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Abstract We describe a necessary condition for the local solvability of the strong 
inverse variational problem in the context of Monge-Ampère partial differential 
equations and first-order Lagrangians. This condition is based on comparing effec-
tive differential forms on the first jet bundle. To illustrate and apply our approach, 
we study the linear Klein-Gordon equation, first and second heavenly equations 
of Plebański, Grant equation, and Husain equation, over a real four-dimensional 
manifold. Two approaches towards multisymplectic formulation of these equations 
are described. 

1 Introduction 

Since the nineteenth and early twentieth century work of mathematicians such as 
Joseph Liouville, Gaston Darboux, Sophus Lie, Élie Cartan et al., it is well-known 
that geometry plays an essential role in the study of ordinary and partial differential 
equations (PDEs). 

A special subclass of all non-linear second-order PDEs is Monge-Ampère (M-A) 
equations. They arise in many examples and have numerous applications throughout 
mathematics and mathematical physics. One can find them in differential geometry 
of surfaces, hydrodynamics, acoustics, integrability of various geometric structures, 
variational calculus, Riemannian, CR, and complex geometry, quantum gravity, and 
even in theoretical meteorology (semi-geostrophic and quasi-geostrophic theory). 
Many other instances can be listed. For a detailed exposition of interesting applica-
tions of M-A equations, particularly in 2D and 3D, see [1]. 
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In this paper, we are mainly interested in the variational structure of M-A 
equations. In particular, we study whether we can view them as E-L equations for 
some first-order Lagrangians. Our approach is based on the idea of V. Lychagin 
to connect the M-A operators with symplectic (on .T ∗M) and contact (on . J 1M)

geometries. He also defined a class of variational problems related to M-A equations 
[1, 2]. 

Afterwards, we observe the relation between M-A equations and multisymplectic 
geometry, using the results of two slightly different approaches proposed by F. 
Hélein [3], and D. Harrivel [4]. We have found some new aspects which could shed 
light on this connection. We applied our observations in the context of the following 
4D PDEs, very famous for their applications in geometry and theoretical physics 
related to Einstein gravity and relativistic field theories—Plebański heavenly equa-
tions and Klein-Gordon equation. We also considered Grant and Husain equations, 
which are very close to Plebański second equation. 

In 1975, J.F. Plebański introduced his first and second heavenly equations [5], 
which belong to the class of M-A equations in 4D. Their close relatives, Grant 
and Husain equations, were introduced more recently [6, 7]. These equations 
appeared firstly in Einstein gravity, and later were studied by numerous authors, 
both physicists and mathematicians [5–9]. Another significant example of M-A 
equation is the Klein-Gordon equation, which is a non-homogeneous relativistic 
wave equation. It was derived in the first quarter of the twentieth century by O. Klein 
and later reformulated in a more compact form by W. Gordon [10]. The underlying 
structure of this equation can be found in more general situations than scalar fields, 
and the knowledge of its solutions is relevant in the relativistic perturbative quantum 
field theory [11]. The specific form of all the above equations and some further 
details about them is given below. 

In the first section, we define M-A operators and related notions, which will 
be our main tools in working with M-A equations via differential forms. We also 
recall the contact and symplectic calculus over .J 1M , which we greatly utilize 
in our computations. The second section describes the construction of the Euler 
operator on .�n(J 1M) and its relation to variational problems. In the third section, 
a necessary condition for local solvability of the strong inverse variational problem 
of a given M-A equation is formulated, together with the corresponding analysis 
of the aforementioned five M-A equations in four real dimensions. In the fourth 
section, we present two multisymplectic approaches and provide certain comparison 
of them, in the context of concrete M-A equations under consideration. 

In the sequel, we will be working with smooth real-valued functions . φ ∈ C∞(M)

and their first prolongations .j1φ : M → J 1M , where .J 1M → J 0M = M × R is 
the first jet bundle of .pr1 : M × R → M . 

A second-order partial differential equations which are given as a .C∞(J 1M)-
linear1 combination of minors of the Hessian matrix .(φμν)μ,ν are called Monge-

1 By .C∞(J 1M)-linear we mean that the coefficients can be smooth functions and their first 
derivatives. 
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Ampère equations2 [1, 2, 4, 9]. Consequently, every such equation can be rep-
resented by a differential n-form on .J 1M via M-A operator .�ωφ := (j1φ)∗ω. 
Moreover, one can use effective differential forms, which represent M-A equations 
uniquely (up to a multiple of a non-vanishing function), and without terms 
corresponding to trivial equations [1, 2, 9]. Effective forms on the first jet space, 
which produce first-order Lagrangians on the base manifold, have a particularly 
simple local expression. Their image under the Euler operator represents the Euler-
Lagrange (E-L) equations [1]. This feature of the Euler operator, together with 
the fact that it preserves the effective forms, enables us to study the existence 
of a first-order Lagrangian for a given M-A equation on the level of differential 
forms over .J 1M . Additionally, some effective forms give rise (in a non-unique 
way) to multisymplectic forms [4]. This may happen even for an effective form that 
comes from a M-A equation which does not have a first-order Lagrangian. Since 
the multisymplectic reformulation usually starts with a Lagrangian [3, 12, 13], this 
seems to be an interesting property. We will apply the formalism on the following 
M-A equations: Plebański heavenly, Grant, Husain, and Klein-Gordon equations. 
We will consider these equations in the real 4D case. 

The heavenly equations of Plebański were first derived in [5] in the form  

. φ13φ24 − φ14φ23 = 1 (1st heavenly equation)

φ11φ22 − (φ12)
2 + φ13 + φ24 = 0 (2nd heavenly equation)

using self-dual 2-forms over a complex 4D Riemannian space. The duality here is 
given by the Hodge star operator. The Grant equation and the Husain equation are 
both based on the Ashtekar-Jacobson-Smolin (AJS) equations, which are Einstein 
self-dual equations. The AJS equations were derived in [14] employing the . 3 + 1
ADS decomposition of spacetime. They characterize 4D complex metrics with self-
dual curvature 2-form. Metrics with self-dual curvature form satisfy the vacuum 
equations of general relativity since they are Ricci flat. In [6], the following equation 
was introduced 

. φ11 + φ24φ13 − φ23φ14 = 0 (Grant equation)

and subsequently rewritten into a system which enabled the author to construct 
formal solutions. Notably, the Grant equation is equivalent with the first heavenly 
equation of Plebański [6]. Another reformulation of the AJS equations was provided 
in [7], in order to identify AJS with a 2D chiral model, and to provide a Hamiltonian 
formulation. The resulting equation 

.φ13φ24 − φ14φ23 + φ11 + φ22 = 0 (Husain equation)

2 Note that the minors of rank 1 recover all the second-order semi-linear differential equations, 
whilst the higher order minors (including the determinant of the whole matrix) add specific non-
linear terms. 
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enabled V. Husain to show the existence of infinitely many non-local conserved 
currents. Another type of an M-A equation is 

. φ11 − φ22 − φ33 − φ44 + m2φ2 = 0 (Klein-Gordon equation)

where m is a constant. The Klein-Gordon equations was derived in various ways, for 
example by W. Gordon [10]. In its real version, it can be interpreted as an equation of 
motion for a scalar field without charge over a Lorentzian manifold. A key difference 
between the aforementioned equations is that the Klein-Gordon equation does not 
arise from self-duality conditions. 

2 Preliminary Notions 

In this section we fix the notation and introduce basic definitions and statements 
relevant to our considerations. In particular, we will define the notion of effective 
forms, Monge-Ampère operators and Monge-Ampère equations. All our considera-
tions are local. We caution the reader about the standard abuse of notation such us 
denoting a symplectic form by . �, and by .�(M) the exterior algebra of differential 
forms over M . 

We denote by M a smooth n-dimensional manifold, .(q1, . . . , qn) are local 
coordinates over an open subset .U ⊂ M , T M  and .T ∗M are the tangent and 
cotangent bundle, respectively. Let .J 1M be the space of 1-jets of smooth functions 
over M , which is an affine bundle over . M × R

. π : J 1M → J 0M = M × R

with typical fiber .T ∗M . It is also a fiber bundle over M 

. pr1 ◦π : J 1M → M ,

where .pr1 : M × R → M . We denote by .(q1, . . . , qn, u, p1, . . . , pn) the induced 
local coordinates on .J 1M . The first prolongation of . φ ∈ C∞(M)3 is a section 
.j1φ : M → J 1M , given by .x �→ (j1φ)(x) ∈ J 1M . Recall that .(j1φ)(x) is an 
equivalence class of functions which are equal up to the first order in derivatives at 
x. In local coordinates, 

. j1φ = (qμ, φ, φμ) ,

where .φμ := ∂qμφ := ∂φ
∂qμ

is the partial derivative in the direction of the coordinate 

. qμ. The pullbacks of coordinate functions on .J 1M are

3 Each .φ ∈ C∞(M) defines a section .M → M × R, .x �→ (x, φ(x)). 
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. (j1φ)∗qμ = qμ (j1φ)∗u = φ (j1φ)∗pμ = φμ ,

In the local coordinates, we have the identification .J 1U ∼= T ∗U × R (which is 
not canonical). Most relevant for us is that .J 1M is naturally equipped with a contact 
structure [1, 2]. For more details about jet bundles and structures on them, see [15]. 

2.1 Contact Structure on J 1M 

Definition 3.1 Let ω ∈ �1(M) be non-vanishing. Let D ⊂ T M  be a distribution 
given by D := ker ω. Then ω is called a contact form on M , if  dω|D : D → D∗ is 
non-degenerate. Manifold with a distribution described by a contact form is called 
a contact manifold and d is called a contact structure (or contact distribution) on M . 

Remark 3.1 Note that the distribution D = ker ω satisfies codimD = 1. Moreover, 
the 1-form describing D is not unique. Consider a class of 1-forms, [ω], given by 
ω̃ ∈ [ω] if and only if there is a non-vanishing f ∈ C∞(M) s.t. ω̃ = f ω. Then 
every representative of the class [ω] defines the same distribution d. 

The first jet space comes equipped with the Cartan distribution, which infinites-
imally describes the condition that a section of J 1M → M is obtained as 
a prolongation of a function φ ∈ C∞(M). In the induced coordinates, this 
requirement can be described by the following contact form4 

.c = du − pμdqμ . (1) 

This 1-form satisfies the Definition 3.1 and we can describe the Cartan distribution 
as C = ker c. That is, J 1M is a contact manifold.5 By the Darboux theorem, every 
contact form on J 1M is locally given by (1). The contact form defines the Reeb 
vector field, χ , by the following conditions 

.χ � dc = 0 and c(χ) = 1 . (2) 

In the local coordinates s.t. (1) holds, the Reeb field is of the form χ = ∂u, which 
immediately follows from (2). Moreover, since codimC = 1, we get the following 
splitting of T J 1U 

.T J 1U ∼= C ⊕ span(χ) ∼= ker c ⊕ ker dc .

4 We are using the summation convention of summing over the repeated indices. 
5 Cartan distribution exists also on higher jets but the first jets are special due to codimC = 1. 
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2.2 Symplectic Calculus on the Cartan Distribution 

Contact form on .J 1M gives rise to a symplectic form on . C. 

Definition 3.2 Let V be a vector space, .dim V = 2n. A symplectic form on V is 
a 2-form .� ∈ 
2(V ∗), which is non-degenerate, i.e. .�n := � ∧ . . . ∧ � is non-
vanishing. 

Consider the 2-form .� := dc on the contact manifold .J 1M . Then . � is obviously 
closed. In the chosen coordinates, we have 

.� = dqμ ∧ dpμ . (3) 

Note that . � is non-degenerate when restricted to . C. This means that .�x is a 
symplectic form on . Cx at every .x ∈ M . Using the symplectic form, we can define 
various useful operators. This leads to considering the space of differential k-forms 
which are degenerate along the Reeb field . χ . We will denote this .C∞-module by 

.�k(C) := {α ∈ �k(J 1U) | χ � α = 0} . (4) 

Since the interior product . � satisfies the graded Leibniz rule with respect to the 
wedge product, the space 

. �(C) :=
⊕

k≤0

�k(C) ⊂ �(J 1M)

has a graded algebra structure. Using suitable projections, .�(C) can be turned into 
a differential graded algebra. 

Projection and Projected Derivative Every .α ∈ �k(J 1M) can be projected on 
.�k(C) via the projection .p : �k(J 1M) → �k(C), acting on arbitrary k-form . α as 

.p(α) = α − c ∧ (χ � α) . (5) 

Let us show that p has the claimed properties. Firstly, .p2 = p, since 

. p(p(α)) = α − c ∧ (χ � α) − c ∧ (
χ � (α − c ∧ (χ � α)

) = p(α) .

Secondly, .p(α) ∈ �k(C), since 

. χ � p(α) = χ � α − χ � α + (χ ∧ χ) � α ∧ c = 0 .

Note that the property .α ∈ �(C) is not preserved by the exterior derivative 
.d : �k(J 1M) → �k+1(J 1M). So with the projection p, we define the degree 1 
derivation . dp as the composition 

.dp := p ◦ d : �k(J 1M) → �k+1(C) , (6)
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Bottom Operator Since . � is non-degenerate on . C, the assignment . ξ �→ ξ � �

defines an isomorphism .ι : C → C∗, which further induces an isomorphism 
.
2ι−1 : 
2C∗ → 
2C. This enables us to define .X� := 
2ι−1(�). In coordinates, 

. X� = ∂qμ ∧ ∂pμ .

Contracting with the 2-vector field .X� leads to the bottom operator . ⊥: �k(J 1U) →
�k−2(J 1U). More precisely, for k-form . α, .k > 1, 

.⊥α := X� � α . (7) 

For .k ≤ 1 define .⊥α = 0. Our convention is such that . ⊥� = ∂pμ � ∂qμ � (dqμ ∧
dpμ) = n. The motivation for defining the bottom operator will be more apparent 
in the next paragraphs. 

2.3 Monge-Ampère Operators and Effective Forms 

Definition 3.3 Let ω ∈ �n (J 1M) be an arbitrary n-form, n = dim M . The Monge-
Ampère operator corresponding to ω, �ω : C∞(M) → �n (M), is defined as 

.�ωφ := (j1φ)∗ω . (8) 

The differential equation 

.�ωφ = 0 (9) 

is called a Monge-Ampère equation. 

Notice that the expression �ωφ = 0 defines an equation on M only when ω 
is a n = dim M-form. In this way, the M-A operators enable us to represent M-
A equations by differential forms. Note that we have a certain ambiguity in this 
representation due to 

. (j1φ)∗c = dφ − φμdqμ = 0 .

In full generality, this ambiguity is described by an ideal of the exterior algebra over 
J 1M , generated by the contact form and its exterior derivative 

.I =< c, dc >⊂ �(J 1M) . (10) 

Recall that �(J 1M) is a graded algebra, which implies that I is a graded ideal 

.Ik := I ∩ �k(J 1M) .
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Thus, the redundancy in M-A equations is given by 

.ω ∈ In ⇐⇒ �ωφ = 0 ∀φ . (11) 

This suggest to work with the equivalence classes of �n (J 1M)/In instead of using 
arbitrary forms in �n (J 1M) to describe M-A equations on M . Nevertheless, such 
an approach is not very convenient for computations in local coordinates. To avoid 
this problem, we use the following definition of effective forms, which captures the 
above idea of working with forms which do not contain the redundant terms. 

Definition 3.4 Let ω ∈ �k (J 1M), k ≤ n. Then ω is called effective, if 

.χ � ω = 0 and ⊥ω = 0 . (12) 

For further details about effective forms and how the above definition can be 
linked with the equivalence classes of �n (J 1M)/In, see [1, 2]. 

Recall that χ �ω = 0 means ω ∈ �k (C) (see (4)). The conditions (12) will be our 
working definition when dealing with effective forms. Note also that the condition 
⊥ω = 0 is equivalent to � ∧ ω = 0 if and only if n = k. 

Example 3.1 Let β = dq1 ∧ dq2 ∧ . . .  ∧ dqn and βμ := ∂qμ � β. Then 

. ω = bμβμ ∧ dpμ + bβ

is effective for arbitrary choice of b, bμ ∈ C∞(J 1M), μ = 1, . . . , n. Indeed, 
ω does not contain the du term, hence we have χ � ω = 0. Next, we have 

. ⊥ω = bμ⊥(βμ ∧ dpμ) + b⊥β

due to C∞(J 1M)-linearity of the interior product χ�. Recall that we use the 
summation convention, so βμ ∧ dpμ consists of n terms. The first one is β1 ∧ 
dp1 = dq2 ∧ . . .  ∧ dqn ∧ dp1. The bottom operator gives 

. ⊥(β1∧dp1) = (∂qμ∧∂pμ)�(β1∧dp1) = ∂pμ�∂qμ�(β1∧dp1) = ∂q1�β1 = 0 .

Similarly for all the other terms of βμ ∧dpμ. Obviously ⊥β = 0 since β does 
not contain any dp term. We see that ω is effective. Notice that the coefficients 
of ω might depend on u. 

Important result in the theory of effective forms is the Hodge-Lepage decompo-
sition, proved by V. Lychagin in [2] using the representation theory of sl2(R).
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Theorem 3.1 Every ω ∈ �k (C), k ≤ n, can be written in the form 

.ω = ωε + x ∧ � , (13) 

for some x ∈ �k−2(C) and a uniquely given ωε ∈ �k (C) satisfying ⊥ωε = 0. 

Corollary 3.1 Suppose that ω1, ω2 ∈ �n (C) determine the same Monge-Ampère 
equation. Then the effective parts satisfy 

.ω1ε = kω2ε (14) 

for a non-vanishing function k ∈ C∞(J 1M). 

Proof Two forms determine the same equation if and only if for all φ 

.�ω1φ = k̃�ω2φ , (15) 

for some non-vanishing k̃ ∈ C∞(M). Notice that � is C∞(J 1M)-equivariant in the 
ω argument, i.e. for arbitrary ω and k ∈ C∞(J 1M) we have6 

. �kωφ = (
(j1φ)∗k

)
�ωφ .

Moreover, � is R-linear in the lower argument, so for arbitrary ω1, ω2, and all φ 

. �ω1φ − �ω2φ = �ω1−ω2φ .

Hence (15) can be rewritten as 

. �ω1φ − k̃�ω2φ = �ω1−kω2φ = 0 ,

for appropriate k ∈ C∞(J 1M) s.t. (j1φ)∗k = k̃. The above equation holds for all φ 
if and only if 

. α := ω1 − kω2 ∈ In

(see (11)). Since every α ∈ In satisfies αε = 0 and every ω ∈ �(C) satisfies 
(kω)ε = kωε , we conclude ω1ε = kω2ε . ��

Using the projection operator (5) together with the Hodge-Lepage decomposi-
tion, we know that every k-form ω on J 1M has a unique effective part ωε (of the 
same degree). This means that every M-A equation �ωφ = 0 can be represented by 
a unique differential form which does not contain terms generating trivial equation. 
We will use this observation in order to study the variational nature of the PDEs 
under consideration.

6 Note that (j1φ)∗k = k ◦ j1φ since k is a function. 
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3 Lagrangians, Variational Problems and the Euler Operator 

Taking the pullback of a n-form on the jet space results in a n-form on the base 
manifold M , which can be integrated over M . Let . φ be compactly supported, . ω ∈
�n(J 1M). Define the (action) functional corresponding to .�ωφ by 

.�ω[φ] =
∫

M

�ωφ . (16) 

Definition 3.5 We call an element .ω ∈ �n(J 1M) a Lagrangian. A first-order 
Lagrangian is a n-form . ω such that .�ωφ depends on . φ up to the first order. 

3.1 First-Order Lagrangians 

We are focused on the first-order Lagrangians as defined in Definition 3.5 because 
they yield all possible first-order Lagrangian functions on M .7 The following lemma 
describes the most general form the first-order Lagrangians can have. 

Proposition 3.1 Every effective first-order Lagrangian for one scalar field . φ is 
locally of the form 

.Lβ = L(qμ, u, pμ)dq1 ∧ . . . ∧ dqn . (17) 

for some .L ∈ C∞(J 1M). 

Proof Let .ω ∈ �n(J 1M) be arbitrary. If .�ωφ is assumed to depend on the first 
derivatives of . φ at most, then . ω cannot contain any .dpi term. Thus 

. ω = Lβ + LI dqI ∧ du ,

where .β = dq1 ∧ . . . ∧ dqn and .L,LI ∈ C∞(J 1M) with .I = i1 . . . ik−1 running 
through all possible combinations s.t. .1 ≤ i1 ≤ . . . ≤ ik−1 ≤ n. Now recall 
that . ω can still contain some terms resulting in zero after the pullback. Due to the 
Hodge-Lepage decomposition (13), every . ω has a unique effective part . ωε and the 
corresponding functionals satisfy 

. 

∫

M

�ωφ =
∫

M

�ωεφ .

So without loss of generality, we may assume that . ω is effective. This implies two 
things: .χ � ω = 0 and .⊥ω = 0. The first condition rules out the terms containing

7 After the pullback by .(j1φ)∗ and choice of the volume form on M . 
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. du and we are left with .ω = Lβ. It is easy to check that .⊥Lβ = 0, meaning that . Lβ

is effective. Thus we conclude that (17) is the most general first-order Lagrangian 
for one scalar field . φ, which does not contain any terms that would vanish after the 
pullback on M . ��

3.2 Euler-Lagrange Equations and the Euler Operator 

Every functional .�ω[φ] defines a variational problem .δ�ω[φ] = 0 and the 
corresponding E-L equation. Once we fix a functional, we may compute the E-
L equation explicitly. A natural question at this point is whether we can find 
.ω̃ ∈ �n(J 1M) so that the E-L equation .δ�ω[φ] = 0 is given by the Monge-Ampère 
equation .�ω̃φ = 0. The answer is positive and . ω̃ can be determined using the Euler 
operator . E. 

Definition 3.6 Euler operator .E : �n(J 1M) → �n(J 1M), .n = dim M is defined 
by 

.E := dp⊥dp + Lχ , (18) 

where . dp is defined by (6), . ⊥ is defined by (7), and .Lχ is the Lie derivative along 
the Reeb field given by (2). 

The key motivation for us to work with the Euler operator is the following 
equivalence 

.δ�ω[φ] = 0 ⇐⇒ �E(ω)φ = 0 . (19) 

In other words, the variational problem given by functional of . ω is described by 
.E(ω). The proof of this statement and many other useful properties, as well as the 
details about the cohomological origin of the defining equation (18) can be found in 
[1, 2]. 

We have the following lemma, which will be used to formulate the necessary 
conditions for the existence of a first-order Lagrangian of a given PDE (i.e. 
necessary conditions for the existence of a solution to a given local inverse 
variational problem). 

Lemma 3.1 Let .Lβ ∈ �n(J 1M) be a first-order Lagrangian, . E be defined by (18). 
Then 

1. .E(Lβ) is effective. 
2. .�E(Lβ)φ = 0 is the E-L equation of .�Lβ [φ]. 
Proof Assume the local coordinates satisfying (1) and observe that . χ �Lβ = Lχ �
β = 0. Direct computation gives
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. dp⊥dp(Lβ) = ∂2L

∂pμ∂pν

βμ ∧ dpν − (
∂2L

∂qμ∂pμ

+ pμ

∂2L

∂u∂pμ

)β ,

where .βμ := ∂qμ � β = ∂qμ � (dq1 ∧ . . . ∧ dqn). Using the Cartan formula . L =
�d + d�, we further obtain 

. Lχ (Lβ) = ∂L

∂u
β + L(χ � dβ + dχ � β) = ∂L

∂u
β .

Thus, following the definition (18), the coordinate expression of .E(Lβ) is 

.E(Lβ) = ∂2L

∂pμ∂pν

βμ ∧ dpν − (
∂2L

∂qμ∂pμ

+ pμ

∂2L

∂u∂pμ

− ∂L

∂u
)β . (20) 

Let us denote .Bμν := ∂2L
∂pμ∂pν

and .βμν := (∂qμ ∧ ∂qν ) � β. Hence .Bνμ = Bμν , 
and .βνμ = −βμν . We will check that .E(Lβ) is effective (see Definition 12). Firstly 
recall that .χ = ∂u and that (20) does not contain . du, so .χ � E(Lβ) = 0. Secondly, 
since .⊥β = 0, 

. ⊥E(Lβ) = Bμν(∂qα ∧∂pα )� (dpν ∧βμ) = −Bμν∂qν �βμ =
{

−Bμνβμν μ = ν

0 μ �= ν
.

Writing the sums over .μ, ν explicitly, the term .Bμνβμν reads as 

. Bμνβμν =
∑

μ<ν

(Bμνβμν + Bνμβνμ) =
∑

μ<ν

Bμν(βμν − βμν) = 0 ,

which implies .⊥E(Lβ) = 0. 
To show the latter statement, we firstly notice that . E is a 0 degree operator, which 

follows directly from .deg dp = 1, deg ⊥ = −2, degL = 0. Hence starting with 
.Lβ ∈ �n(J 1M), the result .E(Lβ) is also a n-form and .�E(ω)φ = 0 is a well-
defined equation on M . The property (19) is then expressed for .ω = Lβ as follows 

. δ�Lβ [φ] = δ

∫

M

(j1φ)∗Lβ = 0 ⇐⇒ �E(Lβ)φ = 0 .

Using the coordinate description of .E(Lβ) given by (20), we get 

. �E(Lβ)φ = 0 ⇐⇒ ∂(j1φ)∗L
∂φ

− ∂

∂qμ

∂(j1φ)∗L
∂φμ

= 0 ,

which is the standard form of the E-L equation for a first-order Lagrangian function 
.(j1φ)∗L = L(qμ, φ, φμ) on M , corresponding to .�Lβ [φ] = ∫

M
�Lβφ. ��
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4 Effective Forms and the Inverse Variational Problem 

In this section, we will see how M-A equations can be described by effective forms, 
which provide a unique (up to a scalar multiple) representation of the equation by 
a differential form on the first jet space.8 This enables us to show that both Plebański 
heavenly, Husain and Grant equations do not have a first-order Lagrangian which 
would solve the corresponding (local) inverse variational problem. 

The first and easy step is to find a simple representation of the equation (see 
Definition 3.7). The simple representation might not be effective. Indeed, this is the 
case in all the aforementioned equations. The Hodge-Lepage decomposition (13) 
assures that we can always find the effective part of a given form, although it does 
not give a recipe for doing so. Thus we introduce Lemma 3.3 which provides an 
efficient algorithmic way to determine the effective form of a M-A equation in the 
case .dim M = 4. The following lemma is an intermediate step. 

Lemma 3.2 Let .ω ∈ �2(C) be arbitrary and .� = dc be the symplectic form on the 
contact structure .C ⊂ T (J 1M). The following holds 

.⊥(ω ∧ �) = (⊥ω)� + (n − 2)ω , (21) 

where .n = dim M . 

Proof Recall that, in the local coordinates s.t. (1) holds, we have . � = dqμ ∧ dpμ

and .⊥ω = (∂qμ ∧ ∂pμ) � ω = ∂pμ � ∂qμ � ω, which implies .⊥� = n. Hence 

.⊥(ω ∧ �) = (⊥ω)� − ∂qμ � ω ∧ ∂pμ � � + ∂pμ � ω ∧ ∂qμ � � + nω . (22) 

We will show that the middle two terms add up to .−2ω. Note that the basis of 
.�2(C) consists of pairs .dqμ ∧dqν, dqμ ∧dpν, dpμ ∧dpν . Because .∂q, ∂p are duals 
to .dq, dp, the basis of .�2(C) satisfies 

. ∂qμ � (dqν ∧ dqξ ) = δμνdqξ − δμξ dqν , ∂pμ � (dqν ∧ dqξ ) = 0 ,

∂qμ � (dqν ∧ dpξ ) = δμνdpξ , ∂pμ � (dqν ∧ dpξ ) = −δμξ dqν ,

∂qμ � (dpν ∧ dpξ ) = 0 , ∂pμ � (dpν ∧ dpξ ) = δμνdpξ − δμξ dpν.

Since every .ω ∈ �2(C) is of the form .ω = ωIJ dqI ∧ dpJ for some functions 
.ωIJ ∈ C∞(J 1M), where .I, J are ascending multiindices of appropriate length. 
Due to .C∞-linearity of . �, we can, without loss of generality, assume that all .ωIJ are 
constant functions, say .ωIJ = 1, and write 

. ω =
∑

ν<ξ

dqν ∧ dqξ +
∑

ν,ξ

dqν ∧ dpξ +
∑

ν<ξ

dpν ∧ dpξ .

8 The equation can be reconstructed from the differential form via the M-A operator (8).
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Using the above relations we obtain 

. ∂qμ�ω∧∂pμ�� = (δμνdqξ −δμξ dqν+δμνdpξ )∧(−dqμ) = 2dqν∧dqξ +dqν∧dpξ ,

and similarly 

. ∂pμ�ω∧∂qμ�� = (−δμξ dqν+δμνdpξ −δμξ dpν)dpμ = −dqν∧dpξ −2dpν∧dpξ .

Combining the last two results to fit the terms in (22) yields 

. − ∂qμ � ω ∧ ∂pμ � � + ∂pμ � ω ∧ ∂qμ � � = −2ω ,

which proves the formula (21). ��
We use the previous lemma to prove the following. A general formula and its 

proof can be found in [2]. 

Lemma 3.3 Let .ω ∈ �4(C) be arbitrary, .n = dim M > 2. The effective part . ωε is 
given by 

.ωε = ω − 1

n − 2
⊥ω ∧ � + ⊥2ω

2(n − 1)(n − 2)
� ∧ � . (23) 

Proof Consider the Hodge-Lepage decomposition 

. ω = ωε + x ∧ � ,

where .ωε ∈ �k(C) is the unique effective part of . ω and .x ∈ �k−2(C) is not 
necessarily effective. Applying . ⊥ twice on the above equation together with the 
formula (21) gives the following system 

. ⊥ω = (⊥x)� + (n − 2)x ,

⊥2ω = 2(n − 1)⊥x ,

which can be solved for x 

. x = 1

(n − 2)
⊥ω − ⊥2ω

2(n − 1)(n − 2)
� .

Substituting this into the Hodge-Lepage decomposition yields the formula for the 
effective part of a 4-form . ω. ��

A differential k-form is called simple if it contains only one summand, when 
expressed in the canonical coordinates (1). For example, let .k = 2. Then . dq1 ∧ dq2

is simple while .dq1 ∧ dq2 + dq3 ∧ dq4 is not simple.
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Definition 3.7 Consider a M-A equation .�ωφ = 0. Then . ω is called a simple 
representation of the equation, if it has constant coefficients and contains the 
minimal number of simple terms. 

Remark 3.2 Note that the property of being simple is basis dependent. On the other 
hand, the effectivity is a basis independent notion. 

It seems natural to denote Lagrangian functions and their corresponding coun-
terpart defined on .J 1M by the same symbol, i.e. to write .L = L(qμ, u, pμ) as well 
as .(j1φ)∗L = L(qμ, φ, φμ). To avoid any confusion, we distinguish the two in the 
following proposition as follows. A Lagrangian function that can be integrated over 
M will be L, its .J 1M counterpart will be . L̃. 

Proposition 3.2 Let .�ωφ = 0 be a M-A equation over an open subset of a smooth 
manifold M , .dim M = n. Then a necessary condition for a first-order Lagrangian 
function .L = L(qμ, φ, φμ) to be a local solution of the inverse variational problem 
corresponding to .�ωφ = 0 is 

.kωε = E(L̃β) , (24) 

for some non-vanishing function .k : J 1M → R, where . ωε is the effective part of 
. ω, . E is the Euler operator given by (18), .L̃ : J 1M → R is such that . L̃ ◦ j1φ =
L(qμ, φ, φμ), and .β = dq1 ∧ . . . dqn. 

Proof Let .α ∈ �n(J 1M) be a first-order Lagrangian in the sense of the Defini-
tion 3.5, i.e. .�αφ = Lβ, for some  L (possibly defined only locally) which depends 
smoothly on . φ up to the first-order in derivatives, .L = L(qμ, φ, φμ). Assume that 
the E-L equation for L is given by .�ωφ = 0. Define 

. �α[φ] :=
∫

M

�αφ =
∫

M

Lβ

(consider only . φ compactly supported). Without loss of generality, we may restrict 
. α to be effective (see the discussion in the subsection with effective forms) and 
thus by Proposition 3.1, we (locally) have .α = L̃β for appropriate . L̃ ∈ C∞(J 1M)

satisfying .L̃ ◦ j1φ = L. Thus .�α[φ] = �
L̃β

[φ] and, by the second statement of 
Lemma 3.1, we know that the E-L equation for the functional .�

L̃β
[φ] is . �E(L̃β)

φ =
0. Since we assumed that L locally solves the inverse variational problem given by 
the equation .�ωφ = 0, and because . ω and . ωε determine the same equation, we have 

. �ωεφ = 0 ⇐⇒ �E(L̃β)
φ = 0 .

By the first statement of Lemma 3.1, .E(L̃β) is an effective form. Since . ωε and 
.E(L̃β) are effective forms determining the same equation, the Corollary 3.1 implies 
that the forms must differ by a multiple of a non-vanishing function. ��
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Remark 3.3 Although we work locally in a coordinate system, notice that the 
necessary conditions for the existence of a solution to the inverse variational 
problem is, in our framework, a tensorial statement and thus independent of the 
choice of coordinates. 

We present the following, simple example in .dim M = 2 to show how the 
Proposition 3.2 can be used. 

Example Consider the 1D wave equation (understand one of the two coordi-
nates as time) 

.φ11 − cφ22 = 0 , (25) 

where .c > 0 is a real constant, .φ : M → R, and .dim M = 2. We want to find 
.L(qμ, u, pμ) ∈ C∞(J 1U) s.t. the E-L equation for . (j1φ)∗L = L(qμ, φ, φμ)

is (25). 
The simple representation is 

. ω = −cdq1 ∧ dp2 − dq2 ∧ dp1 .

We can easily see that .�ωφ = 0 gives the original equation 

. (j1φ)∗ω = −cdq1 ∧ dφ2 − dq2 ∧ dφ1 = (φ11 − cφ22)dq1 ∧ dq2 .

The simple representation is effective, .ω = ωε , since it degenerates along . χ

. χ � ω = ∂u � (−cdq1 ∧ dp2 − dq2 ∧ dp1) = 0 ,

and belongs to the kernel of the bottom operator 

. ⊥ω = ∂pμ�∂qμ�(−cdq1∧dp2−dq2∧dp1) = c∂p1�(−dp2)−∂p2 �dp1 = 0 .

The coordinate expression of the Euler operator evaluated on a general first-
order Lagrangian n-form is given by (20). For .n = 2 we have . β = dq1 ∧ dq2

and .β1 = ∂q1 � β = dq2, β2 = ∂q2 � β = −dq1, so  (20) becomes 

. E(Lβ) = ∂2L
∂p1

2 dq2 ∧ dp1 + ∂2L
∂p1∂p2

dq2 ∧ dp2 − ∂2L
∂p2∂p1

dq1 ∧ dp1 − ∂2L
∂p2

2 dq1 ∧ dp2

−( ∂2L
∂q1∂p1

+ ∂2L
∂q2∂p2

+ p1
∂2L

∂u∂p1
+ p2

∂2L
∂u∂p2

+ ∂L
∂u

)dq1 ∧ dq2

(continued)



Some Remarks on Multisymplectic and Variational Nature of Monge-Ampère. . . 133

We can fix the value of the function in (24) to be constant, say .k = 1, since 
two forms which are multiple of each other by a smooth non-vanishing k 
yields the same M-A equation. Hence we search for .L ∈ C∞(J 1M) such that 
.ω = E(Lβ), which implies 

. 
∂2L

∂p1
2

= −1 , ∂2L
∂p2

2 = c ,
∂L

∂u
= ∂L

∂qμ
= 0 , μ = 1, 2 .

Thus .L = L(pμ) and we can solve the first two conditions by the choice 

. L = 1

2
(−p1

2 + cp2
2) .

because the M-A equation .�E(Lβ)φ = 0 writes 

. 
∂(j1φ)∗L

∂φ
− ∂

∂qμ

∂(j1φ)∗L
∂φμ

= φ11 − cφ22 = 0 .

We see that .(j1φ)∗L = 1
2 (−φ1

2 + cφ2
2) is a solution to the inverse problem 

for (25). ��

4.1 Plebański, Grant, and Husain Equations 

Proceeding in a similar fashion as in the previous example, we analysed both 
Plebański heavenly, Grant, and Husain equations in .dim = 4. The following tables 
summarize simple representations, show their non-effectivity and display effective 
parts of the simple representations of the aforementioned PDEs, . φ being a real 
function. Since the effective forms of M-A equations in four dimensions tend to 
have lengthy expressions, we introduce the following shorthand notation, which 
also facilitate the computations. We denote 

. dμ := dqμ, dμ := dpμ ,

and for the wedge product, we write 

. dμ
ν := dqμ ∧ dpν, d μ

ν := dpν ∧ dqμ .

Notice that the position and order of indices matter and there are obvious relations 
such as .d

μ
ν = −d

μ
ν , or for the contractions .∂qμ �dν = δ

μ
ν (the Kronecker delta) and 

.∂qμ � dν = ∂pμ � dν = 0, et cetera. For example, the symplectic form is in the above
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Table 1 Simple representations (which are not effective, .⊥ω �= 0) of 1st Plebański (P1), 2nd 
Plebański (P2), Grant (G), and Husain (H) equations 

Monge-Ampère equation Simple representation 

1st Plebanski´ .φ13φ24 − φ14φ23 = 1 . ωP 1 = d12 
12 − d12 

34 

2nd Plebanski´ .φ11φ22 − (φ12)
2 + φ13 + φ24 = 0 . ωP 2 = d123 

2 − d124 
1 + d34 

12 

Grant .φ11 + φ24φ13 − φ23φ14 = 0 . ωG = −d234 
1 − d12 

12 

Husain .φ13φ24 − φ14φ23 + φ11 + φ22 = 0 . ωH = d134 
2 − d234 

1 + d12 
12 

Table 2 Effective parts of simple representations of P1, P2, G, and H 

Effective form . ωε

1st Plebanski´ . ωP 1ε = −d1234 + 1 
3 (d12 

12 + d34 
34) − 1 

6 (d13 
13 + d14 

14 + d23 
23 + d24 

24) 
2nd Plebanski´ . ωP 2ε = 1 

2 (d124 
1 + d123 

2 + d234 
3 + d134 

4 ) + d34 
12 

Grant . ωGε = −d234 
1 + 1 

3 (d12 
12 + d34 

34) − 1 
6 (d13 

13 + d14 
14 + d23 

23 + d24 
24) 

Husain . ωHε = d134 
2 − d234 

1 + d12 
12 + d34 

34 − 1 
2 (d13 

13 + d14 
14 + d23 

23 + d24 
24) 

notation written as .� = d1 
1 + . . .  + dn 

n, the volume form on M is .β = d1234, and 
so on. 

Proposition 3.2 yields the following result. 

Corollary 3.2 Monge-Ampère equations from Table 1 do not correspond to a 
variational problem of a first-order Lagrangian function. 

Proof Table 2 shows the effective forms of Monge-Ampère equations under 
consideration. In all cases, the effective form contains at least one term of the form 
.d μν 

ξη. These terms do not occur in the expression (20). Thus the necessary condition 
for the existence of a first-order Lagrangian, given by the Proposition 3.2, is not 
satisfied. ��

We want to emphasize here that although the Plebański heavenly, Grant, and 
Husain equations do not have a first-order Lagrangian for which they would be E-L 
equations, in a different setup a Lagrangian can be found [8, 16]. Let us consider the 
second heavenly equation 

.φ11φ22 − (φ12)
2 + φ13 + φ24 = 0 . (26) 

If we single-out one coordinate among .q1, . . . , q4, say . q1, and introduce a new 
function . ψ , then we can write (26) as an evolution system in . q1 

.ψ − φ1 = 0 , . (27) 

ψ1φ22 − ψ2 
2 + ψ3 + φ24 = 0 , (28) 

Interestingly, the above system is a variational problem, since it is given by the E-L 
equations 
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. 
∂L 
∂φ 

− 
∂ 

∂qμ 
∂L 
∂φμ 

+ ∂2 

∂qμ∂qν 
∂L 

∂φμν 
= 0 , 

∂L 
∂ψ 

− 
∂ 

∂qμ 
∂L 
∂ψμ 

+ ∂2 

∂qμ∂qν 
∂L 

∂ψμν 
= 0 , 

of the functional 

.L[φ, ψ] = ψφ1φ22 + 
1 

2 
φ1φ3 − 

1 

2 
ψ2φ22 + 

1 

2 
φ2φ4 . (29) 

In [16], a method for treating the general case of Monge-Ampère equations is 
provided, together with systematic approach of finding Lagrangians for them after 
the decomposition into an evolution system. For further details regarding the above 
case, see [8]. 

The following example shows an equation which has a first-order Lagrangian, 
the corresponding effective form does not have constant coefficients, and is not 
a differential form over the cotangent bundle. We will see that the conditions of 
Proposition 3.2 are satisfied. 

4.2 Klein-Gordon Equation 

Let M be a four-dimensional Minkowski spacetime with coordinates .qμ and 
flat metric .ημν with signature .(+,−,−,−). Consider the (linear) Klein-Gordon 
equation 

.φ11 − φ22 − φ33 − φ44 + m2φ2 = 0 , (30) 

where .m ∈ R is a constant. We can describe (30) as a M-A equation .�ωφ = 0 via 
the form 

. ω = −β1 ∧ dp1 + 
4∑

μ=2 

βμ ∧ dpμ + m2uβ . 

This 4-form is not a simple representation of (30), due to the non-constant 
coefficient .m2u, but it is an effective form, see the Example 3.1. Comparing . ω with 
the local form of .E(Lβ) for general L (see (20)), we obtain the following set of 
conditions 

.ημν = ∂2L 
∂pμ∂pν 

, μ,  ν  = 1, . . . 4 , 

−m2u = ∂2L 
∂qμ∂pμ 

+ pμ 
∂2L 

∂u∂pμ 
− ∂L 

∂u . 
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One can easily check that the function L 

. L = 
1 

2 
(−p1 

2 + 
4∑

μ=2 

pμ 
2 + m2u2) ∈ C∞(J 1M) 

satisfies all the above conditions. It follows that 

. (j1φ)∗L = 
1 

2 
(−φ1 

2 + 
4∑

μ=2 

φμ 
2 + m2φ2) 

is a first-order Lagrangian for the Klein-Gordon equation. 

5 Multisymplectic Formulation 

In [3] F. Hélein provided a multisymplectic formulation of the Klein-Gordon 
equation (30) (in dimension n) over .M := 
n T ∗(M × R), equipped with the 
multisymplectic form [18, 19] 

.m := de ∧ β + dpμ ∧ dφ ∧ βμ , (31) 

where e is a fiber coordinate of the trivial line bundle .M × R → M , .pμ are the 
cotangent coordinates, .β = dq1 ∧ . . . ∧ dqn and .βμ = ∂qμ � β, with . qμ coordinates 
on a n-dimensional Minkowski spacetime M . Using (31), the following Hamiltonian 
function on . M is defined in such a way to correspond to solutions of (30) 

. H := e + 
1 

2 
ημνpμpν + 

1 

2 
m2φ2 , 

where .ημν is the Minkowski metric with signature .(+,−, . . . ,  −). Each solution of 
(30) is then interpreted as a Hamiltonian n-curve, defined by equations 

. pμ = ημν φν, μ  = 1, . . . , n  ,  

e = −1 

2 
ημν φμφν − 

1 

2 
m2φ2 , 

where .ημν is the inverse to . ημν . In the aforementioned paper, F. Hélein provided 
a canonical pre-quantization of the Klein-Gordon equation, and defined the notion 
of observables together with their brackets, which give rise to an infinite dimensional 
analogue of the Heisenberg algebra. The starting point of the method is the existence 
of a Lagrangian, which in the context of the Klein-Gordon equation is a first-order 
one. For more details see [3, 12, 17]. 
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The following theorem is due to D. Harrivel. It enables us to associate to certain 
effective forms on .J 1M their (non-unique) multisymplectic counterpart on the 
trivial line bundle over .J 1M . The proof can be found in [4]. Note that the key 
difference with respect to the previous multisymplectic formulation of F. Hélein is 
that them multisymplectic form can be associated with Monge-Ampère equations 
which are not variational, that is, equations which are not Euler-Lagrange for some 
first-order Lagrangian. As we have seen in the previous section, this is the case for 
all the equations in Table 1. 

Theorem 3.2 Let .ω ∈ �n (C) be an effective form, .n = dim M . Consider a trivial 
line bundle .T := J 1M × R → J 1M with fiber coordinate e. Define . mω ∈ �n+1(T) 
by 

.mω := de ∧ β + c ∧ ω . (32) 

Then . mω is a multisymplectic form if and only if 

1. The set .Sω := {∂q1 �ω, . . . , ∂qn �ω} is linearly independent over .�n−1(C), and, 
2. .dpω = 0. 

Once an equations has a simple representation, the corresponding effective form 
has constant coefficients, and thus the second assumption of Theorem 3.2 is trivially 
satisfied since .dp = p ◦ d. The linear independence of the set .Sω in the case of 4D 

equations is decided over .
( dimC

dim M−1

) = (8 
3

) = 56-dimensional space of 3-forms on 
. C. In all our cases, this can be determined almost without computation. 

5.1 Plebański, Grant, and Husain Equations 

For the first heavenly equation we have 

. SP 1 = {−d234 + x, d134 + y,−d124 + z, d123 + w} , 

where .x, y, z, w are linear combinations of .d μ 
νξ , for appropriate .μ, ν, ξ . We see that 

.SP 1 is linearly independent. Similarly for the second heavenly equation 

. SP 2 = {  1 
2 (d24 

1 + d23 
2 + d34 

4) + d34 
2, 

1 
2 (−d14 

1 − d13 
2 + d34 

3) − d34 
1, 

1 
2 (d12 

2 − d24 
3 − d14 

4) + d4 
12, 

1 
2 (d12 

1 + d23 
3 + d13 

4) + d3 
12} , 

which is a linearly independent set as the simple terms are all different. It is 
not difficult to check that the sets .SG and .SH for Grant and Husain equations, 
respectively, are also linearly independent. Thus the 5-form .mω is a multisymplectic 
form on .J 1M × R in all the four cases described in Table 1. 
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5.2 Klein-Gordon Equation 

Interestingly, and in contrast with the Plebański, Grant, and Husain equations, the 5-
form for the Klein-Gordon equation defined by (32) is not a multisymplectic form. 
To see this, take the differential 4-form 

. ω = −β1 ∧ dp1 + 
4∑

μ=2 

βμ ∧ dpμ + m2uβ , 

which, as we already discussed, is effective and represents (30) as a Monge-Ampère 
equation .�ωφ = 0. Due to the non-constant .m2u term, the exterior derivative gives 

. dω = m2du ∧ β ,  

which is not degenerate along the Reeb field. Thus .dp �= d and we have to project 
the form down to .�(C) (see (5) for the definition of p) 

. dpω = m2(du ∧ β − c ∧ χ � (du ∧ β)) = m2pμdqμ ∧ β .  

We see that the second condition of the Theorem 3.2 is not satisfied and thus . mω 
given by (32) is not a multisymplectic form. Notice that the first condition of the 
theorem is not violated as the set . Sω is linearly independent. 

6 Conclusion and Discussion 

In this work, we mainly focused on the following two questions. Firstly, can we 
decide whether a first-order Lagrangian for a given Monge-Ampère equation exists? 
Secondly, motivated by the work of F. Hélein [3] and D. Harrivel [4], can we 
associate a multisymplectic form to equations which are not variational with respect 
to a first-order Lagrangian? 

Regarding the first question, we provided a partial answer by formulating a 
necessary condition for the existence of a local solution to this inverse variational 
problem. This was done by representing a given equation by an effective differential 
form over the first jet space, and comparing it with an n-form that produces Euler-
Lagrange equation for a general, first-order Lagrangian function. 

Comparing the effective forms yields a computationally straightforward and 
simple method for obtaining a non-trivial information about Monge-Ampère equa-
tions in the context of strong inverse variational problems. Using the method, we 
showed that Plebański heavenly equations, Grant equation and Husain equation are 
not variational in our sense. Recall that the first heavenly equation is equivalent 
with the Grant equation after appropriate change of coordinates [6]. Using a 
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similar approach, we have shown (as expected) that the Klein-Gordon equation 
is variational by finding the well-known Lagrangian for it. The hypothesis is that 
the self-duality conditions imposed to derive the previous four equations creates an 
obstruction for the existence of the first-order Lagrangian. We want to study this 
problematics in more detail in our future work. 

The presented method is much more suitable for deciding the non-variational 
nature of a given equation than solving the local inverse problem explicitly. 
Moreover, it works only when restricted to the case of first-order Lagrangians. Nev-
ertheless, this limitation can be seen as desirable, since the first-order Lagrangians 
are of great importance throughout the physics. 

It is not clear at the moment how to generalize our approach to the case of more 
functions. The procedure can be naively extended for more scalar fields by introduc-
ing multiple Euler operators, the cost being degeneracy issues. This causes further 
problems, for example in the context of the unique decomposition of differential 
forms into the effective and non-effective part, which is an essential tool in our 
approach. In [9], B. Banos used the notion of bi-effective forms to efficiently deal 
with the complex Monge-Ampère equations, and proved the possibility to always 
obtain a unique bieffective decomposition. This is not equivalent in an obvious 
way to the aforementioned naive extension, as the Verbitsky-Bonan relations are 
not satisfied in our case (see [9], Theorem 1). This is connected with the fact that 
we do not restrict our forms to have coefficients independent of the u coordinate 
on .J 1M (which allows us to work, for example, with the Klein-Gordon equation). 
Whether this problems can be resolved will be part of our future investigations. 

Regarding the second question focused on the multisymplectic formulation of 
Monge-Ampère equations. Using the results of [4], we provided multisymplectic 
5-forms in the case of real 4-dimensional heavenly Plebański, Grant, and Husain 
equations, all of which are not variational in our sense. Interestingly, the same 
approach does not work for the Klein-Gordon equation as the corresponding 5-form 
is not multisymplectic. 

F. Hélein’s multisymplectic treatment of the Klein-Gordon equation provided 
in [3] starts with a first-order Lagrangian function. The other four Monge-Ampère 
equations we studied cannot be treated in the same way, unless going into higher 
order Lagrangians. On the other hand, the Theorem 3.2 provides a multisymplectic 
forms exactly for the four non-variational cases and fails for the Klein-Gordon 
equation. To provide some explanation of this, it would be interesting to compare 
the methods of [3, 17] with those in [4] in the situation of a general Monge-Ampère 
equation. 
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