
Markov Decision Process for Automatic
Cyber Defense

Xiaofan Zhou1, Simon Yusuf Enoch2,3(B) , and Dong Seong Kim1

1 The University of Queensland, St Lucia, QLD 4072, Australia
dan.kim@uq.edu.au

2 Federal University, Kashere, Gombe State, Nigeria
simonpuks@gmail.com

3 Pen Resource University, Gombe, Gombe State, Nigeria
simon.enoch@pru.edu.ng

Abstract. It is challenging for a security analyst to detect or defend
against cyber-attacks. Moreover, traditional defense deployment meth-
ods require the security analyst to manually enforce the defenses in the
presence of uncertainties about the defense to deploy. As a result, it is
essential to develop an automated and resilient defense deployment mech-
anism to thwart the new generation of attacks. In this paper, we propose
a framework based on Markov Decision Process (MDP) and Q-learning
to automatically generate optimal defense solutions for networked sys-
tem states. The framework consists of four phases namely; the model
initialization phase, model generation phase, Q-learning phase, and the
conclusion phase. The proposed model collects real network information
as inputs and then builds them into structural data. We implement a Q-
learning process in the model to learn the quality of a defense action in a
particular state. To investigate the feasibility of the proposed model, we
perform simulation experiments and the result reveals that the model can
reduce the risk of network systems from cyber attacks. Furthermore, the
experiment shows that the model has shown a certain level of flexibility
when different parameters are used for Q-learning.

Keywords: Automation · Cyber-attacks · Defense · Deep learning ·
Reinforcement learning · Machine learning · Q-learning

1 Introduction

Cyber-attacks have grown over the past few years to become more effective.
In particular, cyber-criminals are now incorporating artificial intelligence (AI)
to power cyber-attacks (e.g., deep locker [13]) and to outsmart conventional
defense mechanisms using various approaches [1,8,11]. For instance, a group
of researchers at McAfee [9] in their 2020 threat prediction report have pre-
dicted the potential raise of less-skilled attackers to become more powerful to
create and weaponize deepfake content. In addition, they have predicted that
cyber-criminals will use AI to produce convincing real data capable of bypass-
ing many user authentication mechanisms. Besides, the current state-of-the-art
c© Springer Nature Switzerland AG 2023
I. You and T.-Y. Youn (Eds.): WISA 2022, LNCS 13720, pp. 313–329, 2023.
https://doi.org/10.1007/978-3-031-25659-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25659-2_23&domain=pdf
http://orcid.org/0000-0002-0970-3621
http://orcid.org/0000-0003-2605-187X
https://doi.org/10.1007/978-3-031-25659-2_23


314 X. Zhou et al.

defense enforcement methods require the security expert to manually deploy
cyber-defenses, thus faced with uncertainties about the best countermeasures to
enforce in order to achieve optimal security.

To address these challenges, we propose a novel approach to automatically
select and deploy cyber defense by formulating Markov Decision Process (MDP)
that reflects both attack and defense scenarios. Specifically, we propose an auto-
matic MDP modeling-based approach to automate defense deployment and selec-
tion using a Q-learning model (A Q-learning is a reinforcement learning policy
that finds the next best action, given a current state). Here, we use the Q-learning
model with the MDP framework to learn the quality of a defense action in the
states. The proposed framework is divided into four phases; model initialization,
model generation phase, Q-learning phase, and the conclusion phase. The model
initialization phase takes a real network situation as the input and converts it
into structured data; the model generation phase generates all the possible states
for the MDP model using a breadth-first search algorithm; the Q-learning phase
implements a Q-learning iteration which trains the model to learn the space and
update the quality for each state-action pair, and the conclusion phase searches
for the optimal solutions using the Q-table trained after the previous phase. The
focus of this paper is to use an AI technique to automate cyber defense and
thwart attacks. The main contributions of this paper are as follows:

– To design and implement an automation framework based on MDP and a deep
learning algorithm for the automatic cyber defense of networked systems.

– To collect real network data and generate an MDP structure model based on
the real data.

– To develop a Q-learning model which can train itself and generate an optimal
defense solution.

– To build a testbed and to demonstrate the usability and applicability of the
proposed framework based on our framework.

The rest of the paper is organized as follows. Section 2 provides the related
work on defense automation based on different approaches. Our proposed MDP-
based framework model is presented in Sect. 3. In Sect. 4, we provide the exper-
imental setup and analysis of the obtained results. We conclude the paper in
Sect. 5.

2 Related Work

In this section, we briefly survey related work on defense automation for both
the traditional defense and AI-based approaches.

Ray et al. [12] proposed a framework based on UML-based use cases, state-
chart diagrams, and XML to show attacker, attack actions, and the possible
defense method. This work is still theoretical. Applebaum et al. [2] developed
a practical framework based on MITRE Adversarial Tactics, Techniques, and
Common Knowledge (ATT&CK) to test for weaknesses and train defenders. In
their work, they used classical planning, Markov decision processes, and Monte



Markov Decision Process for Automatic Cyber Defense 315

Carlo simulations to plan attack scenarios and to proactively move through
the entire target networked systems searching for weakness and training the
defenders on possible defenses to deploy.

The authors in [7] presented a framework for automating threat response
based on a machine learning approach. Also, Noor et al. [10] presented a frame-
work for data breaches based on semantic analysis of attacker’s attack patterns
from a collection of threats. The focus of these papers is different from our work,
as they have focused on automating threat responses from a given repository,
while our proposed automation framework is based on simulation of real net-
works.

Zheng and Namin [14] presented a defense strategy against Distributed
Denial-of-Service (DDoS) in a Software-Defined Networking (SDN) using Markov
Decision Process. The authors used three parameters to model the finite set
states of the MDP model, including Flow Entry Size (F), Flow Queue Size (Q),
and Transmitted Packets Count (T). The rewards function is related to these
three parameters F, Q, and T. Each of them has been applied with different
weight factors because they have different impacts on the network. Their results
show that the model can keep the flow traffic optimized and detect potential
DDoS attacks at an early stage. This work also showed that the model can con-
trol how the system makes a transition by adjusting the rewards weight factor.
Also, Booker and Musman [3] presented a theoretical model-based automated
cyber response system, where they frame a cyber response problem as a Partially
Observable Markov Decision Problem (POMDP). In another work, the authors
extended their work where the POMDP is used to frame automated reasoning for
defensive cyber-response that searches for a policy that maps to system states,
and probabilistic beliefs.

The authors in [15] proposed a Markov Decision Process to model Moving
Target Defense with the interaction between the defend and attack sides. the
paper uses four states (Normal, Targeted, Exploited, Breached) with three pos-
sible defense strategies (wait, defend, reset) to describe the model. It also uses
the Bellman equation and value iteration method to find out the optimal policy
for each state. Their result demonstrated how much impact the cost will have on
the optimal policy and how that will help the defender to make better defense
strategies. Other authors such as [4,5] developed a blue team framework that
can perform cyber defense generation, defense enforcement, and security evalu-
ation using a defined workflow. However, the work did not use any AI technique
to enhance system attack learning or to thwart cyber attacks.

3 The Proposed Approach

In this section, we describe the proposed framework for automatic cyber defense
based on MDP. The workflow of the framework comprises of four phases; Ini-
tialization Phase, Generation Phase, Q-learning Phase, and Conclusion Phase.
We explain them in detail as follows.



316 X. Zhou et al.

3.1 Model Initialization Phase

The first phase is the initialization phase. During this phase, the program takes
some real network situations as the inputs. These inputs need to be recognized
and transformed into programmed data and later implemented into the MDP
model. Here, the more detailed the description of the network situation is, the
more complex the model will become.

3.2 Model Generation Phase

The second phase is the model generation phase. During this phase, the program
will generate all the possible states for the MDP using the input data collection
from the previous phase. To guarantee all the states will be visited in a well-
designed order, it is necessary to have a traversal method (and the Breadth-First
Search (BFS) algorithm will be used in this phase). Algorithm 1 and Algorithm
2 are used for the model generation, including the generation of the next state
and the defense states.

Algorithm 1: Initialize States
queue.add(initialState);
while queue not empty do

currentState ← queue.pop();
states.add(currentState);
GenerateNextState(currentState);

end

Algorithm 2: Generate Next State
/* Generate Attack States */
if attackPath is None then

for host ← adjacentHost do
if !host.compromised & host.hasVulnerabilities then

state ← AttackAction(host);
queue.add(state);

end
end

end
else

host ← GetNextHostOnPath();
if !host.compromised & host.hasVulnerabilities then

state ← AttackAction(host);
queue.add(state);

end
end
/* Generate Defense States */
for action ← defenseActionsList do

state ← DefenseAction(action);
queue.add(state);

end



Markov Decision Process for Automatic Cyber Defense 317

There are two major assumptions during the model generation phase. Firstly,
the attacker can only attack the host which is next to a compromised host or
public internet. For example, if the attacker attempted to compromise one host
in the network, this is only possible to happen when there is at least one neigh-
bor host compromised, or the host is directly connected to the public internet.
Secondly, there is no value to patch vulnerabilities on a host that has already
been compromised. Once a host is marked as compromised in the model, it is
assumed that the data on the host has already been fully breached or the host
has already been controlled.

After all the states have been generated, a transition table will be con-
structed. The table has size s by s where s is the number of all states. Each
cell contains transition information between the row state and the column state,
or none represents no transition available between two states. The transition
information includes data such as action, success rate, reward after success tran-
sition, and reward after the fail transition.

3.3 Q-Learning Phase

The third phase is the Q-learning phase. During this phase, the model will keep
learning the space until the iteration is over. Before starting the learning process,
a Q-value table will need to be initialized with rows and possible actions, and
columns as all generated states. Here, each q-value represents the “quality” of a
state and action pair. During this learning phase, the Q-table will keep updating
until it has reached the maximum iteration.

Four parameters are needed for the Q-learning; learning rate, epsilon, epochs,
and gamma (γ) or discounted factor which is ranging from 0 to 1. The γ param-
eter decides how important the future rewards will be. It is also used to approxi-
mate the noise in future rewards. The Q-learning phase is described by Algorithm
3. In this phase, if gamma is close to one, it means the agent mostly considers the
future rewards while being willing to delay the immediate rewards. If gamma
is close to zero, it means the agent will mostly only consider the immediate
rewards.



318 X. Zhou et al.

Algorithm 3: QLearningTrain
Input: gamma, lrnRate, epsilon, maxEpochs;
for i in range(maxEpochs) do

currS ← 0;
while True do

/* Decide to explor or exploit */
if random.uniform(0, 1) < epsilon then

action ← GetRandomNextAction(currS);

else
action ← GetMaxAction(currS);

nextS = GetStateFromAction(action);
/* Finish if no following state */
if nextS is None then

break;

/* Whether the action is successful or fail */
if random.uniform(0, 1) < trans[currS][nextS].rate then

reward ← rewards[currS][nextS].success;

else
reward ← rewards[currS][nextS].fail;
nextS ← currentS;

nextA ← GetMaxNextAction(nextS);
futureQ ← QTable[nextS][nextA];
/* Update Q Table */
QTable[currS][action] ← QValueCalculation();
currS ← nextS;

Equation (1) shows the detail calculation for the function QValueCalcula-
tion().

Q(s, a) = ((1 − α) ∗ Q(s, a)) + (α ∗ (reward + (γ ∗ Q(s′, a′))) (1)

Here, the Q-learning needs to make sure every q-value has been updated with
sufficient times to reflect the actual quality. The agent can increase the number
of iterations (epochs) to increase the overall updated times. The agent can also
adjust the epsilon to balance between exploration and exploitation.

3.4 Conclusion Phase

After the Q-learning process has been completed and the Q-table has finished
its updates, the process will enter the conclusion phase. The main task in this
phase is to find the optimal solution(s) for the current network state.

4 Experimental Setup

In this section, we use a real network to illustrate the framework used for the
attack and defense scenarios.



Markov Decision Process for Automatic Cyber Defense 319

Fig. 1. Real network structure

The Network and Attack Model: The network structure is shown in Fig. 1.
The network consists of 8 hosts, named host 1 - host 8. The network has a router
that controls access between the networked hosts. Hosts in the network have vul-
nerabilities that may or may not be patchable. Table 1 shows the vulnerabilities
of each host. In the Table, we use Vi to denote vulnerability ID, CVSS Score for
Common Vulnerability and Scoring System Base Score, and Patch cost for the
cost of patching vulnerabilities. The CVSS score is based on the severity scores
provided by National Vulnerability Database [6], and we assume the patch cost
value. We assume an attacker is located outside the network. The attacker is
trying to compromise the host in the internal network. The attacker can directly
connect to host 1 and host 2.

In our model, we represent the connections between hosts with links. For
example, the hosts (hi) information is going to be recorded as a list such as
[h1, h2, ...,hn], and links will be represented as [(h1, h2), (h2, h1), (h1, h3) . . . ].
In a real situation, the network connections between two hosts are not always
bi-directional. It is possible for a host to stop receiving packages from another
host while it is still able to send packages to that host. Therefore, all the links
recorded in the program are uni-directional.

Table 1. Hosts and vulnerabilities information

Host address Vulnerability ID CVSS score Patch cost
172.16.0.1 V1 4.3 8.0
172.16.0.2 V2 2.1 5.0
172.16.0.3 V3 10.0 6.5
172.16.0.4 V4 4.3 3.5
172.16.0.5 V5 7.5 4.5
172.16.0.6 V6 8.8 5.0
172.16.0.7 V7 8.8 6.0
172.16.0.8 V8 6.1 7.0



320 X. Zhou et al.

Defense Model: Since it is infeasible to patch all vulnerabilities in real network
environments, we assume only a few defense options can be selected for possible
defense. We explain each of the defenses as follows and we show the available
defense strategies in Table 2.

– BLOCK(target, sub-target): Block port action takes two parameters, tar-
get, and sub-target. Target tells the model to block port on which host, while
sub-target indicates which host should be blocked connection from. For exam-
ple, command BLOCK(172.16.0.2, 172.16.0.1) represents the host 172.16.0.1
should block port from host 172.16.0.2.

– PATCH(target, vulnerability): Patch action takes two parameters, target,
and vulnerability. For example, command PATCH(172.16.0.3, V3) represents
patching vulnerability V3 on host 172.16.0.3.

Table 2. Available defenses options

Defenses ID Defense detail
D1 Block port to Router on 172.16.0.1
D2 Patch V7 on 172.16.0.7
D3 Block port to Router on 172.16.0.2
D4 Block port to 172.16.0.7 on 172.16.0.3
D5 Patch V4 on 172.16.0.4
D6 Patch V6 on 172.16.0.6

4.1 Results and Analysis

In this section, we use the network scenario described to illustrate the phases of
the framework with their results.

Initialization Phase. One of the features and an MDP-based model assumes
that the environment is fully observable and known by the agent. In this phase,
the hosts and vulnerabilities are collected and provided as input to the model, it
is presumed that the data collected have covered all the hosts and vulnerabilities
in the space. For this experiment, the following network data were collected:

– Host Address: The IP address for the host. This data is treated as the identifier
for each host in the model.

– CVSS Score: This value is collected from NVD. The number has a range from
0 to 10. The higher the number, the more severe the vulnerability is when it
is compromised by attackers. This number will be used as a negative offset
in the model’s rewards calculation for state transition, particularly for an
“attack” transition.

– Vulnerability ID: is an identifier for each vulnerability. Hosts can have more
than one vulnerability.

– Patch Cost: is a number that represents the total cost of patching the vul-
nerability on the host. The number has a range from 0 to 10. For example,
the cost of patching V1 is 8.0 and the cost of patching V3 is 6.5. The number
will be used as a negative offset in the model’s rewards calculation for state
transition, particularly for a “patch” transition.



Markov Decision Process for Automatic Cyber Defense 321

Attack Path is an optional input for the model, it decides whether the model
is trying to solve a more particular problem or a wide-ranged problem. If the
attack path is given, the attacker will only attack the host which is on the path. If
the attack path is not specified in the model, the model will assume the attacker
will attack any feasible host for the attacker to attack. The attack patch is an
important element during the model generation phase. For this experiment, the
following attack path (Fig. 2) is used:

Fig. 2. The attack path

Model Generation Phase. Figure 3 shows how the BFS algorithm starts
exploring the space from its root node, which corresponds to the initial state
in the model. It explores the next level of states using all possible attack and
defense actions. There are four possible actions to perform in the initial state in
the figure, and thus it expands its branches to those four states. The algorithm
will finish exploring all of the neighbor states at the same level before moving
to the next depth level.

Fig. 3. State generation diagram



322 X. Zhou et al.

Each node in the BFS exploration tree will be visited only once, however
it is still possible for two nodes to have the same state. This is because doing
different actions in a different sequence is possible to result in the same state.
Therefore, it is necessary to check duplications before adding the node to the
state set in the MDP model.

Here, the attack path is an important element during the exploration of the
BFS algorithm. If the attack path is not specified, the algorithm assumes the
attacker will attack any feasible host (i.e., the host being attacked is adjacent to
a compromised host and the host has at least one vulnerability.) Not specifying
the attack path will add complexity and run time for the model generation phase.

Q-Learning Phase. In this phase, the Q-Value Table shown in Fig. 4 is initial-
ized. Initially, the Q values in the cells are all zero. Each Q-value represents the
“quality” of a state and action pair.

The parameters for Q-learning iteration is listed as follows:

– γ (Discount Factor) : 0.9
– α (Learning Rate) : 0.1
– ε : 0.7
– epochs : 5000

For this simulation experiment, 1492 possible states have been generated in
total. After the model finishes its process, all the output data generated were
written into a text file, including the optimal defense solutions and the full q-
table after training. The q-table is recorded into n lines where n is the number of
possible states. Each line represents the data for each state. One part of the line
is used to describe the situation of the state, (1) “Compromised Hosts” gives a
list of hosts that have been compromised by the attacker; (2) “Links” provide a
list of existing connections between the hosts, blocked links will not be included;
(3) “Vulnerabilities” give a list of existing vulnerabilities, patched vulnerabilities
will not be included. Another part is the q-value for each action at this state.
For example, the q-value for action 4 at this state is −2.1.

Compromised Hosts: [0, 2, 6]
Links: [(0, 1), (0, 2),(1, 2), ..., (7, 5), (7, 6)]
Vulnerabilities: [V1, V3, V4, V5, V6, V7]
Q-Values: −9.298, −6.19, −7.89, −2.1, −10.69, −5.39, −6.89

If an attack path (Fig. 2) is provided to the model, the optimal defense
sequence for this network is D3 (Block port to 172.16.0.0 on 172.16.0.2). From
the network structure perspective, we can see that if host2 blocks connection
from host0, then according to the pre-defined attack path, the attacker will not
be able to make any attack action. Therefore, the network is secured after per-
forming only one defense action-D3.

From the q-table perspective (Table 3), D3 has the largest q-value at the
State0 (Initial State), so D3 is added to the output sequence. For State5 (the



Markov Decision Process for Automatic Cyber Defense 323

state after performing D3 at State0), the q-value for attack action is 0 which is
larger than any other defense action. Therefore, the model concludes that there
is no need to perform any defense actions, and the search ends.

Table 3. Q-Table for real network example with attack path (Partial)

State Attack Action D1 D2 D3 D4 D5 D6
State0 (Initial State) −9.298 −6.19 −7.89 −2.1 −10.69 −5.39 −6.89
State5 (T(State0, D3) =
State4)

0.0 −4.3 −6.0 0.0 −8.8 −3.5 −5.0

If the attack path is not provided to the model, the optimal defense sequence
for this network is D3-D1. From the network structure perspective, if host1 and
host2 both block connection from host0, then the rest of the network is fully
protected because host1 and host2 are the only passes where the attack can
proceed its attack. From the q-table perspective (Table 4), D3 has the largest q-
value at the State0 (Initial State), so D3 is added to the output sequence. D1 has
the largest q-value at State5 (Initial State), so D1 is then added to the output
sequence. For State29 (the state after performing D1 at State5), the q-value for
attack action is 0 which is larger than any other defense action.

Table 4. Q-Table for real network example without attack path (Partial)

State Attack action D1 D2 D3 D4 D5 D6
State0 (Initial State) −9.298 −6.19 −9.296 −5.97 −12.363 −7.283 −8.274
State4 (T(State0, D3) =
State5)

−5.33 −4.3 −9.411 None −12.415 −7.203 −8.667

State29 (T(State5, D1) =
State29)

0.0 0.0 −5.948 0.0 −8.622 −3.478 −4.946

The output result may significantly depend on the network situation, such
as the cost of patching a vulnerability, the cost of blocking ports on a host, or
the damage to a host after being attacked. For some network systems, blocking
ports on host1 (D1) may result in further damage to the organization’s service,
because it not only blocks the attacker but also blocks all other normal users
from accessing. In that case, the cost of D1 will be raised significantly, and as a
result, the optimal defense sequence may not include D1. The model may choose
other alternative defense strategies, such as patching vulnerabilities on host4
(D5), to minimize the damage.

Conclusion Phase. In this phase, all the q-values in the table are negative
since the implementation of cyberdefense is a costly task. Either patching a
vulnerability or host compromised puts a negative effect on the whole system.
It is impossible to profit and earn positive rewards.



324 X. Zhou et al.

Finding the optimal strategy for one certain state can be achieved by looking
at the corresponding q-value in the q-table. The larger the q-value is, the less
damage the action will result. For example in Fig. 4, Action1 has the largest q-
value in the State1 column, which means Action1 theoretically is the best action
to take at State1. On the contrary, Action 4 is the worst action to take.

Fig. 4. Q-Value table

Finally, the model will look for a sequence of actions from the initial state.
The model will keep searching through the q-table by using the following steps:

1. Find the best action in the initial state, add the action to the sequence;
2. Go to the consequence state with the action. For example, performing Action1

in State1 will result in State2.
3. Find the best action at that state and add the action to the sequence. Keep

iterating step 2 & 3 until there is no following states, or the q-value shows
there is no need to do any defense actions. (When the q-value of action attack
is larger than any other defense actions, it means that performing any defense
actions will be redundant and cause more damage to the system. That is when
there is no need to do any defense actions).

After performing the above steps, the model will output a sequence of actions
such as Action1-Action3-Action2. This action sequence is the solution that opti-
mized the rewards, therefore minimizing the overall cost and damage to the
network system. The initial state can be replaced by any state for this searching
mechanism, which allows the agent to find an optimal solution in any situation
in the network.

4.2 Effect of Q-Learning Parameters on Optimal Reward

Different parameters’ values may have a significant effect on the output result of
the model. In this section, Q-learning parameters such as discount factor, epsilon,



Markov Decision Process for Automatic Cyber Defense 325

and iterations are investigated. This section will assess their performance with
different data, and a suitable combination of parameters should be concluded to
maximize the overall performance of the model.

Fig. 5. Impact of discount factor on optimal reward

Discount Factor (γ) in Q-learning, γ ∈ (0, 1), indicates the importance of the
future rewards compared to the immediate rewards. If γ is larger, it means the
agent considers the future rewards more and is willing to delay the immediate
rewards. As the figures show, the optimal solution reward grows almost linearly
as the discount factor increase. As the model digs deeper into space, the more
certain it realizes that the optimal solution has a better effect on defending the
network system. This explains why the damage becomes less when the discount
factor increases.

Secondly, epsilon (ε) is a factor that balances exploration and exploitation. If
ε is larger, the agent will have more possibility to explore the space (i.e. to choose
action randomly). If ε is lesser, the agent will be more likely to choose the action
with the highest q-value. Changing ε has a minor effect on the overall optimal
rewards value, therefore in this experiment, the percentage improvement of the
optimal solution’s reward, compared to the rewards of not defending, is used as
an index to test the performance of the model. The percentage is calculated by
Eq. (2) (where OSR is Optimal Solution Reward, NDRs is No Defend Rewards).

Improvement Percentage = −OSR − NDRs

NDRs
(2)



326 X. Zhou et al.

Fig. 6. Improvement of optimal solution with different epsilon

Since the rewards are all negative, so the result needs to be negated. Figure 6
shows the improvement almost stays at 40% to 50% level when ε is less than 0.75.
However, after the ε gets larger than 0.75, the improvement drops substantially
and even decreases below 0% (the optimal reward is less than the attack reward)
at 0.95. This shows when ε gets larger than a certain point, the agent tends to
explore more paths. As a result, the agent did not give much weight to the
optimal solution, therefore, reducing the difference between every action.

Fig. 7. Improvement of iteration times on the number of un-updated Q-value

Lastly, iteration times (epochs) represent the maximum number of iterations
the Q-learning will iterate. As the iteration times increase, the overall quality and
completeness of the output result are also increased. However, larger iteration
times can also increase the run time for the model. Therefore, it is necessary to
find a suitable number of iteration times that allows both a decent run time and
an acceptable quality of the output results.



Markov Decision Process for Automatic Cyber Defense 327

As Fig. 7 shows that the iteration times increase, the number of un-updated
q-value decreases (Note that the x-axis is in log-scale). The un-updated q-value
means the q-value in the q-table that has not been updated once. Since the q-
table for the experiment has a size of 13594 q-values, likely, some of them are not
updated during the process. The pattern of the graph is similar to a logarithm
equation. When epochs are relatively small, the un-updated q-values decrease
substantially. When epochs are relatively large, the un-updated q-values only
decrease a small amount. That is because when there is more and more q-value
being updated, the probability for the agent to reach an un-updated q-value
becomes less.

Although the parameters for Q-learning can vary between different tasks, an
appropriate range of those parameters has been concluded for a network defense
problem.

– Discount Factor (γ): The experiment reveals that the larger the γ is, the
more rewards will be received from the optimal solution. However, it is also
not proper to weigh too much on the future rewards, since the immediate
rewards still need to be considered in some cases. In summary, the experiment
suggests a range of 0.8 to 0.9 for the discount factor.

– Epsilon (ε): The experiment shows that if ε increases over 0.75, the overall
difference between the optimal solutions and other solutions will be reduced.
Therefore, it will become hard to distinguish between a “good” and “bad”
action. While if ε gets too small, the agent will be less likely to find alternative
strategies that can further reduce the overall damage to the network system.
As a result, the experiment suggests a range of 0.5 to 0.7 for the ε.

– Iteration Times (epochs): The experiments prove that as epochs increase,
the overall quality and completeness of the output result is also increased.
However, the efficiency of improving the result decreases, and the run time
raises when epochs increase to a larger number. Therefore, the experiments
suggest a range of 5000 to 10000 for the epochs.

4.3 Model Efficiency Experiments

In the area of cyber defense, algorithm efficiency is also a key element to deter-
mine whether the system can successfully defend against the attacker. If the
attacker’s efficiency is better than the defense side, the optimal solution output
from the model may be no longer applicable to the environment.

The experiment uses a network with different numbers of hosts to test the
efficiency of the model. Normally, if there are more hosts in the network, the
model will become more complex and there will be more possible states to gen-
erate. As the state number increases, the complexity of training the model also
increased.



328 X. Zhou et al.

Fig. 8. Time efficiency for model generation

Figure 8 shows when the number of hosts is less than 8, the time to generate
and the time to train the model does not increase much as the number of hosts
increases. The time for model generation stays under 1min and the time for
training stays under 5 s. However, when the number of hosts is greater than 8,
the time spent starts to grow exponentially. On the other hand, the time to train
the model is relatively faster than the time to generate the model.

5 Conclusion and Future Work

In this paper, we have presented an MDP-based optimal solution model for
cyber defense. The model is composed of four sequential phases. The model
initialization phase takes some real network situation as the input and converts
it into structured data; the model generation phase generates all the possible
states for the MDP model using a breadth-first search algorithm; the Q-learning
phase implements a Q-learning iteration which trains the model to learn the
space and update the quality for each state-action pair; the conclusion phase
searches for the optimal solutions using the q-table trained after the previous
phase. Real network simulation experiments have been done to test the usability
and functions of the model. The result demonstrates the model can reduce the
attack impact on the network system from a cyber-attack, in either network
structure perspective or q-table perspective. In the future, we plan to add more
defense actions to the model. Another potential development for the model is to
make it a POMDP (Partially observable Markov decision process). Besides, We
plan to collect more usable and real data from a bigger network.

References

1. Alavizadeh, H., et al.: A survey on cyber situation awareness systems: framework,
techniques, and insights. ACM Comput. Surv. (CSUR) 55(5), 1–37 (2022)

2. Applebaum, A., Miller, D., Strom, B., Korban, C., Wolf, R.: Intelligent, Automated
Red Team Emulation. In: Proceedings of the 32nd Annual Conference on Computer
Security Applications, pp. 363–373 (2016)



Markov Decision Process for Automatic Cyber Defense 329

3. Booker, L.B., Musman, S.A.: A model-based, decision-theoretic perspective on
automated cyber response. arXiv preprint. arXiv:2002.08957 (2020)

4. Enoch, S.Y., Mendonça, J., Hong, J.B., Ge, M., Kim, D.S.: An integrated secu-
rity hardening optimization for dynamic networks using security and availability
modeling with multi-objective algorithm. Comput. Netw. 208, 108864 (2022)

5. Enoch, S.Y., Moon, C.Y., Lee, D., Ahn, M.K., Kim, D.S.: A practical framework
for cyber defense generation, enforcement and evaluation. Comput. Netw. 208,
108878 (2022)

6. FIRST: CVSS v3.1: Specification Document. Forum of Incident Response and Secu-
rity Teams (2019). https://www.first.org/cvss/v3.1/specification-document

7. Iqbal, Z., Anwar, Z.: SCERM-a novel framework for automated management of
cyber threat response activities. Future Gener. Comput. Syst. 108, 687–708 (2020)

8. Kaloudi, N., Li, J.: The AI-based cyber threat landscape: a survey. ACM Comput.
Surv. (CSUR) 53(1), 1–34 (2020)

9. McAfee: Mcafee labs 2020 threats predictions report (2019). https://www.mcafee.
com/blogs/other-blogs/mcafee-labs/mcafee-labs-2020-threats-predictions-report/

10. Noor, U., Anwar, Z., Malik, A.W., Khan, S., Saleem, S.: A machine learning frame-
work for investigating data breaches based on semantic analysis of adversary’s
attack patterns in threat intelligence repositories. Futur. Gener. Comput. Syst.
95, 467–487 (2019)

11. Park, M., Seo, J., Han, J., Oh, H., Lee, K.: Situational awareness framework for
threat intelligence measurement of android malware. JoWUA 9(3), 25–38 (2018)

12. Ray, H.T., Vemuri, R., Kantubhukta, H.R.: Toward an automated attack model
for red teams. IEEE Secur. Priv. 3(4), 18–25 (2005)

13. Stoecklin, M.P.: Deeplocker: how AI can power a stealthy new breed of malware.
Security Intell. (2018)

14. Zheng, J., Namin, A.S.: Defending sdn-based iot networks against ddos attacks
using markov decision process. In: 2018 IEEE International Conference on Big
Data (Big Data). IEEE (2018)

15. Zheng, J., Namin, A.S.: Markov decision process to enforce moving target defence
policies. arXiv preprint. arXiv:1905.09222 (2019)

http://arxiv.org/abs/2002.08957
https://www.first.org/cvss/v3.1/specification-document
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/mcafee-labs-2020-threats-predictions-report/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/mcafee-labs-2020-threats-predictions-report/
http://arxiv.org/abs/1905.09222

	Markov Decision Process for Automatic Cyber Defense
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 Model Initialization Phase
	3.2 Model Generation Phase
	3.3 Q-Learning Phase
	3.4 Conclusion Phase

	4 Experimental Setup
	4.1 Results and Analysis
	4.2 Effect of Q-Learning Parameters on Optimal Reward
	4.3 Model Efficiency Experiments

	5 Conclusion and Future Work
	References




