
Akash Lal
Stefano Tonetta (Eds.)

LN
CS

 1
38

00

Verified Software
Theories, Tools and Experiments
14th International Conference, VSTTE 2022
Trento, Italy, October 17–18, 2022
Revised Selected Papers

Lecture Notes in Computer Science 13800

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Akash Lal · Stefano Tonetta (Eds.)

Verified Software
Theories, Tools and Experiments

14th International Conference, VSTTE 2022
Trento, Italy, October 17–18, 2022
Revised Selected Papers

Editors
Akash Lal
Microsoft Research
Karnataka, India

Stefano Tonetta
Fondazione Bruno Kessler
Trento, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-25802-2 ISBN 978-3-031-25803-9 (eBook)
https://doi.org/10.1007/978-3-031-25803-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
Chapter “A Formal Semantics for P-Code” is licensed under the terms of the Creative CommonsAttribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/). For further details see license information
in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9091-7899
https://doi.org/10.1007/978-3-031-25803-9
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the contributed papers presented at VSTTE 2022, the 14th Work-
ing Conference on Verified Software: Theories, Tools and Experiments held on October
17–18, 2022 in Trento, Italy. The working conference was co-located with the 22nd
International Conference on Formal Methods in Computer-Aided Design (FMCAD
2022).

The Verified Software Initiative (VSI), spearheaded by Tony Hoare and Jayadev
Misra, is an ambitious research program formaking large-scale verified software a practi-
cal reality. VSTTE is themain forum for advancing the initiative. VSTTE brings together
experts spanning the spectrum of software verification in order to foster international
collaboration on the critical research challenges.

There were 20 submissions to VSTTE 2022, with authors from 14 countries. The
Program Committee consisted of 27 distinguished computer scientists from all over the
world. Each submission was reviewed by at least three Program Committee members in
a single-blind mode. In order to ensure that topic-specific expert reviews were obtained,
help was also sought from five sub-reviewers. After a comprehensive discussion on the
strengths and weaknesses of papers, the committee decided to accept nine papers. The
technical program also included two invited talks by Aws Albarghouthi (University of
Wisconsin, Madison, USA) and Cezara Dragoi (Amazon, France), as well as an invited
tutorial by Sanjit Seshia (University of California, Berkeley, USA) that was held jointly
with FMCAD 2022.

We greatly acknowledge the help of the FMCAD 2022 Organizing Committee as
well as Natarajan Shankar with all logistical matters in running VSTTE 2022. We are
also thankful to EasyChair for providing an easy and efficient mechanism for submission
of papers, management of reviews, and eventually in the generation of this volume.

December 2022 Supratik Chakraborty
Akash Lal

Stefano Tonetta

Organization

General Chair

Supratik Chakraborty IIT Bombay, India

Program Chairs

Akash Lal Microsoft Research, India
Stefano Tonetta FBK, Italy

Program Committee

Christel Baier TU Dresden, Germany
Nikolaj Bjorner Microsoft Research, USA
Roderick Bloem Graz University of Technology, Austria
Borzoo Bonakdarpour Michigan State University, USA
Supratik Chakraborty IIT Bombay, India
Chih-Hong Cheng Fraunhofer IKS, Germany
Grigory Fedyukovich Florida State University, USA
Bernd Finkbeiner CISPA Helmholtz Center for Information

Security, Germany
Carlo A. Furia Università della Svizzera Italiana, Switzerland
Rajeev Joshi AWS, USA
Zachary Kincaid Princeton University, USA
Akash Lal Microsoft Research, India
Thierry Lecomte ClearSy, France
Sergio Mover Ecole Polytechnique, France
Kartik Nagar IIT Madras, India
Aina Niemetz Stanford University, USA
Gennaro Parlato University of Molise, Italy
Kristin Yvonne Rozier Iowa State University, USA
Natarajan Shankar SRI International, USA
Stefano Tonetta FBK, Italy
Elena Troubitsyna KTH, Sweden
Hiroshi Unno University of Tsukuba, Japan
Jyothi Vedurada IIT Hyderabad, India
Yakir Vizel Technion-Israel Institute of Technology, Israel
Yuepeng Wang Simon Fraser University, Canada

viii Organization

Chao Wang University of Southern California, USA
Kirsten Winter University of Queensland, Australia

Additional Reviewers

Hsu, Tzu-Han
Larrauri, Alberto
Lee, Juneyoung
Momtaz, Anik
Passing, Noemi
Wu, Haoze

Contents

Compositional Safety LTL Synthesis . 1
Suguman Bansal, Giuseppe De Giacomo, Antonio Di Stasio, Yong Li,
Moshe Y. Vardi, and Shufang Zhu

Leroy and Blazy Were Right: Their Memory Model Soundness Proof is
Automatable . 20

Pedro Barroso, Mário Pereira, and António Ravara

Shellac: A Compiler Synthesizer for Concurrent Programs 33
Christopher K. Chen, Margo I. Seltzer, and Mark R. Greenstreet

A Sequentialization Procedure for Fault-Tolerant Protocols 52
Cezara Drǎgoi and Patricio Inzaghi Pronesti

Towards Practical Partial Order Reduction for High-Level Formalisms 72
Philipp Körner and Michael Leuschel

SMT-Based Verification of Persistency Invariants of Px86 Programs 92
Iason Marmanis and Viktor Vafeiadis

A Formal Semantics for P-Code . 111
Nico Naus, Freek Verbeek, Dale Walker, and Binoy Ravindran

Separating Separation Logic – Modular Verification of Red-Black Trees 129
Gerhard Schellhorn, Stefan Bodenmüller, Martin Bitterlich,
and Wolfgang Reif

Residual Runtime Verification via Reachability Analysis . 148
Chukri Soueidi and Yliès Falcone

Author Index . 167

Compositional Safety LTL Synthesis

Suguman Bansal1, Giuseppe De Giacomo2, Antonio Di Stasio2, Yong Li3,

Moshe Y. Vardi4, and Shufang Zhu2(B)

1 University of Pennsylvania, Philadelphia, PA, USA
2 Sapienza University of Rome, Rome, Italy

zhu@diag.uniroma1.it
3 SKLCS, Institute of Software, CAS, Beijing, China

4 Rice University, Houston, TX, USA

Abstract. Reactive synthesis holds the promise of generating automatically a
verifiably correct program from a high-level specification. A popular such spec-
ification language is Linear Temporal Logic (LTL). Unfortunately, synthesizing
programs from general LTL formulas, which relies on first constructing a game
arena and then solving the game, does not scale to large instances. The specifica-
tions from practical applications are usually large conjunctions of smaller LTL
formulas, which inspires existing compositional synthesis approaches to take
advantage of this structural information. The main challenge here is that they
solve the game only after obtaining the game arena, the most computationally
expensive part in the procedure. In this work, we propose a compositional syn-
thesis technique to tackle this difficulty by synthesizing a program for each small
conjunct separately and composing them one by one. While this approach does
not work for general LTL formulas, we show here that it does work for Safety LTL
formulas, a popular and important fragment of LTL. While we have to compose
all the programs of small conjuncts in the worst case, we can prune the inter-
mediate programs to make later compositions easier and immediately conclude
unrealizable as soon as some part of the specification is found unrealizable. By
comparing our compositional approach with a portfolio of all other approaches,
we observed that our approach was able to solve a notable number of instances
not solved by others. In particular, experiments on scalable conjunctive bench-
marks showed that our approach scale well and significantly outperform current
Safety LTL synthesis techniques. We conclude that our compositional approach
is an important contribution to the algorithmic portfolio of Safety LTL synthesis.

1 Introduction

Reactive synthesis is the automated construction, from a high-level description of its
desired behavior, of a reactive system that continuously interacts with an uncontrol-
lable external environment [7]. By describing a system in terms of what it should do,
instead of how it should do it, this declarative paradigm holds the promise of correct-by-
construction philosophy of program design [26,32]. We believe that reactive synthesis
will be a viable way to create verified software. A popular language for specifying
properties that systems should satisfy is Linear Temporal Logic (LTL) [25].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Lal and S. Tonetta (Eds.): VSTTE 2022, LNCS 13800, pp. 1–19, 2023.
https://doi.org/10.1007/978-3-031-25803-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25803-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-25803-9_1

2 S. Bansal et al.

In the last decade, there have been extensive breakthroughs in the study of LTL syn-
thesis [4,22,33]. A natural next step is to consider large scale synthesis instances. Many
practical specifications, by and large, are conjunctions of complex but smaller (shorter)
inner temporal specifications. While the development of techniques for reactive syn-
thesis for these inner formulas remains an active area of research [5,11,13,22,23], It
is fair to combat large-scale practical specifications starting with developing synthesis
algorithms for large conjunctions of (inner) temporal formulas.

Previously, large conjunctions, such as strong fairness properties, have been handled
successfully in the context of model-checking [1]. One of the cornerstones of scalable
model-checking is to represent the model by a partitioned transition relation, i.e., the
transition relation of the model is represented as a product of smaller transition rela-
tions. In model-checking, this representation has been a boon to scale to very large
systems. In reactive synthesis, however, this representation has been shown to be a bane
to scalability. More specifically, [31] attempts to solve synthesis of large conjunctions
by representing the state-space of the final game automaton as a product of the state-
space of the game automaton of every inner formula. The issue is that by doing so, the
state space of the final game may grow very large, since the algorithm loses the ability
to perform fast minimization of the game automaton [35].

On the other hand, compositional approaches have shown promise in synthesis
of large conjunctions. Theoretical compositional approaches are well known [12,19]
and implementations that handle large conjunction have been emerging [2,5,9,22]. For
example, Lisa [2] successfully scales synthesis to large conjunctions of LTL formulas
over finite traces or LTLf [17] for short. This approach has been further extended to
handle large disjunctions in Lydia [9]. Yet, a challenge in these approaches is that the
inner formulas cannot be synthesized one after another separately to generate a pro-
gram for the large conjunction [19]. This is because having correct programs for all
inner formulas does not necessarily indicate the existence of a correct program of the
large conjunction. To this end, compositional approaches have been deployed to gener-
ate the game automaton only, and not to solve the game. The game is solved only after
the generation of the complete game arena, which is the main difficulty of synthesis for
formulas with large lengths [26,34].

In this work, we tackle this difficulty by looking into specialized compositional syn-
thesis techniques for Safety LTL formulas, which is a popular and important fragment
of LTL [20,24,28]. The key observation is that, for a Safety LTL formula, instead of
utilizing its exact game arena when being conjuncted with other formulas, we only need
to approximate the partial game arena to ensure the satisfaction of it under all circum-
stances, hence reducing the state space for subsequent operations. We note that recently,
another safety fragment of LTL called extended bounded response (EBR) LTL [8] has
been shown to be expressively equivalent to Safety LTL, but differs in the syntax of
Safety LTL. The conversion from Safety LTL to EBR-LTL may incur blow-up of for-
mula lengths [8], so we only consider Safety LTL here.

The synthesis instances we consider are Safety LTL formulas given in the form of
ϕ = ϕ1∧ϕ2∧. . .∧ϕn. The Safety LTL fragment and the conjunctive instances together
form a special structure, which naturally enables us to develop a more advanced compo-
sitional synthesis approach. Indeed, our compositional synthesis technique can apply at

Compositional Safety LTL Synthesis 3

two decomposition levels. To begin with, the specification-level decomposition breaks
ϕ into the set of conjuncts {ϕ1, ϕ2, . . . , ϕn} and constructs the deterministic safety
automaton (DSA) of each conjunct ϕi, 1 � i � n. Meanwhile, inspired by [33], we
observe that one can directly consider the negation of Safety LTL ϕi in negation nor-
mal form (NNF) as an LTLf formula, a finite-trace variant of LTL that has the same
expressiveness power as first-order logic over finite traces [17]. This allows us to utilize
LTLf -to-DFA construction tools integrated with compositional techniques [2,9], which
have been proven outperforming MONA, to obtain the DFA of the bad prefixes of each
ϕi, which is simply the dual of the DSA of ϕi. Furthermore, instead of utilizing the
partitioned transition relation, which nullifies the benefits of automata minimization,
we keep the explicit-state symbolic-transition representation of each DSA to take the
maximal advantage of automata minimization, as in [2,9]. As a result, our composi-
tional approach avoids the straightforward DSA construction from the whole formula
ϕ and performs the DSA construction for each conjunct ϕi separately.

Beyond that, before composing the DSAs to construct the ultimate one, the game-
level decomposition splits each DSA into winning part and losing part by conduct-
ing a safety game. More specifically, we propose two decomposition versions, that are
state-based game-level decomposition and strategy-based game-level decomposition.
The state-based decomposition considers the winning part as the set of winning states.
It thus trims the DSA by clustering all losing states into a single one and minimizes the
resulting DSA. The strategy-based decomposition, instead, considers the winning part
as the maximally permissive strategy of the safety game, e.g., a finite-state transducer,
that encompasses all the necessary information to ensure the satisfaction of the con-
junct under all circumstances [3]. Thereby, it trims the DSA by clustering all states and
also transitions that do not belong to this strategy. The trimmed DSA is also minimized
for subsequent computation. In addition, minimization is applied during every round of
composing two DSAs into a product automaton.

We have implemented our compositional synthesis algorithms in a prototype tool
called Gelato. To demonstrate the efficiency of our algorithms, we perform an empir-
ical evaluation by comparing Gelato with the monolithic approach, i.e., not leverag-
ing the proposed compositional synthesis technique, and Strix [22], the state-of-the-
art LTL synthesis tool. By comparing our compositional approach with a portfolio of
other approaches, we observed that our approach was able to solve a notable number
of instances that were not solved by others. In particular, experiments on scalable con-
junctive benchmarks showed that our approach scale well and significantly outperform
current Safety LTL synthesis techniques. We are convinced that our compositional app-
roach is a valuable and important contribution to the current portfolio of Safety LTL
synthesis algorithms.

Related Works. There have been several theoretical compositional synthesis approaches
and implementations proposed for LTL formulas of the form ϕ = ϕ1 ∧ · · · ∧ ϕn.
In [19], a Safraless compositional approach, inspired by [21], uses generalized co-Büchi
tree automata to avoid the determinization of Büchi automata and parity condition for
obtaining the game arena. This compositional approach checks the realizability of ϕ =
ϕ1∧· · ·∧ϕn by first checking the realizability of each sub-formula ϕi with the structure
of tree automata rather than DSAs that we use in this work; they try to reuse the result of

4 S. Bansal et al.

each conjunct ϕi when checking ϕ = ϕ1∧· · ·∧ϕn. To the best of our knowledge, there
is no implementation for this approach. This may partially be because tree automata are
not as easy and well studied as word automata, especially in terms of tool support. We
note that current practical synthesis tools [5,11,13,23] are all based on word automata,
just as our algorithm is here.

To make use of word automata, in [14], the authors proposed an algorithm that treats
the tree automaton for each conjunct ϕi as a universal co-Büchi word automaton, the
game on which can then be solved by a reduction to solving a safety game, based on
a given bound of the length of words. When composing the synthesized programs for
the conjuncts to obtain a program for the whole formula ϕ, this algorithm also relies
on the computation of the maximally permissive strategy for each safety game as we
do in this work; they have implemented the algorithm in the tool Acacia+ [5]. In fact,
our strategy-based decomposition variant is inspired by this approach. The difference
is that we do not need a given bound for building the safety game, since we focus on
Safety LTL formulas, while their algorithm can be incomplete if the given bound is not
large enough. Another key difference is that we construct the safety game based on the
construction of automata on finite words, while their algorithm builds a universal co-
Büchi automaton for each conjunct. This allows us to leverage advanced compositional
DFA construction in literature [2,9], a key to make our algorithm outperform the state
of the arts (cf. Sect. 4).

Another compositional synthesis approach, presented in [29], constructs composi-
tionally a parity game from an LTL formula of the form ϕ = ϕ1 ∧ · · · ∧ ϕn based on a
variant of Safra’s determinization. In addition, this approach tries to detect local parity
games that are equivalent to safety games to improve efficiency. As aforementioned, we
construct automata on finite words, which is different from the algorithm in [29].

The compositional approach proposed in [15] is based on decomposing the LTL
formula into sub-formulas that are independent, such that completely separate synthe-
sis tasks can be performed for them. The approach from [16] first splits the system into
components and then proceeds in an incremental fashion such that each component can
already assume a particular strategy for the synthesized components. The implemen-
tations of both approaches above are not, however, publicly available. We remark that
there is a compositional construction of the game arena from LTL formulas [12], which
is not involved with the synthesis task.

2 Preliminaries

2.1 LTL/LTLf

Linear Temporal Logic (LTL) [25] is one of the most popular logics for temporal prop-
erties. Given a set P of propositions, the syntax of LTL formulas is defined as:

ϕ ::= true | false | p | (¬p) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (◦ϕ) | (ϕ1 U ϕ2)

| (ϕ1 W ϕ2) | (ϕ1 M ϕ2) | (ϕ1 Rϕ2).

Compositional Safety LTL Synthesis 5

where p ∈ P is an atom. ◦ (Next), U (Until), W (Weak Until), M (Release) and
R (Weak Release) are temporal connectives. We use the abbreviations ♦ϕ ≡ true U ϕ
and �ϕ ≡ false Mϕ, for temporal connectives ♦ (Eventually) and � (Always).

A trace π = π0π1 . . . is a sequence of propositional interpretations (sets), where
πm ∈ 2P (m � 0) is the m-th interpretation of π, and |π| represents the length of
π. Trace π is an infinite trace if |π| = ∞, which is formally denoted as π ∈ (2P)ω .
Otherwise π is a finite trace, denoted as π ∈ (2P)∗. LTL formulas are interpreted over
infinite traces. Given an infinite trace π and an LTL formula ϕ, we inductively define
when ϕ is true in π at instant i (i � 0), written π, i |= ϕ, as follows:

– π, i |= true and π, i � false;
– π, i |= a iff a ∈ πi and π, i |= ¬a iff a �∈ πi;
– π, i |= ϕ1 ∧ ϕ2, iff π, i |= ϕ1 and π, i |= ϕ2;
– π, i |= ϕ1 ∨ ϕ2, iff π, i |= ϕ1 or π, i |= ϕ2;
– π, i |= ◦ϕ, iff π, i + 1 |= ϕ;
– π, i |= ϕ1 U ϕ2, iff ∃k.k � i such that π, k |= ϕ2, and ∀j.i � j < k, π, j |= ϕ1.
– π, i |= ϕ1 W ϕ2, iff either ∃k.k � i such that π, k |= ϕ2, and ∀j.i � j < k, we

have π, j |= ϕ1, or ∀k.k � i we have π, k |= ϕ1.
– π, i |= ϕ1 M ϕ2 iff ∃k.k � i such that π, k |= ϕ1, and ∀j.i � j � k, π, j |= ϕ1.
– π, i |= ϕ1 Rϕ2, iff ∃k.k � i such that π, k |= ϕ1, and ∀j.i � j � k, π, j |= ϕ2, or

∀k.k � i we have π, k |= ϕ2.

LTLf is a variant of LTL interpreted over finite traces instead of infinite traces [17].
The syntax of LTLf is exactly the same to the syntax of LTL. We define π, i |= ϕ,
stating that ϕ holds at position i, as for LTL, except that for the temporal operators:

– π, i |= ◦ϕ iff i < last(π) and π, i + 1 |= ϕ;
– π, i |= ϕ1 U ϕ2 iff ∃j.i � j � last(π) and π, j |= ϕ2, and ∀k.i ≤ k < j we have

π, k |= ϕ1.
– π, i |= ϕ1 W ϕ2, iff either ∃k.i � k � last(π) such that π, k |= ϕ2, and ∀j.i � j <

k, we have π, j |= ϕ1, or ∀k.i � k � last(π) we have π, k |= ϕ1.
– π, i |= ϕ1 M ϕ2 iff ∃k.i � k � last(π) such that π, k |= ϕ1, and ∀j.i � j � k,

π, j |= ϕ1.
– π, i |= ϕ1 Rϕ2, iff ∃k.i � k � last(π) such that π, k |= ϕ1, and ∀j.i � j � k,

π, j |= ϕ2, or ∀k.i � k � last(π) we have π, k |= ϕ2.

where we denote the last position in the finite trace π by last(π). In addition we define
the weak next operator• as abbreviation of•ϕ ≡ ¬◦¬ϕ. Note that, over finite traces,
¬◦ϕ �≡ ◦¬ϕ, instead ¬◦ϕ ≡ •¬ϕ. We say that a trace satisfies an LTLf formula ϕ,
written π |= ϕ, if π, 0 |= ϕ.

Without loss of generality, assume the input LTL formulas in Negation Normal
Form (NNF), which requires negations only occurring in front of atomic propositions.

2.2 Safety/Co-safety LTL

Intuitively, a safety formula rejects traces whose “badness” follows from a finite pre-
fix. Dually, a co-safety formula accepts traces whose “goodness” follows from a finite

6 S. Bansal et al.

prefix. We formally refer to these prefixes as bad/good prefixes accordingly. Consider a
language L ⊆ (2P)ω of infinite traces P . A finite trace h ∈ (2P)∗ is a bad (resp., good)
prefix for L iff for all infinite traces π ∈ (2P)ω , we have that h ·π �∈ L (resp., h ·π ∈ L).
A language L is a safety language iff every trace that violates (resp., satisfies) ϕ has a
bad (resp., good) prefix. We say that an LTL formula is a safety (co-safety) formula iff
||ϕ||, i.e., the set of infinite traces that satisfy ϕ, is a safety (co-safety) language.

We now introduce a fragment of LTL, where safety (resp., for co-safety) is
expressed as a syntactical feature, by restricting the occurrences of temporal connec-
tives.

Definition 1 ([6,27]). Safety LTL (resp. Co-Safety LTL) formulas are LTL formulas in
NNF containing only temporal operators such as◦, R, and W (resp.,◦, M, and U).

Theorem 1 ([6,27]). Every safety (resp., co-safety) formula is equivalent to a formula
in Safety LTL (resp., Co-Safety LTL).

Note that, the syntactic fragment of Safety (resp. Co-Safety) LTL in Definition 1 is
equivalent to the one defined in [33], which requires that the U (resp. R) connective
does not occur. Specifically, since ϕ1 W ϕ2 ≡ ((◦ϕ2)Rϕ1) ∨ ϕ2, and ϕ1 M ϕ2 ≡
ϕ2 U(ϕ1 ∧ ϕ2), every occurrence of W can be replaced by R and◦, and every occur-
rence of M can be replaced by U , without introducing any extra negations. Thus, every
safe (resp., co-safe) formula is equivalent to a Safety (resp., Co-Safety) LTL formula ϕ.

2.3 Safety LTL Synthesis

Reactive synthesis concerns constructing the behaviors of an agent that satisfy a given
property while interacting with its environment [26]. Formally, a reactive synthesis
problem is described as a tuple P = 〈X ,Y, ϕ〉, where X and Y are two disjoint
sets of variables controlled by the environment and the agent, respectively, and ϕ is
a linear temporal formula over X ∪ Y expressing desired properties. A determinis-
tic agent strategy is a function σ : (2X)∗ → 2Y . A trace is an infinite sequence
π = (X0 ∪ Y0)(X1 ∪ Y1) . . . ∈ (2X∪Y)ω over the alphabet 2X∪Y . A trace π is
compatible with an agent strategy σ, if σ(ε) = Y0 and σ(X0X1 . . . Xi) = Yi+1

for every i � 0, where ε denotes empty trace. Analogously, finite prefix πk =
(X0 ∪ Y0)(X1 ∪ Y1) . . . (Xk ∪ Yk) is compatible with σ if σ(X0X1 . . . Xi) = Yi+1

for every 0 � i < k. Given a synthesis problem P = 〈X ,Y, ϕ〉, an agent strategy σ
realizes ϕ if every trace π that is compatible with σ satisfies ϕ. There are two versions
of reactive synthesis, depending on the first player. Here we consider the case where the
agent moves first; the variant where the environment moves first can be obtained with
a minor modification.

In this paper, we focus on the problem of Safety LTL Synthesis.

Definition 2 (Safety LTL Synthesis). The problem of Safety LTL synthesis is described
as a tuple P = 〈X ,Y, ϕ〉, where ϕ is a Safety LTL formula over X ∪ Y . Computing an
agent strategy σ that realizes ϕ if one exists, is called the Safety LTL synthesis problem.

The problem of Safety LTL synthesis can be solved by a reduction to safety games,
which is a two-player game over a so-called deterministic safety automaton [33].

Compositional Safety LTL Synthesis 7

Deterministic Safety Automata. A deterministic safety automaton (DSA) is a tuple D =
(2P , S, s0, δ), where 2P is the alphabet, S is a finite set of states with s0 as the initial
state, and δ : S × 2P ⇀ S is a partial transition function. Given an infinite trace
π ∈ (2P)ω , the run r of D on π, denoted by r = Run(D, π), is a sequence of states
r = s0s1s2 . . . such that si+1 = δ(si, πi) for every i � 0. π is accepted by D if
r = Run(D, π) is well defined. Note that, δ is a partial function, meaning that given
s ∈ S and a ∈ 2P , δ(s, a) can either return a state s′ ∈ S or be undefined. Thus,
r = Run(D, π) may not be an infinite sequence due to the possibility of δ(si, πi) being
undefined for some (si, πi) ∈ S × 2P .

Symbolic DSA. The symbolic-state representation of a DSA D = (2P , S, s0, δ) is a
tuple A = (S(Z),K(Z,P,Z ′)), where Z = {z1, . . . zn} are propositions encoding
the state space S, with n = �log |S|�, and their primed counterparts Z ′ = {z′

1, . . . z
′
n}

encode the next state. Each state s ∈ S corresponds to an interpretation Z ∈ 2Z over
propositions Z . When representing the next state of the transition function, the same
encoding is used for an interpretation Z ′ over Z ′. Then, S and K are Boolean formulas
representing s0 and δ, respectively. S(Z) is satisfied only by the interpretation of the
initial state s0 over Z . K(Z,P,Z ′) is satisfied by interpretations Z ∈ 2Z , P ∈ 2P and
Z ′ ∈ 2Z′

iff δ(s, P) = s′, where s and s′ are the states corresponding to Z and Z ′.

Safety Games. A safety game is defined as a tuple G = (X ,Y,D), where D =
(2X∪Y , S, s0, δ) is a DSA, and X and Y are two disjoint sets of variables, controlled by
the environment, and the agent, respectively. A trace π ∈ (2X∪Y)ω is winning for the
agent if r = Run(D, π) is accepted by D. An agent strategy σ is winning if every trace
π that is compatible with σ is a winning play. Solving a DSA game aims to computing
an agent winning strategy if one exists. A state s ∈ S is winning for the agent if there
exists an agent strategy such that all traces beginning in s are winning for the agent.
The winning set of a DSA is the set of all winning states of the agent. To compute the
winning set of G, we perform the fixpoint computation as follows:

Win0 = S;
Wini+1 = Wini ∩ {s ∈ S | ∃Y ∀X.δ(s,X ∪ Y) ∈ Wini}.

Clearly, a safety game G can be analyzed by checking whether the initial state s0 is
a winning state, in which case we say that G is realizable. Next, we see that for safety
games there exists maximally permissive strategies [3].

Maximally Permissive Strategies. Different definitions of maximally permissive strate-
gies exist. In this work we refer to the definition in [3], where strategies are compared
by looking at inclusion of the behaviors/outcomes they allow.

Definition 3 (Non-Deterministic Strategy). A non-deterministic strategy for the agent
is defined as a function α : (2X)∗ → 22

Y
. The set of deterministic strategies induced

by a non-deterministic strategy α is the set

[[α]] = {σ : (2X)∗ → 2Y |σ(h) ∈ α(h), for h ∈ (2X)∗}.

8 S. Bansal et al.

Definition 4 (Maximally Permissive Strategy). A non-deterministic strategy α is at
least as permissive as α′ if [[α′]] ⊆ [[α]]. A non-deterministic strategy α is a maximally
permissive strategy if [[α′]] ⊆ [[α]], for every non-deterministic strategy α′.

Theorem 2 ([3]). Let G be a safety game. We have that if G is realizable, then G has a
maximal permissive strategy that is memoryless, i.e., α : S → 22

Y
.

3 Compositional Approaches for Safety LTL Synthesis

3.1 From Safety LTL to DSA

Consider a Safety LTL formula ϕ, since every trace rejected by its corresponding DSA
Ds

ϕ can be rejected in a finite number of steps, we can alternatively define the language
accepted by Ds

ϕ by the finite prefixes that it rejects [20]. Therefore, the DSA construc-
tion can be achieved by first obtaining the DFADf

ϕ that accepts all the bad prefixes of ϕ,
and then complementing it, which gives us the DSA of ϕ [33]. The construction shown
in [33] is processed as follows: given a Safety LTL formula ϕ, first negate it to obtain
a Co-Safety LTL formula ¬ϕ, then translate it into a first-order logic formula fol(¬ϕ).
The DFA of fol(¬ϕ) is able to accept exactly the set of bad prefixes for ϕ, and can be
constructed usingMONA [18], a DFA construction tool from logic specifications.

Note that the key step here is to leverage the technique and tools developed for
constructing Df

ϕ. To do so, we make use of LYDIA [9], which has shown better perfor-
mance than MONA. In particular, this change does not require the explicit translation
to first-order logic. Instead, we can directly consider the Co-Safety formula ¬ϕ as an
LTLf formula, and give it to LYDIA as input. The returned automaton is the DFA that
accepts all the good prefixes of ¬ϕ, e.g., the bad prefixes of ϕ.

Theorem 3. Let ψ be a Co-Safety LTL formula in NNF, ϕ the same formula as ψ, but
in LTLf , and π a finite trace. Then π is good prefix of ψ iff π |= ϕ.

Proof. We prove it by induction over the structure of ϕ.

– Base case, if ψ = p is an atom, π is a good prefix for ψ iff p ∈ π0. By definition of
ϕ, we have that π |= ϕ. If ψ = ¬p, π is a good prefix of ψ iff p �∈ π0, then π � ϕ.

– If ψ = ψ1 ∧ ψ2, π is a good prefix for ψ implies π is a good prefix for both ψ1 and
ψ2. By induction hypothesis, π |= ϕ1 and π |= ϕ2, where ϕ1 and ϕ2 are defined as
ψ1 and ψ2, respectively, in LTLf . Then, we have that π |= ϕ1 ∧ ϕ2.

– If ψ = ψ1 ∨ ψ2, π is a good prefix for ψ implies π is a good prefix for either ψ1

or ψ2. Without loss of generality, suppose π is a good prefix for ψ1. By induction
hypothesis, π |= ϕ1 where ϕ1 is the LTLf formula defined as ψ1. Then, π |= ϕ1 ∨
ϕ2, with ϕ2 defined in LTLf as ψ2.

– If ψ = ◦ψ1, π is a good prefix for ψ iff suffix π′ = π1π2 . . . , π|π|−1 of π is a good
prefix for ψ1. By induction hypothesis, π′, 1 |= ϕ1 where ϕ1 is defined as ψ1 in
LTLf . Then, we have that π |= ◦ϕ1.

Compositional Safety LTL Synthesis 9

– If ψ = ψ1 U ψ2, π is a good prefix for ψ iff there exists 0 � i � |π| − 1 such that
suffix π′ = πiπi+1, . . . , π|π−1| of π is a good prefix for ψ2, and for all 0 � j < i,
π′′ = πjπj+1, . . . , πi−1 is a good prefix for ψ1. By induction hypothesis, π′, i |= ϕ2

where ϕ2 is defined as ψ2 in LTLf , and π′′, j |= ϕ1 with ϕ1 defined as ψ2 in LTLf .
Therefore, π |= ϕ1 U ϕ2.

– The cases for W , M, and R are derived from the above.

3.2 Compositional Safety LTL Synthesis

The crux of our compositional approach is to avoid the DSA construction of the com-
plete Safety LTL formula ϕ by performing the DSA construction for each conjunct ϕi,
and, most importantly, solving the safety game over the DSA before composing it with
the other DSAs. We first propose a compositional approach based on the computation
of the agent winning states of safety games. In particular, inspired by the compositional
automata construction technique presented in [2], we also employ here the explicit-DSA
to symbolic-DSA switch heuristics to achieve promising practical benefits.

State-Based Compositional Approach. After checking realizability of each ϕi

through the corresponding safety game, we prune the safety game wrt the winning
states and then minimize the game; the algorithm then goes through a phase of com-
bining two DSAs, minimizing the combined DSA, solving the safety game over the
DSA, and pruning the game again, until a switch to a symbolic representation occurs.
When we have switched to using the symbolic representation for DSAs, we will not
perform minimization on the DSAs since it is time-consuming because of large DSA
state space; instead, in each round we only combine the DSAs and solve the safety game
over the corresponding DSA. Specifically, given a Safety LTL formula in the form of
ϕ =

∧
1�i�n ϕi, and switch-over threshold values t1, t2 > 0 that represent the thresh-

olds for the numbers of states in an individual DSA and in the product of two DSAs,
respectively, to trigger the symbolic representation, the algorithm proceeds as follows.

1. Decomposition. Construct minimal DSA Di for each sub-formula ϕi of ϕ in
explicit-state representation as described in Sect. 3.1 and let H1 = {D1, . . . ,Dn}.
Then, for all i ∈ {1, . . . , n},
(a) compute the winning set Wi of the agent in the safety game Gi = 〈X ,Y,Di〉.

Return ϕ is unrealizable if Gi is unrealizable.
(b) Prune Di such that only the states in Wi are retained. Formally, let

Di = (Σ,S, s0, δ). Then prune Di with respect to Wi obtaining Dw
i =

(Σ,Wi, s0, δ
w) where the transition function δw is defined as follows:

δw(s, σ) =

{
δ(s, σ) if δ(s, σ) ∈ Wi,

undefined if δ(s, σ) /∈ Wi.

(c) Minimize Dw
i . Note that, since DSAs are represented as DFAs, the pruning step

is performed on DFAs, and therefore we can apply minimization techniques on
DFAs to obtain the minimal DSA.

2. Explicit-state composition. For j ∈ {1, . . . , n − 1}, let Hj = {D1 . . . Dn−j+1}
be the set of DSAs in the j-th iteration. If Hj has only one DSA D1, then return

10 S. Bansal et al.

a winning strategy for the agent in G = 〈X ,Y,D1〉. Otherwise, pick from Hj two
DSAs, D1 and D2, chosen by the dynamic smallest-first heuristic [2] which always
returns two DSAs in Hj with the smallest number of states. This allows to find
an order that can optimize time and space in the composition phase. Indeed, if the
algorithm would fail on the composition of the smallest two DFAs in that iteration,
then it would probably fail on the composition of all other pairs of DFAs as well.
Let |D| be the number of states in a DSA D represented in explicit-state form. If
|D1| > t1 or |D2| > t1, or (|D1| · |D2|) > t2, then change state representation
moving to Step 3 and let k be the iteration in which this occurs, i.e., take k = j. If
not, continue with the explicit-state representation and perform the following steps.
(a) Construct D1,2 = D1 ∩ D2, and minimize D1,2 to generate D.
(b) Compute the winning set W of the agent in safety game G = 〈X ,Y,D〉. Return

ϕ is unrealizable if D is unrealizable.
(c) PruneD such that only the states inW are retained (see Step 1(b)), and minimize

it. Then, create Hj+1 = {D,D3 . . . Dn−j+1}.
(d) Go to Step 2.

3. Change state representation. Convert all DSAs in Hk = {D1, . . . ,Dn−k+1} from
explicit-state to symbolic-state representation, and proceed to Step 4. Note that the
state space of each DSA Di is encoded symbolically using a different set of state
variables Zi, where all Zi are disjoint. Since no more minimization occurs after this
point, the total set of state variables Z = Z1 ∪ . . . ∪ Zn−k+1 defines the state space
of the final DSA.

4. Symbolic-state composition. For j ∈ {k, . . . , n}, let Hj = {D1, . . . ,Dn−j+1}
be the set of DSAs in the j-th iteration. If Hj has only one DSA, return a winning
strategy for the agent, otherwise return ϕ is unrealizable. Otherwise, assume w.l.o.g.
that D1 and D2 are the two DSAs chosen by the DSF heuristic and perform the
following steps:
(a) Construct D = Dw

1 ∩ Dw
2 . Recall that, since D1 and D2 are in symbolic form,

we do not perform DSA minimization of D1,2.
(b) Compute the winning set W of the agent in the safety game G = 〈X ,Y,D〉.

Returnϕ is unrealizable if any of the two G is unrealizable. Then, createHj+1 =
{D,D3 . . . Dn−j+1}.

(c) Go to Step 4.

To prove the correctness of the algorithm described above, i.e., to prove that the
algorithm correctly evaluates realizability of the input safety formula ϕ and synthesizes
a valid winning strategy (if realizable), we make use of the following result.

Lemma 1. Let D be a DSA with winning set W for the agent player in the safety game
played over D. Let Dw be the pruning of D w.r.t. W , as described above. Then, every
winning strategy in the safety game over D is a winning strategy in the safety game over
Dw, and vice-versa.

Proof. We begin by showing that every winning strategy in the safety game G =
〈X ,Y,D〉 is also a winning strategy in the safety game G = 〈X ,Y,Dw〉.

Let σ : (2X)∗ → 2Y be a strategy. Let πσ = (X0, σ(ε)), (X1, σ(X0)), . . . ,
(Xn, σ(X0,X1, . . . Xn−1)) be a play of finite-length induced by σ. Given a DSA

Compositional Safety LTL Synthesis 11

D′ = (X ∪ Y, S, s0, δ), let sσ be the unique state in which the run of πσ beginning
in s0 in DSA D′ terminates. We will show that when σ is a winning strategy for the
agent, then the terminal state sf of the run of all finite plays πσ is such that sσ ∈ W .

By means of contradiction, suppose σ is a winning strategy such that there exists a
finite play πσ such that the terminal state of its run in DSA D is sσ ∈ S\W . Then, since
DSAs are determined games and both players have memoryless winning strategies, the
environment can begin executing a memoryless environment winning strategy from sσ .
Then, by definition of winning strategies of the environment, this ensures that every
resulting play is winning for the environment. Thus, we have a contradiction.

Therefore, every agent winning strategy σ in the safety game over D can be exe-
cuted in a game over Dw since Dw is defined over the winning set of D. Finally, since
δ∗(πσ) ∈ W in DSA D for all πσ , we get that (δw)∗(πσ) ∈ W in DSA Dw for all πσ ,
where δ∗ and (δw)∗ are the transitive closures of δ and δw. Thus, σ is also a winning
strategy in safety game over Dw as it never encounters an undefined transition in Dw.

Next, we show that a strategy that is not winning for the agent in a safety game over
D is also not a winning strategy for the agent in the safety game over Dw. The proof
for this is the dual of the earlier case. For strategies that are not winning for the agent,
the terminal state of the run of every finite-play in D lies in S \ W . Then, it is easy
to see that these strategies will encounter an undefined transition in the game over Dw.
Meaning, that the strategy is not winning for the agent in the safety game over Dw.

Theorem 4. The state-based compositional approach is sound and complete for Safety
LTL synthesis.

Proof. Clearly, σ is a winning strategy for the agent for the input formula ϕ iff σ is
a winning strategy in every DSA in H1. Suppose D1 and D2 are chosen in the first
iteration of the algorithm. Then, by Lemma 1, since winning strategies are preserved
via pruning, we get that σ is a winning strategy in every DSA in H1 \ {D1,D2} ∪
{Dw

1 ,Dw
2 }. Since σ is a winning strategy in both Dw

1 and Dw
2 , σ is a winning strategy

for Dw
1 ∩ Dw

2 . Since the language of Dw
1 ∩ Dw

2 is equivalent to that of its minimal DSA
D1,2, we get that σ is also a winning strategy in D1,2. Thus, σ is a winning strategy
for the input formula iff σ is a winning strategy in every DSA in H2. By repeated
application of this argument, we show that σ is a winning strategy for the input formula
iff it is a winning strategy over the single DSA in Hn.

It should be noted that when pruning each DSA, the state-based decomposition
approach focuses only on winning states and therefore trims the DSAs by clustering all
losing states into a single one and minimizes the resulting DSA. Nevertheless, certain
transitions, though leading to winning states, do not contribute to the realizability of
the conjunct since such transitions do not belong to the maximally permissive strategy
of the safety game, e.g., a finite-state transducer that encompasses all the necessary
information to ensure the satisfaction of the conjunct under all circumstances [3]. Fur-
thermore, trimming also these transitions might result in an even smaller DSA. We now
give a compositional approach based on the computation of the maximally permissive
strategy of safety games over DSAs.

12 S. Bansal et al.

Strategy-Based Compositional Approach. Unlike the state-based approach, in each
round, it trims from the DSAs not only all states but also transitions that do not belong
to the maximally permissive strategy. The algorithm proceeds as follows.

1. Decomposition. Let D1 . . . Dn be the minimal DSAs for each sub-formula ϕi of the
input formula ϕ in the explicit-state representation as described in Sect. 3.1. Then,
for all i ∈ {1, . . . , n}, proceed as follows.
(a) Compute the set of winning states Wi in the safety game Gi = 〈X ,Y,Di〉.

Return ϕ unrealizable if Gi is unrealizable.
(b) Compute the maximally permissive strategy αi based on the set of winning

states Wi. To do so, we define a strategy generator, which is a nondetermin-
istic transducer T = (2X∪Y ,Wi, s0, �, τ), where
– Wi ⊆ S is the set of winning states;
– τ : Wi → 2(2

Y) is the output function such that

τ(s) =

{
{Y | ∀X.δ(s,X ∪ Y) ∈ Wi} if s ∈ Wi,

∅ otherwise.

– � : Wi × 2X → 2Wi is the transition function such that �(s,X) = {s′ |
s′ = δ(s,X ∪ Y) and Y ∈ τ(s)};

This transducer represents the maximally permissive strategy α : (2X)∗ → 22
Y

in the following way: α(ε) = τ(s0), and α(ξk) = τ(sk+1) for every ξk ∈
(2X)+, where sk+1 is the ending state of Run(A, πk) = s0s1s2 . . . sk, πk =
(X0 ∪ Y0)(X1 ∪ Y1) . . . (Xk ∪ Yk) and Yk ∈ α(ξk−1).

(c) Prune Di according to αi. Intuitively, this pruning trims all states and tran-
sition that do not belong to αi, unlike the state-based approach which only
cuts states. Let D = (Σ,S, s0, δ) be a DSA. We prune D with respect to
T = (Σ,W, s0, �, τ) such that obtaining Dt = (Σ,W, s0, δ

t), where transi-
tion function δt is defined as follows:

δt(s,X ∪ Y) =

{
δ(s,X ∪ Y) ifY ∈ τ(s),
undefined ifY /∈ τ(s).

(d) Minimize Dt
i , and create R = {Dt

1, . . . ,Dt
i}.

2. Explicit-state composition. For j ∈ {1, . . . , n − 1}, let Rj = {D1 . . . Dn−j+1} be
the set of DSAs in the j-th iteration. If Rj has only one D1, then return a determin-
istic strategy for the agent. Otherwise, pick from Rj two DSAs, D1 and D2, chosen
by the DSF heuristic. If |D1| > t1 or |D2| > t1, or (|D1| · |D2|) > t2, then change
state representation moving to Step 3 and let k be the iteration in which this occurs,
i.e., take k = j.
If not, continue with explicit-state representation as follows.
(a) Compute Step 2(a) and 2(b) as for the state-based approach, obtaining the DSA

D, which is the minimal DSA of Dt
1,2 = D1 ∩ D2, and the winning set W .

(b) Compute maximally permissive strategy α based on W (see Step 1(b)).
(c) Prune D in according to α (see Step 1(c)), obtaining Dt, and minimize it. Then,

create Rj+1 = {D,D3 . . . Dn−j+1}.
(d) Go to Step 2.

3. Step 3 and 4 are performed as Step 3 and 4 of the state-based approach.

Compositional Safety LTL Synthesis 13

Lemma 2. Let D, W and Dt be as above, then the agent has a winning strategy in
the safety game G = 〈X ,Y,D〉 iff the agent has a winning strategy in the safety game
Gt = 〈X ,Y,Dt〉.

Proof. The proof follows Lemma 1.

Lemma 3. The agent has a winning strategy in safety game G = 〈X ,Y,Dt
i,j〉 iffϕi∧ϕj

is realizable.

Proof. We first obverse that ϕi ∧ϕj is realizable iff there exists an agent strategy σ that
is winning in both safety games Gi = 〈X ,Y,Di〉 and Gj = 〈X ,Y,Dj〉, where Di and
Dj are the DSAs for ϕi and ϕj , respectively. By Lemma 2, we know that the σ is also
winning in both safety games over Dt

i and Dt
j , and then it is also a winning strategy for

Dt
i,j = Dt

i ∩ Dt
j , as required.

Theorem 5. The Safety LTL synthesis problem P = 〈X ,Y, ϕ〉, where ϕ =
∧

1�i�n ϕi,
is realizable iff the agent has a winning strategy in safety game G = 〈X ,Y,Dt〉, where
Dt is the last DSA obtained executing the strategy-based compositional approach.

Proof. We can prove it by repeatedly applying Lemma 3, then we have that σ is an
agent winning strategy for the input formula ϕ iff it is a winning strategy in the safety
game over the single DSA Dt.

4 Experimental Evaluation

4.1 Implementation

We implemented our two compositional synthesis approaches described in Sect. 3.2
in a prototype tool Gelato, on top of the Safety LTL synthesis tool SSyft [33].
We first use SPOT [10] to parse the input Safety LTL formula ϕ in the form of
ϕ1 ∧ · · · ∧ ϕk, k � 1 and then call LYDIA [9] to obtain the DSAs for the smaller
Safety LTL conjuncts ϕi, 1 � i � k. Note that all the explicit-state DSAs are, in
fact, stored with their corresponding bad-prefixes DFAs. In this way, we can exploit the
advanced compositional approach in LYDIA for constructing the DFAs of bad prefixes
from small Safety LTL conjuncts. We then employ MONA for the minimization, state-
pruning/strategy-pruning and product operations for explicit-state DSAs by operating
on their bad-prefixes DFAs. Note that Gelato needs to take switch-over thresholds t1,
t2 from explicit-states to symbolic-states representations and then performs synthesis
on symbolic-state DSAs [34], where CUDD 3.0.0 [30] is used as the BDD library. The
thresholds t1 and t2 are empirically set to 700 and 1500, respectively, in all experi-
ments. We use native support of SSyft for solving safety game over symbolic DSAs
and extracting the winning strategies if ϕ is realizable; we refer to [33] for more details.

4.2 Experimental Methodology

We compare our tool Gelato with two state of the art tools, namely SSyft, the synthesis
tool dedicated for Safety LTL [33], and Strix (version 21.0.0) [22], the state-of-the-art

14 S. Bansal et al.

synthesis tool for general LTL. In particular, we optimize SSyft by using LYDIA rather
than MONA to construct the DSA, which highly speeds up the performance of SSyft
used in [33]. Experiments were run on a computer cluster, where each instance took
exclusive access to a computing node with Intel-Xeon processor running at 2.6GHz,
with 8 GB of memory and 30min of time limit.

We consider large-scale Safety LTL synthesis instances in the form of ϕ = ϕ1 ∧
ϕ2 ∧ . . .∧ϕk. We collected in total 2,500 Safety LTL synthesis instances, consisting of
1,250 instances from the Conjunction benchmark family and 1,250 instances from the
Random-Conjunction benchmark family. Since Strix only supports the synthesis set-
ting where the environment acts first, the instances taken by them had to be modified
slightly to add a◦ (Next) operator in front of all environment variables. The Conjunc-
tion benchmark family has 1,250 instances that are constructed from basic cases taken
from Safety LTL synthesis datasets [33]. In particular, these basic cases are Safety LTL
formulas splitting into 5 categories. Every category i (1 � i � 5) consists of a set
of Safety LTL formulas with i nesting◦ (Next) operators. Indeed, the more nesting◦
operators are, the more difficult the basic case is. In order to evaluate the performance on
scalability of handling conjunction formulas, for every category of Safety LTL formu-
las, we obtain 50 scalable conjunction instances by increasing the number of conjuncts
from 1 to 5. The Random-Conjunction benchmark family also has 1,250 instances that
are constructed in the similar way as the Conjunction instances. The key difference is
that, all the variables in the randomly conjuncted formula are chosen randomly from a
set of 20 candidate variables. Moreover, if a variable v is an environment-variable in
the basic case, then the replacement variable v′ of v is also an environment-variable in
the randomly conjuncted formula. The same applies to the agent-variables.

We have evaluated the results from Gelato with those from Strix and SSyft, and we
only find consistent results for the commonly solved cases.

0 500 1000 1500 2000
Number of solved cases

100

101

102

103

104

105

R
un

ni
ng

tim
e
(s
ec
s)

SSyft
Strix

Gelato-States
Gelato-Strat

VBS0
VBS1

Fig. 1. Cactus plot indicating number of benchmarks solved by each tool over time.

Compositional Safety LTL Synthesis 15

0 1 2 3 4 5
Expansion length

0

50

100

150

200

250

N
um

be
r
of

so
lv
ed

ca
se
s

SSyft Strix Gelato-States Gelato-Strat

Fig. 2. Number of solved cases for different number of conjunctions in conjunction benchmarks

4.3 Results

We denote the winning states-based variant and the winning strategy-based variant of
our algorithm in Sect. 3.2 by Gelato-States and Gelato-Strat, respectively. We compare
both Gelato-States and Gelato-Strat against SSyft and Strix in terms of the number
of solved cases and the running time. Additionally, we also consider two virtual best
solvers, VBS0 (two existing tools, without Gelato) and VBS1 (all implementations).

The cactus plot in Fig. 1 reports how many benchmarks solved by each tool over
time; we do not show the part where the running time is below 1 s for clarity. We can
see that Gelato-Strat only has a slight advantage comparing to Gelato-States, with
Gelato-Strat solving 2,325 cases and Gelato-States 2,324 cases, out of a total 2,500
cases. The performance of Gelato-Strat is similar to that of Gelato-States on most of
the cases and is better on large instances. Regarding the number of solved cases, the
performance of Gelato-Strat is significantly better than SSyft and Strix, since they only
manage to solve 1,753 and 1,771 cases, respectively. In particular, Strix solved 554
cases less than Gelato-Strat did while taking more time to solve as many instances
as both implementations in Gelato. This is reasonable since Strix considers the whole
set of LTL while Gelato is carefully designed for big conjunctions of Safety LTL for-
mulas. It is clear to see that our Gelato-Strat has the best performance regarding the
number of solved cases within the same time limit. Between two virtual best solvers,
VBS1 is significantly better than VBS0, with 2,369 cases solved by VBS1 and 1,979
cases by VBS0. It is worth mentioning that both our implementations Gelato-Strat and
Gelato-States perform even better than VBS0.

16 S. Bansal et al.

The experimental results showed that our approach can solve a notable number of
instances that cannot be managed by existing tools. Therefore, we believe that our com-
positional algorithm is a valuable and important contribution to the current portfolio of
Safety LTL synthesis approaches.

On a closer inspection, we observe that Gelato-Strat and Gelato-States have
a bigger advantage over SSyft and Strix for Conjunction benchmarks than they
do for Random-Conjunction benchmarks. For Random-Conjunction benchmarks,
Gelato-Strat and Gelato-States solve 3 cases more than SSyft and 100 more than Strix;
while for Conjunction benchmarks, Gelato-Strat and Gelato-States solve 1,092 and
1,091 cases, respectively, which are approximately twice as many as those of SSyft and
Strix. This may due to the fact that our pruning operation in the synthesis procedure
reduces more state space of the intermediate programs from the Conjunction bench-
marks than those from the Random-Conjunction cases.

Figure 2 shows the number of solved cases of all tools for different numbers of
conjuncts in Conjunction benchmarks. From Fig. 2, we can see that the advantage of
Gelato-Strat and Gelato-States over SSyft and Strix gets larger as the expansion length
(i.e., the number of conjunctions) grows. This is because constructing DSAs by LYDIA
for each small conjunct in Gelato does not get much harder as the length increases;
it is more dependent on the size of the small conjunct formulas than the number of
conjuncts. In contrast, the performance of SSyft, which relies on LYDIA to construct
the DSA for the whole formula, decreases greatly when the expansion length grows.
Moreover, we observe that the performance of Gelato does not vary too much when
the expansion length grows. This confirms that our compositional synthesis approaches
indeed can mitigate the difficulty encountered by other approaches that solve the game
only after obtaining the game arena. We also observe similar performance trend of each
tool when the expansion length grows for Random-Conjunction benchmarks, except
that the advantage of our Gelato-Strat and Gelato-States over SSyft and Strix is not as
significant as depicted in Fig. 2.

Finally, we compared the running time of Gelato-States and Gelato-Strat on all
benchmarks. It is surprising to see that Gelato-States is competitive with Gelato-Strat
in general, although, Gelato-Strat solves one more case than Gelato-States and per-
forms better than Gelato-States in hard cases. Gelato-Strat in particular, was expected
to benefit from the fact that the transducer of the maximally permissive strategy is sup-
posed to more compact than the one of the winning states. Indeed, both transducers
have the same number of states, thus leaving no state space to prune for Gelato-Strat.
Nevertheless, the transducer of the maximally permissive strategy should contain fewer
propositional evaluations on the transitions. However, this does not lead to a more com-
pact transducer when the transducers are in an explicit-state symbolic-transition rep-
resentation. On the one hand, the transition conditions are represented symbolically in
BDDs, it is possible that removing evaluations that do not belong to the maximally per-
missive strategy generate larger BDDs. On the other hand, removing evaluations even
bring an extra cost. Thereby, we can not expect significant advantage of applying the
strategy-based compositional approach.

Compositional Safety LTL Synthesis 17

5 Conclusion

We presented a novel compositional synthesis technique specialized for Safety LTL
formulas in the form of ϕ = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕ2. In contrast to extant compositional
synthesis approaches that solve the game after obtaining the game arena, our algorithm
synthesizes a program for each smaller conjunct ϕi, 1 � i � n separately and then
composes them one by one. A big advantage of our algorithm is that the intermediate
programs will be made smaller with pruning techniques, mitigating the possibility of
blow-up of program state space. Empirical evaluation shows that our proposed algo-
rithm outperforms the state of the arts in terms of the number of solved cases and
running time. We believe that our compositional approach is a valuable contribution
to the portfolio of Safety LTL synthesis algorithms. As future work, we plan to study
how to further improve the construction of DSAs for each conjunct, which is the cur-
rent bottleneck of our approach. Alternatively, we can investigate how to decompose
the specification better to obtain smaller conjunct formulas. It is also interesting to see
how our approach performs on practical benchmarks. We leave this to future work as
well.

Acknowledgement. This work is supported in part by the ERC Advanced Grant WhiteMech
(No. 834228), the EU ICT-48 2020 project TAILOR (No. 952215), the PRIN project RIPER
(No. 20203FFYLK), the National Natural Science Foundation of China (Grant Nos. 62102407
and 61836005), CAS grant QYZDB-SSW-SYS019, NSF grants IIS-1527668, CCF-1704883, IIS-
1830549, CNS-2016656, DoDMURI grant N00014-20-1-2787, and an award from the Maryland
Procurement Office.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
2. Bansal, S., Li, Y., Tabajara, L.M., Vardi, M.Y.: Hybrid compositional reasoning for reactive

synthesis from finite-horizon specifications. In: AAAI, pp. 9766–9774 (2020)
3. Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to safety

games. RAIRO Theor. Inform. Appl. 36(3), 261–275 (2002)
4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive (1)

designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)
5. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis. In:

Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 45

6. Chang, E., Manna, Z., Pnueli, A.: Characterization of temporal property classes. In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 474–486. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-55719-9 97

7. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis. J. Symb.
Log. 28(4), 289–290 (1963)

8. Cimatti, A., Geatti, L., Gigante, N., Montanari, A., Tonetta, S.: Expressiveness of extended
bounded response LTL. In: GandALF 2021, pp. 152–165 (2021)

9. De Giacomo, G., Favorito, M.: Compositional approach to translate LTLf /LDLf into deter-
ministic finite automata. In: ICAPS, pp. 122–130 (2021)

https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/3-540-55719-9_97
https://doi.org/10.1007/3-540-55719-9_97

18 S. Bansal et al.

10. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0—a
framework for LTL and ω-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.)
ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46520-3 8

11. Ehlers, R., Raman, V.: Slugs: extensible GR(1) synthesis. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 333–339. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41540-6 18

12. Esparza, J., Křetı́nský, J., Sickert, S.: From LTL to deterministic automata - a safraless com-
positional approach. Formal Methods Syst. Des. 49(3), 219–271 (2016)

13. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework for
bounded synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp.
325–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 17

14. Filiot, E., Jin, N., Raskin, J.: Antichains and compositional algorithms for LTL synthe-
sis. Formal Methods Syst. Des. 39(3), 261–296 (2011). https://doi.org/10.1007/s10703-011-
0115-3

15. Finkbeiner, B., Geier, G., Passing, N.: Specification decomposition for reactive synthesis. In:
NFM, pp. 113–130 (2021)

16. Finkbeiner, B., Passing, N.: Dependency-based compositional synthesis. In: Hung, D.V.,
Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 447–463. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59152-6 25

17. Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces.
In: IJCAI, pp. 854–860 (2013)

18. Henriksen, J.G., et al.: Mona: monadic second-order logic in practice. In: Brinksma, E.,
Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol.
1019, pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0 5

19. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817963 6

20. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods Syst.
Des. 19(3), 291–314 (2001). https://doi.org/10.1023/A:1011254632723

21. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS, pp. 531–542 (2005)
22. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes back! In:

Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 578–586. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 31

23. Michaud, T., Colange, M.: Reactive synthesis from LTL specification with spot. In:
SYNT@CAV (2018)

24. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL safety properties in hybrid sys-
tems. Int. J. Softw. Tools Technol. Transf. 15(4), 305–320 (2013). https://doi.org/10.1007/
s10009-012-0233-2

25. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
26. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190 (1989)
27. Sickert, S., Esparza, J.: An efficient normalisation procedure for linear temporal logic and

very weak alternating automata. In: LICS, pp. 831–844 (2020)
28. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput. 6(5),

495–512 (1994). https://doi.org/10.1007/BF01211865
29. Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for the synthesis of reactive sys-

tems. Int. J. Softw. Tools Technol. Transf. 15(5–6), 433–454 (2013). https://doi.org/10.1007/
s10009-012-0224-3

30. Somenzi, F.: CUDD: CU decision diagram package 3.0.0. University of Colorado at Boulder
31. Tabajara, L.M., Vardi, M.Y.: Partitioning techniques in LTLf synthesis. In: IJCAI, pp. 5599–

5606 (2019)

https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-41540-6_18
https://doi.org/10.1007/978-3-319-41540-6_18
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.1007/978-3-030-59152-6_25
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/11817963_6
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/s10009-012-0233-2
https://doi.org/10.1007/s10009-012-0233-2
https://doi.org/10.1007/BF01211865
https://doi.org/10.1007/s10009-012-0224-3
https://doi.org/10.1007/s10009-012-0224-3

Compositional Safety LTL Synthesis 19

32. Vardi, M.Y.: From verification to synthesis. In: Shankar, N., Woodcock, J. (eds.) VSTTE
2008. LNCS, vol. 5295, p. 2. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-87873-5 2

33. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to safety LTL

synthesis. In: Strichman, O., Tzoref-Brill, R. (eds.) HVC 2017. LNCS, vol. 10629, pp. 147–
162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70389-3 10

34. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis. In: IJCAI, pp.
1362–1369 (2017)

35. Zhu, S., Tabajara, L.M., Pu, G., Vardi, M.Y.: On the power of automata minimization in
temporal synthesis. In: GandALF, pp. 117–134 (2021)

https://doi.org/10.1007/978-3-540-87873-5_2
https://doi.org/10.1007/978-3-540-87873-5_2
https://doi.org/10.1007/978-3-319-70389-3_10

Leroy and Blazy Were Right: Their
Memory Model Soundness Proof

is Automatable

Pedro Barroso1,2(B), Mário Pereira1,2, and António Ravara1,2

1 NOVA School of Science and Technology, Caparica, Portugal
p.barroso@campus.fct.unl.pt

2 NOVA-LINCS, Caparica, Portugal

Abstract. Xavier Leroy and Sandrine Blazy in 2007 conducted a formal
verification, using the Coq proof assistant, of a memory model for low-level
imperative languages such as C. Considering their formalization was per-
formed essentially in first-order logic, one question left open by the authors
was whether their proofs could be automated using a verification frame-
work for first-order logic. We took the challenge and automated their for-
malization using Why3, significantly reducing the proof effort. We system-
atically followed the Coq proofs and realized that in many cases at around
one third of the way Why3 was able to discharge all VCs. Furthermore,
the proofs still requiring interactions (e.g. induction, witnesses for exis-
tential proofs, assertions) were factorized isolating auxiliary results that
we stated explicitly. In this way, we achieved an almost-automatic sound-
ness and safety proof of the memory model. Nonetheless, our development
allows an extraction of a correct-by-construction concrete memory model,
going thus further than the preliminary Why version of Leroy and Blazy.

Keywords: C memory model · Formal proof · Theorem proving ·
Why3

1 Introduction

Formal semantics are concerned with the process of building a mathematical
model to serve as a basis for understanding and reasoning about how programs
behave. A mathematical model is important because the activity of trying to
precisely define the behavior of program constructions can reveal all types of sub-
tleties of which it is crucial to be aware [10]. Many programs that require formal
verification are written in imperative languages that accommodate pointer-based
data structures with in-place modifications. To reason about the contents of the
memory or even the behavior of operations over it, one needs to develop an
adequate memory model.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Lal and S. Tonetta (Eds.): VSTTE 2022, LNCS 13800, pp. 20–32, 2023.
https://doi.org/10.1007/978-3-031-25803-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25803-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-25803-9_2

Leroy and Blazy Were Right 21

Leroy and Blazy in 2007 formalized and verified, using the Coq proof assistant, a
memory model for C-like imperative languages [5]. Coq proofs tend to be a very
time consuming task and in fact, Leroy and Blazy’s proof was almost the length
of the specification and theorems (970 and 1070 lines, respectively). Considering
their formalization was performed essentially in first-order logic, one question
the authors addressed was whether their proofs could be automated using a
verification framework for first-order logic, e.g. Why3 [3]. The authors translated
their memory model to Why (a former version of Why3), the authors claim that
at the time some recursive definitions were hard to define in the Why syntax
and therefore, they only translated the axiomatizations and derived properties
of the memory model. Their preliminary study (Figure 1) showed that could
be automated, but no further study or complete formalization of their memory
model has been automated so far.

Fig. 1. Leroy and Blazy’s Why formalization

Nonetheless, the problem we address here is:

Is it possible (15 years later) to automate the complete abstract and con-
crete implementation of the authors memory model?

In this paper we translate Leroy and Blazy’s memory model to Why3 and develop
an almost-automatic soundness and safety proof. Moreover, our code, imple-
menting a concrete memory model, is extractable. This requires some manual
work, namely re-organizing modules, that we believe with some refactoring of
the WhyML code could be avoided.

Concretely, our contributions are:

– two Why3 versions (one containing interactive proofs and one “fully” auto-
matic) that reduce up to 90% the Coq proof effort;

– general techniques to achieve a more automatic proof;
– a proof effort comparison between ours and the original Coq ones;
– a correct-by-construction memory model extracted from our development.

The rest of the article is organized as follows. Section 2 describes memory mod-
els and briefly presents the one of Leroy and Blazy. Also, Sect. 2 shows how to
prove the memory model sound and safe (which includes semantics preserva-
tion for three passes of the Compcert compiler), and the Coq proof statistics

22 P. Barroso et al.

that Leroy and Blazy stated in their paper. Section 3 outlines our Why3 devel-
opment and the techniques used to explicitly state interactive transformations.
Section 4 compares both versions with the Coq version and presents our app-
roach to extract correct-by-construction OCaml code, followed by conclusions in
Sect. 6. Our Why3 development and OCaml extracted code is publicly available1.

2 The Memory Model

Memory models provide the necessary abstraction between the behavior of a
program and the behavior of the memory it reads and writes. When reasoning
about compilers and low-level code we need to account for several factors such
as memory management, concurrency behavior, casts, structured pointers, over-
lapping locations, etc. Therefore, it is not sufficient to interpret memory as a
assignment of values to locations.

2.1 Concept

The generic idea behind a memory model is to explicitly describe and provide
some guarantees on the behavior of certain operations that manipulate memory
(e.g. read, write, allocation, free). This allows to make concrete assumptions
about the “state of the memory” at any time of the execution of a program. One
example is that reading after writing a value into a location should return the
value that was previously stored. Figure 2 shows this simple scenario and the
natural assertions one can make over the execution of the program.

Fig. 2. Concrete assertion over a simple program

There are several ways to define a memory model: as a description of the set
of valid traces of operations fulfilled by the execution of a program (e.g. IBM
POWER multiprocessors [6]); as an abstract machine that receives and replies to
messages (e.g. CompCertTSO [9]); and as a set of functions that can be invoked
along with some guarantees on their results (e.g. Leroy and Blazy’s memory
model [5]). Note that in most cases a definition in one of these styles is provably
equivalent to a definition in another style [7].
1 https://gitlab.com/p.barroso/memory-model-c-why3/.

https://gitlab.com/p.barroso/memory-model-c-why3/

Leroy and Blazy Were Right 23

The memory model presented by Leroy and Blazy is used in the formal
verification of the Compcert [4] compiler, which transforms the Clight subset
of the C programming language down to PowerPC assembly code.

2.2 Leroy and Blazy’s Memory Model

Leroy and Blazy start by giving an abstract, incomplete specification of a mem-
ory model to formalize the memory-related aspects of C and related languages.
The abstract type val represents values, which includes the constant vundef to
describe an undefined value. To describe references to memory blocks they use
an abstract type block and to represent memory states an abstract type mem.

Memory Definitions. A memory state is a collection of separated blocks where
each block behaves as an array of bytes, and is addressed using byte offsets i ∈ Z.
A memory location is a pair (b, i) of a block reference b and an offset i within
this block. Lastly, the constant empty : mem represents the initial memory state.

Operations. They define four operations that manipulate memory states as
total functions:

alloc : mem × Z × Z → option(block × mem)

free : mem × block → option mem

load : memtype × mem × block × Z → option val

store : memtype × mem × block × Z × val → option mem

All these functions return option types to take into account potential failures.
The function alloc(m,l,h) allocates a fresh memory block, where m is the initial
memory state, l ∈ Z is the lower bound of the block (inclusive), and h ∈ Z

the upper bound (exclusive) of the fresh block. Allocation can fail if not enough
memory is available. Otherwise, Some (b,m) is returned, where b is the reference
to the new block and m the updated memory state.

Contrarily, free(m,b) deallocates block b in memory m. In case of success,
an updated memory state is returned.

The function store(τ,m,b,i,v) writes value v of type τ at offset i in block b
of m. If successful, the updated memory state is returned.

Symmetrically, load(τ,m,b,i) reads a data type of τ from block b of memory
state m at byte offset i. If successful, the value from block b is returned.

Axiomatization and Additional Properties. The authors axiomatize the
expected behavior of the operations.2 Recall that any implementation of the
model must satisfy all these properties.

2 The complete set of hypotheses can be consulted online.

https://xavierleroy.org/memory-model/

24 P. Barroso et al.

Good and Not so Good Variables (Axioms S5 to S8). Define the correct behavior
(operation succeeds) of a load after an alloc, free or store operation. Con-
cretely, these hypotheses specify that: alloc and free preserve loads performed
in any other disjoint block; reading from the same location with a compatible
type τ ′ succeeds and returns the value convert(v,τ ′); and storing a value of
type τ ′ in block b at offset i commutes with loading. Furthermore, Leroy and
Blazy also specify when the load operation returns an undefined value.

Block Validity (Axioms S9 to S13). The correct behavior of a load after an
alloc, free or store depends on separation properties between blocks. In order
to capture such properties, Leroy and Blazy axiomatize the relation m |= b, which
means that block b is valid in memory m. A block is valid if it was previously
allocated and was not yet deallocated.

Bounds of Block (Axioms S14 to S17). The authors also axiomatize the function
B(m, b) that associates low and high bounds to a block b in memory state m.
The axiomatization specifies that a freshly allocated block has the bounds that
were given as argument to the alloc function and the bounds of a block are
preserved by an alloc, store or free operation over a different block.

Valid Access (Axiom S18 and Derived Properties D19 to D22). Combining the
definitions of block validity and of bounds of a block, Leroy and Blazy define the
“valid access” relation m |= τ @ b, i, which means that in state m, the block b
is a valid block and the range of byte offsets being accessed is included in the
bounds of b. Intuitively, the store and load operations succeeds if and only if
the corresponding memory reference is valid.

Freshness Property (Properties P30 to P34). In Leroy and Blazy’s concrete mem-
ory model, alloc never reuses block identifiers. Therefore, they define the rela-
tion m # b stating that block b is fresh in memory m. This relation is mutually
exclusive with block validity.

Alloc Determinism (Property P35). Lastly, Leroy and Blazy state that alloc is
deterministic with respect to the domain of the current memory state, i.e. alloc
chooses the same free block when applied twice to memory states that have the
same domain, but may differ in block contents.

2.3 Compiler Passes and Their Soundness Proof

The axiomatization of the previous section specify precise handling of undefined
values, behavior of operations over memory states and “good-variable” proper-
ties. This theory is used to prove the correctness of program transformations
performed by three passes of the Compcert compiler. Our approach follows the
same process presented by Leroy and Blazy and, therefore, we also prove the
correctness of these transformations.

Leroy and Blazy Were Right 25

To prove soundness and safety of each transformation, one need to guarantee
specific results between the memory operations performed by the original and
transformed program. For that, invariants are defined to describe the memory
states at every point of the execution of the original and transformed programs.

Leroy and Blazy use four relations between memory states: memory embed-
dings; memory extensions; refinement of stored values; and memory injections.
For each of them, they define several properties the program needs to hold in
order to prove soundness and safety. We decided to omit the exact definitions,
as the list is exhaustive and falls out of the scope of this paper.3

2.4 Original Coq Proof

Coq uses Gallina, a functional programming language. The close connection
between functional languages and mathematical definitions eases the implemen-
tation of mathematical theories. The Coq development of Leroy and Blazy is
very close to the definitions presented in their paper. In fact, most of the def-
initions in their paper were transcribed directly from their Coq development,
which has approximately 1070 lines of theorems and specifications, and 970 lines
of proof scripts.

Coq does not grant much support for proof automation. Therefore, Leroy and
Blazy manually conducted most of the proofs. Yet, their proofs exhaustively use
the omega tactic, a procedure that automates reasoning about equations and
inequalities over the type nat of natural numbers. They also occasionally use
other tactics (e.g. eauto, congruence), which the authors say were useful.

3 Our Approach in Why3

The formalization of Leroy and Blazy was conducted mostly in first-order logic:
the authors use functions as data, but only to implement finite maps, which
allows a first-order axiomatization. Henceforth, the definitions in Why3 are very
similar to the fragment from Gallina (Coq’s language). In fact, our development
is very similar to the specification and theorems of the Coq version.

Implementation. The Why version of Leroy and Blazy only contained the axiom-
atization of the abstract memory model. Our Why3 development have the axioms
of the abstract memory model and additionally, the implementation of a con-
crete memory model, which allows an extraction of a correct-by-construction
memory model. Our formalization have approximately 1040 lines of theorems
and specifications, roughly the same amount of the Coq version.

Proofs. The automatic theorem provers discharges automatically 114 from a
total of 125 verification conditions using the auto level 3 tactic, which attempts

3 The authors did not presented a summarized list of properties for each of the four
relations.

26 P. Barroso et al.

to apply recursively four transformations (split all full, introduce premises,
inline goal and split vc) and calls the provers with a larger time and memory
limit (30 s and 4 Gb of memory). Using the key 3 of the keyboard (shortcut for
the auto level 3 tactic) we automatically prove the equivalent of approximately
870 lines of proof scripts in Coq (89.6% of the total proof scripts lines). Appendix
A on page 13 of [1] shows the corresponding proofs in Coq and Why3 of one
lemma of the 114.

For the remaining 9 verification conditions (VCs), we follow closely the Coq
proof script, applying transformations one by one and calling the solvers for
each transformation. Three of the VCs require simple induction; four case anal-
ysis before applying the induction hypothesis; one additional properties in the
context that we introduce with assertions and the last one a mix of induction,
case analysis, assertions and additionally proves an existential statement (Table
B1 on page 14 of [1] summarizes the results). Yet, in all nine, the amount of
transformations to complete the proof were significantly less than the steps of
the proof in Coq (circa 117 transformations versus a total of 220).

General Strategies to Achieve a More Automatic Proof. The primary
cons of Why3 regarding proofs with manually conducted interactions are: it is
hard to have a concise global view of all transformations applied, especially on
larger proof trees; moreover after making change in the code, most of the times
Why3 is not able to propagate the exact transformations through the correct
proof nodes, which quite often leads to losses of the whole proof session [2].

To circumvent this, we present the following general techniques to explicitly
state the interactions required for the remaining 9 proofs as WhyML code. This
allows the reader to have the essence of the whole proof just by looking at the
source code. Bellow, we explain and illustrate the approaches namely in the
treatment of induction, assertions and existential properties. The remainder 9
proofs use these techniques. These techniques can be used as general recipes for
provers.

Induction. Why3 provides a way to define lemma functions, which are special
functions that serve not as actual code to execute but to prove the function’s
contract as a lemma. These are useful when proving properties by induction,
as any recursive call to the functions means an application of the induction
hypothesis. Lets consider the following lemma:

lemma set_cont_outside:

forall n, f:(int → option (fset ’a, fset ’a)) , ofs i.

We prove the lemma by induction on n. Let us now convert our lemma to a
recursive lemma function. Recursive lemma functions are declared with the key-
words let rec lemma and its parameters are the universally quantified variables
in the normal lemma:

let rec lemma set_cont_outside (n: int)

(f: (int → option (memtype, value))) (ofs i: int)

Leroy and Blazy Were Right 27

Now we give a contract to the lemma, where each premise is now a precondi-
tion (declared with the requires keyword) and the conclusion a postcondition
(declared with the ensures keyword). To guarantee the function terminates we
state a variant, in this case n itself, which is the argument we are applying
induction:

let rec lemma set_cont_outside (n: int)

(f: (int → option (memtype, value))) (ofs i: int)

requires { n ≥ 0 }

requires { i < ofs ∨ i ≥ ofs + n }

ensures { set_cont f ofs n i = f i }

variant { n }

Finally, we construct the correct recursive call by looking at the definitions of the
functions within the postconditions. In this case we have the function set cont,
which definition is as follows:

let rec ghost function set_cont (f: int → content)

(ofs: int) (n: int) : int → content

requires { n ≥ 0 }

variant { n }

= if n = 0 then f else set_cont (update ofs None f) (ofs + 1) (n-1)

The recursive call of the lemma uses the same argument modifications of the
recursive call of set cont:

let rec lemma set_cont_outside (n: int)

(f: (int → option (memtype, value))) (ofs i: int) ...

= if n > 0 then set_cont_outside (n-1) (update ofs None f) (ofs + 1) i

Why3 is now able to automatically generate a valid induction hypothesis and
prove the lemma. The technique can be used as a general recipe for provers.

Asserts. We introduce assertions in the body of let lemmas. For example in the
lemma store mapped emb, we assert that b1 is a valid pointer in memory state
m1 and b2 is a valid pointer in memory state m2:

let lemma store_mapped_emb

(val_emb: (int → option (int, int)) → value → value → bool)

(emb: int → option (int, int)) (m1 m2: mem_)

(b1 ofs b2 delta: int) (v1 v2: value) (ty: memtype) (m1’: mem_)

requires { ... }

ensures { ... }

= assert { valid_pointer_ ty m1 b1 ofs };

assert { valid_pointer_ ty m2 b2 (ofs + delta) }

The assertions are introduced in the hypotheses of the lemma and Why3 gener-
ates two new VCs to prove both the assertions are valid.

Witnesses for Existential Statements. When one needs to prove an existentially
quantified formula, sometimes the automatic theorem provers are not able to eas-
ily find the specific witness. Therefore, one needs to manually build it. Consider
the following lemma:

28 P. Barroso et al.

lemma store_lessdef:

forall m1 m2 ty b ofs v1 m1’ v2. mem_lessdef m1 m2 →
store_ ty m1 b ofs v1 = Some m1’ → val_lessdef v1 v2 →
exists m2’. store_ ty m2 b ofs v2 = Some m2’ ∧ mem_lessdef m1’ m2’

We convert the lemma to a let lemma and as the lemma now needs to return a
value, we change the signature of the function to return the type of the witness:

let lemma store_lessdef (m1 m2: mem_) (ty: memtype) (b ofs: int)

(v1: value) (m1’: mem_) (v2: value) : (m2’: mem_)

We also need to change the postcondition, which should now ensure the same
properties over the result of the function. This is achieved by replacing the
existential quantified variable with the output value m2’:

ensures { store_ ty m2 b ofs v2 = Some m2’ ∧ mem_lessdef m1’ m2’}

Lastly, the function needs to return a proper witness that satisfied the post-
conditions. In this case, we manually build a new memory state with updated
fields:

let lemma store_lessdef (m1 m2: mem_) (ty: memtype) (b ofs: int)

(v1: value) (m1’: mem_) (v2: value) : (m2’: mem_)

... = ...

(mem_’mk (m2.nextblock) (m2.bounds_) (m2.freed)

(update b (store_contents (m2.contents @ b) ty (ofs + 0) v2)

(m2.contents)))

The proof is now automatic and again, the technique is general.

Outcome. Applying these three techniques to the remainder 9 lemmas, we
reduce 100% the number of manually conducted transformations needed to com-
plete the proofs. Table 1 compares the before and after applying these techniques.

Table 1. Number of transformations before and after

Lemma Number of interactions (Why3)

Before After

1. check cont charact 7 0

2. set cont outside 2 0

3. set cont inside 2 0

4. free list left emb 6 0

5. free list not valid block 6 0

6. embedding no overlap free list 6 0

7. free list fresh block 3 0

8. alloc list left inject 75 0

9. alloc list alloc inject 10 0

Leroy and Blazy Were Right 29

4 Proof Effort

Coq support for proof automation is limited, as one needs to explicitly apply a
sequence of tactics and transformations to prove the desired goal. In contrast, one
of the main focus of Why3 is automation, linking with SMT solvers to discharge
proof obligations, what allows to develop proofs with less effort.

In this section we present metrics to compare our proofs with the Coq version.
We used the original authors’ proof as we are not aware of any improved version
– nowadays Coq has much more support to automation and experts may reduce
significantly the amount of transformations. Anyway, our goal is not a direct
comparison between lines of proof scripts, but how much automation can be
achieved, being this actually the original challenge left by Leroy and Blazy.

Why3 Fully Automatic Proof. All lemmas were automatically proved using
the auto level 3 tactic of Why3. The detailed proof results are available here.
The Table 2 summarizes the structure of the proof.

Table 2. Number of lemmas per module

Module Total

Gen Mem Facts Ref Gen Mem Facts Concrete Mem Rel Mem Mem Extends Mem Lessdef Mem Inject

Number of lemmas 7 12 61 16 7 6 15 124

These results take into consideration the interactions stated explicitly in the
code. Although the automatic theorem provers were able to prove all the lemmas
automatically, we had to use the techniques in Sect. 3 to aid the verification pro-
cess. One might think these techniques do exactly the same thing as the transfor-
mations in the Coq proof scripts. In some sense that is true, we closely followed
the Coq proof script and applied transformations one by one. However, when
explicitly stating the transformations, one gives auxiliary results (e.g. auxiliary
lemmas, assertions, concrete definitions) not a sequence of transformations/tac-
tics as in Coq. On one hand, in Why3 we have the certainty that all auxiliary
results are required to complete the proof (without them it is not possible to
prove the lemmas). On the other, in Coq, one does not have the certainty that
all the tactics are essential to the proof (one just knows that specific sequence
completes the proof). Nonetheless, even without explicitly stating the interactive
proofs, the effort to prove the lemmas in Why3 was way less than in Coq. Let
us compare the non-fully automatic Why3 proof with the Coq version.

Why3 Semi-automatic Proof. The implementation and proofs without
explicit interaction in the code can be consulted here. Even without stating
explicitly the interactions, the theorem provers were able to prove 115 VCs
automatically, which translates into a gain of automation circa 93%. Table 3
summarizes the results.

https://htmlpreview.github.io/?https://gitlab.com/p.barroso/memory-model-c-why3/-/raw/explicit-induction/memorymodel-t/why3session.html
https://gitlab.com/p.barroso/memory-model-c-why3/-/raw/poly/memorymodel.mlw

30 P. Barroso et al.

Table 3. Number of lemmas proved automatically

Module Total

Gen Mem Facts Ref Gen Mem Facts Concrete Mem Rel Mem Mem Extends Mem Lessdef Mem Inject

Number of lemmas 7 12 61 16 7 6 15 124

Automatically proved 7 (100%) 12 (100%) 58 (95%) 14 (87.5%) 7 (100%) 6 (100%) 11 (73.3%) 115 (92.7%)

These 115 VCs corresponds to a total of approximately 870 lines of the Coq
proof script, which in turn consists of 89.6% of the total lines of the entire Coq
proof script. Table B2 on page 14 of [1] compares the amount of transformations
used in interactive proofs in Why3 and Coq. One can see that in Why3 we have
a reduction of 46.8% of the transformations compared to the Coq version, which
means significantly less proof effort.

5 Code Extraction

One extra contribution of our work is the extraction of a correct-by-construction
OCaml implementation of the memory model.

The implementation of Leroy and Blazy uses several undefined functions (e.g.
enough free memory, alignof). In order to extract OCaml code, we need to
organize the code involving these functions and insert them into a parameterized
module (functor). For example, considering the function enough free memory,
we include its signature in the scope of the following Make functor:

scope Make

scope X

val function enough_free_memory (mem: mem_) (i: int) : bool

end = struct ... end

With this manual transformation in the WhyML code (with the respect to the
one we originally used for the proofs), the extraction becomes automatic in the
sense that the obtained OCaml code compiles.

6 Conclusions

In this paper we present two versions in Why3 of the memory model of Leroy
and Blazy, which is used in the Compcert compiler: from the proof point of
view one is semi-automatic and the other results from an engineering effort to
attain full automation (e.g. turning tactics into auxiliary results). Using the
Why3 code extraction mechanism [8], from both versions we get correct-by-
construction OCaml implementations of the memory model.

The first version is a direct translation from the Coq development to Why3.
We immediately gain 93% of automation. The remaining 7% were proved follow-
ing closely the Coq proof script. Nonetheless, in Why3 the amount of transfor-
mations required for the theorem provers to validate the proofs were significantly
less (117 transformations versus a total of 220).

Leroy and Blazy Were Right 31

The second version is a fully automatic proof. We performed general tech-
niques (explained in Sect. 3) to explicitly define the interactive proofs of the first
version within the WhyML code. This improves readability, as one does not need
to open the Why3 IDE to verify which transformations are used, it is possible
to have the essence of the proof just by analyzing the code. Furthermore, as the
proof is fully automatic, this approach also preserves the proof-sessions, allowing
a simple replay to check the reproducibility of the results.

Lessons Learned. Nothing of the memory model was inexpressible in WhyML.
This confirms the premise that automatic verification tools are well-good candi-
dates to defiant proofs of complex programs without losing expressiveness.

Furthermore, most of the proofs required a handful of transformations and
nevertheless 93% of the proof was performed by merely pressing a button (hence
using automatic tactics, like split, etc.). It is possible to save time and effort
to the proofs that are actually challenging.

It is undoubtedly that we are, at some point, limited to first order logic,
however if one reaches the limits of these type of provers, one can still prove the
remaining goals in Coq for example. In fact, Why3 provides a Coq tactic to call
external theorem provers as oracles.

Nonetheless, to achieve an even higher level of automation we performed
some refactoring to expose properties to the WhyML code: created auxiliary
lemmas from patterns that constantly appear in the Coq proof script; defined
inductive predicates to avoid proofs by induction; and transformed existential
proofs to lemma functions which return the desired witness.

Acknowledgement. Work partially supported by the Portuguese Fundação para a
Ciência e Tecnologia via NOVA LINCS (UIDB/04516/2020) and by the first author
PhD grant (UI/BD/151265/2021).

References

1. Barroso, P., Pereira, M., Ravara, A.: Leroy and blazy were right: their memory
model soundness proof is automatable (extended version) (2022). https://doi.org/
10.48550/ARXIV.2212.02425, https://arxiv.org/abs/2212.02425

2. Bobot, F., Filliâtre, J.-C., Marché, C., Melquiond, G., Paskevich, A.: Preserving
user proofs across specification changes. In: Cohen, E., Rybalchenko, A. (eds.)
VSTTE 2013. LNCS, vol. 8164, pp. 191–201. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54108-7 10

3. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

4. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009). https://doi.org/10.1007/s10817-009-9155-4

5. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. J. Autom. Reason. 41, 1–31 (2008). https://
doi.org/10.1007/s10817-008-9099-0

https://doi.org/10.48550/ARXIV.2212.02425
https://doi.org/10.48550/ARXIV.2212.02425
https://arxiv.org/abs/2212.02425
https://doi.org/10.1007/978-3-642-54108-7_10
https://doi.org/10.1007/978-3-642-54108-7_10
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/s10817-008-9099-0

32 P. Barroso et al.

6. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiprocessors.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 495–512.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 36

7. Mansky, W., Garbuzov, D., Zdancewic, S.: An axiomatic specification for sequen-
tial memory models. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9207, pp. 413–428. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21668-3 24

8. Pereira, M.J.P.: Tools and techniques for the verification of modular stateful
code. (Outils et techniques pour la vérification de programmes impératives modu-
laires). Ph.D. thesis, University of Paris-Saclay, France (2018). https://tel.archives-
ouvertes.fr/tel-01980343

9. Ševč́ık, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: Com-
pCertTSO: a verified compiler for relaxed-memory concurrency. J. ACM 60(3),
1–50 (2013). https://doi.org/10.1145/2487241.2487248

10. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

https://doi.org/10.1007/978-3-642-31424-7_36
https://doi.org/10.1007/978-3-319-21668-3_24
https://doi.org/10.1007/978-3-319-21668-3_24
https://tel.archives-ouvertes.fr/tel-01980343
https://tel.archives-ouvertes.fr/tel-01980343
https://doi.org/10.1145/2487241.2487248

Shellac: A Compiler Synthesizer
for Concurrent Programs

Christopher K. Chen(B) , Margo I. Seltzer , and Mark R. Greenstreet

The University of British Columbia, Vancouver BC V6T 1Z4, Canada
cchen@nougat.org, {mseltzer,mrg}@cs.ubc.ca

Abstract. Formal specification languages such as tla+ and unity are
used to design and verify concurrent programs. These languages are
intended for analysis rather than for execution. A compiler or a human
must implement the specified program in a lower-level executable lan-
guage. We present Shellac, a compiler synthesizer that completes a sketch
of a syntax-directed compiler by using program synthesis to derive trans-
lation rules. This approach produces a correct-by-construction compiler
without burdening the compiler writer with manual specification and
verification. We evaluate Shellac by synthesizing a compiler from unity
to Arduino c++ and Verilog, then compiling Paxos consensus in unity
to implementations in Arduino c++ for microcontrollers and Verilog for
reconfigurable hardware.

Keywords: Automatic programming · Compilation · Concurrency ·
Formal models · Program synthesis

1 Introduction

Concurrent programs are notoriously difficult to write, debug, and verify. This is
especially the case with imperative programs that mix state mutation and control
flow, where the resulting state explosion makes formal analysis intractable.

Formal specification languages and program logics, e.g., tla+ and unity,
enable the design and verification of concurrent programs at an abstract level
[7,10]. A specification written in such a language describes a state machine
by formally defining valid initial states and permitted state transitions. Such
specifications are behavioural as opposed to logical, e.g., a temporal logic formula.

A behavioural specification by itself is useful for analysis and as a design
tool, but in general, it is too abstract for direct execution. Often, a programmer
manually translates a specification to a lower-level implementation language.
This process is error-prone and verifying correctness, e.g., showing refinement,
requires substantial proof effort, e.g., seL4 [5]. Alternatively, a programmer could
write a compiler from a specification to an implementation language, e.g., Com-
pCert, but still, the engineering and verification effort remains incredibly high

We acknowledge the support of the Natural Sciences and Engineering Research Council
of Canada (nserc).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Lal and S. Tonetta (Eds.): VSTTE 2022, LNCS 13800, pp. 33–51, 2023.
https://doi.org/10.1007/978-3-031-25803-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25803-9_3&domain=pdf
http://orcid.org/0000-0002-5608-7550
http://orcid.org/0000-0002-2165-4658
http://orcid.org/0000-0002-1864-9495
https://doi.org/10.1007/978-3-031-25803-9_3

34 C. K. Chen et al.

[8]. We are interested in automatic and verified techniques for generating pro-
grams that meet their specifications. In particular, we exploit program synthesis
to reduce the proof burden of verifying an implementation against its behavioural
specification.

Program synthesis is any procedure that generates a program that satisfies
some constraint. If the constraint is a correctness condition with regard to a
specification, then the synthesized implementation is correct by construction.
This means that, assuming the correctness of the synthesis procedure, no fur-
ther proof is required. We focus on counterexample-guided inductive program
synthesis (cegis), where a search-verify-refine loop uses verification counterex-
amples to prune the search space [15]. Any decidable, search-based synthesis
procedure places bounds, e.g., expression depth or number of instructions, over
the infinite space of programs. This exponential search space explosion makes it
difficult for cegis to find programs that satisfy nontrivial specifications.

We present a method to construct a compiler by generating verified transla-
tion rules via program synthesis. Our synthesized compiler accepts unity spec-
ifications and generates implementations in Arduino c++ and Verilog [1,4].
Instead of synthesizing concrete c++ or Verilog programs from a complete
specification, we synthesize implementations of elements of unity’s expression
syntax. Each of these synthesized implementations takes the form of a rewrite
rule from source to target. These synthesized rewrite rules are assembled into a
recursive syntax-guided compiler pass. We show that for channel-based unity
programs, syntax-guided translation preserves the specification’s safety and live-
ness properties. Shellac, our compiler synthesizer, is written in Rosette [16]. The
programs that Shellac synthesizes have all the benefits of traditional compila-
tion: they are deterministic and handle arbitrary source programs that satisfy a
channel-based schema. We provide:

1. A rewrite rule synthesizer that includes language embeddings in Rosette and
a procedure for generating rewrite rules between languages.

2. A proof that the compiler preserves safety and liveness properties for channel-
based unity programs.

3. An evaluation of rewrite rule synthesis performance and the compilation of
Paxos consensus from unity to Arduino c++ and Verilog.

2 Preliminaries

Shellac starts with a partial compiler, or a sketch, whose organization is illus-
trated in Fig. 1. We begin with an discussion of our state and process model.
Next, we describe an abstract channel model for asynchronous communication
and a dataflow merge specification used as a running example. Given that con-
text, we introduce the unity specification, boolean-bitvector parallel, boolean-
bitvector scalar, boolean-bitvector sequential, Arduino c++, and Verilog
languages.

Shellac: A Compiler Synthesizer for Concurrent Programs 35

Fig. 1. Source (salmon), intermediate (indigo), and target (tangerine) languages with
compiler passes. Boxes highlight semantic similarities.

2.1 State, Assignment, and Processes

The source and target languages modelled here are all imperative: we effect
computation by mutating state. Each program is defined over a set of vari-
ables, and a state is a mapping from those variables to values. Programs oper-
ate by inspecting the current state of their variables and, if permitted, assign-
ing new values to a subset of them, effecting a state transition. Variables are
either internal or shared. Shared variables are reserved for channel communica-
tions, described below. The languages presented differ in their assignment/state
transition semantics. In particular, unity, boolean-bitvector parallel/scalar, and
Verilog state transitions are parallel and atomic, while boolean-bitvector sequen-
tial and Arduino c++ state transitions occur sequentially with each assignment
statement.

Our coarse-grained concurrency model is based upon communicating pro-
cesses. Each such process, P , must be coherent: if P writes to some variable, v,
no other process writes to v; if process P reads v and some other process, C,
writes to v, then C must be a channel as described below. Processes execute one
assignment at a time. Concurrency is a property of a system of processes, not of
a process itself.

2.2 Channels

Interprocess communication is via point-to-point channels. At the specification
level, a channel, c is an abstract data type. Channel operations are listed in
Table 1.

36 C. K. Chen et al.

Table 1. Channel operations

Function Signature Precondition Description

empty?(c) channel → boolean true Empty predicate

full?(c) channel → boolean true Full predicate

drain(c) channel → channel full?(c) Drains c

fill(c, v) channel × boolean → channel empty?(c) Fills c with v

read(c) channel → boolean full?(c) Extracts value from c

The channel ensures that c′ := fill(c, v) leads to a state where ¬empty?(c′)
holds for the sender and from which full?(c′)∧ read?(c′) = v will eventually hold
for the receiver. Likewise, c′ := drain(c, v) leads to a state where ¬full?(c′) holds
for the receiver and from which empty?(c′) will eventually hold for the sender.
The use of the ′ after the variable name indicates the new value after assignment.
The empty? query and fill operation are only valid for a process designated as
the sender. Likewise, full?, read, and drain are only valid for the receiver.

2.3 Dataflow Merge Element

We use a merge operator as a running example; it takes two input channels,
inA and inB, and transmits anything received on those channels to the output
channel, out. In the case where both input channels are full and out is empty,
the specified behaviour is nondeterministic, and either assignment can occur.

2.4 UNITY

unity is a language for specifying parallel and distributed programs [10]. We
provide an informal overview of assignment syntax and semantics here – and pro-
vide a formalization of expressions and state transitions later. We do not cover
Chandy and Misra’s unity program logic. A specification defines variables, ini-
tial state, and next-state assignments. A unity program may reach a fixed point,
but it does not halt in the traditional sense. We discuss datatypes, followed by
parallel assignment, then nondeterministic choice. Our examples include merge
and channel processes.

Datatypes. Our model of UNITY includes primitive datatypes, send/receive
buffers, and channels. Send/receive buffers are fixed length lists with a cursor for
serializing data to be sent over a channel. Presently, Shellac supports booleans
and natural numbers for primitive datatypes, send/receive buffers that are lists
of booleans, and channels for boolean data.

Shellac: A Compiler Synthesizer for Concurrent Programs 37

Simultaneous Assignment. A simultaneous assignment statement has a list
of variables on the left side and an expression list on the right side. The expres-
sion list is either simple or conditional. A simple list contains expressions cor-
responding to the assignment’s variables: e.g., a, b := 42, a + 3 assigns the value
42 to a and the sum of 3 and the original value of a to b. Parallel assignments
are independent and simultaneous: the expressions are evaluated to values before
any assignments are made, and all assignments occur in one atomic action. A
conditional list pairs simple expression lists with boolean guard expressions: e.g.,
for the dataflow merge assignment from inA to out :

inA, out :=
{
drain(inA),fill(out, read(inA)) if full?(inA) ∧ empty?(out)

In the above case, there is only one guarded assignment, but in general, a
conditional list may contain an arbitrary number of expression list and guard
pairs. Guards are not required to be exhaustive. If no guard is true, the state is
left unchanged. If two guards are true, their corresponding expression lists must
evaluate to the same values. Parallel assignment is deterministic.

Nondeterministic Choice. Note that our description of dataflow merge does
not specify what to do if both input channels were full, when both assignments
are permitted. We express this nondeterminism in unity by composing simul-
taneous assignments with the box operator

�
:

inA, out :=
{
drain(inA),fill(out, read(inA)) if full?(inA) ∧ empty?(out)

�

inB, out :=
{
drain(inB),fill(out, read(inB)) if full?(inB) ∧ empty?(out)

Nondeterministic choice is subject to a fair selection or absolute fairness con-
straint: every assignment is executed infinitely often. Note that this property
implies weak fairness, but not strong fairness.

Channel Asynchrony. As described previously, channels are asynchronous
processes accessed via shared variables, with channel processes responsible for
propagating state between senders and receivers. Because state propagates asyn-
chronously, parallel atomic channel actions by one process may appear to an
observer in any sequence or simultaneously.

2.5 Boolean-Bitvector Parallel

The boolean-bitvector parallel intermediate language is a lowering of unity to
tuples booleans and fixed-length bitvectors. Booleans are encoded as boolean

38 C. K. Chen et al.

singletons and bounded naturals are encoded as bitvector singletons. Send/re-
ceive buffers are encoded as the bitvector pairs 〈cursor, data〉. Channel values
are already encoded in unity as boolean triples 〈req, ack, data〉, resembling sig-
nals on a serial communication line. A boolean-bitvector channel is empty if
req = ack, full if req �= ack. Senders cannot modify ack, and receivers cannot
modify req or data.

Assignment semantics are identical to unity, where individual assignments
are deterministic, parallel, and atomic. Nondeterministic choice over assign-
ments is also subject to a fair selection constraint. We describe the behaviour of
dataflow merge for inA in boolean-bitvector parallel:

inA.ack, out.req, out.data :=

{
〈inA.req,¬out.req, inA.data〉

if inA.req �= inA.ack ∧ out.req = out.ack

2.6 Boolean-Bitvector Scalar

The boolean-bitvector scalar intermediate language is a scalar version of boolean-
bitvector parallel, with tuple values split into scalars. Assignment semantics are
unchanged.

2.7 Boolean-Bitvector Sequential

The boolean-bitvector sequential intermediate language is a sequential ver-
sion of boolean-bitvector scalar. Parallel atomic assignments are replaced by
sequences of scalar assignments, with fair selection over sequences. We describe
the behaviour of merge for inA in boolean-bitvector sequential:

if inA.req �= inA.ack ∧ out.req = out.ack⎧
⎪⎨
⎪⎩

out.data := inA.data;
out.req := ¬out.req;
inA.ack := inA.req;

A boolean-bitvector sequential program executes variable assignments one at
a time and in order. This exposes intermediate states not accounted for in the
specification, opening the possibility to a violation of a specification property. We
describe in Sect. 3.4 ordering constraints that rewrite rules must encode such that
sequential implementations preserve the behaviours of the original specification.

2.8 Target Platforms

To demonstrate Shellac, we use Arduino mkr Vidor 4000 prototyping boards
with arm microcontrollers and Intel fpgas. This allows us to demonstrate com-
pilation to both hardware and software. With several boards and some wire, we
demonstrate a small-scale distributed system.

Shellac: A Compiler Synthesizer for Concurrent Programs 39

Arduino. The Arduino language is an api in C++ derived from the Wiring lan-
guage [1,3]. The API provides functions for reading and writing from hardware
input/output pins.

Shellac generates a compiler with a backend from boolean-bitvector sequen-
tial to Arduino c++. The Arduino project toolchain compiles C++ into arm
machine code and programs the microcontroller.

Verilog. Verilog is a simulation and design language for digital circuits [4]. The
non-simulation subset of the language that can be realized in digital circuits is
referred to as synthesizable Verilog.

Shellac generates a compiler with a backend from boolean-bitvector scalar
to synthesizable Verilog. An Intel toolchain compiles Verilog into a bitstream for
configuring the fpga, turning it into a custom digital device.

3 Formalization and Mechanization

The unity specification language is structured around an explicit separation
between functional expression evaluation and atomic state transition. This sep-
aration allows us to formulate correctness by focusing on each concern inde-
pendently. Two compilation passes engage in a semantic transformation that
requires a formalization of correctness:

1. unity assignment to boolean-bitvector parallel assignment, where we show
that specification expression semantics are preserved

2. Boolean-bitvector scalar to sequential assignment, where we show that target
state transitions are a refinement of the specification

We describe these formal relations, their mechanization in Rosette, and how
Shellac generates verification conditions for synthesizing rewrite rules.

3.1 The Implements Relation Between Expressions

Our language embeddings give a functional interpretation of expression seman-
tics. The expressions of a language L are defined over:

– A set of values vals(L)
– A set of variables vars(L)
– A set of operators ops(L)
– An inductively defined set of expressions exprs(L)

• If t ∈ vals(L), then t ∈ exprs(L)
• If t ∈ vars(L), then t ∈ exprs(L)
• If n-ary op ∈ ops(L) and a0, . . . an ∈ exprs(L), then op(a0, . . . an) ∈
exprs(L)

– A set of states, states(L), each a mapping function vars(L) → vals(L)
– A partial function evalL : exprs(L) × states(L) → vals(L)

40 C. K. Chen et al.

We describe relations between a source language S and a target language T .
Because S and T may be at different levels of abstraction, we describe a scheme
where values in vals(S) can be encoded using n-tuples of values in vals(T)n.
That is, for any source variable, there exist a tuple of target variables, and the
value of those target variables is related to the value of the source variable. We
define a variable mapping function varmapST from S variables to T variable
tuples:

vartuples(T) =
∞⋃

n=1

vars(T)n

varmapST ⊂ vars(S) × vartuples(T)

Similarly, we define a value mapping function valmap from T value tuples to S
values:

valtuples(T) =
∞⋃

n=1

vals(T)n

valmapTS ⊂ valtuples(T) × vals(S)

We treat valmapTS as a partial function and varmapST as a total function. The
direction of each relation is motivated by the desire to translate target type
environments from source to target and to lift values from target to source.

Given value and variable mappings between source and target languages, we
can now describe a relation between source and target states, where a state is
a mapping from variables to values. We say that stt in states(T) encodes sts in
states(S), or stt � sts iff stt reflects sts under variable and value mapping:

∀stt ∈ states(T), sts ∈ states(S).
stt � sts ⇐⇒

∃valmapTS , varmapST .

∀〈vars, vals〉 ∈ sts.

vals = valmapTS (stt(varmapST (vars)0) . . . , stt(varmapST (vars)n))

where subscripts 0, n refer to elements of the target variable tuple.
The evaluation function maps expressions and states to values. Now that we

have a relation between source and target states, we can describe what it means
for a tuple of target expressions to implement a source expression. We define a
set of expression tuples over the expressions of T :

exprtuples(T) =
∞⋃

n=1

exprs(T)n

We say that exprt in exprtuples(T) implements exprs in exprs(S), or exprt �
exprs iff exprt in stt and exprs in sts evaluate to the same value under value
mapping when stt encodes sts:

Shellac: A Compiler Synthesizer for Concurrent Programs 41

∀exprt ∈ exprtuples(T), exprs ∈ exprs(S).
exprt � exprs ⇐⇒

∃valmap.
∀stt ∈ states(T), sts ∈ states(S).
stt � sts =⇒
valmapTS (evalT (exprt0, stt) . . . , evalT (exprtn, stt)) = evalS(exprs, sts)

where subscripts 0, n refer to elements of the target expression tuple.

3.2 Mechanizing the Implements Relation

Shellac is implemented in the Rosette solver-aided language. unity, Arduino
c++, and Verilog are modelled by deep embeddings: primitive values and
abstract syntax are encoded as data structures and the semantics are defined
by an evaluation function over those data structures. Boolean-bitvector interme-
diate languages are modelled by shallow embeddings: they use Rosette’s native
boolean and bitvector primitives and functions.

Value and Variable Mapping. The user provides a typemap function from
unity types to tuples of boolean-bitvector types. Simple datatypes such as
booleans and the natural numbers map respectively to singleton tuples of boolean
and bitvector. More complex types such as channels and booleans map respec-
tively to a triple of booleans and a pair of bitvectors. In addition, the user
provides valmap functions for each unity type that translate corresponding
boolean-bitvector tuples to unity values, e.g., booleans, natural numbers, chan-
nels, and buffers. Combined with a unity specification’s variable declarations,
typemap is used to generate the appropriate variable mapping function.

Generating the Verification Condition. Shellac synthesizes tuples of
boolean-bitvector expressions for each unity operator. These synthesized
expressions satisfy the implements relation described above. We express this con-
straint as a verification condition generated via symbolic execution in Rosette.
The verification condition is parameterized over typed holes: variables that rep-
resent boolean-bitvector expressions. The types of these holes are determined
by applying the type mapping over the domain and codomain of the unity
operator. For example, fill : channel × boolean → channel type maps to the
corresponding boolean-bitvector signature:

〈boolean, boolean, boolean〉 × 〈boolean〉 →
〈boolean, boolean, boolean〉

From here we can see the shape of the rewrite: from a triple and singleton of
booleans in the domain to a triple of booleans in the codomain. We establish
related unity and boolean-bitvector inputs by creating a symbolic representa-
tion of the boolean-bitvector domain then lift it with value mapping functions.

42 C. K. Chen et al.

For example, we first allocate fresh variables for the boolean-bitvector channel:
creq, cack, cdata and boolean: val. Next, we lift the boolean-bitvector inputs to
unity inputs by value mapping:

valmapchannel(creq, cack, cdata) : channel
valmapboolean(val) : boolean

We can now use the lifted values in our unity model. This allows us to express
pre- and post-conditions. The fill operator is only defined over empty channels,
so our precondition P is generated by applying the predicate empty? from the
unity model to the lifted channel:

P = empty?(valmapchannel(creq, cack, cdata))

Similarly, we generate our postcondition Q by applying fill from the unity model
to the lifted channel and value:

Q = fill(valmapchannel(creq, cack, cdata), valmapboolean(val))

Now that we have pre- and post-conditions in terms of lifted boolean-
bitvector values in unity, we turn our attention to the boolean-bitvector
codomain. We generate additional fresh boolean variables for the channel in
the codomain, using � to denote a typed hole: �req,�ack,�data.

We can also express boolean-bitvector invariants. In the case of fill, a channel
sender can modify only the request and data lines, so the acknowledge line should
remain unchanged: I = �ack = cack.

We now state the verification condition: for all inputs, if the precondition P
holds, the invariant I holds and the lifted codomain channel equals the postcon-
dition Q:

∀creq, cack, cdata, val ∈ B.

P =⇒ I ∧ valmapchannel(�req,�ack,�data) = Q

3.3 Searching the Space of Expressions

The verification condition presented above is in terms of holes that represent
arbitrary expressions. Synthesis as done in Rosette is done over a symbolic syntax
graph that represents all productions over an inductive syntax, bounded, in this
case, by expression depth. Shellac drives synthesis by substituting a symbolic
syntax graph for each typed hole in a verification condition and using Rosette’s
cegis procedure to drive a smt solver until either a satisfying model is found
or the solver returns unsat. If the solver returns a satisfying model, we have
a solution, and after applying the model to the symbolic syntax graph, we are
left with a boolean-bitvector abstract syntax tree that satisfies the verification
condition. If the solver returns unsat, Shellac expands the bound on the symbolic
syntax graph and retries synthesis, or if a depth limit is reached, returns a failure.

Shellac: A Compiler Synthesizer for Concurrent Programs 43

Symbolic Syntax Graphs. A symbolic syntax graph is a boolean encoding of
a set of abstract syntax trees. Shellac symbolic syntax graphs are s-expressions
containing Rosette choose expressions. For example, (choose 1 2 3) evaluates
in Rosette into a boolean expression encoding the choice:

> (define choices (choose* 1 2 3))

> choices

(ite xi?$1 1 (ite xi?$2 2 3))

In this simple example Rosette allocates fresh boolean variables xi?$1 and xi?$2
whose truth values govern the value of the expression. For example, this choose
expression can be included in an assertion that can be sent to an smt solver:

> (solve (assert (= 1 choices)))

(model

[xi?$1 #t]

[xi?$2 #f])

Verification Condition Partitioning. The number of boolean variables
induced by the Rosette runtime when generating a symbolic syntax graph grows
exponentially with expression depth. In the case where a verification condition
for synthesis contains multiple typed holes, each one replaced with a symbolic
syntax graph, the number of variables can grow to the point where smt solver
performance begins to suffer. We observe that when the verification condition is
a conjunction, if typed holes occur in distinct sets of subterms, we can partition
the verification condition into subproblems, simplifying the task. We show the
effectiveness of this optimization in Sect. 4.

3.4 Ordering to Satisfy Refinement

In the case of channel fill, the order of assignments on a sequential execution
matters a great deal. The final phase of rewrite rule synthesis finds an ordering
of assignments such that the externally visible states induced by the assignments
satisfy refinement, i.e., intermediate states map to P or Q, and the transition is
monotonic. The notion of refinement used here is of Lynch and Vaandrager on
simulation relations between automata [9].

The final rewrite rule for the fill operation is encoded in a translation-rule
form:

(translation-rule

;; Precondition (channel empty)

(<=> req ack)

;; Domain

(list (list req ack data) (list value))

;; Codomain (synthesized expressions)

(list (! req) ack value) ;; Codomain

;; Ordering constraints (indices into codomain)

(list (ordering 2 0) (ordering 1 0)))

44 C. K. Chen et al.

A translation-rule form contains symbolic constants, e.g., req, ack, data, and
value; these are substituted with compiled subexpressions by the recursive
syntax-directed pass. The ordering constraints specify happens-before or simulta-
neously with relationships between indices in the tuple of synthesized expressions
for sequential assignment. For example, (ordering 2 0) specifies that the value
assignment must come before or synchronously with the (! req) assignment.
The (ordering 1 0) is a trivial constraint: the ack assignment is a no-op.

3.5 Correctness of the Synthesized Programs

The asynchronously composed simultaneous assignments are partitioned by the
user into processes. Processes can be channels or compute-processes. Channels
provide point-to-point communication between two (not-necessarily distinct)
processes. A property is stable in a process if no actions by other processes
can falsify it. The channel protocol ensures that a channel being full is a stable
property of the process that reads the channel; furthermore, the value of such a
channel is stable when the channel is full. Likewise, a channel being empty is a
stable property of the process that writes the channel.

The rules for translating channels to boolean-bitvector (parallel or sequential)
are provided by the Shellac developer – they are effectively an api. These rewrite
rules ensure that a receive channel is only read or drained from states in which a
channel is full, and likewise for send channels. When synthesizing sequential code,
all read operations on a channel in a simultaneous assignment must be performed
before any drain operation; likewise, the data value of a send channel must be
updated before the status is set to full. Finally, guards on receive channels must
be monotonic in the channel being full, and guards on send channels must be
monotonic in the channel being empty. We can now sketch the correctness and
liveness properties for programs synthesized by Shellac.

Correctness of Synthesized Sequential Implementations. For each simul-
taneous assignment of the compute process, Shellac synthesizes code that evalu-
ates the guard(s), then evaluates the right-hand side(s), and finally updates the
left-hand side(s) of the assignment. When execution reaches a point where the
guard(s) have been shown to be satisfied, the abstraction function can map the
implementation state, and all subsequent states until the code block is finished,
to the state corresponding to a completed simultaneous assignment. The careful
reader might note that a single simultaneous assignment could fill and/or drain
several channels, that the sequential implementation will perform these oper-
ations in some order, and this could enable external processes to fill or drain
channels written or read by this process before the sequential implementation of
the simultaneous assignment is complete. This is indeed the case. Such opera-
tions are non-interfering due to the stable properties noted above, and thus they
do not affect the outcome of the simultaneous assignment. The “explanation” in
the abstraction of implementation state to specification state is that the simul-
taneous assignment completed (as soon as it was started), and these operations
by other processes happened later.

Shellac: A Compiler Synthesizer for Concurrent Programs 45

Correctness of Parallel Implementations. Each simultaneous assignment is
performed on a single clock “tick” and the state update matches the specification.

Liveness. unity requires fair selection but does not provide stronger fairness
guarantees. Both the sequential and parallel implementations produced by Shel-
lac perform round-robin execution of the simultaneous assignments in each pro-
cess. This ensures fair selection.

4 Evaluation

We evaluate Shellac by measuring the performance of the rewrite rule synthesizer
and of the synthesized compiler itself. Is rewrite rule synthesis feasible, and does
the search conclude with a reasonable timeframe? Is the synthesized compiler
capable of processing a nontrivial specification, the single-proposer version of
the Paxos consensus algorithm [6]?

4.1 Experimental Setup

We ran Shellac on an Intel Xeon W-2275 3.30 GHz cpu with 128 GiB of memory.
Shellac ran on Rosette 4.1 on Racket 8.6, with z3 4.8.8. We ran the output of
the synthesized compiler on Arduino mkr Vidor 4000 development boards, each
of which contains an arm Cortex-M0 microprocessor and an Intel Cyclone fpga
[2].

4.2 Rewrite Rule Synthesis

We study the synthesis time for various unity operations, presented in Table 2.
The number of boolean variables tracks the exponential growth in the number of
boolean-bitvector expressions encoded in each symbolic syntax graph. Operators
are categorized by their general types: boolean, natural numbers, channels, and
arbitrary-length boolean list buffers. Rewrite rules for boolean, natural num-
ber, and channel operators synthesize quickly due to the narrow semantic gap
between source and target. unity list-of-booleans buffers are encoded as bitvec-
tors in boolean-bitvector, so buffer operations become bitwise expressions. In
the case of recv-buf-put, a satisfying boolean-bitvector was only found after
expanding the depth bound on the symbolic syntax graph to 4. In addition to
the exponential growth in the search space as expression depth increases, it is
known that cegis is less efficient at finding useful counterexamples for bitvector
program synthesis [13].

Verification Condition Partitioning. Table 3 shows the effect of verifica-
tion condition partitioning for applicable operator synthesis runs. For smaller
symbolic syntax graphs, the overhead of processing and managing multiple
smt solver runs leads to a slowdown, but as the search space grows, i.e.,
recv-buf-put, the significant reduction in each partition’s search space leads to
a significant performance increase, 4.33× faster.

46 C. K. Chen et al.

Table 2. UNITY operator to boolean-bitvector expression rule synthesis. Variables
and time are grouped by search round: the number referring to the depth of that
round’s symbolic syntax graph. Variables refer to boolean variable count. Time refers
to Rosette runtime and smt solver time combined. A blank cell indicates success in the
previous round.

Operator Variables
at search
round

Time (ms) at
search round

Time (ms)

1 2 3 4 1 2 3 4

not 4 22 35 90 125

and 6 28 37 131 168

or 6 28 44 143 187

<=> 6 28 43 150 193

empty? 8 34 42 115 157

full? 8 34 49 160 209

read 8 24 24

drain 18 33 33

fill 22 110 54 270 324

recv-buf-full? 2 22 43 159 202

send-buf-empty? 2 22 42 161 203

empty-recv-buf 7 27 27

empty-send-buf 9 26 26

nat->send-buf 10 45 45

recv-buf->nat 8 128 128

recv-buf-put 16 50 118 254 153 447 2038 68076 70714

send-buf-get 2 22 86 274 67 297 26269 73608 100241

send-buf-next 13 43 72 326 398

+ 8 23 68 191 259

=? 2 22 42 1058 1100

<? 2 22 51 314 365

4.3 Paxos Consensus

We implemented Lamport’s single-decree synod consensus algorithm [6] in
unity. Paxos solves the problem of achieving distributed consensus: getting a
collection of distributed processes to agree on a value. The processes execute in
a shared nothing environment, which means that they interact with each other
only through message passing.

The basic Paxos protocol defines three classes of participants: proposers,
acceptors, and learners. Proposers and acceptors are active participants and
learners are passive. Proposers initiate a protocol round by sending prepare mes-
sages to a majority of the acceptors. The acceptors reply with promise messages,

Shellac: A Compiler Synthesizer for Concurrent Programs 47

promising to accept a proposed value. Once a proposer receives promise replies
from the majority of the acceptors, it sends accept messages to acceptors to com-
mit a value. Acceptors reply to the accept message with an accepted message,
indicating that the value is committed and the round is complete. After a value
is accepted by an acceptor, additional accepted messages are sent from acceptors
to learners: this propagates the consensus value.

Table 3. The effect of verification condition partitioning on expression rule synthesis
for applicable operators. Results are shown for each partition. Cumulative times are
compared against Table 2 to determine speedup. A blank cell indicates success in the
previous round.

Operator Variables
at search
round

Time (ms)
at search
round

Time (ms) Speedup

1 2 3 4 1 2 3 4

read 0 21 43 0.56×
8 22

drain 13 30 52 0.63×
8 22

fill 16 75 51 199 299 1.08×
10 49

empty-recv-buf 4 20 50 0.54×
4 30

empty-send-buf 4 23 53 0.49×
4 30

nat->send-buf 6 37 110 0.41×
6 73

recv-buf-put 10 27 41 199 16329 4.33×
10 27 61 129 151 321 2217 13400

send-buf-next 8 23 36 153 257 1.55×
8 68

The safety guarantee of the Paxos algorithm ensures that once a value has
been chosen, that value will remain stable. The algorithm guarantees this by
associating each protocol round with a ballot number. Proposer’s prepare mes-
sages are required to have a ballot number greater than that of any existing
prepare request. Acceptors are required to inform proposers in promise mes-
sages if they have already accepted a value and the associated ballot number.
When an acceptor sends a promise reply, it promises to ignore any requests with
lesser ballot numbers. Proposers are required to propose the previously accepted
value with the greatest ballot number, ensuring the stability of the previously
accepted value.

48 C. K. Chen et al.

Table 4. Paxos compilation time for boolean-bitvector (bbv) parallel and sequential
passes in milliseconds

Role unity to bbv
parallel

to bbv scalar to bbv sequential

Proposer 2560 40 768

Acceptor 1045 11 252

4.4 Specification of Paxos

Specifications for the proposer and acceptor in unity use a pair of channels
between each proposer and acceptor. Each pair of channels require six i/o pins.
With a 22 pin budget, this limits specifications to three channel pairs using 18
pins. The specification defines a topology with one proposer and three acceptors.
The acceptor and proposer specifications contain 14 and 34 clauses respectively.

Topologies containing up to three proposers and three acceptors are possible.
A 3 × 3 topology requires a modified acceptor specification to include the addi-
tional proposers. No changes to the proposer specification are required, because
proposers communicate only with acceptors.

Compilation of Proposer and Acceptor. Compilation times for proposer
and acceptor specifications are shown in Table 4. Translating from unity to
boolean-bitvector parallel takes a few seconds. This is due to verification that any
preconditions generated during compilation are implied by the guards. In com-
parison, translating from boolean-bitvector parallel to sequential only requires
solving for ordering constraints and completes very quickly.

5 Related Work

We are not aware of other work in the synthesis of rewrite rules for compil-
ing concurrent specifications. However, we consider related work in inductive
program synthesis, compiler synthesis, and asynchronous circuit design.

The space of expressions is encoded as a symbolic syntax graph structure,
where the choice of possible children for a node is taken from the grammar of the
language. Many of the expressions we are interested in synthesizing involve bit-
wise manipulations and comparisons. This is the case when encoding buffers as
bitvectors. Solar-Lezama et al. provide the first example of sketch-based program
synthesis, referring to their technique as compilation by constraint-solving [14].
This work also provided the first example of the insight behind the cegis tech-
nique. Sketch-based programming requires the user to provide a partial program
with holes that the program synthesizer fills to satisfy a constraint.

There have been previous efforts in exploiting program synthesis to guarantee
compiler correctness. Van Geffen et al. use sketch-based program synthesis to
build a just-in-time compiler from the ebpf virtual instruction set to risc-v [18].

Shellac: A Compiler Synthesizer for Concurrent Programs 49

The search space of assembly routines for an instruction set like risc-v is huge, so
they partition the search space an ordered set of compiler metasketches. Our work
differs in the relative abstraction difference between source and target languages.
Both ebpf and risc-v are load-store register machines, while our focus on unity
is to enable the compilation of concurrent or distributed programs.

Our focus on channel-based unity specifications was inspired by self-timed
digital circuit design. Udding described three classes of circuit specifications
invariant to signal delay: for synchronization, data communication, and arbi-
tration [17]. Our channel model is defined to satisfy the properties of Udding’s
arbitration class of specifications. Our notion of channel state and a specification
of a channel as a participant in data propagation is descended from Roncken’s
link-and-joint model, where channels are equivalent to links [11,12]. Roncken
gives us a model to bifurcate our specifications between processes with parallel
atomic assignment and concurrent communications.

6 Future Work

Shellac has shown that given a domain-specific language, a compiler with a
high-level of assurance can be built using program synthesis. Developing and
synthesizing compilers for domain-specific languages for operating systems con-
cerns such as memory management, interrupt handling, and processor context
management, etc. would improve safety in those critical areas.

Synthesizing compilers to intermediate languages such as llvm, mlir, or
Webassembly would enable reuse of already existing toolchains for analysis or
further compilation.

The current syntax-guided compilers generated by Shellac preserve liveness
by following a round-robin scheduling that guarantees fair selection. Static or
dynamic analysis should enable more efficient schedulings.

7 Conclusion

Concurrent, imperative programs that mix state mutation and control flow admit
a state explosion that makes debugging notoriously difficult and formal analysis
intractable. The advent of formal specification languages allow for a concurrent
program or system of concurrent programs to be described as a state machine.
Such a specification enables automated reasoning. Unfortunately, formal specifi-
cations are usually too abstract for direct execution. Instead of manually trans-
lating a specification to a low-level implementation, which can introduce errors,
we describe a method for exploiting program synthesis to generate compiler
rewrite rules. We show that such a compiler can process unity specifications with
channel-based communication and output both hardware and software imple-
mentations that preserve safety and liveness properties. Source code is available
at https://github.com/chchen/shellac-can.

https://github.com/chchen/shellac-can

50 C. K. Chen et al.

References

1. Arduino: Arduino language reference (2020). https://www.arduino.cc/reference/
en/. Accessed 02 Sept 2020

2. Arduino: Arduino MKR vidor 4000 (2020). https://store.arduino.cc/usa/mkr-
vidor-4000. Accessed 06 Jan 2021

3. Barragán, H.: Wiring: prototyping physical interaction design. Master’s thesis,
Interaction Design Institute Ivrea (2004). https://people.interactionivrea.org/h.
barragan/thesis/thesis low res.pdf

4. IEEE Standards Association, et al.: IEEE standard for verilog hardware description
language. Design Automation Standards Committee, IEEE Std 1364TM-2005 2
(2005)

5. Klein, G., et al.: SeL4: formal verification of an OS kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009,
pp. 207–220. Association for Computing Machinery, New York (2009). https://
doi.org/10.1145/1629575.1629596

6. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

7. Lamport, L.: Specifying concurrent systems with TLA+. Calculational Syst.
Design 183–247 (1999). https://www.microsoft.com/en-us/research/publication/
specifying-concurrent-systems-tla/

8. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Conference Record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2006, pp. 42–54.
Association for Computing Machinery, New York (2006). https://doi.org/10.1145/
1111037.1111042

9. Lynch, N., Vaandrager, F.: Forward and backward simulations. Inf. Comput.
121(2), 214–233 (1995)

10. Mani Chandy, K., Misra, J.: Parallel Program Design: A Foundation. Addison-
Wesley, Reading (1988)

11. Roncken, M., Gilla, S.M., Park, H., Jamadagni, N., Cowan, C., Sutherland, I.:
Naturalized communication and testing. In: 2015 21st IEEE International Sympo-
sium on Asynchronous Circuits and Systems, pp. 77–84 (2015). https://doi.org/
10.1109/ASYNC.2015.20

12. Roncken, M., et al.: How to think about self-timed systems. In: 2017 51st Asilomar
Conference on Signals, Systems, and Computers, pp. 1597–1604 (2017). https://
doi.org/10.1109/ACSSC.2017.8335628

13. Solar-Lezama, A., Rabbah, R., Bod́ık, R., Ebcioundefinedlu, K.: Programming by
sketching for bit-streaming programs. In: Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2005,
pp. 281–294. Association for Computing Machinery, New York (2005). https://doi.
org/10.1145/1065010.1065045

14. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. SIGARCH Comput. Archit. News 34(5), 404–415
(2006). https://doi.org/10.1145/1168919.1168907

15. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combi-
natorial sketching for finite programs. In: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2006, San Jose, CA, USA, 21–25 October 2006, pp. 404–415
(2006). https://doi.org/10.1145/1168857.1168907

https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://store.arduino.cc/usa/mkr-vidor-4000
https://store.arduino.cc/usa/mkr-vidor-4000
https://people.interactionivrea.org/h.barragan/thesis/thesis_low_res.pdf
https://people.interactionivrea.org/h.barragan/thesis/thesis_low_res.pdf
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/
https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1109/ASYNC.2015.20
https://doi.org/10.1109/ASYNC.2015.20
https://doi.org/10.1109/ACSSC.2017.8335628
https://doi.org/10.1109/ACSSC.2017.8335628
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1145/1168919.1168907
https://doi.org/10.1145/1168857.1168907

Shellac: A Compiler Synthesizer for Concurrent Programs 51

16. Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided host
languages. SIGPLAN Not. 49(6), 530–541 (2014)

17. Udding, J.T.: A formal model for defining and classifying delay-insensitive circuits
and systems. Distrib. Comput. 1(4), 197–204 (1986)

18. Van Geffen, J., Nelson, L., Dillig, I., Wang, X., Torlak, E.: Synthesizing JIT com-
pilers for in-kernel DSLs. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12225, pp. 564–586. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53291-8 29

https://doi.org/10.1007/978-3-030-53291-8_29
https://doi.org/10.1007/978-3-030-53291-8_29

A Sequentialization Procedure
for Fault-Tolerant Protocols

Cezara Drǎgoi2,3 and Patricio Inzaghi Pronesti1,2(B)

1 Département d’informatique de l’ENS, École normale supérieure, CNRS,
PSL Research University, 75005 Paris, France

pinzaghi@ens.fr
2 Inria, Paris, France

3 Informal Systems, Toronto, Canada

Abstract. We introduce a sequentialization procedure for fault-tolerant
protocols that takes as input a Distal program and produces a sequen-
tialized counterpart as output. The sequentialization procedure captures
a representative subset of the behaviors of the input system and is easier
to model check; for a broad class of protocols, it captures a representative
for every behavior. Our notion of sequentialization-equivalence extends
the well-studied notion of communication closure in distributed proto-
cols, which relates asynchronous and synchronous executions. We imple-
mented our sequentialization and applied it to verify several consensus
protocols, including ZooKeeper Atomic Broadcast, and Raft, using the
P framework. We considered P models that include critical safety bugs
present in implementations and known by the community. The P model
checker found these bugs only when using the sequential model but not
in the original asynchronous counterparts.

1 Introduction

Correctly designing and implementing fault-tolerant distributed systems is hard.
Many bugs appear both at the protocol and at implementation level and the
design of effective tools to find bugs early is an important challenge in formal
methods. One successful direction of research is the development of high-level
Domain Specific Languages designed for facilitating verification or testing of
distributed systems, together with efficient verification and testing tools. Notable
examples are Ivy [1] Promela/Spin [2], Coyote [3] and P [4]. The bane of all these
tools is state-space explosion: as the complexity of the protocols grow, systematic
exploration can only cover a minuscule portion of the state space.

We show how systematic testing of fault-tolerant distributed protocols can
be improved by using the sequentialization approach, which produces a sequen-
tial version that captures an interesting subset of all behaviors. The sequential
version has fewer behaviors, allowing systematic testing tools to scale better, but

Supported by: French National Research Agency ANR project SAFTA (12744-ANR-
17-CE25-0008-01).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Lal and S. Tonetta (Eds.): VSTTE 2022, LNCS 13800, pp. 52–71, 2023.
https://doi.org/10.1007/978-3-031-25803-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25803-9_4&domain=pdf
http://orcid.org/0000-0001-9404-7077
https://doi.org/10.1007/978-3-031-25803-9_4

A Sequentialization Procedure for Fault-Tolerant Protocols 53

any bug in the sequentialization is also a bug in the original protocol. For shared
memory systems, sequentialization techniques have proved effective in increas-
ing the number of bugs found in concurrent programs [5,6]. However, existing
sequentialization techniques for message passing protocols are either manual [7],
or consider only non-faulty protocols [8], or prove equivalence between given
asynchronous and sequential protocols, given both protocols as well as compli-
cated inductive invariants [9]. In contrast, we propose a new automated sequen-
tialization technique for fault-tolerant protocols that uses minimal annotations.

Our sequentialization uses the notion of communication-closure [10], which
identifies the conditions under which a set of asynchronous executions is equiva-
lent to one round-based execution. In round-based executions, processes proceed
in lock-step: all processes send messages, receive (possibly a subset of) the sent
messages, and update their state based on the received messages. There are
no delayed messages: a message that is not received after it was sent (a.k.a.
rendez-vous) is lost forever. Round-based executions have no interleaving across
rounds and faults are localized within the round boundaries. Compared with
asynchronous protocols, they have exponentially fewer behaviors.

We define a sequentialization procedure for protocols written in Distal [11],
a DSL for fault-tolerant systems aligned with the syntax of text-book protocols
but also with the syntax of P [4], a modeling language used for writing and
testing state machine models in industry (roughly, P embeds Distal constructs).
First, we compute a round-based representation of Distal protocols, building on
the procedure in [12] that takes an asynchronous program (from an appropriate
class) and computes an equivalent round-based representation. We extend their
procedure to handle common features required by asynchronous programs such
as high-level primitives for message passing. Second, we propose a sequentializa-
tion of the round-based representation that is complete for arbitrary networks,
like the ones required by Paxos [13] or Raft [14], but also for stronger network
assumptions, as required by Ben-Or or 2PC [15].

To sum up, we take a Distal program as input and produce as output a new
Distal program that is the sequentialization of the input. Since the sequential-
ization has fewer behaviors, testing tools have an easier time finding bugs.

We implement and evaluate our algorithm using the P framework [4]. We
applied the sequentialization on P models for Paxos, Raft, Ben-Or, View-
Stamped, UniformVoting, and 2PC. Running P’s testing tool on their sequential
versions uncovered subtle bugs that were not always found in the original asyn-
chronous P model (due to state explosion). Most notable bugs found exclusively
in the sequentialization were in Paxos and Raft. We modeled a version of Paxos
that captures the bug scenario in ZAB [16,17]. The bug is a violation of agree-
ment, where replicas disagree on the order of the commands executed by the
replicated state machine and is used as a running example. We modeled the pro-
tocol that handles the cluster’s configuration in Raft [14,18]. The bug is a safety
violation, where processes disagree on the replicas that run the state machine.
To catch it, the sequentialization of Raft takes into account process creation.

54 C. Drǎgoi and P. Inzaghi Pronesti

Related Work. Communication closure has been used in verification [12,19]
and testing [17]. In [12,19] the authors define a transformation of an asyn-
chronous protocol into a synchronous one, that is further verified using Hoare-
style of reasoning ([19] uses communication closure implicitly). Both works con-
sider a highly-constrained input language, chosen to suit the requirements of the
transformation procedure. For example, they do not consider high level message
passing primitives. In contrast, we consider Distal protocols as input. Distal is an
established language in the theoretical community and in industry (in the form
of P). Therefore, our method makes transformations based on synchronizations
accessible to a wider audience. Moreover, we define a sequentialization proce-
dure that uncovers bugs which are not found by state-of-the art testing tools for
asynchronous protocols. There are many verification and testing tools for sequen-
tial programs and shared memory systems [20,21], that could be applied on the
sequentialization computed by our method, contrary to the output of [12,19],
where tools for distributed synchronous protocols are not available.

The communication closure hypothesis has been empirically used in testing
large scale systems models [17,22,23]. In [17] the authors start from an instru-
mented large scale system and explore a subset of its executions checking for
violations. The current submission starts from a model of the program and pro-
poses a more systematic and efficient exploration of the executions.

2 Overview

We illustrate our sequentialization procedure using the replicated state machine
protocol in Fig. 1, inspired from Paxos [13]. Processes receive different com-
mands, and the goal of the protocol is to make processes agree on a total order
over a set of received commands, even when messages are lost or delayed. Each
process maintains the log of commands it agreed on, e.g. abcd, which is visible
to an external observer (line 30). The outputted log of any two processes must
respect the prefix order over sequences. A violation of the prefix order, e.g., one
process outputs a and another one outputs b, means that the two processes dis-
agree on the first command to be executed by the machine. However, it is correct
to have one process output a and another one output ab, it happens when the
process outputting a is late and didn’t learn yet the second command to be
executed.

The protocol in Fig. 1 has a bug in line 9 which generates an execution
violating the prefix order property. This bug is fixed by moving this statement
to line 23. We choose this example because (1) testing it using P [4] did not find
the bug, and (2) it is a simplified version of the bug1 in the implementation of
ZAB [16]. Using P on the sequentialization found the bug.

The protocol is written in Distal [11], an event-driven programming model
with upon statements defining how the protocol reacts to receiving a message.

1 https://issues.apache.org/jira/browse/ZOOKEEPER-2832.

https://issues.apache.org/jira/browse/ZOOKEEPER-2832

A Sequentialization Procedure for Fault-Tolerant Protocols 55

1: init
2: ballot = 0; log = ε;
3: if primary(ballot+1) then
4: ballot = ballot+1;
5: m = PrepareMsg(ballot);� Prepare
6: send m to ALL;
7: while true do
8: upon Prepare with m.ballot > ballot do
9: last = ballot;

10: ballot = m.ballot;
11: promised = false;
12: primary = m.sender;
13: m = Ack(ballot, last, log); � Ack
14: send m to primary;
15: upon Ack with m.ballot = ballot times n/2

do
16: log = longest log(ballot); � Ack
17: log.add(newCommand());
18: m = Propose(ballot, log); � Propose
19: send m to ALL;
20: upon Propose with m.ballot ≥ ballot ∧

¬promised do

21: ballot = m.ballot; � Propose
22: log = m.log;
23: //Bugfix: last = ballot;
24: m = Promise(ballot,log); � Promise
25: send m to ALL;
26: upon Promise with m.ballot ≥ ballot ∧

m.log = log times n/2 do
27: ballot = m.ballot; � Promise
28: log = m.log;
29: promised = true;
30: output(log);
31: if primary(ballot+1) then
32: ballot = ballot+1; � Prepare
33: m = Prepare(ballot);
34: send m to ALL;
35: upon timeout() with true do
36: if primary(ballot+1) then
37: ballot = ballot+1;
38: m = Prepare(ballot); � Prepare
39: send m to ALL;

Fig. 1. Simple Paxos protocol in Distal containing a bug (marked in red) where the
last variable is updated too early. The � marker denotes a new round in the code.
(Color figure online)

Promise(1,a)

Prop
ose(1,a)

Propose(1,a)

Propose(1,a)

A
ck
(1
,(0

,
))

A
ck
(1
,(0

,
))

Prepare(1)

Prepare(1)

Prepare(1)

Ack(1,(0,))

1,

0,

0,

1,

1,

1,a 1,a

1,a

1,a

Promise(1,a)

Promise(1,a)

a

a

a

1,

Promise(2,ab)

Pr
op
os
e(
2,
ab
)A

ck(2,(1,a))

A
ck
(2
,(1

,a
))Prepare(2)

Pr
ep
ar
e(
2)

Promise(2,ab)
Propose(2,ab)

1,a

2,a

1,a

2,a

2,a

2,ab

2,ab

2,ab

2,ab

Promise(2,ab)

ab

ab

ab

2,aP1

P2

P3

Fig. 2. An execution over two ballots where all messages are delivered.

The code given in Fig. 1 is executed by all processes2 using the standard inter-
leaving of steps executed by different processes. To communicate, processes use
point-to-point or broadcast. Messages may be dropped of delayed.

Processes go through a sequence of ballots, and in each ballot they try to add
a new command to their log. If enough messages are delivered, then the log is
extended, otherwise they move on to the next ballot and retry, maybe with a dif-
ferent command. This is a leader-based protocol, where the function primary(b)
takes as input a ballot number b and returns the identity of the leader of the
ballot, using for example a round-robin scheme. The leader is in charge of (1)
starting a new ballot, (2) collecting logs of a quorum of processes, and selecting
the longest most recent log out of the received ones, and (3) extending this log
with a new command and proposing it to all processes in the network. All pro-
cesses that receive the new log from the leader broadcast it. Finally, a process

2 This does not mean all processes go through the same sequence of states, because (1)
local state updates based on the received messages and (2) processes might receive
a different set of messages.

56 C. Drǎgoi and P. Inzaghi Pronesti

outputs a log when it learns that n/2 of its peers received the same log from
the leader. Figure 2 shows an execution of the protocol, where all messages are
delivered and all processes store a in their logs in the first ballot, and extend the
log with b in the second ballot. Figures 4 and 3 show other executions where the
messages send by P3 are delayed or dropped. A naive and inefficient sequential-
ization scheme produces a sequential behavior for each interleaving. For example
it generates two different sequentializations, one where first P1 sends a Prepare
message and then P2, and the other way around. Moreover, from one interleav-
ing multiple sequential executions are possible depending on which messages are
delayed, lost, or delivered. For example, there will be three sequential executions
one when P3 receives the Prepare message, one when it is lost, and one when
it is delayed.

We propose a more efficient sequentialization procedure, which produces one
non-deterministic sequential protocol that is equivalent to an asynchronous one.
This equivalence relation is that processes go through the same sequence of states
modulo stuttering (i.e., consecutive repetition of equivalent states).

Fig. 3. An execution where all messages sent by P3 are
lost.

The sequentialization
exploits the round struc-
ture of the protocol fol-
lowing the approach based
on communication-closure
[12,17]. The asynchronous
semantics allows an arbi-
trary interleaving of steps
of different processes,
executed over a non-
deterministic network that

can delay, drop, or reorder messages. However, this semantics includes a set of
synchronous executions, where all messages are delivered in-time, e.g., Fig. 2.
Observing this happy path, we see that the protocol is structured in four rounds,
executed in the same sequence in each ballot. Each round only sends/receive one
type of message. Processes update their state using only messages of this type.

In the first round the leader sends a Prepare message containing the number
of the leading ballot. The processes that receive its message update their ballot,
if the leader leads a higher or equal ballot. In the next round, processes reply to
the leader with an Ack message that contains the leader’s ballot, the current log
stored by the process, and the value of the last ballot the process participated
in. If the leader receives more than n/2 Ack messages it selects the longest log
out of the one coming from processes that participated in the most recent ballot.

In the next round the leader extends this log and broadcasts a Propose
message with the current ballot and the new log. In the final round all processes
that receive the new proposed log, broadcast this log and the current ballot
number in a Promise message. A process that receives more than n/2 Promise
messages with the same log and the current ballot outputs that log.

A Sequentialization Procedure for Fault-Tolerant Protocols 57

Faulty executions respect the round structure as well: locally, processes
respect the ballot order and the round order within a ballot. Figure 3 shows
an execution of the first ballot where sent messages by P3 are lost. To trans-
form it into a synchronous execution we use the fact that any send, receive, or
update of some round r, it’s a left mover [24] w.r.t. actions of other processes
from rounds higher than r and a right mover w.r.t. actions from earlier rounds.

Fig. 4. Messages sent by P3 are delayed. Dotted lines
represent stale messages that are not used by the
receiver.

The execution in Fig. 4
respects the round struc-
ture, even if the mes-
sages sent by P3 are deliv-
ered after P1, and P2
moved past the round the
messages coming from P3
were sent for. In [10,12]
it’s proved that a mes-
sage received with a delay
causes a violation of the
round structure only if (1)

the process is in a higher round and (2) the process use the message’s payload to
update its local state. In the considered execution, P1 and P2 are in the second
ballot where the messages from P3 arrive, and they ignore all messages coming
from the first ballot, like the ones sent by P3, therefore their reception does not
cause a change of state in P1 and P2.

Fig. 5. Sequential execution equivalent to Fig. 3. Boxes
represent the global state, arrows are messages (dashed
are lost messages) and the color its round.

All executions of the
protocol in Fig. 1 are
equivalent to potentially
faulty round-based execu-
tions, like those in Fig. 2,
where messages can be
lost but not delayed.
Round-based executions
impose a total order over
actions performed by pro-
cesses across rounds. The
sequentialization main-
tains this order, and adds

a total order over actions performed by processes within one round. Note that
within one round there are only message chains of length at most one, and each
process sends at most one message. Therefore the order in which processes send
messages does not matter, all are equivalent and the sequentialization picks one.
For each receive, it adds a non-deterministic choice modeling a message dropped
by the network. Let us consider round-based executions where no messages are
lost in Fig. 2. In this case, an equivalent sequential execution replaces any send
and its matching receive by one assignment, and order them according to a
chosen order over processes. In the presence of faults, the equivalent sequen-

58 C. Drǎgoi and P. Inzaghi Pronesti

tial execution consists only of those assignments corresponding to not dropped
messages (Fig. 5).

In [12] and [19] the authors exploit the round structure for verification.
They compute the synchronous version of the protocol (over a more restricted
input). The resulting synchronous protocol is equivalent with the original asyn-
chronous one in the absence of network assumptions, i.e., any message can be
lost or delayed. When the protocol is correct under a network that meets a
certain amount of reliability, e.g., Ben-Or, the synchronous protocol produced
by these previous methods is an over-approximation of the asynchronous one.
Since for testing over-approximations are not useful, in the presence of network
assumptions, the sequentialization we propose introduces more restrictions over
the number of messages that can be lost, by restricting the number of non-
deterministic choices in the resulting sequential program.

In summary, we propose a method to obtain a non-deterministic sequential
protocol, that is equivalent with an asynchronous one, where the equivalence
relation is that processes go through the same sequence of states modulo stut-
tering. The sequentialization is precise for fault models commonly used in dis-
tributed protocols. As an intermediate step of the sequentialization we compute
the round-based version of a Distal asynchronous protocol, where all executions
are structured in rounds, and messages sent in a round are either received in
the same round or lost, a.k.a., communication-closed protocols. For this step we
extend the work in [12] to a more general input language and the procedure we
propose uses lighter annotations where the user needs to specify the rounds only
in the message types. The sequential protocol is non-deterministic because for
each round it will consider all the possible sets of messages that can be lost in
that round. The reduction from asynchronous to round-based to sequential pre-
serves the sequence of states processes go through locally. This implies that at
the global system level it preserves the so-called local properties which includes
consensus. We tested safety properties, e.g., all processes agree on the order of
commands.

3 Asynchronous Protocols

In this section we present Distal [11], a DSL for fault-tolerant systems, and P [4]
a modeling language for event-driven systems equipped with a bug-finding tool.

3.1 Distal: Syntax and Semantics

We consider asynchronous protocols written in Distal [11]. The system is com-
posed of N processes, where N is a parameter. Each process is associated with a
unique identifier, which serves as an address for sending and receiving messages.
All processes execute the same protocol P written using the syntax in Fig. 6.
Protocols are composed by an init statement and a main loop, composed by
a sequence of upon statements. An upon statement is followed by a predicate

A Sequentialization Procedure for Fault-Tolerant Protocols 59

guard and a body with instructions to be executed. Processes can access a read-
only mailbox variable mbox, which contains the received messages. Distal follows
the event-driven paradigm where the state of a process tries to be updated upon
the reception of a message. Processes exchange messages using instructions send
and send to all that take m a message of type T as input and a PID. All vari-
ables are local to a process, there are no global or shared variables. The guard of
each upon is a formula over the local state and mbox. Guards apply to different
message types and check the values of the received message, e.g., upon Prepare
with m.ballot > ballot in Fig. 1 line 8, or cardinally conditions upon Ack
with m.ballot=ballot times n/2 which says more than n/2 Ack messages
have been received with the same ballot value as the process’ ballot (Fig. 1
line 15).

type M ::= struct { field Identifier; }
e ::= const | x | f(�x) Expressions

Action ::= x = e Statements
| if e then Action else Action
| send(p, m) | send(m) to ALL | send to p
| Action ; Action

U ::= upon M with Guard do Action | U ; U Upon block
P ::= init : Action; loop : U Program

Fig. 6. Syntax of Distal protocols, p is a PID, x ∈ Identifier , m is a message of some
message type in M.

The semantics of a protocol P is the asynchronous parallel composition of
the actions performed by all processes. Formally, the state S of a protocol is
a tuple 〈s,msg〉 where s ∈ [P → Vars ∪ Loc → D] is a valuation of the local
variables of each process, including the program location in the local state and
msg : P → Msg is the global set of messages in transit. Given a process p ∈ P ,
sp is the local state of p, which is a valuation of p’s local variables, and msgp
is the set of messages in transit towards p. When a replica starts, it executes
the init code block and then runs the main loop forever. Executing an action
makes a process change its state. Every process has a message pool that other
processes write messages to. The semantics of send(p,m) adds the message m
to p’s message pool.

Fig. 7. A snippet of Paxos in P.

In every iteration of the loop a process checks for new messages, moving a
subset of its message pool to its local mbox. Messages dropped by the network

60 C. Drǎgoi and P. Inzaghi Pronesti

never appear in mbox. Several upons could be enabled in the same iteration, but
to keep local determinism only the first one will be executed, i.e., the listing
order breaks the ties3. The network assumptions are defined at execution time
in Distal. We consider both protocols: the ones that make no assumptions for
safety, where messages can be reordered, delayed or dropped; or those whose
network assumptions for safety are given as first-order formulas over the messages
received by processes (examples are given in Sect. 4.1).

P and Distal. P programs are composed of a state machine with several states,
where each state has an entry function and handlers for different event types
which are essentially messages. Figure 7 shows a snippet of the running example
in P. There is a one-to-one correspondence between the upon statements and P
message handlers. The latter does not include a guard, it triggers on reception.
We incorporate the guard as an if statement (line 9).

Distal has the high level concept of times that is not present in P, we emulate
it using a counter variable. In general, P models consist of a single state that
handle all system messages, making the translation even more direct. Distal does
not provide any implementation nor tools for doing random testing. On the other
hand, P provides a well maintained state-of-the-art random testing framework
that is used extensively.

4 Round-Based Protocols

In this section we introduce round-based protocols, we define a set of sufficient
conditions for an asynchronous protocol to have an equivalent round-based ver-
sion, and we sketch a rewriting that computes this round-based version.

4.1 Round-Based Syntax and Semantics

The syntax of round-based protocols consists of an initialization function init
and a phase consisting of a non-empty finite sequence of rounds r1, ..., rk.

All processes execute the initialization function followed by the given
sequence of rounds in lock-step, in a loop. The round number is an abstract
notion of time: all processes are in the same round. In each round processes
send messages in one synchronized step, using SEND. Each process receives in
one atomic step a non-deterministically chosen subset of the messages that were
sent to it. We denote by mailbox : P → 2Msg the set of received messages in
the current round per process. Messages sent in a round, are either received in
the same round or lost. All processes update the local state synchronously, using
UPDATE.

There are protocols, like Paxos or ViewStamped, that do not make any
assumptions on the set of delivered messages to guarantee safety, e.g. agreement,
3 Distal does not emphasize the loop and allows multiple upon statements to be exe-

cuted in a sequence. The latter is captured by multiple loop iterations where no new
messages are delivered in between.

A Sequentialization Procedure for Fault-Tolerant Protocols 61

all processes agree on an order of commands4. Other protocols are designed for
stronger networks. Two representative network assumptions come with Ben-
Or [25] and UniformVoting [26]. Ben-Or requires that in each round each pro-
cess receives at least n−f messages, where f is the number for faulty processes,
i.e., ∀r ∈ rounds : ∀p ∈ P : |mbox (p, r)| > n − f . UniformVoting requires
that in every round, there is one process called kernel, such that the message
exchanges between any process p and the kernel are received. The kernel may
change between rounds: ∀r ∈ rounds : ∃k ∈ P : ∀p ∈ P : k ∈ mbox (p, r) ∧ p ∈
mbox (k , r), where k ∈ mbox (p, r) is interpreted as follows: if there is a message
sent by process k to p then it is received.

4.2 Round-Based Asynchronous Protocols

In this section we define a set of conditions which ensure that an asynchronous
protocol is round-based, i.e., it has an equivalent round-based semantics. Two
executions are equivalent if each process goes through the same sequence of local
states, modulo stuttering, in both executions. We introduce synchronization tags,
a lightweight annotation for checking the existence of a round structure.

Definition 1. A synchronization tag in P is a tuple 〈(phase, round), tagm〉
where phase and round come from ordered domains and round takes a bounded
number of values tagm : M → [{(phase, round)} → M ∪ Fields(M)] for each
message type M ∈ M maps phase and round over the fields of M, or the type
itself. For each message m : M we denote tagm by m.phase and m.round.

A protocol is round-based if there is a synchronization tag and two vari-
ables phase and round , such that, (1) the values of (phase, round) monotoni-
cally increase (w.r.t. the lexicographic order) in any execution of the protocol,
(2) for every message sent m, either using send(p,m) or broadcast(m), m is
timestamped with m.phase = phase and m.round = round , (3) each guard uses
messages timestamped with values greater or equal than the current value phase
and round (4) actions only use (i.e., read) the messages from the mbox that are
timestamped with current value of phase and round (5) between a send/broad-
cast and a receive either there are only receive statements or the values of phase
and round have been updated. If there is any update between two receive steps
then it must update also phase and round .

We require the user to annotate only the message type with a synchronization
tag, and we add two fresh auxiliary variables phase and round to each protocol.
Initially phase and round have minimal default values. We add assignments
to these variables (1) before each send s.t. the second condition is satisfied, i.e.,
phase and round are equal to the tag of the sent message, and before each action
such that the fourth condition is satisfied, i.e., phase and round are assigned to
the maximal tag of the messages in the guard preceding the action.

4 Consensus solutions always work under network assumption, at least for ensuring
liveness, but checking liveness is beyond the scope of the paper.

62 C. Drǎgoi and P. Inzaghi Pronesti

The synchronization tag of Paxos in Fig. 1 is conformed by the variable
ballot for the phase, where phase is an integer. The protocol has no variable
that tracks the round, it’s highlighted using the symbol �. The round domain
takes Prepare
 Ack
 Propose
 Promise as values. For all messages round
is mapped onto the message type, and phase is mapped on the ballot field.

The synchronization tag of the P model in Fig. 7 consists of the field phase
of each event, for the phase, and the event type for the round. Because the P
version of the protocol has a state machine structure that groups handlers/upon
statements into states, the round is the state the process is in, so both the phase
and the round are present in the P model. The transformation to Distal replaces
the states with a local variable that will track the round/state the process is in.
The sequentialization method includes an additional testing tool that checks if
the synchronization tag satisfy the five properties.

4.3 Computing a Protocol’s Phase Structure

Given a Distal program, we want to compute its round-based counterpart. For
this, we need to understand in which order the upons can be executed, under
which conditions, and be able to delimit the boundaries between phases in the
code. The statements between any two phase variable assignments is what we call
the protocol’s phase structure. We find it by unfolding the iterations of a Distal
program, preserving the order in which the upons happen and their context.
Figure 8 shows the syntax of an unfolded program Pphase and Fig. 9 describes
the unfold procedure. The output program satisfies Proposition 1.

type M ::= struct { field Identifier; }
e ::= const | x | f(�x) Expressions
S ::= x = e | if e then S else S | S ; S Statements

SEND ::= send(p, m) | send(m) to ALL | noop Send actions
C ::= if e then ; SEND ; S ; U | C ; C Conditionals
U ::= mbox = havoc() ; C | continue Statements

Pphase ::= init : P.init() ; S ; loop : U Program

Fig. 8. Syntax for the phase structure, p is a PID, x ∈ Identifier , and m is a message
type in M.

unfold starts by creating a program with an initializing function and a
while(true) statement with an empty body. It follows by unfolding the main
loop, this is: 1) inserting a mbox = havoc(); statement; 2) for each upon guard
do action in P it creates an if(guard) {action} statement inside the while
body (line 8). In the following iterations we repeat the unfolding for every if
statement created in the previous one, given by the function leafs. This procedure
is repeated K times, where K is the number of rounds in a phase.

Proposition 1. For each execution π̃ ∈ Pphase there is a π ∈ P s.t. π and π̃ are
equivalent (π ≈ π̃), i.e., their sequence of states is the same modulo stuttering.

A Sequentialization Procedure for Fault-Tolerant Protocols 63

Proof. Pphase doesn’t introduce or restrict behaviors of P. Let π = [〈s0, ∅〉] be
an execution that starts with s0 = Pphase .init() and an empty mailbox. unfold
defines Pphase .init() = P.init() (line 2), so in P exists π = [〈s0, ∅〉] such that
s0 = s0. 〈s1,msg1〉 is the result of executing Pphase ’s first iteration (height = 1)
from state s0 where havoc() returns msg1. The unfolded conditionals respect
the original order in P. Given the same state and mailbox, the selected upon is
uniquely determined. Pphase and P are in the same state with the same mailbox
so they execute the same upon, i.e., π = π = [〈s0, ∅〉, 〈s1,msg1〉]. The same
argument can be followed at most K times, when the unfolding stops with a
phase variable increment. For the following K + 1 ... transitions, we show that
the code to execute is congruent to the first K iterations of unfold. The phase
variable is interpreted as a symbolic variable. When a new phase starts, the set
of enabled upons is the same as the one considered from the initial state, but
with a greater phase value.

4.4 Delimiting Rounds’ Boundaries

1: procedure Unfold(P)
2: P ← init : P.init(); loop : noop;
3: for height ∈ 1 to K do
4: for body in leafs(Pphase) do
5: body.append(mboxheight = havoc())
6: for upon in upons(P) do
7: ifStm ← if (upon.guard){upon.action}
8: body.append(ifStm)
9: P ← deadCodeElimination(P)

10: return P

Fig. 9. Procedure that translates an asyn-
chronous program P into an unfolded pro-
gram P

Round boundaries are defined by
round variable assignments. Processes
can have different behaviors in the
same round, depending on their local
state and the messages received,
although they execute the same code
and go through the same sequence
of rounds. Figure 10 shows the code
of the Ack round extracted from our
example’s unfolded program Pphase .

We start by iterating line by line
starting from the init function of
Pphase and traverse the main loop
until we reach the first assignment of
the round variable to Ack (line 13 in
Fig. 1). Then, we start collecting a sequence of instructions until the next assign-
ment of the round variable (line 18).

All the code before the first assignment is ignored. We introduce ghost flag
variables, e.g., f, to preserve the conjunction of all the guards leading to the
collected code, conserving the execution context. In this case, we cannot send
an Ack message without having received a valid Prepare message.

64 C. Drǎgoi and P. Inzaghi Pronesti

Fig. 10. Unfolded round Ack from motivating
example.

Finally, the code of every
round is split into a SEND block,
consisting of the (unique) send
statement guarded by the con-
ditionals preceding them and
an UPDATE block that contains
the rest of the code except
the mailbox’s havoc. This com-
pletes the code of Pround .

This procedure is based on
[12], but the input received in
that work is significantly different. In [12] the reception loops are found explic-
itly in the code, these are replaced with calls to a havoc function that non-
deterministicaly fills the mailbox. Their work also assumes that every iteration
of the main loop moves to a (greater) new phase and it does not check that this
holds. Algorithm 9 guarantees this property and the Proposition 2 too.

Proposition 2. Let �P� be the set of executions of P. Given a protocol that
makes no network assumptions, �P� ≈ �Pround�, otherwise �P� ⊆ �Pround�.

5 Sequentialization of Round-Based Protocols

In this section we define a transformation of a round-based protocol into a
sequential one, that preserves safety properties.

5.1 Equivalence with No Network Assumptions

Reductions that over approximate the set of executions are not suitable for
testing. If an equivalence exists, given a round-based protocol Pround we build a
sequential protocol Pseq using Algorithm 1, such that, given an initial (global)
state c0, all the (global) states reachable from c0 in Pround are also reachable
executing Pseq from c0. Equivalently, we say that Proposition 3 holds.

Proposition 3. Given a round-based protocol that makes no network assump-
tions, �Pround� ≈ �Pseq�.

Proof. Let ρ =‖ni=1 send∗(i, 1) ‖ ... ‖ send∗(i, n); ‖ni=1 update(i); be the execu-
tion of a Pround round where ‖ denotes the non-determinism of actions.

The round-based semantics ensure that between any two processes p and q
there is at most one message sent from p to q and vice versa. Consequently, the
order in which send and receive actions are executed does not matter. We obtain
ρ′ = send∗(1, 1); ...; send∗(n, n); ‖ni=1 update(i); such that ρ′ ≈ ρ.

Two update functions of the same round, on different processes are inde-
pendent, we can remove other source of non-determinism fixing an arbitrary
order ρ′′ = send∗(1, 1); send∗(1, n); ...; send∗(n, n);update(1); ...;update(n); and
this results in ρ′′ ≈ ρ. This reasoning is valid for any arbitrary round.

A Sequentialization Procedure for Fault-Tolerant Protocols 65

Algorithm 1 does as follows. The state of Pseq is defined from the global
state of Pround . The sequential program manipulates the following variables:
an integer variable n, corresponding to the number of processes executing the
round-based protocol, for each variable v of type T in Pround , it has sv an array
of type ID → T , where each index i gives the value of the variable for process pi.
For example, in Pround , mbox is a local variable that stores the messages received
in a round. It changes its type in each round because each of them sends different
types of messages. The sequentialization Pseq manipulates several arrays, each
storing elements of some message type, and mboxr[pi] is the value of mbox in
round r on process pi. The transition relation of Pseq defines a total order over
all actions performed by all processes, i.e., an order across all send and update.

Algorithm 1. Sequentialization
1: while true do � Protocol
2: for R = 1 to K do
3: for s = 1 to n do � Send
4: for r = 1 to n do
5: mailboxR(pr) += (∗)ps.send(pr)
6: for i = 0 to n do � Update
7: pi.update(mailboxR(pi))
8: mailboxR(pi) = ∅

Round-based protocols impose a total
order over actions performed by pro-
cesses across rounds. The sequentializa-
tion maintains this order, and it is mainly
concerned with the code of one round. The
sources of non-determinism at the round
level are: (1) the order in which processes
send messages (2) the order in which pro-
cesses execute update (3) the order in
which messages are received and (4) which
messages are received.

The round-based semantics ensure that between any two processes p and q
there is at most one message sent from p to q and vice versa. Consequently, the
order in which send and receive actions are sequentialized does not matter.

The update function takes the set of received messages as input, and per-
forms a local computation. Two update functions of the same round, on different
processes are independent.

Therefore, we fix one order across processes, denoted p1, p2, . . . pn where the
index gives the order relation. The calls to send and update are sequentialized
according to this order, where all sends go before all updates, lines 3 and lines 6
in Algorithm 1.

For each message sent the sequential program makes a non-deterministic
choice whether to deliver it or not. Each send-receive pair is replaced with
an assignment, that non-deterministically adds or not the sent message to the
receiver’s mailbox.

Algorithm 1 uses “∗” to represent a non-deterministic choice in line 5, i.e., if
the message sent by process ps to process pr is received by pr.

A protocol consisting of K rounds is sequentialized in a while loop that
executes the sequentialization of one round after another, in the order in which
they are defined in the round-based protocol.

66 C. Drǎgoi and P. Inzaghi Pronesti

1: procedure deliverfn(round)
2: for r = 1 to n do
3: senders = pick(n − f, P)
4: for s = 1 to n do
5: if ps ∈ senders then
6: mboxround(pr) += ps.send[pr]
7: else
8: mboxround(pr) += (∗)ps.send[pr]

1: procedure kernel(round)
2: kernel = pick(1, P)
3: for s = 1 to n do
4: for r = 1 to n do
5: if ps ∈ kernel then
6: mboxround(pr) += ps.send[pr]
7: else
8: mboxround(pr) += (∗)ps.send[pr]

Fig. 11. Sequentialization for stronger network assumptions. The Send block is
replaced accordingly with deliverfn or kernel procedures.

5.2 Protocols with Network Assumptions

If the protocol makes assumptions about the set of messages delivered then, by
Proposition 4, we know that the sequentialization given in Algorithm 1 produces
an over-approximation of the round-based executions. We strengthen Algorithm
1 for the most common fault models to preserve the equivalence between the
synchronous protocol and the sequential one. For protocols that do not tolerate
faults, e.g., 2PC, each sent message is received. The sequentialization is deter-
ministic.

Ben-Or is not correct unless each process receives at least n − f messages in
each round, where f is the number of tolerated faults. In this case the equivalent
sequentialization, (deliverfn in Fig. 11), picks randomly which n− f messages
to deliver to each process. When the network requires the existence of a non-
empty kernel, a set of processes that everyone can communicate reliably with,
e.g., UniformVoting, the sequentialization (kernel in Fig. 11) guesses the pro-
cesses in the kernel in beginning of each round and always delivers messages
between them.

Proposition 4. Given a round-based protocol that assumes a Deliver n-f or a
Kernel network, �Pround� ≈ �Pseq�.

6 Experimental Evaluation

We evaluated the proposed sequentialization on several consensus and replicated
state machine protocols and looked for safety violations. For the evaluation we
use P [4]. We consider implementation-inspired asynchronous models, and their
sequential versions obtained with the algorithms in Sect. 4.3, 5.

First we check that the asynchronous models are round-based. Even though
the evaluated protocols are known to be round-based, we test the conditions in
Sect. 4.2 for a given synchronization tag using P’s monitoring framework. Every
send, receive or mailbox read makes a call to an announce primitive, where the
monitor observes the state of the calling machine and asserts these conditions.

All modeled implementations5 contain a safety bug. We compared every asyn-
chronous model with its sequential counterpart using P model checker, measuring
5 https://github.com/vstte22seqprocedure/artifacts.

https://github.com/vstte22seqprocedure/artifacts

A Sequentialization Procedure for Fault-Tolerant Protocols 67

the time needed for finding these bugs. We found that the most subtle bugs are
not found in the asynchronous models, but they are in the sequential version.
The experimentation setup consists of manually constructed models in P of the
protocol in both asynchronous and sequential versions, a test driver that instan-
tiates the experiment defining the size of the network and other environment
variables, and a specification machine that monitors safety violations during the
execution. The checking tool systematically explores behaviors of the system
model, trying different interleavings of the processes’ actions. Each experiment
shows the average time (in seconds) to find the bug in 100 executions of 10,000
different schedulers with a timeout of 1 h.

Bugs are caused by messages being dropped/delayed and processes waiting
for messages up to a timeout. To model faults, we implemented a Timer machine
that each process instantiates. The timer machine non-deterministically informs
the process that the time waiting for a message expired, making the process
move to the next round of the protocol. We use a wrapper around send, every
time a message is sent, a non-deterministic boolean function chooses to actually
send it or to drop it. Next, we describe the bug in each benchmark.

Paxos. This is the example from Sect. 2. Both the asynchronous version and the
sequential one contain a bug found in ZAB6. The bug occurs when a process
sets the variable last = ballot at the very beginning of a new phase, when a
Prepare message is received. This leads to a non-confirmed log being considered
as the latest log in the cluster, and leads to a violation of agreement: one replica
knows a to be the first command while another one thinks that b is the first.
The assignment of last should be moved to the Propose state upon receiving a
message from the primary, confirming that a quorum of processes already have
the latest log. The bug requires ten rounds and four phases.

Raft (membership changes). Raft is another consensus algorithm for managing
a replicated log. This protocol allows changes into the cluster’s configuration,
adding or removing nodes to the system. The version presented in [18] contains
a bug that produces a safety violation7. This happens when there is a mem-
bership change during two consecutive terms and the two leaders have different
knowledge of the system’s configuration. This causes log entries to be consid-
ered as committed using disjoint sets of processes and corrupting the global
state. Contrary to Paxos, the size of the network is not fixed. At each phase
the set of processes might change. To capture this in the sequential model, we
introduced a global configuration variable that includes all the processes of the
system, including the new ones trying to join the cluster. Every process has a
“local” knowledge about the current state of the cluster stored in a mapping from
processes to set of processes. As we mentioned before, this incomplete knowledge
about the system size leads to the mentioned bug.

Ben-Or/Uniform Voting. Ben-Or [25] and Uniform Voting [26] are not leader-
based decentralized consensus algorithms. Ben-Or solves binary input consensus,
6 https://issues.apache.org/jira/browse/ZOOKEEPER-2832.
7 https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J?pli=1.

https://issues.apache.org/jira/browse/ZOOKEEPER-2832
https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J?pli=1

68 C. Drǎgoi and P. Inzaghi Pronesti

while Uniform Voting considers arbitrary input values, and is a deterministic
version of Ben-Or. Once a process decides a value, it keeps deciding the same
value forever, the original estimate of each process must be overwritten by the
decided value. The bug we introduced omits this, producing executions where
all processes decide one value but, later on due to some messages being lost,
a process decides a different value. The result for Ben-Or* in Table 1 read as
follows: the time comes from using Algorithm 11 as described, but when an
under approximation is used, using only two quorums for all the execution the
number goes down to 9,12. Ben-Or is designed to work under a particular network
assumption, where n−f messages are delivered in each round, otherwise safety is
not guaranteed. In the second Ben-Or experiment, we have weakened the network
assumptions, and allowed the processes to move on to the next round/phase even
if fewer than n − f messages are received. As expected, this leads to a violation
of agreement. However this violation is found only using the sequential model.

Table 1. Seconds to find a bug in Asynchronous and Sequential protocols under dif-
ferent network environments. † denotes a timeout (1 h). R means messages can be
reordered, D means messages can be arbitrarily delayed, T means processes can time-
out and move to the next round/phase, MD means messages drops.

Network assumption Protocol Network Async Sequential

Required Paxos R D T † 0,53

Paxos R,D,T,MD † 0,53

Ben-Or* R,D 15,04 30,97/9,12

Raft R,D,T,MD † 158,44

Weaker ViewChange R,D,T,MD 22,02 0,21

Ben-Or R,D,T † 0,19

UniformVoting R,D,T,MD 18,22 33,74

Similarly, Uniform Voting requires a non-empty set of processes, called the
kernel, to communicate reliably with the entire network, otherwise safety is vio-
lated. The kernel is needed because Uniform Voting does not rely on a quorum,
the vote and decision is based on a minimum argument. We weaken this network
assumption and found a violation of agreement. Typically there is no proof show-
ing that these assumptions cannot be weakened, and there is no understanding
what happens if they are weakened. Protocol designers would like to play with
the network assumptions and see how the protocol behaves.

Viewstamped Replication (view change). In this experiment we consider the
leader election protocol used in Viewstamped Replication [27]. We introduced
an artificial bug to the protocol where the function that returns the PID of the
current leader to be elected is buggy, instead of returning the same PID for a
given phase to all processes, it chooses one non-deterministically. Also, the origi-
nal protocol gathers quorums of messages to guarantee safety, here we introduce
another simple bug where the number of collected messages is less than n/2.

A Sequentialization Procedure for Fault-Tolerant Protocols 69

Table 1 shows our results. The upper half lists the experiments when the
network assumptions of each protocol are respected, the lower one depicts the
scenario when these networks are weakened.

7 Conclusions

We propose a technique that reduces testing event-driven asynchronous proto-
cols to testing sequential ones. The sequentialization uses the round structure of
protocols, which reduces the number of interleavings the sequentialized version
needs to explore. The modularity of the method allows to add more sequential-
izations for network assumptions not considered in this work and therefore run
the tool for new protocols. If no sequentialization produces an equivalent set of
executions, the method remains interesting for testing because it can be used
with a stronger network assumption that under approximates it.

References

1. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 614–630
(2016). https://doi.org/10.1145/2908080.2908118

2. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

3. Deligiannis, P., et al.: Uncovering bugs in distributed storage systems during testing
(not in production!). In: Proceedings of the 14th Usenix Conference on File and
Storage Technologies, pp. 249–262. FAST 2016. USENIX Association (2016)

4. Desai, A., Gupta, V., Jackson, E., Qadeer, S., Rajamani, S., Zufferey, D.: P: safe
asynchronous event-driven programming. In: Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, ser.
PLDI 2013, pp. 321–332. Association for Computing Machinery, New York (2013).
https://doi.org/10.1145/2491956.2462184

5. Bouajjani, A., Emmi, M., Parlato, G.: On sequentializing concurrent programs.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 129–145. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7 13

6. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. ACM SIGPLAN Not.
39(6), 14–24 (2004)

7. Bertran, M., Babot, F., Climent, A.: Formal sequentialization of distributed sys-
tems via program rewriting. Electr. Notes Theor. Comput. Sci. 188, 53–75 (2007)

8. Bakst, A., Gleissenthall, K.V., Kıcı, R.G., Jhala, R.: Verifying distributed programs
via canonical sequentialization. Proc. ACM Program. Lang. 1(OOPSLA), 1–27
(2017). https://doi.org/10.1145/3133934

9. Kragl, B., Enea, C., Henzinger, T.A., Mutluergil, S.O., Qadeer, S.: Inductive
sequentialization of asynchronous programs. In: Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pp.
227–242 (2020). https://doi.org/10.1145/3385412.3385980

https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2491956.2462184
https://doi.org/10.1007/978-3-642-23702-7_13
https://doi.org/10.1145/3133934
https://doi.org/10.1145/3385412.3385980

70 C. Drǎgoi and P. Inzaghi Pronesti

10. Elrad, T., Francez, N.: Decomposition of distributed programs into communication-
closed layers. Sci. Comput. Program. 2(3), 155–173 (1982)

11. Biely, M., Delgado, P., Milosevic, Z., Schiper, A.: Distal: a framework for imple-
menting fault-tolerant distributed algorithms. In: 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 1–8.
IEEE (2013)

12. Damian, A., Drăgoi, C., Militaru, A., Widder, J.: Communication-closed asyn-
chronous protocols. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp.
344–363. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5 20

13. Lamport, L.: Paxos made simple. ACM SIGACT News (Distributed Comput-
ing Column) 32, 4 (Whole Number 121, December 2001) (2001). https://www.
microsoft.com/en-us/research/publication/paxos-made-simple/

14. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: 2014 USENIX Annual Technical Conference (Usenix ATC 2014), pp. 305–319
(2014)

15. Mohan, C., Lindsay, B.: Efficient commit protocols for the tree of processes model
of distributed transactions. ACM SIGOPS Oper. Syst. Rev. 19(2), 40–52 (1985).
https://doi.org/10.1145/850770.850772

16. Junqueira, F.P., Reed, B.C., Serafini, M.: Zab: high-performance broadcast for
primary-backup systems. In: 2011 IEEE/IFIP 41st International Conference on
Dependable Systems & Networks (DSN), pp. 245–256. IEEE (2011). http://
ieeexplore.ieee.org/document/5958223/

17. Drăgoi, C., Enea, C., Ozkan, B.K., Majumdar, R., Niksic, F.: Testing consensus
implementations using communication closure. Proc. ACM Program. Lang. 4, 1–29
(2020). https://doi.org/10.1145/3428278

18. Ongaro, D.: Consensus: bridging theory and practice. Stanford University, CA,
USA (2014). aAI28121474 ISBN-13: 9798662514218

19. Gleissenthall, K.V., Kıcı, R.G., Bakst, A., Stefan, D., Jhala, R.: Pretend synchrony:
synchronous verification of asynchronous distributed programs. Proc. ACM Pro-
gram. Lang. 3(POPL), 1–30 (2019)

20. Demsky, B., Lam, P.: SATCheck: SAT-directed stateless model checking for SC
and TSO. ACM SIGPLAN Not. 50(10), 20–36 (2015). https://doi.org/10.1145/
2858965.2814297

21. Kokologiannakis, M., Marmanis, I., Gladstein, V., Vafeiadis, V.: Truly stateless,
optimal dynamic partial order reduction. Proc. ACM Program. Lang. 6(POPL),
1–28 (2022). https://doi.org/10.1145/3498711

22. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking
at scale: automated air traffic control design space exploration. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 3–22. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 1

23. Bornholt, J., et al.: Using lightweight formal methods to validate a key-value stor-
age node in Amazon S3. In: Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, pp. 836–850 (2021). https://doi.org/10.1145/
3477132.3483540

24. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975)

https://doi.org/10.1007/978-3-030-25543-5_20
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/850770.850772
http://ieeexplore.ieee.org/document/5958223/
http://ieeexplore.ieee.org/document/5958223/
https://doi.org/10.1145/3428278
https://doi.org/10.1145/2858965.2814297
https://doi.org/10.1145/2858965.2814297
https://doi.org/10.1145/3498711
https://doi.org/10.1007/978-3-319-41540-6_1
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540

A Sequentialization Procedure for Fault-Tolerant Protocols 71

25. Ben-Or, M.: Another advantage of free choice (extended abstract) completely asyn-
chronous agreement protocols. In: Proceedings of the Second Annual ACM Sympo-
sium on Principles of Distributed Computing, pp. 27–30 (1983). https://doi.org/
10.1145/800221.806707

26. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distrib. Comput. 22, 49–71 (2009). https://doi.org/10.
1007/s00446-009-0084-6

27. Liskov, B., Cowling, J.: Viewstamped replication revisited. MIT, Tech. Rep. (2012).
MIT-CSAIL-TR-2012-021, Jul 2012

https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/800221.806707
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6

Towards Practical Partial Order
Reduction for High-Level Formalisms

Philipp Körner(B) and Michael Leuschel

Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
{p.koerner,leuschel}@hhu.de

Abstract. Partial order reduction (POR) has considerable potential to
reduce the state space during model checking by exploiting independence
between transitions. This potential remains, however, largely unfulfilled
for high-level formalisms such as B or TLA+. In this article, we report
on our experiments regarding POR: We empirically assess that our cur-
rent implementation of POR in ProB does not have any impact for a
vast majority of B machines. We then analyse why POR fails to achieve
reductions and identify minimal examples without reduction that make
use of high-level constructs in B, and provide several new ideas to make
POR pay off for more complex formal models. A proof-of-concept imple-
mentation then yields two orders of magnitude reduction in the state
space for a particularly challenging case study, a railway interlocking
model that escaped our POR techniques thus far.

Keywords: B-method · Partial order reduction · Model checking ·
Analysis

1 Introduction

Partial order reduction (POR) [18,32,38] is a technique to tackle the state space
explosion problem in model checking [12]: Instead of executing all interleavings
of independent behaviour, only one is explored in the best case. In low-level
formalisms, such as Petri nets or Promela, and in process algebras like CSP or
mCRL2, POR is known to reduce the state space by several orders of magni-
tudes [7,17,19,25].

In contrast, the application of POR to high-level formalisms like TLA+ [26] or
B [1,2] has been disappointing thus far. Attempts at using POR for TLA+ using
TLC [39] were not successful and abandoned1. POR has also been implemented
for B using the ample set approach within ProB [13–15]. While considerable
reduction can be obtained for some specifications, the technique does not seem
beneficial for real-life examples. Another attempt of using POR for B was made
using LTSmin together with ProB [6,25]. It uses ProB to solve predicates

1 Private communication from Stephan Merz to Michael Leuschel at Schloß Dagstuhl;
see also the presentation by Kuppe [24].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Lal and S. Tonetta (Eds.): VSTTE 2022, LNCS 13800, pp. 72–91, 2023.
https://doi.org/10.1007/978-3-031-25803-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25803-9_5&domain=pdf
http://orcid.org/0000-0001-7256-9560
http://orcid.org/0000-0002-4595-1518
https://doi.org/10.1007/978-3-031-25803-9_5

Towards Practical Partial Order Reduction for High-Level Formalisms 73

1 MACHINE NoReduction

2 VARIABLES xx, locked

3 INVARIANT xx ∈ POW (1..2) ∧ locked ∈ B

4 INITIALISATION xx := ∅ ‖ locked := ⊥
5 OPERATIONS

6 add(yy) = SELECT locked = ⊥ ∧ yy ∈ 1..2 ∧ yy �∈ xx

7 THEN xx := xx ∪ {yy} END;

8 lock = SELECT locked = ⊥ THEN locked := � END;

9 unlock = SELECT locked = � THEN locked := ⊥ END

10 END

Listing 1. Adding a Value Into a Set—No Reduction

and calculate the next states while POR is provided by LTSmin. LTSmin’s
approach to POR is based on the stubborn set theory [38] and works well for
low-level formalisms. Compared to ProB’s approach in [13–15], the approach of
LTSmin is more fine-grained (wrt. guards), yet rarely achieves (mostly slightly)
better reduction for B models2. Overall, POR rarely seems worth the effort for
practical B models.

This article re-visits the implementation of POR in ProB: first, we evaluate
its effectiveness in Sect. 3. The main insight we gained is that static analysis
of a model (before model checking) often does not determine a precise enough
independence relation. The techniques described in the rest of the paper focus
on POR for deadlock checking (as effectiveness is already low and LTL model
checking requires even more constraints): Many B models contain operations
drawing a parameter from a known finite set; such operations are treated as
a unit and, thus, independence between certain instances cannot be captured.
We propose to unroll such operations by replacing them with a new operation
for each parameter (Sect. 4). Additionally, operations that access a shared set
variable usually only interact with a small subset of its elements. We discuss
benefits and drawbacks of a constraint-based analysis as well as encoding sets
to SAT variables before applying a syntactical analysis (Sect. 5).

As an example, the model in Listing 1 can (automatically) be re-written
to an equivalent model depicted in Listing 2 by unrolling the add operation
and encoding the set xx as booleans. The former model yields no state space
reduction using ProB’s POR, whereas the latter one does. Though some spec-
ifications may require additional re-writes or more involved analysis techniques,
the combination of these two techniques allows state space reduction by POR
on large, real-world models. In Sect. 6, we share key insights based on a grand
challenge we set ourselves, a large model with many real-world features whose
state space should be significantly reduced using POR, yet escaped our approach
so far. With the techniques above, the expected reduction occurs.

2 Already the results in Sect. 4.3 and Table 3 of [23] for POR were unsatisfying. Other
techniques of LTSmin were very effective, however.

74 P. Körner and M. Leuschel

1 MACHINE HasReduction

2 VARIABLES xx_1 , xx_2 , locked

3 INVARIANT xx_1 ∈ B ∧ xx_2 ∈ B ∧ locked ∈ B

4 INITIALISATION xx_1 := ⊥ ‖ xx_2 := ⊥ ‖ locked := ⊥
5 OPERATIONS

6 add_1 = SELECT locked = ⊥ ∧ xx_1 = ⊥ THEN xx_1 := � END;

7 add_2 = SELECT locked = ⊥ ∧ xx_2 = ⊥ THEN xx_2 := � END;

8 lock = SELECT locked = ⊥ THEN locked := � END;

9 unlock = SELECT locked = � THEN locked := ⊥ END

10 END

Listing 2. Unrolled and SAT Encoded Version of Listing 1—POR is Successful

2 Background

The B-Method. [1] and its successor Event-B [2] are methodologies that rely
on a correct-by-construction approach, i.e., an abstract specification is proven
correct and is iteratively refined as more details are added. Proofs accompany
all refinement steps, linking each iteration to the ones before.

Both B and Event-B have seen particular use in the railway industry [9].
While the former focuses on software development, the latter is designed for
modelling systems. Event-B is most commonly used via the Rodin toolset [3],
and exported proof information can be used for model checking [5]. B and Event-
B are very expressive, encompassing first-order logic with (higher-order) sets,
sequences, functions, relations and records. Both formalisms are state-based with
(possibly non-deterministic) initial assignments of constants and state variables,
and guarded transitions (named operations in B and events in Event-B)3 yielding
successor states. A state of a B model is composed of values for all the constants
and variables of the model.

While we study both B and Event-B models, we will use the term operation
to denote both B operations and Event-B events. Small examples of a B specifica-
tion are given in the motivating example in Listings 1 and 2. B machines might
include additional clauses such as the CONSTANTS clause (that declares identi-
fiers of constants similar to the VARIABLES clause), the PROPERTIES clause (con-
straining the constants) or the SET clause (that contains, e.g., enumerated sets).
While the following concepts of operation and operation instance are related, it
is important to distinguish between them:

Notation. An operation is the name of a guarded substitution (aka statement)
that may be parameterised. E.g., add or lock in Listing 1 are operations. The
guarded substitution is also called the body of the operation.
An operation along with values for all its parameters is called an operation
instance. E.g., add(1) is an operation instance. Another one is add(2).

An operation instance is thus a transition label.
3 Or actions in TLA+.

Towards Practical Partial Order Reduction for High-Level Formalisms 75

PROB. [28,29] is an animator, model checker and constraint solver for the B
language. It is written in SICStus Prolog [10] and its constraint-solving backend
makes use of coroutines and the CLP(FD) library [11]. Alternative backends are
available via translations to SAT and SMT: the work of Plagge and Leuschel [34]
uses the Kodkod [37] library to translate B to SAT, while the works of Krings,
Schmidt and Leuschel [20,35] translate B to SMT for using Z3 [30] as a solver.

Partial Order Reduction. (POR) [4,32,33] is a model checking technique
that only explores a subset of the state space. POR is considered to be appealing
because, for n independent operation instances, one has to explore (in the best
case) only a single ordering rather than n! many. Thus, exponential reductions
are possible in concurrent systems that synchronise on few events. While the
underlying idea seems simple, the conditions to ensure correctness are intricate4.

POR exploits independent operation instances: Two operation instances are
independent, if they can be performed in any order without changing the result-
ing state. This is visualised in Fig. 1: If α and β are independent and simulta-
neously enabled in the original state space, this implies that β can be executed
after α and vice-versa, and the resulting states are identical. In short, this is the
case if the operation instances commute and do not disable each other.

Below, we will give a more formal definition. Note, as is usual when present-
ing POR, we assume that operation instances are deterministic, i.e., given an
operation instance α and a state s there is at most one successor state s′ such
that s

α−→ s′.5

Notation (Enabling Predicate). For an operation e, we define ene to be its
enabling predicate (its guard) that is evaluated over a state s.

Definition 1 (Independence). Two operation instances α and β are inde-
pendent, if the following constraint holds. Otherwise, they are dependent.
∀s, s1, s2 : enα(s) ∧ enβ(s) ∧ s

α−→ s1 ∧ s
β−→ s2 =⇒ ∃s′ : enβ(s1) ∧ enα(s2) ∧ s1

β−→ s′ ∧ s2
α−→ s′

The operation instance lock depends on add(1) (and vice versa, as the
independence relation is symmetric), because performing lock may (and will)
disable add(1). The operation instance add(1) is independent of add(2).
Usually, one approximates the independence relation during static analysis
before model checking based on operations. Two operations are independent
if all respective operation instances are independent. As an example, the opera-
tions add and unlock are independent of each other because they write different
variables (and the read in the guard of add of unlock is not conflicting)6.

4 For example, an error in a twenty-year-old algorithm was recently discovered [36].
5 For Event-B it is straightforward to lift all non-determinism into parameters. In

Classical B this is more difficult; but the formalisation of independence with non-
determinism would make the presentation overly complex and detract from the main
points of the article.

6 More precisely, all operation instances of add are independent of unlock because
they can never be enabled at the same time.

76 P. Körner and M. Leuschel

s

s1 s2

s′

⇒s2

s

s1

α
β

β
α

α
β

Fig. 1. Visualisation of the operation independence definition

The Ample Set Approach. As the POR implementation in ProB relies on
the ample set approach7, we introduce it more formally. For this article, it is not
necessary to understand why POR works in detail, but only what information
is required.

By op(α) we denote the operation associated with an operation instance α.
We also define the enabled operations in a state s by enabled(s) = {op(α) | ∃s′ :
s

α−→ s′}.
An ample set is a subset of enabled operations in a state (referred to as s in

the following formulas) that are considered by model checking. In other words,
all operation instances for operations not contained in the ample set are ignored.
For example, in Fig. 1, we could choose ample(s) = {op(α)} and thus ignore β
in s. To reach a sound reduction of the state space, one requires the following
conditions to hold (taken from [15]):

(A 1) Emptiness Condition: ample(s) = ∅ ⇔ enabled(s) = ∅

(A 2) Dependence Condition: Along every finite path in the original state
space starting at s, an operation dependent on ample(s) cannot appear
before some operation e ∈ ample(s) is executed.

The conditions (A 1) and (A 2) suffice for deadlock checking; LTL model check-
ing (which is used for invariant checking) has additional conditions (stutter and
cycle), yet those are out of scope for this paper. In ProB’s implementation, two
local criteria are used instead of (A 2). They have been proven correct in [14,15]:

(A 2.1) Direct Dependence Condition: Any (ignored) operation e ∈
enabled(s) \ ample(s) is independent of all operations in ample(s).

(A 2.2) Enabling Dependence Condition: Any (disabled) operation e ∈
Events \ enabled(s) that depends on some operation f ∈ ample(s) and
is possibly co-enabled with f may not become enabled by execution of
operations e′ 	∈ ample(s).

Two operations are considered to be possibly co-enabled if there exists a state s
in which both guards are satisfied. Note that such a state may not be reachable.

Thus, in practice, the independence relation, an enabling relation and a “may
be co-enabled” relation between operations are approximated during a static
analysis phase (which we will refer to as POR analysis).
7 The implementation in LTSmin uses stubborn sets. There is not much difference

concerning our argument as the analysis must extract mostly the same information.

Towards Practical Partial Order Reduction for High-Level Formalisms 77

3 Experiments and Results

In order to evaluate the impact of ProB’s partial order reduction, we use a
collection of B and Event-B specifications [22] and compare the state space sizes
with and without applying POR. We consider 1894 B machines with at least
two operations in order to have an opportunity for independent events to occur.
The set of machines and produced results can be found on GitHub8.

All machines were model checked for 30 min (per configuration) with 2 GB
of RAM on a single CPU core of an Intel E5-2697v2 (Ivy Bridge EP)
running at 2.70 GHz. A nightly version of ProB 1.11.0 was used (commit
1b6f14bbd533c2459b1ce675eb57ab24fee89caa).

For deadlock checking, we excluded 519 machines that time out with and
without POR; 17 machines that time out only with POR; and 25 machines (4̃%
of machines with timeout) only timed out using the vanilla baseline implemen-
tation. We assume some reduction occurred for these 25 machines. 3 machines
are included due to some other error. Thus, 1330 machines are subject to this
analysis. 1121 are deadlock-free, and 209 contain a deadlock.

The original and reduced state space sizes are given in Fig. 2a and Fig. 2b.
Data points on the diagonal correspond to cases where no reduction occurs, while
data points below the diagonal correspond to a reduction due to POR. In the
right figure (Fig. 2b) data points can also be found above the diagonal, meaning
that model checking with POR did find the deadlock later than without POR.

Of the 1121 deadlock-free machines, only 191 (17%) showed some reduction
with POR. On average the reduced state space has 54% of the original size (i.e.,
a reduction of 46%) for these 191 machines. The median is 56% of the original
size. Similar, of 209 machines containing deadlocks, we can observe 36 (17.2%)
with a reduced state space and 9 with a larger one (as discussed earlier).

Thus, even when adding the 25 machines with timeout when not using POR
above, we have less than 20% of models where POR reduces the state space.

For invariant checking, we can analyse 1385 machines after excluding 452
where both model checking algorithms time out, 2 machines that only time
out with POR and 55 machines that only time out without POR. Again, we
assume some reduction for the latter cases (around 11% of all machines featuring
any timeout). Further, we exclude 55 additional machines due to other errors.
This leaves 1331 machines to analyse here, of which 1169 machines preserve the
invariant.

The (reduced) state space sizes are visualised in Fig. 3a. Of these, we can
observe a state space reduction in 37 machines (3.2%). On average, the reduced
state space has 76% of the original size (i.e., a reduction of 24%) for these 37
machines. The median is 86% of the original size. Unexpectedly, a single outlier
lies above the diagonal, i.e., yields a larger state space with POR. This is a
machine that acts as a test for ProB’s randomisation library, and hence the
state space can change with each run. Even when assuming that all 55 machines
with timeout produce a reduction, we have a reduction in less than 10% of cases.

8 https://github.com/hhu-stups/specifications/tree/por-experiments.

https://github.com/hhu-stups/specifications/tree/por-experiments

78 P. Körner and M. Leuschel

100 101 102 103 104 105 106

100

101

102

103

104

105

106

Vanilla State Space Size

P
O
R

St
at
e
Sp

ac
e
Si
ze

(a) Deadlock-Free Models

100 101 102 103 104 105 106

100

101

102

103

104

105

106

Vanilla State Space Size

P
O
R

St
at
e
Sp

ac
e
Si
ze

(b) Deadlock-Containing Models

Fig. 2. (Reduced) state space sizes for deadlock checking

Of 162 machines with invariant violations (Fig. 3b), we observe 30 machines
(18.5%) with a reduced state space and 18 with a larger one.
Threats to Validity. Many machines time out and are excluded, though they
might exhibit better reduction in reality. However, from our sample, we can also
observe the trend that smaller machines exhibit state space reductions more
often (cf. Figs. 2a and 3a). Indeed, our findings in Sect. 4 and Sect. 5 suggest
that constructs to structure larger machines hinder POR.

Further, the set of machines may not be representative, as it includes many
examples from literature, small machines used for teaching, different versions or
instantiations of the same machine, etc., and not larger, confidential machines
from industry. From our experience, POR does not work well for these machines.
The bias may even be towards machines well-suited for POR, as several models
meant for testing the POR implementation are included.

4 Idiom 1: Parameterised Operations

ProB’s partial order reduction and the POR analysis identifies operations by
their name. However, there may be several operation instances, i.e., combinations
of a name and concrete parameter values. A trivial example is part of Listing 1.

From a high-level point of view, this machine has three operations where
only add and lock can be enabled simultaneously but are dependent. Thus, the
state space cannot be reduced. Yet, the operation instances add(1) and add(2)
satisfy exactly our definition of independence (Fig. 1), as add(1) and add(2)
commute (see Fig. 4)!

In this example, the independence of some operation instances within the
same operation is not exploited. In many cases, certain operation instances of one
operation are independent of certain operation instances of another operation.
An example is described based on our grand challenge in Sect. 6.2.

Towards Practical Partial Order Reduction for High-Level Formalisms 79

100 101 102 103 104 105 106

100

101

102

103

104

105

106

Vanilla State Space Size

P
O
R

St
at
e
Sp

ac
e
Si
ze

(a) Invariant-Preserving Models

100 101 102 103 104 105

100

101

102

103

104

105

Vanilla State Space Size

P
O
R

St
at
e
Sp

ac
e
Si
ze

(b) Invariant-Violating Models

Fig. 3. (Reduced) state space sizes for invariant checking

{}
⊥start

{1}
⊥

{2}
⊥

{1, 2}
⊥

{}
�

{1}
�

{2}
�

{1, 2}
�

ad
d(
1)

add(2)

add(2) ad
d(
1)

lock

unlock

lock

unlock

lock

unlock

lock

unlock

Fig. 4. State space of the machine in Listing 1. Each state consists of the set xx (at the
top) and the boolean locked (at the bottom). The commutativity of the add operation
instances is highlighted.

4.1 Solution: Unrolling of Operations

The example above has one important property: for the considered operation
add, we can statically determine a finite set of possible values for the parameters
(i.e., either yy = 1 or yy = 2). In this case we can replace the operation with
all its operation instances, by hardwiring the parameter values. For the example
above, this gives rise to two operations add 1 and add 2 in Listing 3.
Advantage: Necessary Preprocessing. This technique is the bare minimum
to locate independence between operations that share at least one variable. Thus,
it is the foundation for the techniques below.
Drawback: Infinite Sets. This unrolling technique is not always applicable
given that parameter choices for all states have to be considered. Indeed, the
calculation of all possible parameter values may be expensive and yield a large
or infinite number of values (due to an overapproximation by the static analysis).

80 P. Körner and M. Leuschel

1 OPERATIONS

2 add_1 = SELECT locked = ⊥ ∧ 1 �∈ xx THEN xx := xx ∪ {1}

END;

3 add_2 = SELECT locked = ⊥ ∧ 2 �∈ xx THEN xx := xx ∪ {2}

END;

4 lock = SELECT locked = ⊥ THEN locked := � END;

5 unlock = SELECT locked = � THEN locked := ⊥ END

Listing 3. Unrolled add Operation

Drawback: Multiple Evaluations. While unrolling an operation may be suit-
able for POR analysis, it duplicates the majority of sub-expressions. Each oper-
ation is considered individually in ProB, and shared sub-expressions have to be
re-evaluated which results in a slow-down during model checking.

Below, we assume that all operation instances are unrolled. Thus, there is no
difference between the concepts of operation and operation instance and their
independence. In case an operation cannot be unrolled, it is retained as-is and
syntactic independence can still be determined.

5 Idiom 2: Usage of Compound Values (Sets, etc.)

With the simple unrolling technique above, we have established that the
POR analysis could now in principle spot the independence between operation
instances. In practice, the POR analysis in ProB will, however, not determine
the independence if two operations write to the same variable.

For performance reasons, the POR analysis focuses mostly on syntactic
aspects in order to yield a fast approximation9. It considers the (action) read
and write sets of two operations (AR1, AR2, R1, R2, W1 and W2). A variable
is contained in the action read set AR of an operation, iff the substitution reads
it; in the read set R iff the guard or the substitution reads it; and in the write
set W iff the variable is written to. The POR analysis then follows the flowchart
depicted in Fig. 5, where only the disabling analysis uses semantic aspects.

If we re-consider the operations in Listing 3, we can observe that both add_1
and add_2 write to the same variable xx. Obviously, the intersection of the two
write sets W1∩W2 is not empty and a syntactic POR analysis yields that the two
operations are (race) dependent. Yet, set union is associative and commutative
and the operations should be classified as independent because (xx ∪ {1}) ∪ {2}
= (xx ∪ {2}) ∪ {1}.

5.1 Solution 1: Constraint-Based POR Analysis

Since the original syntactic approach depicted in Fig. 5 does not suffice, we added
a new constraint-based semantic approach. Instead of syntactically classifying a
9 Which is precise enough for some formalisms (at least using LTSmin’s POR), but

not for others [25].

Towards Practical Partial Order Reduction for High-Level Formalisms 81

W1 ∩ W2 = ∅

race
dependent

W1 ∩ R2 = ∅

∧W2 ∩ R1 = ∅

syntactic
independent

W1 ∩ AR2 = ∅

∧W2 ∩ AR1 = ∅

action
dependent

disabling
analysis

independent guard
dependent

falsetrue

true
false

true false

canno
t

disab
le

candisable

Fig. 5. Syntactically determining the independence relation of two operations

pair of operations as race or action dependent (see Fig. 5), we use a constraint
solver (ProB, Kodkod or Z3) during the POR analysis. Below, we present how
we determine operations to be independent by considering non-disabling and
commutativity constraints separately (see Definition 1). Further, in order to be
able to check 2 on the fly, we also use constraints to determine which other
operations may (not) be enabled by a specific operation. Finally, again for 2,
one also has to determine which operations may be co-enabled. For the overall
approach, we use the notion of before-after predicates and enabling predicates:

Notation (Before-After Predicate). For an operation instance e, we define
BAe(s, s′) to be the before-after predicate. It is a conjunction of the guard of
operation op(e) and the predicate whose solutions s′ form the successor states of
s using e.

As an example, the before-after predicate for the operation add_1 is10:

BAadd1(s, s
′) ≡ locked = ⊥ ∧ 1 	∈ xx

︸ ︷︷ ︸

enadd1 (s)

∧ xx′ = xx ∪ {1} ∧ locked ′ = locked
︸ ︷︷ ︸

substitution of add1

Before-after predicates do not exist for all operations, e.g., those containing a
WHILE-loop.

Non-disabling Constraint. Independent operations must not disable each other
and commute. The constraint below checks whether operation α can disable the
operation β. The conjunct Info might contain additional information, such as
the values of constants, proven theorems or (parts of) the state invariant. Also

10 We will directly refer to the state variables by their name; e.g., xx is part of state
s, and xx′ is a variable of s′.

82 P. Körner and M. Leuschel

note that the states s and s′ may not be reachable in the state space, and, thus
the following computes a (safe) approximation of disabling:

∃s, s′.(Info ∧ enβ(s) ∧ BAα(s, s′) ∧ ¬enβ(s′))

For example, to check whether add_1 may disable add_2, we have to consider
the constraint:

∃s, s′.(Info ∧ locked = ⊥ ∧ 2 ∈ xx
︸ ︷︷ ︸

enadd2 (s)

∧ locked = ⊥ ∧ 1 	∈ xx ∧ xx′ = xx ∪ {1} ∧ locked ′ = locked
︸ ︷︷ ︸

BAadd1 (s,s′)

∧ ¬(locked ′ = ⊥ ∧ 2 ∈ xx′)
︸ ︷︷ ︸

¬enadd2 (s
′)

)

As this constraint is a contradiction, we can conclude that add 1 cannot disable
add 2 (and, analogously, vice versa). This does not suffice for independence,
and we have to continue to check the commutativity of the operations (see
below). However, lock can (and will) disable add 1 and the operations cannot
be independent. The same holds for lock and add 2.
Commuting Constraint. The next constraint below encodes counter examples to
commutativity in Definition 1. egain, if a solution is found, a timeout occurs or
unknown is returned by the solver, we conclude that the operations might be
non-commuting and thus dependent:

∃s, s1, s2, s3, s4.(Info ∧ BAα(s, s1) ∧ BAβ(s, s2) ∧ BAα(s2, s3) ∧ BAβ(s1, s4) ∧ s3 �= s4)

E.g., to find that add 1 and add 2 commute, the following constraint is used:

∃s, s1, s2, s3, s4.(locked = ⊥ ∧ 1 	∈ xx ∧ xx1 = xx ∪ {1} ∧ locked1 = locked
︸ ︷︷ ︸

BAadd1 (s,s1)

∧ locked = ⊥ ∧ 2 	∈ xx ∧ xx2 = xx ∪ {2} ∧ locked2 = locked
︸ ︷︷ ︸

BAadd2 (s,s2)

∧ locked2 = ⊥ ∧ 1 	∈ xx2 ∧ xx3 = xx2 ∪ {1} ∧ locked3 = locked2
︸ ︷︷ ︸

BAadd1 (s2,s3)

∧ locked1 = ⊥ ∧ 2 	∈ xx1 ∧ xx4 = xx1 ∪ {2} ∧ locked4 = locked1
︸ ︷︷ ︸

BAadd2 (s1,s4)

∧¬(xx3 = xx4 ∧ locked3 = locked4)
︸ ︷︷ ︸

s3 �=s4

)

Due to the associativity and commutativity of the set union, the two operations
will commute. Further, as they do not disable each other, the constraint can
be found to be unsatisfiable. Hence, we know for certain that for all states
Definition 1 holds and the operations are independent of each other.

Towards Practical Partial Order Reduction for High-Level Formalisms 83

Non-Enabling Constraint. For condition (A 2.2), we also have to know which
operations can enable each other. In order to determine whether operation α
can enable β, we need a constraint similar to the non-disabling constraint:

∃s, s′.(Info ∧ ¬enβ(s) ∧ BAα(s, s′) ∧ enβ(s′))

As an example, add 1 cannot enable add 2 and vice versa. However, both these
operations can be enabled by unlock.
Co-Enabledness Constraint. Again, for condition (A 2.2), we need to know which
operations are potentially co-enabled. The constraint below is true if the opera-
tions α and β are co-enabled in some state:

∃s.(Info ∧ enα(s) ∧ enβ(s))

For example, add 1 and add 2 are both enabled in the initial state. However,
lock and unlock are never co-enabled as their guards form a contradiction.
Advantage: Precision. Overall, such a constraint-based analysis is very precise
and, in an optimal world, would obtain all necessary information for POR.
Drawback: Required Information. In practice, (proven) invariants often are
important to determine independence (i.e., they should be part of the Info pred-
icate above). E.g., if x > 0 ⇒ x = y is known, we can infer that the guards
x > 0 and y ≤ 0 are mutually exclusive. However, adding conjuncts to the Info
predicate can also make a constraint solver time out. We were not able to find
a heuristic that selects additional information for the solver and consistently
succeeds for more complex models.
Drawback: Analysis Overhead. For many constraints the solvers time out,
which vastly increases the POR analysis time. We found that for many models,
such an analysis surpasses the actual model checking time for the full state space.
The issue is further discussed regarding the interlocking example in Sect. 6.2.
Drawback: Instability of Solver Integrations. ProB’s own constraint
solver does not perform well in finding unsatisfiability of the commuting con-
straints. Other integrated solvers on the other hand, i.e., Kodkod and Z3 fit
extraordinarily well. However, for some constraints Kodkod and Z3 will occupy
all available memory (including swap space), leading to crashes during POR
analysis.

5.2 Solution 2: SAT Encoding of Finite Sets

While the constraint-based approach above works well for smaller models, the
blow up of analysis time renders it less favourable for larger ones. Thus, we
have implemented a prototype11 that aims to expose syntactic independence
by automatically re-writing finite set variables (as well as finite relations) into a
series of boolean variables. This is technique often refered to as “bit blasting”, or
“data refinement” in the context of modelling and refinement. It also is used in
Kodkod’s translation to SAT, and similar re-writes are required when encoding

11 Available at: https://github.com/JanRossbach/fset.

https://github.com/JanRossbach/fset

84 P. Körner and M. Leuschel

such a model in lower-level formalisms, such as Promela. In Listing 2, an example
encoding is given for the machine in Listing 3.

One can see that the (original) set variable xx can contain at most two
values that can be determined statically (i.e., 1 and 2). Then, the original set
xx is replaced by a group of boolean variables, here xx_1 (that equals TRUE iff
1 ∈ xx) and xx_2 (that equals TRUE iff 2 ∈ xx). Finally, a membership check
is a comparison with TRUE (or FALSE for non-membership, e.g., in the guard of
add_1), and the set union with a singleton set just sets the according boolean to
true (e.g., in the body of add_1). Most operators concerning sets, functions and
relations can be re-written (though some translations are rather involved [37],
and are omitted here).
Advantage: Faster Analysis. The POR analysis yields a pretty precise result
even if the original, fast syntactical analysis in Fig. 5 is re-used. For example,
add_1 reads and writes only xx_1 and does not require xx_2, and vice versa for
add_2, resulting in independent operations on a syntactical level. Further, as the
behaviour of the machine is not altered, one could also verify that this is a valid
refinement in order to ensure correctness.
Drawback: Performance. There are several aspects of performance overheads
to consider here: first, the translation itself requires some time, especially if all
operations are unrolled and if complicated invariants are used. For larger models,
our prototype of the translation may take several minutes. Second, the translated
model does not perform as well during model checking with ProB, and may be
several times slower. Thus, a sensible option would be to use the translated
model for POR analysis only and map the results to the original model.
Drawback: Translatable Subset. Unfortunately, not all operators in the B
language have a straightforward mapping to a SAT encoding. As a fallback, one
may re-calculate the original set by combining all boolean values it is spliced
into. Yet, in these instances, one loses all syntactic independence again.

6 Case Study and Challenge: Railway Interlocking
System

In his book on Event-B [2], Abrial presents a model12 of a railway interlocking
system. The role of an interlocking is to safely operate signals and points within
an area of the train network. This means that the interlocking controller has to
ensure that trains do not collide and that points are not moved while a train is
driving over them.

In this section, we investigate the impact of the POR analysis techniques
we presented above with this interlocking system by Abrial [2, Chapter 17] (cf.
Listing 4). Although it is an academic model intended for teaching, we chose
it because (i) it shares several features with real-world models, (ii) while SAT-
based approaches are able to verify small to medium-sized interlockings [8,31],
the verification of larger interlockings is still an active research area and chal-
lenge, (iii) applying ProB’s POR yields no state space reduction, (iv) it requires
12 https://github.com/pkoerner/train-por/blob/main/Train 1 beebook TLC.mch.

https://github.com/pkoerner/train-por/blob/main/Train_1_beebook_TLC.mch

Towards Practical Partial Order Reduction for High-Level Formalisms 85

Fig. 6. Example interlocking track layout based on page 524 of [2] with 5 signals, 5
points, one crossing and 14 tracks segments

vast resources for model checking—its state space for the simple topology from
Fig. 6 consists of 61 648 077 states and invariant checking with ProB would take
about six days (based on estimates [21]—without distributed model checking,
the process ran out of memory and crashed), (v) one can identify that partial-
order reduction is in principle possible because the route_freeing operation
is independent of all other operations. One can hand-code this insight into the
model [27] by forcing this operation (route_freeing) to be taken as soon as it
is enabled13, thereby reducing the state space to 672 174 states. Our challenge
for the last years has been to identify why our current approach fails and to
obtain this two-order of magnitude reduction by (an improved) POR.

6.1 Interlocking Model Overview

The rail network is divided into individual blocks; the blocks in Fig. 6 are named
A–N. The interlocking allows trains to follow a fixed number of statically deter-
mined routes through the network. Figure 6 contains 10 routes, named R1–R10.
For example, route R1 goes through blocks L, A, B, C, while route R2 goes
through L, A, B, D, E, F, G and route R6 is the reversed route of R1, going
through C, B, A, L (analogously for R7–R10).

The model also contains the following constants and variables: fst and lst
are functions that map a route to its first and last block, respectively. nxt is a
function that—given a route—returns a function mapping a block to its succes-
sor. rtbl is a relation storing the routes for each block. resbl (reserved blocks)
resrt (reserved routes) and rsrtbl (blocks reserved for routes) store informa-
tion about reservations. OCC keeps track of blocks that are occupied. frm stores
which routes are formed on the physical track (TRK). LBT maps a route to the
last block of the train.

Operations are usually called within a certain order: first, a route has to be
reserved (route_reservation) and the points need to be positioned to match
the route (point_positionning). Then, these points are locked as the route is
formed (route_formation). On formed routes, trains may enter and leave blocks

13 https://github.com/pkoerner/train-por/blob/main/Train 1 beebook tlc POR.mch.

https://github.com/pkoerner/train-por/blob/main/Train_1_beebook_tlc_POR.mch

86 P. Körner and M. Leuschel

1 MACHINE Train_1_beebook_TLC
2 SETS BLOCKS ={A,B,C,D,E,F,G,H,I,J,K,L,M,N};
3 ROUTES ={R1 ,R2 ,R3 ,R4 ,R5 ,R6 ,R7 ,R8 ,R9 ,R10}
4 CONSTANTS fst , lst , nxt , rtbl
5 VARIABLES LBT , TRK , frm , OCC , resbl , resrt , rsrtbl
6 INITIALISATION
7 resrt := ∅ ‖ resbl := ∅ ‖ rsrtbl := ∅ ‖ OCC := ∅ ‖ TRK := ∅ ‖
8 frm := ∅ ‖ LBT := ∅

9 OPERATIONS
10 route_reservation (r) =
11 SELECT r �∈ resrt ∧ (rtbl−1)[{r}] ∩ resbl = ∅

12 THEN resrt := resrt ∪ {r} ‖
13 rsrtbl := rsrtbl ∪ (rtbl � {r}) ‖
14 resbl := resbl ∪ (rtbl−1)[{r}] END;
15 route_freeing (r)
16 SELECT r ∈ resrt \ ran(rsrtbl)
17 THEN resrt := resrt \ {r} ‖ frm := frm \ {r} END;
18 FRONT_MOVE_1(r) =
19 SELECT r ∈ frm ∧ fst(r) ∈ resbl \ OCC ∧ rsrtbl(fst(r)) = r
20 THEN OCC := OCC ∪ {fst(r)} ‖ LBT := LBT ∪ {fst(r)} END;
21 FRONT_MOVE_2(b) =
22 SELECT b ∈ OCC ∧ b ∈ dom(TRK) ∧ TRK(b) �∈ OCC
23 THEN OCC := OCC ∪ {TRK(b)} END;
24 BACK_MOVE_1(B) =
25 SELECT b ∈ LBT ∧ b �∈ dom(TRK)
26 THEN OCC := OCC \ {b} ‖ rsrtbl := {b} �− rsrtbl ‖
27 resbl := resbl \ {b} ‖ LBT := LBT \ {b} END;
28 BACK_MOVE_2(b) =
29 SELECT b ∈ LBT ∧ b ∈ dom(TRK) ∧ TRK(b) ∈ OCC
30 THEN OCC := OCC \ {b} ‖ rsrtbl := {b} �− rsrtbl ‖
31 resbl := resbl \ {b} ‖ LBT := LBT \ {b} ∪ {TRK(b)} END;
32 point_positionning (r) =
33 SELECT r ∈ resrt \ frm
34 THEN TRK := ((dom(nxt(r)) �− TRK)
35 �− ran(nxt(r))) ∪ nxt(r) END;
36 route_formation (r) =
37 SELECT r ∈ resrt \ frm ∧
38 (rsrtbl−1)[{r}] � nxt(r) = (rsrtbl−1)[{r}] � TRK
39 THEN frm := frm ∪ {r} END
40 END

Listing 4. Grand Challenge: Abrial’s Interlocking System (Excerpt)

in the corresponding order (via the operations FRONT_MOVE_1, FRONT_MOVE_2,
BACK_MOVE_1 and BACK_MOVE_2). Once a train finishes its route, the route is
freed again (route_freeing).

Since only some routes share blocks, several routes can be reserved, formed
and several trains may be on the tracks at the same time. For example, route
R1 does not share any block with route R4 or R5. On the other hand, route R3
and R4 both include the blocks F and G.

Towards Practical Partial Order Reduction for High-Level Formalisms 87

6.2 Insights

Operation Unrolling. As previously mentioned, this is the key technique for
the POR analysis that avoids re-writing the POR implementation itself. In our
case study, one can unroll all operations, as parameters are either one of the ten
routes or fourteen blocks. Then, the unrolled model has 92 operations. If the
operations were not unrolled, one could not exploit that some pairs of routes do
not overlap (and the corresponding operation instances are, thus, independent).
One consequence is that the POR analysis cannot infer the independence of, e.g.,
the route reservation of the disjoint routes R1 and R5. Another consequence is
that, e.g., route_reservation and route_formation are overapproximated as
dependent, even though some pairs of routes do not overlap (and the corre-
sponding operation instances are, thus, independent).
Constrained-Based Analysis. The constraint-based approach is able to yield
a precise independence analysis. This, however, comes with a cost: if opera-
tions are dependent on each other, solvers usually time out rather than return-
ing a counterexample or unknown. As many operations do not commute (or
may enable or disable each other), this drastically increases POR analysis time.
As 4186 (unordered) pairs of operations exist, a full analysis that checks the
non-disabling, commutativity (for independence) as well as non-enabling and
co-enabledness constraints (for (A 2.2)) takes several hours even on modern
hardware due to the amount of timeouts. Finally, even though the obtained
information was pretty precise, we did not achieve any reduction with this app-
roach. The POR analysis was not able to determine that a crucial pair of opera-
tions cannot be co-enabled (cf. (A 2.2)), and was not precise enough concerning
the enabling relation. In particular, for the same parameter route R, the oper-
ation instance route_freeing(R) may disable both point_positionning(R)
and route_formation(R) and, thus, is not independent of them. However, the
operations are never enabled at the same time. If this co-enabledness was dis-
proven, the reduction would occur as expected.
SAT Encoding. Finally, the SAT encoding of the original model14 in combi-
nation with the constraint-based analysis yielded the most precise POR analysis
results. In consequence, the technique also allowed the POR algorithm to achieve
the same reduction as the hand-written version. Analysis and model checking
takes about 30 min (1881 s) and requires 5048 MB of memory. In comparison,
the hand-written version without ProB’s POR takes around 7 min (397 s) and
uses 2038 MB of memory. The faster runtime is due to the overhead of the POR
as well as the less efficient encoding of the refinement. Reasons for the additional
memory usage include a larger refined model and larger states, storage of POR
analysis results, etc.

7 Conclusions and Future Work

In this paper, we have identified two idioms in B and Event-B—operation
abstraction by parameters and usage of high-level data types—that often hinder
14 https://github.com/pkoerner/train-por/blob/main/train auto4.mch.

https://github.com/pkoerner/train-por/blob/main/train_auto4.mch

88 P. Körner and M. Leuschel

the POR analysis and, henceforth, successful state space reduction. Certainly,
there are further patterns that may be uncovered in the future. Thus, our main
conclusion is that the usage of high-level constructs prevalent in B are indeed
the root cause for our previous unsatisfying experiences with POR and, thus,
deeper analysis is required.

We have described three techniques in Sects. 4 and 5, (i.e. unrolling of oper-
ations, constraint-based POR analysis of operations based on before-after pred-
icates and/or a precise SAT encoding of finite set variables). Individually, each
technique is no universal remedy and brings its own drawbacks to the table. In
combination, however, one can exploit their individual advantages and, indeed,
we were able to match the two order of magnitude state space reduction of the
hand-written version for deadlock checking of the interlocking case study.

Related work is dynamic POR [16] which is especially useful for model check-
ing of concurrent software systems, where possible parameter values are drawn
from large or infinite sets such as integer values. It avoids static analysis alto-
gether, tracks information dynamically during execution traces and backtracks
later if alternative paths that need to be explored are identified. One main ben-
efit is that one does not need to keep the entire state space in memory but only
the execution that is currently considered. While this is quite different from our
approach, it still requires precise information on the dependence relation and,
thus, cannot yield better reduction alone. Yet, evaluating the dependency rela-
tion lazily—i.e., considering only combinations of operation instances which are
actually encountered—can help where our improvements in Sects. 4 and 5 cur-
rently fail, i.e., when parameters are drawn from infinite sets or when sets are
statically unbounded.

The constraint-based analysis still has room for improvement: for one, there
might be useful heuristics for similar operation pairs to avoid timeouts. If missing
information was made more transparent to the user, one might also assist the
POR analysis by providing (proven) theorems. Yet, our implementation of SAT
encoding is not mature enough for large-scale benchmarking. In the future, we
aim to evaluate our new approach in the large.

Finally, the focus of this study lies on deadlock checking—invariant or LTL
model checking may require different or additional techniques. In particular, it is
often hard to prove that operations preserve the invariant (which is required for
operations to be stutter events, which in turn is required for successful reduction
during LTL model checking). Thus, work in this direction might benefit from
integrating provers to obtain information about invariants that are guaranteed
to be preserved by individual operations.

Acknowledgement. The authors thank the anonymous referees for their feedback,
Joshua Schmidt for his patience and relentless work on the Z3 interface and Jan
Roßbach for his implementation of the SAT encoding of finite sets. Computational
infrastructure and support were provided by the Centre for Information and Media
Technology at Heinrich Heine University Düsseldorf.

Towards Practical Partial Order Reduction for High-Level Formalisms 89

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010). https://doi.org/10.1007/s10009-010-0145-y

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Bendisposto, J., Leuschel, M.: Proof assisted model checking for B. In: Breitman,
K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 504–520. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10373-5 26

6. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 31

7. Bønneland, F.M., Jensen, P.G., Larsen, K.G., Muñiz, M., Srba, J.: Partial order
reduction for reachability games. In: Proceedings CONCUR (International Confer-
ence on Concurrency Theory). LIPIcs, vol. 140, pp. 23:1–23:15. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2019)

8. Borälv, A.: Interlocking design automation using prover trident. In: Havelund, K.,
Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 653–656.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95582-7 39

9. Butler, M., et al.: The first twenty-five years of industrial use of the B-method. In:
ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 189–209.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2 8

10. Carlsson, M., Mildner, P.: SICStus Prolog—the first 25 years. Theory Pract. Logic
Program. 12, 35–66 (2012)

11. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

12. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

13. Dobrikov, I., Leuschel, M.: Optimising the ProB model checker for B using partial
order reduction. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS,
vol. 8702, pp. 220–234. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10431-7 16

14. Dobrikov, I., Leuschel, M.: Optimising the ProB model checker for B using partial
order reduction. Form. Asp. Comput. 28(2), 295–323 (2016). https://doi.org/10.
1007/s00165-015-0351-1

15. Dobrikov, I.M.: Improving explicit-state model checking for B and Event-B.
Ph.D. thesis, Universitäts- und Landesbibliothek der Heinrich-Heine-Universität
Düsseldorf (2017)

16. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proceedings POPL (Symposium on Principles of Programming Lan-
guages), pp. 110–121. ACM (2005)

17. Gibson-Robinson, T., Hansen, H., Roscoe, A.W., Wang, X.: Practical partial order
reduction for CSP. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015.
LNCS, vol. 9058, pp. 188–203. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17524-9 14

https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/978-3-642-10373-5_26
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1007/978-3-319-95582-7_39
https://doi.org/10.1007/978-3-030-58298-2_8
https://doi.org/10.1007/BFb0033845
https://doi.org/10.1007/978-3-319-10431-7_16
https://doi.org/10.1007/978-3-319-10431-7_16
https://doi.org/10.1007/s00165-015-0351-1
https://doi.org/10.1007/s00165-015-0351-1
https://doi.org/10.1007/978-3-319-17524-9_14
https://doi.org/10.1007/978-3-319-17524-9_14

90 P. Körner and M. Leuschel

18. Godefroid, P.: Using partial orders to improve automatic verification methods.
In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023731

19. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

20. Krings, S., Leuschel, M.: SMT solvers for validation of B and Event-B models.
In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 361–375.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 23

21. Körner, P., Bendisposto, J.: Distributed model checking using ProB. In: Dutle,
A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 244–260.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5 18

22. Körner, P., Leuschel, M., Dunkelau, J.: Towards a shared specification repository.
In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp.
266–271. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48077-6 22

23. Körner, P., Leuschel, M., Meijer, J.: State-of-the-art model checking for B and
Event-B using ProB and LTSmin. In: Furia, C.A., Winter, K. (eds.) IFM 2018.
LNCS, vol. 11023, pp. 275–295. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98938-9 16

24. Kuppe, M.A.: Let TLA+ RiSE. RiSE group all-hands meeting (2018)
25. Laarman, A., Pater, E., van de Pol, J., Hansen, H.: Guard-based partial-order

reduction. Int. J. Softw. Tools Technol. Transf. 18(4), 427–448 (2014). https://
doi.org/10.1007/s10009-014-0363-9

26. Lamport, L.: Specifying systems: the TLA+ language and tools for hardware and
software engineers. Addison-Wesley (2002)

27. Leuschel, M., Bendisposto, J., Hansen, D.: Unlocking the mysteries of a formal
model of an interlocking system. In: Proceedings Rodin Workshop 2014 (2014)

28. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

29. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf. 10, 185–203 (2008). https://doi.org/10.1007/
s10009-007-0063-9

30. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

31. Parillaud, C., Fonteneau, Y., Belmonte, F.: Interlocking formal verification at
Alstom signalling. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.)
RSSRail 2019. LNCS, vol. 11495, pp. 215–225. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-18744-6 14

32. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-56922-7 34

33. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58179-0 69

34. Plagge, D., Leuschel, M.: Validating B,Z and TLA+ using ProB and Kodkod.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 372–386.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 31

https://doi.org/10.1007/BFb0023731
https://doi.org/10.1007/978-3-319-33693-0_23
https://doi.org/10.1007/978-3-319-77935-5_18
https://doi.org/10.1007/978-3-030-48077-6_22
https://doi.org/10.1007/978-3-319-98938-9_16
https://doi.org/10.1007/978-3-319-98938-9_16
https://doi.org/10.1007/s10009-014-0363-9
https://doi.org/10.1007/s10009-014-0363-9
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-18744-6_14
https://doi.org/10.1007/978-3-030-18744-6_14
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-58179-0_69
https://doi.org/10.1007/978-3-642-32759-9_31

Towards Practical Partial Order Reduction for High-Level Formalisms 91

35. Schmidt, J., Leuschel, M.: Improving SMT solver integrations for the validation of
B and Event-B models. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS 2021.
LNCS, vol. 12863, pp. 107–125. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85248-1 7

36. Siegel, S.F.: What’s wrong with on-the-fly partial order reduction. In: Dillig, I.,
Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 478–495. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 27

37. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

38. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

39. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/978-3-030-85248-1_7
https://doi.org/10.1007/978-3-030-85248-1_7
https://doi.org/10.1007/978-3-030-25543-5_27
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-48153-2_6

SMT-Based Verification of Persistency
Invariants of Px86 Programs

Iason Marmanis(B) and Viktor Vafeiadis

MPI-SWS, Kaiserslautern, Germany
{imarmanis,viktor}@mpi-sws.org

Abstract. While non-volatile memory (NVM) promises to be both per-
formant and durable, the semantics provided by the hardware architec-
tures are rather subtle and significantly complicate reasoning about the
possible observed state after a crash.

Starting from recent persistency extension of the x86 model, we
present the first automated approach for proving invariants about the
persistent state of bounded NVM programs. Our approach works by
encoding the program’s semantics along with its intended invariants into
a compact logical formula and querying an SMT solver for its satisfi-
ability. We propose two alternative encodings, which differ in the way
the notion of a crash is encoded. For a collection of small to medium-
size benchmarks, our implementation is able to detect or prove absence
of persistency bugs in time ranging from a couple of seconds to some
minutes.

1 Introduction

Non-volatile memory (NVM) technology can yield large performance improve-
ments in applications that need to persist their data, since they can do so by
issuing memory writes to addresses mapped to NVM. Achieving these perfor-
mance improvements, however, is highly non-trivial because memory writes have
rather complex persistency semantics. They are generally persisted neither syn-
chronously nor in program order, unless programmers insert special fence and
cache-line flush instructions at the appropriate program points.

Due to the high cost of these instructions, programmers often insert fewer
fences than necessary, which can lead to data corruption upon a power failure,
thereby negating the benefits of NVM. To date, there are a few tools that can help
programmers with fence/flush placements, but sacrifice precision and/or sound-
ness for scalability. Jaaru [10] is a stateless model checker that does not explore
all program executions exhaustively and so cannot be used to prove absence of
bugs. Static analysis approaches assume that all appropriately annotated data
is to be flushed, thereby requiring many redundant flush instructions. Dynamic
analysis (testing) approaches (e.g., [18,20]) can achieve precision but do not pro-
vide any correctness guarantees beyond the executions actually explored, and so
they can be used only to find bugs—not to show absence of bugs.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Lal and S. Tonetta (Eds.): VSTTE 2022, LNCS 13800, pp. 92–110, 2023.
https://doi.org/10.1007/978-3-031-25803-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25803-9_6&domain=pdf
https://doi.org/10.1007/978-3-031-25803-9_6

SMT-Based Verification of Persistency Invariants of Px86 Programs 93

In this work, we develop an automated approach for proving invariants about
the persistent state of concurrent bounded (loop-free) NVM programs, which
explores the whole state-space induced by both concurrency and persistency.
We employ symbolic model checking: we encode the program, its semantics, and
its specification as a logical formula that is satisfiable if and only if the program
is incorrect, and use an SMT (Satisfiability Modulo Theories) solver to check for
its satisfiability.

The main challenge is to find a suitable encoding so that satisfiability of
the constructed formula can be checked in a reasonable amount of time. This is
by no means easy because straightforward encodings of the program’s semantics
generate large formulas (typically, cubic in the size of the program) and checking
satisfiability is an NP-hard problem. It is therefore important to optimize the
translation because even a small increase in the formula size can quickly lead to
an intractable satisfiability problem.

To do so, we first have to choose an appropriate persistency semantics to base
our verification upon. Existing semantic models are either operational in terms
of a machine with multiple buffers [23,24] or multiple views of the shared state
[3], or declarative/axiomatic in terms of a set of constraints over a graph repre-
senting a single program execution (e.g., [14,24,25]). We choose the declarative
DPTSOsyn model [14] for the x86 architecture because it can easily be encoded
into propositional logic and is much more suitable for automated verification.
Still, however, there are three important challenges that we need to overcome.

First, a large part of the program’s state space is typically irrelevant for
the specifications we want to prove (invariants about the persisted state). For
instance, we do not care whether a write has persisted unless the invariant
depends upon the value written by that write. To overcome this challenge, we
adopt the idea of a recovery observer of Kokologiannakis et al. [15] from stateless
model checking setting and model the invariants as an additional thread that
reads the relevant memory locations.

Second, DPTSOsyn, along with the other recent x86 persistency models,
places constraints on partial program execution graphs (i.e., up until a program
crash). Directly encoding these partial graphs (e.g., by introducing variables
describing whether each event belongs to the executed prefix of the program)
generates a huge state space, which may slow down satisfiability checking. As
an alternative, we develop an equivalent reformulation of DPTSOsyn on full exe-
cution graphs, which leads to a smaller state space without noticeably affecting
verification time.

Third, there are a number of places in the DPTSOsyn definition contain-
ing sequential compositions of relations or where the acyclicity of a relation is
checked. A direct encoding of these in propositional logic leads to a formula cubic
in the size of the program. While acyclicity can be more effectively encoded using
theory of integer difference logic (IDL), this is not the case for general sequential
compositions of relations. Our solution here is to employ abstraction refinement
(SCAR) [27,28], i.e., to avoid encoding the constraints related to the memory
model in the initial formula and to add clauses on demand to rule out spurious

94 I. Marmanis and V. Vafeiadis

counterexamples. As shown by He et al. [11], SCAR can nicely be integrated
with the DPLL(T) framework of SMT solvers as a custom theory solver. He
et al. [11] address the case of sequential consistency, whose definition contains
only one instance of sequential composition. Here, we extend this approach to
the weak consistency/persistency x86 model, which contains several instances of
sequential composition, and which requires further care to handle TSO program
order relaxations and the semantics of cache-line flush operations.

Putting all of this together, we have developed a prototype tool for verify-
ing invariants about the persistent state of C programs against the DPTSOsyn

memory model. Our tool uses Z3 [19] for solving SMT queries and, following
SCAR, implements parts of the encoding natively as a custom theory solver on
top of Z3. We have used our tool on a collection of persistency benchmarks and
were able to find or prove absence of persistency bugs.

Outline. We start by reviewing the x86 model (Sect. 2). We then give an overview
of our approach (Sect. 3) and present our adaptation of DPTSOsyn over full
execution graphs (Sect. 4). We then discuss the encoding of the program and its
semantics as a logical formula (Sect. 5), and our implementation of the theory
solver (Sect. 6). We evaluate our tool on a set of benchmarks (Sect. 7), discuss
related work (Sect. 8), and conclude (Sect. 9).

2 Preliminaries

In this section, we review the terminology of axiomatic memory models and their
extensions to capture the persistency semantics of x86.

2.1 Axiomatic Memory Consistency Models

Axiomatic memory models define the semantics of a program as a set of execution
graphs that satisfy a certain consistency predicate. The nodes of these graphs
are called events and represent the execution of a single memory access or a
fence. Formally, an event e ∈ Event is a tuple of the form 〈i, t, lab〉, where i ∈ N

is the unique event identifier, t ∈ Tid is the thread identifier of the executing
thread, and lab is the event label. The event label can be one of the following
types:

– a read label, R(l, vR), accessing location l ∈ Loc and reading value vR ∈ Val;
– a write label W(l, vW), writing value vW ∈ Val to location l ∈ Loc;
– a read-modify-write (RMW) label U(l, vR, vW), updating the value of location

l from vR to vW ;
– a failed compare-and-swap (CAS) label Rex(l, vR), which reads the value vR

at location l, or
– a memory fence label MF.

SMT-Based Verification of Persistency Invariants of Px86 Programs 95

When applicable, the functions tid, loc, valR, and valW project the thread
identifier, the location (l), the value read (vR), and the value written (vW) of
an event, respectively. For each type of label, we define the corresponding set of
events; the set of read events (R), all write events (W), etc. Let RU

�= R ∪ U ∪ Rex
and WU

�= W ∪ U.
An execution graph G also comprises a number of relations on its events,

representing the orders in which these events were executed and/or persisted.

Definition 1. An execution graph G is a tuple 〈E, I, po, rf, co〉, where:

– E is a set of events.
– I ⊆ E is a set of initialization events, comprising a single write event w ∈ Wl,

for each location l.
– po ⊂ E × E is the program order, which totally orders the events of each

thread, and the initialization events before all other events: I × (E \ I) ⊆ po.
– rf ⊆ (E∩WU)× (E∩RU) is the reads-from relation, relating events of the same

location with matching values, i.e., 〈a, b〉 ∈ rf implies that loc(a) = loc(b)
and valW (a) = valR(b). Additionally, rf matches every read or read-modify-
write to exactly on write or read-modify-write.

– co ⊆ (E ∩ WU) × (E ∩ WU) is the coherence order, defined as the disjoint union
of relations {col}l∈Loc, where each col is a strict total order on E ∩ WUl.

As an example of an execution graph, in Fig. 1 we can see the only execution
graph of the program P .

In the sequel, we often call execution graphs simply executions or graphs.
We define the inverse of a relation X, as X−1 �= {〈b, a〉 | 〈a, b〉 ∈ X}. We

divide relations into their same-thread (internal) and different thread (external)
parts, suffixed i and e respectively. For example, we write rf i for the relation
rf∩ (po∪po−1), and co e for the relation co\ (po ∪ po−1). Additionally, given a
set of events A, we write [A] for the identity relation {〈x, x〉 | x ∈ A}. Given two
relations p,q on A, we write p; q for their composition. Finally, we write rng(p)
for the codomain of a relation p.

Each memory model defines its own consistency predicate that imposes a
number of additional constraints on execution graphs. For example, sequential
consistency (SC) [16] requires that po ∪ rf ∪ co ∪ fr be acyclic, where fr

�=
(rf−1; co) \ [E] is the from-reads relation, ordering a read event r before a write
event that is co-later that the write event that r reads-from.

The x86 memory model defines the preserved program order ppo
�= po\(W×R)

as the largest subset of po that avoids ordering writes with respect to po-later
reads. The x86 consistency predicate requires that: 1. (rf i∪ co i∪ fr i) ⊆ po,
and 2. the ordered-before relation ob

�= (ppo∪rf e∪co e∪fr e)+ be irreflexive.

2.2 Modeling the Persistency Semantics of x86

To write programs with useful persistency behaviors, we introduce two types
of flush instructions (flush and flushopt), which operate on a given cache line,
and the store fence instruction, which waits for preceding flush instructions to
complete. Accordingly, event labels are extended to also include:

96 I. Marmanis and V. Vafeiadis

– a flush label FL(l) for the cache line containing location l,
– a flush-opt label FO(l) for the cache line containing location l, and
– a store fence label SF.

To simplify the presentation, we will henceforth elide the handling of flush-opt
instructions, and following [14], we assume cache lines contain a single location.
Our results extend straightforwardly to cover flush-opt instructions and larger
cache lines.

The persistency semantics of x86 is modeled by an additional constraint that
describes the values of each location that can be observed after a crash. The
precise definition of this constraint is where the various x86 persistency models
in the literature differ.

The original persistent x86 model (Px86) [24] designates a subset of the exe-
cution’s events—which includes the write events—as durable, and keeps track
in execution graphs of the non-volatile-order, nvo, a total order on the durable
events reflecting the order that they persisted. We note that nvo contains infor-
mation which is frequently irrelevant for verification, as only the last (nvo-
maximal) write to each location that persisted in each location is important.

Two additional models, Px86view [3] and PTSOsyn [14], have been developed
for the persistent x86 architecture, both equivalent to the Px86 model in the
absence of I/O instructions. Their respective declarative models, Px86axiom and
DPTSOsyn

1, avoid the use of the nvo total order, and are defined similarly,
with the main difference being that Px86axiom tracks an additional non-derived
relation, thus making it less attractive for model checking. The recent PEx86
model [22], which extends Px86 to account for non-temporal writes and Intel-x86
memory types, also uses this relation to define an execution’s consistency.

An important difference in DPTSOsyn is that execution graphs of a program
now also include partial executions, i.e., executions that crashed before they
fully executed. For example, the program P in Fig. 1 contains four executions,
depending on which of the instructions were executed before the crash, if any.

DPTSOsyn captures the notion of the recovered write after a crash using a
memory assignment μ, with μ ∈ Loc → (E ∩ WU), that maps each location l to
the last persisted event of that location. The definition of the execution graph
is extended accordingly to include the memory assignment.

To determine an execution’s consistency, DPTSOsyn defines the derived TSO
propagation order dtpo, and extends ob to also include dtpo, i.e.,

ob
�= (ppo ∪ rf e ∪ co e ∪ fr e ∪ dtpo)+

The ppo relation is also redefined to reflect the additional allowed reorder-
ings introduced by the new instructions. For example, flush instructions can be
reordered w.r.t. to later load instructions.

1 Khyzha et al. [14] actually present two versions of DPTSOsyn. Throughout this paper
we use the second version, which uses the coherence order to define consistency.

SMT-Based Verification of Persistency Invariants of Px86 Programs 97

The dtpo orders a flush event before all the write events in the same location
that did not persist, i.e., they are co-after the write event that was recovered
after the crash. Intuitively, since the flush events are synchronous, every such
write must have happened after the flush, otherwise it should have also persisted.

As an example, consider again the program P in Fig. 1 where all the variables
are zero-initialized, and assume that after recovery the variable d contains the
initial value, while f reads the value one. Then, dtpo would order the flush
instruction before the ppo-earlier write instruction to d, leading to an ob loop,
which renders the execution inconsistent.

dtpo
�=

⋃

x∈Loc

[FLx] × rng(μ; co; [WUx])

3 Overview

Programs that use NVM do not differ from regular volatile-memory programs in
the way they access the memory. Programmers, however, have some expectations
about the persistent state of their programs, e.g., that some data structure will
be in a consistent state even if the program crashes mid-execution.

We formalize such expectations as persistency invariants, i.e., assertions
which must hold at any post-crash state of the program. We illustrate with
the following example. The program in Sect. 3 writes some data to the variable
d, flushes the cache-line of d, and finally sets the flag f . The programmer’s inten-
tion is that after a crash, if the flag f is observed to be set then the write to
d will also be observed. This can be made explicit by annotating the program
with the persistency invariant f ⇒ d.

d := 1;
flush d;
f := 1;

P

init

W(d, 1)

flush(d)

W(f, 1)

if (f)
assert(d);

Rec

Fig. 1. A program P and its execution graph, along with its recovery routine Rec

3.1 Modeling Recovered Values

It is convenient to think of a persistency invariant as a special routine that
runs after the program crashes and checks for any violation of the property of
interest. We assume the that such recovery routines do not contain any write

98 I. Marmanis and V. Vafeiadis

instructions. The recovery routine for our previous example is depicted in Fig. 1.
Following Kokologiannakis et al. [15], since a crash can occur at any point during
the execution of a program, one can model the recovery routine as an additional
thread running in parallel to the code, which is subject to somewhat different
constraints regarding the possible values it can read.

To encode those constraints, we extend the set of event labels (Sect. 2.1) to
include recovery read labels, Rec(l, vR), which correspond to the read instruc-
tions of the recovery routine. We also rewrite the definition of dtpo so that it
does not require the memory assignment μ, instead recovering it from the writes
that the recovery reads read from. To this end, recall that dtpo orders the flush
events on a location x before the writes that happened co-after the last persisted
write of x, which are exactly the events in rng([Recx]; rf−1; co). By introducing
a new relation flush-before (fb) which orders every flush event with the recovery
reads on the same location, we can rewrite dtpo simply as fb; fr.

3.2 Symbolic Verification

Symbolic verification requires to construct a logical formula Φ that captures
the program, its semantics, and its specification. Here we provide a high-level
overview of the construction of Φ leaving the details for Sect. 5 and Sect. 6.

Representing Execution Graphs. To represent the set of possible execution graphs
in Φ, we associate with each instruction of the program an event in the execution
graph, and introduce variables denoting the various relations between events of
the graph. So, for example, for each pair 〈w, r〉 of a write event w and a read
event r, we introduce the variable rfw,r which is set whenever r reads from w.

Since, however, it is possible that not all instructions of the program will be
executed, for each instruction n, we associate a formula enabled(n) representing
whether the instruction was actually executed, i.e., the control flow reached it.
For memory access instructions, we also associate terms such as loc(n) contain-
ing the location accessed and val(n) the value read/written.

These variables and terms allow us to express their intended meaning as
a number of basic constraints stating, for example, that rfw,r implies that
loc(w) = loc(r) and val(w) = val(r), that each read event reads from some
write event, and that col is a total order for each location l. The exact constraints
are shown in Sect. 5.2.

Execution Graph Consistency. Apart from these basic axioms, we also need to
encode the specific consistency predicate of the memory model, which is typically
an acyclicity constraint on a set of relations including rf, co, and fr. Prior
work identified that the cubic encoding stemming from the relation composition
needed for fr dominates the resulting formula [27,28], and proposed abstraction
refinement to circumvent it [11,27,28].

We adapt the approach of He et al. [11], avoiding completely the encoding
of the consistency predicate and delegating consistency checking of the explored
execution graph to a custom theory solver, which judges the satisfiability of

SMT-Based Verification of Persistency Invariants of Px86 Programs 99

assignment to the variables concerning the memory model (e.g., rf and co). We
discuss the details of our theory solver for DPTSOsyn in Sect. 6.

Modeling Crashes. The final issue we must address is how to encode the notion
of a crash, i.e., the possibility that some instructions were not executed because
the program terminated prematurely. This is necessary because the semantics
of programs under DPTSOsyn (and similarly in other models) is defined w.r.t.
partial execution graphs.

For example, consider the program P in Fig. 1, and a recovery routine that
asserts that the value recovered for d is 1. The approach outlined so far would
deem this program safe because it would only consider the full execution where
the write to d is followed by a flush.

The straightforward approach is to lift our encoding of enabled, so that
it reflects not only whether control flow reached the corresponding instruction,
but also whether the program did not crash until that point. To do so, we need
to include one additional boolean variable for each node, capturing whether
execution crashed just before the execution of the instruction. We discuss this
approach further in Sect. 5.

To partially alleviate the need for these additional variables, we present in
Sect. 4 an adaptation of the DPTSOsyn semantics which defines consistent exe-
cutions only in terms of full execution graphs. We discuss in Sect. 5 the modifi-
cations needed in the encoding to support our adaptation.

4 Adapting the DPTSOsyn Model

In this section, we reformulate DPTSOsyn in terms of full execution graphs and
show that our reformulated model, DPTSOsyn,full, is equivalent to DPTSOsyn.

To define DPTSOsyn,full, we first have to adapt the definition of dtpo con-
cerning the synchronous nature of the execution of flush operations. We can no
longer simply assume that all flush operations have executed before any write
that was not persisted, because the crash may well have happened much before
those flushes. Instead, only on the flushes that are observed to have been exe-
cuted should be ordered before any non-persisted writes. Such flushes are those
in the porf-prefix of a write that has been observed after the crash, where
porf

�= (po ∪ rf)+. Formally, this is:

dtpo
�=

⋃

x∈Loc

dom([FLx]; porf;μ−1) × rng(μ; co; [WUx])

We illustrate our argument using the example in Fig. 1. The program consists
of two write instructions to different locations, separated by a flush instruction
to the first location. Under DPTSOsyn, it is not consistent to recover the value 1
for f and the initial value for d, since the flush event is dtpo-before the ppo-later
write, thus creating an ob cycle. However, it is also not consistent to recover the
initial value for d, regardless of the recovered value for f , for the same reason.

100 I. Marmanis and V. Vafeiadis

If we interpret a graph as any possible execution prefix that resulted from a
crash, we would want to still disallow the former behavior, while allowing the
latter. Indeed, both executions that crash before the flush instruction permit the
behavior in question.

Intuitively, the only reason to rule out these executions is if we can observe
that the flush instruction indeed happened, i.e., it is in the porf-prefix of a write
that was recovered after the crash, and thus the corresponding instruction was
executed. This is the case if we recover the write to f after the crash. In this
scenario, the flush has executed, and is thus included in dtpo, resulting in a ob
cycle.

We next establish the equivalence between the two models with the following
two lemmas.

Lemma 1. If a partial execution G generated by a program P is consistent under
DPTSOsyn, then there is a full execution G′ generated by P that extends G and
is consistent under DPTSOsyn,full.

Proof Sketch. We generate G′ by repeatedly adding events to G following the
program in a way that respects po, and making each event coherence-maximal at
the point it was added. A write event is coherence-maximal if it is the co-latest
event, and a read event is coherence-maximal if it reads from the coherence-
maximal write. Observe that this construction avoids adding any edge towards
the events of G, as well as any dtpo edge that starts from the new events, which
leads to G′ being DPTSOsyn,full-consistent. ��
Lemma 2. If a full execution G′ generated by a program P is consistent under
DPTSOsyn,full, then there is a porf-prefix of G′ that is DPTSOsyn-consistent.

Proof Sketch. Take G
�= G′|dom(porf;µ−1) to be the porf-prefix of the recovered

events of G′. Observe that G is DPTSOsyn,full-consistent and that DPTSOsyn

and DPTSOsyn,full only differ in the definition of dtpo, which, by construction
of G, gives rise to the same relation. Therefore G is also DPTSOsyn-consistent,
as required. ��

5 Symbolic Encoding

5.1 From Verification to Formula Satisfiability

Following the standard conventions in bounded model checking, we assume that
programs are loop-free and in static single assignment form (SSA) [4], whereby
each variable is assigned to only once. Conversion to such format is possible
by bounding the loop iteration depth and standard compiler code transforma-
tions (e.g., introducing fresh variable names for each assignment to a variable).
From this form, a logical formula ΦSSA is generated, which represents the data
and control flow. For shared read memory accesses, the value that is read is
left unspecified and is restricted by a formula ΦMM that captures the memory
model’s semantics. Lastly, the program’s specification is encoded in a formula

SMT-Based Verification of Persistency Invariants of Px86 Programs 101

ΦSPEC , which indicates the violation of some property. The program is deemed
safe if Φ

�= ΦSSA ∧ ΦMM ∧ ΦSPEC is unsatisfiable, which can be checked by an
SMT solver. Existing techniques differ on how ΦMM is encoded.

5.2 Memory Model Encoding

Along with the SSA form, an event graph is constructed, with each node corre-
sponding to a memory event. As discussed in Sect. 3, each node n is associated
with formulas loc(N), val(n), and enabled(n). A node also contains an event
label, specifying the type of the instruction it corresponds to.

As an example, consider the program Rec in Fig. 1. The event graph will
contain two events rf and rd, for the load instructions to f and d, respec-
tively. The ΦSPEC component of the formula Φ that corresponds to Rec is
enabled(d) ∧ val(d) = 0, where enabled(d) �= enabled(f) ∧ val(f) �= 0 and
enabled(f) �= true. Both val(f) �= uf and val(d) �= ud are left unspecified, and
will be restricted by ΦMM .

Following He et al. [11], we encode directly into propositional logic only some
basic axioms about the memory model (e.g., that every read reads from some
write), whose size is at most quadratic in the size of the program.

Specifically, we introduce one boolean variable rfw,r for each pair of write
event w and read event r denoting the presence of a rf-edge from w to r, and
one boolean variable cow,w′ for each pair of write events denoting the presence
of a co-edge from w to w′.

Given a read event r and a pair w,w′ of write events, we encode the following
basic axioms:

enabled(r) =⇒
∨

w∈W

rfw,r

rfw,r =⇒ enabled(w) ∧ enabled(r) ∧ valw(w) = valr(r) ∧ loc(w) = loc(r)

cow,w′ ∨ cow′,w ⇐⇒ enabled(w) ∧ enabled(w′) ∧ loc(w) = loc(w′)

The first two axioms state that every enabled read reads from some write,
which is also enabled and acts on the same location. The third axiom captures
the totality of co for same-location writes.

Note that we do not encode the functionality of rf—that a read cannot read
from two different writes—because this constraint does not affect the consistency
of a plain execution graph (an rf relation violating functionality can be modified
to one satisfying it by removing rf edges).

As an optimization, for events that we can statically determine that they do
not access the same location, we avoid introducing new variables and encoding
the corresponding constraints.

5.3 Encoding x86 Consistency

To capture the reordering semantics of x86, we also have to add some additional
variables that correspond to the ppo edges, instead of relying on the statically

102 I. Marmanis and V. Vafeiadis

predetermined po edges. To this end, for each pair 〈x, y〉 of ppo-related events,
we add a boolean variable ppox,y, and require this variable to be set only when
both x and y are enabled.

As an optimization, we avoid encoding the transitive closure of ppo, i.e.,
we avoid introducing a new variable ppox,y if it can be derived from a pair of
variables ppox,z and ppoz,y.

5.4 Encoding DPTSOsyn

Finally, to fully encode DPTSOsyn we need to account for 1. the additional dtpo
edges 2. the fact that, due to a possible crash, a prefix of the program could
have been executed.

As discussed in Sect. 3, dtpo can be rewritten as fb; fr, where fb is a relation
ordering every flush event f on a location x to all the recovery read events r on
the same location (Recx). Thus it suffices to add a new boolean variable fbf,r for
each such pair of events, and capture the intended meaning with the following
constraint:

fbf,r = enabled(f) ∧ enabled(r) ∧ loc(f) = loc(r)

A straightforward way to encode the notion of a crash, is to further add a
new boolean variable crashn, for each node n of the event graph, reflecting the
fact that execution crashed just before the execution of the corresponding mem-
ory access. Encapsulating this inside the enabled(n) formula of each node, so
that it now signifies that control flow reached the memory accessing instruction
without crashing, gives us a full encoding for DPTSOsyn without the need of
any additional change.

5.5 Alternative Crash Encoding

Alternatively, we can employ our adaptation (DPTSOsyn,full) of DPTSOsyn to
partially circumvent the need for these additional crash variables.

DPTSOsyn,full defines the semantics of x86 programs in terms of full execution
graphs, and changes the definition of dtpo to achieve this. Following the same
reasoning as in Sect. 3, it is easy to see that dtpo can again be rewritten as fb; fr.
Now, however, only the flush events that are in the porf-prefix of a recovery read
event take part in fb.

To capture this, we again introduce a boolean variable crash for each flush
event f and modify the fb constraint to:

fbf,r = enabled(f) ∧ enabled(r) ∧ loc(f) = loc(r) ∧ ¬crashf

The intended meaning is that if an enabled node f has its crashf variable set
to true, it is was not executed due to a crash, and thus it cannot be porf-before
a recovery read event. This is checked and enforced by our custom theory solver
(Sect. 6).

SMT-Based Verification of Persistency Invariants of Px86 Programs 103

6 Theory Solver for DPTSOsyn

6.1 Preliminaries

Given a formula involving atoms from some first-order theories, DPLL(T) [9]
extends DPLL [5,6] by replacing each atom with a new boolean variable, creating
its boolean abstraction, whose satisfiability is determined by the SAT core of the
solver. In case a model is produced, i.e., the boolean abstraction is satisfiable, the
theory solvers should be consulted to judge whether the model is also satisfiable
in the background theories.

This procedure can also take place online, with the theory solvers checking
the consistency of partial assignments as they are being explored by the SAT
solver. In case an inconsistency in detected, a conflict clause is generated that
captures the inconsistency. The conflict clause is propagated to the SAT solver,
which initiates a backjump, reverting the last N assignments. The conflict clause
prevents the same assignment from being explored, and additionally providing
some knowledge of the background theory to the SAT solver. The latter is also
supported independently of an inconsistency’s existence, i.e., the theory solver
can propagate additional clauses to assist the SAT solver’s exploration.

6.2 Z3 User Propagator

We base our implementation of the theory solver on Z3’s user propagator infras-
tructure, which allows implementing a custom theory solver externally without
the need to modify the Z3 codebase.

The user propagator allows the client of Z3’s library to track some of its
boolean variables, and register a callback that is initiated each time a value is
assigned to one of them. The callback’s implementation can respond by propa-
gating a logical consequence, whose antecedent is a subset of the set variables,
and the consequent is an arbitrary boolean expression. In case the consequent is
false, the negation of the antecedent corresponds to the conflict clause.

The user propagator’s interface provides two additional callbacks to inform
the solver about (1) backtracking points, and (2) initiation of a backtrack, so
that the theory solver reverts all assignments up to the last backtracking point.

6.3 Implementation

Given the event graph (Sect. 2.1) of the program together with its (static) po
edges, our theory solver is responsible for judging the satisfiability of the assign-
ments to the rf , co , fb , and crash variables, which corresponds to the consistency
of the execution graph that is being explored by the SAT solver.

To detect violations of DPTSOsyn consistency, it needs to check for 1. rf i,
co i, or fr i edges that contradict po, and 2. cycles consisting of ppo, rf e, co e,
fr e, and fb edges. We note that fr edges are derived from their constituent
edges (fr �= rf−1; co).

104 I. Marmanis and V. Vafeiadis

Our adaptation DPTSOsyn,full additionally requires detecting paths of po and
rf edges, which start from a flush event f with crashf set to true, and end in a
recovery read event.

Detecting Inconsistent Assignments. The non-trivial violations (i.e.,
excluding (rf i ∪ co i ∪ fr i) � po) require an algorithm to detect a cycle
or a certain path in the event graph.

These algorithms need to be incremental, in order to quickly rule out incon-
sistent assignments, and amendable for efficient backtracking, i.e., to revert a
suffix of their operations without the need to store a huge amount of state.

To incrementally detect ob cycles we use the incremental cycle detection
(ICD) on sparse graphs of Bender et al. [2], following He et al. [11]. As noted
by the authors, the correctness of the algorithm is preserved in a decremental
setting, without the need to revert the changes in the computed order.

To incrementally detect porf paths, we use Italiano [12]’s incremental tran-
sitive closure algorithm (Italiano-ITC) on the po and rf edges of the graph,
together with the optimizations suggested by Frigioni et al. [8]. Finally, extend-
ing the algorithm to support backtracking is trivial, as we only need to revert
the value of the matrix’s elements to false.

Clearly, the theory for DPTSOsyn,full (and DPTSOsyn) is decidable; the sat-
isfiability of an assignment reduces to the two aforementioned problems.

Explaining Inconsistencies. Apart from detecting inconsistencies, our theory
solver needs to succinctly explain them to the SAT core, by generating a conflict
clause. To achieve this, we associate each edge with its reason, the conjunction
of atoms that justify the edge’s existence. For the rf, co, fb, and ppo edges,
this is just the corresponding atom, set by the SAT core during the construction
of model. For fr, it is the conjunction of the reasons of the constituent edges.
We lift the notion of reasons to paths, defining the reason of a path as the
conjunction of the reasons of each constituent edge.

When an ob cycle is detected, during the addition of an edge e = 〈x, y〉,
we find the path p from the node y to node x that contains the fewest edges
assigned with a reason, i.e., all apart from the static ppo edges, and propagate
to the SAT core the contradiction: reason(p) ∧ reason(e) =⇒ false.

Similarly, when a porf path p is detected that originates from a node x,
whose crash variable crashx is set to true, and ends in a recovery read r, we
propagate to the SAT core that reason(p) ∧ crashx =⇒ false.

7 Evaluation

In this section, we evaluate the overall performance of an implementation of our
approach and compare our two different encodings of the x86 semantics.

To evaluate our approach, we have implemented a prototype verification tool
for C programs that use NVM memory. Our tool uses LLVM/clang to transform

SMT-Based Verification of Persistency Invariants of Px86 Programs 105

the input program into SSA form, generates a formula as described in Sect. 5,
and calls a version of Z3 [19] containing our custom theory solver to check its
satisfiability. If the generated formula is satisfiable, an appropriate error message
is reported back to the user.

As benchmarks, we took three recent durably linearizable [13] libraries from
the literature: the read-write register library of Wei et al. [26] (flit), the persis-
tent queue of Friedman et al. [7], and the persistent set of Zuriel et al. [29]. For
each library, we constructed several multithreaded client programs that call the
various methods of the libraries, In each of these benchmarks, we wrote down a
persistency invariant that checks (consequences of) durable linearizability: e.g.,
if a certain method has been executed, then its effects have persisted. A typical
invariant for a program that performs an enqueue operation followed by a write
instruction might say that if the write is observed, then the enqueue operation
is observed as well.

This way we obtain a set of safe benchmarks, i.e., whose invariants hold.
Removing some of the flush operations gives us a set of unsafe benchmarks,
where the invariants are violated.

Experimental Setup. Our experiments are conducted on a Dell OptiPlex 7050
system, running Debian 11, with an Intel(R) Core(TM) i5-6600 CPU and 16 GB
of RAM. We used version 4.8.17 of z3.

7.1 Overall Performance

We first evaluate the overall performance of our tool using the DPTSOsyn encod-
ing. For this purpose, we consider only the safe benchmarks, which are presented
in Table 1. For each benchmark, along with the verification time (in seconds),
we report the number of nodes in the event graph, to indicate the size of the
benchmark. The name represents the client itself; for example, e3+3dw is a client
that uses the queue library, and consists of one thread performing three enqeue
operations, and three threads performing a dequeue operation, followed by a
write.

The benchmarks are small client programs of persistent libraries with up to
4 threads, each invoking a couple of library operations. The library methods
vary in complexity, Flit is the simplest, with each method containing at most 4
memory accesses, while the set library is the most complex, as it can be observed
by the large number of nodes even when there are only two executing threads,
which is the reason that our tool scales much worse for the client using it. As
it can be seen, our tool succeeds in verifying these medium-sized clients, with
running time ranging from under 1 s to a bit over 7 min.

We note that we do not compare against any existing tools because, to our
knowledge, none is complete for (bounded) NVM programs. While Yat [17] and
Jaaru [10] can find bugs in NVM programs, they are both incomplete and may
miss behaviors arising in multi-threaded programs.

106 I. Marmanis and V. Vafeiadis

Table 1. Safe benchmarks: flit, queue, set (DPTSOsyn)

Time Nodes

ldld 0.28 29

ww 0.28 24

u+u-w 0.29 33

w+w-w 0.29 30

w+rw-w 0.30 33

u+u+u+u-w 0.39 47

2uu+uu-w 0.46 60

3uu 0.50 53

uu+uu 0.50 39

2uu+2uu-w2 0.87 75

4uu 2.08 67

2uu+2uu-w 2.39 74

Time Nodes

dw 0.35 70

e+d 1.46 145

ee+dw 1.65 205

e+e 3.07 157

ee+d 3.98 213

e+de 6.63 222

ee+ddw 8.54 272

ee+dd 10.99 269

e+e+d 18.16 213

e2+2dw 34.38 332

e+e+d+d 36.70 269

e+e+e 48.88 225

ee+ddw+d 59.62 328

e+de+e 60.94 281

e+de+e+d 227.13 337

e3+3dw 427.54 459

Time Nodes

iw 10.78 287

i 11.87 286

irw 34.13 471

ir 37.42 469

iw+rw 64.70 472

i+crw 89.31 488

i+i-w 260.89 524

i+i 416.12 505

ii+r 1151.50 688

7.2 Comparison of DPTSOsyn and DPTSOsyn,full Encodings

We next evaluate the two encodings we proposed to incorporate the notion of
crash. The first encoding is based on DPTSOsyn and represents partial graphs
using an auxiliary enabled variable for each program node (Sect. 5). The second
encoding is based on DPTSOsyn,full (Sect. 4) and partially avoids the need of
encoding the possible crashed executions of a program.

Our results are presented in Fig. 2 as a scatter diagram comparing the veri-
fication time (in seconds) of each benchmark with the two different encodings.
We have also categorized our benchmarks depending on the verification result,
i.e., whether the assertion holds (safe) or does not hold (unsafe).

As we observe in Fig. 2, the two encodings yield similar performance, with
the relative difference never exceeding an order of magnitude. Sadly, there is
no clear trend suggesting that either encoding leads to better performance. In
principle, DPTSOsyn,full partially eliminates the need for encoding the semantics
of a crash, adding only some crash variables for flush events. However, by not
fully encoding this, the solver always has to explore a full execution, even though
a part of it is irrelevant. In contrast, while the DPTSOsyn encoding leads to a
larger state space, only the events before the crash take part in the axioms that
concern the memory model, and so the basic axioms of Sect. 5.2 are trivially
satisfied for crashed events.

SMT-Based Verification of Persistency Invariants of Px86 Programs 107

100 101 102

100

101

102

DPTSOsyn (s)

D
P
T
SO

sy
n
,f
u
ll
(s
)

SAFE
UNSAFE

Fig. 2. Comparing the encoding of DPTSOsyn and DPTSOsyn,full

8 Related Work

Several researchers have formalized the persistency semantics of the x86 archi-
tecture as an extension of the original x86-TSO memory consistency model [21].
The first such model, Px86 [24], treats flush operations as asynchronous. This
is corrected in later models by Khyzha et al. [14] and Cho et al. [3], who treat
flush operation as synchronous. More recently, [22] extended those formalizations
to cover additional features of the Intel-x86 architecture, such as non-temporal
writes and memory types.

There are many verification approaches that deal with multi-threaded pro-
grams under various memory consistency models. Among the symbolic tech-
niques, Alglave et al. [1] model program executions as a collection of partial
orders and encode acyclicity constraints using integer difference logic. YOGAR-
CBMC [27,28] employs abstraction refinement to verify multi-threaded pro-
grams under sequential consistency, and weak memory models, accordingly. He
et al. [11] propose a new ordering consistency theory for dealing with the concur-
rency related fragment of the encoding, and a theory solver that incrementally
checks for consistency of the explored executions.

In contrast, there is much less work on model checking programs that use
persistent memory. We are aware of two such works. Yat [17] eagerly explores
post-crash states by injecting crashes in a collected trace, while Jaaru [10]
explores only the subset of pre-crash states that is relevant in the post-crash
execution. Nevertheless, both approaches are not complete for multi-threaded
programs since they do not explore the concurrency-induced nondeterminism.

108 I. Marmanis and V. Vafeiadis

9 Conclusion

In this paper, we have presented an automated approach for proving invariants
about the persistent state of concurrent (bounded) NVM programs. Our app-
roach is based on symbolic model checking and uses a custom theory solver to
encode certain aspects of the memory model that would otherwise lead to huge
formulas. Finally, we have considered two encodings of partial executions with-
out, however, observing any significant difference in performance between them.
It may, however, be the case that the two approaches would yield a noticeable
difference in performance if used in different contexts, e.g., with a stateless model
checker.

Acknowledgments. We would like to thank the reviewers for their comments. This
work was supported by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement No.
101003349).

References

1. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 9

2. Bender, M.A., Fineman, J.T., Gilbert, S., Tarjan, R.E.: A new approach to incre-
mental cycle detection and related problems. ACM Trans. Algorithms 12(2) (2015).
https://doi.org/10.1145/2756553. ISSN 1549-6325

3. Cho, K., Lee, S.-H., Raad, A., Kang, J.: Revamping hardware persistency models:
view-based and axiomatic persistency models for Intel-X86 and Armv8. In: Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2021. Virtual, Canada, pp. 16–31.
Association for Computing Machinery (2021). https://doi.org/10.1145/3453483.
3454027. ISBN 9781450383912

4. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: Effi-
ciently computing static single assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst. 13(4), 451–490 (1991). https://doi.org/10.1145/
115372.115320. ISSN 0164-0925

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557.
ISSN 0001-0782

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034. ISSN 0004-5411

7. Friedman, M., Herlihy, M., Marathe, V., Petrank, E.: A persistent lock-free queue
for non-volatile memory. In: Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2018, Vienna, Austria,
pp. 28–40. Association for Computing Machinery (2018). https://doi.org/10.1145/
3178487.3178490. ISBN 9781450349826

8. Frigioni, D., Miller, T., Nanni, U., Zaroliagis, C.: An experimental study of dynamic
algorithms for transitive closure. ACM J. Exp. Algorithmics 6, 9-es (2002). https://
doi.org/10.1145/945394.945403. ISSN 1084-6654

https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/2756553
https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/945394.945403
https://doi.org/10.1145/945394.945403

SMT-Based Verification of Persistency Invariants of Px86 Programs 109

9. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 175–188. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27813-9 14 ISBN 978-3-540-27813-9

10. Gorjiara, H., Xu, G.H., Demsky, B.: Jaaru: efficiently model checking persistent
memory programs. In: Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, pp.
415–428. Association for Computing Machinery, New York (2021). https://doi.
org/10.1145/3445814.3446735. ISBN 9781450383172

11. He, F., Sun, Z., Fan, H.: Satisfiability modulo ordering consistency theory for
multi-threaded program verification. In: Proceedings of the 42nd CM SIGPLAN
International Conference on Programming Language Design and Implementation,
PLDI 2021. Virtual, Canada, pp. 1264–1279. Association for Computing Machinery
(2021). https://doi.org/10.1145/3453483.3454108. ISBN 9781450383912

12. Italiano, G.F.: Amortized efficiency of a path retrieval data structure. Theor. Com-
put. Sci. 48(2-3), 273–281 (1987). ISSN 0304-3975

13. Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory
objects under a full-system-crash failure model. In: Gavoille, C., Ilcinkas, D. (eds.)
DISC 2016. LNCS, vol. 9888, pp. 313–327. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53426-7 23 ISBN 978-3-662-53425-0

14. Khyzha, A., Lahav, O.: Taming X86-TSO persistency. Proc. ACM Program. Lang.
5(POPL) (2021). https://doi.org/10.1145/3434328

15. Kokologiannakis, M., Kaysin, I., Raad, A., Vafeiadis, V.: PerSeVerE: persistency
semantics for verification under ext4. Proc. ACM Program. Lang. 5(POPL) (2021).
https://doi.org/10.1145/3434324

16. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979). https://doi.
org/10.1109/TC.1979.1675439

17. Lantz, P., Dulloor, S., Kumar, S., Sankaran, R., Jackson, J.: Yat: a validation
framework for persistent memory software. In: Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference, USENIX ATC 2014, pp.
433–438. USENIX Association, Philadelphia (2014). ISBN 9781931971102

18. Liu, S., Wei, Y., Zhao, J., Kolli, A., Khan, S.M.: PMTest: a fast and flexible testing
framework for persistent memory programs. In: Bahar, I., Herlihy, M., Witchel, E.,
Lebeck, A.R. (eds.) ASPLOS 2019, pp. 411–425. ACM (2019). https://doi.org/10.
1145/3297858.3304015

19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24 ISBN 978-3-540-78800-3

20. Oukid, I., Booss, D., Lespinasse, A., Lehner, W.: On testing persistent-memory-
based software. In: DaMoN 2016. ACM (2016). https://doi.org/10.1145/2933349.
2933354. ISBN 9781450343190

21. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 27 ISBN 978-3-642-03358-2

22. Raad, A., Maranget, L., Vafeiadis, V.: Extending Intel-X86 consistency and per-
sistency: formalising the semantics of Intel-X86 memory types and non-temporal
stores. Proc. ACM Program. Lang. 6(POPL) (2022). https://doi.org/10.1145/
3498683

https://doi.org/10.1007/978-3-540-27813-9_14
https://doi.org/10.1007/978-3-540-27813-9_14
https://doi.org/10.1145/3445814.3446735
https://doi.org/10.1145/3445814.3446735
https://doi.org/10.1145/3453483.3454108
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1145/3434328
https://doi.org/10.1145/3434324
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2933349.2933354
https://doi.org/10.1145/2933349.2933354
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3498683
https://doi.org/10.1145/3498683

110 I. Marmanis and V. Vafeiadis

23. Raad, A., Vafeiadis, V.: Persistence semantics for weak memory: integrating epoch
persistency with the TSO memory model. Proc. ACM Program. Lang. 2(OOPSLA)
(2018). https://doi.org/10.1145/3276507

24. Raad, A., Wickerson, J., Neiger, G., Vafeiadis, V.: Persistency semantics of the
Intel-x86 architecture. Proc. ACM Program. Lang. 4(POPL), 11:1–11:31 (2019).
https://doi.org/10.1145/3371079. Accessed 17 June 2020

25. Raad, A., Wickerson, J., Vafeiadis, V.: Weak persistency semantics from the ground
up. Proc. ACM Program. Lang. 3(OOPSLA), 135:1–135:27 (2019). https://doi.
org/10.1145/3360561. Accessed 07 Feb 2020

26. Wei, Y., Ben-David, N., Friedman, M., Blelloch, G.E., Petrank, E.: FliT: a
library for simple and efficient persistent algorithms. CoRR abs/2108.04202 (2021).
arXiv:2108.04202

27. Yin, L., Dong, W., Liu, W., Wang, J.: Scheduling constraint based abstrac-
tion refinement for multi-threaded program verification. IEEE Trans. Softw. Eng.
(2017). https://doi.org/10.1109/TSE.2018.2864122

28. Yin, L., Dong, W., Liu, W., Wang, J.: Scheduling constraint based abstraction
refinement for weak memory models. In: Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering, pp. 645–655. Association
for Computing Machinery, New York (2018). https://doi.org/10.1145/3238147.
3238223. ISBN 9781450359375

29. Zuriel, Y., Friedman, M., Sheffi, G., Cohen, N., Petrank, E.: Efficient lock-free
durable sets. Proc. ACM Program. Lang. 3(OOPSLA) (2019). https://doi.org/10.
1145/3360554

https://doi.org/10.1145/3276507
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://doi.org/10.1145/3360561
http://arxiv.org/abs/2108.04202
https://doi.org/10.1109/TSE.2018.2864122
https://doi.org/10.1145/3238147.3238223
https://doi.org/10.1145/3238147.3238223
https://doi.org/10.1145/3360554
https://doi.org/10.1145/3360554

A Formal Semantics for P-Code

Nico Naus1(B) , Freek Verbeek1,2 , Dale Walker1, and Binoy Ravindran1

1 Virginia Tech, Blacksburg, USA
{niconaus,freek,dalewalker,binoy}@vt.edu

2 Open University of The Netherlands, Heerlen, The Netherlands

Abstract. Decompilation is currently a widely used tool in reverse
engineering and exploit detection in binaries. Ghidra, developed by the
National Security Agency, is one of the most popular decompilers. It
decompiles binaries to high P-Code, from which the final decompila-
tion output in C code is generated. Ghidra allows users to work with
P-Code, so users can analyze the intermediate representation directly.
Several projects make use of this to build tools that perform verifica-
tion, decompilation, taint analysis and emulation, to name a few. P-
Code lacks a formal semantics, and its documentation is limited. It has
a notoriously subtle semantics, which makes it hard to do any sort of
analysis on P-Code. We show that P-Code, as-is, cannot be given an
executable semantics. In this paper, we augment P-Code and define a
complete, executable, formal semantics for it. This is done by looking at
the documentation and the decompilation results of binaries with known
source code. The development of a formal P-Code semantics uncovered
several issues in Ghidra, P-Code, and the documentation. We show that
these issues affect projects that rely on Ghidra and P-Code. We evaluate
the executability of our semantics by building a P-Code interpreter that
directly uses our semantics. Our work uncovered several issues in Ghidra
and allows Ghidra users to better leverage P-Code.

Keywords: Decompilation · P-Code · Formal semantics

1 Introduction

After more than 60 years of research, the field of decompilation is currently
very mature. A plethora of open source and commercial decompilation tools
exist [1,7,11–13]. They are widely used to recover source code from binaries and
to detect software vulnerabilities.

Ghidra1 is one of those tools, developed by the National Security Agency
(NSA), and made public and open source a few years ago. Recent comparative
studies show that it ranks among the top performing decompilers [5]. At the
heart of Ghidra lies P-Code, an intermediate representation that exists at two
levels of abstraction. The first is a direct one-to-many translation of the disas-
sembled assembly instructions, called low P-Code. The second is high P-Code,
1 https://ghidra-sre.org/.
c© The Author(s) 2023
A. Lal and S. Tonetta (Eds.): VSTTE 2022, LNCS 13800, pp. 111–128, 2023.
https://doi.org/10.1007/978-3-031-25803-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25803-9_7&domain=pdf
http://orcid.org/0000-0003-3442-1543
http://orcid.org/0000-0002-6625-1123
http://orcid.org/0000-0002-8663-739X
https://ghidra-sre.org/
https://doi.org/10.1007/978-3-031-25803-9_7

112 N. Naus et al.

which is the result of various transformations on the low P-Code from Ghidra’s
decompiler. Since we focus our work on high P-Code, we will simply refer to it
as P-Code from now on.

From the P-Code, Ghidra constructs C code, which is the final decompilation
result. Users can define their own analyses over high P-Code, customizing the
decompilation process or extracting information from it. We have come across
several projects that perform a wide range of analyses on P-Code. Verification [6],
decompilation [14] and taint analysis [2], to name a few. However, the P-Code
documentation is very limited and P-Code lacks any form of formal semantics.
On top of that, P-Code has a notoriously subtle semantics, as will become clear
in the rest of this paper. This limits the usability of P-Code for formal analysis,
since there is no way to know if the analysis that is being performed is correct
with respect to the language semantics.

In this paper, we develop a formal semantics for high P-Code. We base our
work on Ghidra 10.1.4 released May 2022, which comes with P-Code documen-
tation last updated September 5th, 2019 [9]. Ghidra does come with a P-Code
interpreter, but only for low P-Code. This means that there is no ground-truth
that we can base our high P-Code semantics on. We therefore start our inves-
tigation by looking at the P-Code documentation. Since this is rather limited,
we additionally run experiments for P-Code instructions that are unclear. These
experiments consist of compiling several C programs to binary, decompiling them
using Ghidra, and comparing the high P-Code and decompiled C code to the
original source code. During the development of a formal P-Code semantics, we
uncover several issues in Ghidra, P-Code and the P-Code documentation. These
issues all stem from inconsistencies in documentation, Ghidra’s output via UI or
API, and in some cases the inability to formulate executable P-Code semantics.
As-is, P-Code cannot be given an executable semantics. To overcome the short-
comings of P-Code, we extend the language with additional information. For
the extended P-Code semantics, we define a formal operational semantics. We
argue that projects relying on P-Code are directly affected by these issues, and
could benefit from a formal P-Code semantics. Since there is no interpreter for
high P-Code available, we are only able to validate our semantics by writing an
interpreter for high P-Code to show that our semantics are executable. We have
shared our results with the NSA prior to publication, and they acknowledge all
issues identified in this paper.

More specifically, we make the following contributions:
– An extended P-Code language.
– A formal syntax and semantics for extended P-Code.
– A P-Code interpreter written in Haskell.
– An overview of several bugs, issues and inconsistencies in Ghidra, P-Code

and documentation.
The P-Code interpreter written in Haskell and the accompanying Ghidra

script written in Java are publicly available2.
2 https://github.com/niconaus/pcode-interpreter
https://github.com/niconaus/PCode-Dump.

https://github.com/niconaus/pcode-interpreter
https://github.com/niconaus/PCode-Dump

A Formal Semantics for P-Code 113

Section 2 first gives an introduction to Ghidra, its assembly translator
SLEIGH and low & high P-Code. Section 3 describes and motivates our design
choices. Section 4 describes the P-Code syntax and Sect. 5 gives its semantics.
We list an overview of the bugs, issues and inconsistencies we have found, and a
response from the NSA on these, in Sect. 6. Section 7 presents related work and
Sect. 8 concludes.

2 Ghidra, SLEIGH and P-Code

Ghidra is an open-source reverse engineering tool, developed by the National
Security Agency. It is capable of decompiling binaries of a wide variety of archi-
tectures. To do so, it first disassembles the binary using its custom disassembler
SLEIGH, and performs several analysis steps. The end result is high-level C code,
as well as detailed control flow information. A recent study compared other well
known decompilers like IDA-pro [7] and Angr [13] to Ghidra, by evaluating 1760
binaries, using the correctly identified function starts (CFS) metric [5]. They
found that Ghidra performs above average.

Fig. 1. First few instructions in the decompilation of nearest prime

To illustrate the Ghidra decompilation pipeline, we take a look at the first
few instructions of an x86-64 binary. Figure 1 lists the decompilation result for
the first few addresses of our example binary. For readability’s sake, we have har-
monized notation, and simplified in- and output notation. Address 0x100000e70
is the entry point of a function. Ghidra’s machine code translator SLEIGH takes
the x86-64 assembly instructions as listed in the second column in Intel syn-
tax, and translates them to low P-Code, listed in the third column. The exact
meaning of the P-Code instructions will be left for the coming sections, and is
not essential to understand at this point. As for notation, the $U prefix indi-
cates local variables. Registers are identified by their name, and are assumed
to have a fixed size. Addresses are given in a hexadecimal format, prefixed by

114 N. Naus et al.

0x. Constants are given either as a decimal or hexadecimal prefixed by 0x. Both
addresses and constants have a size indicated by the number after the colon.

P-Code is considered low before decompilation, and is merely a one-to-many
translation from assembly instructions to P-Code. The instruction set of P-Code
is much smaller than x86, and SLEIGH basically breaks up a complicated assem-
bly instruction into simple P-Code ones. For example, the x86 compare instruc-
tion at address 0x100000e77 breaks down into 13 separate P-Code instructions.
To break down the instructions, P-Code uses local variables. The x86 push rbp
instruction at address 0x100000e70 for example, is broken down into three sim-
ple assignments, using the variable $Uea00:8 to hold the original value of RBP
temporarily, until it has been stored in memory.

After disassembly and translation, Ghidra performs several decompilation
analyses. This results in high P-Code, listed in the third column, which uses an
instruction set almost identical to low P-Code. The analyses Ghidra performs,
remove all instructions that have no effect on execution, resolves the stack and
constructs a control flow graph, among other things. A more detailed description
of Ghidra’s decompilation analyses can be found in other literature [4]. From the
high P-Code, Ghidra constructs the final decompilation result in C code.

By example, we have shown how the basic Ghidra pipeline operates. Users can
inspect the final decompilation result, but there also exists a plethora of scripts
that can be run to further analyse the final or intermediate P-Code result. It
is also possible to define custom scripts, through Ghidra’s extensive API [10].
Since these analyses can target high P-Code directly, it is important to have a
correct semantics for it.

3 Design Choices

As mentioned in Sect. 1, P-Code documentation is limited. On top of that, P-
Code as-is cannot be given a formal semantics, because crucial information is
not included. To arrive at an executable P-Code semantics, we had to make the
following design choices.

Conditional Branches. We observed that the P-Code generated for condi-
tional branches is often incorrect. Three different situations occur. One, the
conditional branch is correct. Two, the conditional branch incorrectly jumps
to the fall-through address in the True case. Three, the conditional branch
should jump to a different address than the fall-through in the False case.
The control flow API always returned the correct out addresses in our exper-
iments. We use this fact later on when we build our interpreter.

Phi-nodes. P-Code has a MULTIEQUAL instruction, which is better known as
a phi-node in literature [3]. A phi-node’s value depends on the address of the
previous block that was executed. In other SSA languages using phi-nodes,
like LLVM IR [8], every alternative value is guarded by an address, which is
compared to the address of the previous block. You compare the address to
the alternatives in the phi-node, to know which value will be selected. This is

A Formal Semantics for P-Code 115

not the case in P-Code. Here, only the alternative values are listed. Looking at
the documentation, no additional information is provided about the ordering
of the alternatives.
To determine which alternative belongs to which control flow, we have ran
several experiments. From these experiments, we know that the order of the
alternatives coincides with the inbound edge ordering when requesting these
though Ghidra’s control flow API.

Varnodes. Inputs and outputs are encoded by the so called varnodes. They
represent the arguments and destination of the instructions. The P-Code
manual states that varnodes are either a register or a memory location, and
that they consist of three components: address space, offset and size.
We use a slightly different view of varnodes, and regard the “address space”
as a varnode type. We have come across six different types, and they consist
of two components: a value and a size. Of those six, we can bring it down to
four essential types of varnodes.
(R r, l) register, identified by a register address r and size l.
(A a, l) memory, with a the starting address and l the size of the memory

region.
(C c, l) constant value, with c the value and l the size.
(v, l) local variable, with v the identifier and l its size.

In the case where P-Code models a Harvard architecture binary instead of
the more common von Neumann architecture, the memory varnode is split
up into a data varnode and a code varnode, to model the dedicated addresses
in this architecture.

(AC a, l) memory containing code, with a the starting address and l the size
of the memory region.

(AD a, l) memory containing data, with a the starting address and l the size
of the memory region.

The register notation differs from the previous P-Code example, as listed
in Fig. 1. Instead of listing register names, an address in the register space is
used, together with a size. Using register addresses and sizes has the advantage
that we do not explicitly have to take care of register aliasing.

Call & Return. For the CALL instruction, P-Code documentation lists:
“This instruction is semantically equivalent to the BRANCH instruction. (...)
The P-Code instruction does not implement the full semantics of the call
itself; it only implements the final branch.”
Looking at P-Code programs, it is immediately clear that this cannot be
true. A function can have arguments and return a value, and this behavior is
certainly not captured by a basic BRANCH instruction. What is more, not
all varnode address spaces will be in scope when dispatching a function call.
Local variables are cleared when a new function context is entered. Arguments
are passed through the registers, and these registers are cleaned up when P-
Code returns from a call. How this is done exactly depends on the calling
convention that the original binary relies on, more on this later.

116 N. Naus et al.

For the indirect call and return, documentation lists a similar description.
They are both said to be equivalent to BRANCHIND. For indirect call, this
is false, for the reasons described above. For return, we see that this cannot
hold for two reasons. One, in high P-Code, a return instruction can hold a
return value that is to be the result of calling the function. Furthermore, no
address to return to is included in the instruction; we do not have a branch
destination.

Fall-through. The P-Code outputted by Ghidra performs fall-through in a non-
uniform way. Looking at the P-Code output for several decompiled binaries,
there is no pattern to be found in the way fall-through is performed. The
most natural way to perform fall-through is to let control flow jump to the
next block listed in the output, but this is not always true. It can occur that
control flow jumps to a later or earlier block instead. The addresses of those
blocks are not logical either. In some cases, the address of the fall-through
block is higher than the current block, in some cases it is lower. We therefore
do away with fall-through all-together, instead requiring that every block ends
in a branching instruction.

User defined instructions. P-Code allows the use of the so called “USERDE-
FINED” instruction. The goal of this instruction is to capture very compli-
cated behavior that cannot be described in terms of existing P-Code instruc-
tions. Since the semantics are user-provided, we consider this instruction to
be out of scope for this paper.

Indirect instruction. One final tricky aspect of P-Code is the use of the indirect
instruction. We will denote an indirect instruction as out = in0 ←↩ in1. The
intuition of this instruction is that the value of in0 should be assigned to
out, but may be influenced indirectly by an instruction elsewhere, which is
described by in1. If there was an indirect influence, this means that potentially
any value may be assigned to out. This can happen for example when calling
external functions, so there is no way of knowing what the value will be.

4 P-Code Syntax

This section lists the syntax of P-Code programs. We base the syntax on the
notation used in the P-Code documentation. P-Code features some instructions
that do not have a defined syntax. For those instructions, we have taken the
liberty of choosing an appropriate representation ourselves. On top of that, there
are several minor changes that we needed to make, in accordance with the design
choices from Sect. 3.

Figures 2 and 3 lists our P-Code syntax and P-Code operators. We model a
program as a mapping from addresses a to code blocks b.

Inputs and outputs are modeled by four different varnodes. Registers, mem-
ory, constants and variables. For registers, addresses are used instead of names.
To give an example, (0x18,8), (0x18,4) and (0x19,1) refer to RBX, EBX and BH
respectively.

A Formal Semantics for P-Code 117

Fig. 2. P-Code language syntax definition

A P-Code block must be non-empty, can have zero or more instructions i, and
must end in a terminator instruction t. This does not adhere to documentation
or Ghidra produced P-Code, but is required to correct the fall-through issues
that occur, as mentioned in Sect. 3. We distinguish between regular instructions
and terminator instructions, to make it easier to construct a semantics later on.

Instructions i are either basic operations on data, that are assigned to an
output, or a function call that may or may not return some value. The instruction
out = (o | s) represents basic operations o that are assigned to the output out, or
a function call s with a return value. In some cases, the data operation depends
on the size of the output, like sign-extend. These instructions are added at this
level for that reason.

A function call is denoted by call [in0] in1 . . . inn, where in0 is either a con-
stant, for direct calls, or a register, memory location or variable, which indicates
that this is an indirect function call. This notation is identical to the P-Code doc-
umentation, but differs from the P-Code that Ghidra produces. Instead, Ghidra
explicitly differentiates between direct and indirect function calls using different
instructions, and uses a memory-varnode in the case of a direct function call,
instead of a constant value.

118 N. Naus et al.

Fig. 3. P-Code language operator syntax definition

Basic operations o are all data operations that are independent of the output.
Most of them are straight forward binary or unary operations. We will discuss
two non-standard operations.

The P-Code documentation does not list a syntax for the phi-node, so we
have chosen one ourselves. We enhance the phi-node to include the address that
guards the value alternative.

Indirect (in0 ←↩ in1) is the second non-standard operation. This instruction
indicates that either the value of in0 will be returned, or the value is unknown,
because an instruction pointed to by in1 has altered it. A typical use case of this
is when an external function is called with a pointer.

Finally, we have terminator instructions. These instructions are not singled
out by the P-Code documentation, but as mentioned, by separating them, con-
structing a semantics becomes easier.

The conditional branch is an interesting case. We have seen that Ghidra does
not produces consistent P-Code for this instruction. To work around this issue,
we replaced the conditional branch instruction with our own, so we can later use
the Ghidra API to get a hold of the correct addresses, and explicitly state both
the true and false branch. This works since conditional branches are terminators
and can thus only appear at the end of a block.

Lastly, the return instruction. This instruction includes an offset, and may
hold a value to be returned. Looking at large pieces of P-Code, we found that the
offset is not actually used in performing the return. For completeness sake we
include this parameter in the syntax, but we will not give it any semantics. The
same is true for the cast and new unary operators, these are merely placeholders
to indicate that a value has been cast or new memory has been allocated. This
information can then be used by subsequent analyses.

For space reasons, we omit a description of all basic operations, as well as
unary and binary operators.

A Formal Semantics for P-Code 119

5 P-Code Semantics

This section presents a big-step semantics for P-Code. As described in the previ-
ous sections, defining a semantics for P-Code is not trivial. Based on our exper-
iments and observations so far, we assume that the following holds for programs
written in P-Code.

Local variables do not overlap. We assume that local variables do not overlap
in the local variable address space. In other words, local variables occupy
separate memory locations. This property of P-Code has been verified by
decompiling large binaries and checking that no variables overlap.

No global variables. We assume that all declared variables are local. Strictly
speaking, the P-Code documentation does not prohibit an address space
that serves as global variables, but after running several experiments, this
behaviour has not been observed. Programs can and do have global variables,
but they are confined to memory and registers.

Call and Branch on constant. We assume that direct calls and direct branches
are encoded by having a constant varnode as an argument. In all other cases,
the call and branch will be interpreted as indirect.

Terminators only at block’s end. We assume that terminator instructions
like branch and return only occur at the end of a block. This assumption
already shows up in the syntax listed in the previous section, but for com-
pleteness sake, we reiterate this fact here.

Fig. 4. Semantic objects

Figure 4 lists the semantic objects needed for evaluation; state, memory, reg-
isters and variable mapping. The memory mapping M takes an address a and
size l and returns a constant varnode (Cc, l). The register mapping R takes a
register address r and a size l and returns a constant varnode (Cc, l). Just a regis-
ter identifier is not sufficient, since registers can alias. Three special registers are
used to keep track of function return value, the address of the previous block and
the address of the current block. These registers are denoted by “Ret”, “Prev”
and “Cur”, assuming that a varnode representation that is separate from regis-
ters used by the program exists. Variable mapping V takes a variable identifier
v and returns a constant varnode (Cc, l). Figures 7 through 11 list the rules for
the different semantic judgements we use. These rules use two auxiliary judge-
ments, namely the evaluation of varnodes and state update, listed in Fig. 5 and
6 respectively.

120 N. Naus et al.

Fig. 5. Evaluation of varnodes to values

Fig. 6. State update semantics

Varnodes are evaluated by judgements of the form σ, in ↓ val, taking a state
σ and varnode in, and returning the resulting value val, as listed in Fig. 5. The
resulting value is again a varnode, of the form (Cc, l), where c is a constant and
l the size. Depending on the type of the varnode, this value is retrieved from
memory, register mapping or variable mapping.

Updates to memory are handled by judgements of the form σ, out, in ↑ σ′,
taking a state σ, destination out and source in, returning the updated state σ′,
as listed in Fig. 6. The type of the destination is used to select the correct rule,
and ultimately which part of the state to update. In general, P-Code always
requires that destination and source size is equal. This is ensured by the update
semantics.

At the top-level, we evaluate a block using the judgement p, σ, b −→b σ′,
which takes a program p, state σ and entry block b and returns a new state
σ′, which is the result of completely executing the program. Figure 7 lists the
semantic rules for block evaluation.

B-Seq first evaluates the instruction i, and uses the resulting state to evaluate
the remainder of the block, b.

B-Term evaluates a block ending in a terminator, using the terminator seman-
tics.

The terminator semantics is given in Fig. 8. It uses judgements of the form
p, σ, t −→t σ′, taking a program p, state σ and terminator t as input and pro-
ducing a resulting state σ′.

The terminator semantics is pretty straight forward. T-Branch evaluates its
varnode in and looks up the next block in p, and then use the block semantics
to evaluate it. These rules make use of the varnode evaluation semantics ↓ listed
in Fig. 5. In the case of a conditional branch, in0 is evaluated. If the condition
returns decimal 1, of any size, we go to the true-branch. All other return values
are regarded as false. Branching instructions also perform some bookkeeping on
what the current and previous block addresses are.

A Formal Semantics for P-Code 121

Fig. 7. Block evaluation semantics

Fig. 8. Terminator evaluation semantics

T-Return handles a return statement. To pass the return value to the caller,
we use the Ret register. Updating the state as such is taken care of by the memory
update function ↑.

Figure 9 lists the partial instruction semantics. Judgements have the form
p, σ, i −→i σ′, taking a program p, state σ and instruction i, and returning the
resulting state σ′. For space reasons, we only list I-Assign, I-AssCall, I-Store
and I-Load here.

I-Assign uses the operation semantics to evaluate o, which returns the value
that should be assigned to out. The output out is updated by ↑, depending
on the type of varnode that out is; memory, register or variable.

I-AssCall relies on the call semantics to perform the call, and the resulting
value is again used to update out, and the final state is returned.

I-Store evaluates the destination, converts it to a varnode of type address,
and updates accordingly.

I-Load evaluates the input and then treats it as a memory address, and looks
up the final value in memory. The number of bytes to be retrieved from
memory is dictated by the output varnode.

The calling semantics is one of the more perculiar aspects of P-Code. All
arguments that are passed though registers in the original binary, are now passed

122 N. Naus et al.

Fig. 9. Partial instruction evaluation semantics

Fig. 10. Example of a function call evaluation rule

as function arguments in the call instruction. However, the called function does
still retrieve them from registers. How this is done precicely depends on the
original calling convention. Figure 10 lists an example of a call rule for a binary
that uses the AMD64-ABI calling convention.

Judgements are of the form p, σ, s −→s σ′, val, taking a program p, state σ,
call statement s and returning the resulting state σ′ and value val. In this case, a
call can have at most six arguments, adhering to the specific calling convention.

The semantics completely deviates from the P-Code documentation.
Section 3 discusses this issue, here we stick to a description of the semantics.

The Call-rule first resolves the address of the function to be called. As men-
tioned in Sect. 4, if in is a constant, we have a direct call. In all other cases, we
have an indirect call, and the varnode evaluation semantics takes care of resolv-
ing the address. We evaluate all arguments to the call, which are then assigned
to the appropriate registers. To execute the called function, the block seman-
tics is used. We look up the block, and evaluate it under the current memory,
the registers containing the arguments, and an empty local variable mapping ∅.
Returning from the call, the local variable mapping is disregarded, registers are
cleaned up, and the return value is retrieved from the registers. This value, along
with the new state are then returned.

Figure 11 lists a few of the operation evaluation rules. Judgements are of the
form σ, o −→o val, taking a state σ and operation o, returning the resulting value

A Formal Semantics for P-Code 123

Fig. 11. Partial operation evaluation semantics

val. For space reasons, we omit all basic operations, as well as unary and binary
operations. These operations are all straight-forward and standard.

O-Copy evaluates the varnode and return its value.
O-phi evaluates the phi-node by finding the address ai that is equal to the

address of the last block. The selected input is evaluated and its value
returned.

O-Indirect-val and -ND rules handle the indirect instruction. Here, we
basically have two options. Either the value is unaffected, and we can return
it, or the instruction pointed to by the second argument has altered the first
in some way, in which case any value of any size can be returned.

The above syntax and semantics assume that the P-Code models the von
Neumann architecture. Extending them to deal with Harvard architecture that
has dedicated code and data memory sections is straight-forward, but omitted
from the description here for space reasons.

5.1 P-Code Interpreter

To validate that the semantics above are executable, we have built a P-Code
interpreter in Haskell. The source code is publicly available, and consists of a
parser, type definitions and the interpreter itself3. Ghidra does not come with
a script to dump P-Code, so we have created a script with that functionality4.
The interpreter is intended to be used in combination with this Ghidra script,
since it corrects the P-Code output of Ghidra with respect to the conditional
branch, fall-through and phi-nodes.

We encountered several interesting issues in order to get to a working inter-
preter. First of all, we had to bridge the gap between what we think the syntax
and semantics of P-Code should be, ideally, and what Ghidra actually produces
for us. We assumed that both call and indirect call use the same instruction,
and we merged the branch and indirect branch instruction. In the P-Code pro-
duced by Ghidra, these are all separate instructions. The direct call and direct
branch use a memory varnode where we prefer to use a constant. For the MULTI-
EQUAL (phi-node), conditional branch instruction and the fall-through mech-
anism, Ghidra’s output does not contain enough information to come to an
executable semantics, as described above. We augment the P-Code dumping
3 https://github.com/niconaus/pcode-interpreter.
4 https://github.com/niconaus/PCode-Dump.

https://github.com/niconaus/pcode-interpreter
https://github.com/niconaus/PCode-Dump

124 N. Naus et al.

script to include the additional information required. Second, we assumed sev-
eral properties to hold for P-Code programs, as outlined in the beginning of this
section.

Finally, it is important to note that although the semantics is executable,
it is not practical to do so. Any realistic program will produce many INDI-
RECT instructions, which introduces non-determinism into the program. Execu-
tion of P-Code containing these instructions will therefore return many different
alternative outcomes, and may be propagating unknown values, not returning
a meaningful result. The point of the P-Code interpreter is merely to validate
the property of our semantics that it is in fact executable. In our interpreter, we
have chosen to regard INDIRECT instructions as deterministic, assuming that
their value has not been changed by the indicated side-effect.

6 Changes to Ghidra and P-Code

Based on our findings, we recommend the following changes to be made to
Ghidra, P-Code and its documentation.

6.1 P-Code

Currently, the phi-node, or MULTIEQUAL as P-Code calls it, is incomplete.
It only contains a list of alternative values, but not the control flow address
that guards it. We suggest to adopt the definition introduced in Sect. 4, which
includes both the address of the previous block and the value associated.

6.2 Ghidra/SLEIGH

We recommend the following changes to be made to Ghidra and its machine
code translator SLEIGH.

CBRANCH Our experiments show that Ghidra can return erroneous desti-
nations for the CBRANCH instruction. It does have the correct information
available, as we have validated by requesting the true-branch and false-branch
destination via the Ghidra API instead of P-Code. It is clear that there is a
bug in the way Ghidra produces P-Code. As mentioned before, one of three
situations occur. The conditional branch is correct, and so is the fall-through.
The conditional branch is incorrect, either the true-address or the fall-through
branches to the wrong address.

Fall-through The P-Code outputted by Ghidra performs fall-through in a
non-standard way in certain cases. For assembly languages, the fall-through
address is the next instruction listed, or in our case, the next block listed.
The P-Code that Ghidra returns sometimes breaks with this standard, and
fall-through goes to the next block listed, which might have a completely
different address, or in some rare cases, to a completely different block all
together.

A Formal Semantics for P-Code 125

P-Code rendering The P-Code displayed in Ghidra’s GUI uses a different
syntax than the one given in the P-Code documentation. The low P-Code in
the listing view uses the capital letters notation, where tools like the graph
AST do use the regular syntax. Readability would be greatly improved if the
same, preferably the regular, syntax is used.

6.3 Documentation

The P-Code documentation included with Ghidra has not been updated for
several years. We suggest to make the following changes to greatly improve the
quality of the documentation, both in correctness and completeness.

High and Low P-Code The P-Code Reference Manual attempts to cover
both low and high P-Code with one description for each instruction, and
then tagging on extra information for the high P-Code case. We recommend
splitting up documentation in high and low P-Code.

Varnodes In documentation, varnodes are described as containing three ele-
ments: address space, address and size. From our experiments, we see that
this view does not work in practice. Constants are also encoded as varnodes,
where the address is used as a constant value instead. When performing a
call (also see below), some address spaces are preserved, some are reset for
the scope of the call. In this paper we have used the address space field as the
type of the varnode, and this seems to be a better fit. We suggest one of two
things to be done. One, this view is adopted by documentation, including a
list of the different types of varnodes and how they behave in for example a
function call. Or two, the CALL and RETURN instructions are updated to
include address space scoping.

CALL, CALLIND, RETURN As mentioned in Sect. 3, documentation
states that CALL, CALLIND and RETURN are equivalent to BRANCH,
BRANCHIND and BRANCHIND respectively. From our experimental
results, we see that this is not the case. Function arguments are transferred
via registers, local variables are reset, a value can be returned, and after
a call, register cleanup is performed and local variables restored. We don’t
see an issue with these instructions themselves, more with the way they are
explained. This also ties in with the first point made on the difference between
low and high P-Code. Call, indirect call and return behave completely differ-
ent in low and high P-Code, and deserve a better documentation.

Small inconsistencies The documentation contains many small inconsistencies
which should be cleared up. For example, the syntax reference introduces two
different notations for SUBPIECE that are not in the P-Code Operation
reference, and that we have not found in our experiments.

6.4 Response from Ghidra Developers

We have reached out to the Ghidra development team at NSA with our findings
and the above recommendations. They have confirmed our findings and acknowl-
edged all issues we found. As for the conditional branch, they refer to a GitHub

126 N. Naus et al.

issue where this problem is also identified5. Their stance is that although it is
semantically incorrect, they do not consider this to be a bug. The destination
of the conditional jump is preserved from low to high P-Code, which they deem
more important than the correctness of the instruction itself.

7 Related Work

Research that makes use of Ghidra’s results is scarce, due to the fact that Ghidra
has only been publicly available for a few years. Below is a survey of several
interesting projects that use Ghidra and P-Code to perform program analysis.

GhiHorn is an SMT based path analysis tool that uses Ghidra and P-Code [6].
Their goal is to determine if a path exists to a certain program point, and
how the program should be instantiated to reach this point. Their approach
relies on Ghidra’s control flow API to construct flow from block to block. For
the individual blocks, they use a custom made transformer from P-Code to Z3
expressions. The documentation provided is limited, and GhiHorn does not seem
to deal with the more intricate details of P-Code, such as phi-nodes, indirect and
the call/return mechanism. It would be interesting to see where this approach
leads in the future, when the tool matures further.

A recent master thesis describes work on decompiling binaries into LLVM IR
using Ghidra [14]. The binary is loaded into Ghidra, and the decompiled P-Code
is then translated to LLVM IR. Although this work does not provide a semantics
for P-Code, it does relate LLVM IR’s semantics to that of P-Code. We’ve looked
though the source code for this project, and compared the relational semantics
to our P-Code semantics. In most cases, translation to LLVM IR seems to be
a more straight-forward affair, since issues like the call/return mechanism carry
over directly. One big limitation of this work is again that more difficult P-Code
concepts like phi-nodes, the nondeterministic indirect instruction, floating point
operations and pointer calculations are not supported. Looking at the translation
for conditional branches, we see that this work is susceptible to the error that
we discovered in Ghidra.

Ghidra has also been used to develop a static taint analysis [2]. The author
uses external lists containing sources and sinks, and uses a taint policy that
defines how a taint is introduced and propagated. Unfortunately, source code for
this project is no longer available. The group is working on a new version and
has pulled the code in the mean time. It would have been very interesting to see
what P-Code semantics they employ.

A caveat of all of these approaches is the fact that none of them do any kind of
verification or have any formal theory on their approaches. As we have seen from
our experiments, the P-Code semantics is not straight-forward. Having a formal
semantics has the potential to improve these and future efforts on decompilation
and binary analysis.

5 https://github.com/NationalSecurityAgency/ghidra/issues/2736.

https://github.com/NationalSecurityAgency/ghidra/issues/2736

A Formal Semantics for P-Code 127

8 Conclusion

We have presented a formal semantics for Ghidra’s P-Code. By developing this
semantics, we have uncovered several undocumented properties of P-Code, as
well as some inconsistencies and one serious bug in the way that Ghidra builds
the conditional branch instruction. To arrive at an executable P-Code semantics,
we have made several extensions to the language. We have validated that our
semantics is executable by building an interpreter for P-Code in Haskell. The
semantics and issues described have been acknowledged by the NSA. We have
performed a survey of binary analysis projects that leverage Ghidra and P-Code,
and have seen several that are directly affected by the issues we uncovered.

Acknowledgements. We would like to thank the anonymous reviewers for their
insightful comments and suggestions, which helped to greatly improve the paper.

This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) and Naval Information Warfare Center Pacific (NIWC
Pacific) under contract N6600121C4028 and Agreement No. HR.00112090028, and the
US Office of Naval Research (ONR) under grant N00014-17-1-2297.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of DARPA or
NIWC Pacific, or ONR.

References

1. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: a binary analysis plat-
form. In: Computer Aided Verification–23rd International Conference, CAV 2011,
Snowbird, UT, USA, 14–20 July 2011. Proceedings, pp. 463–469 (2011)

2. Cole, E.: Static taint analysis of binary executables using architecture-neutral inter-
mediate representation (2019)

3. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

4. Eagle, C., Nance, K.: The Ghidra Book: The Definitive Guide. No Starch Press,
California (2020)

5. Shaila, S., Darki, A., Faloutsos, M., Abu-Ghazaleh, N., Sridharan, M.: Disco: com-
bining disassemblers for improved performance. In: RAID 2021: 24th International
Symposium on Research in Attacks, Intrusions and Defenses, San Sebastian, Spain,
6–8 October 2021, pp. 148–161 (2021)

6. Gennari, J.: Ghihorn: Path analysis in Ghidra using smt solvers. Carnegie Mellon
University’s Software Engineering Institute Blog, 18 October 2021. http://insights.
sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-using-smt-solvers/

7. Hex-Rays, S.: Ida pro disassembler (2022)
8. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program

analysis & transformation. In: 2nd IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2004), 20–24 March 2004, San Jose, CA, USA,
pp. 75–88 (2004)

9. National Security Agency: P-Code Reference Manual, September 2019
10. National Security Agency: Ghidra API help (2021)

http://insights.sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-using-smt-solvers/
http://insights.sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-using-smt-solvers/

128 N. Naus et al.

11. PNF Software: Jeb decompiler (2022). https://www.pnfsoftware.com
12. Radare org: Radare2 (2022). https://github.com/radareorg/radare2
13. Shoshitaishvili, Y., et al.: SOK: (state of) the art of war: offensive techniques in

binary analysis. In: IEEE Symposium on Security and Privacy, SP 2016, San Jose,
CA, USA, 22–26 May 2016, pp. 138–157. IEEE Computer Society (2016)

14. Toor, T.: Decompilation of Binaries into LLVM IR for Automated Analysis. Mas-
ter’s thesis, University of Waterloo (2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://www.pnfsoftware.com
https://github.com/radareorg/radare2
http://creativecommons.org/licenses/by/4.0/

Separating Separation Logic – Modular
Verification of Red-Black Trees

Gerhard Schellhorn, Stefan Bodenmüller(B), Martin Bitterlich,
and Wolfgang Reif

Institute for Software and Systems Engineering, University of Augsburg,
Augsburg, Germany

{schellhorn,stefan.bodenmueller,
martin.bitterlich,reif}@informatik.uni-augsburg.de

Abstract. Interactive theorem provers typically use abstract algebraic
data structures to focus on algorithmic correctness. Verification of pro-
grams in real programming languages also has to deal with pointer struc-
tures, aliasing and, in the case of C, memory management. While progress
has been made by using Separation Logic, direct verification of code
still has to deal with both aspects at once. In this paper, we show a
refinement-based approach that separates the two issues by using a suit-
able modular structure.

We exemplify the approach with a correctness proof for red-black
trees, demonstrating that our approach can generate efficient C code
that uses parent pointers and avoids recursion. The proof is split into a
large part almost identical to high-level algebraic proofs and a separate
small part that uses Separation Logic to verify primitive operations on
pointer structures.

Keywords: Hierarchical components · Refinement · Verification ·
Separation logic · Efficient C code · Red-Black trees

1 Introduction

Interactive theorem provers typically use high-level algebraic data structures
like lists, sets, or trees to verify the correctness of algorithms conceptually. Code
generated from such algorithms is typically purely functional and often not very
efficient. Side effects, aliasing, or memory allocation are absent, except when a
heap with allocation and deallocation is explicitly modeled, which is rarely done
when studying algorithmic correctness.

However, verification of programs in real programming languages has to deal
with the fact that all non-primitive data types are represented as pointer struc-
tures, and destructive operations are often used to improve efficiency. The most
popular concept to handle these issues is to use Separation Logic, which moves

Partly supported by the Deutsche Forschungsgemeinschaft (DFG), “Verifikation von
Flash-Dateisystemen” (grants RE828/13-1 and RE828/13-2).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Lal and S. Tonetta (Eds.): VSTTE 2022, LNCS 13800, pp. 129–147, 2023.
https://doi.org/10.1007/978-3-031-25803-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25803-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-25803-9_8

130 G. Schellhorn et al.

the specification of a heap structure into the semantics of the logic. Provers that
target the verification of C, Java, or Rust programs like VeriFast [20] or Viper
[26] are directly based on it. Many interactive theorem provers now support a
library for Separation Logic similar to the one we give in Sect. 3.2.

However, direct verification of algorithms given e.g. in C still suffers from the
complexity of conceptual correctness arguments being intertwined with questions
about pointer aliasing and side effects.

This paper contributes an approach that modularizes the verification effort of
a library implementation of sets by red-black trees into two independent parts:
a bigger one that deals with functional correctness on an algebraic level, and
a smaller part that is independent of the first and deals with mapping small
operations (like removing a leaf or rotating at a path) on abstract data structures
to operations on pointer structures. The approach separates the use of Separation
Logic from the proof of conceptual correctness by restricting it to the latter part.
It is based on components with sequential programs linked by data refinement,
supported natively in our theorem prover KIV.

We have chosen red-black trees as they offer good worst-case guarantees
for the operations search, insert and remove. Their verification on an algebraic
level is already non-trivial. However, our goal was to verify an efficient version
such that the resulting code is on par with standard C code implementations.
This mandates that our final implementation uses parent-pointers and avoids
recursion to be as efficient as possible. Our implementation is based on the
pseudocode given in [9].

Red-black trees are also useful in the Flashix project [5], where we have imple-
mented and verified a realistic file system for flash memory which can be used
as a kernel module in Linux. There, red-black are used to balance erase counts
of raw flash blocks in the wear leveling algorithm. Since verification there is also
based on the concept of components connected by refinement, we could replace
an unverified external C library with the verified implementation described here.

This paper is organized as follows. Section 2 introduces characteristic features
of our theorem prover KIV that comprises both a specification and programming
language. Section 3 presents the algebraic data types to describe a red-black tree
and the explicit heap that is used to reasonaboutpointer-basedprograms. Section4
explains how a software system can be broken down into hierarchical components
that refine an abstract system description to a realistic implementation.

Section 5 highlights the implementation split into a common part and elemen-
tary operations that can also be performed on a pointer structure. Section 6 fol-
lows with an overview of some key properties for verification. Section 7 presents
existing approaches and draws a comparison to them.

2 Background

To develop the necessary formal specifications and prove that our implementa-
tion follows them, we use the theorem prover KIV, which provides interactive
verification using a sequent calculus with explicit proof trees. The basic logic of

Separating Separation Logic 131

the specification language is higher order logic (HOL), recently extended from
monomorphic to polymorphic types. KIV supports an imperative programming
language with recursive procedures and nondeterminism. Details on the syntax
can be found in [34], Fig. 4 shows a procedure definition. The arguments of a
procedure proc#(in; ref ; out) are grouped into sequences of input, reference,
and output parameters. KIV does not support global variables, these must be
added explicitly as reference parameters.

Reasoning about sequential programs in KIV is done with a weakest precon-
dition calculus, borrowing notation from Dynamic Logic (DL) [18], including its
two standard modalities: the formula [α]ϕ (box) denotes that, for every termi-
nating run of α, the final state must satisfy ϕ, corresponding to the weakest lib-
eral precondition wlp(α,ϕ). The formula 〈α〉ϕ (diamond) guarantees that there
is a terminating execution of α that establishes ϕ. Finally, the formula 〈|α|〉 ϕ
(strong diamond) states that all runs of α terminate with a final state satisfying
ϕ (weakest precondition wp(α,ϕ)). Partial and total correctness of a program
α with respect to pre-/post-conditions pre/post is written pre → [α] post and
pre → 〈|α|〉 post, respectively. The calculus is more expressive than standard
Hoare-like program logics since it allows to combine and nest program formu-
las. This allows e.g. to establish a relation between two programs, which will be
useful in defining proof obligations for refinement, cf. Sect. 4.

The main proof technique for verifying program correctness in KIV is sym-
bolic execution. Each symbolic execution step calculates the strongest postcondi-
tions of the first program statement from the preconditions. When the symbolic
execution of the program is completed, the goal is reduced to predicate logic,
where proof automation is achieved via rewrite rules and heuristics, see [34].

3 Structured Specifications of Algebraic Data Types

In KIV, structured algebraic specifications are used to build a hierarchy of data
type definitions. Primitive data types may be generated freely or non-freely.
Specifications can be augmented by additional functions and combined using
standard structuring operations like enrichment, union, and renaming. It is also
possible to specify parameterized data types that can be instantiated explicitly.

3.1 Algebraic Red Black Tree Definition

The standard approach for proving the correctness of algorithms using complex
data structures is to specify the data structures algebraically. Red-black trees
[17,35] can be defined as a polymorphic free data type rbtree(′a), using a constant
constructor SENTINEL (representing the leaves of the tree) and a non-constant
constructor Node.

rbtree(′a) := SENTINEL | Node(.elem : ′a ; .color : rbcolor ;
.left : rbtree(′a) ; .right : rbtree(′a))

Nodes have a color (either RED or BLACK, defined by the enumeration type
rbcolor), a left and a right subtree, and an element of generic type ′a. These

132 G. Schellhorn et al.

fields can be accessed via the postfix selector functions .elem, .color, .left,
and .right. A type variable ′a for the type of elements stored in the tree is used
in the definition. So in principle, the data type can be used with any element
type. However, to express the properties of binary search trees, a generic, totally
ordered elements type tord (with <) is used. The resulting tree type is written
rbtree(tord). The specification can be instantiated later as needed by suitable
types, e.g. natural numbers or integers. When such a parameter is instantiated,
KIV generates proof obligations to ensure that the instantiated type satisfies the
assumed properties (in this case, a total order over the type).

For a free data type specification, KIV generates all necessary axioms, as
well as update functions (written e.g. rbt.color:= newcol), including their def-
initions. Note that selector (and update) functions are not given axioms for all
arguments: SENTINEL.color is left unspecified. The semantic function in a model
is still total, and SENTINEL.color may be any value, following the standard loose
approach to semantics. However, KIV attaches a domain to the function for use
in programs. Calling .color outside of its domain in a program (here: with
SENTINEL, where it is “undefined”) will raise an exception. Therefore, proving
the correct use of the data type in programs includes showing the absence of such
exceptions, i.e. one has to prove that all operations are called with arguments
within their respective domain.

3.2 Modeling the Heap and Separation Logic

Reasoning about destructive pointer algorithms requires to model the heap,
either implicitly as part of the semantics of formulas or explicitly as an alge-
braic data type. In KIV, the latter approach is realized: heaps are specified as
a polymorphic non-free data type heap(′a). A heap can be considered a partial
function mapping references r (of type ref (′a)) to objects obj of a generic type
′a, where allocation of references is explicit and the reference type contains a dis-
tinguished element null that is never allocated (representing the null pointer).

The heap(′a) data type is inductively generated by the constant ∅ representing
the empty heap, allocating a new reference r (written h ++ r), or updating an
allocated location r with a new object obj (written h[r := obj]). Again, the object
type is not specified further so that the heap specification can be used with any
concrete object type (for red-black trees, the type rbnode represents individual
nodes of the tree, see Sect. 5).

A predicate r ∈ h checks whether a reference is allocated in a heap, and a
function h[r] is used to lookup objects in a heap (this corresponds to derefer-
encing a pointer). References can also be deallocated by the function h -- r .

Similar to the selector functions of free data types, the constructor functions
as well as lookup and deallocation are partial functions in order to specify valid
accesses to the heap: accesses to the heap with the null reference are always
undefined (r �= null), allocation is allowed with a new reference (¬ r ∈ h) only.
Lookup, update, and deallocation require an allocated reference r ∈ h.

In KIV, all parameters of procedures are explicit. Hence, when reasoning
about pointer-based programs, the heap must be an explicit parameter of the
program as well. To facilitate the verification of such programs, we built a simple

Separating Separation Logic 133

library for Separation Logic (SL) [32] in KIV, similar to the libraries of Isabelle
[24] and Coq [8]. We give some information, to explain the notation used in the
following. SL formulas are encoded using heap predicates hP : heap(′a) → bool .
A heap predicate describes the structure of a heap h. At its simplest, h is the
empty heap emp:

emp(h) ↔ h = ∅
The maplet r 	→ obj describes a singleton heap containing only one reference
r mapping to an object obj . It is defined as a higher-order function of type
(ref (′a) × ′a) → heap(′a) → bool :

(r 	→ obj)(h) ↔ h = (∅ ++ r)[r := obj] ∧ r �= null

More complex heaps can be described using the separating conjunction
hP0 * hP1 asserting that the heap consists of two disjoint parts, one satisfying
hP0 and one satisfying hP1 , respectively. Since it connects two heap predicates,
it is defined as a function with type (heap(′a) → bool) × (heap(′a) → bool) →
(heap(′a) → bool):

(hP0 * hP1)(h) ↔ ∃ h0, h1. h0 ⊥ h1 ∧ h = h0 ∪ h1 ∧ hP0 (h0) ∧ hP1 (h1)

Besides the basic SL definitions, the KIV library contains various abstractions of
commonly used pointer data structures like singly-/doubly-linked lists or binary
trees. These abstractions allow to prove the functional correctness (incl. memory
safety) of algorithms on pointer structures against their algebraic counterparts.
We will demonstrate this approach for a red-black tree implementation.

4 Modular Software Systems

For the development of complex software systems in KIV, we use the concept
of hierarchical components combined with the contract approach to data refine-
ment [10]. A component is an abstract data type (ST, Init, (Opj)j∈J) consisting
of a set of states ST , a set of initial states Init ⊆ ST , and a set of operations
Opj ⊆ Inj × ST × ST × Outj . An operation Opj takes inputs Ini and outputs
Outj and modifies the state of the component. Operations are specified with con-
tracts using the operational approach of ASMs [6]: for an operation Opj , we give
a precondition prej and a program αj in the form of a procedure declaration
opj#(inj ; st; outj) pre prej {αj }. The program αj is given in KIV’s impera-
tive programming language and establishes the postcondition of the operation.
Instead of defining initial states directly, we also give a procedure declaration
init#(ininit; st; outinit) {αinit}.

Components are distinguished between specifications and implementations.
The former are used to model the functional requirements of a (sub-)system and
are typically kept as simple as possible by heavily utilizing algebraic functions
and non-determinism. The approach is as general as specifying pre- and post-
conditions since the program choose st′, out′ with post(st′, out′) in st, out :=
st′, out′ can be used to establish any postcondition post over state st and output

134 G. Schellhorn et al.

out. Implementations are typically deterministic and use constructs only that
allow generating executable Scala or C code from them with our code generator.

The functional correctness of implementation components is then proven by a
data refinement of the corresponding specification components (we write C ≤ A if
C = (ST C, InitC, (OpCj)j∈J) is a refinement of A = (ST A, InitA, (OpAj)j∈J) where
C and A have the same set of operations J). Proofs for such a refinement are
done with a forward simulation R ⊆ ST A × ST C using commuting diagrams.
This results in correctness proof obligations for all j ∈ J (an extra obligation
ensures that InitA and InitC establish matching states).

R(stA, stC) ∧ preAj (st
A)

→ 〈|opC
j#(inj ; stC; outj)|〉 〈opA

j#(inj ; stA; out′j)〉(R(stA, stC) ∧ outj = out′j)

Note that the obligation refers to two procedure runs (opC
j# and opA

j#), string-
ing together a strong diamond and a diamond program formula. Thus, stA and
stC in the postcondition of the obligation refer to the changed states after the
runs of opA

j# and opC
j#, respectively. Informally, one has to prove that, when

starting in R-related states, for each run of an operation opC
j# of C, there must

be a matching run of opA
j# of A that maintains R(stA, stC) with the same inputs

and outputs. The obligation also requires to show that the precondition preAj (st
A)

is strong enough to establish the precondition preCj (st
C) if R(stA, stC) holds. This

obligation is implicit as the call rule creates this premise for a procedure with a
precondition.

For each component, invariant formulas inv(st) over the state st can be
given, which must be maintained by all (Opj)j∈J . This simplifies (or even makes
it possible in the first place) to prove the correctness proof obligations of a
refinement as invariants invA(stA) and invC(stC) are added as assumptions. If
an invariant is given for a component, additional proof obligations for all its
operations are generated that ensure that the invariant holds. Additionally, one
can give an individual postcondition postj (st) for an operation, which extends
its invariant contract.

prej (st) ∧ inv(st) → 〈|opj#(inj ; st ; outj)|〉 (inv(st) ∧ postj (st))

These invariant contracts can be applied when proving the refinement proof
obligations and may further simplify the proofs since symbolic execution of the
operation can be avoided.

Fig. 1. Data refinement with subcompo-
nents.

To facilitate the development of
larger systems, we introduced a con-
cept of modularization in the form of
subcomponents. A component (usu-
ally an implementation) can use one
or more components as subcompo-
nents (usually specifications). The
client component cannot access the

state of its subcomponents directly but only via calls to the interface opera-
tions of the subcomponents. Using subcomponents, a refinement hierarchy is

Separating Separation Logic 135

Fig. 2. Abstract representation of red-black trees: the component RBSET.

composed of multiple refinements like in Fig. 1. A specification component Ai is
refined by an implementation Ci (dotted lines in Fig. 1) that uses a specification
Ai+1 as a subcomponent (in Fig. 1, we write Ci(Ai+1) for this subcomponent
relation). This pattern then repeats in the sense that Ai+1 is refined further by
an implementation Ci+1 that again uses a subcomponent Ai+2 and so on. If it
is not the top-level specification, Ai may also be used as a subcomponent of an
implementation Ci−1. The complete implementation of the system then results
from composing all individual implementation components C0(C1(C2(...))). In
[13] we have shown that C ≤ A implies M(C) ≤ M(A) for a client component M
which ensures that the composed implementation is a correct refinement of its
top-level specification A0, i.e. C0(C1(C2(...))) ≤ A0. This allows us to divide a
complex refinement task into multiple, more manageable ones, as demonstrated
in the following sections for a red-black tree implementation.

5 Implementation of Destructive Red-Black Trees

Red-black trees are typically used as an efficient data structure for ordered sets
(or multisets). In order to abstract from the complex implementation details
of red-black trees (traversal, rotations, . . .), the simple specification component
RBSET given in Fig. 2 can be used. Other components then can use RBSET as
a subcomponent, which simplifies formal reasoning about the client component
while the resulting system still uses an efficient heap implementation.

Fig. 3. The refinement hierarchy for red-
black trees.

The state of RBSET is just a set
of elements that are totally ordered.
It is determined by a state variable
rbs of type set(tord), where set is a
polymorphic non-free data type (cf.
Sect. 3.2), and a strict total order is
given over elements of type tord . Ini-
tially, rbs is empty (∅), and it can
be modified by inserting or remov-
ing elements elem (by insert# and

136 G. Schellhorn et al.

remove#). Additional interface procedures check whether the set is empty and
whether an element is in the set. The minimal element can be selected. In Fig. 2
and below, state variables are omitted from the parameters of operation decla-
rations but are implicitly added as reference arguments.

This component is refined by a pointer-based implementation of red-black
trees. However, this refinement is split into two parts to reduce the complexity
of the necessary reasoning about the heap done with Separation Logic. The
result is the refinement hierarchy shown in Fig. 3. In the first refinement step
RBTREE(RBTBASIC) ≤ RBSET, we show that the a red-black tree can implement
the set abstraction and that this implementation maintains all red-black tree
properties (cf. Sect. 6). But instead of using a heap data structure, we do this
using the algebraic datatype rbtree presented in Sect. 3.1.

The second refinement step RBTHEAP ≤ RBTBASIC proves that a heap imple-
mentation conforms to this algebraic datatype. The goal of this separation is
to keep the operations of RBTBASIC (and hence those of RBTHEAP) as simple
as possible. The more complex algorithmic parts are handled in RBTREE while
RBTBASIC only provides an interface for primitive manipulations of rbtree. This
includes for example the insertion of an element at a given point within the tree,
or a single left- or right-rotation of one particular subtree. To specify a location
in the tree on the abstract level, we simply use paths, i.e. lists of an enumera-
tion type lrdesc := LEFT | RIGHT, and define functions like p ∈ rbt , rbt [p] and
rbt [p := rbt ′] that check a path p to be in a tree rbt , select the subtree at a path
p, or update the subtree at a path p with a new tree rbt ′, respectively.

When used directly, these operations are inefficient since RBTBASIC has to
traverse the paths at every access. However, note that we can already generate
Scala code from RBTREE(RBTBASIC): the resulting code can be used for testing
invariants and results of example runs, which often avoids unsuccessful proof
attempts of properties that do not hold in the first place.

Since the algorithms on red-black trees use at most two paths and data
refinement can refine state only (not input/output), we place two paths in the
state of RBTBASIC. The implementation in RBTHEAP replaces these paths with
two references that point to a heap storing individual tree nodes. The nodes
of the implementation use parent pointers, so shortening or lengthening one of
the two paths by one (which are operations of RBTBASIC) can be implemented
by simply dereferencing a pointer. Hence, the state of the component RBTBASIC
consists of an algebraic red-black-tree rbt using totally ordered elements tord
and two paths curPath and auxPath. Most of the time curPath is used only, but
for removal, it is necessary to store a second path auxPath that points to the
element after the deleted one.

state rbt : rbtree(tord), curPath : list(lrdesc), auxPath : list(lrdesc)

The corresponding state of RBTHEAP contains a heap rbh and a pointer rootRef
to the root of the tree, together with pointers curRef and auxRef matching
curPath and auxPath, respectively.

Separating Separation Logic 137

Fig. 4. RBTREE procedure for removing an element elem from the tree.

state rbh : heap(rbnode), rootRef : ref (rbnode),
curRef : ref (rbnode), auxRef : ref (rbnode)

The heap stores nodes of type rbnode, which contain an element and a color like
the Nodes of rbtree but use references that point to their left and right subtrees.
A parent pointer is added to allow efficient traversal upwards in the tree.

rbnode := Node(.elem : tord ; .color : rbcolor ; .parent : ref (rbnode);
.left : ref (rbnode); .right : ref (rbnode))

Figure 4 lists the implementation of remove# in the RBTREE component as an
example of how this state is modified via the interface of RBTBASIC. For primitive
RBTBASIC operations, the comments in green show their implementation. All
operations start by resetting the paths to point to the root (line 1, [] denotes
an empty list). Then the tree is traversed to an element of interest by performing

138 G. Schellhorn et al.

a binary search in the procedure search#(elem). For removal, the element to
be removed (elem) is searched and curPath will be updated to point to elem
if it is found. When a SENTINEL is reached (checked in line 3), the search is
stopped and the removal is aborted with exists := false (line 26). If elem
was found, the element must be replaced in order to restore the red-black tree
properties. In case the node has a SENTINEL as left or right child (line 8 resp.
14), substitution of the node is performed simply by replacing it with the other
child. Otherwise, curPath is stored in auxPath (line 16) and is then updated by
rbtbasic right# and leftMost# to point to the next greater element. This
element is the minimal element of the right subtree of elem and thus cannot
have a left child (curPath + LEFT points to a SENTINEL). Therefore, the element
can be moved to auxPath (line 21) and the tree at curPath can be replaced with
its right child (line 20). Finally, the routine removeFixup# is called to fix up
the tree starting at curPath since the removal may have broken the red-black
tree properties and the tree may need to be rebalanced.

The RBTHEAP operations work similar to RBTBASIC but on the pointer struc-
ture. So instead of selecting a subtree at curPath, which requires a traversal
of the complete path, the node at curRef is accessed simply by dereferencing
the pointer (rbh[curRef]). Analogously, instead of adjusting the paths, e.g. with
curPath := curPath + RIGHT, pointers are updated by following the references
of the current node, e.g. with curRef := rbh[curRef].right.

The algorithm is essentially the same as the one in [9]. However, we implement
SENTINEL nodes as null pointers instead of using a dummy node that would be
necessary to get the parent of a leaf. This does not change the insert algorithm,
but results in remove working on the parent of the deleted node. Our algorithm
therefore has to explicitly pass the information whether the left or right child
was deleted (isLeftChild in Fig. 4). On the other hand, our removeFixup# is
not called when curPath points to a leaf (and only when there is something to
fix), so the loop test in the original removeFixup# that checks for a leaf or
the root (which can only be true in the first iteration) is removed. Otherwise the
various cases and rotations are identical to [9].

6 Verification of Destructive Red-Black Trees

For verification, the functional properties must be specified as invariants of
RBTREE. In between interface calls, rbt must be a valid red-black tree (expressed
by isRbtree(rbt)) and must be a valid search tree, i.e. its elements must be
ordered (described by the predicate isOrdered(rbt)).

A non-empty red-black tree is characterized by three main properties: the
root of the tree is BLACK, both children of a RED node have to be BLACK, and
each path of any node to a leaf must contain the same number of BLACK nodes.

isRbtree(rbt) ↔ (
rbt = SENTINEL ∨

(rbt.color = BLACK ∧ redCorrect(rbt , RED) ∧ sameBlacks(rbt))
)

Separating Separation Logic 139

The predicate redCorrect(rbt , parCol) (parCol is the color of the parent node)
specifies the first two properties, sameBlacks(rbt) the last. Both are defined
recursively over the structure of the tree, as is isOrdered(rbt). As an example,
the axiom for a RED node for redCorrect is

redCorrect(Node(e, RED, left, right), parCol) ↔
parCol = BLACK ∧ redCorrect(left, RED) ∧ redCorrect(right, RED)

For the deletion of a node, additional predicates must be defined that allow
the properties to be violated at a specific path in the tree (we indicate them
by attaching D). They allow the tree to be characterized during the proce-
dure remove#. For instance, the following definition describes the violation
of redCorrect at the current node (path = []).

redCorrectD(Node(e, col, left, right), parCol, []) ↔
redCorrect(left, col) ∧ redCorrect(right, col)

While isOrdered(rbt) is maintained quite easily by the operations of RBTREE,
e.g. insert# adds the new element directly at a position that maintains
the order property, complex fixing mechanisms are necessary to re-establish
isRbtree(rbt). The main proof effort is to show that these mechanisms are
actually correct. To keep proof size manageable, we split the procedures into
several subroutines, and formulated and proved contracts for these separately.
We will not go into details of the verification of the routines (insertFixup# for
insertion and removeFixup# for removal), the KIV code and proofs can be
found online [23].

The refinement RBTREE(RBTBASIC) ≤ RBSET is proven by the following for-
ward simulation, where elems calculates the set of elements stored in the tree.

abstraction relation rbs = elems(rbt)

This simple abstraction allows to encode the set modifications of RBSET into
the contracts of RBTREE. For example, the contract of remove# in Fig. 4 states
that elem is removed from the tree (elems(rbt) = elems(rbt �) -- elem where
rbt � denotes the value of rbt just before the execution of the procedure). This
modification happens within rbtbasic replRight# and rbtbasic replLeft#,
the contracts of all other modifying auxiliary procedures, e.g. removeFixup#,
ensure that they do not change the set of elements stored in the tree
(elems(rbt) = elems(rbt �)). Similar contracts are given for the other inter-
face procedures, so the refinement is proven mainly by applying these contracts.
Note that the refinement proofs do not require the invariant isRbtree(rbt) (an
unbalanced tree would also refine a set correctly). However, they do require
isOrdered(rbt) since otherwise tree search is not correct (and thus correctness
of remove#, lookup#, and getMin# could not be shown).

For none of these proofs, it is necessary to reason about the heap implemen-
tation. In particular, the main invariant properties isOrdered and isRbtree are

140 G. Schellhorn et al.

Fig. 5. Exemplary right-rotation at a path p.

Fig. 6. Procedure for right-rotations at a path p of component RBTBASIC.

proved solely over algebraic trees. What remains to prove is that the pointer-
based implementation in RBTHEAP is a correct refinement of RBTBASIC.

Most of the operations of RBTBASIC are just single assignments, for example
recolorings of the node at curPath or one of its relatives, or changes of curPath
or auxPath. RBTHEAP implements these operations analogously with lookups at
curRef and updates of curRef or auxRef by following the parent- or child-
pointers. The only more complex operations are rotations used in the fixing
routines. For example, Fig. 5 shows the effect of a right-rotation at some location
within the tree, i.e. at some path p (note that the left child B of A must be
an actual Node for a valid right-rotation, while the subtrees 0, 1, and 2 can
be SENTINELs). In RBTBASIC, such rotations are performed using the auxiliary
procedure rotateRight# listed in Fig. 6 (or a symmetric version rotateLeft#
for left-rotations). The operation takes a path p as an argument and performs
a right-rotation at the corresponding location. It selects the subtree at p, builds
the rotated subtree, and then inserts it at p again (the program rbt [p] := rbt0
is an abbreviation for rbt := rbt [p := rbt0] which replaces rbt [p] with rbt0 in
rbt). The RBTBASIC interface then provides operations for rotations at different
locations (at curPath, auxPath, or one of their relatives), all of which use one of
the two auxiliary procedures with respective arguments.

Figure 7 shows the corresponding implementation of RBTHEAP. Instead of a
path, it takes a reference ref as an input. The heap implementation performs

Separating Separation Logic 141

rotateRight#(ref)
auxiliary
pre ref ∈ rbh ∧ rbh[ref].left ∈ rbh;

{
let lRef = rbh[ref].left in {

rbh[ref].left := rbh[lRef].right;
if rbh[lRef].right �= null then rbh[rbh[lRef].right].parent := ref ;
if lRef �= null then rbh[lRef].parent := rbh[ref].parent;
if rbh[ref].parent �= null then {

if ref = rbh[rbh[ref].parent].right
then rbh[rbh[ref].parent].right := lRef ;
else rbh[rbh[ref].parent].left := lRef ;

} else rootRef := lRef ;
rbh[lRef].right := ref ;
if ref �= null then rbh[ref].parent := lRef ;

1

2

3

4

5

6

7

8

9

10

11

}}

Fig. 7. Procedure for right-rotations at a reference ref of component RBTHEAP.

the rotation by updating the pointers of the node at ref as well as those of its
parent and left child. First, the link between the node at ref and its new left
child is established (lines 2 and 3). Then the link between the new root of the
subtree (lRef) and its new parent is created (lines 5–8). Finally, ref is linked to
lRef as its new right child (lines 10 and 11). In contrast to the algebraic variant
in Fig. 6 (the assignment in line 4 would copy the whole tree rbt), all updates
are destructive. For example in C, the assignment in line 2 corresponds to a
statement ref->left = lRef->right where both ref and lRef as well as the
fields left and right are pointers to a struct rbnode.

The refinement is proven using Separation Logic (see Sect. 3.2) and the fol-
lowing abstraction that does not refer to any red-black tree properties.

abstraction relation rbh[rootRef , curPath] = curRef
∧ rbh[rootRef , auxPath] = auxRef
∧ abs(rootRef , null, rbt)(rbh)

The first two formulas assert that the references curRef and auxRef correspond
to the paths curPath and auxPath, respectively, i.e. they point to the same
locations in the tree. Here, the function rbh[r , p] yields the reference reached
when traversing the heap rbh along the path p, starting at r . The heap pred-
icate abs : (ref (rbnode) × ref (rbnode) × rbtree(tord)) → heap(rbnode) → bool
abstracts the pointer tree in rbh starting at rootRef to the algebraic tree rbt . The
second ref (rbnode) argument specifies the parent of the root, for the complete
tree it is null. abs is defined recursively over the structure of rbt :

142 G. Schellhorn et al.

abs(rootRef , pRef , SENTINEL)(rbh) ↔ rootRef = null ∧ rbh = ∅
abs(rootRef , pRef , Node(elem, col , l , r))(rbh) ↔

∃ lRef , rRef . ((rootRef 	→ Node(elem, col , pRef , lRef , rRef))
* abs(lRef , rootRef , l)
* abs(rRef , rootRef , r))(rbh)

For a SENTINEL, the heap rbh must be empty. This ensures the absence
of memory leaks since one has to prove that all nodes have been deallocated
when they are removed from the tree. For a Node, the heap is separated into
three disjoint parts: a root node containing the same element and color as the
algebraic node and two trees that abstract to the left and right algebraic subtree.

The abstraction relation uses ordinary conjunction, and we found it easy to
support updating the first and second conjunct on heap updates via suitable
rewrite rules: modifications happen either at one of the two paths or below them
(in the latter case no update is necessary at all). Most Separation Logic based
provers (e.g. [20,26]) support separating conjunction only, which would require to
define several versions of abs with additional paths and references as arguments,
depending on which of them is contained in a subtree.

The proof exploits that each operation modifies at most one location inside
the tree. This allows to split up the abstraction at this location, prove that the
operation has the expected local behavior (e.g. that it rotates the referenced sub-
tree correctly), and then merge the abstraction again with the updated subtree.
For this, two fundamental theorems were formulated. The first theorem splits
the abstraction of a tree rbt at a path p.

p ∈ rbt → (abs(rootRef , pRef , rbt)(rbh) ↔
∃ pthRef , pPthRef .

(abspath(rootRef , pRef , rbt , p, pthRef , pPthRef)
* abs(pthRef , pPthRef , rbt [p]))(rbh))

The heap predicate abspath is a weaker version of abs: the tree represented in
rbh must match rbt except for the subtree starting at p. The references pthRef
and pPthRef are used to fix the references of the root of the subtree and its
parent. Thus, the split-off subtree rbt [p] can be abstracted separately using abs
with pthRef as root and pPthRef as parent reference. Conversely, reconnecting
a detached subtree rbt0 at path p with the original tree rbt is done via

(abspath(rootRef , pRef , rbt , p, pthRef , pPthRef)
* abs(pthRef , pPthRef , rbt0))(rbh)

→ abs(rootRef , pRef , rbt [p := rbt0])(rbh)

The theorem allows to attach an arbitrary tree rbt0 (that is not necessarily
related to the originally separated subtree rbt [p]). In practice, rbt0 typically
results from a simple modification of rbt [p] like a recoloration or a rotation.

Separating Separation Logic 143

7 Related Work

Our concept with components (machines) and subcomponents is similar to the
‘include’ of B machines into others (see [1], chapter 7), although our individ-
ual operations (called events in B) are not assumed to be atomic (B disallows
recursion, loops and sequential composition in operations).

Our approach is related but goes beyond the standard technique to use an
abstraction relation (or function) that maps the pointer structure to a (free)
algebraic structure, which is e.g. supported by Verifast [20] or was used e.g. in
Automath [30]. We use such an abstraction function, but only to verify the core
refinement from RBTBASIC to RBTHEAP.

We are aware of two alternatives to our approach. First, there is Cogent
[28] which restricts programs by using a linear type system to propagate data
structures linearly. This allows to generate destructive code immediately but
places severe limitations on the programming language.

Another alternative is to optimize code with a code generator that transforms
algebraic types into pointer structures and tries to optimize non-destructive oper-
ations to destructive ones using checks for linear use. The approach developed
in [25] follows this idea. It additionally generates proof obligations showing that
the destructive implementation behaves the same way as the abstract one. It
may be possible to encode our approach into this approach, as it is also based on
data refinement, though the approach seems to be targeted towards individual
algorithms, not (state-based) abstract data types.

Our code generator in KIV works similarly: it would transform trees into a
tree-shaped pointer structure and use destructive updates on the pointer struc-
ture whenever a data flow analysis suggests this is possible (current work is
to optimize this). However, we currently do not verify the correctness of these
transformations; this is up to future work. The strategy is often sufficient to get
efficient code. However, without the refinement of RBTBASIC to RBTHEAP, paths
would be represented as doubly- linked lists, which would still be inefficient.

We are aware of several other works that verify red-black trees. Partial verifi-
cations, where the emphasis is on automation, are [7] (proving insertion without
establishing that on every path to a leaf the number of black nodes must be
equal) and [27] (just proving the ordering property). [2,3,16,29] are complete
verifications of algebraic implementations that produce functional (nondestruc-
tive) code. Our approach follows that idea but expands it to refine the functional
to an imperative (destructive) implementation.

There are two complete verifications of destructive code we are aware of. One
is described in the recent paper [4] using VerCors. The implementation is directly
in Java, and the main routines use recursion and no parent pointers. But typical
C implementations of red-black trees do without a recursion stack, so they are
somewhat more efficient. Recursion simplifies the proofs considerably, as then a
recursive call transforms a red-black subtree into another one and an invariant
that combines isRbtreeD on our upper level with abspath from the lower level
can be avoided. With VerCors being an automatic verifier backed by an SMT
solver, proofs are guided by adding suitable annotations to the programs instead

144 G. Schellhorn et al.

of directly interacting with a GUI during a proof as in KIV. Overall, the user
input necessary for the final proof seems somewhat smaller in VerCors than in
KIV, but we expect that finding why a proof fails to be significantly harder since
SMT solvers do not give a reason why a goal is not provable, while KIV’s proof
trees allow inspecting residual goals that have been maximally simplified.

From the data given, the effort seems to have been somewhat higher than
with our approach. The case study described also includes the verification of
an extra concurrent operation that merges two red-black trees using lists as
an intermediate representation. Verification of our case study took two regular
students of computer science (who had done a KIV course) two months each
under the mentoring of one of the authors.

The other complete verification of a pointer-implementation of red-black trees
we are aware of is mentioned in [36] and can be found in Isabelle’s AFP library.
The version verified is derived from [22], which is a version of red-black trees
intended to be used in a functional language with garbage collection, originally
Haskell (the Scala-Library also uses it to implement immutable sets). This ver-
sion of the algorithm uses recursion and no parent pointers. For verification,
it has been modified to use destructive updates instead of copying the modi-
fied branch. The algorithm has a simpler, different rebalancing strategy than
the original algorithm, making it less efficient than the original algorithm: when
backing out of the recursion, a check for rebalancing is necessary on every level,
resulting in logarithmic effort for fixing the tree. The original algorithm however
has only one of four cases, where fixing a leaf after an insert (one in six cases for
delete) has to traverse upwards to fix the parent. The resulting geometric series
(1 + 1/4 + 1/16 + . . . = 4/3 nodes are traversed upwards on average) results
in constant average complexity for fixing the tree (see also [21], Chapter 7.4ff).
That a full traversal upwards is unnecessary is the main reason, why red-black
trees are more efficient than other versions of search trees like AVL trees, that
need rebalancing checks on every level. We were unable to get a figure on the
proof effort spent for the verification in [36], the automation using an automated
saturation prover called auto2 implemented on top of Isabelle however is quite
impressive. Apart from specific setup instructions for the prover, the proof seems
to be fully automated requiring just a few lemmas.

Partial verification of destructive code can also be found in [12] (C code)
and [11] (SPARKS, a subset of Ada). Both have analyzed insertion only and
left away the sameBlacks property. The last approach is interesting since it uses
an array-representation of red-black trees that would be suitable for real-time
use (the array needs to be large enough to hold all tree nodes). It should not
be too difficult to replace our heap-based representation in the lower refinement
with their array-based one, exploiting that we do not have to re-verify any of
the invariants of red-black trees to do this.

8 Conclusion

In this paper, we have demonstrated a refinement-based approach that allows
to separate considerations of algorithmic correctness and of using destructive

Separating Separation Logic 145

updates, aliasing and memory allocation into two individual refinements. The
two core ideas are to abstract pointers as used by the algorithm to paths over an
algebraic structure, and to use an interface that encapsulates primitive manipu-
lations on abstract structures and paths. Verification is then split into functional
correctness of the relevant algorithms on a purely algebraic level and a small part
that shows that primitive operations can be correctly refined to pointer updates.

Our approach is not intended to compete with the best-automated techniques
but to demonstrate that a clean separation of functional and pointer correctness
is possible without compromising the final algorithm’s efficiency. Our approach
also should enable using one of the many techniques that automate proofs, e.g.
[31] for Separation Logic used in the lower refinement, or [15] for the algebraic
trees of the upper refinement.

KIV’s code generator generates C code from this implementation that is
available together with all KIV specifications and proofs online [23].

The approach is successful in generating optimal code: it runs as fast (within
a margin of ±5%) of the code in stdc++ library when elements are inserted,
looked up, or deleted randomly (the code also uses the rotations as given in [9]
to fix red-black trees after inserting/deleting elements). For comparison, we also
programmed the recursive red-black algorithms verified in [36] in KIV (without
any modular structure or verification) and generated C code from them. The
resulting code runs ca. 10% slower than our code. The KIV programs, resulting
C code, and the benchmarks are included in the Web presentation [23] too.

There are two features we have not implemented compared to this code: one
is to have an additional pointer to the minimal and maximal element. As a
consequence accessing the maximum skips traversing the tree to the rightmost
leaf, so inserting (or removing) elements in ascending order is still 10–20% faster.
The algorithm in the library also has the option to cache deleted nodes to avoid
deallocation and reallocation. We have not used this option in the comparison.
Our current modularization, however, is certainly able to add these features.

We currently work on applying the approach to other data structures, namely
(wandering) B+ Trees [19], which are the last not yet verified component of our
flash filesystem [5], where we so far have achieved partial results [14] only.

Though we have defined an extension of the component concept to concur-
rency [33], it is future work to research how the approach given here could be
extended to concurrent data structures.

Acknowledgement. We would like to thank our students Nikolai Glaab and Felix
Pribyl, who have done large parts of the verification of red-black trees.

References

1. Abrial, J.R., Hoare, A., Chapron, P.: The B-Book: Assigning Programs to Mean-
ings. Cambridge University Press, Cambridge (1996)

146 G. Schellhorn et al.

2. Affeldt, R., Garrigue, J., Qi, X., Tanaka, K.: Proving tree algorithms for succinct
data structures. In: 10th International Conference on Interactive Theorem Proving
(ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 141,
pp. 5:1–5:19 (2019)

3. Appel, A.: Efficient Verified Red-Black Trees (2011)
4. Armborst, L., Huisman, M.: Permission-based verification of red-black trees and

their merging. In: Proceedings of FormaliSE, vol. 21, pp. 111–123 (2021)
5. Bodenmüller, S., Schellhorn, G., Bitterlich, M., Reif, W.: Flashix: modular verifi-

cation of a concurrent and crash-safe flash file system. In: Raschke, A., Riccobene,
E., Schewe, K.-D. (eds.) Logic, Computation and Rigorous Methods. LNCS, vol.
12750, pp. 239–265. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
76020-5 14

6. Börger, E.: The ASM refinement method. Formal Aspects Comput. 15(1–2), 237–
257 (2003)

7. Charguéraud, A.: Program verification through characteristic formulae. In: Pro-
ceedings of ACM SIGPLAN International Conference on Functional Programming
(ICFP), pp. 321–332. Association for Computing Machinery (2010)

8. Charguéraud, A.: Higher-order representation predicates in separation logic. In:
Proceedings of ACM SIGPLAN Conference on Certified Programs and Proofs
(CPP), pp. 3–14. Association for Computing Machinery (2016)

9. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd
edn. The MIT Press, Cambridge (2009)

10. Derrick, J., Boiten, E.: Refinement in Z and in Object-Z: Foundations and
Advanced Applications. FACIT. Springer, Cham (2001). Second, Revised Edition
(2014)

11. Dross, C., Moy, Y.: Auto-active proof of red-black trees in SPARK. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 68–83. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 5

12. Elgaard, J., Møller, A., Schwartzbach, M.I.: Compile-time debugging of C programs
working on trees. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 119–134.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46425-5 8

13. Ernst, G., Pfähler, J., Schellhorn, G., Reif, W.: Modular, crash-safe refinement for
ASMs with submachines. Sci. Comput. Program. 131, 3–21 (2016). Abstract State
Machines, Alloy, B, TLA, VDM and Z (ABZ 2014)

14. Ernst, G., Schellhorn, G., Reif, W.: Verification of B+ trees: an experiment com-
bining shape analysis and interactive theorem proving. In: Barthe, G., Pardo, A.,
Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 188–203. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-24690-6 14

15. Faella, M., Parlato, G.: Reasoning about data trees using CHCs. In: Shoham, S.,
Vizel, Y. (eds.) CAV 2022. LNCS, vol. 13372, pp. 249–271. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-13188-2 13

16. Filliâtre, J.-C., Letouzey, P.: Functors for proofs and programs. In: Schmidt, D.
(ed.) ESOP 2004. LNCS, vol. 2986, pp. 370–384. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24725-8 26

17. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: Pro-
ceedings of the 19th Symposium on Foundations of Computer Science (SFCS), pp.
8–21. IEEE (1978)

18. Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press, Cambridge (2000)
19. Havasi, F.: An improved B+ tree for flash file systems. In: Černá, I., et al.

(eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 297–307. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-18381-2 25

https://doi.org/10.1007/978-3-030-76020-5_14
https://doi.org/10.1007/978-3-030-76020-5_14
https://doi.org/10.1007/978-3-319-57288-8_5
https://doi.org/10.1007/3-540-46425-5_8
https://doi.org/10.1007/978-3-642-24690-6_14
https://doi.org/10.1007/978-3-031-13188-2_13
https://doi.org/10.1007/978-3-540-24725-8_26
https://doi.org/10.1007/978-3-642-18381-2_25

Separating Separation Logic 147

20. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

21. Sanders, P., Mehlhorn, K.: Algorithms and Data Structures - The Basic Toolbox.
Springer, Heidelberg (2008)

22. Kahrs, S.: Red-black trees with types. J. Funct. Program. 11(4), 182–196 (2001)
23. KIV Proofs for the Correctness of Red-Black Trees (2022). https://kiv.isse.de/

projects/RBtree.html
24. Lammich, P.: Refinement to imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP

2015. LNCS, vol. 9236, pp. 253–269. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22102-1 17

25. Lammich, P.: Efficient verified implementation of Introsort and Pdqsort. In: Peltier,
N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp.
307–323. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1 18

26. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

27. Nipkow, T.: Automatic functional correctness proofs for functional search trees. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 307–322. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-43144-4 19

28. O’Connor, L., et al.: Cogent: uniqueness types and certifying compilation. J. Funct.
Program. 31, 25 (2021)

29. Peña, R.: An assertional proof of red–black trees using Dafny. J. Autom. Reason.
64(4), 767–791 (2019). https://doi.org/10.1007/s10817-019-09534-y

30. Polikarpova, N., Tschannen, J., Furia, C.A.: A fully verified container library. In:
Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 414–434. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19249-9 26

31. Reynolds, A., Iosif, R., Serban, C., King, T.: A decision procedure for separa-
tion logic in SMT. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS,
vol. 9938, pp. 244–261. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46520-3 16

32. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
pp. 55–74. IEEE (2002)

33. Schellhorn, G., Bodenmüller, S., Pfähler, J., Reif, W.: Adding concurrency to a
sequential refinement tower. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ
2020. LNCS, vol. 12071, pp. 6–23. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-48077-6 2

34. Schellhorn, G., Bodenmüller, S., Bitterlich, M., Reif, W.: Software & system ver-
ification with KIV. In: Ahrendt, W., Beckert, B., Bubel, R., Johnsen, E.B. (eds.)
The Logic of Software. A Tasting Menu of Formal Methods. LNCS, vol. 13360, pp.
408–436. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08166-8 20

35. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley (2011)
36. Zhan, B.: Efficient verification of imperative programs using auto2. In: Beyer, D.,

Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 23–40. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89960-2 2

https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://kiv.isse.de/projects/RBtree.html
https://kiv.isse.de/projects/RBtree.html
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-319-43144-4_19
https://doi.org/10.1007/s10817-019-09534-y
https://doi.org/10.1007/978-3-319-19249-9_26
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1007/978-3-030-48077-6_2
https://doi.org/10.1007/978-3-030-48077-6_2
https://doi.org/10.1007/978-3-031-08166-8_20
https://doi.org/10.1007/978-3-319-89960-2_2

Residual Runtime Verification via Reachability
Analysis

Chukri Soueidi(B) and Yliès Falcone

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
{chukri.a.soueidi,ylies.falcone}@inria.fr

Abstract. We leverage static verification to reduce monitoring overhead when
runtime verifying a property. We present a sound and efficient analysis to stat-
ically find safe execution paths in the control flow at the intra-procedural level
of programs. Such paths are guaranteed to preserve the monitored property and
thus can be ignored at runtime. Our analysis guides an instrumentation tool to
select program points that should be observed at runtime. The monitor is left to
perform residual runtime verification for parts of the program that the analysis
could not statically prove safe. Our approach does not depend on dataflow analy-
sis, thus separating the task of residual analysis from static analysis; allowing for
seamless integration with many RV frameworks and development pipelines. We
implement our approach within BISM, which is a recent tool for bytecode-level
instrumentation of Java programs. Our experiments on the DaCapo benchmark
show a reduction in instrumentation points by a factor of 2.5 on average (reach-
ing 9), and accordingly, a reduction in the number of runtime events by a factor
of 1.8 on average (reaching 6).

Keywords: Residual runtime verification · Instrumentation · Parametric
monitoring · Control flow · Runtime overhead · Bad prefix

1 Introduction

Runtime verification (RV) [6,17–19,26] is a formal method that allows checking
whether a run of a system respects a specification. The specification usually formal-
izes a correctness property and is written in a suitable formalism based for instance
on temporal logic or finite-state machines. There are still many challenges in runtime
verification, see [27] for a survey. One of the most prominent and fundamental ones,
hindering its wide applicability in application domains, is the runtime overhead intro-
duced when augmenting a system with runtime verification. Overhead is caused by the
instrumentation code inserted in the program to generate traces. In the case of online
monitoring, overhead also comprises the evaluation of traces by the monitors.

RV can complement and has been used in combination with other formal static ver-
ification methods such as model checking [25], deductive verification [12] and static
analysis [4,9,12,15], as well as informal dynamic methods such as testing [13] and
debugging [22]. While a complete a priori verification is ideally desirable for verify-
ing program correctness, proving the correctness of many properties is fundamentally
undecidable statically. However, static verification often relies on conservative approx-
imations that produce sound results while sacrificing completeness. Combining static
and runtime verification for a more complete verification scheme seems natural. The
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

A. Lal and S. Tonetta (Eds.): VSTTE 2022, LNCS 13800, pp. 148–166, 2023.
https://doi.org/10.1007/978-3-031-25803-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25803-9_9&domain=pdf
http://orcid.org/0000-0002-6112-9946
http://orcid.org/0000-0002-0114-0641
https://doi.org/10.1007/978-3-031-25803-9_9

Residual Runtime Verification via Reachability Analysis 149

combination is useful in the two complementary directions. For static verification, it
improves completeness by deferring verification of undecidable fragments for some
properties until runtime. For RV, it reduces the overhead of monitoring by pruning parts
of the program that can be statically analyzed. In this paper, we pursue the second
direction.

We follow the terminology of [15] and refer to the introduced technique as residual
runtime verification. Our work is directed to handle properties that can be expressed
by finite-state automata, such as typestate [30] errors, supporting different formalisms
and monitoring approaches that allow specifications with data. In such approaches, a
parametric monitor receives a parametrized trace and spawns multiple monitors for dif-
ferent trace slices corresponding to sets of related objects [20]. We see our contributions
as follows. We present a sound and efficient technique to statically find “safe” execu-
tion paths in the control flow at the intra-procedural level of programs. Such paths are
guaranteed to preserve the monitored property and thus can be ignored at runtime. As
a result, the monitor is left to perform verification for residual parts of the program that
the analysis failed to prove safe statically. Our approach, at its core, does not depend
on data-flow analysis nor on a static construction of the full call graph of the program,
which might be difficult and expensive to produce in practice. Thus, we separate the
problem of static analysis from the residual analysis, allowing for seamless integration
with the RV workflow. Instead, we analyze the control-flow graphs of single methods
and rely on over-approximations of the behavior of the program. We assume that the
variables generating events within one method may-alias and our analysis reasons about
all possible projections of traces. We also handle instructions that may allow references
to escape from methods by including them in the analysis to guarantee soundness. We
demonstrate the effectiveness of our analysis when we reduce the number of instrumen-
tation points by a factor of 2.5 on average (reaching 9), and accordingly, the number of
generated events at runtime by a factor of 1.8 on average (reaching 6). Our approach
is fully implemented as an extension of the instrumentation tool BISM [29], and [28]
where we presented the control-flow graph automaton, a model to abstract the program
behavior at the intra-procedural level.

The rest of this paper is structured as follows. Section 2 motivates our approach with
a running example. Section 3 reviews background notions. Section 4 defines the require-
ments for residual analysis. Section 5 describes our instantiation of residual analysis
at the interprocedural level. Section 6 briefly overviews our implementation. Section 7
reports on our experiments. Section 8 reviews the related research focusing on residual
analysis. Section 9 concludes and presents perspectives.

2 Motivating Example and Approach Overview

We first introduce our running example. We are interested in monitoring the SafeItera-
tor property which specifies that “A collection should not be updated when an iterator
associated with it is created and being used”. Figure 1, shows a contrived Java method
m along with its control-flow graph (CFG). It retrieves 2 lists (lines 3,4), updates them
(lines 6,10,11), creates iterators (lines 7,15), and calls the “next” method on the iterator
(line 14). We are interested in answering the following questions:

150 C. Soueidi and Y. Falcone

Fig. 1. A method using Iterators in Java, and its CFG.

– Q1: Can we fully verify this program statically? If yes, then there is no need to
instrument and runtime monitor it.

– Q2: If not, can we statically verify some parts of it? If yes, how can we find them so
that we only monitor the residual parts?

By manually inspecting the program and its control-flow graph we see that, at runtime,
it may violate the property if the execution enters the if block, labeled (10–11) in
the graph. More precisely, a violation can occur if both of the following conditions are
met: (1) someflag evaluates to true; and (2) if the variables l1 and l2 alias each
other i.e., they refer to the same object in memory. Let us consider that Condition (1)
is only decidable at runtime. To generally decide Condition (2) statically, we need to
perform pointer analysis on the program that checks all calling contexts m and return
whether l1 and l2 alias. In practice, we may get one of the following results about
our query: the two objects must-alias, may-alias, or must-not-alias. Moreover, pointer
analysis often times out and never returns a result. However, to answer Q1, we need
to get the result that l1 and l2 must-not-alias, i.e., they refer to different objects in
memory. This is a sufficient condition to statically ensure that m will behave correctly
at runtime regardless of the control flow since the update actions on Lines 10–11 are not
on the list iterated by iterator it. To answer Q2, by observing Lines 15–16, we can see
that, regardless of what happens at execution, these two instructions are safe and their
execution does not need to be monitored. Also, in Line 6, the instruction is safe since it
updates the list before the creation of the iterator.

Pointer analysis may not always conclude with a result, especially for Java pro-
grams. In addition to the inability to construct the full static call graph of the program,
Java allows for dynamic class loading and reflection which often cause additional prob-
lems to pointer analysis. Our work relies on the idea that when statically analyzing cases
such as the one of Condition (2), one can safely assume that such two variables may-
alias, even without performing pointer-analysis. Also, we analyze methods separately
and thus need to handle escaping references. Objects in the program that are relevant
to the property may escape from the method to a subroutine or a return statement and

Residual Runtime Verification via Reachability Analysis 151

produce events there. As such, we handle all instructions that may allow references to
escape, such as method calls, with special escape events.

Our over-approximation might miss some positive answers to Q1, therefore miss-
ing some optimization opportunities. However, based on our observation (such as the
experiments in Sect. 7), cases where one needs to perform pointer analysis such as in
Condition (2) are less frequent in many Java programs. As such, our approach mainly
addresses Q2 while it is also capable of answering Q1 but, in certain cases, less effec-
tively.

3 Background

We recall concepts related to monitoring in general and our verification approach in
particular. We assume basic familiarity with automata theory such as the definitions of
a finite-state machine, words, runs, and acceptance, and refer to [21] for more details.

3.1 Monitoring

Let Σ be a set of events, Σ∗ and Σω are the sets of all finite and infinite traces over Σ,
respectively. A finite trace is a sequence of events, a word in Σ, that can be modeled by
a function t : [1, n] → Σ for a trace of length n. We say that an event belongs to the
trace, noted e ∈ t, when e ∈ codom(t). A property ϕ is a language over Σ which is
a subset of Σ∗. Given a trace t in Σ∗, the set of prefixes of t, noted pre(t), is defined
as: pre(t) = {p ∈ Σ∗ | ∃s ∈ Σ∗ : t = ps}. The set of matching prefixes is the set of
prefixes of a trace within a given language L.

Definition 1 (Matching prefixes [10]).Given a language L ⊆ Σ∗ and a trace t ∈ Σ∗,
the matching prefixes of t in L is given by: matchL(t) = pre(t) ∩ L.

Many monitoring techniques and approaches essentially rely on the detection of bad
and good prefixes, which are intuitively the witnessing sequences allowing a monitor to
conclude about monitoring the program based on the trace observed so far.

Definition 2 (Bad/Good prefixes [24]). Given a language L ⊆ Σ∗ of finite traces
over Σ (or of infinite traces, L ⊆ Σω). A finite trace u ∈ Σ∗ is a bad prefix for L, if
∀w ∈ Σ∗ : uw /∈ L (or ∀w ∈ Σω : uw /∈ L, if L is over infinite traces). Moreover, u is
a good prefix for L, if ∀w ∈ Σ∗: uw ∈ L (or ∀w ∈ Σω : uw ∈ L, if L is over infinite
traces).

The languages of bad and good prefixes are extension-closed; since every continuation
of a bad or a good prefix for a language, L, by a finite word is also a bad (good) prefix for
L. When monitoring at runtime, we are interested in reporting a violation/satisfaction of
a property from a trace as early as possible. Matching a bad (alternatively good) prefix
is sufficient to produce a final verdict since every continuation of the trace will produce
the same result. For instance, the techniques in [7,16] synthesize a monitor (as a finite-
state automaton) that recognizes the good and bad prefixes of the language denoted by
a temporal-logic formula or by an automaton over infinite traces.

152 C. Soueidi and Y. Falcone

q0 q1 q2 q3
c u

Σ n u Σ

n

Fig. 2. Monitor recognizing the language of bad prefixes for the SafeIterator property.

Example 1 (SafeIterator monitor). Figure 2 shows the monitor that checks for the
violation of the property from Sect. 2. Event c denotes a creation of an iterator
associated with a list by calling list.iterator(), event u denotes an update
on a list by calling list.add(..), and event n denotes calling the next method
iterator.next() on an iterator. The monitor recognizes the bad prefixes in the
traces received from a running program. Note that the monitor reaches the accepting
state when seeing the pattern c.n∗.u+.n, as it suffices to conclude that the whole run
violates the property.

Definition 3 (Property satisfaction). We say that a trace t ∈ Σ∗, satisfies a property
ϕ ⊆ Σ∗ denoted by t |= ϕ iff t ∈ ϕ. Alternatively, for a safety property ϕ with its
language of bad-prefixes L, t |= ϕ iff matchL(t) = ∅. And, for a co-safety property ϕ′

with its language of good-prefixes L′, t |= ϕ iff matchL′(t) 	= ∅.

3.2 Parametric Monitoring

Monitoring is in practice performed on parametric monitors that receive events accom-
panied by runtime information about the objects producing them, allowing to monitor
each related set of objects in the program separately. There is a myriad of different
approaches to parametric monitoring that differ in the manner they interpret events with
runtime information and project these to instances of monitors. See [5,11] for example
approaches and [18,20] for overviews. Here, we sketch a simple and general approach
to parametric monitoring that can be adapted to several existing approaches.

We denote the set of variables defined by a parametric monitor by X , and the set of
values that these variables can take by V . These values usually correspond to objects in
the memory of the execution environment of the program. A variable binding θ : X ⇁
V maps monitor parameters to their values and B is the set of all possible bindings in a
program. A parametric event e〈θ〉 is then a pair (e, θ) ∈ Σ × B. We denote the set of
all parametric events as Σ〈X 〉 and a parametric trace as a word in Σ〈X 〉∗.

Example 2 (Parametric traces). One trace that the program from Fig. 1 may generate
at runtime is the following: τ = (u, [l �→ o(l1)]) (c, [l �→ o(l1), i �→ o(it)]) (u, [l �→
o(l2)]) (u, [l �→ o(l2)]) (n, [l �→ o(l1), i �→ o(it)]) (c, [l �→ o(l1), i �→ o(it)]) (u, [l �→
o(l2)]). The event (c, [l �→ o(l1), i �→ o(it)]) denotes the creation of an iterator, event
c, where the variable l, representing the associated list, is bound to the runtime object
of l1 denoted by o(l1) and the variable i, representing the created iterator, is bound to
the runtime object of it denoted by o(it).

Residual Runtime Verification via Reachability Analysis 153

A parametric property ΛX .ϕ (notation borrowed from [11]) is then defined over
traces of parametric events such that ΛX .ϕ ⊆ Σ〈X 〉∗. To monitor each group of related
objects separately, a parametric monitor slices a parametric trace according to the values
bound to the monitor parameters carried within events. Slicing is achieved by projecting
a trace τ on all seen bindings using a projection function denoted by τ↓θ. We omit the
formal details here for brevity. The projection results in a set of traces, we refer to as
projected traces, where each trace contains non-parametric events that correspond to
related objects in the program and is sent to a monitor that was spawned specifically for
that slice.

Definition 4 (Projected traces). Given a parametric trace τ in Σ〈X〉∗, the set of pro-
jected traces is denoted by Proj (τ) ⊆ Σ∗, and is defined as:

Proj (τ) =
⋃

θ ∈ B
τ↓θ

Example 3 (Projected traces). Consider τ from Example 2. A parametric monitor
will check at runtime the relation between o(l1) and o(l2)1 then accordingly produce
Proj (τ) = {ucuuncu} if o(l1) = o(l2) or Proj (τ) = {ucnc, uuu} if o(l1) 	= o(l2).

Definition 5 (Parametric property satisfaction). A parametric trace τ ∈ Σ〈X 〉∗

satisfies a parametric property ΛX .ϕ denoted by:

τ |= ΛX .ϕ
def= ∀t ∈ Proj (τ) : t |= ϕ

3.3 Upward Closure

We recall the notions for subwords and their closures for regular languages. We refer
to [23] for full details and borrow their definitions. For a word x ∈ Σ∗, the length
of x is denoted by |x|, and for 1 ≤ i ≤ |x|, let xi denote the i-th letter of x. We
denote the empty word by ε. A subword is obtained by removing certain letters from
a word at arbitrary positions, and, a superword is obtained by inserting any number
of letters into a word at arbitrary positions. We say that a word x is a subword of
y, denoted by x � y, equivalently y is a superword of x when there are positions
0 < p1 < p2 < . . . pl ≤ |y| such that x[i] = y[pi] for all 1 ≤ i ≤ l = |x|. For
Σ = {a, b, c}, we have ε � ab � acba.

Definition 6 (Upward closure of a language). For a language L ⊆ Σ∗, the upward
closure of L, is denoted by ↑L and defined as {x ∈ Σ∗ | ∃y ∈ L : y � x}.
For any language L ⊆ Σ∗, we have L ⊆ ↑L. Moreover, a language L is upward-
closed if L = ↑L. For a regular language L recognized by a non-deterministic finite-
state automaton (NFA), we can obtain an NFA recognizing ↑L by simply adding tran-
sitions without increasing the number of states. More precisely, given an automaton
A = (Σ,Q, δ,Q0, F) recognizing L, the NFA A↑ = (Σ,Q, δ′, Q0, F) recognizing ↑L
is obtained by adding a self loop on every state q ∈ Q and every letter s ∈ Σ such that
δ′ = δ ∪ {〈q, s, q〉 | q ∈ Q, s ∈ Σ}.

1 This can checked with == in Java.

154 C. Soueidi and Y. Falcone

3.4 Programs, CFG and Instrumentation

Given a program P , let Methods be the set of all its methods, Instructions the set
of all byte-code instructions, and Instructionsm all instructions of a method m. The
CFGm = 〈Bm ,Em〉 of m is a directed graph, where Bm is the set of nodes such
that each instruction is a node, and Em ⊆ Bm × Bm are edges that connect nodes to
their successors. The instruction in a node b is denoted by b.instr, and b.entry (resp.
b.exit) is a Boolean which holds if b is the entry node (resp. is an exit node) for the
method. To monitor a program, we abstract its execution in a trace of events extracted
at runtime. This is achieved by instrumentation, which can be modeled by the function
instrument : Instructions∗ ⇀ Σ〈X〉∗.

4 Residual Analysis of Parametric Properties

We aim to verify a program P against some parametric property ΛX .ϕ. The behavior
of a program is abstracted by the set of parametric event traces that it can produce at
runtime. Let [P] ⊆ Σ〈X 〉∗ be such set for a program P . The verification problem can
then be stated as checking if all the traces of the program satisfy the property:

P |= ΛX .ϕ
def= ∀τ ∈ [P] : τ |= ΛX .ϕ

Any verification technique aiming to verify the program should then be able to
explore all the parametric traces that the program can generate. Moreover, the technique
should also be able to explore for each parametric trace τ the set of projected traces
Proj (τ) (see Sect. 3.2). However, statically, exploring the parametric traces requires full
knowledge of the call graph of the program, whereas exploring projected traces requires
knowledge of the aliasing relations between objects producing them. We know that
obtaining such information is generally undecidable statically. Meanwhile, at runtime,
this information is completely available. Yet, runtime verification incurs overhead on
the execution of the program where this overhead is typically positively correlated with
the size of traces. Our interest is then to statically verify parts of the program and leave
a residual part for runtime verification.

Our proposed residual analysis statically identifies a set of instructions in the pro-
gram, SP , that can be safely silenced/ignored at runtime from the monitor side without
affecting verification. Ignoring an instruction means that there is no need to produce an
event when it executes. As such, we aim to construct the residual instrumentation func-
tion residual : Instructions∗ → (SP → Σ〈X〉∗). Let us note Runs ⊆ Instructions∗

the set of all the possible runs of a program P . Instrumenting the program with residual
should ideally produce shorter traces than instrument, however, for both, we should
get the same monitoring verdict. We can state the condition that should be met by the
residual analysis as follows:

∀r ∈ Runs : |residual(r)| ≤ |instrument(r)|
∧ residual(r) |= ΛX .ϕ ⇐⇒ instrument(r) |= ΛX .ϕ

To perform the residual analysis statically and produce the set SP , we can over-
approximate the program behavior by constructing a set [P̂] ⊇ [P]. This allows us to

Residual Runtime Verification via Reachability Analysis 155

explore all the parametric traces that the program can produce but also traces that the
program might never produce. A residual analysis should then check whether silenc-
ing some instructions does not affect the verification verdict of any trace in [P̂], and
safely assumes the same effect in [P]. Yet, given that [P̂] is an over-approximation,
the analysis may suffer from false positives, which are instructions that can indeed be
silenced however the analysis found the opposite. In what follows, we consider a subset
[P̂m] ⊆ [P̂] for our residual analysis, these are traces that are fully produced in single
methods.

5 Residual Analysis via Intraprocedural Reachability Analysis

We demonstrate our instantiation of the residual analysis at the intraprocedural level
using reachability analysis. Recall that we avoid dataflow and pointer analysis, as such,
we do not have a static call graph for the program nor the variable aliasing relation.
In Sect. 5.1, we capture the behavior of a method by using its control-flow graph to
construct a representative model that allows us to explore the parametric traces a method
can generate. In Sect. 5.2, we deal with the over-approximations by extending the bad-
prefix automaton to handle different projections that might be produced by a parametric
trace. In Sect. 5.3, we then present the reachability analysis algorithm that finds safe
and violating paths in the control-flow graph; by cutting the behavior in a model-based
checking approach. Finally, in Sect. 5.4, we discuss the soundness of our analysis.

5.1 Capturing the Behavior

Our analysis treats methods separately, however, we need to be careful. If a method
receives as an argument an object which is a type that is capable of producing events in
the alphabet of the property, then we cannot assume any previous behavior. As such, we
exclude such methods from the analysis. For the same reason, we exclude all methods
that operate on static instances of the types involved.

For each method m, we map two types of instructions to events and discard all other
instructions as they are irrelevant to our analysis. We keep instructions that produce
events in Σ, given by the property specification. We also keep instructions that may
allow any object reference to escape from the context of method m; we introduce the
new escape event (#) for such instructions. Escape events are assignments to class
fields, method calls that pass objects by references, in addition, to return statements
that return objects [14]. However, our analysis allows the user to specify a safe list of
instructions, denoted by the set SafeList , defined over the compile type information
such as method names, package and type names, and opcodes. For instance, calling
System.out.print(l1.toString()) is a safe instruction. All instructions that
are escape events and are not in SafeList are added to the set Escm .

Given the alphabet of a property Σ and the control-flow graph of a method m,
CFGm = 〈Bm ,Em〉, we replace each block b in Bm with b′ and map its instruction to
an event, and construct the CFG Automaton as follows.

b′.instr = b.instr.map

⎛

⎝i �→
⎧
⎨

⎩

i if i ∈ Σ,
else if i ∈ Escm
ε otherwise

⎞

⎠

156 C. Soueidi and Y. Falcone

Definition 7 (CFG Automaton). Given the mapped CFGm , the CFG Automaton is
the non-deterministic finite-state automaton Ac

m = (Σ ∪ {#}, Q, δ, q0, F) constructed
as follows:

Q = {qb | b ∈ Bm} q0 = {qb | b ∈ Bm ∧ b.entry = true }
F = Q δ = {〈qb, s, qb′〉 | 〈b, b′〉 ∈ Em ∧ b.instr = s}

Each node in the control-flow graph is now represented as a state in the CFG Automa-
ton. We make all states accepting states and merge states connected with ε transitions.
Now, by traversing the CFG Automaton, we can explore the paths that method m can
take at runtime and thus the parametric traces it can produce.

q0 q1

q2 q3

q4 q5 q6 q7
u

c
u

c

u

n c u

Fig. 3. The constructed CFG Automaton Ac
m

Example 4 (CFG Automaton). Figure 3, shows the CFG Automaton constructed from
the method in Sect. 2. Each state corresponds to an instruction that we are interested in
the program. Two traces can be explored from the automaton in Fig. 3, t1 = ucuuncu,
which corresponds to the parametric trace τ from Example 2, and t2 = ucncu.

5.2 Extending the Automaton of Bad Prefixes

We now describe how our analysis handles the over-approximations and extends the
bad prefix automaton.

Handling Variables May-alias. Recall from Sect. 3.2, that a parametric trace τ in
Σ〈X〉∗ at runtime is projected into Proj (τ) to possibly multiple traces in Σ∗, depend-
ing on the aliasing relationship between the objects carried in the events. At runtime,
this aliasing relationship is available for the parametric monitor to do the projection.
However, statically for our residual analysis this information is not available. Our cen-
tral idea in this paper is to avoid performing data-flow analysis and assume that the
objects producing events in a method may-alias. For two events, our analysis should
then consider the case when the objects bound to them must-alias and the case when
they must-not-alias. In the former case, both events will be projected into the same
trace, and in the latter, they will be projected into different traces.

Example 5 (Projected traces approximation with may-alias). Consider the trace t1
which can be explored with the CFG Automaton from Example 4. At runtime, if the
program takes such a control flow path, it emits a parametric trace that produces either
of the projected traces from Example 3 depending on whether l1 and l2 alias. Since
we avoid producing the aliasing relation statically and assume that l1 and l2 may alias,
we should then consider in our residual analysis the disjunction of both cases. Thus

Residual Runtime Verification via Reachability Analysis 157

the traces pt1 = {ucuuncu, ucnc, uuu} should be checked by our residual analy-
sis. As for t2 from Example 4, by the same reasoning, the traces to be checked are
pt2 = {ucncu, ucnc, u}. Hence for method m, the set of traces that should be checked
is pt1 ∪ pt2.

The CFG Automaton allows us to explore the different paths that the program can
take at runtime, however, its traces are too coarse. They may be polluted with events
that do not correspond to the same trace at runtime. We notice from above that this
is equivalent to generating and considering all the subwords of a trace, where the real
trace can be any subword of a trace that can be explored with the automaton. Thus, to
safely handle the different projections, we use the upward closure, from Sect. 3.3, of
the language of bad prefixes L. By using the upward closure ↑L, we can recognize a
bad prefix in a full trace or any subword of it since L ⊆ ↑L, allowing us to find bad
prefixes in all possible projected traces. However, we restrict the closure by removing
the Σ self-loops from the initial and final states as we want to find the shortest paths
that match a bad prefix.

Handling Escape Events. In Sect. 5.1, when constructing the CFG automaton, we
introduced the escape # events. Since our analysis analyzes each method separately,
we are oblivious to what might be happening in #-transitions. We have to assume that
they might produce events untracked by the method under analysis. To handle them
safely, we add a #-transition in the bad prefixes automaton from each state to all of
its reachable states. Intuitively, this means when # event is encountered in a path, we
assume that the path is not safe anymore and that it might match a bad prefix.

Extending the Bad Prefixes Automaton. We proceed to show how we extend the
automaton of bad prefixes to handle the multiple projected traces and the escape events.

Definition 8 (Extended automaton of bad prefixes). Given the language of bad pre-
fixes L(badϕ) recognized by automaton Abadϕ = (Σ,Q, δ,Q0, F) with its extended
transition function δ̂. The extended automaton of bad prefixes is defined as A↑badϕ =
(Σ ∪ {#}, Q, δ′, Q0, F) where:

δ′ = δ \ { 〈q, s, q〉 | s ∈ Σ ∧ (q ∈ F ∨ q ∈ Q0) } (1)

∪ { 〈q, s, q〉 | s ∈ Σ ∪ {#} ∧ q ∈ Q ∧ q /∈ Q0 ∧ q /∈ F} (2)

∪ { 〈q,#, q′〉 | q, q′ ∈ Q ∧ ∃w ∈ Σ∗ : δ̂(q, w) = q′ ∧ q′ /∈ F} (3)

The extended automaton has the same states. We remove the self-loops from initial
and final states, as we want to find the shortest paths that match a bad prefix (1). We
add the upward closure by adding Σ and # self-loops on all other states (2). We add
#-transitions from each state to the reachable states from it (3).

Example 6 (A↑badϕ for the SafeIterator property). Figure 4, shows a construction of
automaton A↑badϕ . Recall the pattern c.n∗.u+.n from Example 1, the new automaton
will now recognize such a pattern while also handling the two over-approximations
above.

158 C. Soueidi and Y. Falcone

q0 q1 q2 q3
c,#

###

u,#

Σ,# Σ,#

n,#

Fig. 4. The constructed automaton A↑badϕ .

5.3 Cutting the Behavior

We now proceed to describe how we find violating paths in the method. The idea is to
traverse the constructed CFG automaton Ac

m state by state and check whether there is
a path, starting from the visited state, that makes the extended bad prefixes automaton
reach a final state. We limit the discussion here to matching bad prefixes, nevertheless,
the same analysis works for matching good prefixes. However, when finding paths that
match good prefixes, these will be the safe paths.

Given an automaton, A, A(q) denotes A where q is set to be the initial state. Recall
that, given a finite state machine A(q) with its extended transition function δ̂ [21], a
state q is coreachable if there exists a word s ∈ Σ∗ such that δ̂(q, s) ∈ F . State q is
reachable if there exists a word s ∈ Σ∗ such that δ̂(q0, s) = q and q0 is an initial state.

Algorithm 1: Marking violating and safe paths

1 Given Ac
m = (Σ ∪ {#}, Q, δ, q0, F), A↑badϕ

2 Vm = ∅ // represents all states in a violating path
3 Sm = Q // represents all states in a safe path

4 work := q0 // represents a worklist stack
5 visited = ∅
6 while work not empty do
7 q = work .pop()
8 if q /∈ visited then
9 visited = visited ∪ q

10 if q /∈ Vm then
11 Â = Ac

m(q) × A↑badϕ

12 if L(Â) �= ∅ then
13 Vm = Vm ∪ {{q′ | (q′, −) ∈ coreachable(Â)} ∩ reachable(Ac

m(q))}
14 foreach q

′′
in {q

′′ | 〈q, s, q′′〉 ∈ δ} do
15 work .push(q

′′
)

16 end
17 end
18 Sm = Sm \ Vm

Residual Runtime Verification via Reachability Analysis 159

Algorithm 1, shows how to mark all states in Ac
m as either safe (in Sm) or violating

(in Vm). The algorithm implements a depth-first search starting from the initial node of
Ac

m. We maintain a work stack and visited set, in lines (4,5,7,9,15), to hold automaton
states to be visited and states that were already visited, respectively. For each state q we
visit, we set q as the initial node and find the intersection with the A↑badϕ , line (11).
If the intersection is not empty (line 12), we find the set of all co-reachable states in
the intersection automaton. Each state in the intersection automaton Â corresponds to a
state in Ac

m and A↑badϕ . For each coreachable state in Â, we add its corresponding state
in Ac

m to the set Vm, (line 13). We do not revisit states that are already in Vm (line 10)
since paths leading to a final state in A↑badϕ are already explored by the intersection.

q0 q1

q2 q3

q4 q5 q6 q7
u

c
u

c

u

n c u

Fig. 5. Marking property violating paths in red, and safe in green. (Color figure online)

Example 7 (Property violating states). Figure 5, shows the CFG Automaton con-
structed from the program from Fig. 1, where states marked in red exist in a property-
violating path. The red states in the automaton are the states that we need to instrument,
and the green states are hidden from instrumentation. We can see that instead of instru-
menting at 8 different locations, we only have to instrument at 4 locations.

For our residual analysis, for each method m we analyze, we add the instructions
corresponding to the states in Sm to the set SP . As for the other states in Vm, their
corresponding instructions will be instrumented for runtime monitoring.

5.4 Scope and Soundness of the Analysis

We first argue that our analysis only affects the traces that are fully produced in one
method. Recall from Sect. 5.1, that the nodes of CFG automaton Ac

m correspond to
instructions in method m that produce events. We use the notation ev(q) to denote the
corresponding event from an automaton state, and events(t) to denote all events from a
trace t. If some trace t contains events produced by instructions outside of m, then no
instruction in m that produced events in t was marked safe.

Proposition 1 (Scope of the analysis). Given a parametric trace τ in [P]:

∀t ∈ Proj (τ),∀m ∈ Methods :
(∃i ∈ Instructions\Instructionsm : instrument(i) ∈ t)

=⇒ { ev(q) | q ∈ Sm} ∩ events(t) = ∅

160 C. Soueidi and Y. Falcone

Proof. Assume that there exists some trace t that has events produced outside of m i.e.
∃i ∈ Instructions\Instructionsm : instrument(i) ∈ t is true. Such traces can be
split into two types. Traces that contained events before the execution of m at runtime
(1), and traces that start from m but have some events that are produced outside of m
at runtime (2). We will show that for both types of traces, the analysis would result
in Sm = ∅. Since we exclude from the analysis any method that receives a parameter
of a type that generates events. Traces from (1), will not be affected by analysis. For
that to happen, method m should receive the objects generating the events. Therefore,
m will be excluded from the analysis resulting in Sm = ∅. As for (2), any escape
of an object, which might produce events outside m, is captured by the # transitions.
From the construction of the bad-prefixes automaton and Algorithm 1, such transitions
will result in reaching a final state from any state in the CFG automaton, resulting in
Sm = ∅. Hence for both types of traces we have Sm = ∅, therefore {ev(q) | q ∈
Sm} ∩ events(t) = ∅ holds, and the proposition holds. �

Proposition 1 in fact depends on the specification of the SafeList from Sect. 5.1. If
some method was added by the user that is not safe, i.e. allows references to escape,
then the proposition will not hold. From the above, we also see that our analysis only
affects instructions that produce events only in traces that are collected fully in the
method itself since otherwise Sm = ∅. For soundness, we need to guarantee that at
any run of the program, an event that we marked safe in our residual analysis does not
have any effect on deciding the violation/satisfaction of the property for any projected
trace at runtime. As we showed that the analysis only affects projected traces that are
fully produced in one method, we only reason about single methods when discussing
soundness.

Theorem 1 (Soundness of the analysis). Given a language L ⊆ Σ∗ and Sm resulting
from the analysis on method m, the analysis is sound iff

∀a1· · · ai· · · an ∈ Σ+,∀i ∈ N :
matchL(a1· · · ai· · · an) 	= matchL(a1· · · ai−1ai+1· · · an)

=⇒ ai /∈ { ev(q) | q ∈ Sm}

The condition states that given a projected trace at runtime, if we remove an event
ai from it and get a different match from the new trace i.e. matchL(a1· · · ai· · · an) 	=
matchL(a1· · · ai−1ai+1· · · an), then our analysis must have not statically marked ai as
safe (ai /∈ { ev(q) | q ∈ Sm).

Proof. The proof follows from the definition of Algorithm 1. Assume that when our
analysis removes ai, then matchL(a1· · · ai· · · an) 	= matchL(a1· · · ai−1ai+1· · · an).
This means that ai is in an extension of a1· · · ai−1 that leads to a final state
in the monitor of the bad-prefixes of L, or else matchL(a1· · · ai· · · an) =
matchL(a1· · · ai−1ai+1· · · an). However, if ai is in such a path, then it will be added
to Vm as per Line 7 of Algorithm 1 since the algorithm finds any path from a state in
the CFG that reaches the final state of the automaton of bad-prefixes. Then ai is not in
Sm and ai /∈ { ev(q) | q ∈ Sm} holds. �

Residual Runtime Verification via Reachability Analysis 161

6 Implementation

We implement our work as a plugin to the BISM [29] Java byte-code instrumentation
tool. Instrumentation directives in BISM are given with transformers, which resem-
ble aspects of aspect-oriented programming. BISM provides a mechanism to compose
multiple transformers. Transformers, in composition, are capable of controlling the visi-
bility of instructions. For each property, we then apply two transformers to the program:
the static analyzer, which performs the residual analysis with a single pass over the code
of methods and hides safe instructions, and the second one to instrument the residual
part for runtime monitoring. We extend BISM with a module that enables performing
the residual analysis and provides automata operations. The module is used to generate
the CFG automata of methods, extend the automaton for bad prefixes, and detect the
property-violating execution paths.

7 Evaluation

We report on our evaluation of the effectiveness of our approach2.

Experimental Setup. We compare the instrumentation overhead with our residual anal-
ysis, denoted by RRV, and without the analysis, denoted by RV. We instrument with
BISM the programs, in the DaCapo suite [8], for the monitoring of the classical
SafeListIterator (P1), SafeMapIterator (P2), and SafeHasNext (P3)
properties. (P2) is similar to (P1) from Sect. 2 but is concerned with Java maps. (P3)
specifies that a program does not call the next method before calling the hasNext
method of an iterator. We include as escape events (#) all assignments to class fields,
all method calls that pass objects by references, and in addition, return statements that
return objects [14]. We include in the SafeList all calls to methods of Java classes.
Other than the method calls relevant to the property and captured by instrumentation,
these calls do not produce events. We note that fop is the only single-threaded bench-
mark, however, we can use the multi-threaded benchmarks as we checked that for the
properties all the events in the projected traces are being produced within the same
thread. We consider 100 runs and then calculate the mean and the standard deviation3.

Evaluation Metrics. We consider the number of affected instructions, methods, and
classes by our residual analysis (RRV) and without it (RV). We also consider the
improvement factor. We are also interested in evaluating the runtime overhead, that
is, the performance degradation caused by instrumentation for monitoring. For runtime,
we measure the execution time of the instrumented program. For used memory, we
measure the used heap and non-heap memory after a forced garbage collection.

2 Implementation details and experiments can be found at https://gitlab.inria.fr/monitoring/
residual-runtime-verification-with-bism.

3 We use Java JDK 8u251 with 16 GB maximum heap size on an Intel Core i9-9980HK
(2.4 GHz. 16 GB RAM). We use the DaCapo version 9.12-bach.

https://gitlab.inria.fr/monitoring/residual-runtime-verification-with-bism
https://gitlab.inria.fr/monitoring/residual-runtime-verification-with-bism

162 C. Soueidi and Y. Falcone

Table 1. For each program (Bench), and property (P1), (P2), and (P3), we report # of relevant
classes, methods, and instructions (Rel) producing events, number proved safe statically by our
technique (Nop), # of events produced at runtime (RV) and after our analysis (RRV), improve-
ment factor for # of instructions instrumented and events produced (Imp). K = 103, M = 106.

Bench Property # Classes # Methods # Instructions # Events

Rel Nop Rel Nop Rel Nop Imp RV RRV Imp

avrora P1 41 14 99 56 165 86 2.09 1.36M 1.36M 1.00

fop P1 123 33 275 103 700 210 1.43 729K 490K 1.49

sunflow P1 11 2 35 15 50 15 1.43 2.55M 1.27M 2.00

pmd P1 86 27 200 95 420 146 1.53 4.77M 778K 6.13

avrora P2 41 19 111 78 160 117 3.72 353K 246K 1.43

fop P2 100 28 206 85 2.9K 2.6K 9.19 545K 351K 1.55

sunflow P2 11 6 32 24 40 26 2.86 2.55M 1.27M 2.00

pmd P2 81 27 168 70 392 211 2.17 3.01M 2.6M 1.16

avrora P3 32 11 76 33 160 79 1.98 1.5M 1.29M 1.16

fop P3 70 7 145 31 376 67 1.22 1.07M 882K 1.21

sunflow P3 8 2 12 3 29 3 1.12 3.93M 2.65M 1.48

pmd P3 65 21 126 48 343 115 1.50 5.64M 5.23M 1.08

Results. In Table 1, we report the results. The table demonstrates the effectiveness of
the residual analysis as it reduces the number of instrumentation points by a factor of
2.5 on average (reaching 9.19), and accordingly, a reduction in the number of generated
events at runtime by a factor of 1.8 on average (reaching 6.13). We notice that the reduc-
tion of instrumentation points does not always result in a reduction of runtime events
for instance with avrora with (P1), where we find methods that produce most of the
events that we could not prove safe statically. We also notice that most of our missed
optimizations are due to escape # events (see Sect. 5.1). The more diverse operations
between events, the more missed optimization. However, the SafeList can be improved
with the help of escape analysis to include more instructions that we can guarantee are
safe for our analysis and accordingly reduce the number of escape events. We leave that
for future work as we envision adding plugins to incorporate static analysis. We also
note that many of the events generated under classical instrumentation (RV) are irrele-
vant; they occur in methods that do not produce enough events to reach a final state in
the monitor. As such, our analysis is effective in removing those from instrumentation.
Figures 6 report the execution time and the memory usage for the benchmarks with all
three properties combined. The figures show that RRV results in better performance in
all benchmarks than classical instrumentation RV.

Residual Runtime Verification via Reachability Analysis 163

0

1000

2000

3000

4000

5000

avrora fop pmd sunflow

Original RRV RV

(a) Execution time (ms).

0

20

40

60

80

avrora fop pmd sunflow

Original RRV RV

(b) Used memory (MB).

Fig. 6. Evaluation for the three properties.

8 Related Work

Many research approaches combine static and runtime verification. We focus here on
some influential and most recent tools devised for verifying general behavioral para-
metric properties in sequential programs via residual analysis.

CLARA [9,10] handles properties that can be expressed by finite-state automata
by partially evaluating the runtime monitors at compile time and reducing the instru-
mentation points. It performs three-staged phases of analysis with increasing preci-
sion. The more precise phase uses a demand-driven pointer analysis and handles intra-
procedural analysis. The first two phases of its analysis can be easily applied within
our framework. However, unfortunately, CLARA is no longer maintained and so is
its underlying instrumentation tool the abc compiler [3]. In [32], the authors present
two optimizations for [10]. One optimization identifies changeless configurations dur-
ing the backward analysis; the other one uses local object information to refine the
forward analysis and backward analysis of the nop-shadow analysis. CLARVA [4]
extends CLARA [10] to handle properties expressed by DATEs (Dynamic Automata
with Events and Timers [2]) where events are guarded by runtime conditions and timers.
Similar to our approach, it transforms Java code into an automaton-based model and
allows for the incorporation of control-flow analyses. CLARVA is capable of reducing
the instrumentation points as well as reasoning about and pruning the property itself.
However, the analysis relies on constructing the callgraph of the full program and on
pointer analysis using Soot [31]. Our approach is still capable of producing optimiza-
tions with a single pass on the program and without any dependence on static analysis,
separating the limitations of static analysis from the residual analysis.

STARVOORS [12] combines deductive theorem proving with control-flow reach-
ability analysis allowing to target control and data-oriented properties. The formalism
used for property specification is ppDATE (an extension of DATE) where the automaton

164 C. Soueidi and Y. Falcone

states are extended with pre/post-conditions (Hoare triples). The property is reduced by
pruning the transitions based on solving the triples with Java theorem prover KEY [1].
STARVOORS is capable of handling control and data-oriented properties, however, it
focuses on pruning the property and does not reduce the instrumentation points.

In [25,33], the authors present Predictive Semantics for runtime monitoring at the
intra-procedural level. In this setup, the program is analyzed, using the control flow
graph (CFG) and program dependence graph (PDG), to find predictive words. Predic-
tive words are events that will occur in sequence in a control-flow path. Then, the moni-
tor at runtime will either receive a single event or a predictive word. This approach does
not reduce the instrumentation points, hence does not reduce the overhead of instru-
mentation, however, it emits predictive words which may produce faster verdicts.

9 Conclusion and Perspectives

We introduce an analysis supporting residual runtime verification for parametric prop-
erties that can be expressed by finite-state automata. Our approach over-approximates
the behavior of the program and analyzes its methods separately relying only on their
control-flow graphs to statically identify safe regions. We have demonstrated the effec-
tiveness of our approach in monitoring the bad prefixes of a property, however, our app-
roach can also be used with good prefixes (when monitoring co-safety properties for
instance). Our approach is capable of producing overhead optimizations without any
dependence on a specific type of static analysis, separating the task of static analysis
from the residual analysis and allowing for seamless integration with many RV frame-
works. It is fully implemented and integrated within the BISM instrumentation tool,
which is the state-of-the-art instrumentation tool for Java programs. We also demon-
strated the significant performance benefits at runtime.

Our work lays the foundation for a residual analysis framework that, at its core, does
not depend on any specific static analysis technique. Nevertheless, we plan to extend
it with plugins that allow the user to easily incorporate static analysis results aiming
to reduce over-approximations and increase precision. The user might opt to include
static call graph construction and escape analysis for a more precise approximation of
parametric traces, also data-flow pointer analysis for better approximations of projected
traces. We plan to provide a language that easily integrates the results of such analysis
into our residual analysis mainly via refining the safe list of instructions. We also plan
to extend our approach to analyze concurrent programs and handle thread-escaping
references.

References

1. Ahrendt, W., Beckert, B., Hähnle, R., Rümmer, P., Schmitt, P.H.: Verifying object-oriented
programs with key: a tutorial. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2006. LNCS, vol. 4709, pp. 70–101. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-74792-5_4

https://doi.org/10.1007/978-3-540-74792-5_4
https://doi.org/10.1007/978-3-540-74792-5_4

Residual Runtime Verification via Reachability Analysis 165

2. Ahrendt, W., Pace, G.J., Schneider, G.: A unified approach for static and runtime verification:
framework and applications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol.
7609, pp. 312–326. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-
0_24

3. Avgustinov, P., et al.: ABC: an extensible AspectJ compiler. In: Proceedings of the 4th Inter-
national Conference on Aspect-Oriented Software Development, AOSD 2005, pp. 87–98.
Association for Computing Machinery, New York (2005). https://doi.org/10.1145/1052898.
1052906

4. Azzopardi, S., Colombo, C., Pace, G.: Clarva: model-based residual verification of java pro-
grams. In: Proceedings of the 8th International Conference on Model-Driven Engineering
and Software Development, MODELSWARD, pp. 352–359. INSTICC, SciTePress (2020).
https://doi.org/10.5220/0008966603520359

5. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified event
automata: towards expressive and efficient runtime monitors. In: Giannakopoulou, D., Méry,
D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32759-9_9

6. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification.
In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp.
1–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_1

7. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans.
Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011). https://doi.org/10.1145/2000799.2000800

8. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development and anal-
ysis. SIGPLAN Not. 41(10), 169–190 (2006). https://doi.org/10.1145/1167515.1167488

9. Bodden, E., Lam, P., Hendren, L.: Clara: a framework for partially evaluating finite-state
runtime monitors ahead of time. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418,
pp. 183–197. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_15

10. Bodden, E., Lam, P., Hendren, L.J.: Partially evaluating finite-state runtime monitors ahead
of time. ACM Trans. Program. Lang. Syst. 34(2), 7:1–7:52 (2012). https://doi.org/10.1145/
2220365.2220366

11. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00768-2_23

12. Chimento, J.M., Ahrendt, W., Pace, G.J., Schneider, G.: STARVOORS: a tool for combined
static and runtime verification of Java. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 297–305. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-
3_21

13. Chimento, J.M., Ahrendt, W., Schneider, G.: Testing meets static and runtime verification. In:
Proceedings of the 6th Conference on Formal Methods in Software Engineering, FormaliSE
2018, pp. 30–39. Association for Computing Machinery, New York (2018). https://doi.org/
10.1145/3193992.3194000

14. Choi, J.D., Gupta, M., Serrano, M., Sreedhar, V.C., Midkiff, S.: Escape analysis for Java.
SIGPLAN Not. 34(10), 1–19 (1999). https://doi.org/10.1145/320385.320386

15. Dwyer, M.B., Purandare, R.: Residual dynamic typestate analysis exploiting static analysis,
p. 124 (2007)

16. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at runtime? Int. J.
Softw. Tools Technol. Transf. 14(3), 349–382 (2012). https://doi.org/10.1007/s10009-011-
0196-8

17. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy, M., Peled,
D.A., Kalus, G. (eds.) Engineering Dependable Software Systems. NATO Science for Peace
and Security Series, D: Information and Communication Security, vol. 34, pp. 141–175. IOS
Press (2013). https://doi.org/10.3233/978-1-61499-207-3-141

https://doi.org/10.1007/978-3-642-34026-0_24
https://doi.org/10.1007/978-3-642-34026-0_24
https://doi.org/10.1145/1052898.1052906
https://doi.org/10.1145/1052898.1052906
https://doi.org/10.5220/0008966603520359
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1007/978-3-642-16612-9_15
https://doi.org/10.1145/2220365.2220366
https://doi.org/10.1145/2220365.2220366
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1007/978-3-319-23820-3_21
https://doi.org/10.1007/978-3-319-23820-3_21
https://doi.org/10.1145/3193992.3194000
https://doi.org/10.1145/3193992.3194000
https://doi.org/10.1145/320385.320386
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.3233/978-1-61499-207-3-141

166 C. Soueidi and Y. Falcone

18. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime verification
tools. Int. J. Softw. Tools Technol. Transfer 23(2), 255–284 (2021). https://doi.org/10.1007/
s10009-021-00609-z

19. Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B., Woodcock, J. (eds.) VSTTE
2005. LNCS, vol. 4171, pp. 374–383. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-69149-5_40

20. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry data. In:
Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp.
61–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_3

21. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation, 3rd edn. Addison-Wesley Longman Publishing Co., Inc. (2006)

22. Jakse, R., Falcone, Y., Méhaut, J., Pouget, K.: Interactive runtime verification - when interac-
tive debugging meets runtime verification. In: 28th IEEE International Symposium on Soft-
ware Reliability Engineering, ISSRE 2017, Toulouse, France, 23–26 October 2017, pp. 182–
193. IEEE Computer Society (2017). https://doi.org/10.1109/ISSRE.2017.19

23. Karandikar, P., Niewerth, M., Schnoebelen, P.: On the state complexity of closures and interi-
ors of regular languages with subwords and superwords. Theoret. Comput. Sci. 610, 91–107
(2016). https://doi.org/10.1016/j.tcs.2015.09.028

24. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods Syst.
Des. 19(3), 291–314 (2001). https://doi.org/10.1023/A:1011254632723

25. Leucker, M.: Sliding between model checking and runtime verification. In: Qadeer, S.,
Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 82–87. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-35632-2_10

26. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebraic Pro-
gram. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.2008.08.004

27. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced application
domains (beyond software). Formal Methods Syst. Des. 54(3), 279–335 (2019). https://doi.
org/10.1007/s10703-019-00337-w

28. Soueidi, C., Falcone, Y.: Capturing program models with BISM. In: Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing, SAC 2022, pp. 1857–1861. Association
for Computing Machinery, New York (2022). https://doi.org/10.1145/3477314.3507239

29. Soueidi, C., Kassem, A., Falcone, Y.: BISM: Bytecode-Level Instrumentation for Software
Monitoring. https://gitlab.inria.fr/monitoring/bism-tool

30. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing soft-
ware reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986). https://doi.org/10.1109/
TSE.1986.6312929

31. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot - a Java byte-
code optimization framework. In: Proceedings of the 1999 Conference of the Centre for
Advanced Studies on Collaborative Research, CASCON 1999, p. 13. IBM Press (1999)

32. Wang, C., Chen, Z., Mao, X.: Optimizing Nop-shadows typestate analysis by filtering inter-
ferential configurations. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp.
269–284. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1_16

33. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics. In: Good-
loe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 418–432. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28891-3_37

https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1109/ISSRE.2017.19
https://doi.org/10.1016/j.tcs.2015.09.028
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/s10703-019-00337-w
https://doi.org/10.1007/s10703-019-00337-w
https://doi.org/10.1145/3477314.3507239
https://gitlab.inria.fr/monitoring/bism-tool
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1007/978-3-642-40787-1_16
https://doi.org/10.1007/978-3-642-28891-3_37

Author Index

Bansal, Suguman 1
Barroso, Pedro 20
Bitterlich, Martin 129
Bodenmüller, Stefan 129

Chen, Christopher K. 33

De Giacomo, Giuseppe 1
Di Stasio, Antonio 1
Drǎgoi, Cezara 52

Falcone, Yliès 148

Greenstreet, Mark R. 33

Inzaghi Pronesti, Patricio 52

Körner, Philipp 72

Leuschel, Michael 72
Li, Yong 1

Marmanis, Iason 92

Naus, Nico 111

Pereira, Mário 20

Ravara, António 20
Ravindran, Binoy 111
Reif, Wolfgang 129

Schellhorn, Gerhard 129
Seltzer, Margo I. 33
Soueidi, Chukri 148

Vafeiadis, Viktor 92
Vardi, Moshe Y. 1
Verbeek, Freek 111

Walker, Dale 111

Zhu, Shufang 1

	 Preface
	 Organization
	 Contents
	Compositional Safety LTL Synthesis
	1 Introduction
	2 Preliminaries
	2.1 LTL/LTLf
	2.2 Safety/Co-safety LTL
	2.3 Safety LTL Synthesis

	3 Compositional Approaches for Safety LTL Synthesis
	3.1 From Safety LTL to DSA
	3.2 Compositional Safety LTL Synthesis

	4 Experimental Evaluation
	4.1 Implementation
	4.2 Experimental Methodology
	4.3 Results

	5 Conclusion
	References

	Leroy and Blazy Were Right: Their Memory Model Soundness Proof is Automatable
	1 Introduction
	2 The Memory Model
	2.1 Concept
	2.2 Leroy and Blazy's Memory Model
	2.3 Compiler Passes and Their Soundness Proof
	2.4 Original Coq Proof

	3 Our Approach in Why3
	4 Proof Effort
	5 Code Extraction
	6 Conclusions
	References

	Shellac: A Compiler Synthesizer for Concurrent Programs
	1 Introduction
	2 Preliminaries
	2.1 State, Assignment, and Processes
	2.2 Channels
	2.3 Dataflow Merge Element
	2.4 UNITY
	2.5 Boolean-Bitvector Parallel
	2.6 Boolean-Bitvector Scalar
	2.7 Boolean-Bitvector Sequential
	2.8 Target Platforms

	3 Formalization and Mechanization
	3.1 The Implements Relation Between Expressions
	3.2 Mechanizing the Implements Relation
	3.3 Searching the Space of Expressions
	3.4 Ordering to Satisfy Refinement
	3.5 Correctness of the Synthesized Programs

	4 Evaluation
	4.1 Experimental Setup
	4.2 Rewrite Rule Synthesis
	4.3 Paxos Consensus
	4.4 Specification of Paxos

	5 Related Work
	6 Future Work
	7 Conclusion
	References

	A Sequentialization Procedure for Fault-Tolerant Protocols
	1 Introduction
	2 Overview
	3 Asynchronous Protocols
	3.1 Distal: Syntax and Semantics

	4 Round-Based Protocols
	4.1 Round-Based Syntax and Semantics
	4.2 Round-Based Asynchronous Protocols
	4.3 Computing a Protocol's Phase Structure
	4.4 Delimiting Rounds' Boundaries

	5 Sequentialization of Round-Based Protocols
	5.1 Equivalence with No Network Assumptions
	5.2 Protocols with Network Assumptions

	6 Experimental Evaluation
	7 Conclusions
	References

	Towards Practical Partial Order Reduction for High-Level Formalisms
	1 Introduction
	2 Background
	3 Experiments and Results
	4 Idiom 1: Parameterised Operations
	4.1 Solution: Unrolling of Operations

	5 Idiom 2: Usage of Compound Values (Sets, etc.)
	5.1 Solution 1: Constraint-Based POR Analysis
	5.2 Solution 2: SAT Encoding of Finite Sets

	6 Case Study and Challenge: Railway Interlocking System
	6.1 Interlocking Model Overview
	6.2 Insights

	7 Conclusions and Future Work
	References

	SMT-Based Verification of Persistency Invariants of Px86 Programs
	1 Introduction
	2 Preliminaries
	2.1 Axiomatic Memory Consistency Models
	2.2 Modeling the Persistency Semantics of x86

	3 Overview
	3.1 Modeling Recovered Values
	3.2 Symbolic Verification

	4 Adapting the DPTSOsyn Model
	5 Symbolic Encoding
	5.1 From Verification to Formula Satisfiability
	5.2 Memory Model Encoding
	5.3 Encoding x86 Consistency
	5.4 Encoding DPTSOsyn
	5.5 Alternative Crash Encoding

	6 Theory Solver for DPTSOsyn
	6.1 Preliminaries
	6.2 Z3 User Propagator
	6.3 Implementation

	7 Evaluation
	7.1 Overall Performance
	7.2 Comparison of DPTSOsyn and DPTSOsyn,full Encodings

	8 Related Work
	9 Conclusion
	References

	A Formal Semantics for P-Code
	1 Introduction
	2 Ghidra, SLEIGH and P-Code
	3 Design Choices
	4 P-Code Syntax
	5 P-Code Semantics
	5.1 P-Code Interpreter

	6 Changes to Ghidra and P-Code
	6.1 P-Code
	6.2 Ghidra/SLEIGH
	6.3 Documentation
	6.4 Response from Ghidra Developers

	7 Related Work
	8 Conclusion
	References

	Separating Separation Logic – Modular Verification of Red-Black Trees
	1 Introduction
	2 Background
	3 Structured Specifications of Algebraic Data Types
	3.1 Algebraic Red Black Tree Definition
	3.2 Modeling the Heap and Separation Logic

	4 Modular Software Systems
	5 Implementation of Destructive Red-Black Trees
	6 Verification of Destructive Red-Black Trees
	7 Related Work
	8 Conclusion
	References

	Residual Runtime Verification via Reachability Analysis
	1 Introduction
	2 Motivating Example and Approach Overview
	3 Background
	3.1 Monitoring
	3.2 Parametric Monitoring
	3.3 Upward Closure
	3.4 Programs, CFG and Instrumentation

	4 Residual Analysis of Parametric Properties
	5 Residual Analysis via Intraprocedural Reachability Analysis
	5.1 Capturing the Behavior
	5.2 Extending the Automaton of Bad Prefixes
	5.3 Cutting the Behavior
	5.4 Scope and Soundness of the Analysis

	6 Implementation
	7 Evaluation
	8 Related Work
	9 Conclusion and Perspectives
	References

	Author Index

