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Preface

COVID-19 pandemic has driven most researchers online. Staying connected with
community has been really important during the lockdown. The Wisła 20-21 Winter
School & Workshop: Groups, Invariants, Integrals, and Mathematical Physics was
organized online by the Baltic Institute of Mathematics. Even though it was a
virtual event, participants were given an opportunity to interact with their colleagues
and well-known researchers in the field. This book is a summary of selected and
carefully reviewed lecture notes and contributions. The reader is expected to have
some basic knowledge of differential geometry and category theory.

The school was devoted to differential invariants, moving frames, and Poisson
algebras. There were four series of main lectures, given by Valentin Lychagin,
Eivind Schneider, Peter J. Olver, and Vladimir Roubtsov, respectively:

• Differential contra algebraic invariants
• Differential invariants of Lie pseudogroups
• The Theory and Applications of Moving Frames
• Poisson algebras

It is our pleasure to share these lectures, given by experts in their fields, with an
audience who were not fortunate to participate. Chapter “Differential Invariants in
Algebra” presents lecture notes on differential invariants with a focus on Lie groups,
pseudogroups, and their orbit spaces. Poisson structures in algebra and in geometry
are discussed in chapter “Lectures on Poisson Algebras”. There are many research
papers and lecture notes on moving frames, we refer to the Peter Olver’s webpage1

as a good source for the interested reader.
The workshop was focused on the intersection of differential geometry, differ-

ential equations, and category theory. Contributions are written in a pedagogical
style while simultaneously bringing to attention recent advances made by their
authors. Chapter “Some Remarks on Multisymplectic and Variational Nature of
Monge-Ampère Equations in Dimension Four” is focused on multisymplectic and

1 https://www-users.cse.umn.edu/~olver/.
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viii Preface

variational nature of Monge-Ampère equations in dimension four. The problem
of the integrability of fifth-order equations admitting a Lie symmetry algebra is
addressed in chapter “Generalized Solvable Structures Associated to Symmetry
Algebras Isomorphic to .gl(2,R) � R”. Applications of van Kampen theorem for
groupoids to computation of homotopy types of striped surfaces are discussed in
chapter “Fundamental Groupoids and Homotopy Types of Non-compact Surfaces”.
Finally, chapter “A Geometric Framework to Compare Classical Field Theories”
presents a geometric framework to compare classical systems of PDEs in the
category of smooth manifolds.

We hope that this book will give you, dear reader, a good entry point, and that it
will aid with motivation and competence to dive deeper into the world of differential
geometry and mathematical physics.

Warszawa, Poland Maria Ulan
Brno, Czech Republic Stanislav Hronek
January 2022
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5.1 Plebański, Grant, and Husain Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2 Klein-Gordon Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Generalized Solvable Structures Associated to Symmetry
Algebras Isomorphic to .gl(2,R) �R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Adrián Ruiz and Concepción Muriel
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
2 Preliminaries: Solvable Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3 Generalized Solvable Structures for GL(2,R) � R-Invariant

Fifth-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.1 Construction of a Generalized Solvable Structure . . . . . . . . . . . . . . . . . . 146

4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Fundamental Groupoids and Homotopy Types of Non-compact
Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Sergiy Maksymenko and Oleksii Nikitchenko
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
2 Striped Surface and Its Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

2.1 Seams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
2.2 Foliated Characterization of Striped Surfaces . . . . . . . . . . . . . . . . . . . . . . 160
2.3 Graph of a Striped Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
2.4 Canonical Injection ϕ : G → Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

3 Fundamental Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
3.1 Small Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
3.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
3.3 Coequalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
3.4 Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



xiv Contents

3.5 Fundamental Groupoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.6 Coproducts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.7 van Kampen Theorem for Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.8 �1-Diagram for Covers by Simply Connected Sets . . . . . . . . . . . . . . . . 170

4 Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A Geometric Framework to Compare PDEs and Classical Field
Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Lukas Silvester Barth
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

1.1 Previous Attempts to Compare Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
1.2 Requirements for the Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
1.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

2 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
3 Correspondence and Intersection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

3.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
3.2 Formal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
3.3 Local Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

4 Consistency Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.1 Smoothness Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.2 Differential Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5 Formal Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.1 Definitions and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.2 Formal Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.3 Integrability Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.4 Explicit Example of the Application of Proposition 16 . . . . . . . . . . . . 209

6 Shared Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.2 Solution Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7 Bäcklund Correspondences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8 Equivalence Up to Symmetry and Quotient Equations . . . . . . . . . . . . . . . . . . . . 226
9 Application to Electrodynamics and Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . 234

9.1 Formal Integrability of Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . 235
9.2 Embedding of Vacuum Electrodynamics in Wave Equations . . . . . . 237
9.3 Equivalence Up to Gauge Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
9.4 Shared Structure of Magneto-Statics and Hydrodynamics . . . . . . . . . 243

10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249



Contributors

Lukas Silvester Barth Max Planck Institute for Mathematics in the Sciences,
Leipzig, Germany

Valentin Lychagin Department of Mathematics and Statistics, UiT the Arctic
University of Norway, Tromsø, Norway

Sergiy Maksymenko Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

Concepción Muriel Department of Mathematics, University of Cádiz, Campus
Río San Pedro, Cádiz, Spain

Oleksii Nikitchenko Kyiv Academic University, Kyiv, Ukraine

Michael Roop Baltic Institute of Mathematics, Warsaw, Poland

Vladimir Rubtsov LAREMA UMR 6093, CNRS and Université d’Angers,
Angers Cedex, France

IGAP (Institute of Geometry and Physics), Trieste, Italy

Adrián Ruiz Department of Mathematics, University of Cádiz, Campus Río San
Pedro, Cádiz, Spain

Radek Suchánek Department of Mathematics and Statistics, Masaryk University,
Brno, Czech Republic

LAREMA UMR 6093, CNRS, Université d’Angers, Angers Cedex, France

xv



Differential Invariants in Algebra 

Valentin Lychagin and Michael Roop 

Abstract In these lectures, we discuss two approaches to studying orbit spaces 
of algebraic Lie groups. Due to algebraic approach orbit space, or quotient, is an 
algebraic manifold, while from the differential viewpoint a quotient is a differential 
equation. The main goal of these lectures is to show that the differential approach 
gives us a better understanding of structure of invariants and orbit spaces. We 
illustrate this on classical equivalence problems, such as . SL—classification of 
binary and ternary forms, and affine classification of algebraic plane curves. 

1 Introduction 

The concept of an invariant appears whenever it comes to any kind of a classification 
problem. In these lectures, we would like to explain basic concepts of the invariant 
theory and show its applications to algebraic problems, such as .SL-classification of 
binary and ternary forms, and affine classification of algebraic plane curves. It seems 
helpful to us to recommend books [1, 2] and references therein to the interested 
reader. 

The origin of the invariant theory goes back to the middle of the nineteenth 
century and has not only mathematical motivation, such as affine classification 
of quadratic forms, finding canonical forms for equations of conics and quadrics, 
obtained in works of Euler, Lagrange, Cauchy, Gauss, but also a physical one 
(finding principal axes of inertia, investigation of planets’ motion). 

The first results on .SL-classification of binary forms go back to 1841 and belong 
to Boole, who observed that discriminants of binary forms are invariant under linear 
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transformations with determinant equal to 1. Later, in 1845, Cayley constructed 
invariants using the technique of hyperdeterminants developed by Cayley himself 
[3, 4]. In 1849, Aronhold provided a systematic study of ternary forms of degree 
3, and 2 years later he gave a general formulation of invariant theory for algebraic 
forms. He also obtained differential equations for invariants of algebraic forms, that 
were also obtained by Cayley for binary forms in 1852, which led to a series of 
works [5–8] known as memoirs upon quantics. 

In 1863, Aronhold observed that the number of rationally independent absolute 
invariants equals the difference between the number of coefficients of the form and 
the number of coefficients in a linear transformation (in modern terms, the difference 
between the dimension of the space of forms and the dimension of the group) [9]. In 
1861, Clebsch, using results of Aronhold, developed symbolic methods of finding 
invariants of algebraic forms [10]. These methods were later developed by Gordan 
and rapidly became popular. 

In 1856, Cayley and Sylvester showed that binary forms of degrees up to four 
have a finite number of so-called irreducible covariants. Covariant is a polynomial 
in x, y, and coefficients of the form, invariant under the transformations of the group 
(e.g. of .SL2 transformations). Irreducibility means that such covariants cannot be 
expressed as rational functions of covariants of lower degree [11]. This became the 
origin of the finiteness problem for generating set of invariants. 

Gordan was the first who proved the finiteness of a number of covariants for the 
binary form of arbitrary degree (Gordan’s theorem) [12], and his method allowed to 
construct a complete system of irreducible covariants for binary forms of degrees 
5 and 6. Later, Sylvester discovered the same result for the case of a binary form 
of degree 12. In 1880, von Gall constructed a complete system of covariants for a 
binary form of degree 8, and 8 years later for that of degree 7, which turned out to 
be more complicated than the case of degree 8 [13, 14]. Binary forms of degree 7 
were also elaborated by Dixmier and Lazard [15]. Hammond provided the proof for 
the case of binary seventhics [16]. 

Finally, in 1890, Hilbert gave a complete proof of Gordan’s result for the case of 
arbitrary n-ary forms of an arbitrary degree [17]. 

While solving the problem of constructing a complete system of irreducible 
invariants and covariants, the very notion of an invariant was changing. The theory 
of differential invariants was developed by Halphen in 1878 in his thesis [18] and 
was later generalized by Norwegian mathematician Sophus Lie, who showed that 
all previous results of invariant theory are particular cases of more general theory of 
invariants of continuous transformation groups [19, 20]. Lie did not use symbolic 
methods of Aronhold and Clebsch, that hardly could be extended to the cases of 
binary forms of higher degrees due to their dramatic bulkiness. 

In the context of modern invariant theory and simultaneously in the context of 
these lectures, it is worth mentioning such results as Rosenlicht [21] and global Lie-
Tresse theorems [22], that justified the appearance of rational differential invariants 
in classification problems and paved a way for solving algebraic equivalence 
problems using differential-geometric techniques [23, 24]. This will be the core 
point of the present lectures.
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The paper is organized as follows. In Sect. 2, we start with .SL2(C) classification 
of binary forms and explain how to get rational differential invariants using the 
observation that binary forms are solutions of the Euler equation. In Sect. 3, we  
give a general introduction to modern invariant theory together with discussion of 
Rosenlicht and Lie-Tresse theorems and explanation how the last can be used to find 
smooth solutions to PDEs, as well as those with singularities. Sect. 4 is devoted to 
affine classification of algebraic plane curves. The last Sect. 5 concerns the problem 
of .SL3(C)-classification of ternary forms using results obtained in the previous 
sections. 

All essential computations for this paper were performed in Maple with the 
DifferentialGeometry package created by I. Anderson and his team [25], and the 
first author is grateful to him for the very first introduction to the package. 

2 Invariants of Binary Forms 

In this section, we study .SL2—invariants of binary n—forms. We show the differ-
ence between algebraic and differential approaches and the power of differential one 
in finding invariants. 

2.1 Algebraic Point of View 

Binary form of degree n is a homogeneous polynomial on . C2

.φb =
n∑

i=0

bi,n−i

xi

i!
yn−i

(n − i)! , bi,n−i ∈ C. (1) 

The space of all binary forms of degree n is .Bn � C
n+1. The action of the Lie group 

. SL2(C) = {A ∈ Mat2×2(C) | det(A) = 1}

on . Bn is defined by the following way: 

.A : Bn � φb �→ Aφb = φb ◦ A−1 ∈ Bn. (2) 

This action induces the action on coefficients .bi,n−i . Due to algebraic approach, 
where we believe that the quotient is an algebraic manifold, to describe the quotient 
space .Bn/SL2(C) one needs to find polynomials .I (b) = I (b0,n, . . . , bn,0) invariant 
under the action (2). Such functions are called algebraic invariants.
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Theorem 1.1 (Gordan-Hilbert, [12, 17]) The algebra of polynomial .SL2— 
invariants of binary n-forms is finitely generated, and the quotient space is an 
affine, algebraic manifold. 

However, the problem of finding generators of this algebra and syzygies in this 
algebra turned out to be specific for every n. For instance, the case of .n = 3 was 
elaborated by Bool in 1841, who observed that the discriminant of the cubic is an 
invariant. This became the origin of the classical invariant theory. Results regarding 
the case of .n = 4 belong to Bool, Cayley and Eisinsteine (1840–1850) [3, 4, 26, 27]. 
For quintic .(n = 5), the invariants were found by Sylvester and Hilbert (see, for 
example, [26, 27]). They are dramatically huge to write down explicitly, the invariant 
of degree 18 found by Hermite contains 848 terms! The main problem is that there 
is no general approach in the classical invariant theory. This motivates us to develop 
a differential approach [23, 24]. 

2.2 Differential Point of View 

The key idea underlying the differential approach is to identify . Bn with the space of 
smooth solutions to Euler equation 

.xfx + yfy = nf. (3) 

It is worth mentioning that class of solutions to (3) includes not only binary n-forms, 
but also other homogeneous functions of degree n. Thus, solving the problem for all 
solutions to (3) we at the same time solve the problem of .SL2-equivalence of binary 
forms. 

Equation (3) defines a smooth submanifold . E1 in the space of 1-jets . J1 = J 1
(
C

2
)

of functions on . C2: 

. E1 = {xu10 + yu01 = nu00} ⊂ J1.

Solutions of (3) are special type surfaces . Lf ⊂ E1

. Lf = {u00 = f (x, y), u10 = fx, u01 = fy

} ⊂ E1.

It is often reasonable to consider not only Eq. (3), but also a collection of its 
differential consequences up to some order k, i.e. a prolongation .Ek ⊂ Jk . The  
space . Jk is a space of k-jets of smooth functions on . C2: 

.Jk =
{
[f ]kp | p ∈ C

2, f ∈ C∞ (
C

2
)}

,
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where .[f ]kp is the equivalence class of functions, whose Taylor polynomials of the 

length k at the point .p ∈ C
2 are the same (values and all derivatives up to order k 

at the point p coincide). The space of k-jets is equipped with canonical coordinates 
.(x, y, u00, . . . , uij , . . .), .0 ≤ i + j ≤ k, .dim

(
Jk
) = (k+2

2

)+ 2, and 

. uij

(
[f ]kp

)
= ∂i+j f

∂xi∂yj
(p).

The action .A : C2 → C
2 of the group .SL2 can be prolonged to . Jk by the natural 

way 

. A(k) : Jk → Jk, A(k)
(
[f ]kp

)
= [Af ]kAp.

Moreover, if 

. L
(k)
f =

{
uij = ∂i+j f

∂xi∂yj
, 0 ≤ i + j ≤ k

}

is a graph of the k-jet of function f , then 

. A(k)
(
L

(k)
f

)
= L

(k)
Af .

Let us now put .k = n and let .En ⊂ Jn be the .(n − 1)-prolongation of the Euler 
equation together with .uij = 0: 

. En =
{

dk+l

dxkdyl
(xu10 + yu01 − nu00) = 0, 0 ≤ k + l ≤ n − 1, uij = 0,

n + 1 ≤ i + j

}
.

One can show that .dimEn = n + 3. The prolongations .A(n) of group elements . A ∈
SL2 preserve the submanifold . En and therefore define the action .A(n) : En → En. 
Since .L(n)

φ ⊂ En, any binary n-form can be considered as a solution to . En. The  

property .A(n)
(
L

(n)
φ

)
= L

(n)
Aφ shows that the group .SL2(C

2) is a symmetry group of 

the Euler equation. 
A rational function .I ∈ C∞(Ek) is said to be a rational differential .SL2-invariant 

of order k, or simply  differential invariant, if .I ◦ A(k) = I , for all .A ∈ SL2(C). 
As we shall see further, the Lie-Tresse theorem states that the algebra of rational 

differential .SL2-invariants of order .≤ n on the Euler equation . En gives us realization 
of the quotient .En/SL2(C) as a new differential equation of order 3, and .SL2(C)-
orbits of binary n-forms correspond to solutions of this equation.
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The following observations will be important for us.

• the plane .C2 is the affine space, i.e. a space with the standard translation of 
vectors (trivial connection) and distinguished point .0

• the plane .C2 is the symplectic space, equipped with the structure form .� =
dx ∧ dy

• the group .SL2(C) preserves these both affine and symplectic structures, and the 
point . 0. 

As we shall see further, these structures will allow us to equip the set of 
differential .SL2(C)-invariants with additional structures and will give us explicit 
methods of finding invariants. 

2.3 Relations Between Algebraic and Differential Invariants 

One can easily see that due to (1) 

. bi,n−i = ∂nφb

∂xi∂yn−i
.

Therefore, the function .I (bn,0, . . . , b0,n) is an .SL2(C)-invariant if and only if 
.I (un0, . . . , u0n) is a differential .SL2(C)-invariant of order n. Thus, algebraic 
.SL2(C)-invariants of binary n-forms are differential invariants of the form 
.I (u0n, . . . , un0) and finding differential invariants we simultaneously find also 
algebraic ones. 

2.4 Lie Equation 

Since the Lie group .SL2(C) is connected, the condition .I ◦ A(k) = I can be written 
in an infinitesimal form: 

.X(k)(I ) = 0, X ∈ sl2, (4) 

where .X(k) is the kth prolongation of the vector field .X ∈ sl2, and Eq. (4) is called 
Lie equation. The Lie algebra . sl2 is generated by vector fields 

. sl2 = 〈X+ = x∂y, X− = y∂x, X0 = x∂x − y∂y〉

with commutators 

.[X+, X−] = X0, [X0, X+] = 2X+, [X0, X−] = −2X−. (5)
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Due to Lie algebra structure (5), condition .X(k)
0 (I ) = 0 is not independent, and Lie 

equation (4) becomes 

. X
(k)
+ (I ) = 0, X

(k)
− (I ) = 0.

This equation also appeared in Hilbert’s lectures [26]. 
Following some empirical observations, according to which the number of 

functionally independent invariants equals the codimension of the regular orbit (we 
shall explain this strictly by means of the Rosenlicht theorem in the forthcoming 
sections), let us now compute the numbers of functionally independent algebraic 
and differential invariants. 

Since 

. dim(Jk) = (k + 1)(k + 2)

2
+ 2,

the number of independent differential invariants of kth order on . Jk equals 

. dim(Jk) − dim(sl2) = k(k + 3)

2
.

Since .dim(En) = n + 3, the number of differential invariants of binary n-forms 
equals .dim(En) − 3 = n, and the number of independent algebraic invariants of 
binary n-forms equals .dim(Cn+1) − 3 = n + 1 − 3 = n − 2. 

This discussion is true for the case .n ≥ 3, when the Lie algebra of the stabilizer 
of the form is trivial. In the case .n = 2 its dimension equals 1, and therefore there 
is only one invariant in this case, which is the discriminant. 

2.5 Resultants and Discriminants 

Here, we will repeat the Boole’s result on the .SL2-invariance of the discriminant of 
binary forms. 

Any binary n-form can be represented as a product of linear functions . Iφ
i , . i =

1, . . . , n: 

. φ =
n∏

i=1

I
φ
i .

Obviously, functions .Iφ
i are defined up to multipliers . λi : .I

φ
i �→ λiI

φ
i , where 

.

n∏
i=1

λi = 1. Let .ψ ∈ Bn be another binary form, .ψ =
m∏

i=1
I

ψ
i . Then, one can define 

resultant between forms . φ and . ψ by the following way:
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. Res(φ,ψ) =
∏

i,j

[Iφ
i , I

ψ
j ],

where .[Iφ
i , I

ψ
j ] is the Poisson bracket associated with the symplectic form . � =

dx ∧ dy. 
The function 

. Discr(φ) = Res(φx, φy),

is called discriminant. 
Remark that here .(x, y) are canonical coordinates of the vector space . C2, i.e. 

.� = dx ∧ dy in these coordinates. 
Let us collect basic properties of discriminants and resultants. 

1. .Res(φ,ψ) does not depend on scalings .Iφ
i �→ αiI

φ
i , . Iψ

i �→ βiI
ψ
i

2. .Res(φ,ψ) is a polynomial in coefficients of . φ, . ψ of degree . (n + m)

3. .Res(φ,ψ) is an .SL2(C)-invariant: . Res(Aφ,Aψ) = Res(φ,ψ)

4. .Discr(φ) is a polynomial .SL2(C)-invariant of degree .(2n − 2). 

Using discriminants and resultants one gets algebraic invariants from differential 
ones. 

Example Consider the following binary form of degree 3: 

.φ3(x, y) = x3 + a1x
2y + a2xy2 + a3y

3 (6) 

1. The discriminant .Discr(φ) of cubic (6) 

. J1 = Discr(φ) = 12a3
1a3 − 3a2

1a2
2 − 54a1a2a3 + 12a3

2 + 81a3
3

is a polynomial .SL2(C)-invariant of order 4. This illustrates the property 
4. 

2. Let us take the differential .SL2-invariant .u20u02 −u2
11 and restrict it on the 

cubic (6). We get the following quadric 

. φ2(x, y) = 4(3a2 − a2
1)x2 + 4(9a3 − a1a2)xy + 4(3a1a3 − a2

2)y2.

Taking its discriminant, we get the polynomial invariant .J2 = −16J1. This  
illustrates how one can get polynomial invariants from differential ones.
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2.6 Operations and Structures on Invariants 

2.6.1 Monoid Structure 

Any function .φ ∈ C∞(Jk) generates a differential operator by the following way: 

. φ̂ : C∞(C2) → C∞(C2),

or in coordinates 

. φ̂ : f (x, y) �→ φ
(
x, y, f, fx, fy, . . .

)
,

if .φ = φ(x, y, u00, u10, u01, . . .). Then, condition for . φ to be an .SL2(C)-invariant 
reads 

. A ◦ φ̂ = φ̂ ◦ A, A ∈ SL2(C).

Now we can introduce an operation . ∗ of composition for invariants by the following 
way: 

. φ̂ ∗ ψ = φ̂ ◦ ψ̂.

Exams 

. u00 ∗ ψ = ψ, u10 ∗ ψ = dψ

dx
, u01 ∗ ψ = dψ

dy
, uij ∗ ψ = di+jψ

dxidyj
,

. (u20u02 − u2
11) ∗ ψ = d2ψ

dx2

d2ψ

dy2 −
(

d2ψ

dxdy

)2

,

where 

. 
d

dx
= ∂

∂x
+
∑

i,j=0

ui+1,j

∂

∂uij

,
d

dy
= ∂

∂y
+
∑

i,j=0

ui,j+1
∂

∂uij

are total derivatives. 

Note that the composition of differential invariants of orders k and l is a 
differential invariant of order .(k + l), and composition with .u00 gives us the same 
invariant. This means that the composition operation endows the set of differential 
.SL2(C)-invariants with a monoid structure.
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Theorem 1.2 The set of differential .SL2(C)-invariants is a monoid with unit . u00. 

Example The differential .SL2(C)-invariants of order 1 are 

. φ = F(u00, xu10 + yu01).

Let . ψ be another invariant of order k. Then, 

. φ ∗ ψ = F

(
ψ, x

dψ

dx
+ y

dψ

dy

)

is a differential invariant of order .(k + 1). 

2.6.2 Poisson Structure 

Recall that the symplectic form .� = dx ∧ dy is .SL2-invariant. Define the Poisson 
bracket for functions on jet spaces by the following way: 

. d̂φ ∧ d̂ψ = [φ,ψ]�,

where .d̂f = df
dx

dx + df
dy

dy is the total differential, .f ∈ C∞(Jk). As we shall see 

below, . d̂ is an invariant operator. Then, we get 

. [φ,ψ] = dφ

dx

dψ

dy
− dφ

dy

dψ

dx
,

and if . φ and . ψ are differential .SL2-invariants, then .[φ,ψ] is a differential invariant 
too. 

Theorem 1.3 The algebra of .SL2-invariants is a Poisson algebra. 

Example Let us take two differential .SL2(C)-invariants: .J1 = u00 and . J2 =
u20u02 − u2

11. Taking the Poisson bracket between them we get a differential 
.SL2(C)-invariant of the third order: 

. J3 = [J1, J2] = u01(2u11u21 − u02u30 − u20u12) + u10(u02u21

+ u20u03 − 2u11u12).

As en exercise, we propose to check it to the reader.
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2.6.3 Invariant Frame 

Taking the kth term in the Taylor decomposition of a function .f (x, y), we get 
symmetric differential forms 

. dkf =
k∑

i=0

∂kf

∂xi∂yk−i

dxi

i!
dyk−i

(k − i)! , k = 1, 2, . . .

We shall see later on that these tensors are defined by the affine connection, which 
is in our case the trivial connection. Therefore, they are invariants of the affine 
transformations, i.e. 

. dk(Af ) = A(dkf ), A ∈ SL2(C).

Let us define tensors . 	k on jet spaces by the following way: 

. 	k =
k∑

i=0

ui,k−i

dxi

i!
dyk−i

(k − i)! .

Then, .dkf = 	k|Lk
f

, and . 	k are .SL2-invariants. 

On the space . J2 we have the following .SL2-invariant tensors: 

. 	1 = u10dx + u01dy,

	2 = u20
dx2

2
+ u11dxdy + u02

dy2

2
,

� = dx ∧ dy.

As we shall see further, the Lie-Tresse theorem states that the algebra of differential 
invariants is a differential algebra, and we now turn the algebra of invariants into the 
differential algebra by introducing the invariant derivations 

. ∇i = Ai

d

dx
+ Bi

d

dy
, i = 1, 2,

where . Ai and . Bi are functions on . J2, satisfying the conditions: 

. ∇1�� = 	1, ∇2�	2 = 	1.

Direct computations give us the following result: 

. ∇1 = u01
d

dx
− u10

d

dy
, . (7)
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∇2 = 
2(u02u10 − u11u01)


2 

d 
dx 

+ 
2(u20u01 − u11u10)


2 

d 
dy 

, (8) 

where .
2 = u20u02 − u2
11. 

Their bracket is 

. [∇1,∇2] = A∇1 + B∇2,

where A and B are differential .SL2-invariants of order 3, and 

. A|E3
= 2(2 − n)

n − 1
, B|E3

= 0.

Theorem 1.4 Let . φ be a differential .SL2-invariant of order .≤ k. Then, .∇1(φ) and 
.∇2(φ) are differential .SL2-invariants of order .≤ k + 1. 

This means that the algebra of differential .SL2-invariants equipped with invariant 
derivations .∇1 and .∇2 becomes a differential algebra. Summarizing all above 
discussion, we have: 

Theorem 1.5 The algebra of differential .SL2-invariants is a

• monoid with unit .u00
• Poisson algebra
• differential algebra 

We can see that the differential viewpoint allows us to endow the set of invariants 
with much more interesting structures comparing with those we had in the algebraic 
situation. 

2.7 Invariant Coframe 

Let us now construct the dual frame .〈ω1, ω2〉, which is an .SL2-invariant coframe, 
where .ωi = aidx + bidy and coefficients . ai , . bi are such that .ωi(∇j ) = δij . 

Simple computations give us 

. ω1 = u20u01 − u11u10

J21
dx − u02u10 − u11u01

J21
dy,

ω2 = 
2

2J21
(u10dx + u01dy),

where 

. J21 = u2
01u20 − 2u10u01u11 + u2

10u02

is an .SL2-invariant of order 2, called flex invariant [28].
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The original coframe .〈dx, dy〉 is expressed in terms of .〈ω1, ω2〉 as 

. dx = u01ω1 + 2(u02u10 − u11u01)


2
ω2,

dy = −u10ω1 + 2(u20u01 − u11u10)


2
ω2.

And finally we are able to write down the invariant tensors . 	k in the form 

. 	k =
k∑

i=0

Ii,k−i

ωi
1ω

k−i
2

i!(k − i)! .

Since . 	k are invariants, .ω1,2 are invariants, we get: 

Theorem 1.6 Functions .Ii,j are .SL2-invariants of order .(i + j), and any rational 
differential invariant is a rational function of them. 

Exams

• . k = 0
The only invariant of the zeroth order is .I0,0 = u00.

• . k = 1

.	1 = 2J21


2
ω2.

• . k = 2

.	2 = J21

2
ω2

1 + 2J21


2
ω2

2.

• . k = 3

. I3,0 = −1

6
u03u

3
10 + 1

2
u12u01u

2
10 − 1

2
u21u

2
01u10 + 1

6
u3

01u30,

. 

I1,2 = 
−2
2 ((2u2

11u30 − 4u11u20u21 + 2u12u
2
20)u

3
01 + 2u10(u21u

2
11 −

− 2u02u30u11 + u20(2u21u02 − u03u20))u
2
01 + 2u2

10(u
2
02u30 −

− 2u02u12u20 + 2u03u11u20 − u2
11u12)u01

− 2u3
10(u

2
02u21 − 2u02u11u12 + u03u

2
11)),

(continued)
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. 

I2,1 = 
−1
2 ((−u11u30 + u20u21)u

3
01 + u10(u02u30 + u11u21 − 2u12u20)u

2
01 −

− u2
10(2u21u02 − u03u20 − u11u12)u01 + u3

10(u02u12 − u03u11)),

. 

I0,3 = 
−3
2

(
u03

3
(u01u20 − u10u11)

3

+ 2(u01u11 − u02u10)(u01u20 − u10u11) ·
· (u01u11u21 − u01u12u20 − u02u10u21 + u10u11u12) −

− 4u30

3
(u01u11 − u02u10)

3
)

.

2.8 Weights 

Consider the vector field .V = x∂x + y∂y . Its flow is the scale transformations on 
the plane . C2, and its .∞-th prolongation is 

. V∗ = x∂x + y∂y −
∑

k=1

k

k∑

i=1

ui,k−i∂ui,k−i
.

The vector field V , as well as . V∗ commutes with the .SL2(C)-action and therefore 
for every .SL2-invariant I the function .V∗(I ) is invariant too. 

We say that invariant I has weight .w(I) ∈ Z, if  

. LV∗(I ) = w(I)I,

where .LV∗ is the Lie derivative along the vector field . V∗. 

Example 

. w(uij ) = −(i + j), w(x) = 1, w(
2) = −4.

Since tensors . 	k are invariants of affine transformations, .w(	k) = 0. Moreover, 
.w(ω1) = 2, .w(ω2) = 0, and therefore .w(Ii,j ) = −2i.
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Weights can be used to find rational .GL2(C)-invariants from polynomial .SL2(C)-
invariants using the following observation. 

Lemma 1.1 Rational .GL2(C)-invariants (algebraic or differential) have the form 

. I = P

Q
,

where P and Q are polynomial .SL2(C)-invariants (algebraic or differential) of the 
same weight. 

We leave the proof of this lemma to the reader as an exercise. 

2.9 Invariants of Binary Forms for n = 2, 3, 4 

Recall that .Bn � C
n+1, and the dimension of the group .SL2(C) equals 3, therefore 

general orbits have dimension 3 and codimension .(n − 2), when .n ≥ 3. 
An orbit .SL2(C)φ is said to be regular, if the corresponding point on the quotient 

.C
n+1/SL2(C) is smooth, i.e. there exist .(n − 2) independent (in a neighborhood of 

the point) rational invariants .I1, . . . , In−2, such that the orbit is given by equations 
.I1 = c1, . . . , In−2 = cn−2, where . ci are constants. Independence means that . dI1 ∧
. . .∧ dIn−2 �= 0 in the neighborhood of the orbit. Thus .I1, . . . , In−2 are regarded as 
local coordinates on the quotient, and .c1, . . . , cn−2 are coordinates of the orbit. The 
Rosenlicht theorem states that all other rational invariants are rational functions of 
.I1, . . . , In−2. 

For quadrics .(n = 2) we have only one differential invariant .
2 = u20u02 −u2
11. 

Recall that by replacing . uij with . bij we get algebraic invariants. 
For cubics .(n = 3) we need only .dim

(
C

4/SL2(C)
) = 1 algebraic invariant, 

which is the discriminant .
3 of the cubic, and .dim (E3/SL2(C)) = 3 independent 
rational differential invariants, which are 

.J1 = 
2 = u02u20 − u2
11, J2 = ∇1(
2), J3 = 
2∇2(u00). (9) 

Let us restrict differential invariants (9) to the cubic . φ. We get three functions 
.J

φ
1 , J

φ
2 , J

φ
3 on a plane, namely, binary forms of degrees 2, 3, 4, therefore, there 

is one polynomial relation between them: 

.(J
φ
1 )5 + (J

φ
2 )2(J

φ
1 )2 − 16
3(φ)(J

φ
3 )2 = 0, (10) 

where .
3(φ) = Discr(φ) is the discriminant of the cubic. 
Syzygy (10) can be obtained in Maple using the following code: 

restart; 
with(DifferentialGeometry):with(Groebner):
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DifferentialGeometry:-Preferences("JetNotation", 
"JetNotation2"): 

with( JetCalculus ): 
DGsetup( [x, y], [u], M, 4): 
Delta2:=u[0,2]*u[2,0]-u[1,1]^2: 
Define invariant derivations according to (7)-(8) 
nabla1:=f->u[0,1]*TotalDiff(f,x)-u[1,0]*TotalDiff(f,y): 
nabla2:=f->2*(u[0,2]*u[1,0]-u[1,1]*u[0,1])/ 

Delta2*TotalDiff(f,x)+2*(u[2,0]*u[0,1]-
u[1,1]*u[1,0])/Delta2*TotalDiff(f,y): 

Let phi be a binary 3-form 
phi:=add(b[i,3-i]*x^i/(i!)*y^(3-i)/(3-i)!,i=0..3): 
First invariant (Hessian) 
J1:=u[0,2]*u[2,0]-u[1,1]^2: 
Second invariant 
J2:=nabla1(J1): 
Third invariant 
J3:=simplify(Delta2*nabla2(u[0,0])): 
Restricting invariants to the cubic 
Restr:=(f1,f2)->eval(f1,{u[0,0]=f2, 
u[0,1]=diff(f2,y), 
u[1,0]=diff(f2,x), 
u[2,0]=diff(f2,x$2), 
u[0,2]=diff(f2,y$2), 
u[1,1]=diff(f2,[x,y]), 
u[3,0]=diff(f2,x$3), 
u[2,1]=diff(f2,[x,x,y]), 
u[1,2]=diff(f2,[x,y,y]), 
u[0,3]=diff(f2,y$3)}): 
Restriction of J1 to the cubic 
J1phi:=Restr(J1,phi): 
Restriction of J2 to the cubic 
J2phi:=Restr(J2,phi): 
Restriction of J3 to the cubic 
J3phi:=Restr(J3,phi): 
Finding syzygy 
syz1:=Basis([J1phi-Z0, J2phi-Z2, J3phi-Z3], 

plex(x, y, Z0, Z2, Z3))[1]: 

Removing the restriction to the cubic . φ from (10), we get a differential equation of 
the third order: 

.

{
(J1)

5 + (J2)
2(J1)

2 − 16
3(φ)(J3)
2 = 0

}
⊂ J3. (11) 

Thus we have the following criterion of .SL2(C)-equivalence of binary 3-forms:



Differential Invariants in Algebra 17

Theorem 1.7 Let . φ be a regular binary 3-form (.
3(φ) �= 0). Then, .SL2(C)-orbit of 
. φ consists of solutions to the third order differential equation (11) together with . E3. 

For quartics .(n = 4) we take the following differential invariants 

. J0 = u00, J2 = 
2 = u02u20 − u2
11, J3 = −∇1(J2).

Again, if we restrict these invariants to a regular quartic . φ, we will obtain quartics 
. J

φ
0 , . Jφ

2 , . Jφ
3 on the plane, and the polynomial relation between them is 

.9(J
φ
3 )2 + 16(J

φ
2 )3 + 144α(J

φ
0 )2J

φ
2 + 864δ(J

φ
0 )3 = 0, (12) 

where 

. α = 4b13b31 − b40b04 − 3b2
22

is the Hankel apolar, and 

. δ = b22b40b04 − b04b
2
31 − b40b

2
13 + 2b13b22b31 − b3

22

is the Hankel determinant. 
Relation (12) can be obtained by means of the same Maple code as we used for 

cubics. 
Removing the restriction to the quartic . φ from (12), we get a differential equation 

of the third order: 

.

{
9(J3)

2 + 16(J2)
3 + 144α(J0)

2J2 + 864δ(J0)
3 = 0

}
⊂ J3. (13) 

Thus we have a similar theorem for quartics: 

Theorem 1.8 Let . φ be a regular binary 4-form. Then, .SL2(C)-orbit of . φ consists 
of solutions to the third order differential equation (13) together with . E4. 

3 Quotients 

This section gives a general introduction into the structure of quotients of algebraic 
manifolds and equations under the action of algebraic groups. The main results are 
given by the Rosenlicht and the Lie-Tresse theorems.
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3.1 Rosenlicht Theorem 

Let . � be a set with an action of a group G: 

. G × � → �, g × ω �→ gω,

Then, the set .G/� of all G-orbits is called quotient: 

. �/G =
⋃

ω∈�

{Gω} .

Remark 1.1 The projection .π : � → �/G allows us to identify functions on the 
quotient .�/G with functions on . � that are G-invariants, i.e. .f ◦ g = f . 

Let . � be a topological space, G be a topological group and let G-action be 
continuous. Then, the quotient .�/G is naturally a topological space, that is, a subset 
.U ⊂ �/G is said to be open if and only if the preimage .π−1(U) ⊂ � is open. 

Remark 1.2 In general, we cannot guarantee that the quotient .�/G shall inherit 
topological properties (e.g. the Hausdorff condition) of . �. 

Exams 

1. Let .� = R
2, .G = SL2(R), and .SL2(R) × R

2 → R
2 be the natural action. 

Then, 

. R
2/SL2(R) = 0 ∪ �,

where .0 = SL2(R)(0) is the orbit of the origin, .0 ∈ R
2, and . � is the 

orbit of any nonzero point. This is an example of the famous Sierpinski 
topological space, consisting of two points, one of which . 0 is closed, but 
another one . � is open. 

2. Let .� = R
2, .G = R

∗ = R \ 0, and .R∗ × R
2 → R

2 be the natural action. 
Then, 

. R
2/R∗ = 0 ∪ RP 1,

where .RP 1 is the projective 1-dimensional space. 

If . � is a smooth manifold and G is a Lie group, then we have no way to determine 
whether the quotient .�/G is also a smooth manifold, except for the case when G-
action is free and proper.
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Let G be an algebraic manifold (an irreducible variety without singularities over 
a field of zero characteristic), G be an algebraic group, and .G × � → � be an 
algebraic action. By .F(�) we denote the field of rational functions on . � and by 
.F(�)G ⊂ F(�) the field of rational G-invariants. An orbit .Gω ⊂ � (as well as the  
point . ω) is said to be regular, if there are .m = codim(Gω) G-invariants .x1, . . . , xm, 
such that their differentials are linear independent at the points of the orbit. 

Let .�0 = � \ Sing be the set of all regular points and .Q(�) = �0/G be the set 
of all regular orbits. 

Theorem 1.9 (Rosenlicht, [1, 21]) The set . �0 is open and dense in . � in the Zariski 
topology. 

Invariants .x1, . . . , xm can be considered as local coordinates on the quotient 
.Q(�) in the neighborhood of the point .Gω ∈ Q(�). On intersections of charts 
these coordinates are related by rational functions, which means that .Q(�) is an 
algebraic manifold of the dimension .m = codim(Gω). Thus we have the rational 
map .π : �0 → Q(�) of algebraic manifolds, which gives us a field isomorphism 
.F(�)G = π∗(F(Q(�))). 

It is essential that the Rosenlicht’s theorem is valid only for algebraic manifolds. 
Indeed, following the algebraic case, let . � be a smooth manifold, and G be a Lie  
group. An orbit .Gω (as the point . ω itself) is said to be regular, if there are . m =
codim(Gω) smooth independent (in the above sense) invariants. Again, let . �reg ⊂
� be the set of regular points, then the quotient .�reg/G is a smooth manifold, and 
the projection .π : �reg → �reg/G gives us an isomorphism of algebras . C∞(�reg)

G

and .C∞(�reg/G), .π∗ (C∞(�reg/G)
) = C∞(�reg)

G. In contrast to the algebraic 
case we could not guarantee that .�reg is dense in . �. 

Let, again, . � be an algebraic manifold, and let . g be a Lie subalgebra of the Lie 
algebra of vector fields on . �. The Lie algebra . g is said to be algebraic if there exists 
an algebraic action of the algebraic group G, such that . g coincides with the image of 
the Lie algebra .Lie(G) under this action. By an algebraic closure of the Lie algebra 
. g we mean an intersection of all algebraic Lie algebras, containing . g. 

Exams 

1. .� = R, the Lie algebra 

. g = sl2 = 〈∂x, x∂x, x
2∂x〉

is algebraic. 
2. .� = R

2, and the Lie algebra 

. g = 〈x∂x + λy∂y〉
(continued)
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is algebraic if .λ ∈ Q. In the case .λ /∈ Q the closure is .g̃ = 〈x∂x, y∂y〉. 
3. .� = S1 × S1 — torus, the Lie algebra 

. g = 〈∂φ + λ∂ψ 〉

is algebraic if .λ ∈ Q. In the case .λ /∈ Q the closure is .g̃ = 〈∂φ, ∂ψ 〉. 

It turns out that the Rosenlicht theorem is also valid for algebraic Lie algebras, 
or for algebraic closure in the case of general Lie algebras. 

Indeed, let . g be a Lie algebra of vector fields on an algebraic manifold . � and 
let . g̃ be its algebraic closure. Then, the field .F(�)g of rational .g-invariants has a 
transcendence degree equal to the codimension of .g̃-orbits that is the dimension of 
the quotient .Q(�). 

3.2 Algebraicity in Jet Geometry 

Let .π : E(π) → M be a smooth bundle over a manifold M and let .πk : Jk → M be 
the bundle of sections of k-jets. 

The manifold . Jk is equipped with the Cartan distribution, which in canonical jet 
coordinates .(x, u

j
σ ) is given by differential 1-forms 

.�j
σ = duj

σ −
∑

i

u
j
σ idxi . (14) 

The Lie-Bäklund theorem [29, 30] states that types of Lie transformations, i.e. local 
diffeomorphisms of . Jk preserving the Cartan distribution (14), are determined by 
the dimension of . π , namely, they are prolongations of

• the pseudogroup .Cont(π) of local contact transformations of . J1, in the case 
.dim π = 1;

• the pseudogroup .Point(π) of local point transformations of . J0, i.e. local diffeo-
morphisms of . J0, in the case .dim π > 1. 

Moreover, it is known that

• all bundles .πk,k−1 : Jk → Jk−1 are affine bundles for .k ≥ 2, when .dim π ≥ 2, 
and for .k ≥ 3, when .dim π = 1;

• prolongations of pseudogroups in canonical jet coordinates .(x, u
j
σ ) are given by 

rational in . uj
σ functions.
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Therefore,

• in the case .dim π ≥ 2 the fibres .Jk,0
θ of the projections .πk,0 : Jk → J0 at 

points .θ ∈ J0 are algebraic manifolds, and the stationary subgroup . Pointθ (π) ⊂
Point(π) gives us birational isomorphisms of the manifold;

• in the case .dim π = 1 the fibres .Jk,1
θ of the projections .πk,1 : Jk → J1 at 

points .θ ∈ J1 are algebraic manifolds, and the stationary subgroup . Contθ (π) ⊂
Cont(π) gives us birational isomorphisms of the manifold. 

3.3 Algebraic Differential Equations 

A differential equation .Ek ⊂ Jk is said to be algebraic, if fibres .Ek,θ of the 
projections .πk,0 : Ek → J0, when .dim π ≥ 2, or .πk,1 : Ek → J1, when .dim π = 1, 
are algebraic manifolds. 

Remark 1.3 If . Ek is algebraic and formally integrable, then the prolongations . E(l)
k =

Ek+l ⊂ Jk+l are algebraic too. 

By a symmetry algebra of algebraic differential equations we mean one of the 
following:

• for .dim π ≥ 2, a Lie algebra .sym(Ek) of point symmetries (point vector fields), 
which is transitive on . J0, and stationary subalgebras .symθ (Ek), .θ ∈ J0, produce 
actions of algebraic Lie algebras on algebraic manifolds .El,θ , for all .l ≥ k;

• for .dim π = 1, a Lie algebra .sym(Ek) of contact symmetries (contact vector 
fields), which is transitive on . J1, and stationary subalgebras .symθ (Ek), .θ ∈ J1, 
produce actions of algebraic Lie algebras on algebraic manifolds .El,θ , for all 
.l ≥ k. 

Let . Ek be a formally integrable algebraic differential equation, . El be its .(l −
k)-prolongation, and . g be its algebraic symmetry Lie algebra. Then, all the . El are 
algebraic manifolds, and we have a tower of algebraic bundles: 

. Ek ←− Ek+1 ←− · · · ←− El ←− El+1 ←− · · · .

A point .θ ∈ El (a .g-orbit) is said to be strongly regular, if it is regular and its 
projection to .El−i for all .i = 1, . . . , l − k is regular too. 

Let .E0
l ⊂ El be the set of all strongly regular points and .Ql(E) be the 

set of all regular .g-orbits. Then, due to the Rosenlicht’s theorem, .Ql(E) are 
algebraic manifolds, and projections .�l : E0

l → Ql(E) are rational maps, such 
that .�∗

l (F(Ql(E))) = F(E0
l )

g, where .F(Ql(E)) is the field of rational functions on 
.Ql(E), and .F(E0

l )
g is the field of rational .g-invariant functions (rational differential 

invariants). 
Since the .g-action preserves the Cartan distribution .C(El ), projections . �l define 

distributions on the quotients .Ql(E). Finally, we have the tower of algebraic bundles 
of the quotients
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.Qk(E)
πk+1,k←− Qk+1(E) ←− · · · ←− Ql(E)

πl+1,l←− Ql+1(E) ←− · · · , (15) 

such that .(πl+1,l)∗(C(Ql+1(E))) = C(Ql(E)) for .l ≥ k. 
Locally, sequence (15) has the same structure as for some equation F , which is 

called a quotient PDE. 

3.4 Lie-Tresse Theorem 

First, we discuss Lie-Tresse derivatives, which are necessary for description of 
quotient PDEs. 

Let .ω ∈ �1(Jk) be a differential 1-form on the space of k-jets and let . Ck be the 
Cartan distribution. Then, the class 

. ωh = π∗
k+1,k(ω) mod Ann(Ck+1)

is called a horizontal part of . ω. In the canonical jet coordinates .(x, u
j
σ ) we have 

. ω =
n∑

i=1

aidxi +
∑

j≤m
|σ |≤k

bj
σ duj

σ ,

and its horizontal part is 

. ωh =
∑

j≤m
|σ |≤k
i≤n

(
ai + bj

σ u
j
σ i

)
dxi,

where .n = dim M , .m = dim π . 
Applying this construction to the differential df of the function .f ∈ C∞(Jk) we 

get a total differential .d̂f = (df )h. In canonical coordinates it is 

. d̂f =
n∑

i=1

df

dxi

dxi,
d

dxi

= ∂

∂xi

+
∑

j,σ

u
j
σ i

∂

∂u
j
σ

.

It is worth mentioning that the operation of taking the horizontal part as well as total 
differentials are invariant with respect to point and contact transformations. 

Functions .f1, . . . , fn ∈ C∞(Jk) are said to be in general position in some 
domain D if 

.d̂f1 ∧ . . . ∧ d̂fn �= 0 in D. (16)
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Given fixed .f1, . . . , fn satisfying (16) one has the following decomposition for . f ∈
C∞(Jk) in D: 

. d̂f =
n∑

i=1

Fid̂fi,

where . Fi are smooth functions in the domain .π−1
k+1,k(D) ⊂ Jk+1, called Tresse 

derivatives and denoted by . df
dfi

. 

Theorem 1.10 Let .f1, . . . , fn be .g-invariants of order .≤ k in general position. 
Then, for any .g-invariant f of order .≤ k the Tresse derivatives . df

dfi
are .g-invariants 

of order .≤ k + 1. 

Example Consider the action of the Lie group of translations on a plane. Its 
Lie algebra is 

. g = 〈∂x, ∂y〉.

Let us take its invariants .f1 = u00, .f2 = u10, .f = u01. Then, the Tresse 
derivatives are of the form 

. 
d

df1
= u11

u10u11 − u01u20

d

dx
+ u20

u01u20 − u10u11

d

dy
,

d

df2
= u01

u01u20 − u10u11

d

dx
+ u10

u10u11 − u01u20

d

dy
.

Applying them to the differential invariant .f = u01 of the first order, we get 
two more invariants of the second order: 

. J1 = df

df1
= u20u02 − u2

11

u10u20 − u10u11
, J2 = df

df2
= u01u11 − u02u10

u01u20 − u10u11
.

The following statement known as the global Lie-Tresse theorem [22] gives the  
conditions of finiteness for a generating set of invariants of a pseudogroup action on 
a differential equation: 

Theorem 1.11 (Kruglikov, Lychagin) Let .Ek ⊂ Jk be an algebraic formally 
integrable differential equation and let . g be its algebraic symmetry Lie algebra. 
Then, there exist rational differential .g-invariants .a1, . . . , an, b

1, . . . , bN of order 
. ≤ l, such that the field of rational .g-invariants is generated by rational functions of 

these functions and Tresse derivatives . d
|α|bj

daα . 

Local version of this result goes back to S. Lie and A. Tresse.
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Remark 1.4 

1. In contrast to algebraic invariants, where we have only algebraic operations, in 
the case of differential invariants we have more operations. Namely, the Tresse 
derivatives give us new differential invariants. 

2. The algebra of differential invariants is not freely generated, there are relations 
between invariants, called syzygies. The syzygies provide us with new differential 
equations, called quotient equations. 

3. From the geometrical viewpoint, the Lie-Tresse theorem states that there is a 
level l and a domain .D ⊂ Ql(E), where invariants .a1, . . . , an, b

1, . . . , bN serve 
as local coordinates, and the preimage of D in the tower 

.Ql(E)
πl+1,l←− Ql+1(E) ←− · · · ←− Qr(E)

πr+1,r←− Qr+1(E) ←− · · · (17) 

is an infinitely prolonged differential equation given by the syzygy. For this 
reason we call the quotient tower (17) an algebraic diffiety. 

3.5 Integrability via Quotients 

Here we discuss the importance of above constructions for integrability of differen-
tial equations. First, let us summarize the relations between differential equations 
and their quotients: 

1. Let L be a solution to a differential equation . E (in the sense of integral manifolds 
of the Cartan distribution) and let .ai |L, bj |L be the values of differential 
invariants on the solution L. Then, we have .bj |L = Bj (a|L), and functions 
. Bj are exactly solutions to the quotient differential equations. 

2. Let .bj = Bj (a) be a solution to a quotient PDE. Then, adding differential 
constraints .bj − Bj (a) = 0 we get a finite type equation . E ∩ {bj − Bj (a) = 0

}

with solutions being a .g-orbit of a solution to . E. This gives us a method of finding 
compatible constraints to be added to the original system of PDEs, which reduces 
the integration of the PDE to the integration of a completely integrable Cartan 
distribution having the same symmetry algebra. This is essential for finding 
smooth solutions, as well as those with singularities [31, 32]. 

3. Symmetries of quotient PDEs are Bäcklund-type transformations for the equa-
tion . E. 

Let us now illustrate this on examples. As an exercise, we recommend the reader 
to do the computations for these examples.



Differential Invariants in Algebra 25

Exams 

1. Invariants of the Lie algebra .g = 〈∂x〉 of x-translations on the line . � = R

are generated by 

. 〈a = u0, b = u1〉

and Tresse derivative 

. 
d

da
= u−1

1
d

dx
.

Then, for the x-invariant ODE of the third order .F(u0, u1, u2, u3) = 0 the 
quotient equation is of order 2 and has the form 

. F

(
a, b, b

db

da
, b2 d2b

da2

)
= 0.

This is a standard reduction of order for ODEs of the form 
.F(u0, u1, u2, u3) = 0. 

Let us now choose other Lie-Tresse coordinates: 

. 〈a = u2, b
1 = u0, b

2 = u1〉

and Tresse derivative 

. 
d

da
= u−1

3
d

dx
.

In this case, the quotient equation for .F(u0, u1, u2, u3) = 0 is a system of 
ODEs: 

. F

(
b1, b2, a, a

(
db2

da

)−1)
= 0, a

db1

da
− b2 db2

da
= 0.

2. Invariants of the Lie algebra .g = 〈∂x, x∂x〉 of affine transformations of the 
line .� = R are 

. 

〈
u0,

u2

u2
1

,
u3

u3
1

,
u4

u4
1

, . . .

〉
.

Let us take 

(continued)
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. 

〈
a = u0, b = u2

u2
1

〉

and consider a .g-invariant equation 

. F

(
u0,

u2

u2
1

,
u3

u3
1

,
u4

u4
1

)
= 0.

Its quotient will be 

. F

(
a, b,

db

da
+ 2b2,

d2b

da2
+ 6b

db

da
+ 6b3

)
= 0.

3. Invariants of the Lie algebra .g = sl2(R) = 〈∂x, x∂x, x
2∂x〉 on the line 

.� = R are 

. 

〈
u0,

u3

u3
1

− 3u2
2

2u4
1

,
u4

u4
1

− 6
u2u3

u5
1

+ 6
u3

2

u6
1

, . . .

〉
.

Let us take 

. 

〈
a = u0, b = u3

u3
1

− 3u2
2

2u4
1

〉

and consider a .g-invariant equation 

. F

(
u0,

u3

u3
1

− 3u2
2

2u4
1

,
u4

u4
1

− 6
u2u3

u5
1

+ 6
u3

2

u6
1

)
= 0.

Its quotient will be 

. F

(
a, b,

db

da

)
= 0.

4. Invariants of the Lie algebra .g = 〈∂x, ∂y〉 on the plane .� = R
2 are 

. 〈u00, u10, u01, u20, u11, u02 . . .〉 .

Let us take 

. 

〈
a1 = u10, a2 = u01, b

1 = u00, b
2 = u11

〉

(continued)
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as Lie-Tresse coordinates. Then, assuming .b1 = B1(a1, a2), . b2 =
B2(a1, a2), we have  

. B1
a1

= δ−1(u10u02 − u01u11), B1
a2

= δ−1(u01u20 − u10u11),

. B2
a1

= δ−1(u02u21 − u11u12), B2
a2

= δ−1(u20u12 − u11u21),

where .δ = u20u02 − u2
11 is the Hessian. The syzygies 

. 0 = −B1
a2a2

B2B1
a1a1

+ B2(B1
a1a2

)2 − B1
a1a2

,

0 = a1B
1
a1a1

+ a2B
1
a1a2

− B1
a1

,

0 = a1B
2B1

a1a1
B1

a1a2
+ a2B

2(B1
a1a2

)2 − B2B1
a1a1

B1
a2

− a2B
1
a1a2

are quotient PDEs for the equation .u11 = B2(u10, u01). 
In particular, equation .u11 = 0 is self-dual, it coincides with its quotient. 

Remark 1.5 

1. If an ODE of order k admits a solvable symmetry Lie algebra . g, and .dim g = k, 
then the integration can be done explicitly using the Lie-Bianchi theorem. If the 
Lie algebra . g is not solvable, but still .dim g = k, then the integration can be done 
by means of model equations [33]. 

2. If .dim g = k − 1, the integration splits into the integration of the first order 
quotient equation and integration of .(k − 1) order equation with the same 
symmetry algebra . g. Continuing, we reduce the integration to the integration 
to a series of quotients. 

4 Algebraic Plane Curves 

This section is devoted to finding affine invariants for algebraic plane curves using 
affine connections. 

4.1 Connections and Affine Structures 

The motivation to study connections goes back to classical mechanics, when one 
needs to define acceleration. If we consider a vector field Y on a manifold M as the
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field of velocities, then we should be able to compare tangent vectors at different 
points of the manifold. Let .x(t) be a path on the manifold M and assume that we 
have linear isomorphisms .λ(t) : Tx(t)M → Tx(0)M of tangent spaces. Then, taking 
images .Y (t) = λ(t)

(
Yx(t)

) ∈ Tx(0)M of vectors .Y (t) ∈ Tx(t)M , we get the velocity 
of variation of the vector field along the path .x(t): 

.
dY (t)

dt

∣∣∣∣
t=0

∈ Tx(0)M. (18) 

Let .x(t) be the trajectory of another vector field X on the manifold M . Then, taking 
derivatives (18) at points of M , we get a vector field .∇XY on M . Assuming that the 
map .X × Y → ∇XY is .C∞(M)-linear in X, we obtain the notion of a covariant 
derivative. 

Let M be a smooth manifold and let .D(M) be the module of vector fields on M . 
Then, the covariant derivative is a map 

. ∇X : D(M) → D(M), X ∈ D(M),

satisfying conditions 

1. . ∇X1+X2 = ∇X1 + ∇X2

2. .∇f X = f ∇X, f ∈ C∞(M), 
3. . ∇X(Y1 + Y2) = ∇X(Y1) + ∇X(Y2)

4. .∇X(f Y ) = X(f )Y + f ∇X(Y ), 

where .Xi, Yi, X, Y ∈ D(M), .f ∈ C∞(M). Any affine (linear) connection on a 
manifold M is defined by its covariant derivative. 

Let . ∇ and . ∇̃ be two affine connections, then the difference . �X = ∇X −
∇̃X : D(M) → D(M) is a linear operator, .�X ∈ End(D(M)), i.e. a map . X �→ �X

is .R-linear, and .�X(f Y ) = f �X(Y ). In other words, . � ∈ End(D(M)) ⊗ �1(M)

is an .End(D(M))-valued differential one-form on M , called connection form, and 
finding connection on a manifold is equivalent to finding a connection form. 

Let .M = R
n with coordinates .(x1, . . . , xn) be a real vector space. Consider M 

as an affine space with standard identifications of tangent spaces at different points, 
we come to the covariant derivatives 

. ∇s
∂i

(∂j ) = 0,

and any other connection has the form 

. ∇∂i
(∂j ) =

∑

k

�k
ij ∂k,

where now and further on .∂i = ∂xi
, .di = dxi , .�k

ij are Christoffel symbols. 
The torsion tensor T of a connection . ∇ is 

.T (X, Y ) = ∇X(Y ) − ∇Y (X) − [X, Y ],
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which is a skew-symmetric tensor with values in vector fields, i.e. . T ∈ D(M) ⊗
�2(M). In coordinates, it has the form 

. T =
∑

i,j,k

(�k
ij − �k

ji)∂k ⊗ di ∧ dj .

The connection is called torsion-free, if .T = 0, i.e. .�k
ij = �k

ji . 
The curvature tensor C of a connection . ∇ is 

. C ∈ End(D(M)) ⊗ �2(M), C(X, Y )(Z) = [∇X,∇Y ]Z − ∇[X,Y ]Z,

where .C(X, Y ) ∈ End(D(M)). In coordinates it has the form 

. C =
∑

i,j,k,l

Ci
jkl∂i ⊗ dj ⊗ dk ∧ dl,

where coefficients .Ck
lij are related to Christoffel symbols by the following way: 

. Ck
lij = ∂�i

lj

∂xk

− ∂�i
kj

∂xl

+
∑

m

(�m
lj �i

km − �m
kj�

i
lm).

The torsion-free connection is said to be flat, if .C = 0. 
Let .(M, g) be a pseudo-Riemannian manifold with a pseudo-metric tensor g. 

Then, there exists a unique torsion-free connection, called Levi-Civita connection, 
such that 

. g(∇XY,Z) + g(Y,∇XZ) = X(g(Y,Z)), X, Y,Z ∈ D(M).

This relation means that .∇X(g) = 0 for all vector fields X. Christoffel symbols are 
related to metric g as follows: 

. �k
ij = 1

2

∑

l

gkl

(
∂gil

∂xj

+ ∂gjl

∂xi

− ∂gij

∂xl

)
,

where .gij = g(∂i, ∂j ) and .‖gij‖ = ‖gij‖−1. 
Let .Tq

p(M) = (D(M))⊗p ⊗ (�1(M))⊗q be the module of p-contravariant and 
q-covariant tensors on the manifold M and let 

. T(M) = ⊕p,qTq
p(M)

be the bigraded tensor algebra. Then, any affine connection . ∇ on the manifold M 
defines a derivation . d∇ of degree .(1, 1) in this algebra by the following way. On 
functions its action is .d∇(f ) = df . Define this derivation on vector fields:
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. d∇ : D(M) → D(M) ⊗ �1(M), 〈d∇(X), Y 〉 = ∇Y (X).

In coordinates we have 

. d∇(∂i) =
∑

j,k

�k
ij ∂k ⊗ dj .

Then, we define this derivation on 1-forms: 

. d∇ : �1(M) → �1(M) ⊗ �1(M), d∇(ω)(Y,X) = X(ω(Y )) − ω(∇X(Y )).

In coordinates we have 

. d∇(dk) = −
∑

i,j

�k
ij dj ⊗ di

The action of . d∇ on higher order tensors is expanded by means of the Leibnitz rule: 

. d∇(θ1 ⊗ θ2) = d∇(θ1) ⊗ θ2 + θ1 ⊗ d∇(θ2).

We will use these constructions to get invariant symmetric tensors that will provide 
us with affine invariants on a plane. 

4.2 Symmetric Tensors 

Let .�k(M) ⊂ (�1(M))⊗k be the module of symmetric tensors. Then, 

. �∗(M) = ⊕k≥0�
k(M)

is a commutative algebra with the symmetric product. The derivation . d∇ defines a 
derivation of degree 1 in this algebra 

. ds∇ : �∗(M) → �∗+1(M),

where 

. ds∇ : �k(M)
d∇−→ �k(M) ⊗ �1(M)

Sym−→ �k+1(M).

The derivation .�k(M) allows to define higher order differentials .θk(f ) of functions 
.f ∈ C∞(M): 

.�k(M) � θk(f ) = (ds∇)k(f ) (19)
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Exams Consider torsion-free connection . ∇. Then, we have 

. θ1(f ) = df =
∑

k

∂k(f )dk,

. θ2(f ) =
∑

i,j

(
∂ij (f ) −

∑

k

�k
ij ∂k(f )

)
di · dj .

4.3 Affine Invariants 

Let us consider affine invariants of the plane. The affine Lie algebra 

. aff2 = 〈∂x, ∂y, x∂x, x∂y, y∂x, y∂y〉

acts transitively on . R2, and therefore .Jk/aff2 = Jk
0/gl2, where 

. gl2 = 〈x∂x, x∂y, y∂x, y∂y〉.

The group of affine transformations preserves the trivial connection . ∇s , therefore 
due to construction (19) symmetric tensors 

. 	k =
k∑

i=0

ui,k−i

dxi

i!
dyk−i

(k − i)!

are invariants of affine transformations. 
Similar to Sect.2, we construct an invariant frame . ∇1,∇2

. ∇i = Ai

d

dx
+ Bi

d

dy
,

such that 

. 2∇1�	2 = 	1, 	2(∇1,∇2) = 0, 	2(∇1,∇1) = 	2(∇2,∇2).

Then, we get 

.∇1 = u02u10 − u11u01

u20u02 − u2
11

d

dx
+ u20u01 − u11u10

u20u02 − u2
11

d

dy
,
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∇2 = 1√
u20u02 − u2 

11

(
−u01 

d 
dx 

+ u10 
d 
dy

)
, 

Note that the function .I0 = 	0 = u00 is an affine invariant of order zero, and 
therefore the function 

. I2 = ∇1(I0) = 	1(∇1) = 2	2(∇1,∇1)= ‖∇1‖2 = u2
01u20 − 2u10u01u11 + u2

10u02

u20u02 − u2
11

is a second order differential affine invariant. 
The dual coframe .〈ω1, ω2〉 consists of horizontal 1-forms, such that . ωi(∇j ) =

δij , and has the form 

. ω1 = 1

I2
(u10dx + u01dy),

ω2 = 1

I2

√
u20u02 − u2

11

((u11u10 − u01u20)dx + (u10u02 − u11u01)dy) ,

and we also get an affine invariant volume form 

. ω1 ∧ ω2 =
√

u20u02 − u2
11

I2
dx ∧ dy.

Summarizing above discussion, we observe that any regular function f defines 
the following geometric structures associated with the affine geometry on .R2

• pseudo-Riemannian structure .	2(f ), that gives all Riemannian invariants [34],
• symplectic structure .(ω1 ∧ ω2)(f ),
• cubic form .	3(f ) and Wagner connection [35], 

and others. 
Writing down symmetric tensors . 	k in terms of invariant coframe, we get 

. 	k =
k∑

i=0

Ii,k−i

ωi
1

i!
ωk−i

2

(k − i)! ,

which gives us rational affine invariants (perhaps one should take squares to get rid 
of square roots) .I0 = u00, 

.I2 = u2
01u20 − 2u10u01u11 + u2

10u02

u20u02 − u2
11

, (20) 

and .Ii,k−i .
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Since .dim Jk
0 = (

k+2
2

)
and .dim(gl2) = 4 we observe that functions 

.I0, I2, Ii,k−i , 3 ≤ i ≤ k generate the field of rational affine differential invariants of 
order k. 

4.4 Invariants of Algebraic Curves 

A plane algebraic curve is given by equation 

. Pk(x, y) = 0,

where .Pk(x, y) is an irreducible polynomial of degree k, which is defined up to a 
multiplier .Pk �→ λPk , .λ �= 0. This action is generated by an infinitely prolonged 
vector field .u00∂u00 : 

. γ =
∑

ij

uij

∂

∂uij

.

An invariant I is said to be of weight .w(I), if and only if 

. γ (I) = w(I)I.

Affine invariants of zero weight are affine invariants of algebraic plane curves. Since 
.w(I0) = w(I2) = w(Ii,j ) = 1, one can choose 

. a2 = I2

I0
, aij = Iij

I0

as a generating set of rational affine invariants of algebraic plane curves. 

Remark 1.6 An algebraic plane curve is defined by its k-th jet at the point . 0, and 
therefore values 

. a2(Pk)(0), aij (Pk)(0)

define the curve (completely over . C and up to . ± over . R). 

To find rational invariants (without square roots of the Hessian) we will use the 
coframe given by total differentials of invariants .I0 = u00 and . I2 = (u2

01u20 −
2u10u01u11 + u2

10u02)(u20u02 − u2
11)

−1: 

.ω1 = d̂u00 = 	1,

ω2 = d̂I2,
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and the Tresse frame as follows: 

. τ1 = A11
d

dx
+ A12

d

dy
,

τ2 = A21
d

dx
+ A22

d

dy
,

where 

. 

(
A11 A12

A21 A22

)
=
(

u10
dI2
dx

u01
dI2
dy

)−1

.

Expressing the original coframe .〈dx, dy〉, we get 

. 

(
dx

dy

)
=
(

u10 u01
dI2
dx

dI2
dy

)−1 (
ω1

ω2

)
.

Again, expression for symmetric tensors . 	k in terms of the Tresse coframe 

.	k =
k∑

i=0

Ii,k−i

ωi
1

i!
ωk−i

2

(k − i)! , (21) 

gives us affine invariants .Ii,k−i of the weight .(1 − k), and we get 

Theorem 1.12 Rational affine differential invariants are rational functions of 
invariants . Iij given by (21). 

For algebraic curves, we have 

Theorem 1.13 Rational affine differential invariants of algebraic curves are ratio-
nal functions of invariants .Iij I

i+j−1
0 . 

5 Invariants of Ternary Forms 

In this section, we discuss the .SL3(C)-classification problem for ternary forms of 
an arbitrary degree n, similar to the case of binary forms considered in Sect. 2. 

Ternary forms of degree n are homogeneous polynomials on . C3 of the form 

.Tn � φb =
∑

i+j+k=n

bi,j,k

xi

i!
yj

j !
zk

k! . (22) 

The action of the Lie group
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. SL3(C) = {A ∈ Mat3×3(C) | det(A) = 1}

on . Tn is defined by the following way: 

.A : Tn � φb �→ Aφb = φb ◦ A−1 ∈ Tn. (23) 

The corresponding Lie algebra . sl3 consists of vector fields: 

. X1 = x∂x − y∂y, X2 = x∂x − z∂z, X3 = y∂x, X4 = z∂x,

. X5 = x∂y, X6 = z∂y, X7 = x∂z, X8 = y∂z.

Similar to the case of binary forms, we consider (22) as smooth solutions to the 
Euler equation: 

.xfx + yfy + zfz = nf. (24) 

Equation (24) defines a smooth manifold in the space of 1-jets of functions on . C3: 

. E1 = {xu100 + yu010 + zu001 = nu000} ⊂ J1.

As in the previous sections, we will use the notation . Ek for the collection of all 
prolongations of (24) to the space . Jk up to order k. 

The action .A : C3 → C
3 of the group .SL3 can be prolonged to . Jk by the natural 

way 

. A(k) : Jk → Jk, A(k)
(
[f ]kp

)
= [Af ]kAp.

A rational function .I ∈ C∞(Ek) is said to be a differential .SL3-invariant of order 
k, if .I ◦ A(k) = I , for all .A ∈ SL3(C). 

Using the results of Sect. 4 we define .SL3(C)-invariant symmetric tensors: 

.	m =
∑

i+j+k=m

uijk

dxi

i!
dyj

j !
dzk

k! . (25) 

To construct an invariant coframe we will need an inverse of . 	2: 

. 

	−1
2 = 2

A
((u002u020 − u2

011)∂x∂x − 2(u002u110 − u011u101)∂x∂y +
+ 2(u011u110 − u020u101)∂x∂z − 2(u011u200 − u101u110)∂y∂z +
+ (u002u200 − u2

101)∂y∂y + (u020u200 − u2
110)∂z∂z),

where
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. A = u002u020u200 − u002u
2
110 − u2

011u200 + 2u011u101u110 − u020u
2
101

is a differential .SL3(C)-invariant of order 2. 
As the first invariant form . ω1, we take  

. ω1 = 	1 = u100dx + u010dy + u001dz.

The second invariant form will be the total differential of the invariant A 

. ω2 = dA

dx
dx + dA

dy
dy + dA

dz
dz = A1dx + A2dy + A3dz,

where 

. 

A1 = u002u020u300 − 2u002u110u210 + u002u120u200 − u2
011u300 +

+ 2u011u101u210 + 2u011u110u201 − 2u011u111u200 − 2u020u101u201 +
+ u020u102u200 − u2

101u120 + 2u101u110u111 − u102u
2
110

. 

A2 = u002u020u210 + u002u030u200 − 2u002u110u120 − u2
011u210 − 2u011u021u200 +

+ 2u011u101u120 + 2u011u110u111 + u012u020u200 − u012u
2
110 − 2u020u101u111 +

+ 2u021u101u110 − u030u
2
101

. 

A3 = u002u020u201 + u002u021u200 − 2u002u110u111 + u003u020u200 −
− u003u

2
110 − u2

011u201 − 2u011u012u200 + 2u011u101u111 + 2u011u102u110 +
+ 2u012u101u110 − 2u020u101u102 − u021u

2
101.

The third invariant form .ω3 = F1dx + F2dy + F3dz is found from the conditions 
of orthogonality to . ω2 and . 	1 in the sense of . 	2: 

. 	−1
2 (ω2, ω3) = 0, 	−1

2 (	1, ω3) = 0,

which define the form . ω3 up to a multiplier: 

. F1 = F3
(u001u110 − u010u101)A1 + (−u001u200 + u100u101)A2 + (u010u200 − u100u110)A3

(u001u011 − u002u010)A1 + (−u001u101 + u002u100)A2 + (u010u101 − u011u100)A3
,

F2 = F3
(u001u020 − u010u011)A1 + (−u001u110 + u011u100)A2 + (u010u110 − u020u100)A3

(u001u011 − u002u010)A1 + (−u001u101 + u002u100)A2 + (u010u101 − u011u100)A3
.

We put . F3 equal to the denominator in the above expressions: 

.F3 = (u001u011 − u002u010)A1 + (−u001u101 + u002u100)A2
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+ (u010u101 − u011u100)A3. 

One can check that in this case the form . ω3 will be invariant. 
Now that we have constructed an invariant coframe .〈ω1, ω2, ω3〉, we are able to  

construct an invariant frame .〈∇1,∇2,∇3〉 dual to .〈ω1, ω2, ω3〉: 

. ωi(∇j ) = δij .

And finally we are able to express the original coframe .〈dx, dy, dz〉 in terms of an 
invariant one: 

. 

⎛

⎝
dx

dy

dz

⎞

⎠ =
⎛

⎜⎝
u100 u010 u001
dA
dx

dA
dy

dA
dz

F1 F2 F3

⎞

⎟⎠

−1⎛

⎝
ω1

ω2

ω3

⎞

⎠ .

Therefore tensors (25) are written by the following way: 

. 	m =
∑

i+j+k=m

Iijk

ωi
1

i!
ω

j

2

j !
ωk

3

k! .

Theorem 1.14 Functions .Iijk are .SL3-invariants of order .(i + j + k), and any 
rational differential invariant is a rational function of them. 

However, explicit expressions for invariants .Ii,j,k look bulky and straightforward 
computations work slowly in the case of ternary forms. To this reason, to find a 
generating set of invariants, we will use the Lie-Tresse theorem. Namely, we take 
five third-order independent invariants 

.J1 = u00, J2 = A, J3 = ∇1(J2), J4 = ∇2(J2), J5 = ∇3(J2). (26) 

Since .dimE3 = 13, .dim sl3 = 8, then we need five differential invariants to separate 
regular orbits. According to the global Lie-Tresse theorem, all other rational 
differential invariants can be found from (26) by applying invariant derivations . ∇i . 

Theorem 1.15 The field of rational .sl3-invariants is generated by (26) and invari-
ant derivations . ∇i . They separate regular orbits. 

If we restrict (26) to the ternary form of degree n, we will get five functions on a 
three-dimensional space, therefore, there are 2 relations between them: 

.F1(J
φ
1 , J

φ
2 , J

φ
3 , J

φ
4 , J

φ
5 ) = 0, F2(J

φ
1 , J

φ
2 , J

φ
3 , J

φ
4 , J

φ
5 ) = 0. (27) 

To write out syzygies (27) explicitly, one can use the similar Maple code as we used 
in Sect. 2 for cubics.
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Theorem 1.16 Let . φ be a regular ternary form of degree n. Then, .SL3(C)-orbit of 
. φ consists of solutions to a quotient PDE 

. F1(J1, J2, J3, J4, J5) = 0, F2(J1, J2, J3, J4, J5) = 0.

together with . En. 
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Lectures on Poisson Algebras 

Vladimir Rubtsov and Radek Suchánek 

1 Introduction 

The notion of a Poisson algebra was probably introduced in the first time by A.M. 
Vinogradov and J. S. Krasil’shchik in 1975 under the name “canonical algebra” and 
by J. Braconnier in his short note “Algèbres de Poisson” (Comptes rendus Ac.Sci) 
in 1977. 

It was a natural “algebraic interpretation” of the notion of Poisson structure 
and Poisson brackets appeared in nineteenth century in the framework of Classical 
Mechanics. 

Nowadays, Poisson algebras have proved to have a very rich mathematical struc-
ture (see the beautiful short article of Y. Kosmann-Schwarzbach in “Encyclopedia 
of Mathematics” [1]. 

There are many good books and lecture notes devoted to Poisson structures 
and much more less sources concerning the algebraic side of the story. We should 
mention the extensive book of C. Laurent-Gengoux, A. Pichereau and P. Vanhaecke 
“Poisson structures” which covers also many algebraic aspects and structures 
associated with the notion of a Poisson variety [2]. 
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These notes are slightly extended reproduction of the mini-course of the same 
title (5 lectures) given by the first author during the virtual (online) Winter School 
and Workshop “Wisla 20–21” and handled and written by the second. 

The virtual character of lectures has imposed few constraints and has defined 
a specific choice of material and chosen subjects. The authors had to pass between 
Scylla of unknown audience level and tantalizing Charybdis of their will to exit 
out of the standard set of content in numerous existed lecture notes about Poisson 
structures in algebra and in geometry. 

This contradiction can probably explain some strange “jumps” of a difficulty 
level between various chapters of our notes. We hope to come back to these notes 
and to extend, to improve, or even, to write a new comprehensive book covering 
the subject. Right now we were on a serious time (and the Covid pandemic) limits 
pressure and it was also a reason of some non-homogeneous choice of the lecture 
notes matters and its details. 

There are (almost) no “new results” in the lectures. The only exception is 
a content of the last brief chapter where we provide our classification results (joint 
with A. Odesskii and V. Sokolov) on the “low rank” double quadratic Poisson 
brackets. We had kept this chapter almost in it’s specific form of a computer 
presentation. 

The lectures are based on many various well- and less known sources, which 
we had tried to carefully quot in the main body of the text. But we need to specify 
most influential: the beautiful paper of A.M. Vinogradov and J.S. Krasil’shchik [3] 
“What is the hamiltonian formalism?”, lectures of P. Cartier “Some fundamental 
techniques in the theory of integrable systems” [4], a short book of K. H. Bhaskara 
and K. Viswanath “Poisson algebras and Poisson manifolds” [5]. 

2 Motivation 

2.1 Lagrangian and Hamiltonian Mechanics 

A fundamental discovery of Lagrange: a Lagrangian function . L : T M → R

. L = T − V ,

describes the motion of a particle. The equation of motion is described by the Euler-
Lagrange equation 

. 
d

dt
(
∂L

∂q̇i
) = ∂L

∂qi
.

Here .(q̄) = (q1, . . . , qn) are coordinates on M , . (q̄, ¯̇q) = (q1, . . . , qn, q̇1, . . . , q̇n)

are the induced coordinates on the tangent bundle T M . The above Euler-Lagrange 
equation follows from the variational principle
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. δ

∫
L(q̄, ¯̇q)dt = 0 ,

where . δ (in this context) refers to the variational derivative. Using the Legendre 
transformation, one can pass from the tangent bundle to the cotangent bundle 
.T ∗M with the coordinates .(q̄, p̄), and reformulate the Euler-Lagrange equations 
equivalently by the Hamiltons equations 

. ˙̄q = ∂H

∂p̄
, ˙̄p = −∂H

∂q̄
(1) 

The link between Lagrangian and Hamiltonian is given by 

. H(q̄, p̄) =< p̄, ¯̇q > −L(q̄, ¯̇q) .

2.2 Hamiltonian Mechanics and Poisson Brackets 

Instead of starting with the Lagrangian L function, one can start with the Hamil-
tonian function .H : T ∗M → R and build the mechanics independently of the 
Lagrangian. We now go to the simpler setup of flat spaces, i.e. consider .M ∼= R

N . 
We will get back to the setup of smooth manifolds later on. 

Let .F,G be two differentiable functions on .R2n with coordinates .(q̄, p̄), where 
.p̄ = (p1, . . . , pn), q̄ = (q1, . . . , qn). Introduce a new functions as the result of the 
following skew-symmetric operation on F and G. 

.{F,G} :=
n∑

k=1

(
∂F

∂qk

∂G

∂pk

− ∂G

∂qk

∂F

∂pk

) = ∂F

∂q̄

∂G

∂p̄
− ∂G

∂q̄

∂F

∂p̄
∈ C∞(R2n) . (2) 

This operations allows to write the Hamilton’s equations (1) associated with 
a Hamiltonian function .H = H(q̄, p̄) in the following manner (putting . q̄ and . p̄
on an equal footing): 

. ˙̄q = {q̄, H } , ˙̄p = {p̄, H } . (3) 

Indeed we have 

. {qi,H } =
n∑

k=1

(
∂qi

∂qk

∂H

∂pk

− ∂H

∂qk

∂qi

∂pk

) = ∂H

∂pi

,

{pi,H } =
n∑

k=1

(
∂pi

∂qk

∂H

∂pk

− ∂H

∂qk

∂pi

∂pk

) = −∂H

∂qi

,

since .
∂qi

∂qk
= ∂pi

∂pk
= δi

k and .
∂qi

∂pk
= ∂pi

∂qk
= 0.
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Note that for each solution .{(q(t), p(t)} of the Hamilton system (3) and for any 
. F ∈ C∞(R2n)

. 
d

dt
F (q̄(t), p̄(t)) :=

n∑
k=1

(
∂F

∂qi

q̇i + ∂F

∂pi

ṗi)

=
n∑

k=1

(
∂F

∂qi

∂H

∂pi

− ∂F

∂pi

∂H

∂qi

)

= {F,H }(q̄(t), p̄(t)) .

In particular, for the Hamiltonian function H , 

. 
d

dt
H(q̄(t), p̄(t)) = {H,H }(q̄(t), p̄(t)) = 0 ,

which is the conservation law for H (i.e. .H(q̄(t), p̄(t)) is constant along the trajec-
tories). D. Poisson had observed that if .{F,H } and .{G,H } vanish, then . {{F,G},H }
vanishes (Poisson bracket of two constants of motion is again a constant of motion). 
This statement can be explained abstractly with the help of the Jacobi identity 

.{{F,G},H } + {{G,H }, F } + {{H,F },G} = 0 , (4) 

since if .{F,H } = {G,H } = 0, then the above equality gives .{{F,G},H } = 0. Now  
let . πij be arbitrary smooth functions on . Rd , .x1, . . . , xd coordinates on . Rd such that 
.πij = −πji . Define 

.{F,G} :=
d∑

i,j=1

πij

∂F

∂xi

∂G

∂xj

. (5) 

Then (5) satisfies the Jacobi identity (4) if and only if 

.

d∑
k=1

(πlk

∂πij

∂xl

+ πli

∂πjk

∂xl

+ πlj

∂πki

∂xl

) = 0 . (6) 

Skew-symmetry and the Jacobi identity imply that the operation .{·, ·} defines a 
Lie algebra structure on .C∞(Rd). Moreover this structure is compatible with the 
product operation . · on .C∞(Rd), U ⊂ R

d , meaning that it satisfies the Leibniz rule 

.{FG,H } = F {G,H } + {F,H }G .
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3 Poisson Algebras 

There are two ways to think about a Poisson structure (given by a Poisson bracket) 
on a manifold M (algebraic, smooth, analytic, etc.). 

A Geometric Viewpoint To each function H (smooth, holomorphic, etc.) on M , 
one can associate a vector field . XH , where H is the Hamiltonian in the mechanical 
interpretation. The vector field is given by 

.XH := {−,H } . (7) 

An Algebraic Viewpoint Consider a vector space (typically infinite dimensional) 
. A, with two algebra structures: 

1. Structure of an associative and commutative algebra with a unit. 
2. A Lie algebra structure. 

The Poisson structure: commutative structure + Lie algebra structure + compati-
bility conditions. 

Extracting the algebraic aspects of the above ideas, one is lead to the following 
definition. 

Definition 2.1 (Poisson Algebra) Let .(A, ·) be an associative, unital and commu-
tative .K-algebra (.charK = 0), with the unit denoted 1. Let 

. {−,−}: A×A→ A

be a Lie bracket defining a .K-Lie algebra structure on . A. Then . A is called a Poisson 
algebra if the operations . · and .{−,−} are compatible in the following sense 

.{a · b, c} = a · {b, c} + {a, c} · b . (8) 

The Lie bracket is then called a Poisson bracket. 

When the context is clear, we will usually omit the . · symbol of the associative 
operation in . A. 

Remark 2.1 Note that the Lie bracket .{−,−} in the above definition is not 
necessarily given by the commutator. In fact, if it is given by the commutator, i.e. 
.{a, b} = a · b − b · a, then .{a, b} = 0 for all .a, b ∈ A, since the . · is assumed to be 
a commutative operation on . A.
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3.1 Subalgebras and Ideals 

Definition 2.2 (Subalgebras) A vector subspaces B ⊂ A is a Poisson subalgebra 
in a Poisson algebra (A, {−, −}, ·) if B · B ⊂ B and {B,B} ⊂ B. 
Definition 2.3 (Ideals) A vector subspaces J ⊂ A is a Poisson ideal of a Poisson 
algebra (A, {−, −}, ·) if J ·A ⊂ J and {J,A} ⊂ J. 
Note 2.1 In the first definition, B is itself a Poisson algebra with operations given 
by restriction of operations inA. The inclusion map ι : B ⊂ A is a Poisson algebra 
morphism. In the second definition, the quotient algebra A/J inherits a Poisson 
bracket from A by the requirement that the canonical projection on the quotient 
p : A→ A/J is a Poisson morphism. 

Remark 2.2 For a fixed field K (char K = 0), PoissK denotes a category, whose 
objects are the Poisson K-algebras, and whose morphisms are K-morphisms of 
Poisson algebras. Group object in PoissK is the Poisson-Lie group (G, ·, {−,−}) 
s.t. the bracket on G is multiplicative, i.e. the multiplication ·G × G → G is 
a Poisson morphism, where G × G is considered with a Poisson bracket given by 
{−,−}G×G := {−, −}G ⊕ {−, −}G. 
Definition 2.4 (Prime) A Poisson ideal P ⊂ A is Poisson prime, if for all Poisson 
ideals I,J ⊂ A 

. IJ ⊂ P⇒ I ⊂ P or J ⊂ P

Remark 2.3 If A is Noetherian,1 then the above definition is equivalent to P being 
both prime ideal and Poisson ideal. 

Definition 2.5 (Spectrum) The Poisson spectrum of A, denoted PSpec(A), is the  
set of Poisson prime ideals ofA. 

Definition 2.6 (Maximal Ideal) A maximal ideal M ⊂ A is a Poisson maximal 
ideal if it is a Poisson ideal. 

Remark 2.4 A Poisson maximal ideal is not the same thing as a maximal Poisson 
ideal. 

Definition 2.7 (Core) The Poisson core of an ideal I ⊂ A, denoted PC(I), is the  
largest Poisson ideal ofA contained in I. 

Remark 2.5 If I is a prime ideal ofA, then PC(I) is Poisson prime. 

Definition 2.8 (Primitive Ideal) A Poisson ideal P of A is a Poisson primitive if 
P is the Poisson core of some maximal ideal M, i.e. PC(M) = P 

Remark 2.6 Each Poisson primitive ideal is Poisson prime.

1 Given an increasing sequence of ideals inA, I1 ⊆ I2 ⊆ . . ., there always exists k ∈ N such that 
Ik = Ik+n for all n ∈ N. 
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Definition 2.9 (Localization) Let R be a commutative ring and S ⊂ R a multi-
plicative subset.2 A localization of R at S, denoted S−1R, is the commutative ring 
of equivalence classes in R × S defined by 

. (r̃, s̃) ∈ [r, s] ⇐⇒ ∃k ∈ S : (r̃s − rs̃)k = 0 .

One usually denotes the equivalence class [r, s] by r 
s or by rs

−1 (this reflects the 
similarity with the construction of the field of fractions). The ring operations are 
given by 

. 
r̃

s̃
+ r

s
:= r̃s + rs̃

s̃s

r̃

s̃
· r

s
:= r̃r

s̃s

Exercise 2.1 Show that the above construction indeed yields a ring structure on the 
set S−1R. Describe the identity elements with respect to both ring operations. 

If S ⊂ A is a multiplicatively closed subset of a Poisson algebra A, then the 
localization S−1A is also a Poisson algebra with the brackets 

. {as−1, bt−1} := (st{a, b} − sb{a, t} − at{s, b} + ab{s, t})(s2t2)−1,

for all a, b ∈ A and all s, t,∈ S. For any Poisson ideal P ⊂ A, the localization 
S−1P is a Poisson ideal in S−1A. For two multiplicative sets S, T ⊂ A such that 
S ⊂ T , there is a Poisson morphism : S−1A→ T −1A. 

Exercise 2.2 Let s, t ∈ A and consider the multiplicative subsets ofA 

. S := {sn| n ∈ N} T := {tn| n ∈ N} ,

where s, t ∈ A are such that t = su for appropriate u ∈ A. Show that the map 
ϕs,t : S−1A → T −1A defined by ϕs,t ( a 

sm ) := aun 

tn is independent of u and is 
a Poisson morphism. 

Example Any Poisson maximal ideal is maximal Poisson, but the converse 
is not true. A counter-example is the Weyl-Poisson algebra C[x, y], with 
{x, y} =  1. This is a simple Poisson algebra but not a simple associative 
algebra (consider the trivial ideal {0}).

2 s1, s2 ∈ S ⇒ s1s2 ∈ S. 
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3.2 Morphisms and Derivations 

Definition 2.10 (Morphisms and Isomorphisms) Let (Ai , {−,−}i , ·i )i=1,2 be 
two Poisson algebras over K and let ϕ : A1 → A2 be a K-linear map satisfying 
for all a, b ∈ A1 

1. ϕ(a ·1 b) = ϕ(a) ·2 ϕ(b), 
2. ϕ({a, b}1) = {ϕ(a), ϕ(b)}2 
Then ϕ is called a morphism of Poisson algebras. If  ϕ is a bijective morphism of 
Poisson algebras s.t. the inverse map ϕ−1 : A2 → A1 is also a Poisson algebra 
morphism, then ϕ is called an isomorphism of Poisson algebras. 

Definition 2.11 (Derivation) A K-linear map ϕ : A→ A is called a K-derivation 
onA if 

.ϕ(a · b) = aϕ(b) + ϕ(a) · b . (9) 

The set of all derivations ofA is denoted byD(A), D1(A) orD(A,A). A bilinear 
map ϕ : A×A→ A is called a bi-derivation if 

.

ϕ(ab, c) = aϕ(b, c) + bϕ(a, c),

ϕ(a, bc) = ϕ(a, b)c + bϕ(a, c)
(10) 

Note 2.2 Directly from the definition, D(A) ⊂ EndK(A) = HomK(A,A). The  
K-linear map, given for every b ∈ A, a 
→ {a, b} is a derivation onA. 
Note 2.3 The biderivation associated with derivation on A given by a Poisson 
bracket is always skew-symmetric. 

From now on, we will often abbreviate the notation and refer to a Poisson 
algebra (A, {−,−}, ·) simply by A, if the context is clear. Also, all the vector 
spaces, algebras (Poisson, Lie), and the corresponding linear maps (morphisms, 
derivations), will be considered over a general field K, with char K = 0, unless 
stated otherwise. 

4 Hamiltonian Derivations and Casimirs 

Definition 2.12 (Hamiltonian Derivations and Casimirs) Let A be a Poisson 
algebra and a ∈ A. The derivation Xa := {−, a} ∈  D(A) is called a Hamiltonian 
derivation with a Hamiltonian (or a Hamilton function) a associated to Xa . We  
denote by 

.Ham(A) := {Xa | a ∈ A} (11)
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the set of all Hamiltonian derivations. We have a linear map A → Ham(A), a 
→ 
Xa . Let  a ∈ A be s.t. Xa = 0, then a is called a Casimir element. We denote by 

.Cas(A) := {a ∈ A|Xa = 0} (12) 

the set of all Casimir elements. 

Definition 2.13 The (Poisson) center of A is ZP (A) := {a ∈ A | {a, b} =  
0 for all b ∈ A}. We have Cas(A) = ZP (A). 

Definition 2.14 Augmentation of an (associative) K-algebra A is a K-algebra 
homomorphism α : A → K. The pair (A, α)  is called an augmented algebra. The  
kernel ker α is called the augmentation ideal of A. 

Lemma 2.1 For arbitrary monic polynomial p(x) ∈ Cas[x] and arbitrary b ∈ A 

.{p(x), b} = p′(x){x, b} , (13) 

where p′(x) = ∂p(x) 
∂x . 

Proof By induction. Suppose τ := deg p = 0. Then p(x) = c0, where c0 ∈ 
Cas(A), and hence for all b ∈ A 

. {p(x), b} = {c0, b} = 0 = p′(x){x, b} .

Let the induction hypothesis hold for monic polynomials of deg ≤ τ−1 and suppose 
τ >  0. Then p(x) = xτ + cτ−1xτ − 1+ . . .  + c1x + c0, where all ci ∈ Cas(A). We  
can rewrite p(x) = xτ + cτ−1q(x), where q(x) is monic and deg q = τ − 1. Then 

. {p(x), b} = {xxτ−1, b} + cτ−1{q(x), b}
= xτ−1{x, b} + x{xτ−1, b} + cτ−1q

′(x){x, b}
= (xτ−1 + x(τ − 1)xτ−2 + cτ−1q

′(x)){x, b}
= p′(x){x, b} .

��
Proposition 2.1 Let A be a Poisson algebra. 

1. Cas(A) is a subalgebra of (A). Moreover, K can be naturally identified with 
a subset of Cas(A). 

2. If A is an integral domain (i.e. has no zero divisors), then Cas(A) is integrally 
closed inA. 

3. Not every representation of A on End(A) defines an A-module structure on 
Ham(A) ⊂ End(A). 

4. Ham(A) is a Cas(A)-module. 
5. The map ϕ : A→ D(A), defined by H 
→ −XH is a morphism of Lie algebras.
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6. There is a short exact sequence of Lie algebras 

. 0 → Cas(A) → A→ Ham(A) → 0 .

Proof 

1. That Cas(A) is a subalgebra of A is obvious. Now we show that scalars 
correspond to Casimir elements. Notice that since A is an algebra with the unit, 
1, and because K has an action on A (denoted also by juxtaposition), there is 
a natural injective morphism ι : K → A, given by k 
→ k1. This means that we 
can identify K with ι(K) = K1 ⊂ A. We will simply write ι(k) = k.3 Now 
consider arbitrary a ∈ A and k ∈ K. Then we have 

. {a, k1} = {a, k}1 + k{a, 1},
which implies that k{a, 1} =  0 (otherwise {a, k1} �= {a, k}) and hence {a, 1} =  
0.4 But if {a, 1} =  0 then the K-bilinearity of {−,−} implies k{a, 1} = {a, k} =  
0. So arbitrary k ∈ K · 1 satisfies {a, k} =  0 for all a ∈ A, hence K1 ⊂ Cas(A). 

2. Suppose a is an integral element over Cas(A), i.e. a ∈ A and there is a monic 
polynomial p(x) ∈ Cas(A)[x] s.t. p(a) = 0. We need to show that a ∈ Cas(A). 
Without loss of generality, suppose p is the smallest degree polynomial s.t. 
p(a) = 0. If deg p = 1, then p(x) = x − a. Hence a ∈ K ⊂ Cas(A) by 
the previous statement. Suppose τ := deg p >  1. Using (13), for any b ∈ A we 
have 

. 0 = {p(a), b} = p′(a){a, b} .

Now p′(a) �= 0, otherwise there exists k ∈ K s.t. p′
k is a monic polynomial, 

which satisfies p′
k (a) = 0 and deg( p

′
k ) = degp′ = τ − 1. But this would 

be a contradiction with the assumption of p being the smallest degree monic 
polynomial with the property p(a) = 0. Because A has no zero divisors, 
{a, b} =  0. As b ∈ A is arbitrary, this shows that a ∈ Cas(A). 

3. Consider the left action l : A → End(End(A)), x 
→ lx , where lx(a). Suppose 
l defines an A-module structure on Ham(A). Then for any x ∈ A and arbitrary 
Xa ∈ Ham(A), we have  lxXa ∈ Ham(A). This means there is d ∈ A s.t. for 
every b ∈ A : lxXa(b) = Xd(b). But this is not true, in general, since 

. lxXa(b) = x{b, a} = {b, xa} − {b, x}a ,

while 

.Xd(b) = {b, d} .

3 In this notation, ka can be interpreted equivalently as action of K on A, or as a multiplication in 
A after identifying K with ι(K). Of course we have k1 = 1k = k. 
4 Since for a �= 0 : ka = 0 ⇒ k = 0. 
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In other words, 

.(lxXa − Xd)(b) = 0 ⇐⇒ d = xa and {b, x}a = 0 , (14) 

for every a, b, x ∈ A, which is obviously not always the case. Notice though, if 
we assume that x ∈ Cas(A), then {b, x} =  0 for every b ∈ A and thus (14) can 
always be satisfied. This shows that the action of A on End(A), if restricted to 
Cas(A), defines an action on Ham(A), i.e. statement 4 follows. 

4. See the proof of statement 3. 
5. By definition, ϕ(a)(c) = −Xa(c) = −{c, a}. We want to show that ϕ({a, b}) = 

[ϕ(a), ϕ(b)], where 

. [ϕ(a), ϕ(b)] = [Xa,Xb] := Xa ◦ Xb − Xb ◦ Xa .

From the Jacobi identity (4), we have for arbitrary a, b, c ∈ A 

. − {c, {a, b}} = {{c, b}, a} − {{c, a}, b} = Xa(Xb(c)) − Xb(Xa(c)) .

Since ϕ({a, b}) = −X{a,b} = −{c, {a, b}}, this shows that ϕ is a Lie algebra 
morphism. 

6. The first map is an inclusion, ι : Cas(A) → A, which is obviously a Lie algebra 
morphism. The second map is ϕ : A → Ham(A), and is given by a 
→ −Xa . 
The previous statement shows that it is a Lie algebra morphism. Now consider 
a ∈ A. Then Xa = 0 iff  ∀b ∈ A : Xa(b) = {b, a} =  0. Thus ker ϕ = im ι, 
meaning that the short sequence 

is exact. 
��

Remark 2.7 Corollary of the fifth statement of the above proposition is that 
Ham(A) ⊂ D(A) is a Lie subalgebra. 

4.1 Exterior Algebra of a Commutative Algebra 

In the following constructions, . A is always commutative, associative, unital .K-
algebra with the unit 1. 

Module of Kahler Differentials of . A Let .	A/K(A) be a .K-vector space gener-
ated by elements of the form .bd(a), for all .a, b ∈ A, satisfying relations 

.d(ab) = d(a)b + ad(b) .
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where .d : A → 	A/K(A) is an .A-linear map called the universal derivation. 
More precisely, for any derivation .∂ ∈ D(A), there is a unique .A-linear map 
.∂̃ : 	A/K(A) → A, such that the following diagram commutes 

. (15) 

The .A-module structure on .	A/K(A) is given by multiplication from the left. 
Using the universal property of .(	A/K(A), d), we have a canonical .A-module 
isomorphism 

.D(A) ∼= HomA(	A/K(A),A) . (16) 

This .A-isomorphism can be understood as duality between .D(A) and .	A/K(A). 
Moreover, it can be extended to polyderivations and exterior forms on the algebra 
. A. 

Exterior Algebra of . A Let .	•(A) be the (graded) exterior algebra of the vector 
space of Kahler differentials of . A

. 	•(A) := ⊕k≥0	
k(A) := ⊕k≥0


k(	A/K(A)),

together with the universal derivative .d : A→ 	1(A), which extends to 

. d : 	k(A) → 	k+1(A)

for all k. The universal derivative satisfies all the properties of the exterior 
differential on forms. In particular, . d is a boundary operator 

. d2 = 0 ,

and acts with respect to the wedge product as 

. d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2 ,

where .ω1 ∈ 	k(A) and .ω2 ∈ 	•(A) are arbitrary. The .A-duality (16) between 
.D(A) and .	A/K can be written as 

. D(A) × 	A/K(A) → A ,

< x, da >:= (da)(X) := X(a) ∈ A ,

and may be extended to the duality 

.
k(D(A)) ∼= HomA(	k(A),A) .
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Moreover, one can define the symmetric algebra of derivations as 

. S(D(A)) := HomA(S(	A/K(A),A) ,

which, as was already shown, is a graded Poisson algebra of degree 1. 
Take .k = 2, then we have 

.
2(D(A)) ∼= HomA(	2(A),A) . (17) 

Suppose now that . A is a Poisson algebra equipped with a Poisson bracket 

. {−,−}: A×A→ A .

Then the above duality (17) provides an element .π ∈ 
2(D(A)) by the formula 

. < π, da ∧ db >= {a, b} , (18) 

for all .a, b ∈ A. Then . π is called a Poisson biderivation. The Jacobi identity for 
the Poisson bracket .{−,−} imposes an important constraint on the biderivation . π , 
which we will discuss below (see (22)). 

5 Homology and Cohomology 

We will discuss two types of (co)homologies that can be defined for an algebra 
. A. Firstly we define (co)homology of commutative, associative, unitary algebras 
(Hochschild), then for Poisson algebras (Lichnerowicz-Poisson). 

5.1 Hochschild (Co)Homology 

We use the following notation .⊗ = ⊗K and .A⊗k = A⊗ . . . ⊗A︸ ︷︷ ︸
k-times

. We define 

.A⊗0 := K. 

Hochschild Chain Complex Let . A be a commutative, associative, unitary .K-
algebra, and let . M be an .A-bimodule.5 Then there is the following chain complex 
of .A-bimodules . M⊗A⊗k, k ∈ N

. (19)

5 That is, . A acts on . M from left and right. 
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The boundary operators .dk, k ∈ N, k > 0 are defined via the “face maps” . ∂i as 

. dk :=
k∑

i=0

(−1)i∂i ,

where the maps . ∂i are 

. ∂i(m ⊗ a1 ⊗ . . . ⊗ ak) :=

⎧⎪⎪⎨
⎪⎪⎩

ma1 ⊗ . . . ⊗ ak, if i = 0

m ⊗ a1 ⊗ . . . ⊗ aiai+1 ⊗ . . . ⊗ ak, if 0 < i < k

akm ⊗ a1 ⊗ . . . ⊗ ak−1, if i = k

for all .m ∈ M and .ai ∈ A. This is the Hochschild chain complex. 
Exercise 2.3 Check that the above defined boundary maps . dk are 

1. .K-multilinear, 
2. well-defined, 
3. satisfy . dk

2 = 0

for all .k ∈ N0. 

Definition 2.15 (Hochschild Homology) The homology of the chain com-
plex (19), denoted .HH∗(A,M), is called the Hochschild homology of . A with 
coefficients in . M. The  k-th Hochschild homology .K-module is 

. HHk(A,M) := ker dk/imdk+1 .

Hochschild Cochain Complex Using the .HomK-functor, we can construct the 
Hochschild cochain complex 

. (20) 

The coboundary operators . dk are defined as 

. dk :=
k∑

i=0

(−1)i∂i ,

where the maps . ∂i are defined for . f ∈ HomK(A⊗k,M)

. (∂if )(a0 ⊗ a1 ⊗ . . . ⊗ ak) :=

⎧⎪⎪⎨
⎪⎪⎩

a0f (a1 ⊗ . . . ⊗ ak), if i = 0

f (a0 ⊗ a1 ⊗ . . . ⊗ aiai+1 ⊗ . . . ⊗ ak), if 0< i <k

f (a0 ⊗ a1 ⊗ . . . ⊗ ak−1)ak, if i = k

where .ai ∈ A for all i. This is the Hochschild cochain complex.
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Definition 2.16 (Hochschild Cohomology) The cohomology of the cochain com-
plex (20), denoted .HH ∗(A,M), is called the Hochschild cohomology of . A with 
coefficients in . M. The  k-th Hochschild cohomology .K-module is 

. HHk(A,M) := ker dk/ im dk−1 .

Proposition 2.2 The 0-th Hochschild homology of . A with coefficients in . M satisfy 

. HH0(A,M) =M/[M,A] ,

where .[A,M] = {am − ma| a ∈ A,m ∈M}. In particular 

. HH0(A,A) = A/[A,A] .

The 0-th Hochschild cohomology of . A with coefficients in . M satisfy 

. HH 0(M,A) = {m ∈ M| am = ma, ∀a ∈ A} .

In particular, 

. HH 0(A,A) = Z(A) ,

where .Z(A) is the center of . A. 

Proposition 2.3 Let . A be a commutative .K-algebra and . M an .A-bimodule. Then 
the 1st Hochschild homology satisfies 

. HH1(A,M) ∼= M ⊗A 	A/K(A) .

Denote by .D(A,M) the space of .K-linear functions .f : A→M such that 

. f (ab) = af (b) + f (a)b .

Denote by .PD(A,M) the space of .K-linear functions .fm : A → M, which are 
given by 

. fm(a) = ma − am .

Exercise 2.4 Check that the above defined . fm satisfies .fm ∈ D(A,M). 

Proposition 2.4 .HH 1(A,M) = D(A,M)/PD(A,M).
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5.2 Lichnerowicz-Poisson Cohomology 

Let . A be a commutative Poisson algebra with the Poisson bracket .{−,−} and 
consider .
(D(A)) = ⊕

k≥0 
k(D(A)) defined as follows. For .k = 0, we  
define .
0(D(A)) = A. An element .X ∈ 
k(D(A)), k > 0, is a multilinear, 
antisymmetric mapping 

. X : Ak → A

and the mapping .∂X : A→ A given by 

. ∂X(a) := X(a, a1, . . . , ak−1)

is a derivation. 

Schouten-Nijenhuis Bracket Let .X, Y ∈ 
(D(A)) be decomposable, 

. X = x1 ∧ . . . ∧ xk Y = y1 ∧ . . . ∧ yl ,

where all .xi, yj ∈ D(A). The Schouten-Nijenhuis bracket .[[−,−]] is given by 

. [[X, Y ]] :=
∑
i,j

(−1)i+j [xi, yj ]x1 ∧ . . . ∧ x̂i ∧ . . . ∧ xk ∧ y1 ∧ . . . ∧ ŷj ∧ . . . ∧ yl ,

where .[−,−] is the commutator of differential operators, and the above definition 
is extended linearly on the whole .
(D(A)). 

Exercise 2.5 Show that the Schouten-Nijenhuis bracket .[[−,−]] satisfies for all 
. P,Q ∈ 
(D(A))

.[[P,Q]] = (−1)degP degQ[[Q,P ]] (21) 

Poisson Operator Let .π ∈ 
2(D(A)) be the Poisson biderivation, defined 
by (18). Then the Schouten-Nijenhuis bracket gives an element . [[π, π ]] ∈

3(D(A)). 

Proposition 2.5 The Jacobi identity for the Poisson bracket (45) implies the 
triviality of the 3-derivation: 

.[[π, π ]] = 0 . (22) 

Exercise 2.6 Prove the above proposition. 

Equation (22) is sometimes called Poisson Master equation. It can be interpreted 
as a nilpotency condition (.δπ

2 = 0) for the operator .δπ : 
(D(A)) → 
(D(A)), 
defined by
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. δπX = [[π,X]] .

The operator . δπ is called Lichnerowicz-Poisson operator and leads to the 
following notion of cohomology. 

Definition 2.17 (Lichnerowicz-Poisson Cohomology) The cohomology of the 
chain complex 

. 

is called the Lichnerowicz-Poisson cohomology, denoted .HP ∗(A). 

In terms of the Poisson bracket, the Lichnerowicz-Poisson operator can be 
rewritten as 

. (δπX) (a0, a1, . . . , ak) =
∑

i

(−1)i{ai,X(a0, a1, . . . , âi , . . . , ak)}. (23) 

+
∑

0≤i<j 
X({ai, aj }, a1, . . . ,  âi , . . . ,  âj , . . . , ak) .  

(24) 

5.3 Low-Dimensional Poisson Cohomology 

k = 0: the operator δπ : A → D(A)) ∼= 
1(D(A)) acts as a 
→ ∂a = {−, a}, 
where a ∈ A can be seen as a Hamiltonian for a Hamiltonian derivation {−, a}. We  
have 

. HP 0 ∼= Cas(A)

since δπ (a)(b) = 0 for all b ∈ A if and only if a ∈ Cas(A). Elements of HP 0 ∼= 
Cas(A) are called Hamiltonians with zero dynamics. 

k = 1: 1-coboundary is a derivation X ∈ D(A) which is a Hamiltonian 
derivation ∂a for some element a ∈ A. 1-cocycle is an element X ∈ D(A) s.t. 

. δπ (X) = 0 ⇒ [[π,X]] = 0 .

Derivations X ∈ D(A) which satisfies δπ (X) = 0 are called Poisson, or canonical, 
derivations. The set of all such elements is denoted Can(A). The equation [[π, X]] = 
0 represents a conservation of the Poisson structure along X. If we denote LXπ = 
[[π, X]], one can easily show that 

. < LXπ, da ∧ db >= LX < π, da ∧ db > .
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Theorem 2.1 (Basic Theorem of Classical Mechanics) 

. HP 1(A) ∼= Can(A)/Ham(A) ,

where Ham(A) is given by (11). 

Example (Hamiltonian Derivations on Polynomial Algebra [3]) Consider 
A = K[x1, x2] with the Poisson bracket {x1, x2} =  x2. Then ∂ ∈ Ham(A) ⊂ 
D(A) if 

.∂ = α1
∂

∂x1
+ α2

∂

∂x2
(25) 

and exists h ∈ A such that 

. ∂ = ∂h = {−, h} .

We will compute the coefficients αi so that the above equation holds. We have 

. {x1, h} = ∂x1

∂x1

∂h

∂x2
− ∂x1

∂x2

∂h

∂x1
= ∂h

∂x2
.

Similarly we get 

. {x2, h} = − ∂h

∂x1
.

For f ∈ A, the bracket with h is 

. {f, h} = ∂f

∂x1
{x1, h} + ∂f

∂x2
{x2, h} = ∂f1

∂x1

∂h

∂x2
− ∂f1

∂x2

∂h

∂x1
.

From (25) we have 

. ∂(f ) = α1
∂f

∂x1
+ α2

∂f

∂x2
,

so to have ∂ = ∂h, one must have 

. α1 = ∂h

∂x2
, α2 = − ∂h

∂x1
.

This means that the set of Hamiltonian derivations onA is given by 

.Ham(A) = { ∂h

∂x2

∂

∂x1
− ∂h

∂x1

∂

∂x2
| h ∈ A} .
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Exercise 2.7 ConsiderA from the previous example. Show that 

. Can(A)/Ham(A) ∼= K

Indication: check that if ∂ = α1 
∂ 

∂x1 
+ α2 

∂ 
∂x2 

∈ Can(A), then 

. α1 = c + x2
∂h

∂x2

α2 = −x2
∂h

∂x1

where c ∈ K. 

Example Consider the set 

. Sym(HomK(Dp(A),A)) = {ϕ : Dp(A) → A | ϕ multilinear} .

An element of the above set is not only K-linear in all p-arguments but also 
a K-derivation in every argument. Recall that D(A) is the A-module of K-
derivations ofA. 

5.3.1 Compatible Poisson Structures 

As a useful application of Lichnerowicz-Poisson cohomology, consider the follow-
ing description of compatible Poisson structures. 

Definition 2.18 Two Poisson structures given by biderivations . π and . θ are compat-
ible if for all .λ ∈ K, .π + λθ is again a Poisson structure. 

As an immediate consequence of the above definition, we have the following 
proposition. 

Proposition 2.6 If two Poisson structures .π, θ ∈ 
2 (D(A)) are compatible, then 

. [[π, θ ]] = 0

Equivalently, if . π and . θ are compatible, then they are closed with respect to 
coderivations in the following sense 

. δπθ = δθπ = 0 .

Exercise 2.8 Prove the Proposition 2.6.
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Notice that if .[[π, θ ]] = 0 then for all . λ ∈ K

. [[π + λθ, π + λθ ]] = 0 .

Let us fix a biderivation . π . Consider the Lie derivative of . π along . X ∈ D(A)

. LXπ := [[π,X]] ∈ 
2 (D(A)) .

Let . π be a Poisson biderivation (i.e. it corresponds to a Poisson structure). Then 
.LXπ is called an infinitesimal deformation of the Poisson structure. Now consider 
a deformation of . π of the form 

. π 
→ π + LXπ .

By assumption, we have .[[π, π ]] = 0 since . π yields a Poisson structure. If 
we assume that the deformation also yields a Poisson structure, then the graded 
antisymmetry of the bracket (see (21) yields 

. 0 = [[π + LXπ, π + LXπ ]] = 2[[π,LXπ ]] + [[LXπ,LXπ ]] .

Let us denote .γ := LXπ and recall that .[[θ,X]] = δθ (X). Then the above can be 
written as 

. δπγ + 1

2
[[γ, γ ]] = 0 .

This equation is called Maurer-Cartan equation (for a differential graded algebra 
.
(D(A))). 

5.3.2 Interpretation of HP 2(A) 

Let .π ∈ 
2 (D(A)) and consider the image of .δπ : 
1 (D(A)) → 
2 (D(A)), 
given by 

. Bπ
2 = {θ ∈ 
2 (D(A)) | θ = [[π,X]] for some X ∈ D(A)} ,

The kernel of .δπ : 
2 (D(A)) → 
3 (D(A)) is 

. Zπ
2 = {θ ∈ 
2 (D(A)) | [[π, θ ]] = 0]} .

By definition 

. HP 2(A) = Zπ
2/Bπ

2 .

We have the following proposition, which yields an interpretation of the second 
Lichnerowicz-Poisson cohomology.
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Proposition 2.7 ([6]) If .π ∈ 
2 (D(A)) is a Poisson biderivation (.[[π, π ]] = 0) 
and .HP 2(A) = 0, then the set of all structures compatible with . π

.Comm(π) := {θ ∈ 
2 (D(A)) | [[θ, θ ]] = [[π, θ ]] = 0} (26) 

is a set of infinitesimal deformations of . π along .X ∈ D(A). That is, .θ = LXπ such 
that 

. LX
2(θ) = LY π

for some .Y ∈ D(A), where .LX
2 = LX ◦ LX. 

Proof Let .θ ∈ Comm(π), then .δπθ = 0 so 

. Comm(π) ⊂ ker δπ .

If .θ = δπX then .0 = [θ ] ∈ HP 2(A). Suppose .θ ∈ Comm(π) and .HP 2(A) = 0. 
Then .θ = δπX = [[π,X]] = LXπ . But at the same time . [[θ, θ ]] = [[LXπ,LXπ ]] =
0. This is equivalent to .(LX ◦ LX)(θ) ∈ ker δπ since 

. LX (LXπ) = LX ([[π,X]]) = [[[[π,X]], X]] = [[θ,X]] ,

and 

. δπ ([[θ,X]]) = δπ (δθX) = −δθ (δπX) = [[δπX, δπX]] = 0 .

Hence if .HP 2(A) = 0 then there is .Y ∈ D(A) such that .LX
2θ = LY (π) = δπ (Y ). 

��
From the above, we obtain a mapping 

. τ : Comm(π) → HP 2(A)

and 

. τ(θ) = 0 ⇐⇒ θ = δπ (X)

for some .X ∈ D(A). The image of . τ is described by the following proposition. 

Proposition 2.8 Let .∂ ∈ HP 2(A). Then 

. ∂ ∈ im τ ⇐⇒ ∂ = � + δπ (D(A)) ,

where the representative .� ∈ 
2 (D(A)) of the class . ∂ satisfies
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1. .[[∂, ∂]] = [[�,�]] = ∂π (α), where .α ∈ 
2 (D(A)), 
2. there is .X ∈ D(A) such that .α + 2LX(�) − LX

2(π) = ker δπ . 

Proof Let .� ∈ 
2 (D(A)) be such that 

. ∂ = � + δπ (D(A)) ∈ HP 2(A) .

If .∂ ∈ im τ , then there is a .θ ∈ Comm(π) (see (26)) such that 

. τ(θ) = � + δπ (D(A)) .

Because 

. 0 = [[∂, ∂]] ⇒ [[�,�]] = ∂π (α) ∈ HP 3(A)

and .τ [[θ, θ ]] = 0, we have  

. [[τ(θ), τ (θ)]] = [[� + δπ (X),� + δπ (X)]]
= [[�,�]] + [[�, δπ(X)]] + [[δπ (X),�]] + [[δπ (X), δπ (X)]]
= δπ (α) − [[�,LXπ ]] − [[LXπ,�]] − δπLX

2(π)

= δπ

(
α − LX

2(π)
)

− 2[[LXπ,�]]

= δπ

(
α − LX

2(π)
)

− 2[[[[π,X]],�]]

= δπ

(
α + 2LX(�) − LX

2(π)
)

= 0 ,

since .[[τ(θ), τ (θ)]] = 0. ��

5.4 Poisson Homology 

The following construction is due to Brylinski [7] and [8]. Let . A be a commutative 
.K-algebra and .	(A) = 
(	A/K) be the exterior algebra of . A. The boundary 
morphism .dπ : 	k(A) → 	k−1(A) is defined by the “homotopy-like” formula 

.dπω = (iπ ◦ d)(ω) − (d ◦ iπ )(ω) , (27) 

where . iπ is the contraction operator with respect to . π , i.e ..iπ :=< π,− >. It is  
straightforward to check that this operator satisfies .dπ ◦ dπ = 0. In coordinates, we 
can describe . dπ on a decomposable .ω = a0, da1 ∧ . . . ∧ ak by the general formula



Lectures on Poisson Algebras 63

. dπω =
k+1∑
l=1

(−1)l+1{a0, ai} ∧ da1 ∧ . . . ∧ d̂al ∧ . . . ∧ dak+1

−
∑
i<j

(−1)i+jd
({ai, aj }

) ∧ da1 ∧ . . . ∧ d̂ai ∧ . . . ∧ d̂aj ∧ . . . ∧ dak+1 .

By definition, 

. dπ(a0da1) = iπ (da0 ∧ da1) = {a0, a1} .

Note that the Jacobi identity for the triple . a0, a1, a2

. {a0, {a1, a2}} + {a1, {a2, aO}} + {a2, {a0, a1}} = 0

implies .(dπ )2 = 0. 

5.5 Duality 

Let . π be a symplectic (or non-degenerate) Poisson structure on . A, meaning that the 
Hamiltonian map 

. �π : 	1
A/K

→ D(A)

defined by 

. �π(α) =< π, α >∈ D(A)

is an isomorphism, and there exists the inverse .�π
−1 : D(A) → 	1(A). The  

inverse is given by 

. �π
−1(∂) = α∂ such that < π, α∂ >= ∂ .

In this case, one can check that 

. δπ = �π ◦ d ◦ �π
−1 ,

where . δπ is the Lichnerowicz-Poisson operator. The above equation is symbolical. 
It can be described more precisely by the following commutative diagram
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. 

which holds for any Poisson biderivation . π . 

Proposition 2.9 For general k, the following diagram commutes 

. 

Proof To check the commutativity of the diagram, consider decomposable . ω =
a0da1 ∧ . . . ∧ dak ∈ 	k(A). Then 

. 
k+1�π(dω) = 
k+1�π(da0 ∧ da1 ∧ . . . ∧ dak) = ∂a0 ∧ ∂a1 ∧ . . . ∧ ∂ak
,

and 

. δπ (
k�π(ω)) = δπ (a0∂a1 ∧ . . . ∧ ∂ak
)

= −[[a0∂a1 ∧ . . . ∧ ∂ak
, π ]]

= −[[a0, π ]] ∧ ∂a1 ∧ . . . ∧ ∂ak

= ∂a0 ∧ ∂a1 ∧ . . . ∧ ∂ak
.

Since the above can be extended linearly, the diagram commutes. ��
Remark 2.8 If .A = C∞(M) is the algebra of smooth function on a smooth 
manifold M , then it was shown in [7] that 

. HPk(A) ∼= HP 2n−k(A) .

Moreover, by the Proposition 2.9, the latter group is isomorphic with the de Rham 
cohomology 

. HP 2n−k(A) = H 2n−k
DR (M) .

In the following lemma, we use the notion of a graded commutator in a graded 
algebra 

. [∂1, ∂2] := ∂1 ◦ ∂2 − (−1)deg ∂1 deg ∂2∂2 ◦ ∂1 .

We have .deg dπ = −1, deg d = 1, deg iπ = −2, Lπ = 1
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Lemma 2.2 The operator .dπ : 	k(A) → 	k−1(A) commutes in graded sense with 
. d and . iπ , i.e. 

. [dπ , d] = dπ ◦ d + d ◦ dπ = 0 ,

[dπ , iπ ] = dπ ◦ iπ − iπ ◦ dπ = 0 .

Proof To prove the first equation, we use the definition of . dπ (see (27)) and that 
.d ◦ d = 0. Then 

. (iπ ◦ d − d ◦ iπ ) ◦ d + d ◦ (iπ ◦ d − d ◦ iπ ) = −d ◦ iπ ◦ d + d ◦ iπ ◦ d = 0

Hence .[dπ , d] = 0. Similarly for the second equation 

. [dπ , iπ ] = [Lπ, iπ ] = i[π,π ] = 0 .

��
Remark 2.9 When .A = C∞(M), where M is a smooth Poisson manifold, we will 
see all the above, and more general, identities in the later section as well. 

Example (0th Poisson Homology) For the kernel of . d0
π : 	0(A) ∼= A → 0

we obviously have .ker d0
π

∼= A. For the image of . d1
π : 	1(A) → 	0(A) ∼= A

we have .im d1
π = {A,A}. This is because .	1(A) consists of element .a0da1, 

where .a0, a1 ∈ A are arbitrary, and 

. d1
π (a0da1) = {a0, a1} ∈ {A,A} .

Hence 

. HP0(A) ∼= A/{A,A}

There is no simple interpretation for higher homology groups, .k > 0. 

6 Polynomial Poisson Algebras 

Let .A = C[x1, . . . , xn] be the polynomial algebra over complex numbers. If . xi is 
a generator of . A, then .∂i := ∂

∂xi
∈ D(B). The vector operator .∇ := (∂1, . . . , ∂n) is 

called gradient One can define the Jacobian matrix of n elements . f1, . . . , fn ∈ A
as
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. Jac(f1, . . . , fn) :=
(

∂fi

∂xj

)
.

The determinant .det(Jac(f1, . . . , fn)) is called Jacobian. It is clear the i-th row of 
.Jac(f1, . . . , fn) is .∇(fi). 

6.1 Nambu-Jacobi-Poisson Algebras 

Now we fix .f1, . . . , fn−2 ∈ A and define the following bilinear operation 
.{−,−}: A×A→ A, which yields a Poisson algebra structure on the polynomial 
algebra . A, called Nambu-Poisson-Jacobi structure. 

Definition 2.19 The Nambu-Jacobi-Poisson bracket of .F,G ∈ A is 

.{F,G} := det Jac(F,G, f1, . . . , fn−2) ∈ A . (28) 

When .A = C[x1, x2, x3], there is only one f determining the Nambu-Jacobi-
Poisson bracket, and we will denote the bracket by .{−,−}f . We proceed with the 
following elementary lemma. 

Lemma 2.3 For .1 ≤ i ≤ n and .f1, . . . , fi−1, fi+1, . . . , fn ∈ A, the operation 
.D : A → A given by .D(g) := Jac(f1, . . . , fi−1, g, fi+1, . . . , fn) is a derivation 
of . A. 

Theorem 2.2 The bracket (28) is a Poisson bracket on . A. 

Proof To prove this theorem for any n, we observe that skew symmetry is evident 
from the skew-symmetry of . det, the Leibniz rule follows from the Lemma 2.3, so  
the only non-trivial statement is, as usual, the Jacobi identity. But this follows from 
the Fundamental identity for the Nambu bracket . {f1, . . . , fn} := Jac(f1, . . . , fn)

(see (29) below). ��
An interesting property of the algebraic bracket structure on the polynomial 

algebra is given by the following theorem. 

Proposition 2.10 If .f1, . . . , fn−2 are algebraically dependent over . C, then 
.{−,−} = 0. 

Proof The proof is left as an easy exercise for the reader. ��
Remark 2.10 If we consider .F,G as rational functions, the result of bracket (28) is 
still a polynomial. Consider a quotient by (convenient) ideal 

.B := C[x1, . . . , xn]/ < p1, . . . , pk > ,
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where .pi ∈ A. Then the Theorem 2.2 still holds, i.e. the bracket (28) yields a 
Poisson algebra structure on . B. This is valid in an even more general setup of power 
series rings [9]. 

The Nambu-Jacobi-Poisson bracket is a special case of a .(n − m)-ary operation 

. {F1, . . . , Fn−m} := λ det Jac(F1, . . . , Fn−m, f1, . . . , fm) ∈ A ,

where .λ, Fi ∈ A for all i. The above multibracket . {−, . . . ,−}: A⊗(n−m) → A
satisfies for every permutation . σ the antisymmetry condition 

. {F1, . . . , Fn−m} = (−1)σ {Fσ(1), . . . , Fσ(n−m) .

It also satisfies the Leibniz rule in every argument 

. {hF1, . . . , Fn−m} = F1{h, . . . , Fn−m} + h{F1, . . . , Fn−m} ,

and the Fundamental identity 

.

∑
k

{G1, . . . ,Gk−1, {F1, . . . , Fn−m−1,Gk},Gk+1, . . . , Gn−m} =

= {F1, . . . , Fn−m−1, {G1, . . . ,Gn−m}} ,

(29) 

which is a generalization of the Jacobi identity (the Jacobi identity and Nambu-
Jacobi-Poisson bracket is restored in the case .n − m = 2). For more details about 
the Nambu structures and their generalizations, see [9]. 

Consider now a .(n − 2) × n matrix over . A

. M =
⎛
⎜⎝

a1,1 . . . a1,n
...

...

an−2,1 . . . 0an−2,n

⎞
⎟⎠ .

Suppose .i �= j and denote by .M̂ij the matrix given by deleting the i-th and j -th 
column (thus the result being .(n − 2) × (n − 2) matrix. If we choose 

. M =

⎛
⎜⎜⎝

∂f1
∂x1

. . .
∂f1
∂xn

...
...

∂fn−2
∂x1

. . .
∂fn−2
∂xn

⎞
⎟⎟⎠ ,

then for the generators of . A we have 

. {xi, xj } = (−1)i+j−1 det M̂ij

and we define .{xi, xi} = 0.
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Example Let .n = 3, f = 1
3 (x1

3 + x2
3 + x3

3) + τx1x2x3, where .τ ∈ C. Then 
.{xi, xj } = Jac(xi, xj , f ) = τxixj + xk

2, where .(i, j, k) is a permutation of 
.{1, 2, 3}. 

Example (Sklyanin Elliptic Poisson Brackets) Let .n = 4 and consider 
.f1 = q1(x1, x2, x3, x4), f2 = q2(x1, x2, x3, x4), where .q1, q2 are quadratic 
polynomials. Choosing .q1 = x1

2 + x2
2 + x3

2 + x4
2 and . q2 = αx2

2 + βx3
2 +

γ x4
2 such that .αβγ +α+β+γ �= 0, we obtain the original Sklyanin-Poisson 

structure [9–11]. 

6.2 Poisson-Calabi-Yau Algebra 

This is a Jacobian algebra .A = C[x1, x2, x3] with .f = −x1
2x3 [12]. The Nambu-

Jacobi-Poisson bracket (28) is 

. {x1, x2}f = −x1
2, {x2, x3}f = −2x1x3, {x1, x3}f = 0 .

It is interesting that the algebra .	1(A) = A < dx1, dx2, dx3 > (think of a free 
algebra over A) is also a Poisson algebra with 

. {dx1, dx2}	 = d{x1, x2}f = −2x1dx1 ,

{dx2, dx3}	 = d{x2, x3}f = −2x3dx1 − 2x1dx3 ,

{dx1, dx3}	 = d{x1, x3}f = 0 .

There is a corresponding sequence [13] 

. 

where . d is the universal derivative (see (15)) and . dπ is given by (27). The  
isomorphism are coming from the duality (16).



Lectures on Poisson Algebras 69

6.2.1 Low-Dimensional Cohomology of the PCY Algebra 

Considering the above sequence, we firstly notice that .
0((D(A)) ∼= A and 
.
1((D(A)) ∼= D(A), so that the first map amounts to mapping .A → D(A), 
and .δπ (a) = [[π, a]] = ∂a ∈ Ham(A) is a Hamiltonian derivation. Thus . δπ (a) = 0
iff a is a Casimir element (see def. (12)) of . A and we have 

. HP 0(A) ∼= Cas(A) =< x1
2x3 >A ,

where .Cas(A) are the Cassimir elements of . A. For the first cohomology, consider 
.∂ ∈ D(A), we have .δπ (∂) = [[π, ∂]] = −[[∂, π ]] = L∂π . So we see that . ∂ ∈ ker δπ

iff .L∂π = 0, meaning that . π is invariant with respect to . ∂ . We have already met 
these operators in the section in which we computed the low-dimensional Poisson 
cohomology for more general algebras: the set of such operators is denoted . Can(A)

and . ∂ is called Poisson canonical. The first cohomology is 

. HP 1(A) = Can(A)/Ham(A) .

6.3 Dual Poisson Complex 

Consider the chain complex 

. 

This complex was introduced by Brylinski in [7]. It has highly non-trivial (Poisson) 
homology. For example, the lowest homology is 

. HP0(A) ∼= A/ < {a, b}f | a, b ∈ A >A ,

since .
0((D(A)) = A and the image of .δπ : 
1((D(A)) → 
0((D(A)) is 
given by .δπ (adb) = {a, b}f . Following the definition of the Nambu-Jacobi-Poisson 
bracket on . A we get 

. {a, b}f = det

⎛
⎝∂1a ∂2a ∂3a

∂1b ∂2b ∂3b

∂1f ∂2f ∂3f

⎞
⎠

Writing .∇a = (∂1a, ∂2a, ∂3a), we can express .{a, b}f as 

. {a, b}f = ∇f · (∇a × ∇b) ,

where . · is the dot product and . × is the vector product. More details on Poisson 
(co)homology of the Dual Poisson complex can be found in [2].
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Exercise 2.9 Describe all differentials in the complex above in terms of vector 
analysis operations: .∇, curl,×, (−,−), div. 

Generalized SPDUNR Poisson Algebra The following is the generalized 
Sklyanin-Painlevé-Dubrovin-Ugaglia-Nelson-Regge Poisson algebra: 

. Af = (C[x1, x1, x3], {−,−}f ) ,

where .{−,−}f is the Jacobian Poisson-Nambu structure on . C3 (see (28)), and 
.F,G ∈ C[x1, x1, x3]. Let .Mf be the zero locus of 

. f = x1x1x3 +
3∑

i=1

aixi
3 −

3∑
i=1

εixi
2 +

3∑
i=1

cixi + ω ,

where .εi ∈ {0, 1} and .ai, ci, ω ∈ C. The bracket is given by 

. {f, xi}f := 0, for i = 1, 2, 3 ,

and 

. {x1, x2}f := x1x2 + 3a3x3
2 − 2ε3x3 + c3 ,

the result being cyclic in .(1, 2, 3) for other .xi, xj . For a generic set of constraints, 
the bracket is nowhere vanishing on . Mf . 

7 Graded Poisson Algebras 

Let . A be a Poisson algebra. We shall suppose that . A is an associative graded 
algebra, that is, . A contains a set of vector subspaces .(Ak)k∈N0 s.t. . A = ⊕

k∈N0
Ak

and .Ak ·Al ⊂ Ak+l for all .k, l ∈ N0. Moreover, we assume .A0 := K. 

Definition 2.20 Let .d ∈ N0 be arbitrary. . A is called a graded Poisson algebra of 
degree d if .∀a ∈ Ak, b ∈ Al : {a, b} ∈ Ak+l−d (for .n < 0 define .An = 0). 

The graded Poisson algebras can be constructed from non-commutative, associa-
tive, unital algebras . U, which are filtered: 

. U =
⋃

k∈N0

Uk, where 1 ∈ K = U0 ⊂ U1 ⊂ · · · ⊂ Uk ⊂ . . . .

To every such algebra . U, we can define the associated graded algebra .S = gr(U), 
.S = ⊕

k∈N0
Sk , where .Sk := Uk/Uk−1, .k ≥ 1, and .S0 := U0 = K. We denote 

by .grk : Uk → Sk the canonical projections. Then . U is a graded Poisson algebra 
of degree .d ≥ 1 if .uv − vu ∈ Uk+l−d , for all .u ∈ Uk, v ∈ Ul (define .Uk = 0 for 
.k < 0).
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Proposition 2.11 The associated graded algebra . S given by the graded algebra . U
of degree d is a graded Poisson algebra of degree d. 

Proof Since the canonical projection .grk : Uk → Sk is a surjection, to each . a ∈ S
exists .k ∈ N0 so that .a ∈ Sk , thus there exists .u ∈ Uk s.t. .a = grk(u). Let  . b ∈ Sl

and .v ∈ Ul s.t. .b = grl(v). The product in . S is defined by 

. ab = grk+l (uv) ∈ Sk+l .

The product is well-defined, because if we pick different representatives, say . ̃a =
a + x, x ∈ Uk−1 and .b̃ = b + y, y ∈ Ul−1, then 

. ̃ab̃ = (a + x)(b + y) = ab + ay + xb + xy︸ ︷︷ ︸
∈Uk+l−1

= ab .

The unit in . S is the same as in . U, and the associativity of . S is also inherited from 
the associativity of . U. So we see that . S is a graded algebra. The Lie bracket is 

. {a, b} = {grk(u), grl (v)} := grk+l−d(uv − vu)

and is of degree d. By a similar argument as for the product, .{−,−} is well-defined 
on . S. Since .ab ∈ Sk+l and .ba ∈ Sl+k = Sk+l , there exist .u, u′ ∈ Uk+l s.t. 
.ab = grk+l (u), ba = grk+l (u

′) and thus .ab − ba = grk+l (u − u′) = 0. This shows 
that the product in . S is commutative, hence . S is Poisson graded of degree d. ��
Module Structures on . A Let . A be a commutative, associative .K-algebra with 
the unit 1. .End(A) = Hom(A,A) has two .A-module structures, left and right: 
. ∀a, x ∈ A

.laϕ(x) := aϕ(x), raϕ(x) := ϕ(ax) . (30) 

Lemma 2.4 For arbitrary .a ∈ A, denote 

.δa := ra − la. (31) 

Then . δa satisfies the Leibniz rule 

. δa(ϕ ◦ ψ) = δaϕ ◦ ψ + ϕ ◦ δaψ ,

that is, .δa ∈ D(End(A)) ⊂ Hom(End(A),End(A)). 

Proof For arbitrary .ϕ,ψ ∈ End(A) and .a, u ∈ A, using the definition (31), we  
have 

.δa(ϕ ◦ ψ)(u) = δa(ϕ(ψ(u))) = ϕ(ψ(au)) − aϕ(ψ(u)) .



72 V. Rubtsov and R. Suchánek

On the other hand 

. (δaϕ ◦ ψ + ϕ ◦ δaψ)(u) = δaϕ(ψ(u)) + ϕ(δaψ(u))

= ϕ(aψ(u)) − aϕ(ψ(u)) + ϕ(ψ(au) − aψ(u))

= ϕ(ψ(au)) − aϕ(ψ(u)) .

��
Lemma 2.5 .[δa, δb] = 0 for all .a, b ∈ A, where . δa is given by (31). 

Proof The proof is a straightforward computation and we leave it to the reader as 
an exercise. ��

7.1 Algebra of Differential Operators 

Definition 2.21 For all k ∈ N0, we define 

. Diffk(A) :=
⋂

ai∈A
0≤i≤k

ker(δa0 ◦ . . . δai
)

and 

. Diff∗(A) :=
⋃
k≥0

Diffk(A) ,

which is an abelian group under the addition +. Then Diff∗(A) inherits the two 
A-module structures (30) of End(A). We will write Diff(+)∗ (A) to emphasize the 
bimodule structure. The elements of Diffk(A) will be called differential operators 
of order ≤ k on a commutative algebra A. 

Note 2.4 Directly from the above definition we have that for all k ∈ N0 : 
Diffk−1(A) ⊂ Diffk(A). 

Remark 2.11 One can generalize the above definition to the case ϕ : P → Q, where 
P and Q are projective, finitely generated A-modules (0 ≤ k) and ϕ is anA-module 
homomorphism. Then 

. Diffk(P,Q) := {ϕ : P → Q | δa0 ◦ · · · ◦ δak
(ϕ) = 0 for all a0, . . . , ak ∈ A} .

In this notation, Diffk(A) = Diffk(A,A).
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Example (Lie Algebra Structure on Diff(+)∗ (A)) Consider EndK(A), 
equipped with a Lie algebra structure given by the commutator 

. [ϕ,ψ] = ϕ ◦ ψ − ψ ◦ ϕ .

Using the derivation property from Lemma 2.4, we have  

.δa[ϕ,ψ] = [δaϕ,ψ] + [ϕ, δaψ] (32) 

for all a ∈ A and ϕ ∈ EndK(A). Hence δa acts as a derivation on the 
commutator. Suppose that ϕ, ψ ∈ Diff(+) 

1 (A), then from (32) we get 

. δb ◦ δa[ϕ,ψ] = [δaϕ, δbψ] + [δbϕ, δaψ] ,

which does not have to vanish. Hence [ϕ, ψ] /∈ Diff(+) 
1 (A), meaning that 

Diff(+) 
1 (A) is not a Lie algebra. Applying δ once again yields 

. δc ◦ δb ◦ δa[ϕ,ψ] = 0 .

Thus [ϕ, ψ] ∈  Diff(+) 
2 (A). Proceeding in a similar fashion one can show that 

the composition of ϕ ∈ Diff(+) 
k (A) and ψ ∈ Diff(+) 

l (A) is of order ≤ k + l, 
that is ϕ ◦ ψ ∈ Diff(+) 

k+l (A) and the filtered bimodule Diff(+)∗ (A) is a Lie 
algebra. 

Remark 2.12 TheA-bimodule Diff(+)∗ (P, P) is also filtered, since 

. δ(ϕ ◦ ψ) = δ(ϕ) ◦ ψ + ϕ ◦ δψ

and so the composition of a differential operator of degree ≤ k with a differential 
operator of degree ≤ l results in a differential operator of degree ≤ k + l 

. Diff(+)
k (P, P ) ⊗K Diff(+)

l (P , P ) → Diff(+)
k+l (P , P ) .

Example Let ϕ ∈ EndK(A), and recall that A is associative, commutative 
and unital algebra over K. 

• Diff0(A) = ∩
a∈A

ker δa . Using the definition (31), we have  

. δaϕ(u) = ϕ(au) − aϕ(u) .

(continued)
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So ϕ ∈ Diff0(A) iff ϕ(au) = aϕ(u) for all a, u ∈ A. Choosing u = 1 
and writing a = a1 gives  ϕ(a1) = aϕ(1), meaning that ϕ is completely 
determined by its value on the unit element of A, which gives 

. Diff0(A) = EndA(A) = A .

Note that the above case is rather special. If we consider the case of A-
modules P,  Q, then we get 

. Diff0(P,Q) = EndA(P,Q) .

• Diff1(A) = ∩
a,b∈A

ker δb ◦ δa , where 

.δb ◦ δaϕ(u) = ϕ(bau) − bϕ(au) − aϕ(bu) + baϕ(u) . (33) 

• Diff2(A) = ∩
a,b,c∈A

ker δc ◦ δb ◦ δa , where 

. δc ◦ δb ◦ δaϕ(u) = ϕ(bau) − bϕ(au) − aϕ(bu) + baϕ(u) .

The goal of the following example is to demonstrate that the above given 
algebraic definition of differential operators on a commutative algebra A fits with 
the standard picture of differential operators on functions. 

Example Let A = C∞(R) be the algebra of smooth functions of one real 
variable, the algebra binary operation given by multiplication of functions. 
Take ϕ = ∂x := ∂ 

∂x
. Then 

.δa∂x(u) = 0 ⇐⇒ ∂x(au) = a∂xu . (34) 

which is not the case for all a, u ∈ C∞(R). As expected (since ∂x /∈ A), the 
above implies ∂x /∈ Diff0(A). On the other hand, using (33), 

. δb ◦ δaϕ(u) = ∂x(bau) − b∂x(au) − a∂x(bu) + ba∂xu = 0

is satisfied for all a, b, u ∈ C∞(R), thus ∂x ∈ Diff1(C∞(R)). Similarly, if we 
take f ∂x , where f ∈ C∞(R), then 

(continued)
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. δb ◦ δaf ∂x(u) = f ∂x(bau) − bf ∂x(au) − af ∂x(bu) + baf ∂xu = 0 ,

and so f ∂x ∈ Diff1(C∞(R)). Finally, consider ∂2 x := ∂x ◦ ∂x . Then 

. δb ◦ δa∂
2
x = δb(δa∂x ◦ ∂x + ∂x ◦ δa∂x) = δa∂x ◦ δb∂x + δb∂x ◦ δa∂x ,

which is not vanishing for all a, b ∈ C∞(R). Thus ∂2 x /∈ Diff1(C∞(R)). We  
can easily check that 

. δcδb ◦ δaf ∂2x = 0 ,

so f ∂2 x ∈ Diff2(C∞(R)). One can show that f ∂i 
x ∈ Diffi (C∞(R)), for all i ∈ 

N0 and f ∈ C∞(R), where ∂i 
x := ∂x ◦ . . .  ◦ ∂x︸ ︷︷ ︸

i-times 

. Since we have the sequence 

of inclusions 

. Diff0A ↪−→ Diff1A ↪−→ . . . ↪−→ DiffkA ↪−→ . . . .

Altogether we get 

. Dk :=
k∑

i=0

fi∂
i
x ∈ Diffk(C

∞(R)) .

Definition 2.22 Consider the factor space 

. Smblk(A) := Diff(+)
k (A)/Diff(+)

k−1(A) .

The symbols algebra of A is 

. Smbl∗(A) :=
⊕
k∈N0

Smblk(A) ,

with the graded algebra structure 

. Smblk ·Smbll ⊂ Smblk+l{Smblk,Smbll} ⊂ Smblk+l−1 .

Remark 2.13 Recall that to any filtered algebra, we can associate a graded com-
mutative algebra. This is precisely the case of the symbol algebra Smbl∗(A) with 
respect to the filtered algebra Diff(+)∗ (A).
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Proposition 2.12 The symbol algebra Smbl∗(A) is a Poisson graded algebra of 
degree 1. 

Exercise 2.10 

1. Diff(+) 
k (A) is anA-submodule in End(A). 

2. Diff∗(A) is a filtered subalgebra in End(A). 
3. Diff0(A) = A and Diff1(A) = D(A) ⊕A . 
4. Smbl0(A) = A and Smbl1(A) = D(A). 

8 Intermezzo: Tensor, Symmetric and Exterior Algebras 

We will now review the constructions of tensor, symmetric, and exterior algebras 
over a finite dimensional .K-vector space V . We will also discuss the situation when 
V is a Lie algebra, which leads to a Poisson structure. 

8.1 Tensor Algebra of a Vector Space 

Tensor algebra of a . K vector space, denoted by .T (V ) is 

. T (V ) :=
∞⊕

k=0

T k(V ) ,

where 

. T k(V ) := ⊗kV = V ⊗ . . . ⊗ V .

The space .T k(V ) consists of .K-multilinear mappings 

. τ : V ∗ × . . . × V ∗ → K ,

where . V ∗ is the vector space dual to V . by definition, .T 0(V ) = K. Also, . T 1(V ) =
V . The algebra product in .T (V ) is given by the canonical isomorphism defined by 
the tensor product 

. T k(V ) ⊗ T l(V ) → T k+l (V ) .

The tensor algebra satisfies the following universal property: for every .K-algebra 
. A and arbitrary linear map .ψ : V → A, there is a uniquely given linear map 
.ψ̃ : T (V ) → A such that the following diagram commutes
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. 

That is .ψ̃ ◦ ι = ψ , where . ι is the canonical embedding of V into .T (V ). 

8.2 Symmetric Algebra of a Vector Space 

Let V be a .K-vector space, .T (V ) its tensor algebra. Consider 

.J :=< u ⊗ v − v ⊗ u | u, v ∈ V > , (35) 

which is a two-sided ideal in .T (V ). Then the quotient algebra .S(V ) := T (V )/J, 
called the symmetric algebra of V , is an associative and commutative algebra, 
satisfying the following universal property. For any associative, commutative and 
unital algebra . A and every linear mapping .ψ : V → A, there is precisely one unital 
algebra homomorphism . ψ̃ such that the following diagram commutes 

. 

where . ε is the canonical embedding of V into .S(V ), given by the composition of the 
canonical embedding .V → T (V ) and the canonical quotient projection . T (V ) →
S(V ). 

Remark 2.14 Let us mention some useful properties about the above defined 
algebras. 

• .S(V ) is a free, associative, commutative and unital algebra on . n = dimV

generators. The product is given as follows. To avoid confusion, we will denote 
the classes in .S(V ) with bracket notation. Let .[s] ∈ Sk(V ), [t] ∈ Sl(V ). Then 
the product is 

. [s][t] := [s ⊗ t] ∈ Sk+l (V ) .

This product is well defined. To check this, consider different representatives of 
the equivalence classes .[s̃] = [s], [t̃] = [t]. This means there exist . js, jt ∈ J
such that .s = s̃ + js and .t = t̃ + jt . Then 

.[s ⊗ t] = [(s̃ + js) ⊗ t̃ + jt )] = [s̃ ⊗ t̃ + s̃ ⊗ jt + js ⊗ t̃ + js ⊗ jt ] = [s̃ ⊗ t̃] ,
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where the last equality follows from the fact that .s̃ ⊗ jt + js ⊗ t̃ + js ⊗ jt ∈ J, 
since . J is a two-sided ideal in .T (V ). 

• The ideal . J is homogeneous, meaning that the factor algebra .S(V ) inherits 
the grading of .T (V ). Thus we have .S(V ) = ⊕∞

k=0S
k(V ), where . Sk(V ) :=

T k(V )/Jk , where .Jk = J ∩ T k(V ). 
• Consider the canonical projection .prk : T k(V ) → Sk(V ). We can restrict . prk to 

the linear subspace of symmetric k-tensors 

. prk |Symk(V ) : Symk(V ) → Sk(V ) .

Because we always assume .charK = O, the above map can be inverted, yielding 
a graded vector space isomorphism 

. Sym(V ) = ⊕∞
k=0 Symk(V ) ∼= ⊕∞

k=0S
k(V ) = S(V )

Although the space of symmetric tensors and the symmetric algebra are iso-
morphic as a graded .K-vector spaces, it does not make sense to speak about 
isomorphism of algebras, since .Sym(V ) does not posses algebra structure in 
the sense that the tensor product of two symmetric tensors does not have to 
be a symmetric tensor. In .charK > 0, we even lose the graded vector spaces 
isomorphism. 

• .Sym(V ) is a linear subspace of .T (V ). 
• .S(V ) is a not a subalgebra of .T (V ). 

Symmetrization Let .sk : T k(V ) → Symk(V ) be the symmetrization map, given 
for arbitrary .t ∈ T k(V ) by 

. sk(t) := 1

k!
∑

σ∈Sk

σ · t , (36) 

where . Sk is the permutation group on k-elements and .σ · t is the action of the 
permutation group on k-tensors, given on .t = t1⊗. . .⊗tk by . σ ·t := tσ (1)⊗. . .⊗tσ (k)

(and we extend . · on general .t ∈ Sk by .K-linearity). 

Proposition 2.13 The ideal (35) is a graded ideal .J = ⊕∞
k=0Jk , where . Jk :=

J ∩ T k(V ). Moreover, .ker sk = Jk and . T k(V ) = Jk ⊕ Symk(V ) ∼= Jk ⊕ Sk(V )

Let .{e1, . . . , en} be a basis of V . The  map  (36) gives an isomorphism 

. S(V ) ∼= K[x1, . . . , xn]

such that 

. sk(ei1 ⊗ . . . ⊗ eik ) = xi1 . . . xik .

The special case of PBW theorem says that the monoms .{ei1
1 , . . . , e

i1
n } form a basis 

of .S(V ) as a .K-vector space and .S(V ) ∼= K[e1, . . . , en].
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Example Let . g be a finite dimensional Lie algebra over .K = R or .K = C. The  
symmetric algebra .S(g∗) is isomorphic to .K[g∗], the polynomial algebra with 
.dim g∗ variables. The bracket on . g∗ makes .K[g∗] a (commutative) Poisson 
algebra. 

A simpler version of this construction is .A = S(V ∗) = K[V ∗], where V 
is a finite dimensional vector space equipped with a skew-symmetric bilinear 
form .B : V × V → K, which provides a Poisson brackets on .K[V ∗]. For  
instance, let .dimV = 2. Consider .X, Y ∈ V linearly independent, so that 
.V =< X,Y >. Then .K[V ∗] ∼= K[X, Y ] and .{X, Y } = B(X, Y ) := 1. In this  
case, the pair .(V , B) is a symplectic plane. 

8.3 Exterior Algebra of a Vector Space 

Let V be a n-dimensional .K-vector space. The exterior algebra of V , denoted .
(V ), 
is defined as a graded subspace in the tensor algebra .T (V ), formed by completely 
antisymmetric tensors. Recall that .t ∈ T k(V ) is completely antisymmetric (or 
alternating, or  completely skew-symmetric) if  

. σ · t := tσ (1) ⊗ . . . ⊗ tσ (k) = sgn(σ )t1 ⊗ . . . ⊗ tk

for all k-permutations . σ (and we extend . · on general .t ∈ Sk by .K-linearity). Then 
.
k(V ) ⊂ T k(V ) is formed by all such k-tensors. Note that .
1(V ) = V and for 
.k = 0 we define .
0(V ) = K. The whole algebra is given by the .K-vector space 

. 
(V ) := ⊕k≥0

k(V ) ,

with the product . ∧, called wedge product, 

. 
k(V ) ⊗ 
l(V ) → 
k+l (V )

given by 

.ω1 ∧ ω2 := (k + l)!
k!l! Alt (ω1 ⊗ ω2) , (37) 

where 

.Alt : T k(V ) → 
k(V ) ,
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is a projection on the subspace of alternating tensors, called alternating map, defined 
for arbitrary .t ∈ T k(V ) as 

. Alt (t) := 1

k!
∑

σ∈Sk

sgn(σ )σ · t .

Example Consider .t ∈ T 2(V ), given by .t = v ⊗ w − w ⊗ v. Then . Alt (t) =
1
2 (v ⊗w −w ⊗ v −w ⊗ v + v ⊗w = t , i.e. t is already an element of .
2(V ). 

The wedge product satisfies 

. ω1 ∧ ω2 = (−1)pqω2 ∧ ω1,

ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3

meaning that .
(V ) is a graded, associative .K-algebra with the unit 1. 
Similarly as in the case of symmetric algebra, we can define .
(V ) as a quotient 

of the tensor algebra. Consider a two-sided ideal .J ⊂ T (V ), given by 

. J :=< t1 ⊗ t2 + t2 ⊗ t1 | t1, t2 ∈ T (V ) >

Then we define .
(V ) := T (V )/J. Moreover, .
(V ) satisfies the following 
universal property. For every associative, unital algebra . A and any .K-linear map 
.ϕ : V → A, such that .j (v)2 = 0 for all .v ∈ V , there is a unique algebra 
homomorphism .ϕ̃ : 
(V ) → A, such that the following diagram commutes 

. 

Using the universal property, one can show that the two above construction of .
(V ), 
either as a subspace of alternating tensors or the quotient algebra, are isomorphic (in 
a unique way). 

8.4 Poisson Structure on a Symmetric Algebra S(g) 

Theorem 2.3 S(g) is a graded Poisson algebra of degree 1 or of degree 2.
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Proof 

Degree 1 Let g be a K-Lie algebra. We will show that the Lie bracket extends in 
a unique way to a Poisson bracket of degree 1 on S(g). Let  g ∈ g be arbitrary. 
Consider the endomorphism6 adg ≡ δg ∈ EndK(g), given by 

. adg(h) = [g, h] , h ∈ g .

Then adg can be extended in a unique way to the whole S(g) to a derivation on S(g) 
as follows. Consider a decomposable t ∈ S(g), i.e. t can be written as t = t1 · . . . · tk , 
where · denotes the (symmetric) product in S(g) and t1, . . . , tk ∈ g. Then 

. adg(t) :=
k∑

i=1

t1 · . . . · ti−1 · adx(ti) · ti+1 · . . . · tk .

A general element of S(g) is a K-linear combination of decomposables, so the above 
definition of the bracket can be extended linearly to the whole S(g). This extension 
is also denoted adg . For arbitrary t, u ∈ S(g) we have 

. adg(t · u) = adg(t) · u + t · adg(u) .

Degree 2 It is sufficient to define a skew-symmetric bilinear form 

. 	 : g × g → K .

Then there is a unique extension of 	(g,−) : g → K to a derivation 

. ∂ : S(g) → D(S(g)) ,

which can be extended to a degree 2 derivation on S(g). 
��

Example Let 	 be non-degenerate, skew-symmetric 2-form on g = R2m, that 
is, we consider g to be abelian (the Lie bracket is zero). Then there is a basis, 
called symplectic basis, e1, . . . , en (n = 2m), such that the matrix of 	 is 
written in this basis as 

(continued)

6 Notice that using the action of g on itself given by multiplication from the left, we can identify 
elements in g as endomorphisms of g, h 
→ lh. Then we have  δg(lh)(u) = h(gu) − gh(u) = 
(adgh)u, thus δg |g ≡ adg . 
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. 

(
0 Im

−Im 0

)
,

where In is the identity m × m matrix. Then for each i ∈ {1, . . . , m}, the  
brackets of basis elements satisfy {ei, ei+m} = −{ei+m, ei} =  1 and all other 
combinations of basis elements have zero brackets. Using this choice of basis, 
we can identify S(g) ∼= K[x1, . . . , x2m]. Note that this is a degree 2 bracket 
on g, and differs from the Lie bracket [−,−]g, which we assumed is trivial. 
Let m = 1, so g = R2 and we consider coordinates x, y. Consider P,  Q  ∈ 
K[x, y] given by 

. P(x, y) =
∑
i,j

aij x
iyj , Q(x, y) =

∑
p,q

bpqxpyq .

The bracket is 

. {P,Q} =
∑

i,j,p,q

aij bpq{xiyj , xpyq} =
∑

i,j,p,q

aij bpq(jp−iq)xi+p−1yq+j−1.

If we pick P = xy, Q = 4x2 and choose the bracket as 

. {P,Q} = ∂P

∂x

∂Q

∂y
− ∂Q

∂x

∂P

∂y
= −8x2 ,

with the general formula being 

. {P,Q} =
m∑

i=1

∂P

∂xi

∂Q

∂xi+m

− ∂Q

∂xi+m

∂P

∂xi

then this gives a bracket of degree 2 on K[x1, . . . , x2m]. The corresponding 
degree 2 filtered Poisson algebra is A2m(g). The algebra A2m(g) has 2m 
generators (xi, yi), 1 ≤ i ≤ m and relations 

. xiyi − yixi = 1 , 1 ≤ i ≤ m

xiyj − yjxi = yiyj − yjyi = xixj − xjxi = 0 , i �= j .

A2m(g) is called the 2m-th Weyl algebra. 

Let us conclude this section with the following remark, which puts the above 
algebraic constructions in the context of smooth manifolds.
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Remark 2.15 The constructions of tensor algebra, symmetric algebra, and exterior 
algebra can be extended to the case of smooth manifolds by considering the tangent 
(or cotangent) space at a given point. This leads to the notion of tensor fields as 
sections of the bundle⊗T M  → M , symmetric tensor fields as sections of the bundle 
S(T M) → M , and differential forms as sections of the bundle 
(T M) → M . We  
will speak more about these objects in chapter concerning the differential calculus 
on Poisson manifolds. 

9 Universal Enveloping and PBW Theorem 

Let . g be a finite dimensional Lie algebra over . K. We assume that there is an 
associative algebra . A such that . g can be embedded in . A (so that one can multiply 
elements of . g), and the Lie bracket of . g is given by the commutator in . A, i.e. for all 
. x, y ∈ g

. [x, y] = xy − yx ,

where the product on the right-hand side is the product in . A. Let us denote by 
.{ei}1≤i≤n a basis of . g as a vector space. The Lie structure is defined by the structure 
constants . ck

ij

. [ei, ej ] = ck
ij ek.

We consider .S ⊂ g × g, a set of pairs, defined as follows 

. S = {(eiej , ej ei +
n∑

k=1

ck
ij ek) ∈ g × g | i > j} .

It is easy to verify that there is no ambiguity in the presentation of the triple product 
.eiej ek with .i > j > k, since 

. (eiej )ek = (

n∑
l=1

cl
ij el + ej ei)ek =

n∑
l=1

cl
ij elek + ej eiek ,

ei(ej ek) = ei(

n∑
m=1

cm
jkem + ekej ) =

n∑
m=1

cm
jkeiem + eiekej .

Thus the difference vanishes due to the Jacobi identity (4) 

.(eiej )ek − ei(ej ek) =
n∑

l=1

n∑
m=1

(cm
ij c

l
km + cm

jkc
l
im + cm

kic
l
jm)el = 0 .
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9.1 Universal Enveloping Algebra 

Let . g be a n-dimensional (.n < ∞) Lie algebra, .{ei}1≤i≤n a basis of . g. Let  . T (g) =
⊕iT

i(g) be the tensor algebra of the underlying vector space of . g. 

Proposition 2.14 .T (g) is an associative algebra with respect to the tensor product 
. ⊗: T p(g) × T q(g) → T p+q(g)

. (x1 ⊗ . . . xp, y1 ⊗ . . . yq) 
→ x1 ⊗ . . . xp ⊗ y1 ⊗ . . . yq .

Remark 2.16 .T (g) is generated as .T (g) = K < e1, . . . , en > (in the algebra 
sense). Put differently, the tensor algebra is isomorphic (as a .K-algebra) to a free, 
associative, non-commutative .K-algebra on n-generators. 

Consider a subspace .I ⊂ T (g), generated as 

.I :=< t1 ⊗ ([x, y] − x ⊗ y + y ⊗ x) ⊗ t2 | t1, t2 ∈ T (g), x, y ∈ g > . (38) 

Note that .[x, y] − x ⊗ y + y ⊗ x ∈ g ⊕ T 2(g). 

Proposition 2.15 . I is a (two-sided) ideal in .T (g), i.e. . ∀j ∈ I, t ∈ T (g) : j ⊗ t, t ⊗
j ∈ I. 
Proof The proof is obvious from the form of generators of . I. ��
Remark 2.17 Let . A be an associative algebra. We will denote by .ALie the 
corresponding Lie algebra .ALie, with the Lie bracket given by the commutator 
.[x, y] := xy − yx, for all .x, y ∈ A. 
Definition 2.23 (Universal Enveloping Algebra) Let . g be a Lie algebra. The 
factor space 

. U(g) := T (g)/I ,

where . I is given by (38), is called the universal enveloping algebra of . g. 

Proposition 2.16 .U(g) is an associative algebra. Moreover, .U(g) can be endowed 
with a Lie algebra structure, which is compatible with the Lie algebra structure on 
. g. 

Proof Let .ui = [ti] ∈ U(g), i = 1, 2 and define .u1 · u2. := [t1 ⊗ t2]. There is 
a canonical embedding of the field . K and the Lie algebra . g in .U(g). Consider the 
canonical embedding . ι of . g in .T (g), and the canonical projection .pr : T (g) → U(g). 
Then the embedding of . g is given by the composition .ε := pr ◦ι, 

.ε := pr ◦ι : g → U(g) , (39)
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.x 
→ ux := x + J, J ∈ I (and in the same way we can embed .K → U(g)). We 
shall identify x and . ux . Let .x, y ∈ g. Then .[x, y] − x ⊗ y + y ⊗ x ∈ I and we have 

. ε([x, y] − x ⊗ y + y ⊗ x) = u[x,y] − uxuy + uyux
notation= [x, y] − xy + yx = 0 .

Hence .[x, y] = xy − yx in .U(g). This means that the Lie algebra structure on 
.U(g), which is given by the commutator, can be restricted to . g and the canonical 
embedding .ε : g → U(g)Lie is a homomorphism of Lie algebras, i.e. 

. ε([x, y]) = [ε(x), ε(y)] = ε(x)ε(y) − ε(y)ε(x)

for all .x, y ∈ g. ��
Exercise 2.11 Show that the product in .U(g) is well-defined. 

Universal Property of .U(g) Let .ε : g → U(g) be the canonical Lie algebra 
homomorphism (39). The universal enveloping algebra satisfies the following 
universal property. For any associative, unital algebra . A (over the same field as 
. g) and any Lie algebra homomorphism .ψ : g → ALie, there is a unique associative, 
unital .K-algebra homomorphism .ψ̃ : U(g)Lie → ALie s.t. .ψ = ψ̃ ◦ ε, i.e. the 
following diagram commutes 

. (40) 

Remark 2.18 For .g = 0 we have .U(g) = K. For  . g abelian (i.e. the bracket of . g is 
trivial), we have .U(g) = K[g], where .K[g] is a polynomial ring over . g.7 

9.2 Poincaré-Birkhoff-Witt (PBW) Theorem 

Theorem 2.4 (PBW Theorem) Let g be a K-Lie algebra and {ei}1≤i≤n be a basis 
of g as a K-vector space. Let (U(g), ε) be the universal enveloping algebra. Then 
{1, ε(ei)}1≤i≤n is a basis of U(g) as a K-algebra and the canonical embedding
ε : g → U(g) is injective. 

Remark 2.19 We can rephrase the above theorem as follows. Let {ei}1≤i≤n be a 
basis of g. For  k ∈ N0 consider an index set Ik = {i1, . . . ik}, I0 = ∅. We say that Ik 
is increased if i1 ≤  · · ·  ≤  ik . Denote by EIk ∈ U(g) the element EIk = ei1 . . . eik 
and EI0 = 1. Then the following set is a basis forU(g) as a K-vector space

7 Every element of . g serves as a variable. One can think of .K[g] as .K[g1, g2, . . .] for all .gi ∈ g. 
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. {EIk
| Ik increasing, k ∈ N0} .

In other words, elements of the form e α1 1 . . . e  αk 
k , where α1 ≤ . . .  ≤ αn, are linearly 

independent and generateU(g). 

Proposition 2.17 U(g) is a filtered algebra. The filtration is given by a degree of 
elements x ∈ U(g), which is defined 

• either as the degree of the polynomial, which describes x (after a choice of a base 
by PBW), 

• or by the set Up(g), which is the image of ⊕p 
i=1T i (g) under the canonical 

projection pr : T (g) → U(g), i.e.Up(g) is the set of elements of degree ≤ p. 

Proof (Sketch of the Proof of the PBW Theorem) We will consider the case when 
g comes equipped with a faithful representation.8 

Consider the following algebra homomorphism 

. �̃ : T (g) → T (g) ⊗ T (g) ,

such that for all t ∈ g, �̃ satisfies 

. �̃(t) = t ⊗ 1 + 1 ⊗ t , t ∈ g .

Notice that 1⊗ T (g) and T (g) ⊗ 1, commute with respect to the algebraic structure 
of T (g). ��
Lemma 2.6 The algebra homomorphism �̃ descends to a map � : U(g) → 
U(g)⊗U(g) (� is a coproduct with respect to the Hopf algebra structure onU(g)). 

Proof of the Lemma The map � is given by the following commutative diagram 

. 

where ι and ε are the canonical embeddings of g into the corresponding tensor 
algebra T (g) and the universal enveloping algebra U(g), respectively. The map ι̃ 
is given by the universal property ofU(g) (consider T (g) with trivial bracket), and 
pr is the canonical quotient projection. All tensor products are considered over K 
(the field over which we consider g). ��

8 The kernel of the representation, as a homomorphism from g, is trivial. Example:  g acts faithfully 
on C∞(g). Another example: g is a matrix algebra (n × n matrices), then g acts faithfully on Rn. 
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Since the basis of g gives rise to the basis of S(g), another formulation of the 
PBW theorem is that S(g) gives rise to basis ofU(g). Let Sym(g) := ⊕∞

k=0 Sym
k (g) 

be the space of symmetric tensors, where t ∈ Symk (g) if 

. t (uσ(1), . . . , uσ(k) = t (u1, . . . , uk)

for all k-permutations σ . Clearly we have an injection Sym(g) 
j

↪−→ T (g). Too prove 
the PBW theorem, we prove that the composition 

. 

is injective. 

Induction on k 
1. Suppose k = 1. Then we can use the existence of faithful representation of g 

on some vector space V . This amounts to the existence of an injective K-algebra 
homomorphism ρ : g → End(V ). Note that Sym≤1(g) = g. Using the universal 
property ofU(g), we have the following commutative diagram 

. 

Since ρ = ρ̃◦ε and ρ is injective, ε is injective. Thus pr ◦ε = pr ◦j |g is injective. 
2. Take Sym≤k(g) := ⊕k 

i=1 Sym
i (g) and suppose that the map pr ◦j is injective on 

Sym≤k(g). Consider f ∈ Sym≤k+1(g). We want to prove that if 

. (pr ◦j)(f ) = 0 ∈ U(g)

then f = 0. Define 

. g := �̃(f ) − f ⊗ 1 − 1 ⊗ f .

This implies that g ∈ Sym≤k(g) ⊗ Sym≤k(g). Thus 

. (pr⊗ pr) ◦ (j ⊗ j)(g) = 0 ,

implies g = 0 by the induction hypothesis. But g = 0 is equivalent to 

. �̃(f ) = f ⊗ 1 + 1 ⊗ f .

Now suppose (pr⊗ pr) ̃�(f ) = 0, which is equivalent to (pr⊗ pr)(f ⊗ 1 + 1 ⊗ 
f )  = 0 ∈ U(g). This can happen if and only if f = 0. Hence Sym(g) can be 
injectively embedded intoU(g).
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Note 2.5 Note that the assumption char K = 0 is necessary in the above proof. To 
see that, suppose char K = p and dim g > 1. Then, using the binomial theorem, 
�̃(vp ) − vp ⊗ 1− 1⊗ vp = (v ⊗ 1− 1⊗ v)p − vp ⊗ 1− 1⊗ vp = 0 for all v ∈ g. 

Example Let dim g = 2 and {e1, e2} be a basis of g such that [e1, e2] =  e2. 
Then we have the relation e1e2 − e2e1 = e2 inU(g), which means that E = 
e i1 1 e j1 2 e i2 1 e j2 2 · · ·  e ik 

1 e jk 
2 is a linear combination of e αi 

1 e αj 
2 . For example 

. E = e1e
2
2e1 = e1e2e2e1 = e1e2(e1e2 − e2) = e1e2e1e2 − e1e

2
2

= e1(e1e2 − e2)e2 − e1e
2
2 = e21e

2
2 − 2e1e

2
2

Example Consider the algebra g = 2(C) = {A ∈ Mat2(C) | trA = 0}, where 
tr is the trace of a matrix and the Lie bracket is given by the commutator. The 
Chevalley-Eilenberg basis of g is given by the following matrices 

. e =
(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)

and the brackets are 

. [e, f ] = h, [h, e] = 2e, [h, f ] = −2f .

Then U(sl2(C)) is the associative C-algebra with generators e, f, h and 
relations 

. ef − f e = h, he − eh = 2e, hf − f h = −2f .

The basis ofU(sl2(C)) is given by monoms eα hβ f γ , where α, β, γ ∈ N0. 

9.3 Universal Enveloping and Differential Operators 

Consider a real, finite dimensional Lie algebra . g and the corresponding universal 
enveloping algebra .U(g). There is a natural filtration in .U(g) given by a sequence of 
subspaces .{Uk}k≥0 s.t. .Uk(g) ⊂ Uk+1(g) and .Uk(g)·Ul (g) ⊂ Uk+l (g). Moreover, 
if .α ∈ Uk(g), β ∈ Ul (g) then the commutator yields 

.[α, β] := αβ − βα ∈ Uk+l−1(g) . (41)
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We define 

. Ak := Uk(g)/Uk−1(g) ,

and 

. A :=
⊕
k≥0

Ak .

The associative algebra structure of .U(g) induces a multiplication in . A, which is 
compatible with the order .Ak ·Al ⊂ Ak+l . The bracket (41) implies commutativity 
of the multiplication 

. Ak ·Al = Al ·Ak ,

and defines a bracket operation 

. {−,−}: Ak ×Al → Ak+l−1

on . A, making it an associative graded algebra. 

Exercise 2.12 Verify that the above operations gives a Poisson algebra structure on 
. A. 

Each component .Ak of . A is isomorphic to the space .Polk(g∗) of degree k 
homogeneous polynomials on . g∗ (the dual v. space of . g). The algebra . A is 
isomorphic to 

. A ∼= Pol(g∗) :=
⊕
k≥0

Polk(g
∗) .

and the brackets are compatible with the brackets from . g∗. 
Now consider a smooth manifold M . Then the space .C∞(M) of smooth 

functions on M is an associative, unital, commutative algebra with respect to 
addition and multiplication of functions. Hence we can use the Definition 2.21 to 
define the filtered, associative algebra of differential operators 

. Diff∗(M) :=
⋃
k≥0

Diffk(M) ,

where .Diffk(M) is the set of differential operators of order .≤ k on M 

. Diffk(M) := {� : C∞(M) → C∞(M)| δf0 ◦ . . . ◦ δfk
(�) = 0 ,∀fi ∈ C∞(M)} ,

and for .k = 0 we define .Diff0(M) = C∞(M). Notice that . δf (�) = [�, f ]
(see Lemma 2.4 for the definition of . δf ). Recall that the algebra structure of
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.Diff∗(M) is given by the composition of operators. In Example 32, we have seen 
that the commutator of operators defines a Lie algebra structure on .Diff∗(M). The  
commutator acts with respect to filtered structure as follows. For . δ ∈ Diffk,∇ ∈
Diffl we have 

. [δ,∇] = δ ◦ ∇ − ∇ ◦ δ ∈ Diffm+k−1(M) .

Remark 2.20 Since .Diff0(M) = C∞(M), we have  . Diff1(M) ∼= Diff0(M) ⊕
�(M, T M), i.e. .Diff1(M) splits into functions and vector fields (seen as differential 
operators on .C∞(M). 

Now we can define the Poisson algebra of degree 1 as in Definition 2.22 

. Smbl(M) =
⊕
k≥0

Smblk ,

called the symbol algebra of .C∞(M), where .Smblk = Diffk(M)/Diffk−1(M). 
We shall now give another description of the Poisson algebra .Smbl(M). Consider 

the space .Pk(T
∗M) of functions .p : T ∗M → R such that .p 
→ f (q, p) is, for every 

fixed .q ∈ M , a degree k homogeneous polynomial on .T ∗
q M . Take  

. P(T ∗M) :=
⊕
k≥0

Pk(T
∗M) ⊂ C∞(T ∗M) ,

which is the space of all fibre-wise polynomial functions on .T ∗M . Moreover, 
.P(T ∗M) is a Poisson subalgebra in .C∞(T ∗M) (seen as a Poisson algebra with 
the standard Poisson brackets). 

Theorem 2.5 Poisson algebras .Smbl(M) and .P(T ∗M) are isomorphic. 

Proof It is enough to prove this isomorphism on generators of .Smbl0(M) and 
.Smbl1(M) on one side, and on .P0(T ∗M) and .P1(T ∗M) on the other side. It is clear 
that .Smbl0(M) ∼= P0(T ∗M) since both of them are equal to .C∞(T ∗M). Further, in 
Remark 2.20 we have seen that 

. Diff1(M) ∼= Diff0(M) ⊕ �(M, T M) ,

which gives 

. Smbl1(M) = Diff1(M)/Diff0(M) ∼= �(M, T M) ,

Now consider a vector field .X ∈ �(M, T M) and define .fX ∈ C∞(T ∗M) by 

. fX(q, p) :=< p,Xq >∈ R .

This gives us a bijection between .�(M, T M) and .P1(T ∗M), since 

. < −, Xq > : T ∗
q M → R
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is a (homogeneous) 1-st order polynomial function (for every fixed .q ∈ M). 
Moreover, for all vector fields . X, Y ∈ �(M, T M)

. f[X,Y ] := {fX, fY } ,

so the bijection is an algebra homomorphism. For .F ∈ C∞(M), the function . fF ∈
C∞(T ∗M) is defined by 

. fF (q, p) := F(q) .

Then the following identities hold for all .F,G ∈ C∞(M) and . X ∈ �(M, T M)

. {fX, fF } = fX(F) ,

{fF , fG} = 0 .

This isomorphism can be extended to isomorphisms .Smblk(M) ∼= Pk(T
∗M) for 

all k and hence to isomorphism .Smbl(M) ∼= P(T ∗M). In other words, for all .k ≥ 1, 
the following sequence is exact 

. 

where . ι is the inclusion (given by the filtered structure of .Diff∗(M)) and . σ is the 
symbol map. To each .� ∈ Diffk(M), the symbol assigns a polynomial function 
.σ(�) : T ∗M → R, which is fiberwise homogeneous of degree m. We will describe 
it in local coordinates .(q̄, p̄) of .T ∗M , induced by the local coordinates . (q̄) on M . 
A differential operator .� ∈ Diffk(M) has the form 

. � =
∑

|α|≤m

aα∂α ,

where .∂α := ∂
α1
q1 ◦ . . . ◦ ∂

αk
qk

, αi ∈ N and .aα ∈ C∞(M). Then, the symbol is 

. σ(�(q, p)) =
∑

|α|=m

aα(q)pα ,

where .pα := p
α1
1 . . . p

αk

k . Hence .σ(�(q, p)) is (for every q) a homogeneous 
polynomial function of degree m in the variable p. ��
Remark 2.21 Let us describe briefly an invariant form of the symbol .σ(�). Let . F ∈
C∞(M). Then .etF �e−tF is a differential operator of order .≤ k if .� ∈ Diffk(M). 
Consider the following formal expression 

.etF �e−tF = � + t[F,�] + t2

2
[F, [F,�]] + . . . + tk

k! [F, [F, . . . , [F,�]] . . .] .
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The above expression is finite, since the i-th term has degree .≤ i − k. Then the 
symbol map gives the coefficient of the leading term of this expression, seen as 
a polynomial in t 

. σ(�)(q, dqφ) = 1

k! [F, [F, . . . , [F,�]] . . .](q) .

Example Let .M = G be a Lie group with the Lie algebra .g = Lie(G). Then 
.Uk(g) ⊂ Diffk(G) as the left invariant differential operators of order . ≤ k

on G. 

10 Poisson Manifolds 

The following section will be focused on Poisson structure over smooth manifolds. 
An important example is the Poisson structure on the cotangent bundle of a smooth 
manifold. 

10.1 Poisson Structure on the Cotangent Bundle 

Let .F,G ∈ C∞(T ∗M) be smooth functions on the cotangent bundle, and let 
.(qi, pi) be local coordinates on .T ∗M . Define the Poisson brackets by 

.{F,G} =
n∑

i=1

(
∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

) . (42) 

This is a bilinear mapping (linear in both arguments F and G) which is skew-
symmetric 

.{F,G} = −{G,F } (43) 

satisfies the Leibniz rule 

.{F,GH } = {F,G}H + G{F,H } , (44) 

and the Jacobi identity 

.{F, {G,H }} + {G, {H,F }} + {H, {F,G}} = 0 . (45)
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10.2 Poisson Manifolds 

Generalizing the above idea of Poisson brackets on the cotangent bundle, we can 
give the following definition. 

Definition 2.24 A Poisson bracket on a manifold M is a bilinear mapping 

. {−,−}: C∞(M) × C∞(M) → C∞(M) ,

such that (43), (44), and (45) are satisfied. A manifold M equipped with a Poisson 
bracket is called a Poisson manifold. 

Remark 2.22 Every .F ∈ C∞(M), the mapping .XF : C∞(M) → C∞(M), defined 
via the Poisson bracket as 

. XF := {F,−} ,

is a derivation on the algebra .C∞(M). More precisely, . XF is a 1st order differential 
operator, and hence can be considered as a vector field on M . This field is called 
a Hamiltonian vector field with Hamiltonian F . 

10.3 Hamiltonian Mapping 

For every .F,G ∈ C∞(M), The Leibniz rule (44) gives 

. XFG = FXG + GXF

and one can define a mapping 

. H : T ∗M → T M

by .H(dF) := XF , or  

. < dG,H(dF) >:= {F,G} ,

where the bracket on the left-hand side denotes the evaluation of the 1-form . dG
on the vector field .H(dF). The  map  . H is given in local coordinates .(xi) on M by 
a matrix  

. Hkl := {xk, xl} .

Denoting .∂k := ∂
∂xk , the Poisson brackets can then be written as
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. {F,G} =
∑
k,l

Hkl∂kF∂lG ,

and the components of the vector field . XF are 

. Xk
F =

∑
l

H lk∂kF .

Suppose the manifold is the cotangent bundle .T ∗M and the local coordinates . (xi)

are .(qi, pi), .i = 1, . . . , n. Then, the Hamilton map is given by the matrix 

. H =
(
0 −In

In 0

)
,

where . In is the identity matrix, .2n = dim T ∗M . In coordinates, the skew-symmetry 
of the Poisson bracket reads as 

. Hkl = −Hlk ,

and the Jacobi identity is 

. 
∑

i

(Hki∂iH
lm + Hli∂iH

mk + Hmi∂iH
kl) = 0 .

If the matrix .H = (Hkl) is non-degenerate, the mapping .H : T ∗M → T M is 
invertible. If we denote by .(	kl) the inverse of H , then one can define a 2-form 

. 	 = 1

2

∑
	kldx

k ∧ dxl ,

or in more intrinsic way 

. 	x(X, Y ) :=< H−1
x (X), Y > ,

where .x ∈ M and .X, Y ∈ TxM . The Jacobi identity implies that 

. d	 = −1

6

∑
k,l,m

	klmdx
k ∧ dxl ∧ dxm ,

where 

.	klm := ∂k	lm + ∂l	mk + ∂m	kl .
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The above formula for . d	 can be proved using the following expression for . 	klm

. 	klm :=
∑
p,q,r

	kp	lq	mr

(∑
i

Hpi∂iHqr +Hqi∂iHrp +Hri∂iHpq

)
.

10.4 Poisson Bracket on a Symplectic Manifold 

Definition 2.25 A smooth manifold M , equipped with a closed 2-form 	 (d	 = 0) 
which is non-degenerate, i.e. if X ∈ TxU, x ∈ M s.t. 

. 	(X, Y ) = 0

is called a symplectic manifold. 

For every symplectic manifold, one can define the Poisson bracket on the algebra 
C∞(M) by 

. {F,G} =< dG,H(dF) >= 	(H(dF),H(dG)) .

That is, each symplectic manifold is a Poisson manifold. Let us emphasize that 
the inverse statement is not true, i.e. there are Poisson manifolds which are not 
symplectic. 

10.5 Examples of Poisson and Symplectic Manifolds 

Example (Cotangent Bundle) Let M be a smooth manifold, dim M = n. 
Then the cotangent bundle T ∗M has dimension (as a smooth manifold) 
dim T ∗M = 2n. The cotangent bundle comes equipped with the canonical (or 
tautological) Liouville 1-form, which is defined as follows. Let π : T M  → 
M , and π∗ : T ∗M → M denote the projections from the tangent and 
cotangent bundle, respectively, and by dπ∗ the tangent map to π∗. Consider 
the following commutative diagram 

. 

(continued)
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where π̃ is the tangent bundle projection down to T ∗M (seen as manifold). 
Then the Liouville 1-form ρ ∈ 	1(T ∗M) is defined for arbitrary X ∈ 
T (T  ∗M) as 

. ρ(X) :=< π(X), dπ∗(X) > .

Then 	 := dρ is a symplectic form on T ∗M . In canonical coordinates, 

. 	 = dρ = d(
n∑

i=1

pidq
i) =

∑
i

dpi ∧ dqi .

Poisson brackets given by this symplectic structure are given by (42). 

Example (Sphere and Projective Space) Let S2 ⊂ R3 be the unit 2-sphere, 
i.e. solution of the equation x2 + y2 + z2 = 1. Then the 2-form 

. 	 = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy ,

where the values of x, y, z are assumed to satisfy the equation for S2, defines 
a symplectic form on S2. Note that one can vies the 2-sphere can be identified 
with the complex projective line S2 = P1(C)). 

Consider now Cn with the Hermitian form 

. < z,w >=
n∑

k=1

z̄kwk .

Define a 1-form 

. ρ := i < z̄, dz >= i

n∑
k=1

z̄kdzk ,

where i = √−1, and the 2-form 

. 	 = dρ = id < z̄, dz >= i

n∑
k=1

dz̄k ∧ dzk .

The 2-form 	 is real, i.e. it can be written as 

. 	 = −2
n∑

k=1

dxk ∧ dyk ,

(continued)
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for xk + iyk = zk . Hence (Cn ,	)  is a real symplectic manifold. Poisson 
brackets are 

. {zj , zk} = {z̄j , z̄k} = 0 {zj , z̄k} = iδjk .

If we fix a quadratic Hamiltonian 

. H(z) :=< z, z >=
n∑

k=1

|zk|2

on Cn, then the level set H(z)  = 1 is a  (2n − 1)-dimensional sphere S2n−1. 
The Hamiltonian vector field XH on Cn restricted to S2n−1 defines a vector 
field pXH . Recall that U(1) ∼= R∗ acts on S2n−1 by (ϕ, z) 
→ e−iϕ and the 
quotient by this action is the complex projective space, S2n−1/R∗ ∼= P(Cn ). 
The 2-form 	 induces a 2-form on S2n−1, which is the lift of a unique 2-form 
on P(Cn ), making it a real symplectic manifold. More precisely 

. 	P(Cn) = φ∗(	|S2n−1) ,

where φ : Cn \ {0} →  S2n−1, φ(z)  = |z|−1z. 

More details about Poisson manifolds can be found, for example, in [2]. 

10.6 Poisson Manifolds and Lie Theory 

Dual Space of a Lie Algebra Let . g be a finite dimensional Lie algebra over . R, say  
.dim g = n, and .g∗ = hom(g,R) the dual vector space. Consider the space of smooth 
functions .C∞(g∗) and observe that one can embed .g∗ → C∞(g∗) as a subspace of 
linear functions 

. g∗ = {FX ∈ C∞(g∗)| FX(ξ) = ξ(X),X ∈ g, ξ ∈ g∗} .

There is a unique Poisson bracket on . g∗ such that 

.{FX, FY } = F[X,Y ] , (46) 

meaning that the assignment .X 
→ FX yields a Lie algebra homomorphism . g →
C∞(g∗).
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Description in Coordinates—Brackets Let [Xk , Xl] =  ckl 
mXm, where Xk ∈ g for 

all k. Then functions ξ1 = FX1 , . . . ξn = FXn form a system of linear coordinates on 
g∗, and we can define a Poisson bracket on g∗ via the Poisson brackets on C∞(g∗) 

. {F,G} =
∑
k,l,m

Ckl
m

∂F

∂ξk

∂G

∂ξ l
ξm

so that 

. {ξk, ξ l} = Ckl
m ξm .

Description in Coordinates—Gradient For any F ∈ C∞(g∗), its gradient 

. ∇F : g∗ → g

is a g-valued function on g∗ defined by 

. < ∇F(ξ), η >:= d

dt
|t=0F(ξ + tη) ,

where ξ,  η  ∈ g∗. In the coordinates 

. ∇F =
∑

k

∂F

∂ξk
Xk ,

which implies 

. {F,G}(ξ) =< ξ, [∇F(ξ),∇G(ξ)] > .

G-invariant Mappings on the T ∗G Let g = Lie(G) be a finite dimensional Lie 
algebra of a Lie group G. Every Lie group is parallelizable, i.e. there is a vector 
bundle isomorphism between T ∗G and G × g∗ as vector bundles over G. This is  
expressed by the following commutative diagram 

. 

where ϕ is the bundle isomorphism and π1 is the projections on the 1st factor. We 
will denote by π2 : G × g∗ → g∗ the projection on the second factor. Let p ∈ T ∗G. 
Then 

.ϕ(p) = (h, ξ) (47)
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for some h ∈ G and ξ ∈ g∗. Now consider the left translation automorphism 
lg : G → G, given by lg(h) = gh. The tangent map of lg is denoted (lg)∗ : T G  → 
T G  and the cotangent map by (lg)∗ : T ∗G → T ∗G. Notice that for p ∈ T ∗G we 
have 

.
(
π2 ◦ ϕ ◦ (lg)

∗) (p) = π2(g
−1h, ξ) = ξ . (48) 

This follows from the fact that g∗ can be identified with the space of left-invariant 
1-forms on G, i.e. 1-forms η such that (lg)∗η = η. Thus from (47) and (48), we  
have 

.π2 ◦ ϕ ◦ (lg)
∗ = π2 ◦ ϕ . (49) 

For the following considerations, we recall that any smooth map between man-
ifolds, say F : M → N , induces the corresponding algebra homomorphism in the 
opposite direction, F • : C∞(N) → C∞(M), which is given by the precomposition. 
Because g∗ is a smooth manifold (as a vector space with global coordinates), we 
have the homomorphism 

. (π2 ◦ ϕ)• : C∞(g∗) → C∞(T ∗G) .

We want to show that the algebra C∞(g∗) can be identified with the G-invariant 
subspace of the algebra C∞(T ∗G)G, i.e. 

. C∞(g∗) ∼= C∞(T ∗G)G ,

where 

.C∞(T ∗G)G = {F ∈ C∞(T ∗G)G| ∀g ∈ G : F ◦ (lg)
∗ = F } . (50) 

To see this, consider F ∈ C∞(g∗) and denote 

. F̃ := (π2 ◦ ϕ)•F = F ◦ π2 ◦ ϕ ∈ C∞(T ∗G) .

Then F̃ is G-invariant in the sense of (50). Indeed, using (48), we obtain 

. F̃ ◦ (lg)
∗ = F ◦ π2 ◦ ϕ ◦ (lg)

∗ = F ◦ π2 ◦ ϕ = F̃ ,

so we have an injection C∞(g∗) ↪−→ C∞(T ∗G)G. On the other hand, consider 
H̃ ∈ C∞(T ∗G)G. Then we can define H ∈ C∞(g∗) 

.H(ξ) := H̃
(
ϕ−1(e, ξ)

)
, ξ ∈ g∗ ,
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where ϕ is the trivialization of T ∗G as described in the above commutative 
diagram. The above definition of H is unambiguous due to G-invariance of H̃ . This  
assignment H̃ 
→ H is obviously injective, hence the bijection between C∞(g∗) 
and C∞(T ∗G)G. The brackets are preserved as well 

. {F,H } ◦ π2 = {F ◦ π2,H ◦ π2}

for all F,  H  ∈ C∞(g∗). 

Remark 2.23 For a Lie group G, the cotangent bundle T ∗G is a symplectic 
manifold with non-degenerate Poisson structure (since G is a smooth manifold). 

Remark 2.24 g∗ does not have a structure of a Lie algebra, although it is a dual 
vector space to the Lie algebra g, it is not a coalgebra. On the other hand, C∞(g∗) 
is a Lie algebra. 

One More Example of a Symplectic Manifold Let G be a Lie group, g its Lie 
algebra, and g∗ the corresponding dual vector space. The group G acts on g by the 
adjoint action Ad : G → Aut(g). At  g ∈ G, the  map  

. Adg : g → g

is the derivative at the identity element e ∈ G of the conjugation map G → G, 
given by h 
→ ghg−1. One can differentiate Ad at e, to obtain the adjoint action of 
g on g, i.e the map 

. ad : g → End(g) .

In fact, one can show that ad : g → D(g), where D(g) is the algebra of derivations 
on g, which is the Lie algebra of Aut(g). For  X, Y ∈ g, the ad map acts as the Lie 
bracket 

. adX(Y ) = [X, Y ] .

Using Ad, one can define the coadjoint action of G on g∗, denoted Ad∗ : G → 
Aut (g∗), by  

. Ad∗
g(ξ)(X) = ξ(Adg−1(X)),

where ξ ∈ g∗. Finally, using Ad∗, we can define the coadjoint action of g on g∗, 
denoted ad∗ : g → End(g∗), as  

. (ad∗
X(ξ)(Y )) := −ξ([X, Y ]) ,

X, Y ∈ g and ξ ∈ g∗.
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10.7 Symplectic Foliation on g∗ 

The brackets on . g∗ are non-symplectic. 

Symplectic Structure on the Coadjoint Orbit Now suppose that G is a connected 
Lie group and denote by .O ⊂ g∗ the G-orbit of the coadjoint action . Ad∗. Then for 
all .ξ ∈ O, the tangent spaces of . O at . ξ is given by 

. TξO = {ad∗
X(ξ) ∈ g∗|X ∈ g} .

One can define a symplectic structure on . O: 

. 	ξ : TξO× TξO→ R ,

as follows. For arbitrary .(X, ξ), (Y, ξ) ∈ TξO, define 

.	ξ((X, ξ), (Y, ξ)) := ξ(adX(Y )) = ξ([X, Y ]) . (51) 

This structure is usually attributed to Kostant [14], Kirillov [15, 16], and Souriau 
[17]. For brevity, we will refer to this symplectic structure as KKS. 

10.7.1 Coadjoint Invariant Functions 

A function .F ∈ C∞(g∗) such that 

. {F,H } = 0 ∀H ∈ C∞(g∗)

is called a Casimir function. Let  F be a Casimir function. Then for arbitrary .X ∈ g, 
the corresponding linear function9 . FX satisfy 

. {F,FX} = −{FX, F } = −ξFX
(F ) = ad∗

X(F ) = 0 ,

where .ξFX
= {FX,−} is the Hamiltonian function corresponding to . FX. This means 

that the Casimir functions are coadjoint-invariant functions. 

Remark 2.25 If G is a semisimple Lie group, then there is an open denset subset 
.U ⊂ g∗, stable under G, and the orbits are separated by Casimir functions. This 
yields a foliation of . g∗. Let us note that this foliation is not a smooth fibration and 
has a rather complicated structure. 

Poisson Bracket on . g∗ and . O There is a link between the Poisson bracket on 
. g∗ (46) and on the coadjoint orbit . O. Denote by .ι : O → g∗ the embedding of the

9 This is the evaluation map .FX : g∗ → R (defined above), .FX(ξ) = ξ(X). 
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orbit into . g∗, and by .ι∗ : C∞(g∗) → C∞(O) the corresponding algebra map. Then 
we have 

. ι∗{f, g}C∞(g∗) = {ι∗f, ι∗g}C∞(O) .

The left-hand side is the Poisson bracket on .C∞(g∗), restricted to . O. On the right-
hand side is the symplectic Poisson bracket on .C∞(O), given by the symplectic 
structure . 	 on . O, given by (51). We will now describe two examples of this 
construction. 

Example Let .G = SO(3). The Lie algebra is .g = so(3) and it is isomorphic 
with its dual .so(3) ∼= so∗(3) via the Killing form. Moreover, .so∗(3) ∼= R

3. 
The orbits of the coadjoint action are described by the equation . x2+y2+z2 =
R2. Hence for .R = 0 we have a 0-dimensional symplectic leaf (a e point). For 
.R > 0 we have 2-dimensional symplectic leaves (the coadjoint orbits). On . R3

we have the volume form .dx ∧dy ∧dz, which if restricted to the orbits, yields 

. 	R = 1

R2
(xdy ∧ dz + ydz ∧ dx + zdx ∧ dy)

The Casimir functions on .so(R) are given by .F = x2 + y2 + z2. Hence the 
Casimir elements are parametrized by .R > 0. 

Example Consider .G = SL2(R), given by 

. SL2(R) = {A ∈ Mat2(R)| detA = 1} ,

The Lie algebra is 

. sl2(R) = {A ∈ Mat2(R)| trA = 0} ∼= R
3 .

The .SL2(R)-orbits in . R3 are cones and hyperboloids, with the symplectic 
structure given by KKS structure. 

Remark 2.26 For a finite dimensional Lie algebra . g and the corresponding linear 
extension of the bracket to the symmetric algebra .S(g), the Casimir elements can be 
identified with the .g-invariant subspace of .S(g)
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. Cas(g) := Z(U(g)) ∼= S(g)g

where .Z(U(g)) denotes the center of the universal enveloping algebra of . g (see 40). 
For a reductive . g

. HP k (S(g)) ∼= Hk
CE(g) ⊗K Cas(g) ,

where .HCE is the Chevalley-Eilenberg cohomology. 

11 Differential Calculus on Poisson Manifolds 

Let M be a smooth manifold. Then there is a natural isomorphism . Pm
∼=

�(M, Sm(T M)), where .Sm(T M) is the m-symmetric power of the tangent bundle 
T M . Then the Poisson brackets on .C∞(T ∗M) can be reformulated as Poisson 
brackets on symmetric tensor fields. 

We also consider m-vector fields over M [18], i.e. sections of the m-th exterior 
bundle 

. 
m(T M) → M ,

The set of all m-vector fields is denoted .Xm(M) := C∞(M,
m(T M)). For . m = 1
we obtain the standard notion of vector fields, i.e. .X1(M) = C∞(M, T M). Taking 
the Whitney sum of all the exterior powers of T M  gives the exterior bundle 

. 
(T M) := ⊕m≥0

m(T M) → M .

Sections of this bundle are multivector fields. The set of all multivector fields, 
.X(M) := C∞(M,
(T M)), is an algebra with respect to the exterior product (37). 
There is a dual construction leading to differential forms over M . If we start with 
.T ∗M instead of T M , we get differential m-forms over M (shortly just m-forms) as  
sections of the bundle 

. 
m(T ∗M) → M .

The set of all differential m-forms is denoted .	m(M) := C∞(M,
m(T ∗M)). Note  
that m-vector fields are skew-symmetric polylinear functions on 1-forms. Taking 
sections of the bundle of all m-forms, .0 ≤ m ≤ dimM , 

. 
(T ∗M) := ⊕m
m(T ∗M) → M ,

we obtain the algebra (with respect to the exterior product) of differential forms 
over M
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. 	(M) = ⊕m≥0	
m(M) ,

Remark 2.27 Both algebras .X(M), and .	(M), are .C∞-modules. 

Now suppose that .(M, {·, ·}) is a Poisson manifold, .H : T ∗M → T M the 
corresponding Hamiltonian mapping. One can consider a bivector field . π∗ ∈
X2(M), such that 

. {F,G} :=
∑
k,l

Hkl∂kF∂lG .

We would like to see the above studied Jacobi identity in a more invariant, intrinsic 
way using certain structure on the space of multivector fields .X(M). This structure 
is called a Lie super-Schouten bracket, or  Schouten-Nijenhuis bracket, or shortly 
just Schouten bracket, 

. [[−,−]] : Xp(M) × Xq(M) → Xp+q−1(M) .

We define it inductively using the following properties of multivector fields 

1. .s ∧ t = (−1)|s||t |t ∧ s, where . |s| is the degree10 of s, 
2. .[[s, t]] = (−1)|s|(|t |+1)+|t |[[t, s]] (graded commutativity), 
3. .[[s, t ∧ r]] = [[s, t]] ∧ r + (−1)|t |(|s|−1)t ∧ [[s, r]], 
4. .[[s ∧ t, r]] = s ∧ [[t, r]] + (−1)|t |(|r|−1)[[s, r]] ∧ t . 

For degrees .≤ 1 we further define 

1. .|s| = |t | = 1 : [[s, t]] := [s, t], where .[−,−] is the Lie bracket 
2. .|s| = 1, |t | = 0 : [[s, t]] := s(t) = Ls(t), where . L is the Lie derivative 
3. .|s| = |t | = 0 : [[s, t]] := 0. 

Multivector fields s and t are called decomposable if 

. s = s1 ∧ . . . ∧ sp t = t1 ∧ . . . ∧ tq ,

for some .p, q, and where all .si, tj ∈ X1(M). In this case 

. [[s, t]] =
p∑

k=1

q∑
l=1

[sk, tl] ∧ s1 ∧ . . . ∧ ŝk ∧ . . . ∧ sp ∧ t1 ∧ . . . ∧ t̂l ∧ . . . ∧ tq .

There is at most one Schouten bracket satisfying the above properties. 
Once we properly defined the space of multivectors on a manifold and the notion 

of Schouten bracket, we can introduce the notion of Poisson tensor.

10 Meaning .s ∈ X|s|(M). 
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Definition 2.26 (Poisson Tensor) Let M be a Poisson manifold with Poisson 
bracket .{−,−} and with the Schouten bracket .[[−,−]]. A 2-vector field . π ∈ X(M)

is called a Poisson tensor, if for all . f, g ∈ C∞(M)

. {f, g} = [[[[π, f ]], g]] .

Theorem 2.6 The Poisson bracket .{−,−} satisfies the Jacobi identity iff 
.[[π, π ]] = 0. 

11.1 Coordinate-Free Construction of the Schouten Bracket 

Consider the exterior algebra .	(M). Let  .ω ∈ 	p(M) and .X ∈ X1(M). We  
associate with X two operators on . 	(M)

. ιX : 	p(M) → 	p−1(M) (interior product) ,

LX : 	p(M) → 	p(M) (Lie derivative) .

The interior product is defined by 

. (ιXω)(X2, . . . , Xp) := ω(X1, X2, . . . , Xp) ,

where all .Xi ∈ X1(M). The Lie derivative is defined as 

. LXω := d

dt
|t=0φ

∗
t (ω) ,

where . φ∗
t denotes the pullback along the flow . φt of X. This means 

. (LXω)(X1, . . . , Xp) = LX(ω(X1, . . . , Xp)) −
∑

k

ω(X1, . . . , [X,Xk], . . . , Xp) .

We denote by . d the de Rham differential .d : 	p(M) → 	p+1(M), given by 

. dω(X1, . . . , Xp+1) =
∑

k

LXk
(ω(X1, . . . , X̂k, . . . , Xp+1))

+
∑
k<l

(−1)k+lω([Xk,Xl], X1, . . . , X̂k, . . . , X̂l, . . . , Xp+1) .

Theorem 2.7 (Cartan Triple .(ιX,LX, d)) The following identities are always 
satisfied 

1. .ιX ◦ ιY + ιY ◦ ιX = 0, 
2. .[LX,LY ] = L[X,Y ],
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3. .[LX, ιY ] = ι[X,Y ], 
4. .[LX, d] = 0, 
5. .d2 = d ◦ d = 0, 
6. .LX = ιx ◦ d + d ◦ ιX. 

We want now to define the analogue of this “differential calculus” for multivec-
tors. For decomposable .t ∈ Xp(M), t = X1 ∧ . . . ∧ Xp, we define 

. ιt = ιX1 ◦ . . . ◦ ιXp .

The above can be extend by linearity for arbitrary .t ∈ Xp(M). This definition is 
correct because of the first property of the above theorem and yields an operator 

. ιt : 	m(M) → 	m−p(M) ,

which further satisfies 

. ιt∧s = ιt ◦ ιs .

To define the Lie derivative . Lt along a multivector field, one can start with the 
notion of a graded operator 

. ∂ : 	m(M) → 	m+r (M).

In this case, . ∂ is called a graded operator of degree .deg ∂ = |∂| = r . If in addition 
. ∂ satisfies 

. ∂(ω ∧ θ) = ∂ω ∧ θ + (−1)mrω ∧ ∂θ,

where .ω ∈ 	m(M), then . ∂ is called a graded derivative of degree r . For example, 
.ιx,Lx, d are graded derivatives of the following degrees . |ιx | = −1, |Lx | = 0, |d| =
1. 

We recall that graded brackets of two operators are defined by 

. [�,∇] = � ◦ ∇ − (−1)|�||∇|∇ ◦ � .

Remark 2.28 If . ∂ and D are graded operators of degrees . |∂| and . |D|, respectively, 
then .[∂,D] is a graded derivation of degree .|∂| + |D|. 

The property 6. of the previous theorem now reads 

. [ιX, d] = ιX ◦ d + d ◦ ιX = LX

for a vector field X. Using the graded bracket we now define the Lie derivative along 
a multivector field t 

. Lt := [ιt , d] .

If .t ∈ Xp(M) then
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. Lt : 	m(M) → 	p−m+1(M) ,

meaning that . Lt is a graded derivation of degree .|Lt | = m − 1. 
We can proceed with the definition of a bracket on the algebra of multivectors 

(denoted by the same symbol as the Schouten bracket) 

. [[−,−]] : Xp(M) × Xq(M) → Xp+q−1(M) .

If .s ∈ Xp(M), t ∈ Xq(M), then there is a unique multivector field . [[t, s]] ∈
Xp+q−1(M) satisfying 

. ι[[s,t]] = [Ls , ιt ] ,

where the right-hand side is given by the graded commutator, i.e. 

. [Ls , ιt ] = Ls ◦ ιt − (−1)(p−1)q ιt ◦Ls .

When the multivectors are decomposable as .s = s1 ∧ . . . ∧ sp and . t = t1 ∧ . . . ∧ tq
then 

. [[s, t]] =
p∑

k=1

q∑
l=1

[sk, tl] ∧ s1 ∧ . . . ∧ ŝk ∧ . . . ∧ sp ∧ t1 ∧ . . . ∧ t̂l ∧ . . . ∧ tq .

This defines .[[−,−]] on the whole .X(M) by bilinear extension. Moreover, it satisfies 
the graded commutativity 

. [[s, t]] = −(−1)(|s|−1)(|t |−1)[[t, s]] ,

as well as the analogy of the second property of the Theorem 2.7 

. [Ls ,Lt ] = L[[s,t]] ,

and also satisfies the graded Jacobi identity 

. 0 = (−1)(|s|−1)(|r|−1)[[s, [[t, r]]]] + (−1)(|t |−1)(|s|−1)[[t, [[r, s]]]]
+(−1)(|r|−1)(|t |−1)[[r, [[s, t]]]] .

For more details about the Nijenhuis-Schouten bracket, see for example [6, 19] 

12 Modified Double Poisson Brackets 

The main reference for this section is work of S. Arthamonov [20, 32].
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12.1 Poisson Brackets for General Associative Algebras 

Let . A be an associative algebra. Conventional definition of Poisson bracket becomes 
too restrictive when . A is essentially non-commutative. 

The standard “set” axioms (cf. Definition 2.1) meets with a problem of “non-
trivial” example existence. This chapter is devoted to some constructions of 
“non-commutative” Poisson algebra structures. This subject which has started with 
the paper of Ping Xu [21], where the author introduces a notion of Poisson structure 
on noncommutative algebras, and studies some of its properties and applications. 
Given an associative algebra . A demonstrated that the Hochschild cohomology 
.HH ∗(A,A) can be provided with a graded Lie algebra structure by means of the 
so-called . G−bracket. This bracket, which was first introduced by M. Gerstenhaber, 
is the analogue of the Schouten bracket for multivector fields. A Poisson structure 
on . A is then defined as an element of .HH 2(A,A) whose G-bracket with itself 
vanishes. It was shown that such a Poisson structure induces an ordinary Poisson 
bracket on the center of . A. 

We shall discuss the drawback of the naive definition of a Poisson structure on 
a non–commutative algebra . A. 

First, we describe the following important lemma which appeared in the paper 
[22] and therefore (by the famous Arnold’s statement) is attributed to Victor 
Ginzburg. 

12.1.1 Ginzburg-Voronov Lemma 

Lemma 2.7 If A is any Poisson algebra, then for all a, b, c, d ∈ A the following 
identity holds 

. [a, c]{b, c} = {a, c}[b, d] .

Proof Take the Poisson bracket { ab,cd}. By the derivation property of the bracket 
we have 

. {ab, cd} = a{b, cd} + {a, cd}b = ac{b, d} + a{b, c}d + c{a, d}b + {a, c}db .

On the other hand 

. {ab, cd} = c{ab, d} + {ab, c}d = ca{b, d} + c{a, d}b + a{b, c}d + {a, c}bd .

Subtracting the two equations yields the result. ��
Definition 2.27 An algebraA is prime, if the product of nonzero ideals in nonzero. 

Definition 2.28 An algebra A is simple if it has no non-trivial two-sided ideals and 
the algebra product is non-trivial.
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For example, the algebra given by 

. {
(
0 a

0 0

)
| a ∈ R}

is not simple, as the matrix product is always trivial in this case. 
The following theorem is due to D. R. Farkas and G. Letzter [23]. 

Theorem 2.8 Let A be a prime and simple noncommutative Poisson algebra. Then 
for all c, d ∈ A 

. {c, d} = λ[c, d]

for some λ ∈ ZP (A).11 

Definition 2.29 ([24]) A map  

. {, } : A⊗A→ A

is an H0-Poisson bracket if for all a, b, c ∈ A 

1. {a, bc} =  b{a, c} + {a, b}c (Right Leibnitz identity), 
2. {a, {b, c}} − {b, {a, c}} = {{a, b}, c} (Left Loday-Jacobi identity), 
3. {a, b} + {b, a} ≡  0 mod [A,A], 
4. {ab, c} = {ba, c}. 
Corollary 2.1 ([24]) An H0-Poisson bracket induces a Lie Algebra structure 
{_}Lie : A� ⊗A� → A� on abelianizationA� := A/[A, A] ofA. 

12.1.2 Representation Scheme 

Following philosophy by M. Kontsevich [25, 34], any algebraic property that 
makes geometric sense is mapped to its commutative counterpart by Representation 
Functor 

. RepN : fin. gen. Associative algebras → Affine schemes ,

RepN(A) = Hom(A,MatN(C)) .

It assigns to a finitely generated associative algebra . A = 〈x(1), . . . , x(k)〉/R
a scheme of its’ .N × N matrix representations. Let

11 See Definition 2.13 for the definition of Poisson center ZP (A). 
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.ϕ(x(i)) =
⎛
⎜⎝

x
(i)
11 . . . x

(i)
1N

...
...

x
(i)
N1 . . . x

(i)
NN

⎞
⎟⎠ . (52) 

Representations of . A then form an affine scheme . Vwith a coordinate ring . C[V] :=
C

[
x

(i)
j,k

]
/ϕ(R). Denote as .CV - the corresponding sheaf of rational functions. 

12.1.3 Moduli Space of Representations 

Change of basis corresponds to the action .GLN(C) � MatN(C), 

. M → gMg−1 .

It induces .GLN(C) � C[V]. The invariant subalgebra .C[V]GLN(C) ⊂ C[V] is then 
a coordinate ring of the corresponding moduli space of representations. 

. ϕ0 : A� → C[V]GLN (C), ϕ0(x) = Trϕ(x) .

Lemma 2.8 (Procesi, 1976) Subset .ϕ0(A�) generates .C[V]GLN (C). 

Proposition 2.18 (Crawley-Boevey [24]) An .H0-Poisson bracket induces a con-
ventional Poisson bracket 

. {, }inv : C[V]GLN (C) ⊗ C[V]GLN (C) → C[V]GLN (C) .

12.2 Double Poisson Brackets 

Definition 2.30 (M. Van Den Bergh [26]) A map  {{, }} :  A ⊗ A → A ⊗ A is 
a double Poisson bracket if for all a, b, c ∈ A: 
1. {{a, b}} = −{{b, a}}op , 
2. {{ab, c}} = (1 ⊗ a){{b, c}} + {{a, c}}(b ⊗ 1), 
3. {{a, bc}} = (b ⊗ 1){{a, c}} + {{a, b}}(1 ⊗ c), 
4. R12R23 + R31R12 + R23R31 = 0, where Rm,n(a1 ⊗ · · · ⊗  ak) = a1 ⊗ · · · ⊗  

am−1 ⊗ {{am, an}}′ ⊗ · · · ⊗ {{am, an}}′′ ⊗ · · · ⊗  ak. 

Proposition 2.19 ([26]) Double Poisson bracket induces a conventional Poisson 
bracket 

.{, }V : CV ⊗ CV→ CV
{
x

(m)
ij , x

(n)
kl

}V = ϕ
(
{{x(m) ⊗ x(n)}}

)
(kj),(il)

.
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If A = C < x1, . . . , xm > is the free associative algebra, then C[Repn(A)] =  
C[x j i,α] where 1 ≤ α ≤ m. 

If {{xα, xβ}} is a double Poisson bracket on A = C < x1, . . . , xm >, then, 
using the Sweedler convention and drop the sign of sum, we obtain the conventional 
Poisson brackets on C[Repn(A)]: 

. {xj
i,α, xl

k,β} = {{xα, xβ}}′j
k {{xα, xβ}}′′li

12.3 Quadratic Double Poisson Brackets 

Let .A = C < x1, . . . , xm > be the free associative algebra. If double brackets 
.{{xi, xj }} between all generators are fixed, then the bracket between two arbitrary 
elements of . A is uniquely defined by identities (2.30). It follows from (2.30) that 
constant, linear, and quadratic double brackets are defined by 

.{{xi, xj }} = cij1 ⊗ 1, ci,j = −cj,i , (53) 

.{{xi, xj }} = bk
ij xk ⊗ 1 − bk

ji1 ⊗ xk, (54) 

and 

.{{xα, xβ}} = ruv
αβ xu ⊗ xv + avu

αβ xuxv ⊗ 1 − auv
βα 1 ⊗ xvxu, (55) 

where 

.rσε
αβ = −rεσ

βα, (56) 

correspondingly. The summation with respect to repeated indexes is assumed. 
It is easy to verify that the bracket (53) satisfies (2.30) for any skew-symmetric 

tensor . cij . For the bracket (54) the condition (2.30) is equivalent to the identity 

.b
μ
αβbσ

μγ = bσ
αμb

μ
βγ , (57) 

which means that .bσ
αβ are structure constants of an associative algebra . A. 

Proposition 2.20 The bracket (55) satisfies (2.30) iff the following relations hold: 

.rλσ
αβ rμν

στ + r
μσ
βτ rνλ

σα + rνσ
τα r

λμ
σβ = 0, (58) 

.aσλ
αβ aμν

τσ = aμσ
τα aνλ

σβ, (59) 

.aσλ
αβ aμν

στ = a
μσ
αβ rλν

τσ + aμν
ασ rσλ

βτ (60)
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and 

.aλσ
αβ aμν

τσ = aσν
αβ rλμ

στ + a
μν
σβ rσλ

τα . (61) 

The conventional Poisson bracket corresponding to any double Poisson 
bracket (55) can be defined on .C[Repn(A)] by the following way [27]: 

.{xj
i,α, x

j ′
i′,β} = r

γ ε
αβ x

j ′
i,γ x

j

i′,ε + a
γ ε
αβxk

i,γ x
j ′
k,εδ

j

i′ − a
γ ε
βαxk

i′,γ x
j
k,εδ

j ′
i (62) 

where .xj
i,α are entries of the matrix . xα and . δj

i is the Kronecker delta-symbol. 
Relations (56), (58)–(61) hold iff (62) is a Poisson bracket. 

We may interpret the four index tensors r and a as: 

1. operators on .V ⊗ V , where V is an m-dimensional vector space; 
2. elements of .Matm(C) ⊗ Matm(C); 
3. operators on .Matm(C). 

For the first interpretation let V be a linear space with a basis .eα, α = 1, . . . , m. 
Define linear operators .r, a on the space .V ⊗ V by 

. r(eα ⊗ eβ) = rσε
αβ eσ ⊗ eε, a(eα ⊗ eβ) = aσε

αβ eσ ⊗ eε.

Then the identities (56), (58)–(61) can be written as 

.

r12 = −r21, r23r12 + r31r23 + r12r31 = 0,

a12a31 = a31a12,

σ 23a13a12 = a12r23 − r23a12,

a32a12 = r13a12 − a32r13.

(63) 

Here all operators act in .V ⊗ V ⊗ V , . σ ij means the transposition of i-th and j -th 
components of the tensor product, and .aij , rij mean operators .a, r acting in the 
product of the i-th and j -th components. 

Note that first two relations mean that the tensor r should be skew-symmetric 
solution of the classical associative Yang-Baxter equation [28]. 

In the second interpretation we consider the following elements from . Matm(C)⊗
Matm(C): .r = rkm

ij ei
k ⊗ e

j
m, a = akm

ij ei
k ⊗ e

j
m, where . ei

j are the matrix unities: 

.e
j
i em

k = δ
j
k em

i . Then (56), (58)–(61) are equivalent to (63), where tensors belong to 

.Matm(C) ⊗ Matm(C) ⊗ Matm(C). Namely, .r12 = rmk
ij ei

k ⊗ e
j
m ⊗ 1 and so on. The 

element . σ is given by .σ = e
j
i ⊗ ei

j .
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For the third interpretation, we shall define operators . r, a, r̄, a∗ : MatN → MatN
by . r(x)

p
q = r

mp
nq xn

m, . a(x)
p
q = a

mp
nq xn

m, r̄(x)
p
q = r

pm
nq xn

m, a∗(x)
p
q = a

pm
qn xn

m.

Then (56), (58)–(61) provide the following operator identities: 

. 

r(x) = −r∗(x), r(x)r(y) = r(xr(y)) + r(x)y),

r̄(x) = −r̄∗(x), r̄(x)r̄(y) = r̄(xr̄(y)) + r̄(x)y),

a(x)a∗(y) = a∗(y)a(x),

a∗(ya(x)) = r(xa∗(y)) − r(x)a∗(y),

a(x)a(y) = −a(r(y)x) − a(yr(x)),

a∗(a(x)y) = r(a∗(y)x) − a∗(y)r(x),

a(ya∗(x)) = −r̄(xa(y)) + r̄(x)a(y),

a∗(x)a∗(y) = a∗(r̄(y)x) + a∗(yr̄(x)),

a(a∗(x)y) = −r̄(a(y)x) + a(y)r̄(x)

for any . x, y. First two of these identities mean that operators r and . ̄r satisfies 
the Rota-Baxter equation [29] and this fact implies also that the new matrix 
multiplications . ◦r and . ◦r̄ defined by 

. x ◦r y = r(x)y + xr(y), x ◦r̄ y = r̄(x)y + xr̄(y)

are associative. 

12.4 Examples and Classification of Low Dimensional 
Quadratic Double Poisson Brackets 

It is easy to see that for .m = 1 non-zero quadratic double Poisson brackets 
does not exist. In the simplest non-trivial case .m = 2 the system of algebraic 
equations (56), (58)–(61) can be straightforwardly solved . 

Theorem 2.9 Let .m = 2. Then the following Cases 1–7 form a complete list of 
quadratic double Poisson brackets up to equivalence given a linear change of the 
generators. We present non-zero components of the tensors r and a only. 

Case 1. .r2122 = −r1222 = 1. The corresponding (non-zero) double brackets read 

. {{v, v}} = v ⊗ u − u ⊗ v;

Case 2. .r2122 = −r1222 = 1, .a1121 = a1222 = 1. The corresponding (non-zero) double 
brackets:
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. {{v, v}} = v ⊗ u− u⊗ v + vu⊗ 1− 1⊗ vu, {{v, u}} = u2 ⊗ 1, {{u, v}} = −1⊗ u2;

Case 3. .r2122 = −r1222 = 1, .a1112 = a2122 = 1. The corresponding (non-zero) double 
brackets: 

. {{v, v}} = v ⊗u−u⊗ v +uv ⊗ 1− 1⊗uv, dbu, v = u2 ⊗ 1, {{v, u}} = −1⊗u2;

Case 4. .r2221 = −r2212 = 1. The corresponding (non-zero) double brackets: 

. {{v, u}} = v ⊗ v, {{u, v}} = −v ⊗ v;

Case 5. .r2221 = −r2212 = 1,; .a2111 = a2212 = 1. The corresponding (non-zero) double 
brackets: 

. {{v, u}} = v ⊗ v − 1⊗ v2, {{u, v}} = −v ⊗ v + v2 ⊗ 1, {{u, u}} = uv ⊗ 1− 1⊗ uv;

Case 6. .r2221 = −r2212 = 1,; .a1211 = a2221 = −1. The corresponding (non-zero) double 
brackets: 

. {{v, u}} = v⊗v−v2⊗1, {{u, v}} = −v⊗v+1⊗v2, {{u, u}} = −vu⊗1+1⊗vu;

Case 7. .a1122 = 1. The corresponding (non-zero) double brackets: 

. {{v, v}} = u2 ⊗ 1 − 1 ⊗ u2.

For a proof of (2.9) see  [30]. 

Remark 2.29 Cases 2 and 3 as well as Cases 5 and 6 are linked via the involution. 

Remark 2.30 Case 1 is equivalent to the double bracket from Example 1 with . m =
2.

Remark 2.31 It  is  easy to verify (see [28]) that there exist only two non-isomorphic 
anti-Frobenius subalgebras in .Mat2(C). They are matrices with one zero column 
and matrices with one zero row. Cases 1 and 4 correspond to them. 

Remark 2.32 Notice that the trace Poisson brackets for Cases 2 and 4 are non-
degenerate. Corresponding symplectic forms can be found in [31] (Example 5.7 
and Lemma 7.1). 

Remark 2.33 The corresponding Lie algebra structures on the trace space 
.A/[A,A] are trivial (abelian) in all cases, except the cases 2, 3 and 4 : 

.[ū, v̄] = −ū2 (Case 2), [ū, v̄] = ū2 (Case 3), [ū, v̄] = −v̄2 (Case 4).
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These cases give the isomorphic Lie algebra structures on .A/[A,A] with respect 
to the involutions .u → v, v → u and . u → u v → −v.

We refer to literature [33, 35, 36] for further details relevant to this section. 

Example Consider the trace Poisson bracket (62) corresponding to case 6. Its  
Casimir functions are given by 

. tr vk, tr uvk, k = 0, 1, . . .

where .u = x1, v = x2. Functions .tr ui and .tr vui , where . i = 2, 3, . . .
commute each other with respect to this bracket. 
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Some Remarks on Multisymplectic and 
Variational Nature of Monge-Ampère 
Equations in Dimension Four 

Radek Suchánek 

Abstract We describe a necessary condition for the local solvability of the strong 
inverse variational problem in the context of Monge-Ampère partial differential 
equations and first-order Lagrangians. This condition is based on comparing effec-
tive differential forms on the first jet bundle. To illustrate and apply our approach, 
we study the linear Klein-Gordon equation, first and second heavenly equations 
of Plebański, Grant equation, and Husain equation, over a real four-dimensional 
manifold. Two approaches towards multisymplectic formulation of these equations 
are described. 

1 Introduction 

Since the nineteenth and early twentieth century work of mathematicians such as 
Joseph Liouville, Gaston Darboux, Sophus Lie, Élie Cartan et al., it is well-known 
that geometry plays an essential role in the study of ordinary and partial differential 
equations (PDEs). 

A special subclass of all non-linear second-order PDEs is Monge-Ampère (M-A) 
equations. They arise in many examples and have numerous applications throughout 
mathematics and mathematical physics. One can find them in differential geometry 
of surfaces, hydrodynamics, acoustics, integrability of various geometric structures, 
variational calculus, Riemannian, CR, and complex geometry, quantum gravity, and 
even in theoretical meteorology (semi-geostrophic and quasi-geostrophic theory). 
Many other instances can be listed. For a detailed exposition of interesting applica-
tions of M-A equations, particularly in 2D and 3D, see [1]. 
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In this paper, we are mainly interested in the variational structure of M-A 
equations. In particular, we study whether we can view them as E-L equations for 
some first-order Lagrangians. Our approach is based on the idea of V. Lychagin 
to connect the M-A operators with symplectic (on .T ∗M) and contact (on . J 1M)

geometries. He also defined a class of variational problems related to M-A equations 
[1, 2]. 

Afterwards, we observe the relation between M-A equations and multisymplectic 
geometry, using the results of two slightly different approaches proposed by F. 
Hélein [3], and D. Harrivel [4]. We have found some new aspects which could shed 
light on this connection. We applied our observations in the context of the following 
4D PDEs, very famous for their applications in geometry and theoretical physics 
related to Einstein gravity and relativistic field theories—Plebański heavenly equa-
tions and Klein-Gordon equation. We also considered Grant and Husain equations, 
which are very close to Plebański second equation. 

In 1975, J.F. Plebański introduced his first and second heavenly equations [5], 
which belong to the class of M-A equations in 4D. Their close relatives, Grant 
and Husain equations, were introduced more recently [6, 7]. These equations 
appeared firstly in Einstein gravity, and later were studied by numerous authors, 
both physicists and mathematicians [5–9]. Another significant example of M-A 
equation is the Klein-Gordon equation, which is a non-homogeneous relativistic 
wave equation. It was derived in the first quarter of the twentieth century by O. Klein 
and later reformulated in a more compact form by W. Gordon [10]. The underlying 
structure of this equation can be found in more general situations than scalar fields, 
and the knowledge of its solutions is relevant in the relativistic perturbative quantum 
field theory [11]. The specific form of all the above equations and some further 
details about them is given below. 

In the first section, we define M-A operators and related notions, which will 
be our main tools in working with M-A equations via differential forms. We also 
recall the contact and symplectic calculus over .J 1M , which we greatly utilize 
in our computations. The second section describes the construction of the Euler 
operator on .�n(J 1M) and its relation to variational problems. In the third section, 
a necessary condition for local solvability of the strong inverse variational problem 
of a given M-A equation is formulated, together with the corresponding analysis 
of the aforementioned five M-A equations in four real dimensions. In the fourth 
section, we present two multisymplectic approaches and provide certain comparison 
of them, in the context of concrete M-A equations under consideration. 

In the sequel, we will be working with smooth real-valued functions . φ ∈ C∞(M)

and their first prolongations .j1φ : M → J 1M , where .J 1M → J 0M = M × R is 
the first jet bundle of .pr1 : M × R → M . 

A second-order partial differential equations which are given as a .C∞(J 1M)-
linear1 combination of minors of the Hessian matrix .(φμν)μ,ν are called Monge-

1 By .C∞(J 1M)-linear we mean that the coefficients can be smooth functions and their first 
derivatives. 
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Ampère equations2 [1, 2, 4, 9]. Consequently, every such equation can be rep-
resented by a differential n-form on .J 1M via M-A operator .�ωφ := (j1φ)∗ω. 
Moreover, one can use effective differential forms, which represent M-A equations 
uniquely (up to a multiple of a non-vanishing function), and without terms 
corresponding to trivial equations [1, 2, 9]. Effective forms on the first jet space, 
which produce first-order Lagrangians on the base manifold, have a particularly 
simple local expression. Their image under the Euler operator represents the Euler-
Lagrange (E-L) equations [1]. This feature of the Euler operator, together with 
the fact that it preserves the effective forms, enables us to study the existence 
of a first-order Lagrangian for a given M-A equation on the level of differential 
forms over .J 1M . Additionally, some effective forms give rise (in a non-unique 
way) to multisymplectic forms [4]. This may happen even for an effective form that 
comes from a M-A equation which does not have a first-order Lagrangian. Since 
the multisymplectic reformulation usually starts with a Lagrangian [3, 12, 13], this 
seems to be an interesting property. We will apply the formalism on the following 
M-A equations: Plebański heavenly, Grant, Husain, and Klein-Gordon equations. 
We will consider these equations in the real 4D case. 

The heavenly equations of Plebański were first derived in [5] in the form  

. φ13φ24 − φ14φ23 = 1 (1st heavenly equation)

φ11φ22 − (φ12)
2 + φ13 + φ24 = 0 (2nd heavenly equation)

using self-dual 2-forms over a complex 4D Riemannian space. The duality here is 
given by the Hodge star operator. The Grant equation and the Husain equation are 
both based on the Ashtekar-Jacobson-Smolin (AJS) equations, which are Einstein 
self-dual equations. The AJS equations were derived in [14] employing the . 3 + 1
ADS decomposition of spacetime. They characterize 4D complex metrics with self-
dual curvature 2-form. Metrics with self-dual curvature form satisfy the vacuum 
equations of general relativity since they are Ricci flat. In [6], the following equation 
was introduced 

. φ11 + φ24φ13 − φ23φ14 = 0 (Grant equation)

and subsequently rewritten into a system which enabled the author to construct 
formal solutions. Notably, the Grant equation is equivalent with the first heavenly 
equation of Plebański [6]. Another reformulation of the AJS equations was provided 
in [7], in order to identify AJS with a 2D chiral model, and to provide a Hamiltonian 
formulation. The resulting equation 

.φ13φ24 − φ14φ23 + φ11 + φ22 = 0 (Husain equation)

2 Note that the minors of rank 1 recover all the second-order semi-linear differential equations, 
whilst the higher order minors (including the determinant of the whole matrix) add specific non-
linear terms. 
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enabled V. Husain to show the existence of infinitely many non-local conserved 
currents. Another type of an M-A equation is 

. φ11 − φ22 − φ33 − φ44 + m2φ2 = 0 (Klein-Gordon equation)

where m is a constant. The Klein-Gordon equations was derived in various ways, for 
example by W. Gordon [10]. In its real version, it can be interpreted as an equation of 
motion for a scalar field without charge over a Lorentzian manifold. A key difference 
between the aforementioned equations is that the Klein-Gordon equation does not 
arise from self-duality conditions. 

2 Preliminary Notions 

In this section we fix the notation and introduce basic definitions and statements 
relevant to our considerations. In particular, we will define the notion of effective 
forms, Monge-Ampère operators and Monge-Ampère equations. All our considera-
tions are local. We caution the reader about the standard abuse of notation such us 
denoting a symplectic form by . �, and by .�(M) the exterior algebra of differential 
forms over M . 

We denote by M a smooth n-dimensional manifold, .(q1, . . . , qn) are local 
coordinates over an open subset .U ⊂ M , T M  and .T ∗M are the tangent and 
cotangent bundle, respectively. Let .J 1M be the space of 1-jets of smooth functions 
over M , which is an affine bundle over . M × R

. π : J 1M → J 0M = M × R

with typical fiber .T ∗M . It is also a fiber bundle over M 

. pr1 ◦π : J 1M → M ,

where .pr1 : M × R → M . We denote by .(q1, . . . , qn, u, p1, . . . , pn) the induced 
local coordinates on .J 1M . The first prolongation of . φ ∈ C∞(M)3 is a section 
.j1φ : M → J 1M , given by .x �→ (j1φ)(x) ∈ J 1M . Recall that .(j1φ)(x) is an 
equivalence class of functions which are equal up to the first order in derivatives at 
x. In local coordinates, 

. j1φ = (qμ, φ, φμ) ,

where .φμ := ∂qμφ := ∂φ
∂qμ

is the partial derivative in the direction of the coordinate 

. qμ. The pullbacks of coordinate functions on .J 1M are

3 Each .φ ∈ C∞(M) defines a section .M → M × R, .x �→ (x, φ(x)). 
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. (j1φ)∗qμ = qμ (j1φ)∗u = φ (j1φ)∗pμ = φμ ,

In the local coordinates, we have the identification .J 1U ∼= T ∗U × R (which is 
not canonical). Most relevant for us is that .J 1M is naturally equipped with a contact 
structure [1, 2]. For more details about jet bundles and structures on them, see [15]. 

2.1 Contact Structure on J 1M 

Definition 3.1 Let ω ∈ �1(M) be non-vanishing. Let D ⊂ T M  be a distribution 
given by D := ker ω. Then ω is called a contact form on M , if  dω|D : D → D∗ is 
non-degenerate. Manifold with a distribution described by a contact form is called 
a contact manifold and d is called a contact structure (or contact distribution) on M . 

Remark 3.1 Note that the distribution D = ker ω satisfies codimD = 1. Moreover, 
the 1-form describing D is not unique. Consider a class of 1-forms, [ω], given by 
ω̃ ∈ [ω] if and only if there is a non-vanishing f ∈ C∞(M) s.t. ω̃ = f ω. Then 
every representative of the class [ω] defines the same distribution d. 

The first jet space comes equipped with the Cartan distribution, which infinites-
imally describes the condition that a section of J 1M → M is obtained as 
a prolongation of a function φ ∈ C∞(M). In the induced coordinates, this 
requirement can be described by the following contact form4 

.c = du − pμdqμ . (1) 

This 1-form satisfies the Definition 3.1 and we can describe the Cartan distribution 
as C = ker c. That is, J 1M is a contact manifold.5 By the Darboux theorem, every 
contact form on J 1M is locally given by (1). The contact form defines the Reeb 
vector field, χ , by the following conditions 

.χ � dc = 0 and c(χ) = 1 . (2) 

In the local coordinates s.t. (1) holds, the Reeb field is of the form χ = ∂u, which 
immediately follows from (2). Moreover, since codimC = 1, we get the following 
splitting of T J 1U 

.T J 1U ∼= C ⊕ span(χ) ∼= ker c ⊕ ker dc .

4 We are using the summation convention of summing over the repeated indices. 
5 Cartan distribution exists also on higher jets but the first jets are special due to codimC = 1. 
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2.2 Symplectic Calculus on the Cartan Distribution 

Contact form on .J 1M gives rise to a symplectic form on . C. 

Definition 3.2 Let V be a vector space, .dim V = 2n. A symplectic form on V is 
a 2-form .� ∈ 
2(V ∗), which is non-degenerate, i.e. .�n := � ∧ . . . ∧ � is non-
vanishing. 

Consider the 2-form .� := dc on the contact manifold .J 1M . Then . � is obviously 
closed. In the chosen coordinates, we have 

.� = dqμ ∧ dpμ . (3) 

Note that . � is non-degenerate when restricted to . C. This means that .�x is a 
symplectic form on . Cx at every .x ∈ M . Using the symplectic form, we can define 
various useful operators. This leads to considering the space of differential k-forms 
which are degenerate along the Reeb field . χ . We will denote this .C∞-module by 

.�k(C) := {α ∈ �k(J 1U) | χ � α = 0} . (4) 

Since the interior product . � satisfies the graded Leibniz rule with respect to the 
wedge product, the space 

. �(C) :=
⊕

k≤0

�k(C) ⊂ �(J 1M)

has a graded algebra structure. Using suitable projections, .�(C) can be turned into 
a differential graded algebra. 

Projection and Projected Derivative Every .α ∈ �k(J 1M) can be projected on 
.�k(C) via the projection .p : �k(J 1M) → �k(C), acting on arbitrary k-form . α as 

.p(α) = α − c ∧ (χ � α) . (5) 

Let us show that p has the claimed properties. Firstly, .p2 = p, since 

. p(p(α)) = α − c ∧ (χ � α) − c ∧ (
χ � (α − c ∧ (χ � α)

) = p(α) .

Secondly, .p(α) ∈ �k(C), since 

. χ � p(α) = χ � α − χ � α + (χ ∧ χ) � α ∧ c = 0 .

Note that the property .α ∈ �(C) is not preserved by the exterior derivative 
.d : �k(J 1M) → �k+1(J 1M). So with the projection p, we define the degree 1 
derivation . dp as the composition 

.dp := p ◦ d : �k(J 1M) → �k+1(C) , (6)
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Bottom Operator Since . � is non-degenerate on . C, the assignment . ξ �→ ξ � �

defines an isomorphism .ι : C → C∗, which further induces an isomorphism 
.
2ι−1 : 
2C∗ → 
2C. This enables us to define .X� := 
2ι−1(�). In coordinates, 

. X� = ∂qμ ∧ ∂pμ .

Contracting with the 2-vector field .X� leads to the bottom operator . ⊥: �k(J 1U) →
�k−2(J 1U). More precisely, for k-form . α, .k > 1, 

.⊥α := X� � α . (7) 

For .k ≤ 1 define .⊥α = 0. Our convention is such that . ⊥� = ∂pμ � ∂qμ � (dqμ ∧
dpμ) = n. The motivation for defining the bottom operator will be more apparent 
in the next paragraphs. 

2.3 Monge-Ampère Operators and Effective Forms 

Definition 3.3 Let ω ∈ �n (J 1M) be an arbitrary n-form, n = dim M . The Monge-
Ampère operator corresponding to ω, �ω : C∞(M) → �n (M), is defined as 

.�ωφ := (j1φ)∗ω . (8) 

The differential equation 

.�ωφ = 0 (9) 

is called a Monge-Ampère equation. 

Notice that the expression �ωφ = 0 defines an equation on M only when ω 
is a n = dim M-form. In this way, the M-A operators enable us to represent M-
A equations by differential forms. Note that we have a certain ambiguity in this 
representation due to 

. (j1φ)∗c = dφ − φμdqμ = 0 .

In full generality, this ambiguity is described by an ideal of the exterior algebra over 
J 1M , generated by the contact form and its exterior derivative 

.I =< c, dc >⊂ �(J 1M) . (10) 

Recall that �(J 1M) is a graded algebra, which implies that I is a graded ideal 

.Ik := I ∩ �k(J 1M) .
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Thus, the redundancy in M-A equations is given by 

.ω ∈ In ⇐⇒ �ωφ = 0 ∀φ . (11) 

This suggest to work with the equivalence classes of �n (J 1M)/In instead of using 
arbitrary forms in �n (J 1M) to describe M-A equations on M . Nevertheless, such 
an approach is not very convenient for computations in local coordinates. To avoid 
this problem, we use the following definition of effective forms, which captures the 
above idea of working with forms which do not contain the redundant terms. 

Definition 3.4 Let ω ∈ �k (J 1M), k ≤ n. Then ω is called effective, if 

.χ � ω = 0 and ⊥ω = 0 . (12) 

For further details about effective forms and how the above definition can be 
linked with the equivalence classes of �n (J 1M)/In, see [1, 2]. 

Recall that χ �ω = 0 means ω ∈ �k (C) (see (4)). The conditions (12) will be our 
working definition when dealing with effective forms. Note also that the condition 
⊥ω = 0 is equivalent to � ∧ ω = 0 if and only if n = k. 

Example 3.1 Let β = dq1 ∧ dq2 ∧ . . .  ∧ dqn and βμ := ∂qμ � β. Then 

. ω = bμβμ ∧ dpμ + bβ

is effective for arbitrary choice of b, bμ ∈ C∞(J 1M), μ = 1, . . . , n. Indeed, 
ω does not contain the du term, hence we have χ � ω = 0. Next, we have 

. ⊥ω = bμ⊥(βμ ∧ dpμ) + b⊥β

due to C∞(J 1M)-linearity of the interior product χ�. Recall that we use the 
summation convention, so βμ ∧ dpμ consists of n terms. The first one is β1 ∧ 
dp1 = dq2 ∧ . . .  ∧ dqn ∧ dp1. The bottom operator gives 

. ⊥(β1∧dp1) = (∂qμ∧∂pμ)�(β1∧dp1) = ∂pμ�∂qμ�(β1∧dp1) = ∂q1�β1 = 0 .

Similarly for all the other terms of βμ ∧dpμ. Obviously ⊥β = 0 since β does 
not contain any dp term. We see that ω is effective. Notice that the coefficients 
of ω might depend on u. 

Important result in the theory of effective forms is the Hodge-Lepage decompo-
sition, proved by V. Lychagin in [2] using the representation theory of sl2(R).
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Theorem 3.1 Every ω ∈ �k (C), k ≤ n, can be written in the form 

.ω = ωε + x ∧ � , (13) 

for some x ∈ �k−2(C) and a uniquely given ωε ∈ �k (C) satisfying ⊥ωε = 0. 

Corollary 3.1 Suppose that ω1, ω2 ∈ �n (C) determine the same Monge-Ampère 
equation. Then the effective parts satisfy 

.ω1ε = kω2ε (14) 

for a non-vanishing function k ∈ C∞(J 1M). 

Proof Two forms determine the same equation if and only if for all φ 

.�ω1φ = k̃�ω2φ , (15) 

for some non-vanishing k̃ ∈ C∞(M). Notice that � is C∞(J 1M)-equivariant in the 
ω argument, i.e. for arbitrary ω and k ∈ C∞(J 1M) we have6 

. �kωφ = (
(j1φ)∗k

)
�ωφ .

Moreover, � is R-linear in the lower argument, so for arbitrary ω1, ω2, and all φ 

. �ω1φ − �ω2φ = �ω1−ω2φ .

Hence (15) can be rewritten as 

. �ω1φ − k̃�ω2φ = �ω1−kω2φ = 0 ,

for appropriate k ∈ C∞(J 1M) s.t. (j1φ)∗k = k̃. The above equation holds for all φ 
if and only if 

. α := ω1 − kω2 ∈ In

(see (11)). Since every α ∈ In satisfies αε = 0 and every ω ∈ �(C) satisfies 
(kω)ε = kωε , we conclude ω1ε = kω2ε . ��

Using the projection operator (5) together with the Hodge-Lepage decomposi-
tion, we know that every k-form ω on J 1M has a unique effective part ωε (of the 
same degree). This means that every M-A equation �ωφ = 0 can be represented by 
a unique differential form which does not contain terms generating trivial equation. 
We will use this observation in order to study the variational nature of the PDEs 
under consideration.

6 Note that (j1φ)∗k = k ◦ j1φ since k is a function. 
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3 Lagrangians, Variational Problems and the Euler Operator 

Taking the pullback of a n-form on the jet space results in a n-form on the base 
manifold M , which can be integrated over M . Let . φ be compactly supported, . ω ∈
�n(J 1M). Define the (action) functional corresponding to .�ωφ by 

.�ω[φ] =
∫

M

�ωφ . (16) 

Definition 3.5 We call an element .ω ∈ �n(J 1M) a Lagrangian. A first-order 
Lagrangian is a n-form . ω such that .�ωφ depends on . φ up to the first order. 

3.1 First-Order Lagrangians 

We are focused on the first-order Lagrangians as defined in Definition 3.5 because 
they yield all possible first-order Lagrangian functions on M .7 The following lemma 
describes the most general form the first-order Lagrangians can have. 

Proposition 3.1 Every effective first-order Lagrangian for one scalar field . φ is 
locally of the form 

.Lβ = L(qμ, u, pμ)dq1 ∧ . . . ∧ dqn . (17) 

for some .L ∈ C∞(J 1M). 

Proof Let .ω ∈ �n(J 1M) be arbitrary. If .�ωφ is assumed to depend on the first 
derivatives of . φ at most, then . ω cannot contain any .dpi term. Thus 

. ω = Lβ + LI dqI ∧ du ,

where .β = dq1 ∧ . . . ∧ dqn and .L,LI ∈ C∞(J 1M) with .I = i1 . . . ik−1 running 
through all possible combinations s.t. .1 ≤ i1 ≤ . . . ≤ ik−1 ≤ n. Now recall 
that . ω can still contain some terms resulting in zero after the pullback. Due to the 
Hodge-Lepage decomposition (13), every . ω has a unique effective part . ωε and the 
corresponding functionals satisfy 

. 

∫

M

�ωφ =
∫

M

�ωεφ .

So without loss of generality, we may assume that . ω is effective. This implies two 
things: .χ � ω = 0 and .⊥ω = 0. The first condition rules out the terms containing

7 After the pullback by .(j1φ)∗ and choice of the volume form on M . 
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. du and we are left with .ω = Lβ. It is easy to check that .⊥Lβ = 0, meaning that . Lβ

is effective. Thus we conclude that (17) is the most general first-order Lagrangian 
for one scalar field . φ, which does not contain any terms that would vanish after the 
pullback on M . ��

3.2 Euler-Lagrange Equations and the Euler Operator 

Every functional .�ω[φ] defines a variational problem .δ�ω[φ] = 0 and the 
corresponding E-L equation. Once we fix a functional, we may compute the E-
L equation explicitly. A natural question at this point is whether we can find 
.ω̃ ∈ �n(J 1M) so that the E-L equation .δ�ω[φ] = 0 is given by the Monge-Ampère 
equation .�ω̃φ = 0. The answer is positive and . ω̃ can be determined using the Euler 
operator . E. 

Definition 3.6 Euler operator .E : �n(J 1M) → �n(J 1M), .n = dim M is defined 
by 

.E := dp⊥dp + Lχ , (18) 

where . dp is defined by (6), . ⊥ is defined by (7), and .Lχ is the Lie derivative along 
the Reeb field given by (2). 

The key motivation for us to work with the Euler operator is the following 
equivalence 

.δ�ω[φ] = 0 ⇐⇒ �E(ω)φ = 0 . (19) 

In other words, the variational problem given by functional of . ω is described by 
.E(ω). The proof of this statement and many other useful properties, as well as the 
details about the cohomological origin of the defining equation (18) can be found in 
[1, 2]. 

We have the following lemma, which will be used to formulate the necessary 
conditions for the existence of a first-order Lagrangian of a given PDE (i.e. 
necessary conditions for the existence of a solution to a given local inverse 
variational problem). 

Lemma 3.1 Let .Lβ ∈ �n(J 1M) be a first-order Lagrangian, . E be defined by (18). 
Then 

1. .E(Lβ) is effective. 
2. .�E(Lβ)φ = 0 is the E-L equation of .�Lβ [φ]. 
Proof Assume the local coordinates satisfying (1) and observe that . χ �Lβ = Lχ �
β = 0. Direct computation gives
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. dp⊥dp(Lβ) = ∂2L

∂pμ∂pν

βμ ∧ dpν − (
∂2L

∂qμ∂pμ

+ pμ

∂2L

∂u∂pμ

)β ,

where .βμ := ∂qμ � β = ∂qμ � (dq1 ∧ . . . ∧ dqn). Using the Cartan formula . L =
�d + d�, we further obtain 

. Lχ (Lβ) = ∂L

∂u
β + L(χ � dβ + dχ � β) = ∂L

∂u
β .

Thus, following the definition (18), the coordinate expression of .E(Lβ) is 

.E(Lβ) = ∂2L

∂pμ∂pν

βμ ∧ dpν − (
∂2L

∂qμ∂pμ

+ pμ

∂2L

∂u∂pμ

− ∂L

∂u
)β . (20) 

Let us denote .Bμν := ∂2L
∂pμ∂pν

and .βμν := (∂qμ ∧ ∂qν ) � β. Hence .Bνμ = Bμν , 
and .βνμ = −βμν . We will check that .E(Lβ) is effective (see Definition 12). Firstly 
recall that .χ = ∂u and that (20) does not contain . du, so .χ � E(Lβ) = 0. Secondly, 
since .⊥β = 0, 

. ⊥E(Lβ) = Bμν(∂qα ∧∂pα )� (dpν ∧βμ) = −Bμν∂qν �βμ =
{

−Bμνβμν μ = ν

0 μ �= ν
.

Writing the sums over .μ, ν explicitly, the term .Bμνβμν reads as 

. Bμνβμν =
∑

μ<ν

(Bμνβμν + Bνμβνμ) =
∑

μ<ν

Bμν(βμν − βμν) = 0 ,

which implies .⊥E(Lβ) = 0. 
To show the latter statement, we firstly notice that . E is a 0 degree operator, which 

follows directly from .deg dp = 1, deg ⊥ = −2, degL = 0. Hence starting with 
.Lβ ∈ �n(J 1M), the result .E(Lβ) is also a n-form and .�E(ω)φ = 0 is a well-
defined equation on M . The property (19) is then expressed for .ω = Lβ as follows 

. δ�Lβ [φ] = δ

∫

M

(j1φ)∗Lβ = 0 ⇐⇒ �E(Lβ)φ = 0 .

Using the coordinate description of .E(Lβ) given by (20), we get 

. �E(Lβ)φ = 0 ⇐⇒ ∂(j1φ)∗L
∂φ

− ∂

∂qμ

∂(j1φ)∗L
∂φμ

= 0 ,

which is the standard form of the E-L equation for a first-order Lagrangian function 
.(j1φ)∗L = L(qμ, φ, φμ) on M , corresponding to .�Lβ [φ] = ∫

M
�Lβφ. ��
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4 Effective Forms and the Inverse Variational Problem 

In this section, we will see how M-A equations can be described by effective forms, 
which provide a unique (up to a scalar multiple) representation of the equation by 
a differential form on the first jet space.8 This enables us to show that both Plebański 
heavenly, Husain and Grant equations do not have a first-order Lagrangian which 
would solve the corresponding (local) inverse variational problem. 

The first and easy step is to find a simple representation of the equation (see 
Definition 3.7). The simple representation might not be effective. Indeed, this is the 
case in all the aforementioned equations. The Hodge-Lepage decomposition (13) 
assures that we can always find the effective part of a given form, although it does 
not give a recipe for doing so. Thus we introduce Lemma 3.3 which provides an 
efficient algorithmic way to determine the effective form of a M-A equation in the 
case .dim M = 4. The following lemma is an intermediate step. 

Lemma 3.2 Let .ω ∈ �2(C) be arbitrary and .� = dc be the symplectic form on the 
contact structure .C ⊂ T (J 1M). The following holds 

.⊥(ω ∧ �) = (⊥ω)� + (n − 2)ω , (21) 

where .n = dim M . 

Proof Recall that, in the local coordinates s.t. (1) holds, we have . � = dqμ ∧ dpμ

and .⊥ω = (∂qμ ∧ ∂pμ) � ω = ∂pμ � ∂qμ � ω, which implies .⊥� = n. Hence 

.⊥(ω ∧ �) = (⊥ω)� − ∂qμ � ω ∧ ∂pμ � � + ∂pμ � ω ∧ ∂qμ � � + nω . (22) 

We will show that the middle two terms add up to .−2ω. Note that the basis of 
.�2(C) consists of pairs .dqμ ∧dqν, dqμ ∧dpν, dpμ ∧dpν . Because .∂q, ∂p are duals 
to .dq, dp, the basis of .�2(C) satisfies 

. ∂qμ � (dqν ∧ dqξ ) = δμνdqξ − δμξ dqν , ∂pμ � (dqν ∧ dqξ ) = 0 ,

∂qμ � (dqν ∧ dpξ ) = δμνdpξ , ∂pμ � (dqν ∧ dpξ ) = −δμξ dqν ,

∂qμ � (dpν ∧ dpξ ) = 0 , ∂pμ � (dpν ∧ dpξ ) = δμνdpξ − δμξ dpν.

Since every .ω ∈ �2(C) is of the form .ω = ωIJ dqI ∧ dpJ for some functions 
.ωIJ ∈ C∞(J 1M), where .I, J are ascending multiindices of appropriate length. 
Due to .C∞-linearity of . �, we can, without loss of generality, assume that all .ωIJ are 
constant functions, say .ωIJ = 1, and write 

. ω =
∑

ν<ξ

dqν ∧ dqξ +
∑

ν,ξ

dqν ∧ dpξ +
∑

ν<ξ

dpν ∧ dpξ .

8 The equation can be reconstructed from the differential form via the M-A operator (8).
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Using the above relations we obtain 

. ∂qμ�ω∧∂pμ�� = (δμνdqξ −δμξ dqν+δμνdpξ )∧(−dqμ) = 2dqν∧dqξ +dqν∧dpξ ,

and similarly 

. ∂pμ�ω∧∂qμ�� = (−δμξ dqν+δμνdpξ −δμξ dpν)dpμ = −dqν∧dpξ −2dpν∧dpξ .

Combining the last two results to fit the terms in (22) yields 

. − ∂qμ � ω ∧ ∂pμ � � + ∂pμ � ω ∧ ∂qμ � � = −2ω ,

which proves the formula (21). ��
We use the previous lemma to prove the following. A general formula and its 

proof can be found in [2]. 

Lemma 3.3 Let .ω ∈ �4(C) be arbitrary, .n = dim M > 2. The effective part . ωε is 
given by 

.ωε = ω − 1

n − 2
⊥ω ∧ � + ⊥2ω

2(n − 1)(n − 2)
� ∧ � . (23) 

Proof Consider the Hodge-Lepage decomposition 

. ω = ωε + x ∧ � ,

where .ωε ∈ �k(C) is the unique effective part of . ω and .x ∈ �k−2(C) is not 
necessarily effective. Applying . ⊥ twice on the above equation together with the 
formula (21) gives the following system 

. ⊥ω = (⊥x)� + (n − 2)x ,

⊥2ω = 2(n − 1)⊥x ,

which can be solved for x 

. x = 1

(n − 2)
⊥ω − ⊥2ω

2(n − 1)(n − 2)
� .

Substituting this into the Hodge-Lepage decomposition yields the formula for the 
effective part of a 4-form . ω. ��

A differential k-form is called simple if it contains only one summand, when 
expressed in the canonical coordinates (1). For example, let .k = 2. Then . dq1 ∧ dq2

is simple while .dq1 ∧ dq2 + dq3 ∧ dq4 is not simple.
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Definition 3.7 Consider a M-A equation .�ωφ = 0. Then . ω is called a simple 
representation of the equation, if it has constant coefficients and contains the 
minimal number of simple terms. 

Remark 3.2 Note that the property of being simple is basis dependent. On the other 
hand, the effectivity is a basis independent notion. 

It seems natural to denote Lagrangian functions and their corresponding coun-
terpart defined on .J 1M by the same symbol, i.e. to write .L = L(qμ, u, pμ) as well 
as .(j1φ)∗L = L(qμ, φ, φμ). To avoid any confusion, we distinguish the two in the 
following proposition as follows. A Lagrangian function that can be integrated over 
M will be L, its .J 1M counterpart will be . L̃. 

Proposition 3.2 Let .�ωφ = 0 be a M-A equation over an open subset of a smooth 
manifold M , .dim M = n. Then a necessary condition for a first-order Lagrangian 
function .L = L(qμ, φ, φμ) to be a local solution of the inverse variational problem 
corresponding to .�ωφ = 0 is 

.kωε = E(L̃β) , (24) 

for some non-vanishing function .k : J 1M → R, where . ωε is the effective part of 
. ω, . E is the Euler operator given by (18), .L̃ : J 1M → R is such that . L̃ ◦ j1φ =
L(qμ, φ, φμ), and .β = dq1 ∧ . . . dqn. 

Proof Let .α ∈ �n(J 1M) be a first-order Lagrangian in the sense of the Defini-
tion 3.5, i.e. .�αφ = Lβ, for some  L (possibly defined only locally) which depends 
smoothly on . φ up to the first-order in derivatives, .L = L(qμ, φ, φμ). Assume that 
the E-L equation for L is given by .�ωφ = 0. Define 

. �α[φ] :=
∫

M

�αφ =
∫

M

Lβ

(consider only . φ compactly supported). Without loss of generality, we may restrict 
. α to be effective (see the discussion in the subsection with effective forms) and 
thus by Proposition 3.1, we (locally) have .α = L̃β for appropriate . L̃ ∈ C∞(J 1M)

satisfying .L̃ ◦ j1φ = L. Thus .�α[φ] = �
L̃β

[φ] and, by the second statement of 
Lemma 3.1, we know that the E-L equation for the functional .�

L̃β
[φ] is . �E(L̃β)

φ =
0. Since we assumed that L locally solves the inverse variational problem given by 
the equation .�ωφ = 0, and because . ω and . ωε determine the same equation, we have 

. �ωεφ = 0 ⇐⇒ �E(L̃β)
φ = 0 .

By the first statement of Lemma 3.1, .E(L̃β) is an effective form. Since . ωε and 
.E(L̃β) are effective forms determining the same equation, the Corollary 3.1 implies 
that the forms must differ by a multiple of a non-vanishing function. ��
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Remark 3.3 Although we work locally in a coordinate system, notice that the 
necessary conditions for the existence of a solution to the inverse variational 
problem is, in our framework, a tensorial statement and thus independent of the 
choice of coordinates. 

We present the following, simple example in .dim M = 2 to show how the 
Proposition 3.2 can be used. 

Example Consider the 1D wave equation (understand one of the two coordi-
nates as time) 

.φ11 − cφ22 = 0 , (25) 

where .c > 0 is a real constant, .φ : M → R, and .dim M = 2. We want to find 
.L(qμ, u, pμ) ∈ C∞(J 1U) s.t. the E-L equation for . (j1φ)∗L = L(qμ, φ, φμ)

is (25). 
The simple representation is 

. ω = −cdq1 ∧ dp2 − dq2 ∧ dp1 .

We can easily see that .�ωφ = 0 gives the original equation 

. (j1φ)∗ω = −cdq1 ∧ dφ2 − dq2 ∧ dφ1 = (φ11 − cφ22)dq1 ∧ dq2 .

The simple representation is effective, .ω = ωε , since it degenerates along . χ

. χ � ω = ∂u � (−cdq1 ∧ dp2 − dq2 ∧ dp1) = 0 ,

and belongs to the kernel of the bottom operator 

. ⊥ω = ∂pμ�∂qμ�(−cdq1∧dp2−dq2∧dp1) = c∂p1�(−dp2)−∂p2 �dp1 = 0 .

The coordinate expression of the Euler operator evaluated on a general first-
order Lagrangian n-form is given by (20). For .n = 2 we have . β = dq1 ∧ dq2

and .β1 = ∂q1 � β = dq2, β2 = ∂q2 � β = −dq1, so  (20) becomes 

. E(Lβ) = ∂2L
∂p1

2 dq2 ∧ dp1 + ∂2L
∂p1∂p2

dq2 ∧ dp2 − ∂2L
∂p2∂p1

dq1 ∧ dp1 − ∂2L
∂p2

2 dq1 ∧ dp2

−( ∂2L
∂q1∂p1

+ ∂2L
∂q2∂p2

+ p1
∂2L

∂u∂p1
+ p2

∂2L
∂u∂p2

+ ∂L
∂u

)dq1 ∧ dq2

(continued)
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We can fix the value of the function in (24) to be constant, say .k = 1, since 
two forms which are multiple of each other by a smooth non-vanishing k 
yields the same M-A equation. Hence we search for .L ∈ C∞(J 1M) such that 
.ω = E(Lβ), which implies 

. 
∂2L

∂p1
2

= −1 , ∂2L
∂p2

2 = c ,
∂L

∂u
= ∂L

∂qμ
= 0 , μ = 1, 2 .

Thus .L = L(pμ) and we can solve the first two conditions by the choice 

. L = 1

2
(−p1

2 + cp2
2) .

because the M-A equation .�E(Lβ)φ = 0 writes 

. 
∂(j1φ)∗L

∂φ
− ∂

∂qμ

∂(j1φ)∗L
∂φμ

= φ11 − cφ22 = 0 .

We see that .(j1φ)∗L = 1
2 (−φ1

2 + cφ2
2) is a solution to the inverse problem 

for (25). ��

4.1 Plebański, Grant, and Husain Equations 

Proceeding in a similar fashion as in the previous example, we analysed both 
Plebański heavenly, Grant, and Husain equations in .dim = 4. The following tables 
summarize simple representations, show their non-effectivity and display effective 
parts of the simple representations of the aforementioned PDEs, . φ being a real 
function. Since the effective forms of M-A equations in four dimensions tend to 
have lengthy expressions, we introduce the following shorthand notation, which 
also facilitate the computations. We denote 

. dμ := dqμ, dμ := dpμ ,

and for the wedge product, we write 

. dμ
ν := dqμ ∧ dpν, d μ

ν := dpν ∧ dqμ .

Notice that the position and order of indices matter and there are obvious relations 
such as .d

μ
ν = −d

μ
ν , or for the contractions .∂qμ �dν = δ

μ
ν (the Kronecker delta) and 

.∂qμ � dν = ∂pμ � dν = 0, et cetera. For example, the symplectic form is in the above
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Table 1 Simple representations (which are not effective, .⊥ω �= 0) of 1st Plebański (P1), 2nd 
Plebański (P2), Grant (G), and Husain (H) equations 

Monge-Ampère equation Simple representation 

1st Plebanski´ .φ13φ24 − φ14φ23 = 1 . ωP 1 = d12 
12 − d12 

34 

2nd Plebanski´ .φ11φ22 − (φ12)
2 + φ13 + φ24 = 0 . ωP 2 = d123 

2 − d124 
1 + d34 

12 

Grant .φ11 + φ24φ13 − φ23φ14 = 0 . ωG = −d234 
1 − d12 

12 

Husain .φ13φ24 − φ14φ23 + φ11 + φ22 = 0 . ωH = d134 
2 − d234 

1 + d12 
12 

Table 2 Effective parts of simple representations of P1, P2, G, and H 

Effective form . ωε

1st Plebanski´ . ωP 1ε = −d1234 + 1 
3 (d12 

12 + d34 
34) − 1 

6 (d13 
13 + d14 

14 + d23 
23 + d24 

24) 
2nd Plebanski´ . ωP 2ε = 1 

2 (d124 
1 + d123 

2 + d234 
3 + d134 

4 ) + d34 
12 

Grant . ωGε = −d234 
1 + 1 

3 (d12 
12 + d34 

34) − 1 
6 (d13 

13 + d14 
14 + d23 

23 + d24 
24) 

Husain . ωHε = d134 
2 − d234 

1 + d12 
12 + d34 

34 − 1 
2 (d13 

13 + d14 
14 + d23 

23 + d24 
24) 

notation written as .� = d1 
1 + . . .  + dn 

n, the volume form on M is .β = d1234, and 
so on. 

Proposition 3.2 yields the following result. 

Corollary 3.2 Monge-Ampère equations from Table 1 do not correspond to a 
variational problem of a first-order Lagrangian function. 

Proof Table 2 shows the effective forms of Monge-Ampère equations under 
consideration. In all cases, the effective form contains at least one term of the form 
.d μν 

ξη. These terms do not occur in the expression (20). Thus the necessary condition 
for the existence of a first-order Lagrangian, given by the Proposition 3.2, is not 
satisfied. ��

We want to emphasize here that although the Plebański heavenly, Grant, and 
Husain equations do not have a first-order Lagrangian for which they would be E-L 
equations, in a different setup a Lagrangian can be found [8, 16]. Let us consider the 
second heavenly equation 

.φ11φ22 − (φ12)
2 + φ13 + φ24 = 0 . (26) 

If we single-out one coordinate among .q1, . . . , q4, say . q1, and introduce a new 
function . ψ , then we can write (26) as an evolution system in . q1 

.ψ − φ1 = 0 , . (27) 

ψ1φ22 − ψ2 
2 + ψ3 + φ24 = 0 , (28) 

Interestingly, the above system is a variational problem, since it is given by the E-L 
equations 
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. 
∂L 
∂φ 

− 
∂ 

∂qμ 
∂L 
∂φμ 

+ ∂2 

∂qμ∂qν 
∂L 

∂φμν 
= 0 , 

∂L 
∂ψ 

− 
∂ 

∂qμ 
∂L 
∂ψμ 

+ ∂2 

∂qμ∂qν 
∂L 

∂ψμν 
= 0 , 

of the functional 

.L[φ, ψ] = ψφ1φ22 + 
1 

2 
φ1φ3 − 

1 

2 
ψ2φ22 + 

1 

2 
φ2φ4 . (29) 

In [16], a method for treating the general case of Monge-Ampère equations is 
provided, together with systematic approach of finding Lagrangians for them after 
the decomposition into an evolution system. For further details regarding the above 
case, see [8]. 

The following example shows an equation which has a first-order Lagrangian, 
the corresponding effective form does not have constant coefficients, and is not 
a differential form over the cotangent bundle. We will see that the conditions of 
Proposition 3.2 are satisfied. 

4.2 Klein-Gordon Equation 

Let M be a four-dimensional Minkowski spacetime with coordinates .qμ and 
flat metric .ημν with signature .(+,−,−,−). Consider the (linear) Klein-Gordon 
equation 

.φ11 − φ22 − φ33 − φ44 + m2φ2 = 0 , (30) 

where .m ∈ R is a constant. We can describe (30) as a M-A equation .�ωφ = 0 via 
the form 

. ω = −β1 ∧ dp1 + 
4∑

μ=2 

βμ ∧ dpμ + m2uβ . 

This 4-form is not a simple representation of (30), due to the non-constant 
coefficient .m2u, but it is an effective form, see the Example 3.1. Comparing . ω with 
the local form of .E(Lβ) for general L (see (20)), we obtain the following set of 
conditions 

.ημν = ∂2L 
∂pμ∂pν 

, μ,  ν  = 1, . . . 4 , 

−m2u = ∂2L 
∂qμ∂pμ 

+ pμ 
∂2L 

∂u∂pμ 
− ∂L 

∂u . 
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One can easily check that the function L 

. L = 
1 

2 
(−p1 

2 + 
4∑

μ=2 

pμ 
2 + m2u2) ∈ C∞(J 1M) 

satisfies all the above conditions. It follows that 

. (j1φ)∗L = 
1 

2 
(−φ1 

2 + 
4∑

μ=2 

φμ 
2 + m2φ2) 

is a first-order Lagrangian for the Klein-Gordon equation. 

5 Multisymplectic Formulation 

In [3] F. Hélein provided a multisymplectic formulation of the Klein-Gordon 
equation (30) (in dimension n) over .M := 
n T ∗(M × R), equipped with the 
multisymplectic form [18, 19] 

.m := de ∧ β + dpμ ∧ dφ ∧ βμ , (31) 

where e is a fiber coordinate of the trivial line bundle .M × R → M , .pμ are the 
cotangent coordinates, .β = dq1 ∧ . . . ∧ dqn and .βμ = ∂qμ � β, with . qμ coordinates 
on a n-dimensional Minkowski spacetime M . Using (31), the following Hamiltonian 
function on . M is defined in such a way to correspond to solutions of (30) 

. H := e + 
1 

2 
ημνpμpν + 

1 

2 
m2φ2 , 

where .ημν is the Minkowski metric with signature .(+,−, . . . ,  −). Each solution of 
(30) is then interpreted as a Hamiltonian n-curve, defined by equations 

. pμ = ημν φν, μ  = 1, . . . , n  ,  

e = −1 

2 
ημν φμφν − 

1 

2 
m2φ2 , 

where .ημν is the inverse to . ημν . In the aforementioned paper, F. Hélein provided 
a canonical pre-quantization of the Klein-Gordon equation, and defined the notion 
of observables together with their brackets, which give rise to an infinite dimensional 
analogue of the Heisenberg algebra. The starting point of the method is the existence 
of a Lagrangian, which in the context of the Klein-Gordon equation is a first-order 
one. For more details see [3, 12, 17]. 
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The following theorem is due to D. Harrivel. It enables us to associate to certain 
effective forms on .J 1M their (non-unique) multisymplectic counterpart on the 
trivial line bundle over .J 1M . The proof can be found in [4]. Note that the key 
difference with respect to the previous multisymplectic formulation of F. Hélein is 
that them multisymplectic form can be associated with Monge-Ampère equations 
which are not variational, that is, equations which are not Euler-Lagrange for some 
first-order Lagrangian. As we have seen in the previous section, this is the case for 
all the equations in Table 1. 

Theorem 3.2 Let .ω ∈ �n (C) be an effective form, .n = dim M . Consider a trivial 
line bundle .T := J 1M × R → J 1M with fiber coordinate e. Define . mω ∈ �n+1(T) 
by 

.mω := de ∧ β + c ∧ ω . (32) 

Then . mω is a multisymplectic form if and only if 

1. The set .Sω := {∂q1 �ω, . . . , ∂qn �ω} is linearly independent over .�n−1(C), and, 
2. .dpω = 0. 

Once an equations has a simple representation, the corresponding effective form 
has constant coefficients, and thus the second assumption of Theorem 3.2 is trivially 
satisfied since .dp = p ◦ d. The linear independence of the set .Sω in the case of 4D 

equations is decided over .
( dimC

dim M−1

) = (8 
3

) = 56-dimensional space of 3-forms on 
. C. In all our cases, this can be determined almost without computation. 

5.1 Plebański, Grant, and Husain Equations 

For the first heavenly equation we have 

. SP 1 = {−d234 + x, d134 + y,−d124 + z, d123 + w} , 

where .x, y, z, w are linear combinations of .d μ 
νξ , for appropriate .μ, ν, ξ . We see that 

.SP 1 is linearly independent. Similarly for the second heavenly equation 

. SP 2 = {  1 
2 (d24 

1 + d23 
2 + d34 

4) + d34 
2, 

1 
2 (−d14 

1 − d13 
2 + d34 

3) − d34 
1, 

1 
2 (d12 

2 − d24 
3 − d14 

4) + d4 
12, 

1 
2 (d12 

1 + d23 
3 + d13 

4) + d3 
12} , 

which is a linearly independent set as the simple terms are all different. It is 
not difficult to check that the sets .SG and .SH for Grant and Husain equations, 
respectively, are also linearly independent. Thus the 5-form .mω is a multisymplectic 
form on .J 1M × R in all the four cases described in Table 1. 
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5.2 Klein-Gordon Equation 

Interestingly, and in contrast with the Plebański, Grant, and Husain equations, the 5-
form for the Klein-Gordon equation defined by (32) is not a multisymplectic form. 
To see this, take the differential 4-form 

. ω = −β1 ∧ dp1 + 
4∑

μ=2 

βμ ∧ dpμ + m2uβ , 

which, as we already discussed, is effective and represents (30) as a Monge-Ampère 
equation .�ωφ = 0. Due to the non-constant .m2u term, the exterior derivative gives 

. dω = m2du ∧ β ,  

which is not degenerate along the Reeb field. Thus .dp �= d and we have to project 
the form down to .�(C) (see (5) for the definition of p) 

. dpω = m2(du ∧ β − c ∧ χ � (du ∧ β)) = m2pμdqμ ∧ β .  

We see that the second condition of the Theorem 3.2 is not satisfied and thus . mω 
given by (32) is not a multisymplectic form. Notice that the first condition of the 
theorem is not violated as the set . Sω is linearly independent. 

6 Conclusion and Discussion 

In this work, we mainly focused on the following two questions. Firstly, can we 
decide whether a first-order Lagrangian for a given Monge-Ampère equation exists? 
Secondly, motivated by the work of F. Hélein [3] and D. Harrivel [4], can we 
associate a multisymplectic form to equations which are not variational with respect 
to a first-order Lagrangian? 

Regarding the first question, we provided a partial answer by formulating a 
necessary condition for the existence of a local solution to this inverse variational 
problem. This was done by representing a given equation by an effective differential 
form over the first jet space, and comparing it with an n-form that produces Euler-
Lagrange equation for a general, first-order Lagrangian function. 

Comparing the effective forms yields a computationally straightforward and 
simple method for obtaining a non-trivial information about Monge-Ampère equa-
tions in the context of strong inverse variational problems. Using the method, we 
showed that Plebański heavenly equations, Grant equation and Husain equation are 
not variational in our sense. Recall that the first heavenly equation is equivalent 
with the Grant equation after appropriate change of coordinates [6]. Using a 
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similar approach, we have shown (as expected) that the Klein-Gordon equation 
is variational by finding the well-known Lagrangian for it. The hypothesis is that 
the self-duality conditions imposed to derive the previous four equations creates an 
obstruction for the existence of the first-order Lagrangian. We want to study this 
problematics in more detail in our future work. 

The presented method is much more suitable for deciding the non-variational 
nature of a given equation than solving the local inverse problem explicitly. 
Moreover, it works only when restricted to the case of first-order Lagrangians. Nev-
ertheless, this limitation can be seen as desirable, since the first-order Lagrangians 
are of great importance throughout the physics. 

It is not clear at the moment how to generalize our approach to the case of more 
functions. The procedure can be naively extended for more scalar fields by introduc-
ing multiple Euler operators, the cost being degeneracy issues. This causes further 
problems, for example in the context of the unique decomposition of differential 
forms into the effective and non-effective part, which is an essential tool in our 
approach. In [9], B. Banos used the notion of bi-effective forms to efficiently deal 
with the complex Monge-Ampère equations, and proved the possibility to always 
obtain a unique bieffective decomposition. This is not equivalent in an obvious 
way to the aforementioned naive extension, as the Verbitsky-Bonan relations are 
not satisfied in our case (see [9], Theorem 1). This is connected with the fact that 
we do not restrict our forms to have coefficients independent of the u coordinate 
on .J 1M (which allows us to work, for example, with the Klein-Gordon equation). 
Whether this problems can be resolved will be part of our future investigations. 

Regarding the second question focused on the multisymplectic formulation of 
Monge-Ampère equations. Using the results of [4], we provided multisymplectic 
5-forms in the case of real 4-dimensional heavenly Plebański, Grant, and Husain 
equations, all of which are not variational in our sense. Interestingly, the same 
approach does not work for the Klein-Gordon equation as the corresponding 5-form 
is not multisymplectic. 

F. Hélein’s multisymplectic treatment of the Klein-Gordon equation provided 
in [3] starts with a first-order Lagrangian function. The other four Monge-Ampère 
equations we studied cannot be treated in the same way, unless going into higher 
order Lagrangians. On the other hand, the Theorem 3.2 provides a multisymplectic 
forms exactly for the four non-variational cases and fails for the Klein-Gordon 
equation. To provide some explanation of this, it would be interesting to compare 
the methods of [3, 17] with those in [4] in the situation of a general Monge-Ampère 
equation. 
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Generalized Solvable Structures 
Associated to Symmetry Algebras 
Isomorphic to . gl(2,R) �R

Adrián Ruiz and Concepción Muriel 

Abstract Lie symmetry algebras that are isomorphic to .gl(2,R) � R are non-
solvable, hence the standard methods of integration by quadratures cannot be 
applied to solve ordinary differential equations that are invariant under the action 
of .GL(2,R) � R. In this work it is proved the existence of a generalized solvable 
structure for the vector field associated with a fifth-order equation admitting a Lie 
symmetry algebra isomorphic to .gl(2,R) � R. As a consequence, the integrability 
of the given equation splits into two integration processes of second and third-
order, respectively. On one hand, two functionally independent first integrals of 
the equation are computed by quadratures alone. On the other hand, the third-
order integration process involves a third-order equation that admits a Lie symmetry 
algebra isomorphic to .sl(2,R), which is also nonsolvable. Previous results regarding 
the integrability of .SL(2,R)-invariant third-order equations allow us to obtain 
the general solution to the original fifth-order equation in implicit form and 
expressed in terms of a fundamental set of solutions to a two-parameter family of 
Schrödinger-type equations. An example is also included with the aim of showing 
the effectiveness of the method. Remarkably, the considered example does not 
have additional Lie point symmetries, apart from the symmetry generators of 
.gl(2,R) �R. 

1 Introduction 

Many phenomena that appear in physics and engineering can be modelled by the 
use of both ordinary and partial differential equations. Therefore it is important to 
develop new techniques for the search of exact solutions for differential equations 
with the goal of advancing in the knowledge of the events under study. In this regard, 
the Norwegian mathematician Sophus Lie developed one of the most powerful tools 
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for solving differential equations. Motivated by the notion of symmetry group of the 
roots of a polynomial equation established by Galois, Lie introduced the concept of 
symmetry group of a differential equation. In general terms, and following a parallel 
analogy with Galois’ theory, a symmetry group of a differential equation is a local 
group of local transformations that maps solutions of the equation into solutions of 
the equation [1–8]. In the context of ordinary differential equations, one of the main 
results states that the existence of a solvable n-dimensional symmetry algebra for 
an nth-order equation guarantees its integrability by quadrature [2–8]. 

However, there exist some cases in which the classical Lie method fails to obtain 
exact solutions of the equation because either the symmetry algebra is nonsolvable 
or the dimension of the symmetry algebra is strictly less than the order of the 
equation [38]. This fact has motivated the appearance in the recent years of different 
generalizations of the classical concept of Lie symmetry such as hidden symmetries 
[9], nonlocal symmetries [10–12], .λ-symmetries [13–15], .μ-symmetries [16], .σ -
symmetries [17] and solvable structures [18–23]. 

Among the above mentioned extensions, we focus on the concept of solvable 
structure because constitutes a natural generalization of the notion of solvable sym-
metry algebra [24] that characterizes the integrability by quadratures of an involutive 
distribution of vector fields. The application of solvable structures to address the 
problem of the integrability of equations admitting nonsolvable symmetry algebras 
has been particularly useful in the recent literature. The case of third-order equations 
admitting a Lie symmetry algebra isomorphic to .sl(2,R) has been widely studied in 
[25–30]. In [31, 39] it was proved the existence of a solvable structure for .SL(2,R)-
invariant third-order equations by using the symmetry generators of .sl(2,R). This  
theoretical result was used in [32] to provide the general solution for any .SL(2,R)-
invariant third-order equation in parametric form in terms of a fundamental set of 
solutions to a related second-order linear equation. This complemented the results 
previously reported in the recent literature [25–30]. 

The notion of solvable structure has also been extended by means of the concept 
of generalized solvable structure, which is defined as a usual solvable structure not 
just for the vector field associated to the equation, but for an involutive distribution 
of vector fields that includes the vector associated to the equation [33, 34]. This 
is particularly useful for the case of equations of arbitrary order n that admits 
a Lie symmetry algebra isomorphic to .sl(2,R), because the determination of a 
generalized solvable structure for that type of equations permits to obtain the 
general solution in parametric form and expressed in terms of a .(n − 3)-parameter 
family of second-order linear equations [34]. This approach has been successfully 
applied to fourth-order ordinary differential equations admitting a four-dimensional 
nonsolvable symmetry algebra [35], extending the results previously reported for 
.SL(2,R)-invariant third-order equations. 

The goal of this paper is to address the problem of the integrability of fifth-order 
equations admitting a Lie symmetry algebra isomorphic to .gl(2,R) � R, which 
is five-dimensional and nonsolvable. The paper is organized as follows. Firstly, in 
Sect. 2, we provide an introduction regarding the foundations of solvable structures. 
In Sect. 3, we explicitly determine a generalized solvable structure for the vector



Generalized Solvable Structures Associated to Symmetry Algebras Isomorphic. . . 143

field associated to the equation by using the symmetry generators of .gl(2,R) � R. 
This permits to split the problem into two different integration processes. One 
of them consists of calculating two functionally independent first integrals by 
quadrature, whereas the second one involves a third-order equation admitting a Lie 
symmetry algebra isomorphic to .sl(2,R). As a consequence, it is proved that the 
general solution of the original fifth-order equation can be expressed in implicit form 
in terms of a fundamental set of solutions to a two-parameter family of Schrödinger-
type equations. We would like to emphasize that the obtainment of closed-form 
solutions for this type equations may be a challenging task due the nonsolvability 
nature of the underlying symmetry algebra, as well as for its high dimension. Finally, 
we include in Sect. 4 an example of a fifth-order equation whose Lie symmetry 
algebra is five-dimensional and isomorphic to .gl(2,R) �R. 

2 Preliminaries: Solvable Structures 

In this section, with the aim of being self-contained, we recall the basics regarding 
solvable structures and its application to integrate ordinary differential equations. 
For a more extensive study, the reader can consult [18, 19, 22]. From this point 
on, functions, vector fields and differential 1-forms are assumed to be smooth on a 
simply-connected open set U of an n-dimensional manifold . Mn. 

The notion of solvable structure is established for systems of vector fields of the 
form .A = {A1, . . . , Ar }, .1 ≤ r ≤ n, that are in involution, i.e.: 

. [Ai , Aj ] =
r∑

k=1

ck
i,j Ak, 1 ≤ i, j ≤ r and ck

i,j ∈ C∞(U).

The classical notion of symmetry can be extended for involutive systems of 
vector fields as follows [31]: 

Definition 4.1 Let .A = {A1, . . . , Ar }, with .1 ≤ r < n, be an involutive system 
of pointwise linearly independent vector fields on U . A vector field . V is called a 
symmetry of . A if and only if 

1. .A1, . . . , Ar , and . V are pointwise linearly independent on U ; 
2. .[V, Ai] ∈ span (A), for .i = 1, . . . , r . 

Previous definition permits to establish the concept of solvable structure [18, 19, 
22]: 

Definition 4.2 Let .S = 〈 X1, . . . , Xn−r 〉 be an ordered set of pointwise linearly 
independent vector fields on . U. The ordered system 

.A ∪ S = 〈A1, . . . , Ar , X1, . . . , Xn−r 〉
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is a solvable structure with respect to . A if 

1. .Sj = {
A1, . . . , Ar , X1, . . . , Xj

}
is involutive, for . j = 1, . . . , n − r;

2. . X1 is a symmetry of . A;
3. .Xj+1 is a symmetry of .Sj , for . j = 1, . . . , n − r − 1.

The existence of a solvable structure characterizes the (local) integrability by 
quadrature of the system [19, Proposition 6]: 

Proposition 4.1 An involutive system . A is locally integrable by quadrature if and 
only if there exists a solvable structure with respect to . A. 

These results can be applied to the trivially involutive system associated to an 
nth-order ordinary differential equation written in explicit form 

.un = ϕ(x, u, u1 . . . , un−1), (1) 

where x is the independent variable, u is the dependent variable and .ui = diu
dxi , for  

.i = 1, . . . , n. Equation (1) is assumed to be defined on a suitable domain . U ⊂
Jn(R,R), where, for .k ∈ N, .J k(R,R) stands for the kth-order jet space [36]. We 
denote by M the projection of this domain to the zero-order jet space and .M(k) the 
corresponding jet space of order .k ≥ 1. The vector field associated to Eq. (3) is  
defined on .M(n−1) and is given by 

. A = ∂x + u1∂u + u2∂u1 + · · · + ϕ(x, u, u1, . . . , un−1)∂un−1 .

If a solvable structure .〈A, X1, · · · , Xn〉 with respect to .{A} is known, then one can 
find, at least locally, a complete set of first integrals of . A by quadrature alone. In 
order to do that, let .� = dx ∧ · · · ∧ dun−1 denote the volume form on .M(n−1) and 
define the differential 1-forms given by 

ωi = 
Xn 

¬ · · · ¬
X̂i 

¬ · · · ¬ 
X1 

¬
A

¬
�

Xn 
¬ · · · ¬ 

X1 
¬ 

A
¬

�
, for i = 1, · · ·  , n, (2) 

where . 
¬

is the interior product and . X̂i indicates omission of . Xi . The 1-forms (2) 
have distinguishing closure properties [22]: 

• . ωn is locally exact and a primitive . In is a first integral of . A.

• The restriction of .ωn−1 to each submanifold defined by . In = cn, cn ∈ R,

is closed and then locally exact (i.e., .ωn−1 is locally exact module . ωn). In 
consequence, a primitive .In−1 of .ωn−1 (module . ωn) can be found by quadrature. 

• We can continue this process until all the 1-forms (2) have been integrated. This 
permits to compute a complete system of functionally independent first integrals 
of . A.

These results provide the following consequence [31, Theorem 2.3]:
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Theorem 4.1 Let . A be the vector field associated to an nth-order ordinary 
differential equation. If .〈A, X1, . . . , Xn〉 is a solvable structure with respect to . {A}, 
then the corresponding equation can be (at least locally) solved by quadrature 
alone. 

The notion of solvable structure for an nth-order ordinary differential equation 
can be adapted to include involutive systems of vector fields containing the vector 
field associated to the equation [33, 34]: 

Definition 4.3 Let . A be the vector field associated to an nth-order ordinary dif-
ferential equation. An ordered set of vector fields .〈A, X1, . . . , Xn〉 is a generalized 
solvable structure with respect to .{A} if 
• there exists .k ∈ N, with .1 ≤ k ≤ n − 1, such that .〈A, X1, . . . , Xk〉 is involutive, 
• the ordered set .〈A, X1, . . . , Xk, . . . , Xn〉 is a solvable structure with respect to 

.〈A, X1, · · · , Xk〉. 
Generalized solvable structures are specially useful for solving ordinary differen-

tial equations of arbitrary order n admitting nonsolvable symmetry algebras [34, 35], 
or for equations whose Lie symmetry algebra is insufficient to integrate them by 
quadrature [33]. 

3 Generalized Solvable Structures for 
GL(2, R) �R-Invariant Fifth-Order Equations 

Once the foundations of solvable structures and generalized solvable structures have 
been presented, we aim to apply such concepts to integrate .GL(2,R) �R-invariant 
fifth-order equations. Thus, let us consider a fifth-order ordinary differential equa-
tion written in explicit form 

.u5 = ϕ(x, u, u1, u2, u3, u4), (3) 

and assume that it admits a Lie symmetry algebra isomorphic to .gl(2,R)�R. There 
exists only one inequivalent action of the Lie group .GL(2,R) � R on a real two-
dimensional manifold, which can be modelled by the Lie algebra of vector fields 
spanned by [37, 40] 

.v1 = ∂x, v2 = x2∂x, v3 = x∂x, v4 = ∂u, v5 = u∂u, (4) 

which satisfy the following commutation relations: 

.

[v1, v3] = v1, [v1, v2] = 2v3, [v3, v2] = v2,
[v1, v4] = 0, [v2, v4] = 0, [v3, v4] = 0,
[v1, v5] = 0, [v2, v5] = 0, [v3, v5] = 0,
[v4, v5] = v4.

(5)
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Any other basis of generators of the Lie algebra .gl(2,R) � R can be therefore 
mapped to the basis elements given in (4) by means of a local change of variables. If 
we denote by .Vi = v(4)

i , for  .i = 1, 2, 3, 4, 5, then the symmetry condition implies 
that 

.[Vi , A] = −A(Vi (x))A, i = 1, 2, 3, 4, 5. (6) 

3.1 Construction of a Generalized Solvable Structure 

As a result of the commutation relations (5) and (6), the following theorem holds: 

Theorem 4.2 Let . A be the vector field associated to a fifth-order equation 
admitting a Lie symmetry algebra isomorphic to .gl(2,R) � R spanned by 
.{v1, v2, v3, v4, v5} and denote .Vi = v(4)

i , for  .i = 1, 2, 3, 4, 5. Then the ordered set 
of vector fields 

. 〈A, V1, V2, V3, V4, V5〉

is a solvable structure with respect to the integrable distribution .〈A, V1, V2, V3〉. 
As a consequence, .〈A, V1, V2, V3, V4, V5〉 is a generalized solvable structure for 
. {A}, for .k = 3 (see Definition 4.3). 

The explicit determination of a solvable structure with respect to the involutive 
distribution of vector fields .〈A, V1, V2, V3〉 can be used to compute two function-
ally independent first integrals of Eq. (3) by quadratures alone. We consider the 
differential 1-forms 

.ω5 = V4
¬

V3
¬

V2
¬

V1
¬

A
¬

�

V5
¬

V4
¬

V3
¬

V2
¬

V1
¬

A
¬

�
(7) 

and 

.ω4 = V5
¬

V3
¬

V2
¬

V1
¬

A
¬

�

V5
¬

V4
¬

V3
¬

V2
¬

V1
¬

A
¬

�
. (8) 

The 1-form . ω5 is closed, and then locally exact. A corresponding primitive 

. I5 = I5(x, u, u1, u2, u3, u4)

is a first integral common to the distribution of vector fields .{A, V1, V2, V3, V4}. 
Next, we have that . ω4 is closed, and then locally exact, on each leaf defined by 
.I5(x, u, u1, u2, u3, u4) = c5, with .c5 ∈ R, i.e., 

.dω4 = 0 mod. ω5.
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If we determine a function .J4 = J4(x, u, u1, u2, u3; c5) such that 

. dJ4 = ω4 mod. ω5

then we have that 

.I4 = J4(x, u, u1, u2, u3, I5(x, u, u1, u2, u3, u4)) (9) 

is a first integral common to the set of vector fields .{A, V1, V2, V3} and functionally 
independent to . I5. As a result of the previous discussion, the next theorem has been 
proved: 

Theorem 4.3 If a fifth-order ordinary differential equation admits a Lie symmetry 
algebra isomorphic to .gl(2,R)�R then two functionally independent first integrals 
. I5 and . I4 of the given equation can be calculated by quadratures alone. 

Once two functionally independent first integrals . I5 and . I4 to Eq. (3) have been 
explicitly computed, we can consider the submanifold .N ⊂ M(4) given by the level 
set of such first integrals, i.e.: 

. I5(x, u, u1, u2, u3, u4) = c5, I4(x, u, u1, u2, u3, u4) = c4, c5, c4 ∈ R.

(10) 
From (9) and (10) we obtain the third-order ordinary differential equation: 

.J4(x, u, u1, u2, u3; c5) = c4. (11) 

Besides, both . I5 and . I4 are first integrals common to the distribution of vector fields 
.{A, V1, V2, V3}, which means that (11) turns out to be a two-parameter family of 
third-order equations admitting a Lie symmetry algebra spanned by 

.v1 = ∂x, v2 = x2∂x, v3 = x∂x. (12) 

According to the commutation relations (5), the vector fields (12) generate the 
nonsolvable symmetry algebra .sl(2,R). At this stage we observe that the original 
nonsolvability problem of order five has been reduced to a nonsolvability problem 
of order three. In order to obtain the general solution to the family of Eqs. (11) in  
closed-form, we consider the differential invariants s and m common to the third-
order prolongations of the vector fields given in (12), which are [32]: 

.s = u, m = 3u22 − 2u1u3
4u41

. (13) 

Thus, the submanifold N can be locally expressed in terms of the invariants s and 
m in the form 

.m = C(s; c4, c5), c4, c5 ∈ R, (14)
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or, in terms of the original variables, by (13): 

.u3 = 3u22
2u1

− 2u31C(u; c4, c5). (15) 

Equation (15) is one of the canonical .SL(2,R)-invariant third-order equations 
appearing in [32]. The general solution to Eq. (15), and then to the original 
equation (3), is implicitly given by [32, Eq. (38)]: 

. x = c3(c1 − c2)
c1ψ2(u; c4, c5) − ψ1(u; c4, c5)

c2ψ2(u; c4, c5) − ψ1(u; c4, c5)
,

where .ci ∈ R, .i = 1, 2, 3, 4, 5, .c3 �= 0, .c1 �= c2 and .ψ1 = ψ1(u; c4, c5), 
.ψ2(u; c4, c5) form a fundamental set of solutions to the Schrödinger-type equation 

. ψ ′′(u) + C(u; c4, c5)ψ(u) = 0.

Thus, the following theorem has been demonstrated: 

Theorem 4.4 The general solution to a fifth-order ordinary differential equation 
admitting a Lie symmetry algebra isomorphic to .gl(2,R) � R can be obtained in 
implicit form as follows 

. x = c3(c1 − c2)
c1ψ2(u; c4, c5) − ψ1(u; c4, c5)

c2ψ2(u; c4, c5) − ψ1(u; c4, c5)
,

where .ci ∈ R, .i = 1, 2, 3, 4, 5, .c3 �= 0, .c1 �= c2 and .ψ1 = ψ1(u; c4, c5), 
.ψ2(u; c4, c5) form a fundamental set of solutions to the Schrödinger-type equation 

. ψ ′′(u) + C(u; c4, c5)ψ(u) = 0.

The function .C = C(u; c4, c5) can be determined by expressing the submanifold 
defined in (11) in terms of the invariants s and m given in (13) and isolating m. 

In Fig. 1 it is sketched the procedure previously explained for finding the general 
solution in closed-form of a fifth-order equation admitting a Lie symmetry algebra 
isomorphic to .gl(2,R) �R. 

4 Example 

Consider the following fifth-order ordinary differential equation: 

.u5 = 50u23u
2
1 + 30u21u2u4 − 240u22u3u1 + 180u42

3u31
, (16)
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Fig. 1 Integration of fifth-order ODEs admitting .gl(2,R) �R via generalized solvable structures 

defined on a suitable domain .U ⊂ J 5(R,R) such that .u1 �= 0. It can be checked 
that its Lie symmetry is five-dimensional, isomorphic to .gl(2,R) � R and spanned 
by the vector fields 

. v1 = ∂x, v2 = x2∂x, v3 = x∂x, v4 = ∂u, v5 = u∂u.

For easier handling, we consider the local coordinates .(x, u, u1, u2, u3, z), where 

.z = u4u
2
1 − 6u2u3u1 + 6u32

(3u22 − 2u3u1)3/2
(17) 

is a fourth-order differential invariant common to .{V1, V2, V3, V4, V5}. In terms of 
these new coordinates the 1-form (7) becomes: 

.ω5 = 3(u3u1 − 2u22)

u1(2u3u1 − 3u22)
du1 + 3u2

2u3u1 − 3u22
du2 − u1

2u3u1 − 3u22
du3 − 3z

9z2 + 8
dz,
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and a corresponding primitive is locally defined by 

. Ĩ5 = 2 ln(u1) − 1

2
ln(2u3u1 − 3u22) − 1

6
ln(9z2 + 8),

which turns out to be a first integral common to the distribution of vector fields 
.{A, V1, V2, V3, V4}. With the aim of simplifying further computations, we choose 
the following functionally dependent first integral: 

.I5 = e6Ĩ5 = u121

8(3u22 − 2u3u1)3 + 9(u4u21 − 6u2u3u1 + 6u32)
2
. (18) 

Once we have found a first integral of the equation, we can restrict the 1-form . ω4
defined in (8) to a generic leaf given by .I5 = c5, with .c5 ∈ R. Since on the open set 
U we have that .u1 �= 0, then .c5 �= 0 and we can isolate the coordinate . u4 from the 
expression 

. I5(x, u, u1, u2, u3, u4) = c5,

which produces: 

.u4 = T (u1, u2, u3; c5) = 18c5u1u2u3 − 18c5u23 ± H(u1, u2, u3; c5)

3c5u21
, (19) 

where the function .H = H(u1, u2, u3; c5) is locally given by 

. H =
√
64c25(u3u1)

3 + c5u
12
1 − 216(c25u

6
2 − 2c25u

4
2u3u1) − 288(c5u2u3u1)2.

(20) 
By considering the local transformation 

. ϕ(x, u1, u2, u3, u4) = (x, u, u1, u2, u2, T (u1, u2, u3; c5))

we have that .ϕ∗ω4 takes the form: 

. − du ∓ 9c5u1(u3u1 − 2u22)

H
du1 ∓ 9c5u2u21

H
du2 ± 3c5u31

H
du3, (21) 

where the expression of .H = H(u1, u2, u3; c5) is defined by (20). It can be checked 
that (21) is closed and then locally exact. In order to calculate a corresponding 
primitive, we introduce new local coordinates .(x, u, u1, u2, s), where 

.s = H(u1, u2, u3; c5).
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In terms of these new local coordinates the 1-form (21) becomes: 

.ϕ∗ω4 = −du ∓ 3c1/35 u1s

(c5u
12
1 − s2)2/3

du1 ± c
1/3
5 u21

2(c5u121 − s2)2/3
ds, (22) 

and a primitive, once expressed in the original coordinates, takes the form 

. − u ± G

(
3u22 − 2u3u1

4u41
; c5

)
, (23) 

where the function .G = G(m; c5) is given by 

.G(m; c5) = 4m
√

c5 − 512c25m
3
2F1

(
5

6
, 1,

3

2
, 1 − 512c5m

)
, (24) 

being .2F1 the generalized hypergeometric function [41, 42]. Therefore, a first 
integral for the original equation, functionally independent with . I5, is given by 

. I4 = −u ± G

(
3u22 − 2u3u1

4u41
; I5

)
,

where the expression of . I5 appears in (18). In consequence, by restricting to a 
generic leaf given by 

. I5(x, u, u1, u2, u3, u4) = c5, I4(x, u, u1, u2, u3, u4) = c4,

the following two-parameter family of third-order equations arises: 

. − u ± G

(
3u22 − 2u3u1

4u41
; c5

)
= c4, c5, c4 ∈ R, c5 �= 0. (25) 

Equations in the family (25) turn out to be .SL(2,R)-invariant and they can be locally 
expressed as follows 

.u3 = 3u22
2u1

− 2u31G
−1(c4 ± u; c5), (26) 

where .G−1 denotes the inverse function of G. As a consequence, we can conclude 
that the general solution to Eq. (26), and therefore the general solution to the original 
equation (16), is implicitly given by 

.x = c3(c1 − c2)
c1ψ2(u; c4, c5) − ψ1(u; c4, c5)

c2ψ2(u; c4, c5) − ψ1(u; c4, c5)
, (27)
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where .ci ∈ R, .i = 1, 2, 3, 4, 5, .c5, c3 �= 0, .c1 �= c2 and .ψ1 = ψ1(u; c4, c5), 
.ψ2(u; c4, c5) form a fundamental set of solutions to 

. ψ ′′(u) + G−1(c4 ± u; c5)ψ(u) = 0,

where .G−1 denotes the inverse function of (24). 

5 Concluding Remarks 

In this paper we have addressed the problem of the integrability by quadrature 
of ordinary differential equations admitting a nonsolvable symmetry algebra of 
dimension higher than three. Specifically, we have focused on fifth-order ordinary 
differential equations admitting a Lie symmetry algebra isomorphic to .gl(2,R)�R. 
The classical Lie reduction method cannot be applied to solve this kind of equations 
by quadrature because .gl(2,R) �R is nonsolvable. 

The presented method is based on the determination of a generalized solvable 
structure for the equation, which led to the expression of the general solution of the 
equation in closed-form. Such solution can always be given in implicit form and 
expressed in terms of a fundamental set of solutions to a two-parameter family of 
Schrödinger-type equations. This extends the results previously obtained for lower 
dimensional nonsolvable Lie symmetry algebras. 
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Fundamental Groupoids and Homotopy 
Types of Non-compact Surfaces 

Sergiy Maksymenko and Oleksii Nikitchenko 

Abstract The paper contains an application of van Kampen theorem for groupoids 
to computation of homotopy types of certain class of non-compact foliated surfaces 
obtained by at most countably many strips .R × (0, 1) with boundary intervals in 
.R × {±1} along some of those intervals. 

1 Introduction 

The present paper is devoted to applications of van Kampen theorem for groupoids 
to computation of homotopy types of a certain class of non-compact foliated 
surfaces called striped surfaces. 

It was mentioned by M. Morse that a smooth function f with non-degenerate 
critical points (a Morse function) on a compact manifold Z “contains” a lot of 
homological information about the manifold itself (the famous Morse inequalities). 
In particular, if .dim M = 2, so  Z is a “surface”, one can even determine the 
topological type of Z by the numbers of critical points of distinct indices via any 
Morse function .f : M → R. Motivated by study functions of complex variable, 
in particular, harmonic functions being real and imaginary parts of holomorphic 
functions, Morse extended his observations in the book [1] to pseudoharmonic 
functions f defined on compact domains Z in the complex plane . C. 

By definition, a pseudoharmonic function .f : C ⊃ Z → R is locally a 
composition .g ◦h, where g is a harmonic function, and h is a homeomorphism of . C. 
Such a function is continuous, all its critical (in a proper sense) points belonging to 
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the interior of Z are isolated and are not local extremes (due to maximum principle 
for holomorphic functions). Moreover, it is assumed that the restriction of f to . ∂M

has only finitely many local minimums and maximums. Absence of local extremes 
in the interior of Z implies (by Jordan curve theorem) that the foliation of Z into 
connected components of level sets of f has no closed curves. 

W. Kaplan [2, 3] characterized such foliation for pseudoharmonic function on 
. R

2. Namely, he shown that every foliation . F on the plane . R2 has the following 
properties: 

(1) every leaf . ω of . F is an image of a proper embedding .ω : R → R
2, so  

. lim
t→±∞ ω(t) = ∞; 

(2) there exists at most countably many leaves .{ωi}i∈� of . F, such that the 
complement .R2 \ ∪

i∈�
ωi is a disjoint union of “open strips” .R × (0, 1) foliated 

into lines .R × t , .t ∈ (0, 1); 
(3) there exists a pseudoharmonic function .f : R2 → R without critical points such 

that . F is a partition of . R2 into connected components of level-sets of f . 

Property (3) is in a spirit of de Rham theory: if . F is smooth, then it is defined 
by some closed differential 1-form, and since . R2 is contractible, .ω = df for some 
function f satisfying (3). 

It also gives a certain connection between foliations on surfaces and pseudo-
harmonic functions on the plane. Let . F′ be a foliation on a connected surface . Z′
without boundary distinct from 2-sphere and projective plane, and . p : Z → Z′
be the universal covering map. Then we get a well-defined foliation . F on Z whose 
leaves are connected components of the inverses under p of leaves of . F′, and the 
group .π1Z

′ of covering transformations interchanges the leaves of . F. By Epstein [4, 
Corollary 1.8] Z is homeomorphic to . R2, whence . F satisfies (1)–(3), while . F′ may 
loose all of those properties. One may say that . F′ is obtained from a foliation on 
. R

2 into connected components of level sets of some pseudoharmonic function by 
some free and properly discontinuous action of .π1Z. In general, such a function is 
not invariant with respect to the action of .π1Z. 

Notice also that property (2) proposes a certain classification of foliations on . R2

by studying the way in which such a foliation is glued from open strips. This “com-
binatorics of gluing” would give certain topological invariants of (pseudo)harmonic 
functions and potentially information about symmetries of differential equations 
whose coefficients are harmonic functions. Moreover, one could try to extend 
Kaplan’s technique to arbitrary pseudoharmonic functions .f : R

2 → R just by 
removing the set of singular points .�f of f and considering the remained foliation 
on .R

2\�f . Such an approach was used in the papers by W. Boothby [5, 6], M. Morse 
and J. Jenkins [7], M. Morse [8]. 

Kaplan tried to minimize the total number of leaves, and for that reason his 
construction was not “canonical”. Namely, the choice of leaves .{ωi}i∈� (and thus 
a “cutting of the foliation . F” into open strips) was not unique. Moreover, if S is a
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connected component of .R
2 \ ∪

i∈�
ωi , then the homeomorphism .S → R×(0, 1) does 

not necessarily extend to an embedding .S → R × [0, 1]. 
In a series of papers by S. Maksymenko, Ye. Polulyakh [9–12] and Yu. Soroka 

[13, 14] it was studied a class of foliations on non-compact surfaces Z (called 
striped) glued from open strips in a certain “canonical” way. In a joint paper [15] of  
the above three authors it was also described an analogue of mapping class group 
for foliated homeomorphisms (sending leaves into leaves) of such foliations . F and 
proved that it is isomorphic with an automorphism group of a certain graph (one-
dimensional CW-complex) G encoding an information about gluing a surface from 
strips. This graph is in a certain sense dual to the space of leaves of . F. 

The aim of the present paper is to prove that the connection between a striped 
surface Z and its graph G is more deep: namely they are homotopy equivalent, see 
Theorems 5.2 and 5.3. One of the difficulties of proving such a result is that there 
is no canonical map .Z → G. We construct a continuous injection .ϕ : G → Z, and 
then prove (using van Kampen theorem for groupoids established by R. Brown and 
A. Salleh [16]) that . ϕ induces an isomorphism of fundamental groupoids of G and 
Z. This will imply that . ϕ is a homotopy equivalence, since G and Z are aspherical. 
For instance the ranks of their homology groups .H1(Z,Z) and .H1(G,Z) are the 
same. 

In fact, the result is rather simple when Z is glued of finitely many strips: in this 
case the above map .ϕ : G → Z is an embedding and its image .ϕ(G) is a strong 
deformation retract of Z. On the other hand, if the number of strips is infinite, G 
can be not a locally finite CW-complex, having thus no countable local bases at 
some vertices. Therefore there will be no embeddings of G into a manifold Z, thus 
the image .ϕ(G) will not be a strong deformation retract of Z. Nevertheless, van 
Kampen theorem allows to accomplish the result. 

Actually, the obtained result has no deal with a foliation itself but only with a 
way in which a surface is glued from strips. Nevertheless, suppose we are given 
a foliation . F on a non-compact surface Z whose leaves are non-compact closed 
subsets of Z. Now, if . F has “not so much singular leaves”, see Theorem 5.1 below 
and Fig. 4, then it is a striped surface. Therefore we get a partition into strips and 
our result shows that the foliation “contains” an information about the homotopy 
type of the underlying surface. Thus our statement could be viewed in the frame 
of Morse theory in which the gradient lines connecting critical points of a Morse 
function .f : Z → R (or equivalently decomposition of Z into handles in the sense 
of S. Smale corresponding to those critical points) determine a CW-partition of Z 
and this relates f with homological and even topological structure of Z. 

The exposition of the paper is intended to be elementary in order to make it 
accessible to a large audience of readers, and thus to propagate and popularize usage 
of homotopy methods (like van Kampen theorem for groupoids) to more applied 
problems.
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2 Striped Surface and Its Graph 

Definition 5.1 ([9]) A subset S ⊂ R × [−1, 1] will be called a model strip if: 

(1) R × (−1, 1) ⊂ S; 
(2) the intersection S ∩ (R × {±1}) is a union of at most countably many mutually 

disjoint open intervals. 

For instance, R×(−1, 1), R×[−1, 1], (R×(−1, 1)
)∪(

(−2, 3)×{1}) are model 
strips. Of course one can replace [−1, 1] with any other closed segment [a, b] ⊂  R. 

Notice that condition (2) is equivalent to the assumption that S is open as a subset 
of R × [−1, 1]. Define the following subsets of S: 

. ∂−S := S ∩ (R × {−1}), ∂+S := S ∩ (R × {1}), ∂S := ∂−S ∪ ∂+S.

Definition 5.2 ([9]) Let Z be a two-dimensional manifold. A striped atlas on Z is 
a map  q : Z0 → Z having the following properties: 

(1) Z0 = �
α∈A 

Sα is at most countable disjoint union of model strips; 

(2) q is a quotient map, so a subset U ⊂ Z is open iff q−1(U) is open in Z0; 
(3) there are two disjoint families X = {Xβ}β∈B , Y = {Yβ}β∈B ⊂ ⋃

α∈A 
∂Sα of 

boundary intervals such that: 

(a) q is an injective on Z0 \ (X ∪ Y ); 
(b) q(Xβ) = q(Yβ) for each β ∈ B and the restrictions q|Xβ : Xβ → q(Xβ) 

and q|Yβ : Yβ → q(Yβ) are embeddings; 
(c) q(Xβ) ∩ q(Xβ ′) = ∅ for each β �= β ′ ∈ B; 
(d) q(Xβ) ∩ q(Z0 \ (X ∪ Y ))  = ∅ for each β ∈ B. 

Figures 1, 4 and 2 below contain examples of striped atlases. 
The pair (Z, q) will also be called a striped structure on Z. A  striped surface is a 

surface admitting a striped atlas. When talking about a striped surface Z we will also 
assume that some striped atlas (Z, q) is fixed. Notice that a striped surface is a non-
compact two-dimensional manifold which can be non-orientable and disconnected. 
Moreover, each connected component of its boundary is an open interval. 

2.1 Seams 

Let .β ∈ B. Then we have a homeomorphism .γβ : Yβ → Xβ given by 

. γβ = (q|Xβ )−1 ◦ q|Yβ .

Therefore, a striped surface Z can also be regarded as a quotient space obtained 
by gluing some pairs of boundary intervals of model strips via homeomorphisms
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Fig. 1 Striped atlases 

Fig. 2 Striped structure and the map ϕ on R2 \ (0, 0) for canonical foliation by level sets of the 
function f (x, y) = xy 

Fig. 3 Striped surface Z, its graph G, and a map ϕ : G → Z 

.{γβ}β∈B . The image 

. ωβ := q(Xβ) = q(Yβ)

will be called a seam of Z (as well as of  q). In Fig. 1 seams are colored in red color. 
Since .q−1(ωβ) = Xβ ∪ Yβ is closed in . Z0, and q is a quotient map, it follows 

that each seam is a closed subset of Z.



160 S. Maksymenko and O. Nikitchenko

2.2 Foliated Characterization of Striped Surfaces 

Though the notion of a striped surface looks rather restrictive, it nevertheless covers 
a large class of surfaces equipped with foliations which agree in a certain sense with 
a decomposition into strips. We recall here the principal statement from [12]. It will 
not be used for the proof of our main result, however we present it to describe the 
general picture. 

By a foliated surface .(Z,F) we will mean a two-dimensional manifold Z 
equipped with a foliation . F. A  saturation .Sat(U) of a subset .U ⊂ Z is the union of 
all leaves of . F intersecting U , that is 

. Sat(U) := ∪
γ∩U �=∅

γ.

A subset .U ⊂ Z is saturated whenever .U = Sat(U) i.e. U is a union of leaves of 
. F. 

Given an open subset .U ⊂ Z, denote by .F|U the foliation on U consisting of 
connected components of the intersections of leaves of . F with U . We will call . F|U
the restriction of . F to U . 

A homeomorphism .h : Z → Z′ between foliated surfaces .(Z,F) and .(Z,F′) is 
foliated whenever for each leaf . γ of . F its image .h(γ ) is a leaf of . F′. 

Notice that each model strip S admits a natural foliation into boundary intervals 
and lines .R×{t}, .t ∈ (−1, 1). We will call this foliation canonical. Now if .(Z, q) is 
a striped surface, then canonical foliations on the corresponding model strips induce 
a foliation on all of Z which we will also call the canonical foliation (of the striped 
atlas q). 

Let .(Z,F) be a foliated surface. Say that a leaf .γ ⊂ Int(Z), resp. .γ ⊂ ∂Z, of . F
is regular if there exists an open saturated neighborhood U of . γ such that the pair 
.(U,U) is foliated homeomorphic to the model strip 

. 
(
R × [−1, 1], R × (−1, 1)

)
,

resp. .
(
R × [0, 1], R × [0, 1)

)
, via a homeomorphism sending . γ to .R × 0. 

A leaf which is not regular will be called singular. For example, in the above 
figures, the seams (red leaves) are precisely singular leaves. 

For the case of striped surfaces and its canonical foliation, it is easy to see that a 
leaf . γ is singular if and only if it satisfies one of the following conditions: 

(i) .γ = q(δ), for some boundary interval .δ = (a, b) × ε1 ⊂ ∂εSα , where . ε ∈ {±}
and .α ∈ A; 

(ii) .∂εSα contains some other boundary intervals distinct from . δ. 

Theorem 5.1 ([12], Theorem 4.4) Let .(Z,F) be a foliated surface such that every 
leaf . γ of . F is a non-compact closed subset of Z. Then the following conditions are 
equivalent:



Fundamental Groupoids and Homotopy Types of Non-compact Surfaces 161

(1) Z admits a striped atlas q such that . F coincides with the canonical foliation of 
q; 

(2) the collection of all singular leaves of . F is locally finite. 

In fact, not every foliation on the plane admits a striped atlas, see [15, Exam-
ples 7.6, 7.7]. One of the reasons is that seams can converge to other seams. We will 
briefly recall [15, Example 7.6]. Let . F be the foliation on . R

2 into parallel lines .R×t , 
.t ∈ R. Let also .{an}n∈NR be a strictly decreasing sequence of reals converging to 
some .a ∈ R, and .K = {a} ∪ {an}n∈N. Consider the open subset . Z = R

2 \ (0 × K)

and let .F|Z be the restriction of . F to Z. Notice that every point .b ∈ K splits . R × b

into two arcs .γ −
b = (−∞, 0) × b and .γ +

b = (0,+∞) × b being the leaves of .F|Z . 
By property (ii) the latter leaves are singular for .F|Z and they converse to the leaves 
.γ −

a and . γ +
a . Hence the family of all singular leaves of .F|Z is not locally finite, and 

by Theorem 5.1 .(Z,F|Z) does not admit a striped atlas. 

2.3 Graph of a Striped Surface 

The above figures propose to consider a graph which encodes the gluing of strips. 
Such a graph was introduced in [15, Section 6] and also takes to account boundary 
components of striped surface which are not seams. We will consider here a more 
simplified version of it. 

Let .q : �
α∈A

Sα → Z be a striped atlas on a surface Z. Then one can associate to 

q a one-dimensional CW-complex (“topological graph”) G whose vertices are strips 
of the atlas and the edges correspond to gluing strips along boundary intervals. More 
precisely, 

(0) 0-skeleton of G is .G(0) = A; 
(1) Let .β ∈ B, so we have a pair of boundary intervals .{Xβ, Yβ} such that . Xβ ⊂

∂Sα and .Yβ ⊂ ∂Sα′ for some vertices .α, α′ ∈ A. Let also .Iβ = [−1, 1]. Glue  
. Iβ to A via the following map: 

. χβ : ∂Iβ = {±1} → A, χβ(−1) = α, χβ(1) = α′.

Then the resulting CW-complex: 

. G =
(

�
β∈B

Iβ

) ⋃

χβ, β∈B

A.

will be called the graph of the striped atlas q. We will also denote by the same letter 
.χβ : Iβ → G the characteristic map of the 1-cell . Iβ . Thus

• .χβ |(−1,1) : (−1, 1) → G is an embedding and we will denote by . eβ =
χβ

(
(−1, 1)

)
its image being an open 1-cell;

• .χβ |∂Iβ : ∂Iβ → A is the corresponding gluing map.
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2.4 Canonical Injection ϕ : G → Z 

We will construct here a continuous injective map .ϕ : G → Z. 
For each .α ∈ A let .sα := (0, 0) ∈ R × (−1, 1) ⊂ Sα be the origin. Define the 

map .ϕ : G(0) → Z by .h(α) = sα . 
Furthermore, for each .β ∈ B fix a point .zβ ∈ ωβ = q(Xβ) = q(Yβ), and let 

.(xβ, ε) = q−1(zβ) ∩ Xβ, (yβ, ε′) = q−1(zβ) ∩ Yβ, (1) 

where .ε, ε′ ∈ {±1}. Assume that .Xβ ⊂ Sα and .Yβ ⊂ Sα′ for some .α, α′ ∈ A. 
Now define the following path .ϕβ : Iβ ≡ [−1, 1] → Z by the following formula, 

see Fig. 4: 

. ϕβ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q
(
2(1 + t)xβ, (1 + t)ε

)
, t ∈ [−1,− 1

2 ],
q
(
xβ, (1 + t)ε

)
, t ∈ [− 1

2 , 0],
q
(
yβ, (1 − t)ε′), t ∈ [0, 1

2 ],
q
(
2(1 − t)yβ, (1 − t)ε′), t ∈ [ 1

2 , 1].

It easily follows that 

. ϕβ(−1) = h(α) = sα, ϕβ(0) = zβ, ϕβ(1) = h(α′) = sα′ .

Moreover, . ϕβ is a simple path if .α �= α′, and a simple closed path if .α = α′. 
Since the paths . ϕβ agree with . ϕ at end-points, they induce the required map 

.ϕ : G → Z, see Fig. 3. 
The aim of the present paper is to prove the following 

Theorem 5.2 Let .(Z, q) be a striped surface and G be its graph. Then for each 
.x ∈ G the above map .ϕ : G ↪→ Z induces an isomorphism of the fundamental 
groups 

. ϕ∗ : π1(G, x) → π1
(
Z, ϕ(x)

)
.

In particular, . ϕ is a homotopy equivalence. 

Fig. 4 The map .ϕβ
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In fact we will establish a more precise statement 

Theorem 5.3 Let .(Z, q) be a striped surface and G be its graph. Then there exists 
a subset .Z′ ⊂ Z such that the map .ϕ : G ↪→ Z induces an isomorphism of the 
corresponding fundamental groupoids 

. ϕ∗ : �1(G, ϕ−1(Z′)) → �1(Z,Z′).

The proof of these theorems will be given in Sect. 4. They are based on 
application of van Kampen theorem for groupoids, see Lemma 5.3. 

Notice that when . Z0 has only finitely many seams, the result is rather simple and 
in this case .ϕ(G) is a strong deformation retract of Z. 

On the other hand, if the number of seams is infinite, the graph G might be not a 
locally finite CW-complex and Z can not be deformed onto the image .ϕ(G). 

Example 5.1 Let .Z = R
2 \ (Z × 0). Then Z has an atlas consisting of two model 

strips: 

. S0 = R × (−1, 1)
⋃

∪
n∈Z

(n, n + 1) × {1},

S1 = R × (−1, 1)
⋃

∪
n∈Z

(n, n + 1) × {−1}.

and its graph has two vertices connected with countably many edges, see Fig. 5. In  
this case G is not locally finite at its vertices and therefore it has no countable local 
base, whence .ϕ : G → Z is not an embedding. 

Let us also mention the following statement describing certain topological 
properties of striped surfaces. 

Lemma 5.1 Let Z be a connected non-compact surface. Then Z has the homotopy 
type of an aspherical CW-complex, and .π1Z is free. 

Proof For the fact that every separable manifold has homotopy type of a CW-
complex see [17, Corollary 5.7.]. 

Further, let .p : Z̃ → Z be the universal covering of Z. Then by Epstein [4, 
Corollary 1.8], the interior .Int(Z̃) is homeomorphic to . R2. Moreover, the inclusion 

Fig. 5 Non locally finite 
graph G
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.Int(Z̃) ⊂ Z̃ is a homotopy equivalence due to existence of collars of the boundary 
of metrizable manifolds, [18, Theorem 2]. Hence p induces isomorphisms 

. 0 = πkInt(Z̃) ∼= πkZ̃ ∼= πkZ,

.k ≥ 2. This, by definition, means aspherity of Z. 
Finally, the statement that .π1Z is free, is proved in distinct sources, e.g. [19], 

[20, Theorem 44A], or [21, Section 4.4.2]. Another proof is that since Z is non-
compact, it’s cohomological dimension .cd Z ≤ 1, whence by Swan [22, Corollary 
to Theorem A], .π1Z is free. See also [23] for discussions and [24]. ��

3 Fundamental Groupoids 

In this section we will briefly recall the notion of fundamental groupoid, list some 
of its properties and formulate van Kampen theorem for groupoids. 

3.1 Small Categories 

A small category . C is given by the following data:

• a set .Ob(C), called set of objects;
• a set .HomC(X, Y ) for each pair of objects .X, Y ∈ Ob(C), called set of morphisms 

between X and Y ;
• for each pair of morphisms .f ∈ HomC(X, Y ), .g ∈ HomC(Y, Z) there defined a 

unique morphism .g ◦f ∈ HomC(X,Z), called composition of f and g such that 
the following axioms are satisfied: 

– associativity: for any three morphisms .f ∈ HomC(X, Y ), .g ∈ HomC(Y, Z) and 
.h ∈ HomC(Z,W) we have 

. h ◦ (g ◦ f ) = (h ◦ g) ◦ f

– identity: for each object .X ∈ Ob(C) there exists a morphism . idA ∈
HomC(X,X), called the identity, such that for each .f ∈ HomC(X, Y ) we 
have 

.f ◦ idX = idY ◦ f = f.
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3.2 Functors 

A functor .F : C → D from category . C to category . D is the following collection of 
maps (usually denoted by the same letter F ): 

(1) a map .F : Ob(C) → Ob(D), associating to each object .X ∈ C an object 
.F(X) ∈ D, 

(2) a map .F : HomC(X, Y ) → HomD(F (X), F (Y )) for every pair of objects 
.X, Y ∈ C, 

such that the following conditions are satisfied: 

(a) .F(idX) = idF(X) for each .X ∈ Ob(C); 
(b) .F(g ◦ f ) = F(g) ◦ F(f ) for any morphisms .f, g in category . C. 

3.3 Coequalizers 

Let .f, g : X → Y be two morphisms. Then a coequalizer of .f, g is a morphism 
.h : Y → Z such that 

(1) .h ◦ f = h ◦ g; 
(2) for any other morphism .h′ : Y → Z′ with .h′ ◦ f = h′ ◦ g there exists a unique 

morphism .q : Z → Z′ such that .h′ = q ◦ h. 

In other words, we have the following diagram: 

. 

which is commutative except for paths .f, g connecting X and Y . 

3.4 Groupoids 

A morphism .f ∈ HomC(X, Y ) is called an isomorphism whenever there exists 
.g ∈ HomC(Y,X) such that .g ◦ f = idX and .f ◦ g = idY . 

A groupoid is a category in which all morphisms are isomorphisms. Moreover, a 
morphism of groupoids is just a functor between the corresponding categories. 

Example 5.2 For any set X the Cartesian product .X × X has a natural groupoid 
structure.
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Evidently, if .f : X → Y is a bijection of sets, then the induced mapping 

. f × f : X × X → Y × Y, (f × f )(a, b) = (
f (a), f (b)

)

is an isomorphism of groupoids. 

3.5 Fundamental Groupoid 

Let X be a topological space and .X′ ⊂ X be a subset. Let also .I = [0, 1], and 
.C

(
(I, ∂I ), (X,X′)

)
be the set of continuous paths with ends at . X′. Say that two 

paths .α, β ∈ C
(
(I, ∂I ), (X,X′)

)
are equivalent (. α ∼ β) if  

1. .α(0) = β(0), .α(1) = β(1); 
2. . α is homotopic to . β relatively .{0, 1}. 
Then the set .�1(X,X′) = C

(
(I, ∂I ), (X,X′)

)
/ ∼ of the corresponding equivalence 

classes is called the fundamental groupoid of the pair .(X,X′) and the set . X′ is the 
set of its base points. 

The equivalence class of a path .α ∈ C
(
(I, ∂I ), (X,X′)

)
will be denoted by . [α]. 

For a class .q ∈ �1(X,X′) we will denote by .q(0) and .q(1) the common start and 
end-points of all representatives of q. 

Then .�1(X,X′) admits a natural “partial” operation of composition of paths 
turning it into groupoid. Evidently, if .X′ consists of a unique point, then the 
multiplication is defined for all elements of .�1(X,X′), and in this case . �1(X,X′)
is the same as the fundamental group of X at the point . X′. 

Notice also that we have a natural map 

.rX : �1(X,X′) → X′ × X′, rX(q) = (
q(0), q(1)

)
, (2) 

associating to each homotopy class of paths its start and end-points. 
Moreover, every continuous map of pairs .f : (X,X′) → (Y, Y ′) induces the 

following commutative diagram: 

. (3) 

The following simple lemma is left for the reader:
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Lemma 5.2 

(a) The map (2) is a morphism of groupoids. 
(b) If X is path connected and simply connected, then . rX is an isomorphism. 
(c) Suppose .f : (X,X′) → (Y, Y ′) is a continuous map, X and Y are path 

connected and simply connected, and the restriction map .f |X′ : X′ → Y ′ is 
a bijection. Then all morphisms in (3) are isomorphisms. 

3.6 Coproducts 

Let .{Xλ}λ∈� be a collection of objects of a category . C. Then their coproduct is an 
object .Y = �

λ∈�
Xλ together with a collection of morphisms .iλ : Xλ → Y such that 

for any other collection of morphisms .{fλ : Xλ → Z}λ∈�, to the same object Z 
there exists a unique morphism .f : Y → Z such that .fλ = f ◦ iλ. In other words, 
for each .λ ∈ � the following diagram is commutative: 

. 

Consider examples: 

(a) In the category of sets a coproduct is just a disjoint union of sets. 
(b) Let .{Gλ}λ∈� be a collection of groupoids with multiplications 

. μλ : Gλ × Gλ ⊃ Qλ → Gλ,

and sets of objects . Eλ. Then their disjoint union 

. G = �
λ∈�

Gλ

has a natural groupoid structure in which the partial multiplication 

. μ : G × G ⊃ �
λ∈�

Qλ → G,

is defined by .μ(a, b) = μλ(a, b), when .(a, b) ∈ Qλ. This groupoid is the 
coproduct in the category of groupoids. 

Notice also that if .{fλ : Gλ → H }λ∈� is a collection of morphisms of 
groupoids, then the induced morphism .f = �

λ∈�
fλ : G → H is given by 

.f (a) = fλ(a) if .a ∈ Gλ.
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(c) Let .{(Xλ,X
′
λ)}λ∈� be a collection of pairs of topological spaces, 

. X = �
λ∈�

Xλ, X′ = �
λ∈�

X′
λ

be the corresponding coproducts of sets. For each .λ ∈ � the natural inclusion 
of pairs .jλ : (Xλ,X

′
λ) ⊂ (X,X′) induces the corresponding morphism of 

groupoids 

. �1(jλ) : �1(Xλ,X
′
λ) → �1(X,X′).

Hence, by coproduct property, we have a unique morphism . ζ making the 
following diagram commutative: 

. (4) 

where . iλ is a natural morphism into coproduct. We claim that . ζ is an isomor-
phism, i.e. it is bijective. 

Let us show that . ζ is surjective. Indeed, let .α : (I, ∂I ) → (X,X′) be a con-
tinuous map. We should show that .[α] = ζ(q) for some .q ∈ �

λ∈�
�1(Xλ,X

′
λ). 

Since I is path-connected and .Xλ ∩ Xν = ∅ for .λ �= ν, it follows that .α(I) is 
contained in some . Xλ. Hence .α = jλ◦β for some path .β : (I, ∂I ) → (Xλ,X

′
λ). 

Therefore, .[α] = �1(jλ)
([β]) = ζ ◦ iλ

([β]) = ζ
([iλ ◦ β]). 

Let us prove that . ζ is injective. Let .p, q ∈ �
λ∈�

�1(Xλ,X
′
λ) be two classes 

such that .ζ(p) = ζ(q). By definition, .p = iλ([α]) and .q = iν([β]) for some 
paths 

. α : (I, ∂I ) → (Xλ,X
′
λ), β : (I, ∂I ) → (Xν,X

′
ν).

Then 

. �1(jλ)
([α]) = ζ

(
iλ([α])) = ζ(p) = ζ(q) = ζ

(
iν([β])) = �1(jν)

([β])

which means that the paths .jλ ◦ α, jλ ◦ β : (I, ∂I ) → (X,X′) are homotopic 
relatively their ends. Hence .λ = ν. Moreover, let .H : [0, 1]×[0, 1] → X be the 
corresponding homotopy between .H0 = α and .H1 = β. Since . [0, 1] × [0, 1]
is path-connected, it follows that .H([0, 1] × [0, 1]) ⊂ Xλ, and thus H is a 
homotopy between . α and . β in . Xλ relatively their ends. This means that .λ = ν, 
.[α] = [β] ∈ �1(Xλ,X

′
λ), whence .p = iλ([α]) = iν([β]) = q. Thus . ζ is 

injective.
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3.7 van Kampen Theorem for Groupoids 

Let . � be a set. It will be convenient to consider a category . C whose objects are 
triples .

(
X,X′,U

)
where 

1. X is a topological space; 
2. .X′ ⊂ X a subset; 
3. .U = {Uλ}λ∈� is an open cover of X enumerated by the same set of indices . �; 

and morphisms between triples .
(
X,X′,U = {Uλ}λ∈�

)
and . 

(
Y, Y ′,V =

{Vλ}λ∈�

) ∈ C are continuous maps of pairs .f : (X,X′) → (Y, Y ′) such that 
.f

(
Vλ

) ⊂ Uλ for all .λ ∈ �. 
Given a triple .

(
X,X′,U

) ∈ C, for each n-tuple .ν = (ν1, . . . , νn) ∈ �n put 

. Uν := Uν1 ∩ · · · ∩ Uνn, U ′
ν := Uν ∩ X′.

In particular, for .n = 2 and .ν = (j, k) ∈ A2 we have the following two morphisms 
of fundamental groupoids: 

. ajk : �1(Uj ∩ Uk,U
′
(j,k)) → �1(Uj , U

′
j ),

bjk : �1(Uj ∩ Uk,U
′
(j,k)) → �1(Uk, U

′
k)

induced by natural inclusions of .Uj ∩ Uk into .Uj and .Uk respectively. 
These morphisms yield morphisms of the corresponding coproducts: 

. a, b : �
(j,k)∈�2

�1(U(j,k), U
′
(j,k)) →

⊔

λ∈�

�1(Uλ,U
′
λ)

Similarly, the inclusion .(Uj , U
′
j ) ⊂ (X,X′) induces a morphism 

. cj : �1(Uj , U
′
j ) → �1(X,X′).

Then the .�1-diagram of the cover . U is the following diagram: 

. (5) 

Theorem 5.4 (van Kampen Theorem for Fundamental Groupoids, [16]) Sup-
pose that an open cover .U = {Uλ}λ∈� of X has the following property: 

.(∗) a subset .X′ ⊂ X meets each path-component of each non-empty twofold and 
threefold intersection of distinct sets of . U. 

Then in the .�1-diagram (5) of the cover . U the morphism c is a coequalizer for 
morphisms .a, b in the category of fundamental groupoids.
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3.8 �1-Diagram for Covers by Simply Connected Sets 

Let 

. f : (
X,X′, {Uλ}λ∈�

) → (
Y, Y ′, {Vλ}λ∈�

)

be a morphism in the category . C. Then it is evident that f induces the following 
diagram: 

. (6) 

where .f1 = �
λ∈�

f |Vλ and .f2 = �
(j,k)∈�2

f |V(j,k)
. This diagram is commutative except 

for the left square in which we have only the following identities: 

.f1 ◦ a = a′ ◦ f2, f1 ◦ b = b′ ◦ f2. (7) 

Since .�1 is a functor from the category of sets to the category of groupoids, (6) 
implies the following diagram combined from two .�1-diagrams: 

. (8) 

Here we used the isomorphism of groupoids (4). Notice that diagram (8) is also 
commutative except for left square in which only the identities (7) hold. 

The following lemma plays a key role in proving the basic theorem. 

Lemma 5.3 Let .f : (
X,X′, {Uλ}λ∈�

) → (
Y, Y ′, {Vλ}λ∈�

)
be a morphism in the 

category . C. Suppose that 

(1) for each .λ ∈ � spaces . Uλ and . Vλ are simply connected; 
(2) for each .λ ∈ � the restriction .f |U ′

λ
: U ′

λ ≡ Uλ ∩ X′ → V ′
λ ≡ Vλ ∩ Y ′ is a 

bijection;



Fundamental Groupoids and Homotopy Types of Non-compact Surfaces 171

(3) the open covers .{Uλ}λ∈� and .{Vλ}λ∈� satisfy condition .(∗) of van Kampen 
Theorem 5.4, that is . X′ (resp. . Y ′) meets each path component of each non-
empty twofold and threefold intersections of elements of . U (resp. . V). 

Then the induced morphism .f ∗ : �1(X,X′) → �1(Y, Y ′) of fundamental 
groupoids from diagram (8) is an isomorphism. 

Proof Conditions (1) and (2) mean that for each .λ ∈ � the restriction map 

. f |Uλ : (Uλ,U
′
λ) → (Vλ, V

′
λ)

satisfies condition (c) of Lemma 5.2. Therefore the induced morphism of groupoids 
.fλ : �1(Uλ,U

′
λ) → �1(Vλ, V

′
λ) is an isomorphism. Hence so is the middle vertical 

morphism . f1 of diagram (8). 
Let .g1 : �

λ∈�
�1(Vλ, V

′
λ) → �

λ∈�
�1(Uλ,U

′
λ) be the isomorphism inverse to . f1. 

Denote .k = c ◦ g1, see  (9):

�
(j,k)∈�2

�1(U(j,k), U
′
(j,k)) 

a
��

b

��

f2

��

�
λ∈�

�1(Uλ,U
′
λ) 

c
��

f1

��

�1(X, X′) 

f

��

�
(j,k)∈�2

�1(V(j,k), V
′
(j,k)) 

a′
��

b′
�� �

λ∈�
�1(Vλ, V

′
λ) 

c′
��

g1

��
k

���������������

�1(Y, Y ′) 

g

��

(9) 

Then .k ◦ a′ = k ◦ b′, whence by van Kampen Theorem 5.4 there exists a unique 
morphism .g : �1(Y, Y ′) → �1(X,X′) such that .k = g ◦ c′. Since . f1 and . g1 are 
inverse each to other, it follows that f and g must also be inverse each to other and 
therefore f is an isomorphism. ��

4 Proof of Theorem 5.3 

Let .(Z, q) be a striped surface, G its graph, and .ϕ : G → Z the continuous injective 
map defined in Sect. 2.4. We should construct a subset .Z′ ⊂ Z such that the map 
.ϕ : G ↪→ Z induces an isomorphism of the corresponding fundamental groupoids 
.ϕ∗ : �1(G, ϕ−1(Z′)) → �1(Z,Z′). 

In fact we will also define a special open cover . V of Z, and then consider a cover 
.U = ϕ−1(V) of G consisting of inverse of elements of . V. Then . ϕ will evidently 
induce a morphism of triples .ϕ : (G,G′,U) → (Z,Z′,V) in the category . C, and 
we will show that conditions (1)–(3) of Lemma 5.3 are satisfied. This will imply 
that . ϕ∗ is an isomorphism.
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An Open Cover . V of Z 
Let S be a model strip and .X = (a, b) × ε ⊂ ∂S, .ε ∈ {±1}, be a boundary interval. 
Then the following open neighborhood of X in S: 

. NX =
{

(a, b) × (0.8, 1], ε = 1,

(a, b) × [−1, 0.8), ε = −1.

will be called the standard neighborhood of X. 
It is evident, that standard neighborhoods of boundary intervals are mutually 

disjoint. Hence the family of boundary intervals of S is discrete1 and in particular 
locally finite. Therefore, the union of any number of boundary intervals is a closed 
set. 

By a standard neighborhood .Nωβ of a seam . ωβ we will mean the union of images 
of standard neighborhoods of .Xβ and . Yβ (see Fig. 4): 

. Nωβ = q(NXβ ) ∪ q(NYβ ).

Then .Nωβ is open in Z. Moreover, .Nωβ ∩ Nωβ′ = ∅ for .β �= β ′, whence the 
family of seams is discrete and therefore locally finite. In particular, the union of 
any collections of seams is also closed. 

Furthermore, for .α ∈ A put 

. NSα := q
(
Sα \ (X ∪ Y )

)
.

Thus .NSα is image of a model strip . Sα without boundary intervals corresponding to 
seams. It follows that .NSα is open in Z. Hence we get the following open cover of 
Z. 

. V := {NSα }α∈A ∪ {Nωβ }β∈B.

The Set . Z′
Notice that .Nωβ \ωβ consists of two connected components each homeomorphic to 
an open rectangle and the image .ϕ(G) intersects each of those components. Choose 
any two points 

. dβ ∈ ϕ(G) ∩ (
q(NXβ ) \ ωβ

)
, d ′

β ∈ ϕ(G) ∩ (
q(NYβ ) \ ωβ

)
.

belonging to distinct components of .Nωβ \ ωβ . In Fig. 4 such points are denoted by 
circles.

1 Recall that a collections of subsets .{Qi}i∈� of a topological space X is called discrete, if for each 
.i ∈ � there exists an open neighborhood . Ui of . Qi such that .Ui ∩ Uj = ∅ for .i �= j ∈ �. 
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Let . J ′ be the set of isolated vertices of G. Then every strip . Sα with .α ∈ J is not 
glued to any other strips, and no boundary intervals of S are glued together. Let also 
.K ′ = {sα = (0, 0) = ϕ(α) ∈ Sα | α ∈ J ′} ⊂ Z be the set of origins of such strips 
in Z. Put 

. Z′ = K ′ ∪ {dβ, d ′
β | β ∈ B},

and 

. G′ = ϕ−1(Z′), Lsα := ϕ−1(NSα ), Lβ := ϕ−1(Nωβ ).

Thus .Lβ is an open arc in some 1-cell of G containing two points .ϕ−1(dβ) and 
.ϕ−1(d ′

β), while .Lsα is a “star”-neighborhood of the vertex .α ∈ G0 = A such that 

each edge of .Lsα contains a unique point .ϕ−1(dβ) or .ϕ−1(d ′
β) for some .β ∈ B. 

It follows that 

. U := {Lsα }α∈A ∪ {Lβ}β∈B

is an open cover of G, and .ϕ : (G,G′,U) → (Z,Z′,V) induces a morphism in the 
category . C. 

Verification of Conditions of Lemma 5.3 
(1) Evidently, the elements of . U and . V are even contractible and therefore they are 

simply connected. 
(2) Since . ϕ is injective, it follows that for any subset .Q ⊂ ϕ(G) ⊂ Z, we have that 

.ϕ|ϕ−1(Q) : ϕ−1(Q) → Q is a bijection. In particular, so are the restrictions 

. ϕ : G′ ∩ Lsα → Z′ ∩ NSα , ϕ : G′ ∩ Lβ → Z′ ∩ Nωβ

for each .α ∈ A and .β ∈ B. 
(3) First notice that . Z′ (resp. . G′) meets every path component of Z (resp. G). 

Furthermore, . NSα ∩ NSα′ = Nωβ ∩ Nωβ′ = Lsα ∩ Lsα′ = Lβ ∩ Lβ ′ = ∅

for .α �= α′ ∈ A and .β �= β ′ ∈ B, which implies that all threefold intersections 
of elements of . V and . U are empty. 

Also, .NSα ∩ Nωβ �= ∅ iff either .Xβ or . Yβ or both of them are contained 
in .∂Sα . In this case each connected component of .NSα ∩ Nωβ contains either 
. dβ or . d ′

β . It follows that each connected component of .Lsα ∩ Lβ contains 

either .ϕ−1(dβ) or .ϕ−1(d ′
β). Thus . Z′ (resp. . G′) meets all path components of 

all twofold intersections of elements of . V (resp. . U). Hence all conditions of 
Lemma 5.3 holds, whence . ϕ∗ is an isomorphism of groupoids. ��
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5 Proof of Theorem 5.2 

By Theorem 5.3, . ϕ yields an isomorphism of fundamental groupoids. In particular, 
if .x ∈ G′, then . ϕ also induces an isomorphism of the fundamental groups 
.π1(G, x) → π1(Z, ϕ(x)). Since . Z′ (resp. . G′) meets every path component of Z 
(resp. G), it follows that . ϕ induces isomorphism of fundamental groups are each 
point .x ∈ G. 

Notice that every connected component of G is covered by at most countable 
tree, and therefore G is aspherical. Moreover, Z is also aspherical by Lemma 5.1. 
Hence . ϕ induces isomorphisms between all the corresponding homotopy groups of 
G and Z. Moreover, since Z has the homotopy type of an infinite CW-complex, see 
Lemma 5.1, we have from the Whitehead theorem that . ϕ is a homotopy equivalence 
between all corresponding connected components of G and Z. ��
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A Geometric Framework to Compare
PDEs and Classical Field Theories

Lukas Silvester Barth

Abstract In this contribution, a mathematical framework is constructed to relate
and compare non-linear partial differential equations (PDEs) in the category of
smooth manifolds. In particular, it can be used to compare those aspects of field
theories (e.g. of classical (Newtonian) mechanics, hydrodynamics, electrodynamics,
relativity theory, classical Yang-Mills theory and so on) that are described by such
equations.

Employing a geometric (jet space) approach, a suitable notion of shared structure
of two systems of PDEs is identified. It is proven that this shared structure can
serve to transfer solutions from one theory to another and a generalization of so-
called Bäcklund transformations is derived that can be used to generate non-trivial
solutions of some non-linear PDEs.

A procedure (based on formal integrability) is introduced with which one can
explicitly compute the minimal consistency conditions that two systems of PDEs
need to fulfill in order to share structure under a given correspondence. Furthermore,
it is shown how symmetry groups can be used to identify useful correspondences
and structure that is shared up to symmetries. Thereby, the role that Bäcklund
transformations play in the theory of quotient equations is clarified.

Explicit examples illustrate the general ideas throughout the text and in the
last chapter, the framework is applied to systems related to electrodynamics and
hydrodynamics.

1 Introduction

Studying relationships of different theories can serve to identify their underlying
central features. Once shared structure of two theories is known, methods for solving
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a problem in one domain can be transferred to another. In the long run, a structured
overview could set free innovation for the development of these theories.

1.1 Previous Attempts to Compare Theories

In the physics literature, comparisons were usually restricted to analogies of two
specific theories established by juxtaposition of the corresponding equations of
motion. For instance, [1] introduced new effective quantities to rewrite the Navier-
Stokes equations in a form very similar to Maxwell’s equations. [2] established
an analogy between general relativity and electrodynamics by showing that a
certain linear combination of derivatives of the Faraday tensor has an irreducible
representation with 16 components, 10 of which can be associated with the 10
components of theWeyl tensor of general relativity. Visser [3] explained the analogy
of mathematical aspects of the description of black holes and supersonic flows
which resulted in research of so-called analogue experiments (cf. [4]). All those
analogies are however rather specific and a general framework for comparisons is
missing.

In the philosophy of science literature, some more abstract, category theoret-
ical approaches are outlined. Weatherall uses groupoids (categories in which all
morphisms are isomorphisms) to compare theories that differ in their formulation
but describe the same physics (cf. [5, 6]). More specifically, the objects in those
groupoids are the formal solutions of systems of PDEs and the morphisms are sym-
metries of the underlying spacetime that preserve those solutions. Weatherall then
defines an equivalence of two such theories as a categorical equivalence between
their corresponding groupoids that preserves the empirical content of the physical
theories. This idea was subsequently used by others to compare formulations of
other theories, e.g. [7] compare the geometric and algebraic formulation of general
relativity and [8] compares the Lagrangian and Hamiltonian formulation of classical
mechanics.

The problem of this approach is however that categorical equivalence can only
serve to render equivalent formulations that differ up to invertible (symmetry)
transformations but is not capable of providing a framework to compare entirely
different theories, to identify their intersection or subtheories. And it does not
provide any means for understanding which solutions can be transferred from one
theory to another.

Comparisons between the Hamiltonian and the Lagrangian view of mechanics
are also discussed in the mathematics literature, see e.g. [9] or [10]. But again,
such discussions are not aimed at the formalization of a general framework for
the comparison of theories. The most general discussion of relationships between
systems of differential equations, known to me, involves the powerful concept of
so-called coverings in the category of diffieties (cf. [11–13]). However, coverings
were constructed to investigate generalized, nonlocal symmetries of PDEs and are
not designed for the comparison of arbitrary systems of equations. Furthermore,
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since they are defined over infinitely prolonged differential equations, they can not
serve to find integrability conditions (which requires the inclusion of methods of
formal integrability at the level of finitely prolonged equations) that arise upon the
comparison of different theories.

Apart from these mathematical approaches, there is also literature that discusses
the differences and transitions of physical theories heuristically. For instance, the
ideas regarding the structure of scientific progress developed by Kuhn [14] are well-
known. Kuhn describes progress in a recurring loop of eras with three stages which
might roughly be described as follows: Confusion about how to describe a process
in nature, determination of a unifying model and finally application of this model—
until new ideas and experiments lead to another stage of confusion.

Another example of a heuristic discussion of the conceptual structure of physical
theories is provided by Stamatescu et al. [15]. He takes into account the role of the
symbols that we use for the description of physics and emphasises as a guideline the
so-called Hertzian principle (cf. [16]). According this principle, the concordance
of reality and symbolic description must be such that any consequences of an
initial experimental setup due to the laws of nature must correspond to thought
consequences of the symbols that describe this initial setup due to the laws of the
mathematical formalism. Stamatescu also discusses the transition of theories and the
development of their concepts. The problem with more heuristic discussions is that
they are very hard to formalize. Indeed, the geometric framework presented here
can not account for transitions of physical theories. However, it might be extended
in the future to do so as suggested in the outlook in Sect. 10.2.

Finally, note that the present work builds on research of the author’s Master’s the-
sis but contains several generalizations. For example, within the thesis, the notion of
a correspondence between theories was defined as a differential operator, which, in
contrast to the correspondence on the natural product bundle introduced below, did
not allow for implicit comparisons of systems of equations. Moreover, the present
approach is conceptually cleaner because the two compared theories determine the
natural space in which the intersection takes place before the correspondence is
imposed and both, the compared theories as well as the correspondence are all
treated as geometric spaces. Most importantly, the approach in the thesis did not
allow to generalize Bäcklund transformations whose inclusion allows for a much
more powerful transfer of solutions.

1.2 Requirements for the Framework

A classical field theory is here understood as a system of partial differential
equations (PDEs) on some manifold (possibly called spacetime), together with a
physical interpretation. This physical interpretation specifies

• how the mathematical quantities are related to experimental measurements,
• which initial/boundary conditions are physically plausible



180 L. S. Barth

• and strictly speaking should also include validity bounds for the mathematical
formalism.1

In this article however, only the PDEs themselves are compared without considering
their interpretation because of the aspiration to identify common causes. It is desired
to understand which models are structurally similar even if they can be associated
with different experimental setups because exactly this abstraction facilitates to
obtain a new intuition for the phenomena described by the equations and to transfer
methods. If desired, it is always possible to impose an interpretation later to
discriminate theories further.2

The previous subsection illustrates that there are many different aspects of
classical field theories that can be compared. Some approaches focus on symmetries,
orbit spaces and conservation laws, some on the dynamics, others on structural
similarities or on the solution spaces. However, if the underlying systems of PDEs
of the field theories are equivalent, then all of those aspects are equivalent as well.
At the same time, each single aspect can also be studied at the level of the PDEs.
As a conclusion, a very wholesome approach to the comparison of the mathematical
structures of field theories consists in the formulation of a framework that compares
PDEs.

Such a framework then should be able to answer the following questions in a
mathematically precise way.

(Q.1) Are two systems of PDEs equivalent?
(Q.2) Do two PDEs share any subsystem?
(Q.3) When are two systems equivalent up to a symmetry?
(Q.4) How to transfer solutions from one system to another?

It is important for the framework to provide an answer to the last question
because it requires a degree of formalization that exceeds a purely heuristic
comparison and because the determination of the space of common solutions is
arguably one of the best measures for the similarity of two theories.

1.3 Methods

To summarise the above, the aim of this article is to compare field theories by
comparing their PDEs, preferably in a well-defined category. In order to do that,
one needs to define what two systems of PDEs have in common but there is usually
no canonical way to define this common part. However, if one could comprehend a

1 For example, classical mechanics is only valid on certain scales, only produces predictions within
acceptable errors up to certain velocities and so on.
2 To take into account the validity bounds that go along with an interpretation would require a lot
of work, both because those bounds are not always clearly defined and because one might have to
add inequalities that restrict the range of the variables.
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PDE as a geometric object, then the common part could be naturally identified as
the intersection of those objects in a suitable space. Fortunately, the language of jet
spaces, in which PDEs are understood as submanifolds, allows for such an approach
which is the main reason that the present framework is formulated in this language.
Another important reason is that it also allows for the implementation of methods
from the area of formal integrability that serve to calculate the minimal consistency
conditions that arise when comparing two systems of PDEs.

Jet spaces arose with Cartan’s concept of a prolongation and were defined by
Ehresmann in 1953. Their theory steadily evolved, giving rise to the theories of
formal integrability (cf. [17, 18]), involution (cf. [19]), differential Galois theory
(cf. [20]), to the invention of so-called diffieties which generalise algebraic varieties
(cf. [21]), and a whole new calculus called secondary calculus (cf. [22, 23]).
Furthermore, they were used for the study of (variational) boundary value problems
(cf. [24, 25], [26]), control theory (here the algebraic reformulation is particularly
useful, cf. [27, 28]), the application of (co)homological methods and moving
frames to PDEs (cf. [29–31], [32]), and especially to investigate local and nonlocal
symmetries (cf. [33], [13], [34]), their invariants and quotients (cf. [35], [36]).

The present framework is restricted to jet spaces in the category of smooth
manifolds, i.e. PDEs are assumed to be smooth submanifolds. However, this does
not imply that their solutions are necessarily smooth or that the framework can
only compare the spaces of smooth solutions of two systems of PDEs. Instead,
this smooth category is a convenient setting to study certain singular solutions as
well, like e.g. shock waves, whose singularity vanishes on higher order jet spaces
(cf. [37], [26]). However, distributional solutions are indeed excluded in the present
framework.

1.4 Outline

Given two systems of PDEs, each represented as a submanifold of a jet space,
it becomes possible to define another submanifold (subject to some conditions),
called correspondence, in the fibered product of those jet spaces, that connects the
two systems and gives rise to a meaningful notion of an intersection. However, this
intersection only has solutions if certain integrability conditions are fulfilled. Those
conditions can in turn be calculated with methods of formal integrability. Once the
two systems are shown to be compatible, their intersection is called shared structure.
Solutions of this shared structure can be shown to be solutions of both intersected
theories. Thus, (Q.2) can be answered because the shared structure corresponds to
a subsystem with shared solutions.3 It also allows the transfer of solutions and is
subsequently shown to naturally include so-called Bäcklund-transformations that

3 Moreover, since formal integrability serves to calculate the minimal integrability conditions, it is
the largest possible subsystem given a chosen correspondence.
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can serve to generate non-trivial solutions of some non-linear PDEs. Thus, (Q.4) can
be answered. Also (Q.1) is answered by defining two subsystems to be equivalent
if their shared structure possesses all solutions of both theories. Finally, (Q.3) can
be answered by defining two systems to be equivalent up to symmetry if one of the
systems possesses a symmetry group such that its corresponding quotient system is
equivalent to the other system.

2 Notation and Preliminaries

The aim of this section is to fix the notation and to introduce subsequently necessary
notions. A detailed introduction would require more space than available. Therefore,
the reader unfamiliar with manifolds is referred to [38] and the reader unfamiliar
with fibered manifolds and jet bundles is referred to [39]. A shorter introduction to
jet bundles can be found in section 2 of chapter 3 of [13]. An advanced introduction
that also includes the preliminaries for the theory of formal integrability is given in
the article [17]. Further introductory material can be found in the [40].

1. M denotes a smooth manifold with dimension m. A point of M is denoted by x.
2. .π : E → M denotes a smooth fibered manifold over M with dimension

.d := m + e, i.e. e is the dimension of the fiber.4 p denotes a point of E. The
local coordinates of E may be expressed by .CE = (xi, uj ). The convention
is used that tuples like .(xi, uj ) stand for tuples like .(x1, · · · , xm, u1, · · · , ue).
.ξ : F → M is also a fibered manifold with local coordinates .CF = (xi, wh)

and dimension .m + f .
3. Let .α = α1 · · ·αn be a multi-index. It is a tuple of .n ∈ N0 numbers .αi ∈

{0, 1, · · · ,m = dim(M)} for which one defines the length .|α| = n. The tuple
is commutative, i.e. .αiαj = αjαi . One can multiply multi-indices as follows:

.ασ := α1 · · ·αnσ1 · · · σl ⇒ |ασ | = n + l. (1)

If .s : U ⊂ M → E is a section of our fibered manifold .π : E → M , and
.i ∈ {0, · · · ,m} an index and .α = α1 · · · αn a multi-index, then define

.s
j
i := ∂sj

∂xi
, sj

α := ∂nsj

∂xα1 · · · ∂xαn
⇒ s

j
αi = ∂n+1sj

∂xα1 · · · ∂xαn∂xi
.

(2)

4 A fibered manifold .π : E → M is a differentiable manifold E together with a differentiable
surjective submersion .π called projection.

A surjective submersion is a differentiable surjective map such that its pushforward .π∗ is also
surjective at each point.

A fiber bundle is a fibered manifold with a local trivialization.
A vector bundle is a fiber bundle in which the fibers are vector spaces and whose transition

maps are linear.
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4. .J k(E) denotes the k-th order jet bundle of E. It can be endowed with the
structure of a smooth manifold. Locally, .J k(E) may be described by the
coordinates .(xi, uj , u

j
σ ) where .σ is a multi-index and .1 ≤ |σ | ≤ k. Please

note that in contrast to (2), .uj
σ is not the derivative of .uj . Here the multi-index

only serves as a label. .πn
m : Jn(E) → Jm(E) denotes the projection for

all .0 ≤ m ≤ n. .J 0(E) := E and .πn : Jn(E) → M . .Jn(E)x := (πn)−1(x)

denotes the fiber of .Jn(E) over .x ∈ M . Counting local coordinates, one obtains

.

dim(J k(E)) = m + e

(
m + k

k

)
,

dim(J k(E)) − dim(J k−1(E)) = e

(
m − 1 + k

k

)
,

(3)

where .dimJ k(E) − dimJ k−1(E) is the dimension of the fiber of .πk
k−1 :

J k(E) → J k−1(E).
5. Let .sE : M → E and .s := sF : M → F be sections. .j l(s) denotes the l-th

prolongation of s. If .s(x) = (xi, sh(x)) are the local coordinates of the section,
then one can use the multi-index notation to give an explicit formulation of the
prolongation5

.j l(s)(x) = (xi, sh(x), sh
α(x)), 1 ≤ |α| ≤ l (4)

6. A differential equation .E is defined to be a fibered submanifold of .J k(E).
One can show that this is a geometric generalization of the usual notion of a
(possibly non-linear) partial differential equation.

7. An essential notion in the algebro-geometric theory of PDEs, that is also heavily
used in the present article, is the differential consequence or prolongation of
a differential equation. To prolong a differential equation .E ⊂ J k(E) to a
submanifold in .J k+l (E), one needs the concept of repeated Jets: Since .E is
a fibered submanifold of .J k(E), one can consider the fibered manifold .πk|E :
E → M and one can consider the space of jets of sections of .πk|E, called
.J l(E). Since .E is a submanifold of .J k(E), .J l(E) is naturally a submanifold of
the jet bundle .J l(J k(E)).

If .J k(E) is locally described by the coordinates .(xi, u
j
σ ), then the coordi-

nates of .J l(J k(E)) are .(xi, (u
j
σ )α) where .|σ | ≤ k and .|α| ≤ l.6 The subset of

repeated jets in .J l(J k(E)) consists of the image of the embedding

.ik,l : J k+l (E) → J l(J k(E)), jk+l (s)(x) �→ j l(jk(s))(x) (5)

5 By Borel’s lemma, given any point .θ ∈ J k(E), one can always find a section .sE such that
.jk(sE)(x) = θ . However, given a submanifold O of .J k(E), it is not always possible to find a
section .s : π(O) → E whose prolongation lies in O.
6 Note that this is not the same as .u

j
σα because one “double-counts” those coordinates that arise

from jets of sections whose derivatives would usually commute.
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In local coordinates, this embedding reads .(xi, u
j
σα = s

j
σα(x)) �→ (xi, (u

j
σ )α =

s
j
σα(x)). One can show that it is well defined (see [39]).
Now one can prolong a fibered submanifold .E ⊂ J k(E) to a submanifold

in .J k+l (E) as follows. First take the intersection .J l(E) ∩ ik,l(J
k+l (E))

within .J l(J k(E)). In this intersection are only points of the form
.j l(jk(s))(x) and therefore the projection .p : J l(E) ∩ ik,l(J

k+l (E)) →
J k+l (E), j l(jk(s))(x) �→ jk+l (s)(x) is well-defined. Thus, define the l-th
prolongation of a PDE .E ⊂ J k(E) (into .J k+l (E)) by

.P l(E) := p(J l(E) ∩ ik,l(J
k+l (E))) (6)

An intersection must not necessarily be a smooth manifold and therefore, a
prolongation does not always exist in the category of smooth manifolds. In
particular, the intersection might be empty.

8. Define the total differential operators .Dk
i , i ∈ {1, · · · ,m = dim(M)} as vector

fields on .J k(E) locally by

.Dk
i := ∂

∂xi
+

e∑
j=1

∑
|σ |<k

u
j
σ i

∂

∂u
j
σ

, Di := D∞
i . (7)

If .α = α1 · · · αn is a multi-index, define .Dα := Dα1 ◦ · · · ◦ Dαn .
9. If .π : E → M and .π ′ : E′ → M ′ are fibered smooth manifolds, then a

smooth map .� : E → E′ is called a morphism of fibered (smooth) manifolds
if there exists a map .φ : M → M ′ such that .π ′ ◦ � = φ ◦ π . A special case
is .M = M ′, .φ = id. Then the map .� is a morphism of fibered manifolds if
.π ′ ◦ � = π . In the following, a morphism of fibered manifolds shall always
refer to this special case if nothing else is mentioned.

10. A differential operator .ϕ : J ⊂ J k(E) → F is defined as a morphism of
fibered manifolds. Its l-th prolongation is defined by

.pl(ϕ) : P l(J ) → J l(F ), jk+l (x) �→ j l(ϕ(jk(s)(x))) (8)

In local coordinates, it is given by

.pl(ϕ)(xi, uj
σα) = (xi,Dαϕh(xi, uj

σ )), 0 ≤ |σ | ≤ k, 0 ≤ |α| ≤ l. (9)

(Most often, one considers .J = J k(E) and then .P l(J ) = J k+l (E).)
11. Let .s : M → F be a section. Define the kernel of a differential operator by

. kers(ϕ) :=
{
θ ∈ J | ϕ(θ) = s(πk(θ))

}
. (10)

12. Note that [17, Proposition 2.1] includes the statement that for any morphism
.ϕ : A → B of fibered manifolds (over the same base space) and any section s
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of B, .kers(ϕ) is a fibered submanifold of A if

.s(M) ⊂ ϕ(J ) and rank(ϕ) is locally constant. (11)

This holds in particular for a differential operator .ϕ : J ⊂ J k(E) → F (which,
by definition, is a morphism of fibered manifolds) and therefore .kers(ϕ) is a
fibered submanifold of .J ⊂ J k(E) and hence a differential equation whenever
(11) holds for any differential operator .ϕ.

13. If .E = kers(ϕ) is a differential equation, then the following equality holds,

.

P l(E) = kerj l(s)(p
l(ϕ))

=
{
θ ∈ P l(J )

∣∣ Dαϕh(θ) = Dαsh(πk+l (θ)), |α| ≤ l
} (12)

14. For a section .s : U ⊂ M → E, denote by .�k
s the image of .jk(s) : U ⊂ M →

J k(E) and, for any section s and for any point .θ ∈ �k
s , call .Tθ�

k
s ⊂ TθJ

k(E)

an R-plane. The span of all R-planes at a point .θ ∈ J k(E) is denoted by .Cθ

and is called Cartan-plane. The map .C : J k(E) → T J k(E), θ �→ Cθ is called
Cartan distribution (sometimes also Vessiot distribution).

15. An integral submanifold of the Cartan distribution is defined to be a submani-
fold .W ⊂ J k(E) such that .TθW ⊂ Cθ for all .θ ∈ W . An integral submanifold
W is called locally maximal if no open subset of W can be embedded into an
integral submanifold of greater dimension.

16. A solution S of a differential equation .E is a locally maximal, .dim(M)-
dimensional integral submanifold of .C with .S ⊂ E. As emphasized before,
this definition includes certain singular solutions (cf. [26]).

3 Correspondence and Intersection

This section develops the framework for the comparison of systems of differential
equations. To this end, the most important concepts are those of a correspondence
and an intersection which are described below.

3.1 Motivating Example

Consider the equations of magneto-statics and of the viscous Navier-Stokes equa-
tion (in a dimensionless form):

1. Magneto-statics:

. ∇ × B = j, ∇ · B = 0. (13)
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Here .B = (B1, B2, B3)T denotes the magnetic field vector and .j = (j1, j2, j3)T

the charge current density.
2. Viscous, incompressible Navier-Stokes equations (without external forcing):

.

(
∂

∂t
+ u · ∇

)
u = −∇

(
p

ρ

)
+ ν�u, ∇ · u = 0. (14)

Here .u is the velocity vector, p is the pressure, .ρ is the density and .ν is the
viscosity coefficient.

Now let us make the following additional assumptions that might occur in some
physical settings:

.

(1) The current density j is the gradient of a function ψ, i.e. j = −∇ψ,

(2) The velocity flow is static, i.e. 0 = du/dt = ∂u/∂t + (u · ∇)u.
(15)

If we apply those assumptions to the equations above and use the vector identity
.�u = ∇(∇ · u) − ∇ × (∇ × u) as well as .∇ · u = 0 and .∇ · (∇ × u) = 0 (because
of grad .◦ rot .= 0), the systems of equations above become:

.

∇ × B = −∇ψ, ∇ · B = 0

and ∇ × (∇ × u) = −∇φ, ∇ · (∇ × u) = 0, ∇ · u = 0.
(16)

where .φ := p/(ρν). It is apparent that those equations aquire a similar form under
the “correspondence”

.B = ∇ × u. (17)

Or, put differently, if one replaced .B by .∇ × u, then the system of all equations
together would be consistent.

And in fact, because .∇ · B = 0, we can use the Poincaré Lemma (in any star-
shaped region) to conclude that there exists a vector potential .A such that .∇×A = B
and because gauge transformations do not change the physics of classical electro-
dynamics (and in particular of magneto-statics), we can use them to gauge .A in
such a way that .∇ · A = 0. Therefore, under the above assumptions, there is a
direct correspondence between .A (in some gauge) and .u. The physical interpretation
is that a static fluid velocity field behaves like the vector potential of magneto-
statics with certain charge current densities.7 This can give a new intuition about
the corresponding physical phenomena.

As this example illustrates in an intuitive way, (16) and (17) describe “shared
structure” of the equations (13) and (14) under the conditions (15). But what is
the appropriate space in which the correspondence (17) holds and in which the

7 Of course the initial and boundary conditions additionally influence the solutions.
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shared structure can be obtained? Is there a way to compute the assumptions (15)
instead of guessing them, given the correspondence (17)? And how to generalize
the procedure? To answer those and other questions already motivated in the
introduction, a general framework is constructed in the next subsections.

3.2 Formal Definitions

Suppose that .π : E → M and .ξ : F → M are fibered manifolds with the same
base space (a generalization to different base spaces is work in progress). Suppose
further that we are given two PDEs .E ⊂ J k(E) and .F ⊂ J l(F ). We want to relate
the PDEs in a space in which we can embed both of them. A natural choice is their
pullback in the category of smooth manifolds, i.e. their so-called fibered product

.J := J k(E) ×M J l(F ) :=
{
J k(E)x × J l(F )x | x ∈ M

}
. (18)

Now the canonical projections .πE : J → J k(E) and .πF : J → J l(F ) allow to pull
.E and .F back to J :

.EJ := π−1
E (E) and FJ := π−1

F (F). (19)

.πE and .πF can also be used to pull back the Cartan distribution defined on

.J k(E) and .J l(F ): If .�E is the module of Cartan forms (the differential forms that
annihilate the Cartan distribution) on .J k(E) and .�F is the module of Cartan forms
on .J l(F ), then the module .� on .J k(E)×MJ l(F ) is generated by .π∗

E�E and .π∗
F �F .

Though the two equations are now pulled back into a natural common space, they
are not yet related. Directly intersecting .EJ and .FJ would result in a space

.EF := EJ ∩ FJ (20)

that is big enough to accomodate all solutions of both .E and .F, even if .E and .F are
completely unrelated. Therefore, one additionally needs to intersect .EJ and .FJ with
a third submanifold .� ⊂ J in order to relate them.

But what kind of submanifold is .� supposed to be? One would not like .� to be
of the form .π−1

E (φ) or .π−1
F (ψ) for .φ ⊂ J k(E) and .ψ ⊂ J l(F ) because this would

only impose additional relations on one of the pulled back equations. Instead .� is
supposed to relate the fibers of .J k(E) with those of .J l(F ) without imposing such
additional conditions. To ensure that, one might require that .� is large enough to
fulfill .E ⊂ πE(�) and .F ⊂ πF (�). This would in particular imply that .M ⊂ �,
i.e. .� would not impose any relations on M . However, the condition .E ⊂ πE(�)

might be considered too weak because it does not necessarily ensure that .� does
not impose any relations on .EJ locally. At the same time, the condition .E ⊂ πE(�)

in a different sense might also be considered too strong because it does not allow
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to restrict the comparison of the PDEs to a particular open neighbourhood (for
example, by adding some inequalities to the local definition of .�). Both issues can
be resolved, however, by requiring instead that for all open .W ⊂ EJ ∩ �, one has
.πE(W) open in .E.

The previous condition ensures that the dimension of .� is locally sufficiently
large. At the same time, it should not be arbitrarily large because this would again
not impose any relations and thus render the intersection meaningless. Since every
submanifold can locally be described by a set of equations where the number of
independent equations is equal to the codimension of the submanifold (see also
Sect. 4.1), the codimension of .� quantifies the number of (global) relations it
imposes. To ensure that the dependent variables of at least either .EJ or .FJ are
determined in terms of the other, this codimension should at least equal .n(x) :=
min(e(x), f (x)) where .e(x) := dim(Ex) and .f (x) := dim(Fx) are the dimensions
of the fibers of E and F over x. (Often they are constant and do not depend on
x. They are always locally constant because we work in the category of smooth
manifolds.) The above thoughts can be summarized in the following definitions.

Definition 1 Let .p : Y → X and .q : Z → X be fibered manifolds, let .SY be a
submanifold of Y and .SZ be a submanifold of Z, let .Y ×X Z be the fibered product
of Y and Z over X and let .πY : Y ×X Z → Y and .πZ : Y ×X Z → Z be the
canonical projections.

A submanifold .S ⊂ Y ×X Z is called almost diagonal iff for all open subsets
.U ⊂ S, the set .πY (U) is an open subset of Y and the set .πZ(U) is an open subset
of Z.

A submanifold .S ⊂ Y ×X Z is called almost diagonal to .SY and .SZ iff for
all open subsets .U ⊂ S, the set .πY (U) ∩ SY is an open subset of .SY and the set
.πZ(U) ∩ SZ is an open subset of .SZ .

As said above, intuitively, the definition is supposed to ensure that the submanifold
S is defined by equations, that either only relate fiber coordinates of Y with fiber
coordinates of Z within the fibered product .Y ×X Z, or, if it imposes additional
relations on the coordinates of Y or Z alone within the fibered product, then
those relations must already be imposed by .π−1

Y (SY ) and .π−1
Z (SZ). The previous

definition now allows to define a correspondence.

Definition 2 A correspondence between .E ⊂ J k(E) and .F ⊂ J l(F ), is a fibered
submanifold .� of .J k(E) ×M J l(F ) with .cod(�)(x) ≥ min(dim(Ex), dim(Fx))

which is almost diagonal to .E and .F.

Given a natural space to relate two PDEs, one can define their common part as a
set-theoretic intersection.

Definition 3 Given a correspondence .� between .E and .F, their intersection .I is
defined by

.I := EJ ∩ FJ ∩ �. (21)

Those definitions allow to define shared structure in Sect. 6.
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3.3 Local Description

Given a smooth manifold X, we denote its local coordinates (in some suitably
adapted chart) by .CX. If m denotes the dimensions of M and if e and f denote
the dimensions of the fibers of E and F , then the local coordinates of the manifolds
described above are given by

.

CM = (xi), CE = (xi, uj ), CJk(E) = (xi, uj
α), i ≤ m, j ≤ e, |α| ≤ k

CF = (xi, vg), CJ l(F ) = (xi, v
g
β), i ≤ m, g ≤ f, |β| ≤ l

CJk(E)×MJ l(F ) = (xi, uj
α, v

g
β), i ≤ m, j ≤ e, g ≤ f, |α| ≤ k, |β| ≤ l

(22)
If .E ⊂ J k(E) is a submanifold, then (by Proposition 2) it can locally always be
described as the kernel of independent functions, i.e. by equations .Fa(x

i, u
j
α) = 0,

where .1 ≤ a ≤ r . In other words, the submanifold .E is locally, in some
neighbourhood .U ⊂ J k(E) defined by those points .(xi, u

j
α) contained in U that

are subject to the conditions .Fa(x
i, u

j
α) = 0. Instead of .E = { (xi, u

j
α) ∈ U ⊂

J k(E) | Fa(x
i, u

j
α) = 0 }, the following shorthand notation is used.

.E : {Fa(x
i, uj

α) = 0
}

(23)

If we now pull back .E to .EJ = π−1
E (E) ⊂ J k(E) ×M J l(F ), then .EJ is locally

described by those equations that define the points in the inverse image .π−1(U ∩
E). This inverse image consists of all points .(xi, u

j
α, v

g
β) such that .π(xi, u

j
α, v

g
β) =

(xi, u
j
α) ∈ U ∩ E. But .(xi, u

j
α) ∈ U ∩ E, precisely iff .Fa(x

i, u
j
α) = 0. Thus, the

points in .π−1(U ∩E) are described by the same equations as the points in .U ∩E. As
a consequence, .EJ is locally described by the conditions .Fa(x

i, u
j
α) = 0 but now

imposed on an open neighbourhood of .J k(E) ×M J l(F ).
Furthermore, if .EJ and .FJ are locally defined by points fulfilling the equations

.FE
a (xi, u

j
α) = 0 and .FF

b (xi, v
g
β) = 0, then their intersection is necessarily locally

defined by those points that simultaneously fulfill both equations. In other words,
the intersection of .EJ and .FJ is locally described by the union of their equations.8

As a consequence, all local descriptions can be summarized as follows.

.

J k(E) ⊃ E : {FE
a (xi, u

j
α) = 0, 0 ≤ a ≤ rE },

J l(F ) ⊃ F : {FF
b (xi, v

g
β) = 0, 0 ≤ b ≤ rF },

J k(E) ×M J l(F ) ⊃ � : {φc(x
i, u

j
α, v

g
β) = 0, 0 ≤ c ≤ r� },

J k(E) ×M J l(F ) ⊃ I : {FE
a (xi, u

j
α) = FF

b (xi, v
g
β) = φc(x

i, u
j
α, v

g
β) = 0}.

(24)

8 The intuitive reason is that each equation represents a constraint on the space of solutions and
therefore the intersection, which is smaller than both original solution spaces, must be described
by the union of those constraints.
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Example Here, a simple version of the motivating example of the previous
Sect. 3.1 is rephrased in the present terminology. The equations are modeled
on a flat, Euclidean spacetime .R

3 × R with local coordinates .(xi, t), i ∈
{1, 2, 3}.

For Hydrodynamics, let the fibered manifold (which is now a trivial vector
bundle) be .π : E := M × R

3 → M with local coordinates .(xi, t, ui)

and dimension .dim(E) = m + e = 4 + 3. Let .ui,j denote the coordinates
corresponding to .∂ui/∂xj and recall that the sum convention is used. Let
.p : M → R be a given function called pressure and .ρ, ν ∈ R be the constant
density and viscocity. Denote by .p ,i the components of the gradient of p.
Describe .J 2(E) with local coordinates .(xi, t, ui, ui,j , ui

t , u
i,jk, u

i,j
t ) where

.ui,jk = ui,kj . The Navier-Stokes equations described in (14) in this setting
are then given by

.E :
{

ui
t + ujui,j = − 1

ρ
p ,i + νui,jj , ui,i = 0

}
(25)

Magneto-statics is also modeled on M , even though the equations do not
involve any time-component. (Since a realistic experiment always takes place
in space and time, even though the fields might not change over time, this is
not a bad assumption.) Thus, for magneto-statics, the vector bundle .ξ : F :=
M × R

3 → M with local coordinates .(xi, t, Bi) is defined and the magneto-
static equations (corresponding to (13)) are described on .J 1(F ) with local
coordinates .(xi, t, Bi, Bi,j ) via

.F : { εijkB
k,j = I i, Bi,i = 0

}
(26)

(the letter I is used for the current density instead of j to avoid confusion
with other j ’s). The natural product bundle .J := J 2(E) ×M J 1(F ) has local
coordinates .(xi, t, ui, Bi, ui,j , ui

t , u
i,jk, u

i,j
t , Bi,j , Bi

t ) one can define .� ⊂ J

as the submanifold locally given by

.� : { Bi = εijku
k,j
}

(27)

Since .� does not contain any equations that relate the coordinates of .J 2(E)

or .J 1(F ) among themselves, the projection .πE(U), of all of its open subsets
.U ⊂ �, is open in .J 2(E) and .πF (U) is open in .J 1(F ). Hence .� is almost
diagonal. As a consequence, .πE(U)∩E is also always open in .E and .πF (U)∩
F is always open in .F. Hence, .� is almost diagonal to .E and .F and is therefore
a correspondence in the sense of Definition 2. We can thus define a valid
intersection .I by the following equations.

(continued)
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.I = π−1
E (E) ∩ π−1

F (F) ∩ � :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui
t + ujui,j = − 1

ρ
p ,i + νui,jj , ui,i = 0

εijkB
k,j = I i, Bi,i = 0

Bi = εijku
k,j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(28)
The shared structure contained in this intersection can be computed with the
methods that are going to be introduced in the following sections. In Sect. 9.4,
it is shown that this shared structure indeed corresponds to the one described
in (16), and the assumption of a static fluid flow, guessed in (15), is the result
of the computation of the minimal consistency conditions for shared structure
to arise.

4 Consistency Conditions

The conditions that need to be satisfied in order to be able to speak of a meaningful
intersection of two PDEs are related to at least two areas, namely transversality
theory in differential topology and the theory of formal integrability. The next
subsections, as well as Sect. 5, provide all corresponding background information
in those areas that are needed to understand the rest of the article.

4.1 Smoothness Conditions

In this subsection is investigated under which circumstances the intersection .I of
two differential equations is actually again a differential equation, that means a
smooth submanifold of a jet space.

The intersection theory of differential topology can answer this question. The
remainder of this subsection largely follows [41] and those theorems that are needed
in the present context are cited. The starting point is the preimage theorem which is
a quite straightforward consequence of the inverse function theorem and the local
submersion theorem.

Definition 4 For a smooth map .f : X → Y , a point .y ∈ Y is called a regular
value if the pushforward (or differential) .dfx : TxX → Tf (x)Y is surjective for all
.x ∈ f −1(y).

Proposition 1 (Preimage Theorem) If y is a regular value of .f : X → Y , then
.f −1(y) is a smooth submanifold with dimension .dim(X) − dim(Y ).
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Note that it is often not hard to check if the pushforward of a smooth map is
surjective. It amounts to checking the rank of the Jacobian matrix.

There is also a partial converse to the theorem, namely

Proposition 2 If .Z ⊂ X is a smooth submanifold, then it can locally be defined as
the kernel of independent smooth functions.

The following proposition is also useful.

Proposition 3 Let .f : X → Y be smooth and y a regular value of f . The tangent
space of .Z := f −1(y) is given by .TxZ = ker(dfx) for any .x ∈ Z.

The next step is to consider what happens if one does not only look at the preimage
of a single regular value but at the preimage of a submanifold. Then one can use the
definition of transversality to prove the following theorem.

Definition 5 The map .f : X → Y is said to be transversal to the submanifold
.Z ⊂ Y , abbreviated .f −� Z, if the equation

.im(dfx) + Tf (x)Z = Tf (x)Y (29)

holds true at each point x in .f −1(Z).

Proposition 4 If the smooth map .f : X → Y is transversal to a submanifold
.Z ⊂ Y , then the preimage .f −1(Z) is a submanifold of X. Moreover,

.cod(f −1(Z) ⊂ X) = cod(Z ⊂ Y ) (30)

Given the manifold Y and two submanifolds .X ⊂ Y and .Z ⊂ Y , one can apply the
above theorem to their intersection .X∩Z as follows: If .i : X → Y is the canonical
inclusion that embeds X into Y then .X ∩ Z = i−1(Z). Since .im(dix) = TxX, and
.Ti(x)Z = TxZ, one obtains

Proposition 5 If X and Z are smooth submanifolds of Y , then .X ∩ Z is a smooth
submanifold of Y iff .X −� Z, that means

.TxX + TxZ = TxY (31)

for all .x ∈ X ∩ Z. In this case .cod(X ∩ Z) = cod(X) + cod(Z).

Condition (31) can be checked locally. Indeed, we obtain the following proposition
as a consequence.

Proposition 6 If X and Z are submanifolds of Y , locally described by equations of
the form .FX

a (yi) = 0 with .1 ≤ a ≤ r and .FZ
b (yi) = 0 with .1 ≤ b ≤ q, then .X −� Z

iff dF as defined in Eq. (32) has full rank.

Proof If Y has local coordinates .(yi), then, since X is a smooth submanifold of Y ,
by Proposition 2, every local chart .U ⊂ X is described as the kernel of independent
functions .FX : Y → R

r , i.e. .U = (FX)−1(0), or, equivalently, we write as before



A Geometric Framework to Compare PDEs and Classical Field Theories 193

.X : {FX
a (yi) = 0} with .1 ≤ a ≤ r . Using Proposition 3, we can then compute

.TxX as the kernel of .dFX. Similarly, if Z is locally described by .FZ
b (yi) = 0 with

.1 ≤ b ≤ q, then .TxZ = ker(dFZ) and .X ∩ Z is locally described by the joint
system of those equations, i.e. by

.0 = Fc(y
i) =

{
FX

c (yi), 1 ≤ c ≤ r

FZ
c−r (y

i), r + 1 ≤ c ≤ r + q
(32)

By Proposition 5, .X −� Z iff .X ∩ Z = F−1(0) is a smooth submanifold, which, by
the preimage theorem, 1, is true if dF is surjective, i.e. has full (row) rank. ��
Furthermore, using Sard’s theorem, one can prove the transversality theorem which
guarantees that almost all maps of a family of smooth maps are transversal to some
submanifold in the codomain.

Proposition 7 (Sard) The set of values of a smooth map .f : X → Y which are
not regular has Lebesgue measure zero.

This means “almost all” points of a smooth map are regular. However, sets of
measure zero can be quite large, for example the subset .R

n has measure zero in
.R

n+1.

Proposition 8 (Transversality Theorem) Suppose that .F : X × S → Y is a
smooth map between smooth manifolds, where only X has boundary, and let Z be
any boundaryless submanifold of Y . One can use F to define a smooth family of
homotopic maps by .fs(x) := F(x, s). If both F and .∂F are transversal to Z, then
for almost every .s ∈ S, both .fs and .∂fs , are transversal to Z.

For a map .f : X → R
m this immediately implies that transversality is a

generic feature because one can simply define S as an open subset of .R
m and define

.F(x, s) := f (x)+s. As S is open in .R
m, this means that F is surjective everywhere

and therefore Definition 5 is always fulfilled. Following this thought further, one can
prove the so-called transversality homotopy theorem.

Proposition 9 For any smooth map .f : X → Y and any boundaryless
submanifold Z of the boundaryless manifold Y , there exists a smooth map .g : X →
Y homotopic to f such that .g −� Z and .g −� ∂Z.

Now reconsider two differential equations .E ⊂ J k(E) and .F ⊂ J l(F ). Using the
above, one can show the following.

Proposition 10 .EF = EJ ∩ FJ as defined in Eq. (20) is a PDE, i.e. a smooth
submanifold.

Proof To check that .EF is a smooth submanifold, it suffices, by Proposition 5, to
check that .EJ

−� FJ , which in turn, can be checked locally using Proposition 6. So
if .E and .F are locally described by the independent smooth functions .FE

a (xi, u
j
α)

and .FF
b (xi, v

g
β) as in Eq. (24), then we must check if the differential of the joint
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system of equations .Fc = 0 as defined in Eq. (32) has full rank. Since .E and .F are
assumed to be fibered submanifolds of .J k(E) and .J l(F ), they do not impose any
conditions on M . Furthermore, .FE does not depend on .v

g
β and .FF does not depend

on .u
j
α . Hence, .dFE and .dFF are linearly independent. Since they are both assumed

to have full rank and they are independent, the joint system dF must also have full
rank. ��
This theorem implies the following.

Corollary 1 .I = EF ∩ � is a PDE iff .EF −� �.

Whether .EF −� � or not depends on the definition of .� and can not be proven in
general. To check it explicitly in practice for a given .EF and a given .�, one can
calculate the rank of the joint system as described in Propositions 5 and 6. If this
rank is locally maximal, then transversality is guaranteed. If the rank is not locally
maximal but locally constant, then we can restrict the codomain such that the smooth
system becomes locally maximal. Therefore, the intersection is also a well-defined
smooth submanifold at those points around which the system is locally constant.

This is also the reason why the preimage of a differential operator which has
locally constant rank is a smooth submanifold, i.e. a differential equation (if it is not
empty), see condition (11).

However, even if .EF is not transversal to .�, then the transversality theorem 9
implies that it suffices to deform .� (locally this means to perturb the smooth
functions describing .�) just ever so slightly in order to obtain an intersection
that is a well-defined object in the category of smooth manifolds. Furthermore, if
some smooth functions .φc locally describes our manifold .�, one way to make it
transversal to .EF is to use .F(x, s) := φ(x) + s for some very small s. Thus,
the theorem assures us that taking intersections of .EF and .� is not a hopeless
endeavor but to the contrary can always lead to a smooth manifold at least after
slight deformations.

4.2 Differential Consistency

In the last subsection was clarified when the intersection of two differential
equations is actually again a differential equation. As a next step, it is assumed
that the intersection is a differential equation, i.e. a smooth submanifold, and it is
asked if the PDE has solutions.

Ultimately, one is interested in the existence of smooth (or even more general)
solutions but since there is not yet any general theory that allows to compute whether
a solution (in any non-analytic category) of a PDE exists or not, it is necessary at this
point to ask for something weaker. The next best thing after a general condition that
allows to compute the existence of solutions is to ask for the existence of so-called
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formal solutions. Formal solutions are formal power series that formally solve the
PDE (i.e. the series satisfies all algebraic equations describing the smooth solution
spaces that characterize the PDE and its prolongations) but is not guaranteed to
converge or might converge to something that is not a solution.

Formal solutions are tractable because their existence is encoded in the differen-
tial consequences of a PDE.

In particular, if one can prolong an equation infinitely many times in a certain
smooth way without obtaining any contradiction, then one “point” of the infinite
prolongation .P ∞(E) can be seen as the sequence of coefficients for a (not
necessarily converging) taylor expansion that solves the equation locally around the
projection of that point. However, as remarked below Eq. (6), the prolongations of
.E do not necessarily exist.

This means that in order to check if formal solutions exist, one needs a general
formalism to determine if a PDE is differentially consistent in the sense that all of
its prolongations exist.

Furthermore, recall that in the motivating example in Sect. 3.1, we had to make
certain physical assumptions (15). It would be beautiful if those assumptions could
be obtained in a systematic way. In general, if one could obtain the minimal amount
of assumptions that must be made to make a system differentially consistent (if
such assumptions exist), then this would be optimal. Fortunately, one can use
the theory of formal integrability for this purpose. In particular, the “physical
assumptions” come out of the formalism as “integrability conditions” that are
needed for consistency.

Since the theory is somewhat involved, the next section provides an introduction
to the theory of formal integrability. In the section after the next, those notions
of formal integrability are combined with the notions of correspondence and
intersection defined above to define what it means for two theories to share structure.

5 Formal Integrability

Subsequently, the introduction follows [42], [17], and [18] (chapter IX) to introduce
the notion of formal integrability. The first subsection contains the necessary
definitions and the derivation of explicit coordinate expressions which are missing
in Goldschmidt’s publications, as well as the derivation of Proposition 11 that can
simplify some computations.

The second subsection describes the main theorems of the formal theory. The
third subsection discusses integrability conditions which are especially important
for subsequent constructions. The reader already familiar with formal integrability
can directly proceed with Sect. 5.3. The reader who prefers to learn with examples
is referred to Sect. 5.4.
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5.1 Definitions and Preliminaries

1. Recall that if X, Y and N are manifolds and f : Y → X is a smooth map and
π : N → X is a fiber bundle with fibers denoted by Nx, x ∈ X, then f ∗N
denotes the pullback bundle over Y and it is defined as follows:

.f ∗N := {
Nf (y) | y ∈ Y

}
. (33)

To each point y ∈ Y , we attach the fiber Nf (y) that would usually be attached
to the point x = f (y) ∈ X.

Suppose we are given the following configuration of smooth maps between
smooth manifolds:

1
1

2
2

1

2

where πi : Ni → Xi are vector bundles (not just fiber bundles). Then we
define

.N1 ⊗Y N2 := f ∗N1 ⊗ g∗N2 =
{
N1

f (y) ⊗ N2
g(y) | y ∈ Y

}
. (34)

which is a vector bundle over Y .
2. Now, for any k ≥ 0, let V (J k(E)) → J k(E) denote the vertical subbundle

of the tangent bundle T J k(E) of J k(E) containing those vectors which are
tangent to the fibers of π : J k(E) → M . It is a bundle over J k(E). In a
local neighbourhood U ⊂ J k(E) with coordinates (xi, uj , u

j
σ ), V (J k(E)) is

the span of the vector fields

.V (J k(E)) = span

(
∂

∂uj
,

∂

∂u
j
σ

)
(35)

and we have

.π∗,θ

(
∂

∂uj

∣∣∣∣
θ

)
= 0 = π∗,θ

(
∂

∂u
j
σ

∣∣∣∣
θ

)
∈ Tπ(θ)M (36)

at every point θ ∈ U ⊂ J k(E).
3. If M denotes our base manifold as before, we denote by T ∗ its tangent bundle,

by SkT ∗ the k-th symmetric power of the tangent bundle and by �kT ∗ the k-th
anti-symmetric power.
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In local coordinates, general elements of those spaces are written

.

T ∗ � v = vidxi, i ∈ {1, · · · ,m}
SkT ∗ � a = ai1...ik dxi1 ∨ · · · ∨ dxik , ij ∈ {1, · · · ,m}
�kT ∗ � w = wi1...ik dxi1 ∧ · · · ∧ dxik , ij ∈ {1, · · · ,m}

(37)

where the sum convention is always used. SkT ∗ and �kT ∗ are different in that
dxij ∨ dxik = dxik ∨ dxij but dxij ∧ dxik = −dxik ∧ dxij . As a consequence,
dim�kT ∗ ≤ dim(SkT ∗). To calculate the dimension, note that there are as
many symmetric basis elements as there are ways to put k balls between m − 1
sticks. Thus,

.dim(SkT ∗) =
(

m − 1 + k

k

)
, dim(�kT ∗) =

(
m

k

)
(38)

If one has a multi-index α with |α| = k, one can define dxα∨ := dxα1∨· · ·∨dxαk

and dxα∧ := dxα1 ∧ · · · ∧ dxαk to write more concisely

. SkT ∗ � a = aαdxα∨, |α| = k, �kT ∗ � w = wαdxα∧, |α| = k.

(39)
4. Define the map �l,k : Sl+kT ∗ → SlT ∗ ⊗ SkT ∗ as the composition

where i is the injection given by

.i(dxi1 ∨ . . . ∨ dxik+l ) :=
∑

σ∈Sk+l

dxσ(i1) ⊗ . . . ⊗ dxσ(il+k) (40)

where the sum goes over all entries σ of the permutation group S. And sl,k is
the projection given by

.sl,k(dxi1 ⊗ · · · ⊗ dxil+k ) := dxi1 ∨ · · · ∨ dxil ⊗ dxil+1 ∨ · · · ∨ dxil+k (41)

Thus, all in all, we obtain

.

�l,k(dxi1 ∨ . . . ∨ dxik+l ) =
∑

σ∈Sk+l

dxσ(i1) ∨ . . . ∨ dxσ(il )

⊗ dxσ(il+1) ∨ · · · ∨ dxσ(il+k).

(42)

5. Given some smooth manifold Y and maps π : Y → M and π0 : Y → E, define

.Fk
Y := SkT ∗ ⊗Y V (E) (43)
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Call it k-fiber (over Y ). The k-fiber is the vector bundle whose fibers have as
many dimensions (and hence local coordinates) as there are local coordinates
of order k on J k(E). This can be seen by observing that

.dim((F k
Y )p∈Y )

(38)= dim(SkT ∗) · e
(3)= dim(J k(E)) − dim(J k−1(E)). (44)

In local coordinates, an element p ∈ Fk
Y can be written p = (θ, a) where θ ∈ Y

and

.a = a
j
i1...ik

dxi1∨· · ·∨dxik |π(θ)⊗ ∂

∂uj

∣∣∣∣
π0(θ)

= aαdxα∨|π(θ)⊗ ∂

∂uj

∣∣∣∣
π0(θ)

. (45)

6. One can show (see [17, Proposition 5.1]) that for k ≥ 1, the jet bundle J k(E)

is an affine bundle over J k−1(E), modeled on the vector bundle SkT ∗ ⊗J k−1(E)

V (E) over J k−1(E) ((44) shows that the dimensions match).
As described in chapter IX.§3 of [18], if θ ∈ J k−1(E), the vector space

SkT ∗
π(θ) ⊗Vπ0(θ)(E) considered as an additive group acts freely and transitively

on the fiber of J k(E) over θ . As a consequence, for a ∈ SkT ∗
π(θ) ⊗ Vπ0(θ)(E),

we can denote by q+a the image of the element q of the fiber J k(E)θ under the
action of a. If (x, uj , u

j
σ ) are the local coordinates of q, the local coordinates

of q + a are (x, uj , z
j
σ ) where

.

(
z
j
σ = u

j
σ , if |σ | < k

z
j
σ = u

j
σ + a

j
α=σ , if |σ | = k

)
(46)

(Goldschmidt also provides an intrinsic definition of this map in §5.)
7. The above described action on the fibers of πk

k−1 : J k(E) → J k−1(E) induces
a map

.μ : Fk
Jk(E)

→ V (J k(E)), (θ, a) �→ d

dt
(θ + ta)|t=0

(46) and (36)= aj
α

∂

∂u
j
α

∣∣∣∣
θ

(47)
where |α| = |i1 · · · ik| = k.

8. Because of (36), (πk
k−1)∗,θVθ (J

k(E)) = Vπk
k−1(θ)(J

k−1(E)), i.e. the pushfor-

ward of πk
k−1 restricted to Vθ(J

k(E)) is a surjective map whose kernel consists
of the vectors tangent to the fibers of πk

k−1 : J k(E) → J k−1(E). Those
vectors are precisely those contained in μ(F k

θ∈J k(E)
). Therefore, we have the

exact sequence of vector spaces

which we can pull back to a sequence of vector bundles using (33) and (34):
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This is an exact sequence (see also [18] or [17]) of vector bundles over J k(E).
9. Given a differential operator ϕ : J k(E) ⊃ J → F , we can restrict

its pushforward ϕ∗ to the vertical subbundle V (J ) of T J . By definition, a
differential operator is a morphism of fibered manifolds. That means, we have
ξ ◦ ϕ = π (where π : J k(E) → M and ξ : F → M are projections). This
implies that vertical vectors of J are mapped to vertical vectors of F . Thus, we
obtain a map ϕ∗ : V (J ) → V (F ). Now define the symbol σ(ϕ) (of ϕ) as the
composition

.

σ(ϕ) := ϕ∗ ◦ μ : Fk
J → V (F )

p = (θ, a) �→ ϕ∗,θ

(
a

j
σ=i1...ik

∂

∂u
j
σ

∣∣∣∣
θ

)
= aj

σ

∂ϕh

∂u
j
σ

∂

∂wh

∣∣∣∣
ϕ(θ)

(48)

Here h ∈ {
1, · · · , dim(Fπ(θ))

}
and |σ | = k because of (44), (46) and (47).

10. The l-th prolongation σ l(ϕ) of the symbol σ(ϕ) of ϕ is defined as the
composition (see [18], end of chapter IX)

In local coordinates, we can express a point p ∈ F l+k
J as a tuple p = (θ ∈ J ⊂

J k(E), a ∈ Sl+kT ∗ ⊗ V (E)) such that

.

σ l(ϕ)(p) =
∑

σ∈Sk+l

a
j

σ (i1)...σ (il+k)
dxσ(i1) ∨ . . . ∨ dxσ(il )

⊗ σ(ϕ)

(
dxσ(il+1) ∨ · · · ∨ dxσ(Il+k) ⊗ ∂

∂uj

∣∣∣∣
θ

)

(a is symmetric)=
∑

σ∈Sk+l

a
j
i1...il+k

dxσ(i1) ∨ . . . ∨ dxσ(il )

⊗ ∂ϕh

∂u
j

σ(il+1)...σ (il+k)

∂

∂wh

∣∣∣∣
ϕ(θ)

(49)
σ 1(ϕ) is especially important, and is explicitly rewritten as follows.

. σ
1(ϕ)(p) =

∑
σ∈S1+k

a
j
i1...i1+k

∂ϕh

∂u
j

σ(i1)...σ (ik)

dxσ(i1+k) ⊗ ∂

∂wh

∣∣∣∣
ϕ(θ)

(50)

11. The following proposition is useful for practical calculations.



200 L. S. Barth

Proposition 11 The following diagram commutes.

Locally, one can thus use (52) with |α| = l instead of (49).

Proof If one applies μ to Eq. (49), one obtains

.μ(σ l(ϕ)(p)) =
∑

σ∈Sk+l

a
j

σ (i1)...σ (il+k)

∂ϕh

∂u
j

σ(il+1)...σ (il+k)

∂

∂wh
σ(i1)...σ (il )

∣∣∣∣
pl(ϕ)(θ)

(51)

One can furthermore define the composition9

In local coordinates, this means, for |σ | = l + k, 0 ≤ |α| ≤ l, that

.

pl(ϕ)∗ ◦ μ : F l+k
J → V (J l(F ))

p = (θ, a) �→ pl(ϕ)∗,θ

(
a

j
σ=i1...il+k

∂

∂u
j
σ

∣∣∣∣
θ

)
= aj

σ

∂(Dαϕh)

∂u
j
σ

∂

∂wh
α

∣∣∣∣
pl(ϕ)(θ)

(52)

Note that, if ϕ : J k(E) ⊃ J → F is a differential operator of order k,
then it involves at most coordinates u

j
β with 0 ≤ |β| ≤ k. As a consequence

∂Dαϕh/∂u
j
σ for |σ | = l + k must be zero for all 0 ≤ |α| < l. Hence, to obtain

the non-zero components of pl(ϕ)∗ ◦ μ, it suffices to calculate (52) for |α| = l.
As all terms of Dαϕh in (52) vanish if they are not highest order, let us

calculate what is left ofDαϕh if we only look at its highest order terms. Suppose
that ϕ is a differential operator of order k, then

.

Dαϕh = Dα1...αl−1Dαl
ϕh (7)= Dα1...αl−1

(
∂ϕh

∂xαl
+ · · · + ∂ϕh

∂u
j
θ

u
j
θαl

)
with |θ | = k

(highest order)−→ ∂ϕh

∂u
j
θ

Dα1...αl−1u
j
θαl

= ∂ϕh

∂u
j
θ

u
j
θα1...αl

= ∂ϕh

∂u
j
θ

u
j
θα

(53)

This means the calculation of terms of order k + l of Dαϕh only involves
derivatives of ϕh of order k. Thus,

.
∂(Dαϕh)

∂u
j
σ

= ∂ϕh

∂uk
θ

∂uk
θα

∂u
j
σ

(54)

9 To recall the definition of P l(J ), see Eq. (6).
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Now ∂uk
θα/∂u

j
σ = 1 only if k = j and θ1 · · · θkα1 · · · αl = σ1 · · · σl+k or any

permutation thereof.
Therefore, when summing over everything, one obtains

.

aj
σ

∂(Dαϕh)

∂u
j
σ

∂

∂wh
α

∣∣∣∣
pl(ϕ)(θ)

=
∑

σ∈Sk+l

aσ (i1)...σ (ik+l )

∂ϕh

∂u
j

σ(i1)...σ (ik)

∂

∂wh
σ(ik+1)...σ (ik+l )

∣∣∣∣
pl(ϕ)(θ)

(55)

As the sum goes through all permutations, this is equivalent to Eq. (51). Thus,
we obtain μ ◦ σ l(ϕ) = pl(ϕ)∗ ◦ μ. ��

12. Given a differential equation E, define

.gk := V (E) ∩ μ(F k

E) (56)

and also call it the symbol (of E). It’s l-th prolongation is defined as

.gk+l := (SlT ∗ ⊗E V (E)) ∩ F l+k

E (57)

If a differential operator ϕ : J → F is given such that (11) holds, [17] shows
that the symbol of E := kers(ϕ) and its l-th prolongation are given by

.gk = ker(σ (ϕ))|E, gk+l = ker(σ l(ϕ))|E. (58)

Set gk+l = Fk+l

E for l < 0 and F−1
E = 0.

13. Define a map δ : S1+kT ∗ → T ∗ ⊗ SkT ∗ by setting δ = �1,k (see (42)). Then
extend this map by letting the same letter δ denote the map

.

δ : T ∗ ⊗ SkT ∗ → �2 ⊗ Sk−1T ∗

dxh1 ⊗ dxi1 ∨ · · · ∨ dxik �→ (−1)dxi1 ∧ �1,k−1(dxi1 ∨ · · · ∨ dxik )
(59)

Now let n be any natural number and w ∈ �j and extend the map again as
follows:

.

δ : �j ⊗ Fn
Y → �j+1 ⊗ Fn−1

Y

w ⊗ dxi1 ∨ · · · ∨ dxin ⊗ ∂

∂ul
�→ (−1)jw ∧ �1,n−1

(
dxi1 ∨ · · · ∨ dxin

)
⊗ ∂

∂ul
.

(60)

If we set SlT ∗ = 0 for l < 0, one can now use this map δ to obtain the sequence
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(where m = dim(M).) This sequence is exact (see [17, Lemma 6.1]).
As gk+l ⊂ Fk+l

E and δ(gn) ⊂ T ∗ ⊗E gn−1, the above map (60) also gives
rise to the sequence

The cohomology groups of this sequence are denoted by

.Hn,j := ker(δ : �j ⊗E gn → �j+1 ⊗E gn−1)

Im(δ : �j−1 ⊗E gn+1 → �j ⊗E gn)
(61)

and are called Spencer cohomology groups.
One says that

. gk is r − acyclic if Hn,j = 0 for all n ≥ k and 0 ≤ j ≤ r (62)

and that gk is involutive if

. gk is ∞-acyclic, i.e. if Hn,j = 0 ∀ n ≥ k, j ≥ 0. (63)

14. Finally, one needs the notion of a quasi-regular basis. To this end, define the
space

.Sk,j T ∗ :=
{
span(dxi1 ∨ · · · ∨ dxik )|j + 1 ≤ i1 ≤ · · · ≤ ik ≤ m = dim(M)

}
(64)

Its dimension can be calculated as before by counting the number of possibili-
ties of putting k balls between m − (j + 1) sticks. The result is

.dim(Sk,j T ∗) =
(

m − j − 1 + k

k

)
(65)

Using this definition, define the k, j -fiber

.F
k,j
Y := Sk,j T ∗ ⊗E V (E) (66)

and use this to define the k, j -symbol and its prolongation

.gk,j := gk ∩ F
k,j

E , gk+l,j := gk+l ∩ F
k+l,j

E . (67)

If ϕ : J → F is a differential operator such that (11) holds, then the k, j -
symbol of ϕ and its prolongation are defined as the restrictions of σ(ϕ) and
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σ l(ϕ) to F
k,j
J and F

l+k,j
J . Explicitly, we have

.

σ(ϕ)j : = σ(ϕ)|
F

k,j
J

: F
k,j
J → V (F ),

σ l(ϕ)j : = σ l(ϕ)|
F

l+k,j
J

: F
l+k,j
J → V (F ),

⇒ gk,j = ker(σ (ϕ)j )|Rk
, gl+k,j = ker(σ l(ϕ)j )|E.

(68)

Now say that a basis {∂1, · · · , ∂m} |x∈M of TxM is quasi-regular for gk at p ∈ E
if10

.dim(gk+1
p ) = dim(gk

p) +
m−1∑
j=1

dim(g
k,j
p ). (69)

And say that there is a quasi-regular basis for gk if there is a quasi-regular basis
for gk at every p ∈ E.

5.2 Formal Theory

Now with all definitions at hand, we can proceed with a motivation for the definition
of formal integrability. Given a differential equation .E, one would like to find its
solutions. In general, solutions around a point are difficult to find. Recall that a
horizontal solution can be described by a section .s : M ⊃ U → E such
that .jk(s)(U) ⊂ E. If a section fulfills this property and it is smooth, then its
prolongations also fulfill the prolonged equations, i.e. .jk+l (s)(U) ⊂ P l(E). In
particular, this means, if s is a solution and one chooses a fixed .x ∈ U , then it
holds true that

.jk+l (s)(x) ∈ P l(E) for all l ≥ 0. (70)

Thus, (70) is a necessary condition for the existence of a smooth solution .s : U → E.
A point .θ ∈ E is called a solution of order k at .x = π(θ). It is called a solution of

order k at x because by Borel’s lemma, one can always find a section s that fulfills
.jk(s)(x) = θ . However, this section does not necessarily fulfill the condition (70).

Therefore, given a solution .θ ∈ E of order k, one wishes to check if there exists a
section such that (70) holds. If this condition holds at .x = π(θ), then one says that
.E has a formal solution at .θ . If one can find formal solutions at all points of .θ ∈ E,
then one says that .E is formally integrable.

10 The condition on gk locally imposes a condition on the dual basis and thus also on the basis.
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As higher derivatives are promoted to coordinates in the jet bundle approach, .E
is usually the kernel of an algebraic (most often polynomial) equation. Therefore,
to find solutions of order k is comparatively easy because it does not involve any
analysis but algebraic operations are sufficient.

Finally, suppose that a formal solution consisting of a section s that fulfills (70)
at the point .x = π(θ) is given. Then the section s we have found is precisely the
section whose taylor expansion is equal to the expansion whose coefficients are
.j l(s)(x). This taylor expansion does not necessarily converge. It may also happen
that it does only converge at x and in no neighbourhood of x. Therefore, it is not
necessarily a solution of .E in the usual sense.

However, suppose that it does converge in a neighbourhood of x, then it is a
smooth solution of .E. In general, it is possible to show that a formal solution always
converges if one works in the analytic category where all functions are locally given
by a converging taylor expansion. Therefore, in this category, formal integrability is
also a sufficient condition for the existence of (local) solutions.

To motivate the precise definition of formal integrability, note that the require-
ment that any solution of order k can be extended to a solution of infinite order can
only be fulfilled if the prolongation of any order of the equation does not impose
new constraints on the coordinates of the solution up to order k (“new constraints”
means new equations involving coordinates up to order k which are not equivalent
to the equations one started with). For suppose we started with a solution of order
k that did not fulfill those constraints, then this solution could not be extended to a
solution of the order which imposes those constraints.

If no new constraints are imposed on the coordinates of order k by the
prolongation, this means geometrically that .P l(E) is a surface which can be given
local coordinates that agree with those of .E up to order k. Then,

.πk+l+1
k+l : P l+1(E) → P l(E) is surjective for all l ≥ 0. (71)

One might define formal integrability using just this condition. However, in most
cases one would like to work in the smooth category in order to find out if
smooth solutions exist for some equation. This requires us to impose an additional
smoothness condition. To ask if a smooth solution exists given some k-th order
solution is equivalent to asking whether the prolongation is smooth to all orders. As
a solution of order .k + l is a section such that .jk+l (s)(U) ⊂ P l(E) (with .U ⊂ M),
smoothness of the section can only be guaranteed if .P l(E) is a smooth submanifold
of .J k+l (E). Goldschmidt shows in [17, proposition 7.1] that .π1+k

k : P 1(E) → E
is a smooth fibered submanifold of .π1+k

k : J 1+k(E)|E → E if and only if .g1+k

(defined in (57)) is a vector bundle over .E and .π1+k
k : P 1(E) → E is surjective.

Those considerations motivate the following definition:

Definition 6 A differential equation .E is said to be formally integrable if

1. .πk+l+1
k+l : P l+1(E) → P l(E) is surjective,

2. .gk+l+1 is a vector bundle

for all .l ∈ {0, 1, 2, · · · }.
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The above definition requires to check an infinite amount of conditions. Gold-
schmidt proved a theorem that facilitates to determine formal integrability in a finite
amount of steps. It is based on theorem 8.1 of [17] which we cite here:

Proposition 12 If .E is a differential equation, then it is formally integrable if and
only if

1. .πk+1
k : P 1(E) → E is surjective,

2. .gk+1 is a vector bundle over .E,
3. .gk is 2-acyclic.

Recall that .gk is 2-acyclic (cf. (62)) if the Spencer cohomology groups .Hn,j (see
(61)) vanish for all .n ≥ k and .0 ≤ j ≤ 2. However, [17, Lemma 6.2] also proves
that .gk is always 1-acyclic, i.e. .Hn,j = 0 for all .n ≥ k and .0 ≤ j ≤ 1. Therefore,
one can replace the last condition by the requirement that

.Hn,2 = 0 for all n ≥ k. (72)

This still seems to require an infinite number of calculations. However, [17, Lemma
6.4] shows the following.

Proposition 13 If the dimension of .Vπ(θ)(E) does not depend on .θ ∈ E ⊂ J k(E),
then there exists an integer .k0 > k depending only on .dim(M) and k and
.dimVπ(θ)(E) such that .gk0 is involutive, i.e. that .gk0 is .∞-acyclic, i.e. .Hn,j =
0 ∀ n ≥ k0, j ≥ 0.

Similarly, [17, Lemma 6.4 and proposition 7.2] is used to prove [17, theorem 8.2]
which reads

Proposition 14 If the dimensions of all components of E are the same and .E ⊂
J k(E) is a differential equation, then there exists an integer .k0 > k depending only
on .dim(M) and k and .dim(E) such that .E is formally integrable if and only if

1. .πk+1+l
k+l : P 1+l (E) → P l(E) is surjective,

2. .gk+1+l is a vector bundle over .E,

for all .0 ≤ l ≤ k0 − k.

The last two propositions in particular imply that whenever the dimension of
E is constant (which is the case in most applications, where one often chooses
.E = R

m × R
e or some other manifold with constant dimension), then it must be

possible to determine whether .E is formally integrable in finitely many steps. This
means that one actually does not have to compute the infinitely many cohomology
groups appearing in (72). Nevertheless, Proposition 14 does not tell us how large this
finite .k0 might be. In general, there does not seem to be a simple way to estimate
this, which can be problematic. However, it turns out that one can prove stronger
statements about the stronger condition of .∞-acyclicity/involutivity (defined in
(63)). In [18, theorem 2.14 in Chapter IX] (according to them, going back to Serre),
they state:
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Proposition 15 The following conditions are equivalent:

1. There exists a quasi-regular basis (cf. (69)) of .gk at .θ ∈ E,
2. .gk is involutive at .θ , i.e. .Hn,j

θ = 0 ∀n ≥ k, j ≥ 0.

This means, if there is a quasi-regular basis, then .gk is .∞-acyclic and therefore also
2-acyclic. Hence, combining Proposition 12 with the last proposition, we obtain

Proposition 16 If .E is a differential equation, then it is formally integrable if

1. .πk+1
k : P 1(E) → E is surjective,

2. .gk+1 is a vector bundle over .E,
3. There exists a quasi-regular basis for .gk .

Definition 7 A PDE .E is called involutive if and only if it satisfies the conditions
of Proposition 16.

As a corollary, an involutive equation is also formally integrable but the converse
is not true (because 2-acyclicity does not imply .∞-acyclicity). Indeed there are
examples of equations that are formally integrable but not involutive. Thus, though
the above Proposition 16 is more readily used in practice than Propositions 12 or 14,
it only provides a sufficient but not a necessary condition for formal integrability.

Remark An extensive treatment including possible subtleties of involution
and formal integrability can be found in [19].

The above Propositions 14 and 16 are the central propositions of this subsection.
In practice, one can use them to determine formal integrability and involutivity in
finitely many steps. In actual calculations of the rank of .gk (which is necessary for
validating condition 3 of Proposition 16), it may happen that one must determine the
rank of a larger matrix. As written above, the code for a small program computing it
can be found in [43] but much more sophisticated algorithms are provided in [19].

Given formal integrability of an equation .E, it becomes possible to show the
existence of local solutions in the analytic category as mentioned at the beginning
of the subsection. The precise definition of analyticity is

Definition 8 A map is called analytic if, around any point, it can locally be defined
by a convergent power series. (Note that this definition can also be applied to real
functions. If the condition holds, they are called real-analytic).

A manifold is called analytic if all of its transition functions are analytic. The
analytic category is defined as the category in which the objects are analytic
manifolds and the morphisms are analytic maps between them.

The existence of local solutions in the analytic category is guaranteed by theorem
9.1 of [17] which is here rephrased as follows:
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Proposition 17 Suppose that .E is a formally integrable differential equation which
is analytic. Then given a point .θ ∈ P l(E) (for any .l ∈ {0, 1, 2, · · · }), it is possible
to find an analytic section .s : U → E where U is a neighbourhood of .x = π(θ)

such that .jk+l (s)(x) = θ and s is a local solution of .E.

One might wonder if it is possible to prove something stronger, for example that
smoothness guarantees existence of local solutions. This is not possible because of
“Lewy’s example”, a well-known counter-example.

5.3 Integrability Conditions

When checking for formal integrability or involutivity of a system of differential
equations, it may happen that the first prolongation .P 1(E) does not project surjec-
tively to .E via .πk+1

k , or that .gk+1 is not a smooth vector bundle or that there exists
no quasi-regular basis for .gk but that the PDE can become formally integrable if
certain integrability conditions .B(E) are added to .E, i.e. by defining .B := B(E)∩E,
.B can become formally integrable. This subsection gives a definition for .B(E) that
is useful for identifying minimal consistency conditions when comparing systems
of differential equations and field theories.

The definition is motivated by the following example in which surjectivity fails
to hold.

Example Let .π : E := R
2 × R be a fibered manifold with local coordinates

.(x, t, u). Define .F := R
2 × R

2 and consider the differential operator

.� : J 2(E) → F, (x, t, u, ux, ut , uxx, utt , uxt ) �→ (x, t, ux, utt )

(73)
Now the differential equation .E = ker0(�) is given by

.E = {(x, t, u, 0, ut , uxx, 0, uxt )} (74)

The first prolongation is

.

P 1(E) = ker(�1) = ker
(
ux, utt , uxx, uxt , uttx, uttt

)
= {(x, t, u, 0, ut , 0, 0, 0, uxxx, uxxt , 0, 0)}

(75)

so that .π3
2 (P 1(E)) = ker {(x, t, u, 0, ut , 0, 0, 0)} which is much smaller than

.E. The reason is that due to the prolongation, there arise additional constraints
on coordinates of the order of .E, here of second order, namely on .uxx and

(continued)
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.utx . Concretely, they are given by

.B(E) : { uxx = 0, utx = 0 }. (76)

.B(E) are the integrability or consistency conditions of this system .E. There-
fore, to restore surjectivity, one can try to include those additional constraints
right from the start and define

.B : = E ∩ B(E) = ker
(
ux, utt , uxt , uxx

) = {(x, t, u, 0, ut , 0, 0, 0)}
(77)

Now if we prolong this system, then the result is similar to .P 1(E) except for
the fact that the additional constraints .uxtx = 0, .uxxt = 0 are additionally
imposed. However, those are only new constraints on the coordinates of order
3. Therefore, the projection .π3

2 |P 1(B) is now indeed surjective.
Furthermore, we can read off a solution from .B, namely

.u(x, t) = At + B (78)

which is a meaningful solution because it also is a solution of .E. Indeed,
for reasons of consistency just shown above, those are the only solutions of
.E. Therefore, the procedure to define a new system for which surjectivity is
guaranteed is meaningful as long as .B is again a PDE (in particular, it must
be non-empty).

Motivated by the observations above, we define consistency/integrability condi-
tions as follows.

Definition 9 The integrability condition of a given PDE .E ⊂ J k(E) is defined to
be the biggest smooth submanifold .B(E) of the lowest order jet space .J l(E) (with
.l ≥ k) such that .B := B(E)∩(πl

k)
−1(E) is formally integrable (where .πl

k : J l(E) →
J k(E) is the canonical projection).

If .B is non-empty, smooth, and has a component with dimension bigger zero, it
is called the formal closure of .E. Otherwise the formal closure of .E does not exist
and .E is said to be (formally) non-integrable.

Note that the formal closure (or its non-existence) can always be computed in
finitely many steps because formal integrability can be checked in finitely many
steps using Proposition 14 which is of practical importance.

Furthermore, it can often be useful to attempt to compute the involutive clo-
sure/completion of the PDE .E instead because the conditions of Proposition 16 are
easier to check. If the PDE in question admits such a completion, one does not need
to check formal integrability anymore. If it does not admit such a completion, one
can still resort to checking the conditions of Proposition 14.
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For the intersections of our physical theories, it might occur quite often that
the intersections are formally integrable only after redefining them as systems
that take the consistency conditions into account. Those consistency conditions
that are automatically found when checking formal integrability are precisely the
minimal amount of assumptions that must be made in order to make the system
consistent. Therefore, they are actually really useful for us because they can be
interpreted as the minimal physical assumptions under which a correspondence
becomes meaningful.

This means that without knowing exactly what assumptions are reasonable to
relate two systems, we can just define a correspondence and then find it out. This
happens later in the example where magneto-statics and hydrodynamics are shown
to share an intersection whose consistency conditions had to be guessed in Eq. (15)
in the motivating example in Sect. 3.1.

The correspondences themselves still have to be guessed. However, symmetries
can provide clues about which correspondences might be especially meaningful as
explained in Sect. 8.

5.4 Explicit Example of the Application of Proposition 16

In this subsection, involutivity and thus also formal integrability for one simple
example is proved using Proposition 16. Despite the simplicity of the equation, the
example is very detailed to illustrate the formalism. The reader not interested in this
illustration can directly continue with the next section. The reader interested in more
explicit examples is referred to the author’s thesis, [43].

Below, .E and .P l(E) are defined as kernel of a differential operator .ϕ and its
prolongation, using (10) and (12). Thus, it is possible to obtain .gk and .gk+l as the
kernel of .σ(ϕ) and its prolongation using (58). Furthermore, .gk,j and .gk+l,j can be
obtained using (68). First define .π : E → M as follows:

.M := R, E := R × R, π = pr1 : E → M is the projection onto the first factor.
(79)

Let .J := J 1(E) � R
3 with local coordinates .(x, u, ux). Then define a differential

operator .ϕ : J → F := E by

.ϕ(x, u, ux) = (x, ϕ1(x, u, ux)) := (x, ux − u) (80)

which is a first order linear operator. Its kernel

.
E : = kerϕ

(10))= {θ ∈ J | ϕ(θ) = 0(π(θ)) = (x, 0) }
= {θ ∈ J | ux = u} = {(ρ, λ, λ) | ρ, λ ∈ R}

(81)
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is a first order linear differential equation corresponding to a two-dimensional
subspace of J . We know it to have the general solution

.u(x) := u(sE(x)) = A exp(x), A ∈ R (82)

but want to show formal integrability of .E to illustrate the general methods
introduced above.

To show all 3 conditions of Proposition 16, we first need to calculate .P 1(E) and
.gk+1 = g2. To this end, note that the prolongation of .J = J 1(E) is .J 2(E) � R

4

with local coordinates .(x, u, ux, uxx). Thus, we can use (9) to prolong .ϕ to obtain

.p1(ϕ)(θ ∈ J 2(E)) = (ϕ,Dxϕ)(θ) = (x, ux − u, uxx − ux) ∈ J 1(E). (83)

such that

.

P 1(E) = kerp1(ϕ)
(12)=

{
θ ∈ J 2(E) | (ϕ(θ),Dxϕ(θ)) = 0(π(θ))

}

=
{
θ ∈ J 2(E) | ux − u = 0, uxx − ux = 0

}
= {(ρ, λ, λ, λ) | ρ, λ ∈ R} .

(84)
Now that .P 1(E) and .E are explicitly given, one can see that the restriction of .π2

1 to
.P 1(E) surjectively projects down to .E. Explicitly,

.π2
1P 1(E) =

{
π2
1 (ρ, λ, λ, λ)

}
= {(ρ, λ, λ)} = E. (85)

This means condition 1. of Proposition 16 is fulfilled. In fact, there even is an inverse
map sending .(ρ, λ, λ) back to .(ρ, λ, λ, λ), so .P 1(E) � E. This continues for higher
orders. We have

.pl(ϕ) = (ϕ,Dxϕ, · · · ,Dl
xϕ) ⇒ P l(E) = { (ρ, λ, · · · , λ) | ρ, λ ∈ R } � E.

(86)
Now let us calculate .g1 and .g2. To do so, we must first calculate the symbol of .ϕ. To
do this, we must first clarify how an element .p ∈ F 1

E looks like. This can be done
using (45). Note that our manifold .M = R is one dimensional and therefore .T ∗M
has basis dx while .V (E) has basis .∂/∂u. Thus,

.F 1
E � p = (θ, a) =

(
(x, u, u),

(
a11dx ⊗ ∂

∂u

∣∣∣∣
π0(θ)

) )
. (87)

As a consequence .dim(F 1
E)θ∈E = 1 and we obtain

.σ(ϕ)(p)
(48)= a11

∂ϕ1

∂ux

∂

∂u

∣∣∣∣
π0(θ)

(80)= a11
∂

∂u

∣∣∣∣
π0(θ)

(88)
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.

g1 (58)= ker(σ (ϕ))|E
(88)=

{
p ∈ F 1

E

∣∣∣∣ θ ∈ E and a11
∂

∂u

∣∣∣∣
π0(θ)

= 0

}

= {(θ, 0) | θ ∈ E} � E

(89)

This shows that .g1 is the trivial vector bundle over .E whose fibers consist of the
zero-point only. Similarly,

.F 2
E � p = (θ, a) =

(
(x, u, u),

(
a111dx ∨ dx ⊗ ∂

∂u

∣∣∣∣
π0(θ)

) )
. (90)

whose fibers are also one-dimensional and therefore

.σ 1(ϕ)(p)
(49)= 2a111

∂ϕ1

∂ux

∂

∂u

∣∣∣∣
π0(θ)

(80)= 2a111
∂

∂u

∣∣∣∣
π0(θ)

(91)

such that

.

g2 (58)= ker(σ 1(ϕ))|E
(91)=

{
p ∈ F 2

E | θ ∈ E and a111
∂

∂u

∣∣∣∣
π0(θ)

= 0

}

= {(θ, 0) | θ ∈ E} � g1 � E

(92)

As a consequence, .g2 is also a trivial vector bundle over .E. This proves that
condition 2. of Proposition 16 is fulfilled. In fact, one can see that .g1+l � g1 for
all l. As a consequence, we do not even need to test condition 3 of proposition 5
because this together with .P l(E) � E directly shows that the Definition 6 of formal
integrability is fulfilled.

Nevertheless, let us test condition 3 of Proposition 16 explicitly. To this end, we
must check condition (69) for all .p ∈ E. To do so, we must calculate .g1,j . However,
the definition of .Sk,j T ∗ (see (64)) requires that .j + 1 ≤ i1 ≤ · · · ≤ ik ≤ m = 1
which is only possible for .j = 0, i.e. .Sk,j>0T ∗ = 0. But the sum in (69) only goes
from .j = 1 to .j = m − 1 = 0. As a consequence, we only have to verify that

.dim(g2) = dim(g1). (93)

This does hold because .g2 � g1 as shown above. This shows that all conditions
of Proposition 16 are satisfied and our Eq. (81) is involutive and thus formally
integrable.
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6 Shared Structure

6.1 Definition

Now that the notions of intersection and correspondence are developed and that the
theory of formal integrability has been reviewed, everything can be combined to
define what it means for two theories to share structure.

So suppose we are given two fibered manifolds .π : E → M and .ξ : F → M

and would like to compare the differential equations .E ⊂ J k(E) and .F ⊂ J l(F ).
Consider .EF as defined in Eq. (32) which is a PDE by Proposition 10. However,
given a correspondence .�, Corollary 1 shows that .EF∩� is only a PDE if .EF −� �.
Thus, the following definition is useful.

Definition 10 .E and .F share an intersection .I := EF ∩ � (under the correspon-
dence .�) if .EF −� �.

Now let us suppose that .E and .F do share an intersection under .�. From the
discussion in Sect. 4.2, it is clear that sharing an intersection is not enough for saying
that two theories share structure in a meaningful way. Instead, one should require
that the system is differentially consistent/formally integrable as well.

Definition 11 (Shared Structure) Two differential equations .E and .F share struc-
ture if they share an intersection .I that has a formal closure .B (in the sense of
Definition 9).

Note that if only an open subset of .I has a formal closure, then one can always
restrict .� such that .I′ has a formal closure.

This definition is meaningful because formal integrability guarantees that all N -
th order solutions on an open subset of .B can be prolonged to formal solutions.
As explained in Sect. 5.2, those N -th order solutions can be constructed very
easily by defining a Taylor expansion using as coefficients the entries of any point
.θ = (xi, u

j
α, v

g
β) in this open subset of .B. So if two differential equations share

structure, then this usually means that the formal closure of their intersection has a
lot of formal solutions and in this case the corresponding theories have quite a lot in
common.

Given the geometric theory of shared structure, one can also obtain a natural
notion of equivalence of PDEs. Most canonically, equivalence is perhaps defined as
follows.

Definition 12 Two systems of PDEs .E ⊂ J k(E) and .F ⊂ J l(F ) are said to be
equivalent if there exists a diffeomorphism .L : E → F that preserves the Cartan
distribution, i.e.

. dLθ (Cθ ∩ TθE) = CL(θ) ∩ TL(θ)F ∀θ ∈ E. (94)
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This diffeomorphism is very similar to a Lie transformation that is used to define
a symmetry, below in Sect. 8. However, to integrate the above definition into the
product bundle setting defined above, one could define equivalence also as follows.

Definition 13 Two systems of PDEs .E ⊂ J k(E) and .F ⊂ J l(F ) are said to be
equivalent if there exists a correspondence .� and intersection .I = � ∩ EF s.t.
.πE |I and .πF |I map .I diffeomorphically onto .E and .F and preserve the Cartan
distribution.

This second definition is equivalent to the first. It might look somewhat more
convoluted but the product space is then a more suitable setting for investigating
relationships that are weaker than equivalence, such as shared subsystems in the
form of shared structure that still allow for the transfer of some shared solutions, as
demonstrated by the numerous constructions of the subsequent subsections.

6.2 Solution Transfer

In this subsection, we assume that the intersection .I of two differential equations .E
and .F is itself a differential equations with solutions and investigate the relationship
between those solutions and the solutions of .E and .F. Recall that a solution S of .I
is a locally maximal .dim(M)-dimensional integral submanifold of .C with .S ⊂ I as
described in item 16. Let .J := J k(E) ×M J l(F ) and .� := πk ×M ξl : J → M ,
the natural projection to the base space. A submanifold .S ⊂ J is called horizontal
if .d�|θ : TθS → T�(θ)M is injective for all .θ ∈ S.

Proposition 18 If .E and .F share the intersection .I = EF ∩ � (where .EF =
π−1

E (E) ∩ π−1
F (F)) and .I has a horizontal solution S, then .πE(S) is a solution

of .E and .πF (S) is a solution of .F.

Proof In order to verify that .SE := πE(S) is a solution of .E, we must verify that

1. .SE ⊂ E,
2. .SE is a smooth submanifold with dimension .m = dim(M),
3. .SE is an integral submanifold of .C, i.e. .TθSE ⊂ Cθ for all .θ ∈ SE ,
4. .SE is a locally maximal integral submanifold.

Since .S ⊂ I = EF ∩ �, we have in particular .S ⊂ EF = EJ ∩ FJ and .S ⊂ EJ =
π−1

E (E) = {θ ∈ J k(E)×M J l(F ) | πE(θ) ∈ E}. Thus, .πE(S) ⊂ E and the first item
is verified.

As S is horizontal, it can locally be described as the image of the prolongation,
.US := im(jk(sE) ×M jl(sF )) of a local section .s = sE ×M sF : U ⊂ M → E ×M

F, xi �→ (xi, (sE)j (x), (sF )g(x)). The prolongation and hence also S can locally
be described by the tuple .(xi, (sE)

j
α(x), (sF )

g
β(x)). As a consequence, .πE(SU) has
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the local description .(xi, (sE)
j
α(x)) on .J k(E). At each point of .πE(SU ), one can

thus define .m = dim(M) tangent vectors, the n-th of which is given by

.vn := ∂xi

∂xn

∂

∂xi
+

e∑
j=1

∑
|α|<k

∂(sE)
j
α(x)

∂xn

∂

∂u
j
α

(95)

They are all non-zero and linearly independent because .∂xi/∂xn = δin. Thus,
.dim(πE(S)) ≥ dim(M). However, since .dim(πE(S)) ≤ dim(S) = dim(M), we
obtain .dim(πE(SU )) = dim(M). Hence, .dπE |S is locally a bijection and the vectors
defined in (95) span the tangent space around a generic point of .SE . Furthermore,
since .πE is smooth, .πE |S is also smooth. Therefore, .πE |S is a local diffeomorphism.

Now suppose we have two local neighbourhoods .O,O ′ ⊂ SE = πE(S) which
are such that .O ∩ O ′ �= ∅. Then, since .πE is a local diffeomorphism, we obtain
corresponding open subsets .U = π−1

E (O) and .U ′ = π−1
E (O ′) in S. Furthermore,

.π−1
E (O ∩ O ′) = π−1

E (O) ∩ π−1
E (O ′) = U ∩ U ′ because inverse images always

preserve intersections. Then, since S is a smooth manifold, we also have a smooth
transition map .ϕ : U → U ′. As a consequence, since composition of smooth maps
are smooth, .πE ◦ ϕ ◦ π−1

E |O∩O ′ : O ∩ O ′ → O ′ is a smooth transition map
on .SE . Therefore, all local pieces .πE(U) coming from the local pieces .U ⊂ S

of the solution S piece together to form a global smooth, .dim(M)-dimensional
submanifold .πE(S) of .E. This verifies the second item.

To show that .SE is an integral submanifold of .C, it suffices to show that the
tangent vectors (95) that locally span the tangent space of .SE are annihilated
by the Cartan forms .w

j
α = du

j
α − u

j
αidxi . Indeed we immediately obtain

.w
j
α|

(xi ,u
j
α)=(xi ,s

j
α(x))

(vn) = 0 which verifies the third item. Since .SE is already
.dim(M) dimensional, no open subset of it can be embedded into a solution of higher
dimension which implies the fourth item. Thus, .SE is a solution of .E.

Since the above did not make any assumptions about .E which are not shared by
.F, the same conclusion also holds for .F and .πF (S) is a solution of .F. ��
In the case of non-horizontal / singular solutions, one has to be a bit more careful.
In that case, not all solutions are projected to smooth submanifolds via .πE and .πF .

Example Consider .π : E → M with .M := R, .E := M × M and .π the
projection to the first factor and consider another, identical bundle .ξ : F →
M . Assume we are given the differential equations .E ⊂ J 1(E) and .F ⊂
J 1(F ) described by

.E : {x2 + u2x = 1}, F : {v2x = 2v + 1

2
}. (96)

(continued)
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Note that the solution of .E is singular because the smooth integral submani-
fold described by

. x =
⎛
⎝ x = sin(2t)

u = t + 1
4 sin(4t)

ux = cos(2t)

⎞
⎠ , v := ∂x

∂t
=
⎛
⎝ 2 cos(2t)
1 + cos(4t)
−2 sin(2t)

⎞
⎠ (97)

gives rise to a section .s : R → E, t �→ (x(t), s(x(t))) with singular points
at .x = x(t = π/4 + nπ), n ∈ Z because .dπ1

0 |t=(π/4+nπ)(v) = 0 (where
.π1
0 : J 1(E) → E). The Eq. .E and its singular solution were described in a

talk by Luca Vitagliano, in relation to the publication [26].
In the present example, the aim is to illustrate how such singular solutions

relate to the notion of a correspondence. To this end, define such a correspon-
dence between .E and .F on .J := J 1(E) ×M J 1(F ) by

. � : {u2x + v2x = 1}. (98)

Then one solution S of the submanifold .I = E ∩ F ∩ � is described by

.

x =

⎛
⎜⎜⎜⎜⎜⎝

x = sin(2t)
u = t + 1

4 sin(4t)
ux = cos(2t)

w = − 1
4 cos(4t)

wx = sin(2t)

⎞
⎟⎟⎟⎟⎟⎠

, v := ∂x
∂t

=

⎛
⎜⎜⎜⎜⎜⎝

2 cos(2t)
1 + cos(4t)
−2 sin(2t)
sin(4t)
2 cos(2t)

⎞
⎟⎟⎟⎟⎟⎠

,

v(t = π/4 + nπ) =

⎛
⎜⎜⎜⎜⎜⎝

0
0

−2
0
0

⎞
⎟⎟⎟⎟⎟⎠

In the present situation, we obtain .dπF |t=(π/4+nπ)(v) = 0. This means that
.πF (S) is not a smooth manifold because it contains singular points. However,
after removing those, .πF (S) becomes smooth (but disconnected).

Note that .πE(S) is, however, a smooth submanifold even though it is, by
definition, a singular solution. This means that singular solutions might lead
to singular points of .πE(S) or .πF (S) but not in all cases. The next proposition
answers under which conditions it does not.

For non-horizontal solutions, the following proposition still holds.
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Proposition 19 If .E and .F share the intersection .I = EF ∩ � (where .EF =
π−1

E (E) ∩ π−1
F (F)) and .I has a (possibly singular) solution S, then .πE(S) is a

solution of .E if .dπE |S is injective and .πF (S) is a solution of .F if .dπF |S is injective.

Proof If .dπE |S is injective, then, since .πE is smooth, .πE |S is a local diffeomor-
phism onto its image. As shown in the proof of Proposition 18, this implies that
.πE(S) is a smooth submanifold of .E ⊂ J k(E). To show that it is a solution, it only
remains to show that .πE preserves the Cartan distribution, i.e. .dπE(v ∈ Cθ ) ⊂
CπE(θ) ∀θ . Since .v ∈ Cθ locally lies in the span of the vector fields

.

Dq = ∂

∂xq
+

e∑
j=1

∑
|α|<k

u
j
αq

∂

∂u
j
α

+
f∑

g=1

∑
|β|<l

v
j
βq

∂

∂v
j
β

and D
j
δ := ∂

∂u
j
δ

, |δ| = k, as well as Dg
κ := ∂

∂v
g
κ

, |κ| = l,

(99)

and .πE(xi, u
j
α, v

g
β) = (xi, u

j
α), one obtains

. dπE =
m∑

i=1

∂

∂xi
⊗ dxi +

e∑
j=1

∑
|α|≤k

∂

∂u
j
α

⊗ duj
α (100)

and consequently

.

dπE(Dq) = ∂

∂xq
+

e∑
j=1

∑
|α|<k

u
j
αq

∂

∂u
j
α

dπE(D
j
δ ) = D

j
δ , dπE(Dg

κ ) = 0.

(101)

Thus, .dπE(Cθ ) = CπE(θ). As a consequence, since S was an integral submanifold
of .C, i.e. .v ∈ Cθ ∀v ∈ TθS, and those vectors are mapped to the Cartan distribution
of .J k(E) by .dπE , it follows that .πE(S) must also be an integral submanifold of
the Cartan distribution. Since it is a smooth submanifold of dimension .dim(M), this
implies that it is a (possibly singular) solution of .E. ��
In particular, the above proposition yields the following corollary.

Corollary 2 If .E and .F share the intersection .I = EF∩� (where .EF = π−1
E (E)∩

π−1
F (F)) and .I has a (possibly singular) solution S, then if

. Sinj(E) := {θ ∈ S | dπE |S is injective} (102)

has dimension .dim(M), .πE(Sinj(E)) is a (possibly singular) solution of .E. The same
holds for .πF (Sinj(F )).
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7 Bäcklund Correspondences

In this section, it is shown how the present framework naturally generalizes Bäck-
lund transformations which can sometimes serve to generate non-trivial solutions of
non-linear PDEs.

Another definition of Bäcklund transformations within the beautiful theory of
coverings can be found in subsection 3.8 of [12] and also in subsection 1.11 of
chapter 6 of [13]. However, the theory of coverings takes place in the category of
infinitely prolonged differential equations which is not convenient in the present
situation for two reasons: First, the present setting was developed to compare two
differential equations that might not share enough structure to be formally integrable
which forces us to stay on the level of finite jets. Second, singular solutions are more
difficult to deal with on infinite jet spaces because the Cartan distribution becomes
purely horizontal. Therefore, a generalization of Bäcklund transformations on the
level of finite jets is useful for the present purposes.

As a first step, the definition of a Bäcklund transformation described on p. 134–
140 in [44] is rewritten and somewhat simplified using the present notation. As
before, let .π : E → M be a fibered manifold, .J k(E) the k-th order jet space
over E and .ξ : F → M another fibered manifold with the same base space M .
If .ψ : J k(E) ×M J 0(F ) → J 1(F ) is a morphism of fibered manifolds, then
.p1(ψ) : J k+1(E) ×M J 1(F ) → J 1(J 1(F )) denotes the prolongation of .ψ . As
already explained around Eq. (5), there is a well-defined inclusion .i1,1 : J 2(F ) →
J 1(J 1(F )) that embeds .J 2(F ) into .J 1(J 1(F )).

Definition 14 A Bäcklund map is a morphism of fibered manifolds, .ψ : J k(E)×M

J 0(F ) → J 1(F ), such that

. ξ10 ◦ ψ = π2, (103)

where .ξ10 : J 1(F ) → F and .π2 : J k(E) × J 0(F ) → J 0(F ) = F . The Bäcklund
compatibility condition

. im(p1(ψ)) ⊂ i1,1(J
2(F )) (104)

gives rise to a subset .P(ψ) ⊂ J k+1(E) ×M J 1(F ) given by

.P(ψ) := {θ ∈ J k+1(E) ×M J 1(F ) | p1(ψ)(θ) ∈ i1,1(J
2(F ))} (105)

Definition 15 If .P(ψ) contains a system that only depends on the coordinates of
.J k+1(E), i.e. if one has

.E = π ′
E(P(ψ)) for some PDE E ⊂ J k+1(E), (106)
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where .π ′
E : J k+1(E)×M J 1(F ) → J k+1(E), then .ψ is called an ordinary Bäcklund

map for .E.

To provide a better understanding of this definition, a brief description of all
conditions in local coordinates is given. Let the coordinates of .J k(E) ×M J 0(F )

be .(xi, u
j
α, vg), .|α| ≤ k and those of .J 1(F ) be .(xi, wg,w

g
b ), .i, b ∈ {1, · · · ,m}.

The condition that .ψ is a morphism of fibered manifolds locally translates into the
description

. (xi, uj
α, vg) �→ (xi, wg = ψg(x, u, v), w

g
b = ψ

g
b (x, u, v)) (107)

The condition (103) then locally implies

. wg = ψg(x, u, v) = vg, (108)

and the compatibility condition (104) can locally be understood as follows. Let
.J k+1(E) ×M J 1(F ) have local coordinates .(xi, u

j
α, v

g
β), this time with .|α| ≤ k + 1

and .|β| ≤ 1 and the local coordinates of .J 1(J 1(F )) be .(xi, wg,w
g
b , (wg)b, (w

g
b )c),

.b, c ∈ {1, · · · ,m}. Then, for .p1(ψ) : J k+1 ×M J 1(F ) → J 1(J 1(F )), one obtains

. p1(ψ)

⎛
⎜⎝

xi

u
j
α

v
g
β

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

xi

wg = ψg(x, u, v)
(108)= vg

w
g
b = ψ

g
b (x, u, v))

(wg)b = Dbψ
g(x, u, v)

(108)= Dbv
g = v

g
b

(w
g
b )c = Dcψ

g
b (x, u, v)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (109)

where .Db, as before, is the total differential operator.

. Db = ∂

∂xb
+

e∑
j=1

∑
|α|<k+1

u
j
αb

∂

∂u
j
α

+
f∑

g=1

∑
|β|<1

v
g
βb

∂

∂v
g
β

(110)

Since the subset .i1,1(J
2(F )) in .J 1(J 1(F )) has local coordinates .(xi, wg,w

g
b ,

(wg)b = w
g
b , (w

g
b )c = w

g
bc = w

g
cb = (w

g
c )b), the local equations describing .B

defined in (105) by the compatibility condition (104) are finally given by

.P(ψ) : { v
g
b = ψ

g
b , Dcψ

g
b = Dbψ

g
c }. (111)

This concludes the descriptions of the local coordinates involved in the definition of
a Bäcklund map.

The next step is to use a Bäcklund map to define a Bäcklund transformation. To
this end, note first that, since the restriction of .p1(ψ) to .P(ψ) by construction has
an image that lies in .J 2(F ), one can define a map .ψ1 : P(ψ) → J 2(F ), simply



A Geometric Framework to Compare PDEs and Classical Field Theories 219

given by .ψ1(θ) := p1(ψ)|P(ψ)(θ). This procedure can be iterated to obtain a map

.ψr : P r−1(P(ψ)) → J r+1(F ) where .P r−1(P(ψ)) is the .r − 1-th prolongation of

.P(ψ).

Definition 16 If .ψ : J k(E) ×M J 0(F ) → J 1(F ) is an ordinary Bäcklund map for
.E and if, for some r , a system of differential equations .F ⊂ J r+1(F ) contains the
image of .ψr : P(ψ)r−1 → J r+1(F ), then .ψ is called a Bäcklund transformation
between .E and .F.

The idea behind those definitions is to reduce the equations locally describing .F to
first order equations with the help of .E and .ψ . One usually obtains the following
proposition that is reproven in the present terminology, for convenience.

Proposition 20 Suppose that .ψ is a Bäcklund transformation between .E ⊂
J k+1(E) and .F ⊂ J r+1(F ). If .sE : U ⊂ M → E is a horizontal solution
of .E (i.e. .im(jk+1(sE)) ⊂ E), then a solution .sF : U ⊂ M → F of . F (with
.im(j r+1(sF )) ⊂ F) can be obtained by solving the following system of PDEs

. j1(sF ) = ψ(jk(sE) ×M sF ) (112)

which is first-order in .sF (recall that .sE is already given) and locally described by

.
∂s

g
F (x)

∂xb
= ψ

g
b

(
xi, ∂αs

j
E(x), sh

F (x)
)

, (113)

where .i, q ∈ {1, · · · ,m}, .j ∈ {1, · · · , e}, .g, h ∈ {1, · · · , f } and .0 ≤ |α| ≤ k + 1.

Proof A horizontal solution of .P(ψ) is described by a section .s = sE ×M sF : U ⊂
M → E ×M F such that

. im(jk+1(sE) ×M j1(sF )) ⊂ P(ψ). (114)

Since s is assumed to be smooth, (114) holds if

. im(jk+r (sE) ×M jr(sF )) ⊂ P r−1(P(ψ)). (115)

Since by assumption .ψr(P r−1(P(ψ))) ⊂ F, (115) in turn implies .im(ψr(jk+r (sE)

×M jr(sF ))) ⊂ F. At the same time,

.

ψr(jk+r (sE) ×M jr(sF )) = pr(ψ)(jk+r (sE) ×M jr(sF ))

(8)= j r (ψ(jk(sE) ×M sF ))

(116)

Thus, if .s = sE ×M sF is a solution of .P(ψ) and one can find a section .sF ′ : U ⊂
M → F such that
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. j1(sF ′) = ψ(jk(sE) ×M sF ), (117)

then .sF ′ is a solution of .F. Since .π2 = ξ10 ◦ ψ by (103), we also have

. sF = π2(j
k(sE) ×M sF ) = ξ10 (ψ(jk(sE) ×M sF )), (118)

and since .sF is holonomic, this implies

. j1(sF ) = ψ(jk(sE) ×M sF ) (119)

In other words, .sF ′ = sF always solves (117). As a conclusion, whenever .s =
sE ×M sF solves .P(ψ), then .sF itself is such that it solves .F.

Hence, if a solution .sE of .E is given, a solution .s = sE ×M sF of .P(ψ) can
be found by finding .sF s.t. (114) holds. As we also assume that .ψ is ordinary for
.E, Eq. (106) holds, which implies that .π−1

E (im(sE)) contains the image of a section
.s = sE ×M sF which is contained in .P(ψ). Therefore given a solution .sE , we get
.sF by solving the remaining equation describing .P(ψ), .vg

b = ψ
g
b (cf. (111)) that is

Eq. (119), which in local coordinates is described by the system (113). ��
As a next step, Bäcklund transformations are identified as a special case of the
present framework.

Proposition 21 Every Bäcklund transformation .ψ : JB := J k(E) ×M J 0(F ) →
J 1(F ) between .E ⊂ J k+1(E) and .F ⊂ J r+1(F ) gives rise to an intersection .I =
EF ∩ � where .EF is constructed as in Eq. (20) on the natural product bundle .J :=
J k+1(E) ×M J r+1(F ) of .E and .F and .� is completely determined by .ψ .

.� fulfills a condition equivalent to (103) and the projection of the prolongation
.π

k+2, r+2
k+1, 1 (P 1(�)) corresponds to the compatibility condition .P(ψ) defined in

(105).

Proof As before, given .E ⊂ J k+1(E) and .F ⊂ J r+1(F ), one can form the natural
product bundle .J := J k+1(E) ×M J r+1(F ) and pull .E and .F back to .EJ and .FJ

via .πE : J → J k+1(E) and .πF : J → J r+1(F ), i.e. .EF := π−1
E (E) ∩ π−1

F (F) as
in Eq. (20). Next, one can define a correspondence .� as follows

. � : {ξ r+1
1 ◦ πF = ψ ◦ πB} (120)

where .ξ r+1
1 : J r+1(F ) → J 1(F ) and .πB : J → JB .

Recall that .π2 : JB → J 0(F ). Since .π2 ◦πB = ξ r+1
0 ◦πF and .ξ10 ◦ ξ r+1

1 = ξ r+1
0 ,

applying .ξ10 to both sides of the Eq. (120) defining .� results in

. π2 ◦ πB = ξ r+1
0 ◦ πF = ξ10 ◦ ξ r+1

1 ◦ πF
(120)= ξ10 ◦ ψ ◦ πB, (121)

which is equivalent to condition (103) but this time imposed on .� on J instead of
on .ψ on .JB . Note that the condition here is trivially fulfilled because we are only
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considering a submanifold .� on one product bundle with one set of coordinates
.(x, u, v) instead of a morphism .ψ between two different fibered manifolds with
two different sets of coordinates .(x, u, v) and .(x,w) that required the additional
condition .v = w. This is an indication that the present approach is more natural.

If the coordinates of J are .(xi, u
j
α, v

g
β) and of .J 1(F ) are .(xi, wg,w

g
b ), then .ψ ◦

πB and .ξ r+1
1 ◦ πF are locally given by

.

⎛
⎝xi

vg

v
g
b

⎞
⎠ = ξ r+1

1 (πF (xi, uj
σ , v

g
λ))

(120)= ψ(πB(xi, uj
σ , v

g
λ)) =

⎛
⎜⎝

xi

ψg(xi, u
j
δ , v

g)

ψ
g
b (xi, u

j
δ , v

g)

⎞
⎟⎠
(122)

which correspond to the equations described in Eq. (108) and the left equation in
(111). (Note that, in the eq. above, .|σ | ≤ k + 1, .|λ| ≤ r + 1 but .|δ| ≤ k.)

Condition (104) is a projected version of the compatibility condition that is
enforced by the intersection in the definition of a prolongation, cf. Eq. (6),

. P 1(�) = p( J 1(�) ∩ (ik+1,1 ×M ir+1,1(P
1(J ))) ), (123)

where

. P n(J ) = J k+1+n(E) ×M J r+1+n(F ). (124)

Indeed, by Eqs. (12) and (122),

. P 1(�) :
{
θ ∈ P 1(J )

∣∣ Dbψ
g(κ) = v

g
b = ψ

g
b (κ), Daψ

g
b (κ) = v

g
ab = Dbψ

g
a (κ)

}
(125)

where .κ = π
k+2, r+2
k+1, 1 (θ) and .π

a, b
c, d : J a(E) ×M Jb(F ) → J c(E) ×M Jd(F ) is the

canonical projection. Since .κ ∈ J k+1(E) ×M J 1(F ), those equations (apart from
the condition .v

g
ab = Dbψ

g
a ) are preserved under projection, and one obtains

.

π
k+2, r+2
k+1, 1 (P 1(�)) =

{
θ ∈ J k+1(E) ×M J 1(F ) | v

g
b = ψ

g
b , Daψ

g
b = Dbψ

g
a

}

(111)= P(ψ)

(126)
As a result, the compatibility conditions of a Bäcklund map can be understood as
the equations arising upon prolongation of the correspondence .�. ��
Prolonging (126), one obtains

. π
k+1+n, r+1+n
k+n, n (P n(�)) = P n−1(P(ψ)) (127)

Proposition 22 .I as defined in Proposition 21 allows to transfer solutions from .E
to .F in the sense of Proposition 20.
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Proof To show that .� facilitates to transfer solutions from .E to .F by solving a
first-order system, one can proceed as follows. By Proposition 18, we know that any
solution S of .I = EF∩� can be projected to solutions .πE(S) and .πF (S) of .E and .F
respectively. What’s special about Bäcklund transformations, is that solving .� alone
is actually sufficient. The reason is that the differential consequences of .� contain
the equations describing .E and .F. To show that, we will show that .πr

J (P r(�)) ⊂ EF
where .πr

J : P r(J ) → J (and .P r(J ) is given by Eq. (124)).
Since .ψ is a Bäcklund transformation between .E and .F, Definition 15 holds, i.e.

.π ′
E(P(ψ)) = E. Recall that .πE = π ′

E ◦ π
k+1, r+1
k+1, 1 . Then .π ′

E(P(ψ)) = E implies
that

.

π−1
E (π ′

E(P(ψ))) ⊂ π−1
E (E) = EJ where

π−1
E (π ′

E(P(ψ))) = (π
k+1, r+1
k+1, 1 )−1 ◦ (π ′

E)−1 ◦ π ′
E(P(ψ))

= (π
k+1, r+1
k+1, 1 )−1(P(ψ))

(126)= (π
k+1, r+1
k+1, 1 )−1(πk+2, r+2

k+1, 1 (P 1(�))
)

(128)

Note also that apart from .v
g
ab = Daψ

g
b , the eqs describing .P 1(�) are first order in

v (cf. Eqs. (125) and (126)). Therefore,

.

(π
k+1, r+1
k+1, 1 )−1(πk+2, r+2

k+1, 1 (P 1(�))
) ∩ {

v
g
ab = Daψ

g
b

} = π
k+2, r+2
k+1, r+1 (P 1(�))

= π1
J (P 1(�))

(129)
and thus

. π1
J (P 1(�)) ⊂ ( EJ ∩ {

v
g
ab = Daψ

g
b

} ) ⊂ EJ (130)

Since projections of further prolongations can only increase the number of con-
straints/equations, we can conclude

. πn
J (P n(�)) ⊂ π1

J (P 1(�)) ⊂ EJ , ∀ n ≥ 1. (131)

Next, we want to show that we also have .πr
J (P r(�)) ⊂ FJ . To do so, we use

Definition 16 that guarantees that a Bäcklund transformation satisfies .im(ψr) ⊂ F
which implies

. π−1
F (im(ψr)) ⊂ π−1

F (F) = FJ (132)

where
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.

im(ψr) = im
(
pr(ψ)|P r−1(P(ψ))

)
= pr(ψ)(P r−1(P(ψ))

(127)= pr(ψ)(π
k+1+r, r+1+r
k+r, r (P r(�)))

= pr(ψ ◦ π
k+1, r+1
k, 0 )(P r(�))

(120)= pr(ξ r+1
1 ◦ πF )(P r(�)) = ξ r+1+r

1+r ◦ pr(πF )(P r(�))

(133)

Since

(134)

commutes with

(135)

we obtain

.

im(ψr)
(133)= πF ◦ πr

J (P r(�))

⇒ πr
J (P r(�))

(132)⊂ FJ

(136)

Together with (131), we thus finally obtain

. πr
J (P r(�)) ⊂ EF := EJ ∩ FJ (137)

which expresses the essential property of a Bäcklund transformation: The equations
.EF are differential consequences of .�. (Since .πr

J (P r(�)), which includes the
differential consequence of .� up to order .k + 1 in u and .r + 1 in v, is contained in
.EF, the equations that locally describe .EF are in turn a subset of the equations of
the (smaller) space .πr

J (P r(�))).
Since we assume that solutions are smooth, every solution of .� must also be a

solution of any prolongation .P n(�). Since the prolongation .P r(�) of .� contains
both, the equations describing .E and those describing .F, the solution of .� must also
solve .E and .F. By Proposition 18, solutions of .I can be projected to solutions of
.E and .F via .πE and .πF (even singular ones if the conditions in Proposition 19 are
fulfilled).

As a final step, let us show that solving a first-order system is sufficient if a
general solution to .E is given. Suppose that .E has a general family of solutions .Sα

E ,
parameterized by .α, that is locally described by sections .sα

E . Since .πr
J (P r(�)) ⊂

EJ , the pullback of the family of solutions .π−1
E (im(sα

E)) ⊂ EJ should intersect
solutions of .P r(�) that can be found by looking for a section .sF such that the
prolongation of .sα

E ×M sF is contained in .� for some .α. The resulting system of
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equations is then first order in .sF , namely locally described by (122). This solution
can then be mapped to .F as explained above, by Proposition 18. Hence, given .sE , it
suffices to solve the first order PDE (113) to obtain a solution of .F which concludes
an alternative proof of Proposition 20 in a more general setting. ��
The proof above makes it clear that the exact form of .� is not really essential for
transferring solutions and reducing the order of equations as long as .EJ and .FJ are
differential consequences of .�, i.e. as long as (137) is satisfied. In particular, staying
in the natural product bundle makes it unnecessary to impose conditions like (103)
or to require that the codomain of .ψ is a first order jet space. Thus, the following
generalization seems appropriate.

Definition 17 A correspondence .� ⊂ J := J k(E) ×M J l(F ) between two
differential equations .E ⊂ J k(E) and .F ⊂ J l(F ) is said to be a Bäcklund
correspondence or to have the Bäcklund property if, for some .r ≥ 1,

.P(�) := πr
J (P r(�)) ⊂ EF. (138)

where .P(�) is the projection of the prolongation of .�. It is said to be a strict
Bäcklund correspondence if

. πE(P(�)) = E and πF (P(�)) = F. (139)

Note that (139) implies (138) because

.

(139) ⇒ P(�) ⊂
{

π−1
E (πE(P(�))) = π−1

E (E) = EJ

π−1
F (πF (P(�))) = π−1

F (E) = FJ

⇒ P(�) ⊂ EJ ∩ FJ = EF.

(140)

With this definition, the following proposition holds.

Proposition 23 Whenever a correspondence .� between two PDEs .E and .F is
Bäcklund, every solution of .� is a solution of both, .E and .F.

Proof Since .P(�) ⊂ EF, and, since .P(�) := πr
J (P r(�)), also .P(�) ⊂ �, we

obtain .P(�) ⊂ I = EF ∩ �. Hence, what solves .P(�) also solves .I. But .P(�) is
solved when .� is solved because .P(�) is the projection of differential consequences
of .�. Hence, a solution of .� solves .I and then this solution can be mapped to .E and
.F by Proposition 18. ��
Again, given the solution of one of the equation might allow to reduce the order of
the other:
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Proposition 24 If .� is a strict Bäcklund correspondence between .E and .F, and a
solution S of .E is given, then a solution of .F can be found by finding a solution of
.π−1

E (S) ∩ �.

Proof Since .� is a strict Bäcklund correspondence, one has .πE(P(�)) = E.
This means that, apart from .EJ , the prolongation of .� does not impose additional
equations, purely in terms of coordinates of .J k(E), on J . Hence .π−1

E (S) =
S ×M J l(F ) intersects the solution space of .�. If a solution in this intersection
can be found, it also solves .F by Proposition 23. ��
The present approach generalizes the usual definition of a Bäcklund transformation
because one can now define a correspondence of any order and the dependence
on the coordinates of .J l(F ) can be arbitrary apart from the requirement that .�

should be an almost diagonal fibered submanifold of .J k(E) ×M J l(F ). Despite the
increased generality, solutions can still be transferred in a similar way to the simpler
case.

Example A very classical example that illustrates Bäcklund transformations
is the one involving the Liouville equation .u12 = exp(u). It is briefly
rephrased in the present terminology to illustrate the general ideas above.
Consider .π : E := R × R → R =: M with local coordinates .(x, y, u)

and .ξ : F � E → M with local coordinates .(x, y, v) and the equations
.E : { u12 = eu } ⊂ J 2(E) and .F : { v12 = 0 } ⊂ J 2(F ). We relate them on
.J 2(E) ×M J 2(F ) by a correspondence .� determined by the equations

. � :
{
v1 = u1 + β exp

(
u + v

2

)
, v2 = −u2 − 2

β
exp

(
u − v

2

) }

(141)
First, we check that this .� is indeed a correspondence. Since it is defined by
two independent equations, it has codimension .2 ≥ 1 = min(dim(Ex, Fx)).
Its projection to both, .J 2(E) and .J 2(F ) does not impose any conditions
and thus, it is almost diagonal to .E and .F. The prolongation .P 1(�) of .�

is described by the equations describing .� and additionally by the following
ones.

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v11 = u11 + β exp

(
u + v

2

)
u1 + v1

2

v12 = u12 + β exp

(
u + v

2

)
u2 + v2

2

v21 = −u21 − 2

β
exp

(
u − v

2

)
u1 − v1

2

v22 = −u22 − 2

β
exp

(
u − v

2

)
u2 − v2

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(142)

(continued)
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The compatibility conditions .v12 = v21 and .u12 = u21, that must be imposed
when taking the prolongation, result in the following two equations, which,
together with Eqs. (141) and (142) describe .P(�):

.
{
u12 = exp(u), v12 = 0

}
(143)

As can be seen, the correspondence was designed such that its differential
consequences are included in both of the intersected equations, i.e.

.P(�) ⊂ EF ∩ � =: I ⊂ EF, (144)

Thus, .� is a Bäcklund correspondence. Furthermore, since .� is almost
diagonal, we obtain .πE(P(�)) = E and .πF (P(�)) = F. Hence, .� is a strict
Bäcklund correspondence.

Thus, by Proposition 24, solutions an be transferred between the PDEs.
The general solution of .v12 = 0 is given by .v(x, y) = A(x) + B(y) and
plugging this into (141) results in a PDE for .u(x, y) that can be integrated
(though it is not completely trivial), and one obtains the solution

. u(x, y) = 2 ln

⎛
⎝ exp

(
A(x)−B(y)

2

)
β
2

∫ x

x0
exp (A(x′)) dx′ + 1

β

∫ y

y0
exp (−B(y′)) dy′

⎞
⎠
(145)

As mentioned by [44], this encouraging result was an important motivation
for the search of Bäcklund transformations.

8 Equivalence Up to Symmetry and Quotient Equations

When comparing two theories in mathematically different formulations that only
differ up to a symmetry which is physically not relevant, then one would like to
find a way to compare the two theories after removing this symmetry. For example,
classical electrodynamics can be formulated in terms of gauge potentials and in
terms of Faraday tensors. At least classically, those two theories are physically
equivalent because only the fields are measurable quantities. To formalise this
physical equivalence mathematically, Weatherall invented the solution-Category
approach described in [5] and [6] which was already mentioned in the introduction
in Sect. 1.1. The idea behind this formalism was, among other things, to show
that those mathematical structures in which the morphisms between the objects
of the solution categories are induced (via the pushforward or pullback) by the
diffeomorphisms of the underlying manifold are more natural than those in which
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those symmetries have to be “added by hand” in order to achieve an equivalence to
other physically equivalent formulations.

The aim of the present section is to show how one can approach those ideas in
the category of smooth manifolds.

The section describes the general idea how to “quotient out” a symmetry of an
equation and how to obtain the corresponding invariant equation. Basically, the
invariant equation is realised by replacing the variables in the equation by the
invariants of the symmetry. So the real work consists in finding all functionally
independent invariants. Though the present approach was developed somewhat
independently, quotient equations are a well-known concept (cf. [13] (chapter 3.6),
[35, 36, 45], also [32] is related).

We start with the geometric definition of a symmetry of a PDE (taken from [13])

Definition 18 A Lie transformation is a diffeomorphism .L : J k(E) → J k(E)

such that .dLθ (Cθ ) = CL(θ) ∀θ ∈ J k(E) (where .C is the Cartan distribution on
.J k(E)). A vector field X on the manifold .J k(E) is called a Lie field, if shifts along
its flow are Lie transformations.

Definition 19 A Lie transformation S which is such that .S(E) = E is called a
symmetry of the differential equation .E ⊂ J k(E). A Lie field X is called an
infinitesimal symmetry of the equation .E ⊂ J k(E), if it is tangent to .E.

Having defined Symmetries, we can proceed to define the concept of an invariant of
a symmetry (taken from [46]).

Definition 20 Given a Lie transformation S on .J k(E), an invariant of this trans-
formation is a map .I : J k(E) → R such that .S∗I = I , i.e. .I (θ) = I (S(θ)) ∀θ ∈
J k(E).

Now suppose that S is a symmetry of the equation .E, i.e. .S(E) = E. If the equation
is given as the kernel of a differential operator .� : J ⊂ J k(E) → F , where
.π ′ : F → M is another fibered manifold, i.e. .E = kers(�), where .s : M → F is
a suitable section, then this implies that .�(θ) = s(πk(θ)) iff .S∗�(θ) = �(S(θ)) =
s(πk(S(θ))).

Observe that .� itself does not have to be invariant but the condition .�(θ) =
s(πk(θ)) only holds for .θ ∈ E which is invariant. But this means that it should be
possible to perform algebraic operations on the equation .kers(�) which facilitate
to reformulate the equation in terms of invariants of the symmetry, at least at all
those points where those algebraic operations are well-defined. In other words, it
should be possible to find a .�′ : J ′ ⊂ J k(E) → F such that .E = kers′(�′) and
.S∗�′ = �′, at least at all those points making up .J ′ where the algebraic operations
on .kers(�) do not lead to a division by zero.

To find out how to find this .�′, let us suppose that we have a Lie group G that
acts on .J k(E). We write this action as .g · θ := Sg(θ) where .Sg : J k(E) → J k(E)

is the Symmetry on our bundle corresponding to the action of .g ∈ G. Given such
a symmetry group, we can try to find the generating functions of all .Sg-Invariants
on .J k(E). They can be found in a systematic way using the following proposition
(also taken from [46]):
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Proposition 25 If G is a group of symmetries acting on .J k(E), then all invariants
I of this symmetry group fulfill the equations

. X(I) = 0 (146)

where X are the infinitesimal symmetries corresponding to the action of the Lie
algebra of G.

Proof For an invariant I of a group it is true by definition that .S∗
gI = I, ∀g ∈ G. As

we assume a Lie group, we can write .Sg = exp(aXg) where .Xg is the infinitesimal
generator corresponding to the action of g. Thus,

.

0 = d

da
I (θ)

∣∣∣∣
a=0

= d

da
I (Sg(θ))

∣∣∣∣
a=0

= d

da
I (exp(aXg)θ)

∣∣∣∣
a=0

= I ′(θ)Xg|θ = Xg(I).

(147)

This is true for all g and thus for all X in the Lie algebra. ��
This means that if we have a finite number of generators for our symmetry group,
then it becomes possible to find all functionally independent invariants by finding
the most general solution of a finite number of equations of the form (146).

Now suppose we have found out that any invariant of a given group action
on a given bundle must be a function of the functionally independent invariants
.(I1, · · · , Ir ). Furthermore, suppose that the equation .E on .J k(E) is also invariant
under the group action. Then, as explained before, it must be possible to express
.�′, whose kernel is .E, almost everywhere as a function of .I1, · · · , Ir . To formalize
this idea, one can create a new fibered manifold using those invariants on which
this quotient equation emerges. To do so, one must choose .dim(M) functionally
independent invariants that act as coordinates of the base space N of this new
fibered manifold. The remaining invariants can then serve to indicate how many
dimensions the fibers .Fθ of the new manifold .ξ : F → N should have. In
general, the base coordinates do not agree with those of M and then one needs
to invoke Tresse derivatives to construct a jet space over F or modify the Cartan
distribution. However, in the following, the simpler special case, in which the
coordinates of M are invariant under the symmetry, is assumed because the main
purpose is to illustrate how quotient equations naturally fit into the present setting
involving correspondence and intersection. There are quite a number of symmetries
like translations and dilations of the dependent coordinates that are included in
this special assumption. The more general case is also compatible with the present
approach and might be described more explicitly in future work.

Thus, for now we assume .(I1, · · · , Im) = (x1, · · · , xm) and therefore set .N =
M and create a new fibered manifold .ξ : F → M where the fibers .Fx are chosen
as the spaces where the invariants live and consist of .l = r − m dimensions (i.e.
locally they are isomorphic to .R

l) where .r > m is the number of the functionally
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independent invariants found in the previous step and .m = dim(M). Then denote
the corresponding local coordinates of the fibers by .(vg) = (v1, · · · , vl). Now the
invariants .(I1, · · · , Ir ) naturally determine a correspondence .�(I) on the product
bundle

. J (I) := J k(E) ×M J 0(F ), (148)

namely

.�(I) : { v1 = Im+1(x
i, uj

α), · · · , vl = Ir=m+l (x
i, uj

α) } (149)

If one computes the prolongations .P l(Q(I )) of the intersection

.Q(I ) := (π ′
E)−1(E) ∩ �(I), (150)

where .π ′
E : J k(E)×MJ 0(F ) → J k(E), then, since .E is invariant with respect to the

symmetry used to construct the invariances expressed by the correspondence .�(I)

which relates the equation to the coordinates .(v1, · · · , vl), .E must necessarily give
rise to an equation .(FP l(J (I )) ⊃ P l(Q(I ))) ⊂ P l(J (I )) = J k+l (E) ×M J l(F ),
for some l, whose local description solely involves .(xi, v

g
β), |β| ≤ l. (The exact

number l is determined by the minimal amount of prolongations needed to arrive at
such an expression for .FP l(J (I )).)

Since the expression describing .FP l(J (I )) only depends on coordinates of .J l(F ),

this local description is preserved under the projection .π
k+l, l
k, l (FP l(J (I ))) =: FJ ⊂

J k(E) × J l(F ) =: J . Finally, .F := πF (FJ ) is then called the quotient equation.
Note that one can take the pullback of .�(I) to arrive at the usual notion of a

correspondence

. � := (π
k, l
k, 0)

−1(�(I)) ⊂ J (151)

on J , between the two equations .E and .F. Furthermore, defining

.Q := (π
k, l
k, 0)

−1(Q(I )) = EJ ∩ �, EJ := π−1
E (E), πE : J → J k(E),

(152)
one can also express .F as the projection of .P(Q) := πl

J (P l(Q)), i.e.

.F := πF (P(Q)), FJ := π−1
F (F), (153)

(where, as usual, .πl
J : P l(J ) = J k+l (E) ×M J l+l (F ) → J .)

The quotient equation can be understood as the system which one obtains after
quotienting out the action of the Group G because locally it represents .E in terms of
coordinates that were constructed from the invariants of this group. Those ideas are
summarized in the following definition.
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Definition 21 If there is a symmetry group G acting on .J k(E) such that the action
.Sg is a symmetry of the PDE .E ⊂ J k(E) for all .g ∈ G, then the correspondence
.�(I) defined in (149) (on the product bundle .J (I) defined in (148)), determined by
the functionally independent invariants .I = (I1, . . . , Ir ) (which can be computed
by solving (146)), is called a quotient correspondence for .E.

At this point, it is important to notice that the symmetry completely determines
the correspondence. This means that symmetries can help to find meaningful
correspondences.

The explanations above then show that the following corollary holds.

Corollary 3 Given a quotient correspondence .�(I) ⊂ J k(E) ×M F for .E, the
prolongations .P l(Q(I )) of the intersection .Q(I ), defined in (150), for sufficiently
high l, give rise to an equation on .J l(F ), called quotient equation, defined as in
(153), and, defining .� as in (151), a quotient intersection

.I := EJ ∩ FJ ∩ � ⊂ J. (154)

Thus, the definition of .I is in harmony with the usual notion of an intersection, cf.
Definition 3.

The present framework allows to show that a quotient correspondence gives
always rise to a special kind of Bäcklund correspondence.

Proposition 26 A quotient correspondence .�(I) for some equation .E determines
a strict Bäcklund correspondence .Q where .Q is defined as in (152).

Proof By construction, we already have .πF (P(Q)) = F, cf. Eq. (153). What
remains to be shown is that .πE(P(Q)) = E.

Since .�(I) is locally explicitly defined by (149), always relating v-coordinates to
u-coordinates, it is almost diagonal and since there are no other equations involving
v-coordinates, all additional conditions that arise upon prolongation of .Q = EJ ∩�,
apart from the differential consequences of .EJ (which we assume here not to
impose conditions of lower order on u-coordinates, i.e. .E is assumed to be in
involutive form), can always be written as expressions also involving v-coordinates
and thus do not impose additional equations involving only u-coordinates. Hence
.P(Q) = πl

J (P l(Q)) is almost diagonal to .E and .F and such that .πE(P(Q)) = E and
.πF (P(Q)) = F. Thus, .Q is a strict Bäcklund correspondence. ��
If .�(I) is understood to contain the information about the symmetry group G, then
this last proposition demonstrates that Bäcklund correspondences are generalized
symmetries.

As usual, a Bäcklund transformation allows to transfer solutions between .E and
.F. However, because of the specific nature of .�(I), one can even give an explicit
description of the transferred solution, as described by the following proposition.

Proposition 27 If .SE is a solution of .E and .F is a quotient equation of .E, then
.SF = πF (P(π−1

E (SE) ∩ �)) is a solution of .F.
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Proof Since .Q is a strict Bäcklund correspondence, .π−1
E (SE) = SE ×M J l(F )

intersects the solution space of .Q = EJ ∩ �. Since the constraints imposed by .EJ

are described by the same equations as those describing .E, which are already solved
by .SE , one only needs to find a solution of .π−1

E (SE) ∩ �.
At the same time, .�, described by equations of the form (149), explicitly and

uniquely defines the values of .vg as functions of .(xi, u
j
α). Thus, the prolongation

.P l(�) of .� determines, without solving any equations, the values of .v
g
σ , |σ | ≤ l in

terms of .(xi, u
j
δ ) with .|δ| ≤ k + l. However, when considering .P l(π−1

E (SE) ∩ �),

all coordinates .u
j
δ are locally expressible as functions of .xi because .SE is an m-

dimensional integral submanifold. Hence, one can solve .v
g
σ for those .xi and project

.P l(π−1
E (SE) ∩ �) back to J , and then to .J l(F ), i.e. taking .πF (πl

J (P l(π−1
E (SE) ∩

�))) = πF (P(π−1
E (SE) ∩ �)), preserving those solutions. ��

As a result, the following definition becomes meaningful.

Definition 22 Two differential equations .E ⊂ J k(E) and .F ⊂ J l(F ) are said to be
equivalent up to the action of the symmetry Group G on .J k(E) if .F is the quotient
equation of .E with respect to a quotient correspondence determined by G.

An extended example is given in Sect. 9.3 where Maxwell’s equations formulated in
terms of Faraday tensors are shown to be a quotient equation of Maxwell’s equations
formulated in terms of gauge potentials.

A brief example that is supposed to illustrate the general formalism is given
below:

Example On the bundle .π : E := R
2 × R → R

2 =: M with coordinates
.(x, y, u), consider, on .J 2(E), the heat equation .E : { u2 = βu11 }. It is
invariant under prolongations of dilations .X = u ∂

∂u
along u. The prolongation

of X is given by

. X
(2) =

∑
|β|≤2

uβ

∂

∂uβ
(155)

The generators of the differential algebra of all invariants of .X(2) are given by
the solution of (146).

. I1 = x, I2 = y, I3 = u1

u
, I4 = u2

u
(156)

For later convenience, we renorm .I3 and write .I3 = −2β u1
u
. According to the

general procedure above, we now construct a new bundle, .ξ : F := R
2×M →
(continued)
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M with coordinates .(x, y, v,w). On the product bundle .J 2(E)×M F , we can
define the correspondence .�(I) by

. �(I) :
{
v = −2β

u1

u
, w = u2

u

}
(157)

We now want to find the compatibility conditions .P(Q) where .Q(I ) :=
�(I) ∩ (π ′

E)−1(E) (with .π ′
E : J 2(E) × F → J 2(E)). .Q(I ) is locally given

by

.Q(I ) :
{
u2 = βu11, v = −2β

u1

u
, w = u2

u

}
(158)

Note that the equations imply .w = βu11/u. The prolongation of .Q(I )

imposes the following additional conditions

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u12 = βu111, u22 = βu112,

v1 = −2β
u11

u
+ 2β

(u1

u

)
2, v2 = −2β

u12

u
+ 2β

u1u2

u2
,

w1 = u12

u
− u1u2

u2
, w2 = u22

u
−
(u2

u

)
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(159)

The equations imply

. v1 = −2w + v2

2β
⇒ v2

4β
− v1

2
= w = u2

u
(160)

Thus, w is a function of v which implies that, on .(π ′
E)−1(E), the second

generator in (157) depends on the first one, i.e. on .(π ′
E)−1(E) there is only

one independent generator of the symmetry. We can thus expect to find
one quotient equation of .E purely in terms of v. Indeed, the differential
consequences of (160) reveal the following relations.

. w1 = vv1

2β
− v11

2
, w2 = vv2

2β
− v12

2
(161)

Furthermore, we can rewrite the eq for .v2 in (159) to obtain a 2nd condition
on .w1:

. v2 = −2β
(u12

u
− u1u2

u2

)
= −2βw1 (162)

(continued)
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Combining the last two expressions for .w1, we obtain the following quotient
equation on .J := J 2(E) ×M J 2(F ), purely in terms of v and its derivatives:

.FJ : {v2 = βv11 − vv1
}

(163)

This is Burger’s equation, i.e. we computed the well-known Hopf-Cole
reduction.11

By Proposition 27, solutions of .E can be transferred to the quotient
equation .F := πF (FJ ) (where .πF : J → J 2(F )). Note that the coordinate
w is not involved and we could thus also consider .F as an equation on .J 2(G)

where .ρ : G → M has local coordinates .(x, y, v). One can e.g. solve the
following boundary value problem. On the (.(x, y) = (x, t)) plane:

.

{
v = A(x), t = 0,

F : {v2 + vv1 − βv11 = 0}, t > 0.
(164)

The correspondence .v = −2β u1
u

⇒ u(x, t) = exp(−1/(2β)
∫

dx v(x, t)),
transforms this into an initial value problem for .E:

.

⎧⎨
⎩

u = exp
(
− 1

2β

∫ x

x0
dσ A(σ)

)
, t = 0,

E : {u2 − βu11 = 0}, t > 0
(165)

The general solution of the heat equation given the initial condition .u(x, 0) =
g(x) is the convolution

.

u(x, t) =
∫ ∞

−∞
dz f (x − z, t)g(z) where

f (x, t) = 1√
4πβt

exp

(
− x2

4βt

)
is the fundamental solution.

(166)

In the present case where .g(x) is given by (165), this leads to

. u(x, t) := 1√
4πβt

∫ ∞

−∞
dz exp

(
− 1

2β

[
(x − z)2

2t
+
∫ z

z0

dσ A(σ)

])

(167)

(continued)

11 Note that (160) can be seen as a derivation of a correspondence .�′ : { v =
−2βu1/u, v2/(4β) − v1/2 = u2/u }. which is a Bäcklund correspondence with diff.
consequences .EJ and .FJ , that, in contrast to .Q, does not require the coordinate w anymore.
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and using the correspondence .v = −2βu1/u again, we obtain, without
solving any further equations (as described in Proposition 27), the quite
general solution of Burgers’ equation:

. v(x, t) = −2β
ux(x, t)

u(x, t)
=
∫∞
−∞ dz x−z

t
exp

(
− 1

2β

[
(x−z)2

2t + ∫ z

z0
dσ A(σ)

])
∫∞
−∞ dz exp

(
− 1

2β

[
(x−z)2

2t + ∫ z

z0
dσ A(σ)

])
(168)

This well-known result also appears as a Bäcklund transformation in [44].
The example is supposed to show how it arises in the present framework as
a special case of a solution transfer, relating symmetries/quotient equations
to correspondences which in turn can give rise to generalized notions of
Bäcklund transformations.

9 Application to Electrodynamics and Hydrodynamics

In this section, the framework is applied to study some aspects of electrodynamics
and hydrodynamics in order to illustrate the general aspects outlined in the last
sections.

1. In the first subsection, formal integrability of Maxwell’s equations is shown. This
is a well-known result but provided for completeness.

2. In the second subsection, the shared structure of Maxwell’s equations in vacuum
and the wave equations is computed and Maxwell’s equations in vacuum are
identified as an auto-Bäcklund correspondence of the wave equation.

3. In the third subsection, it is shown that electrodynamics, formulated in terms
of gauge potentials, is equivalent up to gauge symmetries to electrodynamics,
formulated in terms of Faraday tensors, in the precise sense of Definition 22.

4. The fourth subsection picks up the motivating example of Sect. 3.1 and the
shared structure of magneto-statics and the incompressible, viscous Navier-
Stokes equation. It is shown that the integrability conditions coming out of the
formalism are exactly those physical assumptions that had to be guessed in the
motivating example.
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9.1 Formal Integrability of Maxwell’s Equations

Let M be our spacetime with local coordiantes .(x0, · · · , x3) and .E = T M an 8-
dimensional bundle, .π : E → M , which locally has the form .U ×R

4, .U ⊂ M with
local coordinates .(x0, · · · , x3, A0, · · · , A3). We abbreviate those local coordinates
with .(xμ,Aμ). .Aμ are the local coordinates of the gauge potential of electrodynam-
ics. In the present context, they are coordinate functions .Aμ : J 0(π) → R and
they should not be confused with sections .Aμ : M → J 0(π), x �→ Aμ(x). One
can prolong .J 0(π) to .J 2(π) to obtain the local coordinates

.(xμ,Aμ,Aμ,ν, Aμ,νλ). (169)

As second derivatives commute, the relation .Aμ,νλ = Aμ,λν holds for the
corresponding coordinate functions of the prolongation. Thus, .J 2(π) = J 2(4, 4)
is a space with .4 + 4 + 42 + 4 · 4 · (4 + 1)/2 = 24 + 40 = 64 dimensions.
Furthermore, we let .g : T M ⊗ T M → C∞(M) be the Lorentzian metric of our
spacetime M . It is an element of .T ∗M⊗T ∗M . In local coordinates, it can be written
.g = gμνdxμ ⊗ dxν . If one assumes that the metric is given (e.g. as solution of the
Einstein equations) and that the sources .J ν : M → R are also given, one can
locally describe Maxwell’s equations as the kernel of the differential operator12

.ϕ : J 2(E) → E, (xμ,Aμ,Aμ,ν, Aμ,νλ) �→ (xμ, gνλA
[ν,μ]λ−Jμ). (170)

Proposition 28 .E = ker(ϕ) is involutive and thus formally integrable.

Proof The prolongation .P 1(E) only involves new constraints on 3rd order coordi-
nates. As a result, .π3

2 : P 1(E) → E is surjective. Let us check if the other two
conditions of Proposition 16 are fulfilled.

.

σ(ϕ) = aρ,κθ ∂ϕh

∂Aρ,κθ

∂

∂wh

= aρ,κθ gνλ∂Aν,μλ

∂Aρ,κθ

∂

∂wμ
− aρ,κθ gνλ∂Aμ,νλ

∂Aρ,κθ

∂

∂wμ

= (
aν,μλgνλ − aμ,νλgνλ

) ∂

∂wμ
= gνλa

[ν,μ]λ ∂

∂wμ

(171)

Over pairs of indices is summed and thus, those are in total 4 equations. When
calculating the rank of the symbol, those 4 equations impose 4 constraints. This
means (recall that .dim(E) = m + e = 4 + 4)

12 The notation .a[μ1...μn] means antisymmetrisation of the indices, e.g. .F[νλ,μ] = Fνλ,μ − Fμλ,ν +
Fμν,λ−Fλν,μ+Fλμ,ν−Fνμ,λ or .gμλA

[ν,μ]λ = gμλA
ν,μλ−gμλA

μ,νλ. The Einstein sum convention
is used.
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.dim(g2)
(38)= e

(
m − 1 + 2

2

)
− e

(m=4=e)= 4

(
5
2

)
− 4 = 4 · 10− 4 = 36. (172)

Next, calculate the prolongation:

. μ ◦ σ 1(φ)
(52)= aν,μλθ ∂(Doφ

h)

∂Aν,μλθ

∂

∂wh
o

= gνλa
[ν,μ]λθ ∂

∂w
μ
θ

(173)

Those are in total 16 equations. However, the rank of the system might be lower
if some of them are functionally dependent. A small program was implemented
that generates the corresponding matrix and calculates the rank. The code of this
program is given in [43]. The program delivers the rank 15 for the system above for
4 dimensions This means, one of the functions depends on the others. Therefore, we
obtain

.dim(g3) = 4

(
6
3

)
− 15 = 80 − 15 = 65. (174)

The dimension is constant for every local neighbourhood and thus .g3 is a smooth
vector bundle over .J2.

We can use (65) to obtain the dimensions of .F
2,j

J2 .

.dim(F
2,j

J2 ) = e ·
(

m − 1 − j + 2
2

)
(175)

Let us give an explicit basis for them

.F
2,j

J2 = {
span

(
dxl ∨ dxn ⊗ ∂k

u

) | j + 1 ≤ l ≤ n ≤ m
}

(176)

We can obtain the intersection by restricting .σ(φ) to .F
2,j

J2 :

.

g2,j = g2 ∩ F
2,j

J2 = ker(σ (φ)|
F
2,j

J2
)

= {(
0 = gνλ(a

μ,νλ − aν,μλ) | last two indices ∈ {j + 1, · · · ,m})}
(177)

For .j < m − 1, the above equation always gives rise to .e = 4 different conditions
on the components .aμ,νλ because the last two indices can be chosen differently.
However, for .j = m − 1 one obtains the equation

.gmmaμ,mm − gνmaν,μmδμ,m (178)
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And this means that for .μ = m, the last term of the matrix of derivatives of the
equation above with respect to .aμ,νλ (whose rank corresponds to the rank of the
system) vanishes. Then they impose one condition less.

In accordance with this, the computer program delivers:

. rankσ(φ)|F 2,1 = 4, rankσ(φ)|F 2,2 = 4, rankσ(φ)|F 2,3 = 3 (179)

All in all, we obtain

.

dim(g2) +
3∑

j=1

dim(g2,j ) = 36 + 4

(
4
2

)
− 4 + 4

(
3
2

)
− 4 + 4

(
2
2

)
− 3

= dim(g3).

(180)

Thus, the system is formally integrable. ��
Note that formal integrability of the Yang-Mills-Higgs equations was shown for
arbitrary dimensions in 1996 by Giachetta and Mangiarotti [47].

9.2 Embedding of Vacuum Electrodynamics in Wave Equations

As is well-known, when considering Maxwell’s equations in flat spacetime in
vacuum (without sources and in Gaussian units)

.∇ · E = 0, ∇ × E = −1

c
∂tB, ∇ × B = 1

c
∂tE, ∇ · B = 0, (181)

one can derive wave equations as follows

.

∂2t B = −c ∂t (∇ × E) = −c2 ∇ × (∇ × B) = −c2 ∇ · (∇ · B) + c2�B = c2�B

∂2t E = −c ∂t (∇ × B) = −c2 ∇ × (∇ × E) = −c2 ∇ · (∇ · E) + c2�E = c2�E
(182)

In the following is shown how Maxwell’s equations in vacuum can be understood
as a Bäcklund correspondence for the wave equations.

As can be seen, the wave equations are differential consequences of Maxwell’s
equations. Furthermore, the consequences separate into constraints imposed solely
on .B and .E. This suggests to understand (181) as a correspondence between the two
wave equations.

Indeed, if one defines the bundle .π : E := M ×R
3 → M where .M = R

4 in this
case, with local coordinates .(t, xi, Ej ), .i, j ∈ {1, · · · , 3} and the bundle .ξ : F �
E → M with coordinates .(t, xi, Bj ), then one can define Maxwell’s equations in
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vacuum as a correspondence .� on the product space .J := J 2(E) ×M J 2(F ) by

.

� :
{
Ei,i = 0, εijkE

k,j = −1

c
Bi

t

Bi,i = 0, εijkB
k,j = 1

c
Ei

t

} (183)

The compatibility conditions .P(�) = π1
J (P 1(�)) for .� are given by

.P(�) = ker

⎛
⎜⎜⎜⎝

Ei,i , Ei,ij , E
i,i
t

c εijkE
k,j + Bi

t , c εijkE
k,j l + B

i,l
t , c εijkE

k,j
t + Bi

tt

c εijkB
k,j − Ei

t , c εijkB
k,j l − E

i,l
t , c εijkB

k,j
t − Ei

tt

Bi,i , Bi,il , B
i,i
t

⎞
⎟⎟⎟⎠ , (184)

Now, as already shown above, the entries [2,2] and [3,2] of the matrix can be inserted
into the entries [3,2] and [3,3] to obtain the wave equations via the .εijk-identities.

.EJ : {Ei
tt = c2 Ei,jj

}
, FJ : {Bi

tt = c2 Bi,jj
}
. (185)

Together, .EJ ∩ FJ = EF ⊃ π1
J (P 1(�)) = P(�). Furthermore, since no other

equations purely in terms of E or B coordinates are imposed, we have .πE(P(�)) =
E and .πF (P(�)) = F. Hence .� is a strict Bäcklund correspondence.

Furthermore, there is a diffeomorphism .E � F and therefore this Bäcklund
correspondence is actually an auto-Bäcklund correspondence. This is a useful fact
because (it is well-known that) auto-Bäcklund correspondences allow to generate an
infinite amount of solutions. Indeed, by Proposition 24, solutions can be transferred
from .E to .F by solving .�. Since the process involves solving .�, the solution
obtained for .F is in general different to the solution coming from .E. However, once
such a solution of .F is obtained, one can repeat the process because .E � F and
obtain a new solution of .F and so on.

Another aspect that is shown quite clearly in this geometric product bundle
setting, is that the space of all differential solutions of .EJ and .FJ contain the space
of all differential solutions of .� (because they are a differential consequence of .�,
i.e. .P(�) ⊂ EF). Thus, one could say that the solution space of electrodynamics in
vacuum is embedded into the solution spaces of the wave equations. Hence, once the
most general solution of the wave equations is found (possibly by utilizing the auto-
Bäcklund correspondence), one can restrict this general solution to the subspace
of solutions of Maxwell’s equations (that can be obtained simply by inserting the
solutions into those equations) to obtain the general solution of Maxwell’s equations
in vacuum.
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9.3 Equivalence Up to Gauge Symmetry

In this subsection, the aim is to derive Maxwell’s equations in terms of Faraday
tensors13

.F : { gνλF
νμ,λ = Jμ, F [νλ,μ] = 0 } (186)

as a quotient equation by quotienting out gauge symmetries from the equations in
terms of vector potentials

.E : { gνλA
[ν,μ]λ = Jμ } (187)

using the methods introduced in Sect. 8. Among other things, this shall illustrate that
the framework is versatile enough to answer the questions that the solution-Category
approach described in [5] answers—though the way the answer is obtained is quite
different.

The first equation above can be modeled on the jet bundle .J 1(F ) where F is the
total space of the bundle .ξ : F := T M ⊗ T M → M with local coordinates
.(xμ, Fμν). M is a Lorentzian spacetime, equipped with a Lorentzian metric .g ∈
T ∗M ⊗ T ∗M . Its local description reads .g = gμνdxμ ⊗ dxν .

The second equation can be modeled as submanifold .E ⊂ J 2(E) over the bundle
.π : E := T M → M with local coordinates .(xμ,Aμ). .J 2(E) has local coordinates
.(xμ,Aμ,Aμ,ν, Aμ,νλ). As second derivatives commute, the corresponding relation
.Aμ,νλ = Aμ,λν also holds for the jet bundle coordinates.

The differential equation .E is invariant under so called gauge transformations

.xμ → xμ, Aμ → Aμ + χ ,μ (188)

which prolonged to .J 2(E) take the form

.A :=

⎛
⎜⎜⎝

xμ

Aμ

Aμ,ν

Aμ,νλ

⎞
⎟⎟⎠ → A′ :=

⎛
⎜⎜⎝

xμ

Aμ

Aμ,ν

Aμ,νλ

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
χ ,μ

χ ,μν

χ ,μνλ

⎞
⎟⎟⎠ . (189)

Note that because of the prolongation, we have .χ ,μν = χ ,νμ and therefore, if we
contract it with some tensor .Tμν , we obtain

.χ ,μνTμν = χ ,μν

(
Tμν + Tνμ

2
+ Tμν − Tνμ

2

)
= χ ,μν Tμν + Tνμ

2
(190)

13 As already mentioned in the footnote above Eq. (170), the notation .a[μ1...μn] means antisym-
metrisation of the indices, e.g. .F[νλ,μ] = Fνλ,μ − Fμλ,ν + Fμν,λ − Fλν,μ + Fλμ,ν − Fνμ,λ or
.gμλA

[ν,μ]λ = gμλA
ν,μλ − gμλA

μ,νλ. The Einstein sum convention is used.
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because the anti-symmetric part vanishes upon contraction. Similarly,

.

χ ,μνλTμ ,νλ = χ ,μνλ

(
Tμ ,νλ + Tλ ,μν + Tν, λμ + Tμ ,λν + Tλ ,νμ + Tν, μλ

3!
)

= χ ,μνλ Tμ ,νλ + Tλ ,μν + Tν, λμ

3
(191)

The gauge transformation can be rewritten as the action of group elements on A to
extract the generators X of this transformation.

.

A′ =

⎛
⎜⎜⎝

xμ

Aμ

Aμ,ν

Aμ,νλ

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
χ ,μ

χ ,μν

χ ,μνλ

⎞
⎟⎟⎠

= exp

[
χ ,μ ∂

∂Aμ
+ χ ,μν ∂

∂Aμ,ν
+ χ ,μνλ ∂

∂Aμ,νλ

]⎛⎜⎜⎝
xμ

Aμ

Aμ,ν

Aμ,νλ

⎞
⎟⎟⎠

(191)= exp

⎡
⎢⎢⎢⎣χ ,μ ∂

∂Aμ︸ ︷︷ ︸
=:Xμ

+1

2
χ ,μν

(
∂

∂Aμ,ν
+ ∂

∂Aν,μ

)
︸ ︷︷ ︸

=:Xμν

+1

3
χ ,μνλ

(
∂

∂Aμ,νλ
+ ∂

∂Aν,μλ
+ ∂

∂Aλ,μν

)
︸ ︷︷ ︸

=:Xμνλ

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎝

xμ

Aμ

Aμ,ν

Aμ,νλ

⎞
⎟⎟⎠

(192)
If .χ ,μν were different from .χ ,νμ, then .∂/∂Aμ,ν and .∂/∂Aν,μ would be two
different generators but because .χ ,μν = χ ,νμ, we obtain the generator .Xμν .
Similarly for .χ ,μνλ and .Xμνλ.

As a consequence, to obtain a functionally independent set of Invariants of gauge
transformations, we use Eq. (146) and obtain

.Xμ(I) = 0, Xμν(I ) = 0, Xμνλ(I ) = 0. (193)

Proposition 29 This system can only be solved if I is a function of .xμ and

.Iμν := Aμ,ν − Aν,μ = A[μ,ν] (194)

and its prolongations .Iμν,λ = A[μ,ν]λ, · · · , Iμν,λ1...λk = A[μ,ν]λ1...λk and so on.
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Proof That the generators annihilate .xμ is trivial because they only contain
derivatives w.r.t. the dependent variables. For deriving (194), let us consider the
equations order by order:

1. .0 = Xμ(I) = ∂I/∂Aμ implies that I does not depend on .Aμ.
2. Now we have .0 = Xμν(I) = ∂I/∂Aμ,ν + ∂I/∂Aν,μ. The general dependence

of I can be found by a coordinate transformation. First, let us fix some indices
.μ, ν, λ and then define .x1 := Aμ,ν and .x2 := Aν,μ such that the above equation
takes the form .0 = ∂I/∂x1 + ∂I/∂x2. Now, we introduce the transformation

.

(
x′
1 := x1

x′
2 := x2 − x1

)
⇒ ∂

∂xi

= ∂x′
1

∂xi

∂

∂x′
1

+ ∂x′
2

∂xi

∂

∂x′
2

(195)

Thus, .∂/∂x1 = ∂/∂x′
1 − ∂/∂x′

2 and .∂/∂x2 = ∂/∂x′
2. Therefore

.0 =
(

∂

∂x1
+ ∂

∂x2

)
I = ∂I

∂x′
1
. (196)

This implies that I can only be any function of .Iμν := x′
2 = x2 − x1 = Aμ,ν −

Aν,μ. This goes through for any choice of .μ, ν, λ.
3. .0 = Xμνλ(I ) implies

.0 =
(

∂

∂Aμ ,νλ
+ ∂

∂Aν ,μλ
+ ∂

∂Aλ ,μν

)
I

We employ the same method as above. We define .x1 = Aμ,νλ, · · · , x3 = Aλ,μν

and the transformation

.

⎛
⎝ x′

1 = x1,

x′
2 = x2 − x1,

x′
3 = x3 − x1

⎞
⎠ ⇒

⎛
⎜⎜⎝

∂
∂x1

= ∂
∂x′

1
− ∂

∂x′
2

− ∂
∂x′

3
,

∂
∂x2

= ∂
∂x′

2
,

∂
∂x3

= ∂
∂x′

3
.

⎞
⎟⎟⎠ (197)

Thus,

.

∑
i

∂I

∂xi

= ∂I

∂x′
1

(198)

implying that I is a function of .x′
2 = x2 − x1 and .x′

3 = x3 − x1. Observe that
.x′
2 − x′

3 = x2 − x3 which means that this system is linearly equivalent to the
system .xi − xj , .i, j ∈ {1, 2, 3}.

Thus, we can say I to this order only depends on

.Iμνλ := Aμ,νλ − Aν,λμ = A[μ,ν]λ (199)

or any permutation thereof in .μ, ν, λ.
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If .Aμ(x) is a section, then .A[μ,ν]λ(x) = ∇λA[μ,ν](x) and therefore .Iμνλ =
Iμν,λ as desired.

If we prolong the bundle further, this idea continuous for higher orders. For order n,
the equation .X(I) = 0 gives

.0 =
(

∂

∂Aλ1,λ2...λn
+ ∂

∂Aλ2,λ3...λ1
+ · · · + ∂

∂Aλn,λ1...λn−1

)
I =:

n∑
i=1

∂I

∂xi

(200)
Thus, with the transformation

.

⎛
⎜⎜⎝

x′
1 = x1,

x′
2 = x2 − x1,

· · ·
x′
n = xn − x1

⎞
⎟⎟⎠ ⇒

⎛
⎜⎜⎜⎜⎝

∂
∂x1

= ∂
∂x′

1
− ∂

∂x′
2

− · · · − ∂
∂x′

n
,

∂
∂x2

= ∂
∂x′

2
,

· · ·
∂

∂xn
= ∂

∂x′
n
.

⎞
⎟⎟⎟⎟⎠ (201)

we obtain .∂I/∂x′
1 = 0 and therefore I only depends on .xi − x1 or, equivalently, on

.xi − xj = A[λi ,λj ]λ1...λi−1λi+1...λj−1λj+1...λn = Iμν,λ1...λk (202)

proving the claim. ��
Thus, apart from .xμ, the .Iμν are our only functionally and differentially independent
Invariants. Their degree is .n = 1 because they only involve functions from .J 1(E).
Define .N = max(k, n) = k = 2, .L = N − n = 1. As described in Sect. 8, one can
now create a new bundle .ξ : Q → M with the same base space M and where Q is
the bundle on which the .Iμ,ν live, i.e. .T M ⊗ T M . It is given the local coordinates
.(xμ, Fμν) whose number coincides with the number of the .Iμν . Next, the quotient
correspondence .�(I) is defined on .J 2(E) ×M J 0(Q),

.�(I) : { Fμν = Iμν = A[μ,ν] } (203)

By our general theory, prolonging the equation .Q(I ) := (π ′
E)−1(E) ∩ �(I) should

give rise to compatibility conditions only involving the .Fμν-coordinates. Indeed, a
prolongation of .�(I) results in

. P 1(�(I)) : { Fμν = A[μ,ν], Fμν,λ = A[μ,ν]λ } (204)

Thus, intersection with the prolongation of .(π ′
E)−1(E) (cf. Eq. (187)) results in the

compatibility condition
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.

P 1(Q(I )) : {Fμν = A[μ,ν], Fμν,λ = A[μ,ν]λ

gνλA
[ν,μ]λ = Jμ, gνλA

[ν,μ]λθ = Jμ,θ ,

⇒ gνλF
νμ,λ = gνλA

[ν,μ]λ = Jμ,

F [νλ,μ] = A[ν,λμ] = 0 } ⊂ J 3(E) × J 1(Q),

(205)

where .A[ν,λμ] = 0 always holds because .Aμ,νλ = Aμ,λν .
Equations purely in terms of coordinates of Q thus arise already after one

prolongation. The natural product bundle is thus .J := J 2(E) ×M J 1(Q), and
defining .Q := (π

2, 1
2, 0 )−1(Q(I )) as in Eq. (152), one obtains the following equation

.F ⊂ J 1(Q) from the compatibility conditions .P(Q) = π1
J (P 1(Q)):

.F (153)= πF (P(Q)) : { gνλF
νμ,λ = Jμ, F [νλ,μ] = 0 } ⊂ J 1(Q). (206)

Therefore, one indeed obtains Maxwell’s equations in terms of Faraday tensors.
Hence, as defined in Definition 22, .E and .F are equivalent up to symmetry and
.F = πF (P(Q)) is the quotient equation of .E.

Thus, “adding Morphisms of some group” in the solution-Category can be
compared with “finding the invariant equation with respect to some group” in the
category of smooth manifolds where differential equations are submanifolds of jet
spaces. The procedure in the category of smooth manifolds might be computation-
ally more involved but in contrast to the solution-Category approach, it delivers
all invariants of the symmetry and it produces the corresponding quotient equation
without the need to know it before. Furthermore, it enables to see connections and
find solutions of many systems of PDEs that result from solution transfer to the
quotient as detailed in Proposition 27 and also from the quotient back to the original
equation (here, for example, the quotient equation is a system of lower order).

9.4 Shared Structure of Magneto-Statics and Hydrodynamics

In this subsection, the motivating example in Sect. 3.1 is picked up. In particular,
the assumption of a static fluid flow, guessed in (15), arise as the result of the
computation of the minimal integrability conditions for shared structure under the
given correspondence.

The notation that is used in the following computations is the one introduced in
Example 3.3. In particular, .E is given by (25), .F by (26), the correspondence by (27)
and the intersection by (28), copied here for convenience:
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.I = π−1
E (E) ∩ π−1

F (F) ∩ � :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui
t + ujui,j = − 1

ρ
p ,i + νui,jj , ui,i = 0

εijkB
k,j = I i, Bi,i = 0

Bi = εijku
k,j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(207)
The first prolongation of .� leads to

. P 1(�) :
{
Bi = εijku

k,j

∣∣∣∣ Bi,l = εijku
k,j l

Bi
t = εijku

k
t

}
(208)

With the additional relations, all equations in (207) can be expressed in terms of the
coordinates of .J 2(E). In particular, we obtain for the middle row of (207),

.

εijkB
k,j = εijkεklmum,lj = (δi

l δ
j
m − δi

mδ
j
l )um,lj = uj,ij − ui,jj − I i

Bi,i = εijku
k,j i = −εijku

k,j i = 0
(209)

where we used that .εijk is antisymmetric and thus annihilates .uk,ji because it is
symmetric in ji.

Since all relations in (207) are now expressed in terms of coordinates of .J 2(E)

(and .Bi,i = 0 is trivially fulfilled), formal integrability of the whole system amounts
to formal integrability of the following system on .J 2(E).

.I2 :

⎧⎪⎨
⎪⎩

ui
t + ujui,j + 1

ρ
p ,i = νui,jj , ui,i = 0

uj,ij − ui,jj = I i

⎫⎪⎬
⎪⎭ (210)

On .I2, .ui,jj = uj,ij −I i . Thus, we can rewrite the first line as .ui
t +ujui,j + 1

ρ
p ,i +

νI i − νuj,ij . To simplify the problem, let us assume that

.νI i = −p ,i/ρ, (211)

corresponding to the first of the two assumptions in (15). Then the above system is
equivalent to the system

.I2 = ker

⎛
⎝ui

t + ujui,j − νuj,ij

ui,i

uj,ij − ui,jj − I i

⎞
⎠ (212)

Proposition 30 The system (212) is not formally integrable without adding the
integrability condition

.B(I2) : {ui,ik = uj,kj = 0
} ⇒ du

dt
= 0. (213)
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and thereafter, for .ui �= 0, becomes involutive and thus formally integrable.

Proof Consider the first prolongation

.I3 = ker

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ui
t + ujui,j − νuj,ij

∣∣∣∣ u
i,k
t + uj,kui,j + ujui,jk − νuj,ijk

ui
tt + u

j
t u

i,j + uju
i,j
t − νu

j,ij
t

ui,i

∣∣∣∣ ui,ik

u
i,i
t

uj,ij − ui,jj − I i

∣∣∣∣ uj,ijk − ui,jjk − I i,k

u
j,ij
t − u

i,jj
t − I i

t

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(214)

Due to the term .ui,ik on the right side, which is set to 0 when considering the kernel,
constraints on coordinates of order 2 are imposed. Furthermore, the third equation
simplifies to .ui,jj = I i . As a consequence, .π3

2 : I3 → I2 is not surjective,
violating the first condition of Proposition 14. Thus, the system is not formally
integrable without adding those integrability conditions to .I2.

As explained in detail in Sect. 5.3, those new constraints can be understood as
the minimal conditions under which the intersection is differentially consistent. The
conditions are

.ui,ik = uj,kj = 0 (215)

and thus .dui/dt =̂ ui
t + ujui,j = 0. This means the consistency conditions induce

the constraint of a static fluid flow.
Let us therefore define a new system (as explained in Sect. 5.3) which takes those

consistency conditions up to order two into account:

. ⇒ J2 = ker

⎛
⎜⎝

uj,j , u
j,j
t , uj,j i

ui
t + ujui,j , (ui

t + ujui,j ),k, (ui
t + ujui,j )t

ui,jj + I i,k

⎞
⎟⎠ (216)

The prolongation .J3 now by construction either does not lead to equations not
contained in .J2 or the prolonged terms always involve at least one 3rd order
coordinate. For example, the term .(ui

t + ujui,j ),kl can be solved for .u
i,kl
t and is

thus only turned into a constraint on a coordinate of order 3.
As a result, .π3

2 : J3 → J2 is surjective. To verify involutivity, let us check if
the other two conditions of Proposition 16 are fulfilled.

.

σ(φ) = aj,kl ∂φh

∂uj,kl

∂

∂wh
+ a

j,k
t

∂φh

∂u
j,k
t

∂

∂wh
+ a

j
tt

∂φh

∂u
j
tt

∂

∂wh

= a
j,j
t ∂2w + aj,ji∂3w +

(
a

i,k
t + ujai,jk

)
∂5w

+
(
ai
tt + uja

i,j
t

)
∂6w + ai,jj ∂7w

(217)
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This and the system (218) below are quite high dimensional systems. Thus, a small
computer program was implemented to determine their rank. The code is given in
the appendix of the Master’s thesis (cf. [43]). It facilitates to generate the matrix
corresponding to the tensor equations automatically.

When counting all components of the above equations, one obtains 19 but
calculating the rank with the program gives us 18 constraints (i.e. there is one linear
dependence). Note that even though .a

i,k
t and .ai

tt depend on .uj due to the non-
linearity, they depend on it in a smooth way and thus .g2 has the same dimension
everywhere and is a smooth vector bundle over .J2.

Next, we have to calculate the prolongation:

.

ker σ 1(φ)
(52)= ker

(
aj,klm ∂(Dnφ

h)

∂uj,klm

∂

∂wh
n

+ a
j,k
tt

∂(Dtφ
h)

∂u
j,k
tt

∂

∂wh
t

+a
j,kl
t

∂(Dtφ
h)

∂u
j,kl
t

∂

∂wh
t

+ a
j,kl
t

∂(Dnφ
h)

∂u
j,kl
t

∂

∂wh
n

)

= ker

⎛
⎜⎝

a
j,jn
t , a

j,j
tt , aj,j in

a
i,kn
t + ujai,jkn, a

i,k
tt + uja

i,jk
t , ai

tt t + uja
i,j
tt

ai,jjn, a
i,jj
t

⎞
⎟⎠

(218)

If all equations of this system are taken to be independent, then this imposes .3 +
1 + 3! + 3 · 3! + 3 · 3 + 3 + 3 · 3 + 3 = 52 constraints. However, the program
computes the rank to be 44 (i.e. there are 8 linear dependencies). If one sets .ui = 0,
the program still returns 8 in accordance to what was said before (in particular this
constancy means that .gk+1 is a smooth vector bundle everywhere). Thus, so far we
obtain

.dim(g2)
(38)= 3

(
4 − 1 + 2

2

)
− 18 = 12, dim(g3) = 3

(
4 − 1 + 3

3

)
− 44 = 16.

(219)
If we want to show that the system is formally integrable, then it remains to show
that .dim(g2,1) + dim(g2,2) + dim(g2,3) = 4. To calculate this, we consider the
kernel of .σ(φ) restricted to .F

2,j

J2 . For .g2,1, this means that all .at ’s fall away. Thus,

we obtain

.
σ(φ)|

F
2,1

J2
= aj,ji∂3w + ujai,jk∂5w + ai,jj ∂7w (220)

Using the program again, one obtains the rank 14. Thus,

.dim(g2,j ) = dim(F
2,j

J2 ) − e = e ·
(

m − j + 1
2

)
− e (221)
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.dim(g2,1) = dim(F
2,1

J2 )−14 = e·
(

m − j + 1
2

)
−14 = 3·

(
4
2

)
−14 = 18−14 = 4.

(222)

Note, however, that the rank changes to 6 if one sets .ui = 0 above in Eq. (220). This
means that the system is not involutive for .ui = 0.

Now, for .ui �= 0, it remains to show that .dim(g2,2) = 0 = dim(g2,3). For them,
we obtain the same system as above but the range of the derivatives now only covers
the coordinates 2 and 3. For .ker(ϕ)|

F
2,2

J2
, the program gives us the rank 9 (and the

rank 5 for .ui = 0). For .ker(ϕ)|
F
2,3

J2
, it delivers rank 3 (and also rank 3 for .ui = 0).

Thus,

.

dim(g2,2) = dim(F
2,2

J2 ) − 9 = e ·
(

m − j + 1
2

)
− 9 = 3 ·

(
3
2

)
− 9 = 9 − 9 = 0.

dim(g2,3) = dim(F
2,3

J2 ) − 3 = e ·
(

m − j + 1
2

)
− 3 = 3 ·

(
2
2

)
− 3 = 3 − 3 = 0.

(223)

Therefore, for .ui �= 0, the system is involutive and thus formally integrable. ��

Remark As explained in Sect. 5.3, the integrability conditions (213), can be
interpreted as the minimal amount of physical assumptions that have to be
made in order to reach consistency. Observe how, at this point, the consistency
conditions emerge from the formalism without the need to guess them as in
the motivating Example 3.1 (second assumption of (15)).

Now using the definitions introduced in Sect. 6 about shared structure, one can make
the following conclusions. Hydrodynamics of an incompressible fluid and magneto-
statics share structure under a linear correspondence of first order .� in case that the
fluid flow strength .u is not zero and condition (211) holds. (The formal closure is
then .B := I∩B(I).) As was explained already in the motivating example, .u in that
case takes the role of .A in a fixed gauge in magneto-statics.

All solutions of .I are solutions of both the Navier-Stokes equation and, via
the correspondence .�, of magneto-statics by proposition 18. Finally, note that this
correspondence might not be the only one under which those two theories share
structure.
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10 Discussion

In this section, some conclusions are presented that are supposed to show that the
aims, that were described in the introduction (Sect. 1), were reached, and an outlook
to possible future research directions is given.

10.1 Conclusion

A geometric framework was developed to compare classical field theories, or
more generally, any two systems of PDEs in the category of smooth manifolds,
in a mathematically precise sense. For every two theories there might be multiple
correspondences relating them, enabling a very versatile comparison, both of
subtheories of a single theory with themselves and with subtheories of other
theories.

The methods developed in this contribution allow to give an answer to all
requirements (Q.1)–(Q.4) described in Sect. 1.2 in the following way.

1. A geometric answer to (Q.1) (“Are two systems of PDEs equivalent?”) is given
by Definition 13 in Sect. 6.

2. (Q.2) (“Do two PDEs share any subsystem?”) can be answered by computing the
shared structure described in Definition 11, using the methods from differential
topology and formal integrability introduced in Sects. 4 and 5.

3. (Q.3) (“When are two systems equivalent up to a symmetry?”) was answered by
Definition 22 via the introduction of quotient equations (Definition 3) which can
be computed using (146) in combination with differential consequences of .Q(I )

as defined in (150).
4. Finally, (Q.4) (“How to transfer solutions from one system to another?”) was

answered by Propositions 18, 19 and Corollary 2, with the generalization of
Bäcklund transformations in Proposition 22, Definition 17 and Propositions 23,
24 and the proposition about the transfer of solutions to quotient equations 27.

Hence, theoretical analogies of similar systems can now be analysed, new analogies
can be found using symmetries, and methods to solve systems can be transferred
with a generalization of Bäcklund transformations, that in particular can help to
solve some otherwise barely tractable non-linear PDEs.

10.2 Outlook

It would be interesting to apply the framework to the comparison of more complex
theories, for example to understand the relations between general relativity, hydro-
dynamics and electrodynamics.
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Perhaps the description of analogue experiments can be made more transparent
with the present approach.

Something that is still missing in the present framework is a way to find the
best possible correspondence (e.g. the ones that maximizes the solution space of the
intersection) between two given theories. A starting point for making progress in
this direction might be the relationship between correspondences and symmetries
as outlined in Sect. 8.

An interesting endeavor might be to study how Bäcklund transformations from
eq. .E to .F and from .F to .G could give rise to Bäcklund transformations between .E
and .G and if those could be used to build up chains of generalized relations between
multiple equations that facilitate to map solutions of rather simple equations to ever
more complex ones.

Another future aim would be to describe transitions between theories and
approximations of theories in a mathematically precise way. They are important
both for conceptual reasons—namely, to identify how one theory prepares the rise
of another—and for practical purposes—namely, in order to be able to understand
how one should approximate a complicated equation by a simpler one.

In the geometric framework, an equation is a submanifold of a jet bundle which
locally is the kernel of some system of equations. Therefore, a slight approximation
to this system would correspond to a slight deformation of the submanifold. Thus,
deformation and homotopy theory might serve to describe such transitions.

A natural question is whether it would be possible to extend the framework
to compare quantum theories. To a certain extend, it can be applied to quantum
mechanics because the Schrödinger equation is also a PDE. However, in quantum
field theory it would perhaps be necessary to consider functional equations because
the Dyson-Schwinger equations, whose solution is the path integral, is a functional
differential equation. At some points, [22] points out that cohomology theory could
be used to study problems usually approached by functional analysis. The advantage
would be that cohomology theory directly connects with all areas of geometry,
topology, homological algebra, abstract algebra and would provide many tools to
study quantum field theoretical problems in new ways. However, it is not yet clear
how to set up such a theory.
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