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Effects on Non-Darcian Model
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Abstract The chapter tackles the influence of inertia and thermal boundary effects
on thermoconvective instability in the configuration of non Darcian model by using
a root-finding algorithm of the shooting method. The set-up assumed here is a homo-
geneous horizontal isotropic saturated porous layer sandwiched between two rigid
impermeable walls where the upper layer is maintained at the isothermal condition
and the lower one at the Robin-type thermal boundary condition whose expression
is modelled as newton’s cooling law equation. The thermal non-equilibrium regime
(LTNE) is applicable by imposing different temperatures between Newtonian fluid
and the solid medium. The LTNE existence creates two independent Biot numbers
besides other non-dimensionless parameters. Normal modes technique is adopted
here by applying small disturbances to the dimensionless governing equations. Over-
all, the finding results will discuss at which instability takes place with respect to
different physical numbers.

Keywords Brinkman model · Biot number · Thermal non-equilibrium · Linear
stability analysis

5.1 Introduction

In the industrial sector, materials with higher porosity such as metal foams are often
used to enhance heat exchange between two bodies or structures. Furthermore, their
large surface area and lightweight make them good candidates for recycling energy
efficiently. In this case, the usual Darcy’s law becomes no longer suitable for describ-
ing fluid motion and, it is necessary to adopt the Brinkman-Darcy model instead
(Nield 2017; Dubey and Murthy 2019; Bouachir et al. 20121; Caprone and Rionero
2016).
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Moreover,manyman-madematerials like porousmedia have anisotropicmechan-
ical and thermal properties. Because of that, thermal instability can bemanaged by the
permeability and thermal conductivity of the medium (Storesletten and Rees 1997;
Tyvand andStoresletten 2015;Govender andVadasz 2007;Mahjoob andVafai 2008).
Rotation also plays a vital role in thermoconvective instability, for example rotating
machinery and centrifugal filtration processes. A reference to a rotating frame must
be established to investigate the situations in which the solid matrix rotates (Vadasz
2016, 2019; Govender and Vadasz 2007). Otherwise, thermal instability or convec-
tion in the subjects of rotating solid matrix, free and forced convection layer with
cavities, a non-Darcian model with open boundaries or saturating Oldroyd-B fluid
are ones of the several papers that deal with the convection phenomenon (Malashetty
et al. 2006; Shivakumara et al. 2006; Rees 2002; Baytas 2004; Saeid 2004). Most
papers in the last decade are predicated on the idea that the Newtonian fluid phase and
the solid medium are everywhere under the same temperature, which is known as the
thermal equilibrium regime (LTE). However, this assumption becomes inadequate
for many real-world applications, especially when high-speed flows or significant
temperature gradients between both phases are present (Fathi-Kelestani et al. 2020;
Gandomkar and Gray 2018; Lagziri and Bezzazi 2019; Barletta 2019). In such cases,
it is necessary to consider a two-field energy equation model to represent each phase
separately, and this emerges as a virtue of no thermal equilibrium behaviour (LTNE).
In addition, it is anticipated that the model of LTNE will have an important role in
future technology consisting of porous media such as computer chips, tube refriger-
ators, heat exchangers and others (Mahjoob and Vafai 2008; Pulvirenti et al. 2020).

The chapter studies the emergence of thermal instability cells in a non-Darcian
flowusingmixed thermal boundary conditions and a thermal non-equilibrium regime.
The influence of these two features on instability behaviour is investigated in detail.

5.2 Mathematical Modeling

A homogeneous fluid-saturated porous layer sandwiched between two rigid imper-
meable walls is shown in Fig. 5.1. An external heat source is imposed at the lower
boundary with two different external heat transfer coefficients h f and hs . In other
words, Robin’s thermal boundary conditions are considered. On the other hand, uni-
form perfect conducting temperature T1 is applied at the upper layer. The local ther-
mal nonequilibrium model and linear Oberbeck Boussinesq approximation are both
pertinent here. The Brinkman-Darcy equation describes the saturating non-Darcian
flow in a solid matrix. Following these descriptions the Mathematical equations of
the problem are
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Fig. 5.1 Sketch of Brinkman model with mixed thermal boundary conditions

∇∗ · �u∗ = 0, (5.1a)
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The temperature and velocity conditions suggested at the boundary are

z∗ = d : w∗ = 0, u∗ = 0, T ∗
s = T ∗

f = T1. (5.2a)

z� = 0 : w∗ = 0, u∗ = 0, ks
∂T ∗

s

∂z∗ = hs(T
∗
s − T0), k f

∂T ∗
f

∂z∗ = h f (T
∗
f − T0)

(5.2b)

The superscript of the star notation refers to dimensional variables. The vector �u
means the velocity field. Otherwise, we have also other physical properties such as
the thermal diffusivity α with [m2/s], the effective viscosity μ′ with [N .s/m2], the
dynamic viscosity of the fluid μwith [N .s/m2], the coefficient of thermal expansion
β the pressure P , the temperature at the lower wall T0, the reference density ρ with
[Kg/m3], the inter-phase volumetric heat transfer coefficient h with [W/(m3K )],
the heat capacity per unit of mass C with [J/(KgK )], the porosity φ, the time t with
[s], the thickness of the layer d with [m], the thermal conductivity k with [W/(mK )],
the superficial heat transfer coefficient between both phases hs, f with [W/(m2K )]
and the permeability K with [m2].
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The dimensionless expression of the governing equations is,

∇ × (D−1�u − ∇2�u) = RD−1[∇ × T f ] �ez,
λ

∂Ts
∂t

= ∇2Ts + γH(T f − Ts),

∂T f

∂t
+ �u · ∇T f = ∇2T f + H(Ts − T f ), (5.3)

We get the resulting boundary conditions as

z = 1 : w = 0, u = 0, Ts = T f = 0,

z = 0 : w = 0, u = 0,
∂Ts
∂z

= Bs(Ts − 1),
∂T f

∂z
= B f (T f − 1). (5.4)

The notations “s” and “f” signify the saturating Newtonian fluid phase and solid
structure. The dimensionless forms of R and H mean the modified thermal Rayleigh
number and the inter-heat transfer coefficient while Bs and B f describe the Biot
number of the solid matrix and fluid phase. Besides, we have γ and D whose physical
meanings are the thermal conductivity ratio and the Darcy number respectively.

The dimensionless parameters that emerge in (5.3) and (5.4) are:

λ = α f

αs
, km = (1 − φ)ks + φk f , γ = φk f

(1 − φ)ks
,

H = hd2

φk f
, Bs, f = hs, f d

ks, f
, α f = k f

(ρC) f
, αm = km

(ρC) f
,

D = μ′K
μd2

, R = ρ f β�T gKd

νk f φ
, �T = φ(T1 − T0)d

km
. (5.5)

where the rescaling variables applicable in the set of governing equations are,

∇∗ → ∇ 1

d
, t∗ → d2

α f
, �u∗ → �uφα f

d
, T ∗

s, f → T0 + Ts, f �T . (5.6)

5.3 Basic Profile

We consider a motionless flow whose basic state is

�ub = 0, T f,b = T f b(z), Ts,b = Tsb(z). (5.7)

We have used “b” as a symbol of the basic flow.
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5.3.1 Linear Stability Analysis

Let us disturb the basic flow by writing that

�u = �ub + ε �U ,

T f s = Ts f,b(z) + εθs, f . (5.8)

We are concerned only with the first-order terms of disturbances, therefore, the
linearized form of the equations is

∇ × (D−1 �U − ∇2 �U ) = RD−1[∇ × θ f ] �ez = 0, (5.9a)

θs
′′ − a2θs + γH(θ f − θs) = 0, (5.9b)

θ f
′′ − a2θ f + H(θs − θ f ) − aT ′

f,b
�U = 0, (5.9c)

z = 1 : W = 0, U = 0, θs = θ f = 0. (5.9d)

z = 0 : W = 0, U = 0, θs
′ − θs Bs = 0, θ f

′ − θ f B f = 0, (5.9e)

Now we apply the normal modes method by defining the functions as

�U (x, z, t) = �{i �̂U (z)ei(ax−ωt)},
θ f (x, z, t) = �{θ(z)ei(ax−ωt)},
θs(x, z, t) = �{ϕ(z)ei(ax−ωt)} (5.10)

Hence the symbols of �̂U , θ and ϕ are used to describe the perturbed functions with
respect to z. The wave number is defined by the symbol a while the growth rate and
the angular frequency are noted with ωr and ωi respectively. The complex parameter
ω is defined as the sum of the imaginary and real parts.

In themeantime, the velocity components can be expressed in the stream functions
as,

Û = ∂ψ

∂z
, Ŵ = −∂ψ

∂x
. (5.11)

Otherwise, the definition of T ′
f b is

T ′
f b = −B f Bs(γ + 1) sinh(Ω) + (−Ω)(B f γ + Bs) cosh(Ω) + (Bs − B f )Ω cosh(Ωz)

(B f (Bsγ + Bs + 1) + Bsγ) sinh(Ω) + Ω(B f γ + Bs + γ + 1) cosh(Ω)
.

(5.12)

With Ω = √
(1 + γ)H .

By substituting (5.10) and (5.11) into (5.13) the set of equations become,
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− ψ′′′′ + (2a2 + D−1)ψ′′ − a2(a2 + D−1)ψ + aD−1Rθ = 0, (5.13a)

ϕ′′ − a2ϕ + γH(θ − ϕ) = 0, (5.13b)

θ′′ − a2θ + H(ϕ − θ) − aT ′
f,bψ = 0, (5.13c)

z = 1 : W = 0, U = 0, ϕ = θ = 0. (5.13d)

z = 0 : W = 0, U = 0, ϕ′ − ϕBs = 0, θ′ − θB f = 0, (5.13e)

As our motivation is to seek the marginal curves, the imaginary part of ω has
to be neglected. Meanwhile, the principle of exchange of instabilities is achieved
numerically thus we can eliminate both parts of ω and write (5.13).

5.4 Numerical Solutions

The numerical method adopted for dealing with (5.13) is the shooting method and
Range-Kutta solver. In general, this latter required the definition of extra boundary
conditions as a first step to manage (5.13) in the form of an initial value problem.
Thus, we can add

ψ′′(0) = ζ1, ψ′′′(0) = ζ2, ϕ(0) = ζ3, θ(0) = 1. (5.14)

The condition noted by θ(0) = 1 is included as a virtue of the homogeneity in the
governing equations. The parameters of ζ1, ζ2 and ζ3 are considered as unknowns
with real values. The next step here is to define these unknown constants together
with R for any given value of H, γ, a, D, Bs and B f through the use of the shooting
method and boundary conditions of the upper wall. The shooting method consists in
employing the root-finding algorithm in Mathematica 10 to determine the value pair
of (Rc, ac).

5.5 Discussion and Results

Table5.1 exhibits the critical values of the modified Rayleigh number and wave
number for different values of Bs , B f and H in the cases where D = 0.01 and
D = 0.1. Overall, we note that the Darcy number consists in having the viscous
diffusion at the region nearer to the boundary layers. In other words, as much as
the viscous effects decrease the fluid can flow and move more rapidly and easily
without resistance, thereby the onset of convection can be yielded at a small critical
Rayleigh number. Besides, we mention the values of H = 10 and H = 0.1 as the
two approaches of the thermal equilibrium and non-equilibrium one. A small value
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Table 5.1 Critical values of Rc and ac for fixed γ = 1 and variable values of H , Bs , B f and D

Bs = 10, D = 0.01 and H = 0.1 Bs = 10, D = 0.01 and H = 10

B f ac Rc B f ac Rc

10−2 2.511038 1079.598493 10−2 3.104816 112.986416

10−1 2.558604 390.796352 10−1 3.115111 111.056979

100 2.771452 97.466144 100 3.192665 99.369782

101 3.123249 62.807080 101 3.380695 83.971631

102 3.224927 60.824797 102 3.468684 80.081593

B f = 10, D = 0.01 and H = 0.1 B f = 10, D = 0.01 and H = 10

Bs ac Rc Bs ac Rc

10−2 3.123464 63.182457 10−2 3.324845 93.982412

10−1 3.123442 63.149355 10−1 3.326237 93.474899

100 3.123335 62.980012 100 3.338512 90.032296

102 3.123237 62.772448 102 3.402791 82.268740

Bs = B f , D = 0.01 and H = 0.1 Bs = B f , D = 0.01 and H = 10

10−2 2.536034 4623.735494 10−2 2.912826 6722.170507

10−1 2.567577 508.663163 10−1 2.936807 736.272960

100 2.772213 99.083327 100 3.095060 139.361525

102 3.224927 60.824797 102 3.468684 80.081593

Bs = 10, D = 0.1 and H = 0.1 Bs = 10, D = 0.1 and H = 10

B f ac Rc B f ac Rc

10−2 2.547663 3916.656653 10−2 3.049394 406.099765

10−1 2.590804 1409.760163 10−1 3.057606 399.046135

100 2.771510 349.394966 100 3.118962 356.437503

101 3.062273 223.926148 101 3.265212 300.650240

102 3.144334 216.690171 102 3.321342 289.612267

B f = 10, D = 0.1 and H = 0.1 B f = 10, D = 0.1 and H = 10

Bs ac Rc Bs ac Rc

10−2 3.062456 225.261482 10−2 3.217395 336.521693

10−1 3.062437 225.143664 10−1 3.218693 334.689564

100 3.062348 224.541123 100 3.229690 322.297643

102 3.062263 223.803036 102 3.283231 294.616629

Bs = B f , D = 0.1 and H = 0.1 Bs = B f , D = 0.1 and H = 10

Bs ac Rc Bs ac Rc

10−2 2.572029 16660.158434 10−2 2.893640 24122.803423

10−1 2.598972 1831.364896 10−1 2.912764 2641.510203

100 2.772161 355.135619 100 3.039128 499.382360

102 3.144336 216.633727 102 3.333511 286.691853
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Table 5.2 Comparison of Rc and ac with others results for the case of D = 0 and γ = 1

Postelnicu results (Postelnicu 2008) Shivakumara results
(Shivakumara et al. 2010)

Present results

H Rc ac Rc ac Rc ac
10−2 40.020810 3.163 40.2467 3.171 40.1084 3.166

10−1 40.192163 3.169 40.4271 3.178 40.1523 3.171

100 41.897 3.232 42.1288 3.241 41.3623 3.211

101 52.991 3.460 53.2635 3.470 52.3608 3.436

102 73.258 3.293 73.6547 3.303 72.3404 3.270

Table 5.3 Comparison of Rc and ac with others results for the case of D = 1 and γ = 1

Postelnicu results (Postelnicu 2008) Shivakumara results
(Shivakumara et al. 2010)

Present results

H Rc ac Rc ac Rc ac
10−2 1753.1005 3.121 1753.1005 3.121 1753.1005 3.1208

10−1 1761.0641 3.126 1761.0641 3.126 1761.0641 3.1256

100 1836.336 3.168 1836.3356 3.168 1836.3356 3.1680

101 2330.852 3.311 2330.2069 3.311 2330.2069 3.3108

102 3210.852 3.206 3210.8516 3.206 3210.85149 3.2055

of H leads the heat to be poorly exchanged between the two phases whereas for
a higher one the ability to heat transfer becomes extremely large. Otherwise, the
range assumed for Bs and B f extends from 10−2 to 102 to recover the both thermal
conditions of uniform heat flux and perfect conducting temperature. The finding
results of Table 5.1 show that the thermal stability increases in the cases where the
combined effect of LTNE and fluid inertia is present. In addition, we can notice that
even both Biot numbers can have the tendency to emerge stable behaviour.

The results computed by our numerical method in Tables 5.2, 5.3 for the case of
D = 0 (Darcian flow) and D = 1 display a good congruence with those of Postelnicu
(2008) and Shivakumara (2010). These two tables confirm that the fluid inertia can
retard the fluid motion which decreases later the buoyancy effects in the medium.

The neutral curves evaluated numerically for various values of γ and fixed D =
0.01 are drawn in Fig. 5.2. We remind that stability takes place in the regions situated
below the concave curves. In fact, all these curves follow the same standard shape
of the well-known Benard problem. Therefore, if we look at the behaviour of these
curves in the function of γ and both Biot numbers we can notice that stability effects
increase with the reduction of these two parameters. The small value of γ manages
the heat to be transported only through the solid structure, this in turn slows the onset
of convection especially when both phases at the upper layer have no ability to enter
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Fig. 5.2 Neutral curves for H = 100 and D = 0.01

Fig. 5.3 Plots for Rc and ac versus H with B f = Bs = 1000 and D = 0.01

or outer the heat with the external environment. Otherwise, Figs. 5.3, 5.4 display the
variation of Rc and ac with respect to H for D = 0.01. The broken lines in both
figures describe the critical values at thermal equilibrium. The results extracted from
both figures confirm that the stability effects prevail more in the case of uniform heat
flux as Rc = 11427.15 and ac = 2.5 for γ = 10.
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Fig. 5.4 Plots for Rc and ac versus H with B f = Bs = 0.001 and D = 0.01

5.6 Conclusion

The combined effect of non Darcian model and LTNE regime in a porous layer with
mixed thermal boundary conditions is investigated in this chapter. The root-finding
algorithm of the shooting method and Runge-Kutta solver are considered to solve
numerically the eigenvalue problem tackled by linear stability analysis. Briefly, the
finding results may be summed up as

• The thermal non-equilibrium (LTNE) regimewithweak heat exchange at the upper
layer by fluid phase creates more stability than the solid one.

• The growth of Darcy’s number hastens the stability as a result of the fluid inertia. In
other words, the buoyancy effects become less dominant in front of inertia effects.

• The reduction in both Biot numbers brings about stabilizing effects in the medium
either in LTE or LTNE model.
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