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Abstract. This paper presents a method to construct a keyed Merkle-
Damg̊ard hash function satisfying collision resistance and the pseudoran-
dom function property using a tweakable block cipher in the TWEAKEY
framework. Its compression function adopts double-block construction to
achieve sufficient level of collision resistance. Not only does the padding of
the proposed keyed hash function not employ Merkle-Damg̊ard strength-
ening, but it is also not injective. Due to the novel feature, the proposed
keyed hash function achieves the minimum number of calls to its com-
pression function for any message input. The proposed keyed hash func-
tion is shown to be optimally collision-resistant in the ideal cipher model.
It is also shown to be a secure pseudorandom function if the underlying
tweakable block cipher in the TWEAKEY framework is a secure tweak-
able pseudorandom permutation in two tweakey strategies.

Keywords: Hash function · Collision resistance · Pseudorandom
function · Tweakable block cipher

1 Introduction

Background. Cryptographic hash functions are an important primitive in cryp-
tography. They are classified into two classes: Unkeyed hash functions and keyed
hash functions. The characteristic security requirement of an unkeyed hash func-
tion is collision resistance, which is the intractability of finding a pair of distinct
inputs mapped to the same output. On the other hand, a keyed hash function is
required to be a pseudorandom function (PRF) [10], which is indistinguishable
from a uniform random function.

If a keyed hash function is a PRF satisfying collision resistance, then one
can use it for computationally hiding and computationally binding string com-
mitment. In addition, it has recently been shown that one can use it to achieve
interesting cryptographic schemes such as compactly committing authenticated
encryption with associated data (ccAEAD) [8,11] and hash-based post-quantum
EPID signatures [6]. In this paper, a keyed hash function satisfying collision resis-
tance and the PRF property is called a collision-resistant and pseudorandom
hash function.
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HMAC [1] is a standardized keyed hash function in FIPS PUB 198-1 [9]. It
is a collision-resistant and pseudorandom hash function. However, it is not so
efficient for short message inputs.

Contribution. We present a method to construct a collision-resistant and pseudo-
random hash function using a tweakable block cipher (TBC) in the TWEAKEY
framework [19]. It is a kind of Merkle-Damg̊ard iterated hash function [7,20].
Its compression function adopts the double-block (DBL) construction [12] using
a TBC to achieve sufficient level of collision resistance. Its domain extension
extends KMDP+ [13] to achieve a PRF using the DBL compression function.

The proposed construction does not use the Merkle-Damg̊ard strengthen-
ing for padding. Due to the feature, it achieves the minimum number of calls
to its compression function for any message input under the assumption that
the message input is fed only into the message-block input of its compression
function.

The proposed construction is shown to be optimally collision-resistant in the
ideal cipher model. It is also shown to be a secure PRF if the underlying TBC
in the TWEAKEY framework is a secure tweakable pseudorandom permutation
(PRP) in two tweakey strategies. In one tweakey strategy, the underlying TBC
is required to be a secure tweakable PRP against related-key attacks. However,
the related-key attacks are not so powerful in that the key-deriving functions
are chosen by the designers.

Related Work. There have been proposals of keyed hash functions satisfying the
PRF property and collision resistance: HMAC [1], EMD [4], Keyed-MDP [15],
and KMDP+ [13]. All the constructions mentioned above except KMDP+ use the
Merkle-Damg̊ard strengthening for their padding. Thus, in terms of the number
of calls to the underlying compression function, our proposed construction is
more efficient than these constructions though they are competitive to ours.

The Merkle-Damg̊ard hash function keyed via the initial value with prefix-
free padding is shown to be a secure PRF if its compression function is a secure
PRF [2]. Our proof on the PRF property is based on this proof.

Iwata and Kurosawa designed a CBC-MAC function called CMAC [21], which
achieves the minimum number of calls to its block cipher [17,18]. Though it is
shown to be a secure PRF if its block cipher is a secure PRP, it is not aimed at
collision resistance.

Organization. Notations and definitions are given in Sect. 2. The proposed con-
struction is presented in Sect. 3. It is shown to satisfy collision resistance in the
ideal cipher model in Sect. 4. It is shown to be a secure PRF if the underlying
tweakable block cipher in the TWEAKEY framework is a secure tweakable PRP
in two tweakey strategies in Sect. 5.

2 Preliminaries

Let Σ := {0, 1}. Let (Σn)∗ :=
⋃

i≥0 Σni and (Σn)+ :=
⋃

i≥1 Σni. Let ε ∈ Σ0 be
the empty sequence.
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The length of a sequence x ∈ Σ∗ is denoted by |x|. The least significant bit of
x is denoted by lsb(x). For sequences yi, yi+1, . . . , yi+j ∈ Σ∗, their concatenation
is denoted by yi‖yi+1‖ · · · ‖yi+j or y[i,i+j].

For sequences x, y ∈ Σ∗, x ⊕ y represents bit-wise XOR of x and y. If
|x| > |y|, then x ⊕ y := x ⊕ (0|x|−|y|‖y).

Let s � S represent that s is an element chosen uniformly at random from
a set S.

For integers a, b, and d, let a ≡d b represent a ≡ b (mod d).

2.1 Cryptographic Hash Function

A cryptographic hash function is a function mapping an input of arbitrary length
to an output of fixed length. It is often called simply a hash function. The
characteristic security requirement of a hash function is collision resistance.

Let HP be a hash function using a primitive P . In this paper, P is assumed
to be an ideal TBC. Namely, P is chosen uniformly at random from the set of
all TBCs with the same domain and range.

Let A be an adversary trying to find a colliding pair of inputs for HP , which
are a pair of distinct inputs mapped to the same output. A can make encryption
and decryption queries to its oracle P . The advantage of A against HP for
collision resistance is given by

Advcol
HP (A) := Pr[(X,X ′) ← AP : HP (X) = HP (X ′) ∧ X �= X ′].

It is assumed that A makes all the queries to P necessary to compute both
HP (X) and HP (X ′).

2.2 Pseudorandom Function

Let f : K × X → Y be a keyed function with its key space K. A security
requirement of f is indistinguishability from a uniform random function. The
goal of an adversary A against f is to distinguish between fK(·) := f(K, ·) and
a random oracle ρ : X → Y, where K � K. A has either fK or ρ as an oracle
and outputs 0 or 1. The advantage of A against f as a PRF is defined as

Advprf
f (A) :=

∣
∣Pr

[
AfK = 1

] − Pr [Aρ = 1]
∣
∣ .

f is called a secure PRF if no efficient adversary A has any significant advantage.
The advantage can be extended to adversaries with multiple oracles:

Advp-prf
f (A) :=

∣
∣Pr[AfK1 ,fK2 ,...,fKp = 1] − Pr[Aρ1,ρ2,...,ρp = 1]

∣
∣ ,

where (K1, . . . ,Kp) � Kp and ρ1, . . . , ρp are independent random oracles.
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2.3 Tweakable Block Cipher in TWEAKEY Framework

A TBC in the TWEAKEY framework is a function ẽ : Σν × Σn → Σn with
its tweakey space Σν such that, for every Y ∈ Σν , ẽ(Y, ·) is a permutation. We
assume that ẽ : Σν × Σn → Σn is a family of TBCs with their key space and
tweak space Σκ and Στ , respectively, satisfying Σν = Σκ × Στ .

Let Pτ,n be the set of all tweakable permutations over Σn with their tweak
space Στ . Namely, for every � ∈ Pτ,n and every T ∈ Στ , �(T, ·) is a permutation
over Σn.

A security requirement of a TBC e : Σκ × Στ × Σn → Σn is indistin-
guishability from a tweakable uniform random permutation. The advantage of
an adversary A against e as a tweakable PRP (TPRP) is defined as

Advtprp
e (A) :=

∣
∣Pr[AeK = 1] − Pr[A� = 1]

∣
∣,

where K � Σκ and � � Pτ,n. A is allowed to make queries in Στ × Σn

adaptively to its oracle eK or � and outputs 0 or 1.
The following lemma is a kind of PRP/PRF switching lemma [5,16] for a

TBC.

Lemma 1. For any adversary A against a TBC e : Σκ × Στ × Σn → Σn

taking at most t time and making at most q queries to its oracle, there exists an
adversary X against e such that

Advprf
e (A) ≤ Advtprp

e (X) + q2/2n+1

and X takes at most t time and makes at most q queries.

2.4 PRF and TPRP Under Related-Key Attack

Let f : K × X → Y. Let Φ be a set of functions from K to K. Let A be an
adversary against f making a related-key attack restricted to Φ (Φ-RKA) [3]: A
is given g[K] : Φ × X → Y such that g[K](ϕ,X) := g(ϕ(K),X) as an oracle,
where g is either f or a random oracle ρ : K × X → Y and K � K. ϕ is called a
key-deriving function. The advantage of A against f as a PRF under a Φ-RKA
is defined as

Advprf-rka
f,Φ (A) :=

∣
∣Pr[Af [K] = 1] − Pr[Aρ[K] = 1]

∣
∣.

f is called a secure PRF under Φ-RKAs if no efficient adversary A has any
significant advantage. The advantage of A with p oracles is defined as

Advp-prf-rka
f,Φ (A) :=

∣
∣Pr[Af [K1],...,f [Kp] = 1] − Pr[Aρ1[K1],...,ρp[Kp] = 1]

∣
∣,

where (K1, . . . ,Kp) � Kp and ρ1, . . . , ρp are independent random oracles.
For a TBC e, Advtprp-rka

e,Φ (A) and Advp -tprp-rka
e,Φ (X) are defined similarly.

The following lemma is a kind of PRP/PRF switching lemma against adver-
saries making related-key attacks [14] for a TBC e.
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Lemma 2. Let A be any adversary with p oracles against e taking at most
t time and making at most qi queries to its i-th oracle for 1 ≤ i ≤ p. Let
q := q1 + · · · + qp. Then, there exists an adversary X against e such that

Advp-prf-rka
e,Φ (A) ≤ p · Advtprp-rka

e,Φ (X) + q2/2n+1

and X takes at most t + O(q Te) time and makes at most max{q1, q2, . . . , qp}
queries, where Te represents the time required to compute e.

3 Proposed Construction

Let E : Σν × Σn → Σn be a TBC in the TWEAKEY framework such that
ν ≥ 2n. The proposed construction CE : Σn × Σ∗ → Σ2n is described in Algo-
rithm1. It is also depicted in Fig. 1. For the PRF property, CE is viewed as a
keyed function with its key space Σn. CE incorporates constants IV ∈ Σn and
c00, c01, c10, c11, δ ∈ Σn\{0n}. δ is a constant such that lsb(δ) = 1. c00, c01, c10, c11
are distinct from each other. cfE : Σ2n ×Σν−n → Σ2n is a compression function
such that

cfE(Vi−1,Mi) := E(Vi−1‖Mi,0,Mi,1)‖E(Vi−1‖Mi,0,Mi,1 ⊕ δ),

where Mi = Mi,0‖Mi,1 and |Mi,1| = n. If ν = 2n, then Mi,0 = ε. pad : Σ∗ →
(Σν−n)+ is a padding function such that

pad(M) :=

{
M if |M | > 0 and |M | ≡ν−n 0
M‖10a otherwise,

where a is the non-negative integer such that |pad(M)| is the smallest multiple
of ν − n. Notice that pad(ε) = 10ν−n−1.

Remark 1. Let sw be a permutation over Σn ×Σn such that (x0, x1) �→ (x1, x0).
Then, for any (Vi−1,Mi) ∈ Σ2n ×Σν−n, cfE(Vi−1,Mi ⊕ δ) = sw(cfE(Vi−1,Mi)).
For the PRF property, CE is designed so that the reflectiveness of cfE does not
appear at the last call to cfE . Notice that lsb(Mm) �= lsb(Mm ⊕ δ).
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Algorithm 1: The proposed construction CE : Σn × Σ∗ → Σ2n

input : (K, M)
output: CE(K, M)
M1‖M2‖ · · · ‖Mm ← pad(M); /* |Mi| = ν − n for 1 ≤ i ≤ m */

V0 ← K‖IV ;

for i = 1 to m − 1 do Vi ← cfE(Vi−1, Mi);
if |M | > 0 ∧ |M | ≡ν−n 0 ∧ lsb(Mm) = 0 then c ← c00;
if |M | > 0 ∧ |M | ≡ν−n 0 ∧ lsb(Mm) = 1 then c ← c01;
if (|M | = 0 ∨ |M | �≡ν−n 0) ∧ lsb(Mm) = 0 then c ← c10;
if (|M | = 0 ∨ |M | �≡ν−n 0) ∧ lsb(Mm) = 1 then c ← c11;
Vm ← cfE(Vi−1 ⊕ c, Mi);
return Vm;

E

c ∈ {c00, c01, c10, c11}

IV

K

M1,0

δ E

E

E

E

E

M1,1 M2,0 M2,1 M3,0 M3,1

δ δ

Fig. 1. The proposed construction

4 Collision Resistance

Any adversary needs Ω(2n) queries to find a colliding pair of inputs for CE under
the assumption that E is an ideal cipher:

Theorem 1. For any adversary A making at most q queries,

Advcol
CE (A) ≤ 7q/(2n − 2q) + 5q(q − 1)/(2n − 2q)2.

Proof. Suppose that A finds a colliding pair of inputs, (K,M) and (K ′,M ′)
for CE . Then, CE(K,M) = CE(K ′,M ′) and (K,M) �= (K ′,M ′). Without loss
of generality, suppose that |M | ≤ |M ′|. Let pad(M) = M1‖M2‖ · · · ‖Mm and
pad(M ′) = M ′

1‖M ′
2‖ · · · ‖M ′

m′ .

(i) Suppose that m = m′ = 1. If K �= K ′, then A finds a colliding pair for
cfE . Otherwise, M �= M ′.

– If |M | = |M ′| = ν−n, then A finds a colliding pair for cfE since pad(M) �=
pad(M ′).

– If |M | < ν − n and |M ′| < ν − n, then A finds a colliding pair for cfE

since pad(M) �= pad(M ′).
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– If |M | < ν − n and |M ′| = ν − n, then

cfE(K‖(IV ⊕ c),M1) = cfE(K‖(IV ⊕ c′),M ′
1),

where c ∈ {c10, c11} and c′ ∈ {c00, c01}. Thus, A finds a colliding pair for
cfE since {c10, c11} ∩ {c00, c01} = ∅.

(ii) Suppose that m = 1 and m′ ≥ 2. Then,

cfE(K‖(IV ⊕ c),M1) = cfE(V ′
m′−1 ⊕ c′,M ′

m′),

where

c ∈
{

{c00, c01} if |M | = ν − n,
{c10, c11} if |M | < ν − n,

c′ ∈
{

{c00, c01} if |M ′| ≡ν−n 0,
{c10, c11} if |M ′| �≡ν−n 0.

If (K‖(IV ⊕ c),M1) �= (V ′
m′−1 ⊕ c′,M ′

m′), then A finds a colliding pair for
cfE . Otherwise, M1 = M ′

m′ and the least significant n bits of V ′
m′−1 equals

IV ⊕ c ⊕ c′. Thus, A finds an input for cfE such that the least significant
n bits of the corresponding output equals

– IV if |M | = ν − n and |M ′| ≡ν−n 0,
– IV if |M | < ν − n and |M ′| �≡ν−n 0, and
– IV ⊕ c00 ⊕ c10 or IV ⊕ c01 ⊕ c11 otherwise.

(iii) Suppose that m ≥ 2 and m′ ≥ 2. Then,

cfE(Vm−1 ⊕ c,Mm) = cfE(V ′
m′−1 ⊕ c′,M ′

m′)

where

c ∈
{

{c00, c01} if |M | ≡ν−n 0,
{c10, c11} if |M | �≡ν−n 0,

c′ ∈
{

{c00, c01} if |M ′| ≡ν−n 0,
{c10, c11} if |M ′| �≡ν−n 0.

If (Vm−1 ⊕ c,Mm) �= (V ′
m′−1 ⊕ c′,M ′

m′), then A finds a colliding pair for cfE .
Otherwise, Vm−1 ⊕ V ′

m′−1 = 0n‖(c ⊕ c′) and Mm = M ′
m′ .

– If |M | ≡ν−n 0 and |M ′| �≡ν−n 0, or |M | �≡ν−n 0 and |M ′| ≡ν−n 0, then A
finds a colliding pair for cfE wrt 0n‖(c00⊕c10) or 0n‖(c01⊕c11), that is, a pair
of inputs (Vm−2,Mm−1) and (V ′

m′−2,M
′
m′−1) such that cfE(Vm−2,Mm−1) ⊕

cfE(V ′
m′−2,M

′
m′−1) equals 0n‖(c00 ⊕ c10) or 0n‖(c01 ⊕ c11).

– Suppose that |M | ≡ν−n 0 and |M ′| ≡ν−n 0. Then, since Mm = M ′
m′ , c = c′

and Vm−1 = V ′
m′−1. If m = m′, then A finds a colliding pair for cfE since

(K,M) �= (K ′,M ′). If m < m′, then A finds a colliding pair for cfE or an
input for cfE such that the least significant n bits of the corresponding output
equals IV .

– Suppose that |M | �≡ν−n 0 and |M ′| �≡ν−n 0. This case is similar to the case
above. Thus, A finds a colliding pair for cfE or an input for cfE such that
the least significant n bits of the corresponding output equals IV .
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Thus, a colliding pair for CE implies for cfE

1. a colliding pair,
2. a colliding pair wrt 0n‖(c00 ⊕ c10) or 0n‖(c01 ⊕ c11), or
3. an input mapped to an output whose least significant n bits equals IV , IV ⊕

c00 ⊕ c10 or IV ⊕ c01 ⊕ c11.

Let us consider an adversary Ã running A. For each query A, Ã makes at
most 2 queries. Thus, Ã makes at most 2q queries in total.

For a query of A, if Ã already knows the corresponding answer, then Ã
simply returns it to A. Suppose that Ã does not know the answer. If the query
of A is an encryption query (TK ,PT ), then Ã asks (TK ,PT ) and (TK ,PT ⊕δ)
to E and receives replies CT and CT ′, respectively. Then, Ã returns CT to A.
If the query of A is a decryption query (TK ,CT ), then Ã asks (TK ,CT ) to
E−1, receives a reply PT and returns it to A. Then, Ã asks (TK ,PT ⊕ δ) to
E and receives a reply CT ′. In both of the cases, Ã gets (TK ,PT ,CT ) and
(TK ,PT ⊕ δ,CT ′). Notice that cfE(TKv,TKm‖PT ) = (CT ⊕ PT )‖(CT ′ ⊕
PT ⊕ δ) and cfE(TKv,TKm‖(PT ⊕ δ)) = (CT ′ ⊕ PT ⊕ δ)‖(CT ⊕ PT ), where
TK = TKv‖TKm and |TKv| = 2n. Also notice that, if CT ⊕ CT ′ = δ, then
cfE(TKv,TKm‖PT ) = cfE(TKv,TKm‖(PT ⊕ δ)).

Let (TK j ,PT j ,CT j) and (TK j ,PT j ⊕ δ,CT ′
j) be the tuples obtained by

Ã for the j-th query of A. Let Uj := CT j ⊕ PT j and U ′
j := CT ′

j ⊕ PT j ⊕ δ.
Then, for an execution of Ã, the j-th query of A induces 1 or 2 above for cfE if
Uj = U ′

j or there exists some j′ < j such that

– Uj‖U ′
j ∈ {Uj′‖U ′

j′ , Uj′‖(U ′
j′ ⊕ c00 ⊕ c10), Uj′‖(U ′

j′ ⊕ c01 ⊕ c11)},
– Uj‖U ′

j ∈ {U ′
j′‖Uj′ , U ′

j′‖(Uj′ ⊕ c00 ⊕ c10), U ′
j′‖(Uj′ ⊕ c01 ⊕ c11)},

– U ′
j‖Uj ∈ {Uj′‖U ′

j′ , Uj′‖(U ′
j′ ⊕ c00 ⊕ c10), Uj′‖(U ′

j′ ⊕ c01 ⊕ c11)}, or
– U ′

j‖Uj ∈ {U ′
j′‖Uj′ , U ′

j′‖(Uj′ ⊕ c00 ⊕ c10), U ′
j′‖(Uj′ ⊕ c01 ⊕ c11)}.

Thus, the probability that the j-th query of A induces 1 or 2 above for cfE is at
most 10(j − 1)/(2n − 2q)2 +1/(2n − 2q). The probability that it induces 3 above
for cfE is at most 6/(2n − 2q). Since A makes at most q queries,

q∑

j=1

(10(j − 1)/(2n − 2q)2 + 7/(2n − 2q)) ≤ 7q/(2n − 2q) + 5q(q − 1)/(2n − 2q)2.

It is also an upper bound on Advcol
CE (A). ��

5 Pseudorandom-Function Property

The proposed construction CE treats the TBC E : Σν × Σn → Σn in the
TWEAKEY framework in two tweakey strategies: Σν := Σn × Σν−n in one
strategy and Σν := Σ2n × Σν−2n in the other strategy. We denote E in the
former and the latter tweakey strategies by Ė and Ë, respectively.

For Ë, we consider related-key attacks with related-key-deriving functions
Φ := {id, sw, xc00 , xc01 , xc10 , xc11 , sw ◦ xc00 , sw ◦ xc01 , sw ◦ xc10 , sw ◦ xc11}, where



Collision-Resistant and Pseudorandom Hash Function 11

– id is the identity permutation over Σ2n,
– sw is a permutation over Σn × Σn such that (x0, x1) �→ (x1, x0), and
– for c ∈ Σn, xc is a permutation over Σ2n such that x �→ x ⊕ c.

CE is a secure PRF if Ė is a secure TPRP and Ë is a secure TPRP under
Φ-related-key attacks:

Theorem 2. For any adversary A against CE taking at most t time and making
at most q queries each of which has at most � blocks after padding, there exist
adversaries Ȧ against Ė and Ä against Ë such that

Advprf
CE (A) ≤ Advtprp

Ė
(Ȧ) + (� − 1)q Advtprp-rka

Ë,Φ
(Ä) + �q2/2n+1 + (� − 1)q/2n.

Both Ȧ and Ä take at most about t+O(�q TE) time and make at most 2q queries,
where TE is time required to compute E.

Proof. Let Ic : Σ2n × (Σν−n)+ → Σ2n be a keyed function specified in Algo-
rithm2. For an integer k ≥ 0 and functions ζ : Σ∗ → Σ2n and η : (Σν−n)∗ →
Σ2n, let Hy[k]ζ,η : Σ∗ → Σ2n be a function specified as follows: For M ∈ Σ∗

such that pad(M) = M1‖M2‖ · · · ‖Mm and |Mi| = ν − n for 1 ≤ i ≤ m,

Hy[k]ζ,η(M) :=

{
ζ(M) if m ≤ k,
Ic(η(M[1,k]),M[k+1,m]) if m > k,

and

c ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c00 if |M | > 0 ∧ |M | ≡ν−n 0 ∧ lsb(Mm) = 0,
c01 if |M | > 0 ∧ |M | ≡ν−n 0 ∧ lsb(Mm) = 1,
c10 if (|M | = 0 ∨ |M | �≡ν−n 0) ∧ lsb(Mm) = 0,
c11 if (|M | = 0 ∨ |M | �≡ν−n 0) ∧ lsb(Mm) = 1.

(1)

Notice that M[1,0] = ε.
Suppose that ζ is a random oracle and η is a random function such that

– η(ε) � Σn × {IV }, and
– for every k ≥ 1 and M[1,k] such that lsb(Mk) = 0, η(M[1,k]) � Σ2n and

η(M[1,k] ⊕ δ) ← sw(η(M[1,k])).

Then,
Hy[0]ζ,η(M) = Ic(η(ε),M[1,m])

and c is chosen as specified by Formula (1). Thus, Hy[0]ζ,η is equivalent to CE .
Hy[�]ζ,η works as a random oracle for any M ∈ Σ∗ such that pad(M) consists of
at most � blocks. Since every query made by A is assumed to consist of at most
� blocks after padding,

Advprf
CE (A) =

∣
∣Pr[AHy[0]ζ,η

= 1] − Pr[AHy[
]ζ,η

= 1]
∣
∣.

Let Δk :=
∣
∣Pr[AHy[k]ζ,η

= 1] − Pr[AHy[k+1]ζ,η

= 1]
∣
∣. Then,

Advprf
CE (A) ≤ Δ0 + Δ1 + · · · + Δ
−1. (2)
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For Δ0, let D0 be an adversary against Ė. D0 runs A and produces the same
output as A. It also simulates the oracle of A using its oracle. Let Ḟ : Σν−n ×
Σn → Σn be the oracle of D0, which is either ĖK or ρ̇, where K � Σn and ρ̇
is a random oracle. For each query M of A such that pad(M) = M1‖ · · · ‖Mm,
D0 acts as follows: For 1 ≤ i ≤ m, Mi := Mi,0‖Mi,1, where |Mi,0| = ν − 2n and
|Mi,1| = n.

– If m = 1, then D0 asks ((IV ⊕ c)‖M1,0,M1,1) and ((IV ⊕ c)‖M1,0,M1,1 ⊕ δ)
to Ḟ and returns cfḞ (K‖(IV ⊕ c),M1) to A.

– If m ≥ 2, then D0 asks (IV ‖M1,0,M1,1) and (IV ‖M1,0,M1,1 ⊕ δ) to Ḟ and
returns Ic(cfḞ (K‖IV ,M1),M[2,m]) to A.

In both of the cases above, c is chosen as specified by Formula (1). D0 imple-
ments Hy[0]ζ,η as the oracle of A if its oracle is ĖK . It implements Hy[1]ζ,η

if its oracle is ρ̇ since ρ̇((IV ⊕ c00)‖M1,0,M1,1), ρ̇((IV ⊕ c01)‖M1,0,M1,1),
ρ̇((IV ⊕ c10)‖M1,0,M1,1), ρ̇((IV ⊕ c11)‖M1,0,M1,1) and ρ̇(IV ‖M1,0,M1,1) are
independent from each other. Thus,

Δ0 =
∣
∣Pr[DĖK

0 = 1] − Pr[Dρ̇
0 = 1]

∣
∣ = Advprf

Ė
(D0). (3)

D0 takes at most about t + O(�q TE) time and makes at most 2q queries.
Suppose that 1 ≤ k ≤ � − 1. For Δk, let Dk be an adversary making a Φ-

related-key attack on Ë. Dk runs A and produces the same output as A. It also
simulates the oracle of A using its oracle. Dk has q oracles F̈i[Ki] : Σν−2n×Σn →
Σn for 1 ≤ i ≤ q. They are either Ë[K1], . . . , Ë[Kq] or ρ̈1[K1], . . . , ρ̈q[Kq], where
Ki � Σ2n and ρ̈i is a random oracle for 1 ≤ i ≤ q. For the j-th query M of
A, let pad(M) = M1‖ · · · ‖Mm, where Mi := Mi,0‖Mi,1, |Mi,0| = ν − 2n and
|Mi,1| = n for 1 ≤ i ≤ m. Suppose that m ≤ k. Then, Dk simulates ζ and returns
ζ(M) to A. Suppose that m > k. Let J be a set of integers j′ such that j′ < j
and the j′-th query M ′ of A satisfies m′ > k and M ′

[1,k] = M[1,k] ∨ M ′
[1,k] =

M[1,k−1]‖Mk,0‖(Mk,1 ⊕ δ), where pad(M ′) = M ′
1‖ · · · ‖M ′

m′ . Let j∗ ← j if J = ∅
and j∗ ← min J otherwise. Let M∗ be the j∗-th query of A. Then, for the j-th
query M of A, Dk acts as follows:

– Suppose that m = k + 1. Then,
• Dk asks (xc,Mk+1,0,Mk+1,1) and (xc,Mk+1,0,Mk+1,1⊕δ) to F̈j∗ [Kj∗ ] and

returns cfF̈j∗ (Kj∗ ⊕ c,Mk+1) to A if j∗ = j or j∗ < j ∧ M∗
[1,k] = M[1,k],

and
• Dk asks (sw ◦ xc,Mk+1,0,Mk+1,1) and (sw ◦ xc,Mk+1,0,Mk+1,1 ⊕ δ) to

F̈j∗ [Kj∗ ] and returns cfF̈j∗ (sw(Kj∗) ⊕ c,Mk+1) to A otherwise.
In both of the cases above, c is chosen as specified by Formula (1).

– Suppose that m ≥ k + 2. Then,
• Dk asks (id,Mk+1,0,Mk+1,1) and (id,Mk+1,0,Mk+1,1⊕δ) to F̈j∗ [Kj∗ ] and

returns Ic(cfF̈j∗ (Kj∗ ,Mk+1),M[k+2,m]) to A if j∗ = j or j∗ < j ∧M∗
[1,k] =

M[1,k], and
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• Dk asks (sw,Mk+1,0,Mk+1,1) and (sw,Mk+1,0,Mk+1,1 ⊕ δ) to F̈j∗ [Kj∗ ]
and returns Ic(cfF̈j∗ (sw(Kj∗),Mk+1),M[k+2,m]) to A otherwise.

In both of the cases above, c is chosen as specified by Formula (1).

In the process above, for the j-th query M , if M[1,k] is new, that is, J = ∅, then
Dk uses the new oracle F̈j [Kj ] to compute the answer to the query. It implies
that new Kj , which is chosen uniformly at random, is assigned to new M[1,k].
Suppose that the oracles of Dk are Ë[K1], . . . , Ë[Kq]. Then, Dk implements
Hy[k]ζ,η as the oracle of A. On the other hand, suppose that the oracles of Dk

are ρ̈1[K1], . . . , ρ̈q[Kq]. Then, Dk implements Hy[k + 1]ζ,η if Ki �= sw(Ki) for
every i sich that 1 ≤ i ≤ q. Thus,

Δk = Advq-prf-rka

Ë,Φ
(Dk) +

∣
∣Pr[Dρ̈[K1],...,ρ̈[Kq]

k = 1] − Pr[AHy[k+1]ζ,η

= 1]
∣
∣

≤ Advq-prf-rka

Ë,Φ
(Dk) + q/2n. (4)

Dk takes at most about t + O(�q TE) time and makes at most 2q queries.
From Inequality (2), Equalities (3) and (4), and Lemmas 1 and 2, there exist

adversaries Ȧ and Ä such that

Advprf
CE (A) ≤ Advtprp

Ė
(Ȧ) + (� − 1)q · Advtprp-rka

Ë,Φ
(Ä) + �q2/2n+1 + (� − 1)q/2n.

Both Ȧ and Ä take at most about t + O(�q TE) time and make at most 2q
queries. ��

Algorithm 2: Ic : Σ2n × (Σν−n)+ → Σ2n

input : (W, X1‖X2 · · · ‖Xx)
output: Ic(W, X1‖X2 · · · ‖Xx)
V0 ← W ; /* |Xi| = ν − n for 1 ≤ i ≤ x */

for i = 1 to x − 1 do Vi ← cfE(Vi−1, Xi) Vx ← cfE((Vx−1 ⊕ c, Xx);
return Vx;
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