce reconstructions. With the use of lensless images
and object-detectors based on Convolutional Neural Networks, FlatCam [19]
was able to recognize faces using deep learning. Khan et al. [20] proposed that
Flatcam reconstruction was performed using GANs without the need for a point-
spread PSF during testing. Another proposed method optimizes unrolled ADMM
using a learnable parameter that could be integrated with U-Net and tested on
diffuser images [21]. The existing work either relies on the large labelled dataset
to perform the reconstruction task or the iterative optimization method which
is computationally complex. In this paper, we reconstruct lensless images with
untrained neural networks. No training data is used in the reconstruction process
that is guided by a physics-informed consistency loss. We verified our approach
with images captured using multiple random-diffusers, each with a unique ran-
dom point spread function. We performed a detailed performance evaluation of
our method against the traditional optimization-based and deep-learning-based
methods with evaluation metrics like Peak Signal-to-Noise Ratio (PSNR) and
Structural SIMilarity index (SSIM). We have also provided visual comparison
results that indicate our method was able to outperform the existing methods
in the majority of test cases.
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Fig. 1. A typical pipeline for solving inverse problems in computational imaging. The
forward model A generates the measurement. The reconstruction algorithm could
require priors about the target image, the forward measurement procedure, etc. to
reconstruct the estimate .

2 Theoretical Basis

Lensless image reconstruction is a classic example of an inverse problem in com-
putational imaging. Typically, in every inverse problem, the main task is the
reconstruction of a signal for the available observed measurement. In our case,
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the observed measurement is the lensless image captured using the bare image
sensor with a random diffuser protecting it. A general approach toward solving
an inverse problem is to formulate the forward problem as:

y = A(xo) + 1, (1)

where y is the measurement obtained via a forward operation A that signifies the
physical measurement process that acts on the input x(, and 7 represents the
noise process. In mathematical terms, the inverse problem refers to the faithful
reconstruction of the target image xq, given the available measurement y. There
are a wide variety of inverse problems such as denoising, super-resolution, phase-
retrieval, inpainting, and deconvolution that are fundamentally differentiated
by the forward operator used for generating the measurement. In this paper,
we concern ourselves with lensless image reconstruction, which is essentially a
deconvolution problem. The forward operator for a deconvolution problem is
formulated as:

A(z) = k *x x, (2)

where k is called the point spread function (PSF), and % denotes the convolution
operation. Reconstruction algorithms that utilize the prior knowledge of the PSF
that characterizes the whole lensless image formation process, are called non-
blind deconvolution techniques. Algorithms that do not require explicit knowl-
edge about the PSF are called blind deconvolution techniques, but they are
ill-posed and can result in multi-modal solutions.

Deep Learning based approaches are being extensively used for solving inverse
problems for their ability to leverage large datasets for learning a mapping from
y to x. Generative adversarial training of U-Nets has resulted in excellent lensless
image reconstruction models [22,23], especially for the non-blind deconvolution
task. However, the task-specificity of these discriminative approaches reduces the
generalizability of the model and these approaches are yet not well equipped at
handling even subtle changes in the forward measurement process. Furthermore,
the generation and recording process of datasets related to inverse problems is
often complicated. The huge computational cost involved in the retraining and
reconfiguration of learning-based methods subject to the availability of datasets
with acceptable quality is major setback that need to be addressed.

Physics-informed neural networks are being used for handling ill-posed
inverse problems due to their capability of integrating mathematical physics and
data. Incorporating the physics of operation of a particular problem simplifies the
task and helps in faster convergence of the model, and also attempts to address
the problem of big data requirements [24]. Untrained Neural Networks (UNN)
completely solve the problem of training data requirements making them perfect
for problems where paired data collection is challenging or cumbersome. An app-
roach for phase imaging using untrained neural networks has been explored by
Wang et al. [25]. There, they use an iterative approach for optimizing a physics-
enhanced deep neural network to produce the object phase. Our approach is
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Fig. 2. Experimental setup for capturing the point spread function obtained for a
random diffuser. The same setup was used for capturing lensless images corresponding
to the lensed images displayed on the monitor.

inspired by their concept of incorporating a physical model into a neural net-
work, which we use to solve the deconvolution problem in lensless computational
imaging.

In this paper, we attempt to address the inverse computational imaging prob-
lem using a UNN to get reconstruction of the lensless image. We iteratively opti-
mize our model with a physics-informed consistency loss, thereby achieving faster
convergence and better performance compared to traditional optimization-based
techniques. Our approach leverages random diffusers prepared using inexpensive
materials like bubble wraps to capture lensless images making the whole setup
compact and easily reproducible.

3 Experimental Setup

Figure 2 illustrates the experimental setup used for capturing the PSF with a
random diffuser. We used a bright light source as a point source to illuminate
the lensless camera system. We used a random diffuser, i.e., a bubble wrapping
plastic sheath, to protect the camera sensor. The resulting PSF recorded using
this setup was convolved with a lensed image to generate a lensless image. The
lensless image, thus generated, was compared with the lensless image captured
using the same setup, and we found that they were very similar. Ideally, they
should have matched to each pixel, but practically, the lensless image capturing
process introduces a slight amount of noise into the captured image.

4 Methodology

This section discusses the network architecture designed for the reconstruction
pipeline. We have not used any training dataset for reconstruction. The images
used for explaining the pipeline are obtained from the lensless image test set of
nine images captured with the DiffuserCam, provided by Monakhova et al. [21].



Lensless Image Reconstruction with an Untrained Neural Network 435

4.1 Network Architecture

For a reconstruction task, it is very common to use an encoder-decoder archi-
tecture. U-Nets are the most commonly used networks for image reconstruction
since they have skip connections that help in modelling identity transformations.
However, the lensless images are heavily multiplexed, leading to an image that
is incomprehensible to humans and that shares almost no structural attributes
with their lensed counterparts. Therefore, the presence of identity connections
need not imply a faster convergence, since an identity transformation does not
help.

We have used an encoder-decoder framework with the encoder network being
popular convolutional architectures like a ResNet or a DenseNet. The CNN archi-
tectures available off-the-shelf are truncated to exclude the fully-connected lay-
ers, such that the resulting encoder structure is fully convolutional. The structure
of the decoder network is mostly fixed with a varying number of input channels
according to the feature maps produced by the truncated encoder.

4.2 Pipeline

Figure 3 illustrates the PSF estimation and the reconstruction process. The lens-
less image reconstruction pipeline follows an untrained iterative optimization
that uses a physics-based consistency loss for optimizing the encoder-decoder
framework. In the forward path, the lensless image is set as the input to the
neural network that produces an intermediate reconstruction y. The output of
the neural network is passed through the mathematical process of lensless image
generation H, which refers to the convolution of the intermediate reconstruc-
tion with the PSF to produce an intermediate lensless image. Theoretically,
the neural network achieves perfect reconstruction if the generated intermediate
lensless image via process H is the same as the input lensless image. Therefore,
we backpropagate the Mean-Squared Error loss between the generated interme-
diate lensless image I via process H, and the original lensless image z, i.e., the
physics-based consistency loss.

The same framework can be repurposed to estimate the PSF, subject to
the condition that we already have a pair lensed-lensless pair. This is known as
the calibration step that is specific to every lensless camera system. Here, we
provide the network with the lensless image and expect the PSF as the output.
The model can be forced to predict the PSF by changing the mathematical
process H, i.e., by convolving the intermediate output with the available lensed
image corresponding to the lensless image. The remaining process of calculating
the consistency loss is the same.
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Fig. 3. The complete pipeline for lensless image reconstruction. The top section of the
image illustrates the calibration step for PSF estimation using a single pair of lensless
and ground truth images. The bottom section illustrates the iterative reconstruction
approach. It is to be noted that the same network is being utilized for calibration and
reconstruction.
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5 Results and Analysis

This section presents the results obtained using the testing set of the Diffuser-
Cam dataset [21]. The images were created with a random diffuser, making them
suitable for the evaluation of our framework. We have selected five images from
the test set to provide our results using two commonly used metrics in the image
reconstruction domain, namely, peak signal-to-noise ratio PSNR and structural
similarity index SSIM. Table 1 shows the PSNR obtained by our model corre-
sponding to different images, and Table 2 shows the SSIM results.
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Table 1. Image-specific PSNR comparison of our method with the existing popular
reconstruction methods.

PSNR

Method Flower | Face | Butterfly | Flowers | Tokens
ADMM [13]|14.40 |11.10 | 13.02 12.00 |13.36
U-Net [26] |16.57 |18.51 |14.42 17.43  ]9.83
GAN [22] 19.32 |17.48 |14.96 17.08 |11.21
Ours 24.55 | 22.95|17.72 16.59 | 13.09

Table 2. Image-specific SSIM comparison of our method with the existing popular
reconstruction methods.

SSIM

Method Flower | Face | Butterfly | Flowers | Tokens
ADMM [13] 1 0.50 0.38 | 0.44 0.39 0.55
U-Net [26] |0.62 0.61 |0.69 0.60 0.43
GAN [22] 0.67 0.73 |0.71 0.75 0.42
QOurs 0.84 |0.80/0.73 0.70 0.57

5.1 Visual Comparison

Figure4 compares the visual performance of our method against the existing
methods. Metrics like PSNR and SSIM are helpful in determining the reconstruc-
tion performance, but they often fail to match the human visual perception, as
pointed out by Rego et al. [22]. It can be evidently observed that the visual per-
formance of our model is superior to the existing methods in most scenarios. A
noteworthy observation was that ADMM performs exceptionally well compared
to the other recent models when it comes to the reconstruction of fine features,
as seen in the “Token” image. Otherwise, in most cases, it produces dark and
grainy reconstructions.

5.2 Ablation Study

We performed an ablation study of the encoder architecture to determine
the variation in reconstruction performance. We used different versions of the
DenseNet and the ResNet architectures to obtain truncated encoders correspond-
ing to each architecture. These encoders extracted the features from the lensless
image, which were decoded to form the reconstructed image. In the increasing
order of parameter count, we used DenseNet-121, DenseNet-201, ResNet-50, and
ResNet-101 for the reconstruction task. The results are displayed in Fig. 5.
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Fig. 4. A visual comparative study of our approach against the existing popular recon-
struction approaches.
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Fig.5. Ablation study of the encoder backbone used for reconstructing the Flower
image.

The results obtained by DenseNet-201 appear to be of the best visual quality,
but since there is a trade-off between the model performance and the parame-
ter size, DenseNet-121 should be declared the best performer since it achieves
a reconstruction performance comparable to the DenseNet-201 with drastically
reduced parameter size. The number of epochs for which the iterative optimiza-
tion had to be performed is plotted on the top right section of each image
in Fig. 5. The convergence was significantly faster for the DenseNet framework
compared to the ResNet framework, which might be because dense connections
strengthen feature propagation, thereby facilitating feature reuse.
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Fig. 6. Reconstructions achieved using PSF's captured by our setup.

5.3 Discussion

Lensless images captured using our own setup took less than 9000 epochs to
produce a faithful reconstruction. Figure 6 shows some of the images from the
DiffuserCam Training set that were captured using our lensless imager. The
PSF was captured using the setup shown in Fig.2. Our main observation is
that the reconstruction of finer features presents inside an image is difficult to
reconstruct with the current resolution of PSF convolution. If the PSF convo-
lution is performed at a higher resolution during the physics-based consistency
loss calculation, the network might be able to reserve the details, although the
optimization time would severely suffer.

6 Conclusion

We have achieved a faithful reconstruction of a lensless image captured using
a random diffuser without any training data. We compared the resulting
reconstructions with the existing ADMM-based, U-Net-based, and GAN-based
approaches and evaluated our performance with metrics like PSNR and SSIM.
In almost all cases, our method was able to outperform the existing methods
by a significant margin. To support our claims, we present a visual comparison
report using the lensless test images provided in the DiffuserCam dataset. The
optimization pipeline with the untrained neural networks is a general pipeline
that can be repurposed to any inverse imaging task, provided that we have the
correct physics-based consistency loss to model the system.
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