
Carla Rocha
Celio Santana Júnior
Fernando De Sá
Tiago Silva da Silva (Eds.)

11th Brazilian Workshop, WBMA 2021
Virtual Event, October 8–10, 2021
Revised Selected Papers

Agile Methods

Communications in Computer and Information Science 1642

Communications
in Computer and Information Science 1642

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at https://link.springer.com/bookseries/7899

https://springerlink.bibliotecabuap.elogim.com/bookseries/7899

Carla Rocha · Celio Santana Júnior ·
Fernando De Sá · Tiago Silva da Silva (Eds.)

Agile Methods
11th Brazilian Workshop, WBMA 2021
Virtual Event, October 8–10, 2021
Revised Selected Papers

Editors
Carla Rocha
Universidade de Brasília
Brasília, Brazil

Fernando De Sá
Instituto Tecnológico de Aeronáutica
São José dos Campos, Brazil

Celio Santana Júnior
Universidade Federal de Pernambuco
Recife, Brazil

Tiago Silva da Silva
Universidade Federal de São Paulo
São José dos Campos, Brazil

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-031-25647-9 ISBN 978-3-031-25648-6 (eBook)
https://doi.org/10.1007/978-3-031-25648-6

© Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3102-5166
https://orcid.org/0000-0003-3174-1023
https://orcid.org/0000-0003-0398-3172
https://orcid.org/0000-0001-8459-7833
https://doi.org/10.1007/978-3-031-25648-6

Preface

Welcome to the 11th edition of theBrazilianWorkshop onAgileMethods (WBMA2021)
held online on October 9, 2021. WBMA is the research track in the Agile Brazil confer-
ence. It is an academic event that focuses on agile software development. The workshop
has been a reference point for the Brazilian research community in Agile Methods for
11 years, promoting research activities in the field. All the submitted papers – research,
experience reports, literature reviews, and position papers – underwent a rigorous peer-
review process. At least three members of the Program Committee reviewed each paper.
Of the 18 papers submitted, only six were accepted as full papers (33.3%). We also
accepted three short papers – experience reports. The Program Committee evaluated
each report submission for new experiences that would be both interesting and ben-
eficial to the Brazilian Agile Methods community of academics and practitioners. As
usual, we accepted papers dealing with three different aspects of Agile Methods: Agile
in education, empirical studies on Agile, and Agile practices. In this edition of WBMA,
we had articles addressing topics such as teamwork, software testing, DevOps, User
eXperience (UX), software requirements, impacts of COVID-19, and, of course, Scrum.
It is worth mentioning that this edition was atypical and quite challenging, considering
all the obstacles caused by the global pandemic of COVID-19. We hope the WBMA
2019 proceedings will be helpful for your educational, professional, and academic activ-
ities. Finally, we want to thank everyone who contributed to WBMA 2021, including
the authors, reviewers, volunteers, and the previous and current chairs. A special thanks
to the Agile Brazil conference organizers for their support and partnership.

November 2021 Carla Rocha
Celio Santana Junior

Fernando de Sá
Tiago Silva da Silva

Organization

General Chair

Carla Rocha Universidade de Brasília, Brazil

Program Committee Chairs

Carla Rocha Universidade de Brasília, Brazil
Celio Santana Júnior Universidade Federal de Pernambuco, Brazil
Fernando de Sá Instituto Tecnológico da Aeronáutica, Brazil
Tiago Silva da Silva Universidade Federal de São Paulo, Brazil

Steering Committee

Alfredo Goldman Universidade de São Paulo, Brazil
Carla Rocha Universidade de Brasília, Brazil
Celio Santana Júnior Universidade Federal de Pernambuco, Brazil
Eduardo Guerra Free University of Bolzen-Bolzano, Italy
Paulo Meirelles Universidade Federal do ABC, Brazil
Rafael Prikladnicki Pontifícia Universidade Católica do Rio Grande

do Sul, Brazil
Tiago Silva da Silva Universidade Federal de São Paulo, Brazil

Program Committee

Ademar Aguiar Universidade do Porto, Portugal
Elder Cirilo Universidade Federal de São João del-Rei, Brazil
Filipe Correia Universidade do Porto, Portugal
Heitor Costa Universidad Federal de Lavras, Brazil
Fernando de Sá Instituto Tecnológico da Aeronáutica, Brazil
Eduardo Figueiredo Universidade Federal de Minas Gerais, Brazil
Felipe Furtado CESAR School, Brazil
Alejandra Garrido Universidad Nacional de La Plata, Argentina
Alfredo Goldman Universidade de São Paulo, Brazil
Eduardo Guerra Free University of Bolzen-Bolzano, Italy
Celio Santana Júnior Universidade Federal de Pernambuco, Brazil
Fabio Kon Universidade de São Paulo, Brazil
Fábio Levy Siqueira Universidade de São Paulo, Brazil

viii Organization

Paulo Meirelles Universidade Federal do ABC, Brazil
Maria Augusta Nelson Pontifícia Universidade Católica do Minas Gerais,

Brazil
Adolfo Neto Universidade Tecnológica Federal do Paraná,

Brazil
Marcelo Pimenta Universidade Federal do Rio Grande do Sul,

Brazil
Rafael Prikladnicki Pontifícia Universidade Católica do Rio Grande

do Sul, Brazil
Danilo Ribeiro Universidade Federal de Pernambuco, Brazil
Genaina Rodrigues Universidade de Brasília, Brazil
Hilmer Rodrigues Neri Universidade de Brasília, Brazil
Rodrigo dos Santos Universidade Federal do Estado do Rio de

Janeiro, Brazil
Tiago Silva da Silva Universidade Federal de São Paulo, Brazil
Ricardo Terra Universidade Federal de Lavras, Brazil

Contents

Full Papers

Using a Teamwork Quality Instrument to Improve Agile Teams’
Effectiveness: Practical Use Cases . 3
Arthur Freire, Manuel Neto, Mirko Perkusich, Alexandre Costa,
Kyller Gorgônio, Hyggo Almeida, and Angelo Perkusich

Agile Methodology Brazilian Workshop - Agile Brazil: A Decade
of Software Testing . 18
Acássio dos A. Araújo, Jhonatan S. de Castro, Ana Melo,
Rodrigo B. Cursino, and Wylliams B. Santos

Assuring the Evolvability of Legacy Systems in Devops
Transformation/Adoption: Insights of an Experience Report 32
Álax Alves and Carla Rocha

UX-Painter: Fostering UX Improvement in an Agile Setting 54
Juan Cruz Gardey, Julián Grigera, Gustavo Rossi, and Alejandra Garrido

Applying Agile Management on Communities of Practice and Startups:
A Survey . 66
Daniel Lima and Rodrigo Cursino

Scrum in Strongly Hierarchical Organizations: A Literature Review 79
Fernando Rodrigues de Sá

Short Papers

Experience in Implementing the Scrum Framework in Incubated
Companies . 95
Ludimila Monjardim Casagrande

Study of a Software Development Team’s Adaptations to Remote Work
During the COVID-19 Pandemic . 103
Diego A. S. Lisbôa, Thayssa A. da Rocha, Letícia S. Machado,
Clara M. Caldeira, and Cleidson R. B. de Souza

x Contents

Agile Requirements Engineering Practices: A Survey in Brazilian
Software Development Companies . 110
Juan Carlos Barata, Diego Lisboa, Laudelino Cordeiro Bastos,
and Adolfo Neto

Author Index . 121

Full Papers

Using a Teamwork Quality Instrument
to Improve Agile Teams’

Effectiveness: Practical Use Cases

Arthur Freire(B), Manuel Neto, Mirko Perkusich(B), Alexandre Costa,
Kyller Gorgônio, Hyggo Almeida, and Angelo Perkusich

Intelligent Software Engineering (ISE) Group @ VIRTUS,
Federal University of Campina Grande, Campina Grande, Brazil

{arthurfreire,manuel}@copin.ufcg.edu.br,
{mirko,alexandre.costa,kyller,hyggo,perkusic}@virtus.ufcg.edu.br

Abstract. Agile Software Development (ASD) has become the most
chosen development method. The core fundamentals of ASD are based
on Teamwork factors and how valuable it considers individuals and their
interactions over processes and tools. Researchers have shown the posi-
tive impact of teamwork quality in ASD and the importance of assessing
it to increase the chances of succeeding projects in this context. Based on
this, some researchers have proposed instruments that can assess ASD
teamwork quality. One of these instruments is a bayesian network-based
model (TWQ-BN), with its practical utility assessed in a case study pre-
sented in previous work. However, there is a lack of practical use cases
documented using TWQ-BN to identify process improvement opportu-
nities. This paper addresses this gap by presenting two industry-based
use cases to help potential users understand how to use TWQ-BN to
define action items to improve the team’s effectiveness. This paper pro-
vides better guidance toward adopting TWQ-BN and shows how it can
be used as a tool on iteration retrospectives to diagnose the teamwork
quality.

Keywords: Teamwork · Agile Software Development · Bayesian
networks · Use cases

1 Introduction

Agile Software Development (ASD) is a lightweight approach for developing
software when compared with traditional plan-driven approaches. Usually, agile
initiatives embrace iterative development, which can be translated into dividing
the delivery process into short iterations, allowing requirements to be refined
on a regular basis [10]. According to Hoda et al. [12], ASD has become the
mainstream development method of choice.

ASD is oriented by the principles described in the Agile Manifesto [3], which
states that ASD values individuals and the interactions between them more than
processes and tools [11]. The Agile Manifesto evidences the team’s importance by
having six out of twelve principles directly related to the team (i.e., individuals).
c© Springer Nature Switzerland AG 2023
C. Rocha et al. (Eds.): WBMA 2021, CCIS 1642, pp. 3–17, 2023.
https://doi.org/10.1007/978-3-031-25648-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25648-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-25648-6_1

4 A. Freire et al.

Studies have shown the positive impact of teamwork quality (TWQ) [13,14],
and its relevance for success in ASD [4,8,20,22,23]. Batista et al. [2] dis-
cussed that the effective combination of individual parts, often carried out by
software development teams, requires interactions among team members and
the coordination of interdependent individual and team level tasks. Given its
impact, researchers argued about the importance of assessing teamwork quality
to increase the chances of succeeding with ASD [2,9].

Moreover, some researchers have proposed instruments for assessing ASD
teamwork quality. Moe et al. [21] presented a Radar Plot that considers five
dimensions: Shared Leadership, Team Orientation, Redundancy, Learning, and
Autonomy. Lindsjørn et al. [16] presented a Structural Equation Model, based
on a differentiated replication [15] from a study by Hoegl and Gemuenden [13],
which considered that the teamwork construct is comprised of six variables: Com-
munication, Coordination, Balance of Member Contribution, Mutual Support,
Effort, and Cohesion. Finally, Freire et al. [9] proposed a Bayesian networks-
based model with 16 variables, which had its practical utility positively assessed
in a case study.

Moe et al. [21] present two cases of using their proposed model for diagnosing
the teamwork quality and supporting the teams to improve their processes. Con-
versely, the instrument presented by Lindsjørn et al. [16] is based on Structural
Equation Modeling, which is not suited for supporting decision-making [1]. In
Freire et al. [9], the researchers stated that subjects involved in the case study
applying their instrument reported that “the model outputs are useful on detect-
ing weaknesses and strengths to allow continuous improvement of the teamwork
quality”. However, the paper does not detail how the teams used the instrument
to identify action items. Therefore, despite the instrument presented by Freire et
al. [9] be promising, its adoption is not supported by practical use cases, which
are vital for the industry to adopt any data-driven initiative [7].

This paper addresses this gap by presenting two industry-based use cases
that demonstrate how practitioners can use the instrument proposed by Freire
et al. [9] to assess and improve ASD teamwork quality continuously, and to
increase the team’s effectiveness. We defined these use cases based on the first
author’s previous experiences during the COVID-19 pandemic while working on
a scaled agile environment within a Fortune 50 company. The use cases presented
in this paper aim to motivate the adoption of the instrument [9] by providing
better guidance for practitioners towards its usage in the industry.

The remaining of this paper is organized as follows. Section 2 describes the
teamwork quality instruments presented by Moe et al. [21] and Freire et al. [9], as
well as information about software development teams working from home dur-
ing COVID-19 pandemic. Section 3 presents this study’s methodology. Section 4
presents two use cases for the teamwork quality instrument presented by Freire
et al. [9]. Section 5 discusses this study’s main findings and implications. Finally,
Sect. 6 presents our final remarks and future work.

Using TWQ-BN to Improve Agile Teams’ Effectiveness 5

2 Background and Related Works

2.1 Team Radar Plot Usage to Diagnose and Improve Teamwork

Ringstad et al. [22] applied the Team Radar plot, proposed by Moe et al. [21], in
two teams from different companies to diagnose teamwork towards its improve-
ment. According to the authors, the diagnosis phase consisted of collecting data
through observation and semi-structured interviews. The first author was respon-
sible for observing teamwork practice in daily work and ceremonies like daily
meetings, iteration planning, and retrospective. The teamwork diagnosis final
results were scores on a scale [0, 10] (inclusive) on selected team radar factors.
The scores were based on the collected answers from all team members and the
observed practice notes. The diagnosis for both teams is presented in Fig. 1.

Fig. 1. The radar plot of teamwork characteristics of the maintenance and development
teams, from [22].

Ringstad et al. [22] stated that the action planning intended to specify orga-
nizational actions that should either relieve the primary problems identified in
the diagnosis or improve them. Besides, they also state that, in action research,
a theoretical framework (i.e., Team Radar) should guide the diagnosis phases’
plan. They organized the diagnosis phases’ results into a presentation alongside
the problems and consequences to the teams, and let their members openly dis-
cuss whether they recognized how teamwork should be presented in the results.
Then, they discussed which areas should receive priority to improve teamwork,
and, finally, discussed concreted actions to build up an action plan.

2.2 Teamwork Bayesian Network Model (TWQ-BN)

Freire et al. [9] present a Bayesian networks-based model (hereafter addressed
by TWQ-BN) to assess and improve the teamwork quality in the ASD context.
Further, they detail a procedure to apply the proposed model.

To build the model, the authors listed many ASD teamwork key factors
extracted from the literature. Based on the knowledge of an expert and the
resulting list, they used reasoning on a top-down approach - starting with the
target factor (i.e., teamwork quality) - breaking down higher-level factors into

6 A. Freire et al.

others they judged more observable. Figure 2. presents the directed acyclic graph
(DAG) representing the final version of TWQ-BN factors and their relationships.
In this DAG, we define the nodes with arrows coming out from them to other(s)
as parent nodes, and consequently, the ones with arrows coming in are defined
as child nodes.

Fig. 2. Bayesian network based ASD teamwork quality model by Freire et al. [9] (TWQ-
BN)

The authors decided to adopt the concept of Ranked Nodes [5] to represent all
dependent (i.e., non-leaf) nodes, which are based on the double truncated Normal
distribution (TNormal) limited in the [0, 1] region. They also defined that each
node comprises a 5-point Likert scale (i.g., Very Low, Low, Medium, High, and
Very High). To build the nodes’ probability tables, the authors established a set
of questions for the expert, who replied with a probability for each child node’s
state based on the combination of each parent node’s state.

Freire et al. evaluated TWQ-BN’s practical utility in a case study conducted
with three units of analysis (i.e., ASD teams) that used Scrum. There were
three subjects involved in the case study, being the Scrum Masters of the teams.
TWQ-BN was applied during forty-five days (i.e., three sprints).

After executing the case study, the authors concluded that TWQ-BN model
assists agile teams on assessing teamwork quality and identifying improvement
opportunities, is easy to learn, and the cost-benefit for using it with the proposed
procedure is positive. However, in this case study the researchers did not focus
on the action items that resulted from the analysis of the outputs of TWQ-BN
after each sprint.

2.3 Software Development Teams Working from Home During
COVID-19

Miller et al. [19] ran an exploratory survey during the early months of the
COVID-19 pandemic with 2265 developer responses. The results revealed that
many developers faced challenges reaching milestones and that their team pro-
ductivity had changed. The authors also found through qualitative analysis that

Using TWQ-BN to Improve Agile Teams’ Effectiveness 7

important team culture factors such as communication and social connection
had been affected. According to their results, the ability to brainstorm with col-
leagues, difficulty communicating with colleagues, and satisfaction with interac-
tions from social activities are important factors that are associated with how
developers report their software development team’s productivity.

Mendonça et al. [18] presented their experience in managing the expectations
and changing the development methods to mitigate the risks of carrying out a
research and development project during a pandemic time. According to them,
even though the development team quickly adapted itself to working from home,
there were some impact on the development plans. The authors stated that trying
to reconcile the trade-offs between completeness and the tight schedule for the
first release was a challenge, given that they depended on different partners to
collect the information they need to make available in a mobile application that
corresponds to one of the outcomes.

3 Methodology

The definition of the use cases was done considering the specific context of an
ASD team during the COVID-19 pandemic. This section presents the process
that we adopted to define practical, real-world-based use cases, aiming to demon-
strate how practitioners can use TWQ-BN to assess and improve ASD teamwork
quality continuously.

Next, Sect. 3.1 details the context which inspired defining the use cases pre-
sented herein. Further, Sect. 3.2 discusses how we adapted TWQ-BN to suit the
context of our research better, and, finally, Sect. 3.3 presents the process that we
employed to define the uses cases.

3.1 Research Context

We defined the use cases based on the first author’s experiences during the
COVID-19 pandemic while working from home. The team on which the use cases
were based comprises one software development manager, one quality assurance
engineer, seven software development engineers, and one software development
engineer intern.

This team was part of a Fortune 50 multinational company working on a
big project that required the development of new components and extensions
on existing ones to provide a set of features for its customers, making sure to
comply with tax and compliance regulations. This project was developed in a
scaled agile environment, comprising many software teams.

The team’s work addressed in this paper was focused on the implementa-
tion of three new microservices and extending existing ones’ capabilities, which
will be hereafter addressed as workstreams. The technology stack and business
context of each of the four main workstreams were very distinct. Also, some
business requirements required interaction between the components of the four
workstreams, and components owned and developed by other teams.

8 A. Freire et al.

The software development engineers and the intern divided themselves into
two people working on each workstream. They divided the workload across them
to ensure the team would be able to deliver their assigned work.

The team used Scrumban, which means that they relied on managing tasks
with a Kanban board, limited work-in-progress (WIP), and analyzed their work-
flow through lead and cycle time analysis. Moreover, the team adopted one-
month iterations and pushed work given the requirements’ estimates (i.e., Story
Points) and using its velocity. The ASD ceremonies adopted by the team were
daily meetings and iteration retrospectives. Even though Kanban does not pre-
scribe planning User Stories and tasks - because work is planned based on the
number of cards and the average lead and cycle time of previous ones - this team
used to estimate the User Stories considered “ready” (i.e., defined and agreed
acceptance criteria) by doing ad-hoc plannings.

The project’s design and development phases only started after the scoping
and definition of the high-level requirements. These high-level requirements were
translated into Epics placed into the Project Backlog. This backlog was shared
by all teams involved in the project, and depending on an Epic’s abstractness, the
ownership for delivering it could be split by more than one team. For each Epic
in the backlog, either the business stakeholders would assign them to the correct
team based on their knowledge, or the teams themselves would take ownership
based on the Epic’s similarities with the teams’ current responsibilities.

The refinement of these requirements occurred continuously while design and
development phases were occurring. The translation of Epics (i.e., high-level
requirements) into tasks was incremental and depended on the design and devel-
opment phases. For each Epic owned by the team addressed in this paper, it was
necessary to work on the architectural designs of new or existing components.
These designs usually involved people from other teams to define interfaces and
responsibilities between their components and approvals whenever needed (e.g.,
one team making changes to an existing platform owned by another team to sup-
port a new use case). The designs were addressed as User Stories under the Epic,
and their definitions were considered deliverables artifacts because the created
documentation helped maintain the company stack up to date.

These designs helped refine the Epics and on defining User Stories that con-
sidered development work. Based on the tasks necessary to complete the User
Stories, the team members ran ad-hoc plannings to estimate them using Story
Points. These estimates also served as the basis for requirements refinement
because the effort could extrapolate the project plan and compromise the dead-
line.

At the end of each month, the team executed iteration retrospectives to
identify the things that went well and the bad ones. For the bad things, the team
used to define action items, a deadline, and an owner responsible for engaging
the necessary people to avoid those bad things from happening again. Since the
team did not own a product and there was no incremental delivery, there was no
iteration review. However, the team velocity assessment was done by the team

Using TWQ-BN to Improve Agile Teams’ Effectiveness 9

manager, with the purpose of reporting and raising possible related risks that
could compromise the project deadline.

3.2 TWQ-BN Adaptation

We adapted TWQ-BN to suit the context described in Sect. 3.1, which included
a team working fully remote and using Scrumban. Figure 3 presents the adapted
version of TWQ-BN and marks with a red-colored “X” the nodes that we
removed from the original BN.

Fig. 3. TWQ-BN adaptation for use cases definition (Color figure online)

Given that the team worked fully remotely, we removed the nodes Team
Distribution and Means of Communication, because they were originally tuned
as if that team had to be co-located for having a “good” communication. Thus,
we considered Communication as a leaf node.

We also removed the nodes Monitoring and All Members Present, which were
originally parents of the Daily Meetings node, turning Daily Meetings into a leaf
node. This means that both Monitoring and All Members Present were removed.
This decision is based on the dynamics and maturity of the team, that did not
require all members to be present, and had good documentation mechanisms on
the tasks to keep the ongoing statuses up to date.

3.3 Use Cases Definition Process

We defined the use cases for using TWQ-BN to improve agile teams’ effectiveness
by following the steps presented in what follows.

1. The first author reviewed iteration retrospective meetings’ notes and specific
retrospective cards used on an online retrospective board tool, restricted to
internal usage by the company’s employees only;

2. For each iteration retrospective, the first author retrieved the action items
defined, remembered the team’s environment context at that time and the
problems that resulted on their definition;

10 A. Freire et al.

3. For each set comprising one iteration retrospective, action items, and their
causes, the first author defined the environmental context in which the team
was inserted by writing a few paragraphs. This set of information (i.e., iter-
ation retrospective environmental context, the action items defined on this
ceremony, and their causes) defines the structure for the defined use cases;

4. The authors discussed each use case separately. During the discussions, the
first author was asked to input data to TWQ-BN based on his memories of
the team context at the time (i.e., observed context). Also, the first author
was asked to input data into the model based on the expectations of what the
team wanted to achieve as a result of the action items (i.e., target context);

5. After inputting the data into TWQ-BN for both the observed and target
contexts, the authors executed the model using AgenaRisk tool1 and discussed
its outputs relating them with action items of the given iteration to assess
the possibility of having such actions defined based on the model output.

6. Finally, if at least one iteration retrospective action item was judged as pos-
sible to be defined based on TWQ-BN output, we considered the use case
relevant for this paper.

4 Use Cases

This section presents two use cases that are based on the first author’s industry
experience. The first use case addresses problems on team Communication, Daily
Meetings, Redundancy, and Team Learning. The second use case focuses on prob-
lems on Team Autonomy and Team Learning. Notice that such use cases conform
with the scope of iteration retrospective events, in which the team reflects on how
to be more effective. Due to the lack of space, Use Case #2 won’t have the images.

For both use cases, we describe the context (i.e., Context Description) and
explain how TWQ-BN should be fed given it (i.e., Data Input). Further, we
discuss how the team could use TWQ-BN to support its decision-making process
for identifying improvement opportunities and action items to be executed (i.e.,
Analysis). In what follows, we describe both use cases.

4.1 Use Case #1

Context Description. As mentioned in Sect. 3.1, the team subdivided into
pairs to work on separate workstreams, which contained inter-dependencies. As
a consequence, during the daily meetings, while the owner of a given card related
to a specific workstream explained his/her tasks’ current status, the other team
members working on different workstreams could not understand some of the
details or got curious to understand better the work done by the teammate.
Moreover, sometimes, members that were working on a specific workstream initi-
ated very detailed discussions. These situations resulted in longer daily meetings
because of the additional discussions attempting to explain each workstream’s

1 https://agenarisk.com.

https://agenarisk.com

Using TWQ-BN to Improve Agile Teams’ Effectiveness 11

specifics to the members not working on it. Besides, as this happened at the
beginning of the work-from-home phase, many ad-hoc remote meetings were
scheduled, attempting to get the team members on the same page regarding the
specific details. However, the team members’ new routines made it difficult to
accommodate everyone in the same time slot. This occurred because they were
not yet used to the many remote meetings instead of casual conversations that
used to occur while working in the office.

Data Input. Based on the problems related to the daily meetings losing focus
and the communication issues, we inputted the values Low into the leaf nodes
Communication and Daily Meetings. Further, the team members only had a
high-level, insufficient understanding of the workstreams they did not work with,
mainly because the team’s mechanics to exchange such knowledge was inefficient.
Given this, we inputted the values Low and Medium into the leaf nodes Exper-
tise and Team Learning, respectively. We inputted data into the node Expertise
because it considers the team’s redundancy in its definition, and at that point,
the team had knowledge silos. The remaining leaf nodes were left without inputs
because they were not relevant for this use case, and Bayesian networks can
handle the absence of data.

Figure 4 presents the outputs calculated by TWQ-BN given the inputs pre-
viously explained. In Fig. 4, notice that the leaf nodes that we inputted data are
marked with a rectangle. For instance, the leaf node Daily Meeting is marked
with an orange rectangle with the information “Observed: Low”, meaning that
we inputted the value Low into this node for this use case. Further, notice that
the leaf nodes’ descendants are represented with a box, which includes a bar
graph. The bar graph represents the probability that the given variable has for
the possible states/value. For instance, the node Collaboration has a calculated
probability of 21.747% of being Very Low, 72.408% of being Low, and 5.829% of
being Medium.

Fig. 4. TWQ-BN inputs and calculated outputs for use case #1 (Color figure online)

12 A. Freire et al.

Analysis. By analyzing the TWQ-BN’s calculated values (see Fig. 4), users can
diagnose their team’s teamwork quality, which is an indicator of its effectiveness.
For this purpose, the users do not need to worry about the specific probabilities
but only about the central tendency. For instance, for analyzing the bar graph
for Teamwork, the users can interpret that their team’s overall teamwork quality
is highly likely to be “low” (i.e., “bad”), which might affect its performance and
delivered product’s quality (i.e., prognosis).

Given the calculated values, the team could have a broader goal, focusing
on improving the overall teamwork quality (i.e., the Teamwork node) or a more
specific one, focusing on one of the intermediate nodes. For instance, given this
use case’s description, the team primarily focused on its Cohesion, and not much
about its overall Teamwork quality. Notice that this observation follows from
the leaf nodes in which data were inputted, and Autonomy, the other parent
of Teamwork had no input data. Further, alternatively, in practice, the order
of decisions could be the inverse. First, select one or more intermediate target
nodes to focus on. Then, select which leaf nodes to collect data for.

At this point, the team would have diagnosed its teamwork quality and would
identify improvement opportunities. The improvement opportunities follow from
the leaf nodes that the team inputted data to and that could improve. In this
case, the team could improve Daily Scrum, Communication, Team Learning, and
Expertise. Notice that there might have more improvement opportunities for the
remaining leaf nodes, but it could be out of the scope of the team’s current
concerns, which we are assuming to be the case here.

The team’s next step is to prioritize the improvement opportunities. Bayesian
networks nodes can depend on the values of many other nodes, directly or indi-
rectly. For this purpose, it’s possible to run a sensitivity analysis to analyze which
of the analyzed leaf nodes have a more significant impact on Cohesion. Sensi-
tivity analysis provides means to understand the nodes that have the highest
impact on a target node.

Figure 5 shows the tornado graph representing the results of the sensitivity
analysis for this case. In the tornado graph, the larger the bar, the larger the
impact of a given node in Cohesion; thus, the higher should be its priority. Given
this, we have that the priority, from higher to lower, is Expertise, Team Learning,
Communication, and Daily Meetings.

Alternatively, the team could also perform what-if analysis by changing some
of the model’s nodes’ values and observing the impact on the remaining ones.
Such analysis allows more detailed and complex analysis, such as using the
Bayesian Network’s backward propagation capabilities, called “explaining away”
or “nonmonotonic reasoning”. However, it is out of our scope here to discuss such
an analysis. Further, we believe that using the sensitivity analysis is enough to
guide the team on identifying and prioritizing improvement opportunities for
most cases.

Then, using the information shown in Fig. 5 as a reference, the team discusses
action items. Since, from the candidate nodes, Expertise is the one with the most
significant impact on Cohesion (that is, the team’s target), the team could first
come up with candidate action items to improve it. For this factor, an action

Using TWQ-BN to Improve Agile Teams’ Effectiveness 13

Fig. 5. Sensitivity analysis for Cohesion, considering the value Very High (exported
from AgenaRisk tool)

item could be to have recurrent weekly meetings in which the team members of
each workstream handled by the team would be responsible for explaining the
technical details and trade-offs being faced by them, in an informal format that
allows the others to ask questions openly and discuss. Notice that this action
item takes part of the team’s capacity and affects the factor Team Learning and
Communication.

The next improvement opportunity to be analyzed is Daily Scrum. For this
factor, an action item could be to have one person responsible for coaching and
keeping the ceremony within its focus. Notice that this action item requires
minimum effort.

At the end of this process, the team would have a set of candidate action
items to execute. As with any decision, to decide which action items to execute,
the team should consider, at least, their value (i.e., impact) and required effort.
However, other context-sensitive factors could also be considered.

4.2 Use Case #2

Context Description. During an iteration, a new high-priority requirement
(i.e., Epic) emerged to address gaps that were not identified during the scop-
ing phase. These gaps were not previously addressed because the Business
team made assumptions without consulting other stakeholders with the required
knowledge.

The project involved many teams working in parallel to address different
requirements, and this new Epic did not have an owner when it was placed in the
Project Backlog. However, upper management decided that the team addressed
in this paper should deliver it without removing any of the already planned User
Stories. To accommodate this new Epic, they needed to sacrifice quality, which
increased the team’s technical debt backlog.

Moreover, one of the team’s services relied on the functioning of a service
owned by another team to deliver critical messages. However, this other service

14 A. Freire et al.

did not guarantee the delivery of such messages, and it was necessary to configure
a monitor that alarmed when the deliveries failed. When it alarmed, the team
had to execute a manual, error-prone process to guarantee the delivery of lost
messages. However, the number of lost messages increased significantly in this
iteration, which brought an operational burden to the team.

Additionally, the team members were complaining about the workstreams-
related documentations that were not being properly updated. This situation
impacted the understanding of the reasons for some technical decisions that
had to be made, technical limitations or responsibilities of specific components
that needed to be connected, and understanding of the project’s bigger picture
architecture as a whole.

Data Input. Based on the problems that followed from the team’s obligation to
handle the new Epic, and the increase in team’s operational burden, we inputted
the value Low into the leaf node Autonomy. This decision is based on the team
members’ feeling of not having control over their boundaries and their incapa-
bility to tackle a problem impacting their day-to-day routines without the other
team’s engagement.

Further, we reflected the issue of the team not documenting, and not having
general understanding of project as a whole, as the value Medium into the leaf
node Team Learning. As with the Use Case #1, we left the remaining leaf nodes
without inputs.

The outputs calculated by TWQ-BN based on the previous inputs resulted
on the following probabilities for the Teamwork node: 15.274% of being Very
Low, 48.05% of being Low, 31.524% of being Medium, and 5.02% of being High.

Analysis. The probabilities calculated by TWQ-BN for the Teamwork node are
more concentrated in Low, but also with a considerable tendency to Medium.
There’s only one common non-leaf node that both Team Learning and Autonomy
impact: Teamwork. Therefore, the team’s focus in this use case would be this
node.

The sensitivity analysis for Teamwork node based on the leaf nodes consid-
ered in this use case calculated that Autonomy has a higher impact on Teamwork
than Team Learning, having a higher priority.

In this case, action items could be (i) an engagement with business to
require consultation of stakeholders before making assumptions, which would
have avoided the definition of the new priority Epic on short-notice; and (ii) a
formal engagement, with escalations if needed, with the team owning the mes-
sages delivery service to define a long-term solution to avoid the issues, but with
an initial improvement that could reduce manual operational burden. These
action items would directly impact Autonomy. If they were implemented and
caused a positive impact (i.e., Autonomy value as Very High), the overall value
of Teamwork would switch to Medium (i.e., 43.67%), with a small chance of
being High (i.e., 17.03%), which indicates how important it is to respect the
team’s autonomy.

Using TWQ-BN to Improve Agile Teams’ Effectiveness 15

For Team Learning, the action item could be to consider User Stories and
their tasks “done”, only when the related documentation was up to date, reflect-
ing the changes addressed by their contexts. The task reviewers would be respon-
sible for verifying if such updates were in place prior to approving the work done
in a given task.

5 Discussion

We defined both use cases (see Sect. 4) based on the industry experience of this
paper’s first author. As mentioned previously, they were based on the context of
a team using Scrumban. One might argue that the team was not following agile
“by the book”, but such deviations are frequent in industry [17].

The use cases demonstrated how TWQ-BN could help agile teams to decide
which TWQ dimensions needed improvement by informing them about which
factors should be analyzed (i.e., the BN’s nodes). This characteristic can be
compared to a checklist, which is a widely used mechanism to support decision-
making. Further, the team can analyze TWQ-BN to prioritize action items by
running a sensitivity analysis or “what-if” scenarios. Notice that an action item
can impact multiple factors, and multiple action item can impact a single factor.
It is up to the team, after analyzing TWQ-BN, to decide which action item to
implement.

We believe that the fact that TWQ-BN is based on BN is an advantage to
support decision-making when compared to other TWQ instruments such as
the ones presented by Moe et al. [20] and Lindsjørn et al. [16]. Comparing to
Moe et al. [20], both can be used to diagnose TWQ, but TWQ-BN has the
advantage of computing the impact of each factor on the overall TWQ and gives
the team the flexibility to perform “what-if” scenarios to support their decisions.
This characteristic follows from being possible to model richer information in a
Bayesian Network than with a radar plot, which includes handling missing data,
explicit capturing of each unknown variable, no fixed list of input and output
variables, which enables diagnosis and prognosis, and easier understanding of
the relationships between variables [6]. Regarding Lindsjørn et al. [16], a clear
disadvantage is that it is based on Structural Equation Modeling, which is known
not to be suitable for supporting decision-making [1].

Agile teams frequently reflect on how to be more effective, usually during
iteration retrospective events. TWQ-BN could be used to support such events.
Thus, practitioners could refer to the use cases presented herein as references for
adopting TWQ-BN for improving their teams.

However, as pointed by Figalist et al. [7], having use cases is not enough to
encourage practitioners to adopt artificial intelligence or software analytics. It is
also necessary to have, for instance, the necessary infrastructure (i.e., tool). A
limitation of TWQ-BN is because the model currently only runs on a Bayesian
Network-specific tool, requiring users to entering data directly into the tool.
Thus, future research lines could ease the effort of inputting data into the model
and for practitioners to interpret the findings. Further, it would be helpful if

16 A. Freire et al.

TWQ-BN could provide ideas of action items for practitioners, especially for
less mature teams.

6 Conclusions

This paper presented two industry-based use cases demonstrating how agile
teams can use TWQ-BN [9] to identify action items and improve their effec-
tiveness. Thus, agile teams can use it as a reference to adopting it.

A study’s limitation is that it does not cover more advanced analysis, includ-
ing “explaining away”, which can help agile teams to define action items. Fur-
ther, TWQ-BN does not claim external validity; thus, it might be possible for
the team to need to adapt it to fit its context, which might include modifying
its graph, probability functions, and data sources (i.e., data used to input data
into the model’s nodes). Thus, in future work, we will develop guidelines on how
to make such adaptations.

A known limitation of TWQ-BN is its dependency on AgenaRisk, which
hinders its adoption due to its limitation to integrate with agile teams’ tools.
Thus, in future work, we will develop the required infrastructure to ease its
adoption by practitioners.

Finally, an open question is for which team profile would TWQ-BN be more
helpful. One could argue that mature teams could figure out how to improve
without the need for such a tool, with no harm. Further, it could be more bene-
ficial for less mature teams. In any case, it could be more valuable if it provided
ideas for action items. We also plan to explore this question in future works.

References

1. Anderson, R.D., Vastag, G.: Causal modeling alternatives in operations research:
overview and application. Eur. J. Oper. Res. 156(1), 92–109 (2004)

2. Batista, A.C.D., de Souza, R.M., da Silva, F.Q.B., de Almeida Melo, L., Marsi-
cano, G.: Teamwork quality and team success in software development: a non-exact
replication study. In: Proceedings of the 14th ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM), ESEM 2020.
Association for Computing Machinery, New York (2020)

3. Beck, K., et al.: Manifesto for agile software development (2001). http://www.
agilemanifesto.org/

4. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software
projects. J. Syst. Softw. 81(6), 961–971 (2008)

5. Fenton, N., Neil, M., Caballero, J.G.: Using ranked nodes to model qualitative
judgments in Bayesian networks. IEEE Trans. Knowl. Data Eng. 19(10), 1420–
1432 (2007)

6. Fenton, N., Neil, M., Marsh, W., Hearty, P., Radliński, �L, Krause, P.: On the
effectiveness of early life cycle defect prediction with Bayesian nets. Empirical
Softw. Eng. 13(5), 499–537 (2008). https://doi.org/10.1007/s10664-008-9072-x

7. Figalist, I., Elsner, C., Bosch, J., Olsson, H.H.: Breaking the vicious circle: why AI
for software analytics and business intelligence does not take off in practice. In: 2020
46th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 5–12. IEEE (2020)

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://doi.org/10.1007/s10664-008-9072-x

Using TWQ-BN to Improve Agile Teams’ Effectiveness 17

8. Fontana, R.M., Fontana, I.M., da Rosa Garbuio, P.A., Reinehr, S., Malucelli,
A.: Processes versus people: how should agile software development maturity be
defined? J. Syst. Softw. 97, 140–155 (2014)

9. Freire, A., Perkusich, M., Saraiva, R., Almeida, H., Perkusich, A.: A Bayesian
networks-based approach to assess and improve the teamwork quality of agile
teams. Inf. Softw. Technol. 100, 119–132 (2018)

10. Gren, L., Goldman, A., Jacobsson, C.: Agile ways of working: a team maturity
perspective. J. Softw. Evol. Process 32(6), e2244 (2020)

11. Gren, L., Lenberg, P.: Agility is responsiveness to change: an essential definition.
In: Proceedings of the Evaluation and Assessment in Software Engineering, pp.
348–353. Association for Computing Machinery (2020)

12. Hoda, R., Salleh, N., Grundy, J.: The rise and evolution of agile software develop-
ment. IEEE Softw. 35(5), 58–63 (2018)

13. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence. Organ. Sci. 12(4), 435–449
(2001)

14. Kraut, R.E., Streeter, L.A.: Coordination in software development. Commun. ACM
38(3), 69–81 (1995)

15. Lindsay, R.M., Ehrenberg, A.S.C.: The design of replicated studies. Am. Stat.
47(3), 217–228 (1993)

16. Lindsjørn, Y., Sjøberg, D.I., Dingsøyr, T., Bergersen, G.R., Dyb̊a, T.: Teamwork
quality and project success in software development: a survey of agile development
teams. J. Syst. Softw. 122, 274–286 (2016)

17. Masood, Z., Hoda, R., Blincoe, K.: Real world scrum a grounded theory of varia-
tions in practice. IEEE Trans. Softw. Eng. 48(5), 1579–1591 (2022)

18. de Mendonça, W.L.M., et al.: From dusk till dawn: reflections on the impact of
COVID-19 on the development practices of a R&D project. In: Proceedings of
the 34th Brazilian Symposium on Software Engineering, SBES 2020, pp. 596–605.
Association for Computing Machinery, New York (2020). https://doi.org/10.1145/
3422392.3422446

19. Miller, C., Rodeghero, P., Storey, M.A., Ford, D., Zimmermann, T.: “How was your
weekend?” Software development teams working from home during COVID-19. In:
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pp. 624–636 (2021)

20. Moe, N.B., Dingsøyr, T., Dyb̊a, T.: A teamwork model for understanding an agile
team: a case study of a scrum project. Inf. Softw. Technol. 52(5), 480–491 (2010)

21. Moe, N.B., Dingsøyr, T., Røyrvik, E.A.: Putting agile teamwork to the test –
an preliminary instrument for empirically assessing and improving agile software
development. In: Abrahamsson, P., Marchesi, M., Maurer, F. (eds.) XP 2009.
LNBIP, vol. 31, pp. 114–123. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01853-4 14

22. Ringstad, M.A., Dingsøyr, T., Brede Moe, N.: Agile process improvement: diagnosis
and planning to improve teamwork. In: O’Connor, R.V., Pries-Heje, J., Messnarz,
R. (eds.) EuroSPI 2011. CCIS, vol. 172, pp. 167–178. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22206-1 15

23. Williams, L., Rubin, K., Cohn, M.: Driving process improvement via comparative
agility assessment. In: Proceedings of the 2010 Agile Conference, AGILE 2010,
Washington, DC, USA, pp. 3–10. IEEE Computer Society (2010)

https://doi.org/10.1145/3422392.3422446
https://doi.org/10.1145/3422392.3422446
https://doi.org/10.1007/978-3-642-01853-4_14
https://doi.org/10.1007/978-3-642-01853-4_14
https://doi.org/10.1007/978-3-642-22206-1_15

Agile Methodology Brazilian Workshop -
Agile Brazil: A Decade of Software

Testing

Acássio dos A. Araújo1, Jhonatan S. de Castro1, Ana Melo1,2,
Rodrigo B. Cursino1, and Wylliams B. Santos1,2(B)

1 CESAR School, Recife, Pernambuco, Brazil
{aaa,jsc,rbc}@cesar.school, accm@ecomp.poli

2 University of Pernambuco, Recife, Pernambuco, Brazil
wbs@upe.br

Abstract. Due to concerns with agile testing scenario in Brazil, this
paper presents the mapping (2010–2019) and analysis of the research
on software testing published on Agile Methodology Brazilian Workshop
(WBMA), Agile Brazil throughout these years. Such work aims to verify
the development, the diversity of papers related to software testing and
arising from the concerns with the studies of the testing scenario in agile
methods in Brazil; this paper presents the mapping (2010–2019) and
analysis on the development of research in software testing in papers
published in the Brazilian Workshop on Agile Methods (WBMA), Agile
Brazil. The paper used systematic literature review practices, enabling
qualitative and quantitative analysis of the collected evidence. This effort
aims to verify the growth, the diversity of approaches linked to the use of
testing in the broader context of agile methodologies and to make notes
on the profile of the papers, given the strengthening of studies in the area
in the last decade, in spaces of academic discussion and applications in
industry. We conclude that the number of publications has been growing
over the years. However, the absolute number of papers published in all
event editions is still not so expressive, especially considering the large
number of software testing topics that exist or need improvement. As a
result of this work, some points emerge about the relationship of authors
and institutions with software testing research.

Keywords: WBMA · Agile testing · Agile methods · Software quality

1 Introduction

Agile methodology has emerged as an alternative to the traditional, sequen-
tial way of software development and is also responsible for promoting several
changes in how software development organizations work. Instead of following a
sequential model, the agile methodology has an iterative and incremental app-
roach, where the product is divided into small parts that are continuously devel-
oped and delivered to the customer [1–3].
c© Springer Nature Switzerland AG 2023
C. Rocha et al. (Eds.): WBMA 2021, CCIS 1642, pp. 18–31, 2023.
https://doi.org/10.1007/978-3-031-25648-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25648-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-25648-6_2

A Decade of Testing on WBMA 19

In 2005 Fowler [4] evidenced that the interest and search for agile method-
ologies has grown since the early 2000s, this growth in interest for agile methods
is due to the success in reducing costs, responsiveness to change, meeting and
understanding customer requirements as stated Rising [5], in improving product
quality, point out Jain, Sharma, and Ahuja [6] and also processes, such as the
testing process, according to Patuci and Morais [7].

Given this context, this work developed a study following the guidelines of a
model proposed by Kitchenham [8] in the construction of a Systematic Literature
Review (SLR). According to the authors, a systematic approach is predefined
using a protocol to identify, evaluate and interpret the available evidence in pri-
mary studies related to one or more research questions. This study was inspired
on the SLR [9]. Additionally, it was carried out to identify articles available in
the literature that present evidence related to new research activities in software
testing that can still be developed and discussed in the WBMA.

The structure of this paper is organized as follows. In the Subsect. 2.1 we
introduce the event where the papers analyzed here were published, followed by
the Subsect. 2.2, where we describe agile testing according to the Agile Manifesto.
The Sect. 3 presents the research method used to conduct this study, as well as
the steps and questions we aim to answer in this study. The Sect. 4 presents
the research results, answering the research questions and analyzing the data.
The Sect. 5 shows related and already conducted work that differs from this
study. The Sect. 6 discusses the limitations and implications of conducting our
analysis. And finally, the Sect. 7 brings implications of our study and points out
opportunities for future work.

2 Background

2.1 Brazilian Workshop on Agile Methods

The Brazilian Workshop for Agile Methods (WBMA) is a scientific research
track event at the Agile Brazil conference. It is an event about Agile Software
development, where during all its editions, they received an expressive number
of submissions of research papers from higher education institutions and also
papers in partnership with the market, counts with the participation of a large
number of students, researchers and professionals from various parts of the world.

One of the primary objectives of the event is to promote greater integration
between industry and academia to stimulate the generation of ideas, innovation,
and opportunities for all. The main topics of interest at the event are:

– Adoption of Agile/Lean
– Agile Methods for Systems and Software Architecture
– Agile for the Development of Critical Systems
– Human and Social Aspects in Agile Methods
– Agile Project Management, Outsourcing and Governance in the Agile context
– Development in Distributed and Global Agile Teams
– DevOps and Continuous Delivery
– Agile and Lean Teaching and Coaching

20 A. A. Araújo et al.

– Scaling Agile for Large Corporations
– Experimental Studies in Agile/Lean
– Tools and Techniques in Agile/Lean
– Conceptual Studies and Theoretical Foundations in Agile/Lean
– Technical Debt Management
– Innovation and Agile Entrepreneurship
– Lean Startups
– Agile/Lean in Large and Distributed Teams
– Agile in Government
– Metrics, Measurements and Mining Repositories in Agile contexts
– Patterns and Anti-Patterns in the Agile/Lean application
– User Roles (co-participation)
– Agile Practices and Trends, Evolution and Revolution (Techniques and Man-

agement)
– Agile Principles, Lean Manufacturing and other disciplines
– Agile Testing and Quality: Techniques, Standards and Automated Support
– Organizational Transformation and Cultural Aspects in Agile Business
– User Experience (UX) em Agile/Lean
– Test-driven Development
– Refactoring Techniques
– Continuous Inspection Techniques.

However, papers on other topics, as long as they are related to agile methods,
are welcome at the event.

The event has space for full papers containing relevant results of original
research and for short papers that address ongoing research, experience reports,
bibliographic research, or opinion articles [10]. Among the topics of interest, it is
relevant for this article to address the papers presented during the ten editions of
the Workshop that fall under discussions related to software testing and quality.

2.2 Agile Testing

Software development using agile methodologies promotes severe changes in how
software was traditionally built. One of its goals is to demonstrate that function-
ality is as defined in the requirements and to identify as many bugs as possible.
This also includes how development stages are performed, such as software test-
ing [11]. Traditionally people view testing as a phase that happens at the end
of development. In agile most have changed it that the chunk of development
done is smaller, but the testing still happens last. Nothing has fundamentally
changed about how testing is done.

One way to see if this is the case is to ask people about their taskboards.
If taskboards have a separate column for testing, it’s a sure sign that testing is
still being thought of as a phase.

In contrast in agile, testing is just an activity that needs to happen, along
with coding, documentation and everything else. Thinking about it like this
makes it possible to consider the idea of doing testing tasks before development
work. A great way to visualise this on a taskboard is that instead of having a

A Decade of Testing on WBMA 21

separate column for test, rather just make testing tasks a different colour sticky
note. Now put all the tasks in the “To do” column together. Challenge the team
to see how many of the testing tasks they can do before any development tasks
happen.

For example you can create test cases before any code is written. That way
you know how you are going to test it before you build it. You could even create
automated acceptance tests first. These should fail since there is no code yet, but
once the code is written and the tests pass, the work is done, and there are no
test tasks left. Working this way will remove the hurdle of testing always being
behind. For some people this is a huge step, however just breaking the mentality
that testing tasks follow development is a great start.

Another useful technique is the “Show Me” column. Put it after the “In
Progress” column, before the “Done” column. Most teams do code reviews, doc-
umentation reviews or even test case reviews on each story. The idea behind the
“Show Me” column is to do a review on every task as soon as that task is done.
If tasks are small these are micro reviews that might only take a few minutes,
but they ensure that at least two people in the team have seen every piece of
work, and this can help catch and fix issues much earlier.

Developing quality software is one of the pillars of development in environ-
ments that adopt agile methods. These activities have received attention since
the beginning of the history of agile development, and many agile practices rely
on effective testing [12]. Agile testing is a software testing practice that follows
the principles of agile software development [13]. It involves testing activities
as early as possible, as stable versions of the code are made available, as agile
methods feature incremental product development and delivery [14].

Furthermore, Agile Testing seeks to promote broader thinking about how
quality should be adopted and who is responsible for it. Thus, attitudes such as
testing at each stage of development instead of just testing at the end; preventing
defects from happening instead of having strategies that focus only on finding
them; and that the entire Agile team should be responsible for quality instead
of just the testers, should always be explored and enhanced [15].

3 Research Method

For this work, we followed the guidelines of a model proposed by Kitchenham [8]
in constructing a Systematic Literature Review to develop this mapping study.
According to Kitchenham, an SLR is carried out to search for and quantitatively
and qualitatively evaluate the studies already conducted in the area that have
been published or made available to the scientific community and that have
specific academic importance as a basis for research. To this end, it is necessary to
determine research questions and, based on these questions, survey the essential
data to answer them, thus guiding the reading and selection of articles to select
those that will be part of the SLR. It is necessary, therefore, to establish inclusion
and exclusion criteria before conducting the research.

The protocol used as a guide throughout the SLR for evidence collection was
developed from the formulated questions and these criteria. One of the goals of

22 A. A. Araújo et al.

this work is to present background and, from it, determine which new research
activities in software testing can still be developed and discussed in the WBMA.
Although it is not an SLR, we adopted the proposed model, so we followed the
following phases to conduct this study: Planning and research, Analysis and
studies, and Results.

The steps were organized as follows: in Planning and research, we formulated
the review questions and defined inclusion and exclusion criteria and search
strategy; in Analysis and studies, we performed the selection of studies, analyzed
their quality and relevance to our research, and worked on the data extraction
process; finally, in the Results step we presented the Analysis and presentation
of results, as well as interpreting them.

3.1 Research Questions

One of the essential steps of this analysis activity was the definition of the
research questions that led to the search for relevant documents aiming to answer
the study’s central question: “What is the relevance of the papers published in
the WBMA for the testing scenario in Brazil?”

This question was derived from five others with different focuses:

– RQ1. Who are the main authors that have published articles (and other mate-
rials) related to software testing at the WBMA?

– RQ2. What are the main institutions that have published articles (and other
materials) related to software testing at the WBMA?

– RQ3. What are the main topics discussed at the WBMA related to software
testing?

– RQ4. What are the main types of contributions to software testing in the
WBMA?

– RQ5. Which articles published in the WBMA related to software testing have
the most impact (cited by)?

3.2 Search Strategy, Sources and Selection of Papers

Since we are performing this analysis only on papers published in WBMA events
held from 2010 to 2019, we adopted the following inclusion and exclusion criteria:

Inclusion Criteria:

– I1: All papers published in WBMA between 2010 and 2019;
– I2: Articles with software testing topics as the main focus.

Exclusion Criteria:

– E1: All papers that have not been published in the WBMA;
– E2: Papers that were not related to software testing;
– E3: Papers that could not be accessed, even after contacting the authors;

A Decade of Testing on WBMA 23

– E4: Papers that are not written in English or Portuguese;
– E5: Presenters’ notes, round table papers, workshop reports, invited papers,

books presented or released at the event, theses and dissertations;
– E6: Incomplete documents, drafts, presentation slides, and extended

abstracts;
– E7: Papers that treat software testing only as part of future work.

A significant number of papers (full papers and short) were published in
the WBMA. We followed three filtering or selection steps to arrive at the final
result of 12 selected articles. In the first step, we read the titles, abstracts, and
keywords and had an initial selection of 22 articles. The data from these articles
were organized and listed in a Google spreadsheet1.

In the next step, the data were extracted from the introduction and conclu-
sion of the works, totaling 18 articles, also listed in a Google spreadsheet2. For
the final step, the full articles were read and a total of 12 articles were selected,
listed in detail in this spreadsheet online3.

3.3 Data Extraction

The next step in this work is to answer the research questions. For this, the
data from the initial 18 articles were extracted and organized, for this, we used
a Google spreadsheet (links in session 2.2) and, thus, all the data collected that
guided us to this mapping were organized. The information for each article is:

– Identifieritem;
– Title;
– Year of publication;
– Author, Institution and Federal Unit;
– Type of contribution;
– Topics;
– Number of citations;
– Empirical study.

4 Results

This section presents the results that were observed in our study analysis. All
articles used to develop the results below respect the inclusion and exclusion
criteria in Sect. 2.2. The papers were published in the issues between 2010 and
2019: 1 article in the years 2011, 2013, 2017, and 2018; 2 articles in the years
2010, 2014, 2016, and 2019, totaling 12 articles that are part of this study.

1 https://bit.ly/FiltragemWBMA1.
2 https://bit.ly/FiltragemWBMA2.
3 https://bit.ly/ArtigosWBMAFinal.

https://bit.ly/FiltragemWBMA1
https://bit.ly/FiltragemWBMA2
https://bit.ly/ArtigosWBMAFinal

24 A. A. Araújo et al.

4.1 RQ1: Which are the Main Authors Who have Published
Papers (and Other Materials) Related to Software Testing
in the WBMA?

Many authors contributed to the event during the first decade of the WBMA’s
existence. The selected papers were:

– Contributions from 34 authors;
– Sixteen different institutions (either from industry or academia);
– Six other states in Brazil;
– All regions of the country.

Among the 34 authors, the ones who stood out in the number of papers
submitted and accepted at the event are:

– Eduardo Martins Guerra (National Institute for Space Research and Techno-
logical Institute of Aeronautics) with three different papers;

– Ivaldir Honório de Farias Junior (the Federal University of Pernambuco and
Softex Recife) with two other papers;

– The remaining authors contributed to 1 of the 12 papers analyzed.

Such researchers have been making significant contributions to the commu-
nity outside of the WBMA, both for their output involving agile methods and
software testing, these being:

– Eduardo Martins Guerra has 468 citations in Google Scholar, 303 of them in
the last five years, and his most cited article is focused on software testing.
Information is taken from his Google Scholar profile page4;

– Ivaldir Honório de Farias Junior also has essential studies in the area of testing
and agile methods; his Google Scholar profile shows that among his most cited
articles are studies done on software testing5.

The complete list of authors and their test-related papers published in the
WBMA can be seen in the spreadsheet6. These data have been organized in
Table 1.

Table 1. Authors who have published the most in WBMA

Author Papers # %

Eduardo Martins Guerra WBMA02, WBMA07, WBMA10 3 25%

Ivaldir Honório de Farias Junior WBMA08, WBMA12 2 16.7%

4 https://bit.ly/AuthorGuerra.
5 https://bit.ly/AuthorIvaldir.
6 https://bit.ly/WBMAAutores.

https://bit.ly/AuthorGuerra
https://bit.ly/AuthorIvaldir
https://bit.ly/WBMAAutores

A Decade of Testing on WBMA 25

4.2 RQ2: What are the Main Institutions that have Published
Articles (and Other Materials) Related to Software Testing
at the WBMA?

Analyzing Table 2, among the 16 institutions (industry and academia) that pub-
lished, the Federal University of Pernambuco stands out, which published 3 of the
12 articles selected in this study, followed by the institutions Federal University
of São Paulo, Federal Technological University of Paraná and National Institute
for Space Research, with 2 published articles each. The other 12 institutions
collaboratively participated in the production of 1 article each.

Consistent with the results of RQ1, UFPE has as a member of its team
the researcher Ivaldir Honório de Farias Junior, one of the authors with the
highest number of publications in the event. Besides, UFPE’s graduate program
in Computer Science has the maximum CAPES concept (grade 7), which may
contribute to the strong presence of UFPE in the event.

Table 2. Institutions that published the most in the WBMA

Institution Published papers

Federal University of Pernambuco WBMA06, WBMA08, WBMA12

Federal University of São Paulo WBMA02, WBMA10

Federal Technological University of Paraná WBMA09, WBMA11

National Institute for Space Research WBMA07, WBMA10

National Center for Natural Disaster Monitoring and

Alert

WBMA07

CESAR School WBMA08

Group Being Educational WBMA10

Nokia Institute of Technology WBMA03

Aeronautical Technological Institute WBMA02

Pontifical Catholic University of Rio Grande do Sul WBMA05

Softex Recife WBMA08

University of Campinas WBMA04

University of São Paulo WBMA01

Mato Grosso State University WBMA08

Federal University of São Carlos WBMA10

Federal University of Amazonas WBMA03

There were contributions from 6 states and five regions of the country:

– São Paulo is the state with the most significant number of publications, 5 in
total;

– Pernambuco, with 3 publications;
– Paraná with 2 publications;
– Rio Grande do Sul, Mato Grosso and Amazonas contributed with 1 paper

each.

Figures 1 and 2 show these state and region distributions, respectively.

26 A. A. Araújo et al.

Fig. 1. Contribution to the WBMA by state

Fig. 2. Contribution to the WBMA by region

A Decade of Testing on WBMA 27

4.3 RQ3: Which Articles Published in the WBMA Related
to Software Testing have the Most Impact (Cited By)?

The answer to this question can be obtained by checking the keywords in the
articles surveyed. It is important to note that some articles do not have keywords
and that even if they do, they may not be enough to categorize our research in
a way that clarifies the main idea of the articles. As we also verified a certain
redundancy in the keyword definitions of some articles, we decided to define the
main topics according to what we proved to be the general idea of each work,
respecting the fact that they may address more than one of the defined topics.

Thus, we observed that the most covered topics were:

– “Study of Agile Methodologies in Testing,” cited by 7 of the published papers,
representing 58.33% of the papers;

– “Adaptation to the agile model,” cited by 6 of the published papers, repre-
senting 50% of the papers;

– “Test Support Tool/Framework” cited in 4 of the submitted papers, corre-
sponding to 33.33%.

This data shows that the first two topics address the agile model, where 3 of
the papers appear in both.

In addition to these 3 points above, if we look at all the topics in more than
one article, we can see five significant issues being addressed among the papers
used for this study. The complete listing of articles is described in Table 3.

Table 3. Most discussed topics among the papers published at the WBMA

Topics Papers Total %

Study of agile
methodologies in testing

WBMA004, WBMA005, WBMA006,
WBMA008, WBMA010, WBMA011,
WBMA012

7 58.3%

Adaptation to the agile
model

WBMA001, WBMA003, WBMA004,
WBMA006, WBMA010, WBMA009

6 50%

Test Support
Tool/Framework

WBMA001, WBMA002, WBM007,
WBM009

4 33.3%

Test process
management (Metrics,
Bugs)

WBMA003, WBMA001, WBMA009 3 25%

Improvements for code
annotations

WBMA002, WBMA007 2 16.7%

28 A. A. Araújo et al.

4.4 RQ4: What are the Main Types of Contributions to Software
Testing in the WBMA?

The answer to this question can be obtained by considering how the authors
have classified their articles. The list with this classification can be seen in the
“Type of contribution” tab of the spreadsheet7. The idea behind this question
is to answer the contributions of these papers published within the WBMA to
software testing. Thus, it was found that the three main types of contributions
of the analyzed papers were:

– Improvements (of processes or practices) with 4 articles;
– Use Experience (of type of process applied, application domain or purpose)

and Tools with 3 articles.

The complete list (Table 4) also includes Best Practices followed by Def-
inition, containing 1 article. One can infer that, during the ten years of the
WBMA, there was a great concern on the part of the authors in contributing to
the maturing of the, by then, new agile model, seeking to support its adhesion
and constantly worrying about its impact on how the software testing process
would be carried out.

Table 4. Main types of contributions to the WBMA

Type of contribution Papers

Improvements (of processes or practices) WBMA03, WBMA04, WBMA11, WBMA12

User experience WBMA06, WBMA08, WBMA09

Tools WBMA01, WBMA02, WBM07

Best practices WBMA10

Definições WBMA05

5 Related Work

The Brazilian Workshop on Agile Methodologies study focused on software test-
ing has not been developed so far; no similar studies were found in any of the bib-
liographic bases we used. This study contributes to the analysis of the WBMA,
the authors, and the different topics related to software testing and identifies
which areas still need study and which still have gaps even though researched.
As well as a comparison of the progress of the studies in these ten years of
existence.

7 https://bit.ly/WBMAAutores.

https://bit.ly/WBMAAutores

A Decade of Testing on WBMA 29

6 Limitations and Threats

The study carried out presented significant limitations regarding its sample,
these being:

– The sample would be the papers on testing during the ten years of the event,
there were different topics presented within the large area of testing, so we
could not perform many comparative studies on the progress of a particular
area during this period;

– Another limitation that directly impacts the research results is the lack of
studies on important topics in the area of software testing;

– Finally, another significant limitation is the sample size, which presents a
reduced number of articles and allows us to consider the results found only
for the population in question.

7 Conclusion and Future Works

In this paper, we reviewed which are the software testing-related papers pub-
lished at WBMA during the ten years of the event and what were their contribu-
tions to the community. We could present some information that can be used to
provide people with a more detailed analysis of these papers to understand how
much they have contributed to the evolution of software testing, always pointing
in a better direction.

Section 2 provides the results of our mapping, where the most active authors
and institutions showing participation and interest in the topics related to this
field of study are shown in detail. It is essential to highlight the issues that
appeared the most in our survey: Improvements (of processes or practices), Expe-
rience of Use (of type of process applied, application domain or purpose), and
Tools.

Through this survey, we could notice the community’s desires during these
10 years, how to adapt to an agile context and how to insert software testing
in this transformation process, either by new tools or by modifying the current
process. This paper presents an overview of the importance of the event in Brazil
and the positive impacts for the study of software testing.

In future work, we consider that a similar analysis in the other areas
addressed by the WBMA could help define an understanding of the event’s
impact on the Brazilian community, which areas need more investment in
research and primary research opportunities.

Primary Studies

In this section, we present the articles initially listed for this study (Table 5):

30 A. A. Araújo et al.

Table 5. Primary studies

ES01 ATMM uma ferramenta para gerenciamento de metricas de teste no
contexto de métodos ágeis (2010)

ES02 ClassMock: A Testing Tool for Reflective Classes Which Consume
Code Annotations (2010)

ES03 Uma Abordagem Emṕırica para o Tratamento de Bugs em Ambientes
Ágeis (2011)

ES04 Incremental Tests: An Approach to Improve Software Tests in Agile
Teams (2012)

ES05 Experiencia bem-sucedida de adocão de Metodos Ágeis em uma Empresa
Pública de Tecnologia da Informação e Comunicação: um relato
preliminar (2013)

ES06 Applying Continuous Integration principles in safety critical airborne
software (2014)

ES07 On The Understanding of Agile Methods and Their Practice in Brazil
(2014)

ES08 Using nokia test to evaluating quality and productivity on scrum-CMMI
environments (2014)

ES09 Critical Factors in Agile Software Projects according to People, Process
and Technology Perspective (2015)

ES10 What is Agile, Which Practices are Used, and Which Skills are Necessary
according to Brazilian Professionals: Findings of an Initial Survey (2015)

ES11 ReTest: Framework for Applying TDD in the Development of
Non-deterministic Algorithm (2016)

ES12 Quality Assurance in Agile Software Development: A Systematic Review
(2016)

ES13 Meta-modelo para rastreabilidade de requisitos e análise de impacto nos
métodos ágeis (2017)

ES14 Qual o cenário atual da pesquisa em metodologias ágeis? (2017)

ES15 Agile Testing in Brazil: A Systematic Mapping (2018)

ES16 A Tool to Measure Test Driven Development Compliance: A Case Study
with Professionals (2018)

ES17 An Empirical Study of Test-Driven Development vs. Test-Last
Development Using Eye Tracking (2019)

ES18 A Survey on Agile Practices and Challenges of a Global Software
Development Team (2019)

A Decade of Testing on WBMA 31

References

1. Dingsøyr, T., Lassenius, C.: Emerging themes in agile software development:
introduction to the special section on continuous value delivery. Inf. Softw.
Technol. 77, 56–60 (2016). http://www.sciencedirect.com/science/article/pii/
S0950584916300829

2. de Gois Marques, D., Dallegrave, T.L.D.A., Barbosa, L.E.L., de Oliveira Rodrigues,
C.M., Santos, W.B.: Industry-academy collaboration in agile methodology: a sys-
tematic literature review. In: 2022 17th Iberian Conference on Information Systems
and Technologies (CISTI), pp. 1–6 (2022)

3. Santos, W.B., Cunha, J.A.O.G., Moura, H., Margaria, T.: Towards a theory of sim-
plicity in agile software development: a qualitative study. In: 2017 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), pp. 40–
43 (2017)

4. Fowler, M.: The New Methodology (2005). http://martinfowler.com/articles/
newMethodology.html. Accessed 4 May 2020

5. Rising, L., Janoff, N.S.: The scrum software development process for small teams.
IEEE Softw. 17(4), 26–32 (2000)

6. Jain, P., Sharma, A., Ahuja, L.: The impact of agile software development process
on the quality of software product. In: 2018 7th International Conference on Reli-
ability, Infocom Technologies and Optimization (Trends and Future Directions)
(ICRITO), pp. 812–815 (2018)

7. Patuci, R.L.O.M.G.O.: Incremental tests: an approach to improve software tests
in agile teams. In: 3rd Brazilian Workshop on Agile Methods (WBMA 2012), vol.
3, pp. 61–71 (2012)

8. Kitchenham, B.: Procedures for performing systematic reviews, vol. 33. Keele Uni-
versity, Keele, UK, August 2004

9. Melo, A., Fagundes, R., Lenarduzzi, V., Santos, W.B.: Identification and mea-
surement of requirements technical debt in software development: a systematic
literature review. J. Syst. Softw. 111483 (2022). https://www.sciencedirect.com/
science/article/pii/S0164121222001650

10. WBMA 2019 - Agile Brazil (2019). Accessed 23 July 2020. https://www.agilebrazil.
com/2019/docs/pt/wbma/

11. Beck, K., et al.: Manifesto for agile software development (2001). http://www.
agilemanifesto.org/

12. Vanderburg, G.: A simple model of agile software processes - or - extreme pro-
gramming annealed, vol. 40, pp. 539–545, October 2005

13. Bach, J., Bolton, M.: Rapid software testing, version (1.3.2) (2007). www.satisficc.
com

14. Talby, D., Keren, A., Hazzan, O., Dubinsky, Y.: Agile software testing in a large-
scale project. IEEE Softw. 23(4), 30–37 (2006)

15. Crispin, L., Gregory, J.: Agile Testing: A Practical Guide for Testers and Agile
Teams. Pearson Education (2009)

http://www.sciencedirect.com/science/article/pii/S0950584916300829
http://www.sciencedirect.com/science/article/pii/S0950584916300829
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/newMethodology.html
https://www.sciencedirect.com/science/article/pii/S0164121222001650
https://www.sciencedirect.com/science/article/pii/S0164121222001650
https://www.agilebrazil.com/2019/docs/pt/wbma/
https://www.agilebrazil.com/2019/docs/pt/wbma/
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
www.satisficc.com
www.satisficc.com

Assuring the Evolvability of Legacy
Systems in Devops

Transformation/Adoption: Insights
of an Experience Report

Álax Alves(B) and Carla Rocha

Universidade de Braśılia - Campus Gama, Gama, Distrito Federal, Brazil

alaxallves@gmail.com, caguiar@unb.br

Abstract. DevOps has changed the software industry to enable contin-
uous delivery. While many studies have investigated on how to introduce
DevOps into a software product from the organizational perspective,
less is known about the technical challenges developers and practitioners
face when transforming legacy codes into DevOps, despite the undis-
puted importance of this topic. In this paper, throughout the context of
web applications, we report the results of a study case with the adop-
tion of four legacy open-source projects into DevOps to understand
which refactoring techniques and strategies influence developers’ deci-
sions. We analyze two dependent variables: the technique used and how
they are applied to the project. After every implementation, there was
an overview of the process that just occurred and later a written report
on how the strategies have been applied, their respective order, which
strategy has been more fruitful, and such. Those reports have been the
foundation of this study. The main findings of such study are that some
strategies are more efficient when viewed from the evolution aspect and
the sequence these techniques are employed matter.

Keywords: Devops · Refactoring · Program comprehension · Study
cases · Experience report

1 Introduction and Motivation

DevOps combines cultural philosophies, practices, and tools that increase an
organization’s ability to deliver applications and services at high velocity: evolv-
ing and improving products faster than organizations using traditional software
development and infrastructure management processes. This speed enables orga-
nizations to serve their customers better and compete more effectively in the
market [7].

As more companies adopt DevOps to improve their workflow and produc-
tivity, many challenges related to the infrastructure and the legacy software
systems have arisen. DevOps is about people and processes [24]. It is a method-
ology that enables organizational groups to communicate with each other across
c© Springer Nature Switzerland AG 2023
C. Rocha et al. (Eds.): WBMA 2021, CCIS 1642, pp. 32–53, 2023.
https://doi.org/10.1007/978-3-031-25648-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25648-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-25648-6_3

Assuring the Evolvability of Legacy Systems in Devops 33

silos and to coordinate their activities. Thus, it is not surprising that established
cultural habits are the number one challenge to DevOps, especially barriers
to cross-organizational collaboration, the critical element of successful DevOps
practice [22].

Legacy codes are usually characterized by the following: use of outdated
frameworks, no test (neither unit nor integration), no containerization, no
automation tools, nonexistence of technical documentation, monolithic archi-
tecture, no continuous integration, no automation at all.

The professionals working on a legacy system have to put in extra effort to
refactor it, especially legacy systems. There are no strategies in place for imple-
mentation of refactoring techniques. No plans designed to guide the developers
with the same. Developers performing with their own knowledge and sometimes
ended up messing with the code [23].

Outdated legacy applications usually work tied to running a production ser-
vice that tends to be manual, repetitive, automatable, tactical, devoid of endur-
ing value, and that scales linearly as a service grows [26]. While cloud applications
are needed for quick application delivery, some legacy systems cannot be inte-
grated, leaving the IT infrastructure out of sync and incapable of operating at a
fast pace [2]. The solutions to such legacy challenges are often time-consuming,
or costly [2]. All this is stated still considering the web applications spectrum.

Evolvability is a vital software aspect, and fundamental to its existence. It
motivates software engineering researches, and practices [29]. ’Evolution consists
of repeated software changes. Defined software change processes lead to improved
productivity and quality of software evolution’ [29].

Microservices is an important architectural style that prioritizes evolvability.
Evolvability is especially crucial for software with frequently changing require-
ments, internet-based systems for instance. Software professionals apply a set of
numerous activities that we refer to as evolvability assurance [9]. These activi-
ties are usually of analytical nature to identify issues or a constructive nature
to remediate issues. That includes techniques like code review or refactoring,
standardization, guidelines, conscious technical debt management, and tools,
metrics, or patterns [9].

Thus, in the appropriate context, migrating monolithic architectures to
microservices could bring in many benefits including, but not limited to, flexi-
bility to adapt to the technological changes in order to avoid technology lock-in,
and more importantly, reduced time-to-market [8].

Legacy apps are typically harder to adopt DevOps due to a blend of technol-
ogy, process and cultural issues. The cultural issue regard to the initial resistance
from teams to move into DevOps ways is due to reluctance to change, emerging
from an inertia of doing things a certain way for years if not decades. Most of
these systems were not built for the agile workflows that focus on incremental
and iterative deliveries. Amidst challenges like too much technical debt, tightly
integrated hardware components, fragile codebase, it is tough to select specialised
approach like DevOps.

While designing and developing a greenfield project, architects and develop-
ers start afresh and have the opportunity to take into consideration the require-

34 Á. Alves and C. Rocha

ments of DevOps [30]. In case of legacy systems, which have evolved over a
period of time without any consideration of automation, the adoption of the
DevOps approach may result in large-scale refactoring or redesign. It may prove
to be a significant challenge to automate the vast amount of legacy code and
processes [30].

Considering tests and their automation, Legacy systems tend to have low
code coverage due to few or no unit tests. Testing is typically done in higher
environments and is manual. As more features are added to a legacy system,
the manual testing effort increases drastically, eventually slowing down feature
delivery. This problem is amplified when there are multiple teams working on
the same code base [30].

The challenge is identifying which tool and concept are adequate to the con-
text. As in any software process improvement initiative, the path to a successful
DevOps implementation is unique to each organization. Still, it is possible to
learn from challenges experienced during other process adoptions in order to
plan future initiatives [34].

In this work, we report the results of a study case with the adoption of four
legacy open-source web projects into DevOps to understand which refactoring
techniques and strategies influence developers’ decisions. We map the refactor-
ing techniques used, the sequence they were employed, the benefits perceived
by the organization, and the challenges faced by developers when deploying
each refactoring technique. We analyse the project repositories, the commits,
the issues discussions, the communication channels. We present a set of lessons
learned, with the DevOps benefits for each refactoring technique experimented,
the impact of the order the techniques are employed from developers perspective
and some guidelines for legacy projects aiming at adopting DevOps .

2 Related Works

Although there have been several discussions on DevOps practices and how they
benefit one’s project, applying such practices to an existing project is often
painful.

When it comes to refactoring legacy code with focus on DevOps, S.A.M.
Rizvi and Zeba Khanam have proposed methodology [31]. Their article proposes
a methodology that can be employed to apply the refactoring activities on the
legacy system, employing the aspect-oriented techniques. Considering the refac-
toring activities that are more likely to improve the software design and quality,
the developers should adopt an approach that would focus on a restricted set of
refactoring patterns. Thus allowing the developers to choose their desired set of
strategies [31].

Gangadhar Hari Rao proposes a roadmap for implementing DevOps in a
legacy software, with focus on building a CD pipeline with the supporting capa-
bilities. With this roadmap Rao concludes that the successful adoption of the
DevOps methodology for a legacy system is possible only if the teams working on
legacy systems also change their processes and mindset towards Agile and CD.

Assuring the Evolvability of Legacy Systems in Devops 35

In each stage of the roadmap he considers the challenges and proposes actions
to overcome them, always with a great focus on CD - what could involve great
costs, depending on the legacy system to be considered [30].

Chia-Chu Chiang and Coskun Bayrak propose a refactoring strategy that
consists of converting legacy systems into component-based systems. The pro-
cess involves program understanding, business rules extraction, and software
transformation. In their paper, they present a semi-automated program slicing
technique for business rules extraction from legacy code and convert the reusable
code into a component conforming to the protocols of a component interconnec-
tion model [11].

Errickson-Connor [17] also proposed a strategy that consisted of steps of a
software modernization process where a legacy code is transformed into new
languages and new environments. She suggests that a legacy code needs to be
cleaned up, such as removing program anomalies before being transformed. The
next stage involves software restructuring tasks such as isolating business rules,
identifying business rules, and extracting business rules as reusable services.
When the code corresponding to a business rule is extracted, it is ready for
transformation into components in stage three. The final stage is to manage
these reusable components in a software environment.

Regarding implementing certain levels of DevOps in legacy software, the
SmartSheet website ensures Virtualization and, consequently, Microservices as
core practices. Working with small, reusable building blocks of code ensures that
the application under development is not affected by the increase in deployments’
velocity in the DevOps environment. Containers are the next evolutionary step
in virtualization technology [6].

Finally, Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo
Meirelles in their work A Survey of DevOps Concepts and Challenges outline a
conceptual framework to guide engineers, managers, and academics in the explo-
ration of DevOps tools, implications, and challenges. The conceptual framework
is composed of conceptual maps, which are diagrams structured as graphs in
which nodes depict concepts and arrows represent relationships among concepts
[24].

Their survey investigates the DevOps concepts and challenges from multiple
perspectives: engineers, managers, and researchers. Also explores a much broader
range of sources. More up-to-date concepts of DevOps and its tools are analyzed,
categorized and correlates to the DevOps concepts, and discuss which roles in the
organization should use which tools. It concludes by summarizing and discussing
some of the main DevOps challenges [24].

3 Background

3.1 DevOps - Practices and Strategies

DevOps is a software development and delivery process that helps in emphasiz-
ing communication along with cross-functional collaboration between product
management, software development, and operations professionals. Also widely

36 Á. Alves and C. Rocha

considered a collaborative and multidisciplinary organizational effort to auto-
mate continuous delivery of new software updates while guaranteeing their cor-
rectness and reliability [24].

From the technical perspective, DevOps relies heavily on automation tools,
including tools for container management, continuous integration, orchestration,
monitoring, deployment, and testing [36]. Automated deployment pipelines and
monitoring facilitate error detection. The micro-services architectural style is
quickly becoming the standard for building continuously integrated and deployed
systems. DevOps aims to achieve some business outcomes, such as reducing
risk and cost, complying with regulations, and improving product quality and
customer satisfaction [24].

DevOps is an evolution of the agile movement, it proposes a complementary
set of agile practices to enable the iterative delivery of software in short cycles
effectively. Besides automating the delivery process, DevOps initiatives have also
focused on using automated runtime monitoring for improving software runtime
properties, such as performance, scalability, availability, and resilience [24].

Using containers, one could run a single container to execute a small micro-
service or software process to a more extensive application [20]. Containers and
micro-services enable DevOps [24]. Considering a hypothetical context, running
a micro-service on bare metal is an attractive option, since multiple services on
a single operating system instance can lead to conflicting library versions; one
micro-service failure could affect others’ behavior.

Regarding DevOps practices, Continuous Testing (CT) highlights as the most
fitting concept with two of the core aspects of DevOps, continuity of the process
of development and a source of uninterrupted feedback - despite being a relatively
new concept in Software Engineering. The practice of Continuous Testing pivots
around test automation as well as early and frequent testing. Continuous Testing
is a crucial component of the software development cycle that includes continuous
development, integration, and deployment.

Whereas some authors say microservices facilitate effective implementation of
DevOps, others say microservices require DevOps, since deployment automation
minimizes the overhead to manage a significant number of microservices. How-
ever, adopting microservices comes with several challenges. First, there is hetero-
geneity in non-functional patterns such as “startup scripts, configuration files,
administration endpoints, and logging locations”. Technological heterogeneity
can be a productivity barrier for newcomers in the team. Second, microservices
must be deployed to production with the same set of versions used for integration
tests [24].

3.2 Legacy Software and Its Challenges

Legacy software is commonly defined as an application that is no longer updated
or supported by the developer. Likewise, the software can become legacy if the
developer’s operation ceases or bought by another entity that decides to throw
it out [12]. The definition is not limited to that, Legacy software systems are
also considered programs that are still well used by the community or have some

Assuring the Evolvability of Legacy Systems in Devops 37

potential inherent value but were developed years, days, or even hours ago [21].
A software becomes legacy when its dependencies are not keeping up with the
latest updates. That could represent software developed a few days ago, which
has a vast and active maintainer community.

According to Sommerville [35], Legacy systems can be rawly defined as old
software systems that are used by an organization and usually rely on obsolete
technology but are still essential to the business. This definition is totally cor-
rect, but coming to a wider definition legacy software also represents a software
created one day ago. That is justified given the rapid advances and the increased
reliance on software-related technologies [10].

Often legacy codes have been maintained and developed by hundreds of pro-
grammers. While many changes have been made to it, the supporting documen-
tation may not be current, and the programming style does not follow current
standards [21]. The challenges could get more prominent, as such software might
offer a volatile development environment - which makes contributing at any level
very hard. Those challenges could be not have a representative test coverage or
an arduous setup of the work environment.

A very proper example of legacy software is the web-based social platform
Noosfero [13]. Basically Noosfero is an open source framework for social net-
working. Considering that its first versions are dated back to 2007 it has several
legacy practices and code.

Including DevOps into a large-scale legacy system day-to-day is a challenging
exercise since they often predate DevOps or may have been developed without
taking into account the unique characteristics of its practices.

DevOps principles, practices, and tools are changing the software industry.
However, many industry practitioners, both engineers and managers, are still not
aware of how their daily work can be affected by such principles, practices, and
tools. As well, some legacy architectures might not be designed to run automated
tests. Nonetheless, teams must be aware that cultural factors, such as managers
who say “This is the way we have always done it”, can limit the adoption of
continuous delivery more than technical factors. [24].

Although companies recognize the importance of automated testing, they still
struggle to implement it fully. Other factors that make automated testing com-
plex are hardware availability for load testing and user experiment assessment.
The benefits delivered by a deployment pipeline, that is continuous delivery, are
many. However, engineers must be aware that setting up the infrastructure for
continuous deployment can demand a considerable effort. Breaking down the
system into microservices also requires building multiple pipelines [24].

There are still many open questions about how organizations should adopt
DevOps. It is stated that DevOps adoption requires top-management support.
Sometimes it does not happen in the first moment, and an anti-organizational
strategy can take place. Moreover, arguments to encourage DevOps adoption
can differ from engineers to managers - which is the organizational hierarchy
structure of most legacy code teams [24].

38 Á. Alves and C. Rocha

4 Strategies to Bring DevOps into Legacy Code

Refactoring is the process of changing a software system so that it does not alter
the code’s external behavior yet improves its internal structure. It is a disciplined
way to clean up code that minimizes the chances of introducing bugs. In essence,
when one refactors actually is improving the design of the code after it has been
written [18].

In the context of Legacy Code involves embracing several strategies and
practices. Considering the challenges involved in refactoring legacy code, several
organizations are not rushing to adopt such practices properly.

It is important to mention that the techniques, or strategies, described below
in this work will not be considered refactoring strategies - analyzing through the
spectrum of SOLID and Clean Code set of techniques. In this context, F the
following strategies are considered to be strategies simply required to a legacy
software team to adopt the DevOps culture.

4.1 Legacy in the Box

Legacy code, especially massive monoliths, is one of the most unsatisfying,
high-friction experiences for developers. Although there is always much caution
involved in extending and maintaining legacy monoliths, such upgrades continue
to prove to be very necessary, even though it takes a lot of work and money to
keep maintaining such monolith.

To help reduce the friction, developers have used virtualized machine images
or container images with Docker containers to create immutable images of legacy
systems and their configurations. This technique, called “legacy in the box”,
contain the legacy code in a box for developers to run locally and remove the
need for rebuilding, re-configuring or sharing environments. In an ideal scenario,
teams that own legacy systems generate the corresponding boxed legacy images
through their build pipelines, and developers can then run and orchestrate these
images in their allocated sandbox more reliably.

Adopting Legacy in the Box practice is not only about wrapping the legacy
code in a container and ship it. It also features some other DevOps-related prac-
tices, such as adopting Continuous Integration and Continuous Deploy (CI/CD)
into the project workflow - previously described.

For instance, when it comes to adopting Continuous Integration into the
Legacy project, a core practice consists of all developers committing to the main-
line branch daily. When a team makes changes in smaller increments and inte-
grates them into the mainline regularly. More minor changes, shipped to produc-
tion quickly, are a lot easier to debug when something breaks. Rather than living
in branches for long chunks of time, changes are continuously integrated [25].

Beyond version control, a continuous integration server is one of the more
essential tools a development team can put to fair use. A continuous integration
server is unbiased. Its tasks boil down to telling the team whether the most
recent changes still pass the stages it is configured to run [25].

Assuring the Evolvability of Legacy Systems in Devops 39

The last step of a fully automated build is deploying to production, which
requires an automated deployment process that every developer should be able
to run, just like the continuous integration server. With an automated build in
place, everyone can deploy to staging or production, anytime [25].

4.2 Testing, Integrating and Deploying Continuously

As previously said, CI/CD is a method to frequently deliver apps to customers by
introducing automation into the stages of app development. Such practices intro-
duce ongoing automation and continuous monitoring throughout the software
life-cycle, from integration and testing phases to delivery and deployment. Taken
together, these connected practices are often referred to as a CI/CD pipeline [1].

When Continuous Testing is adequately implemented, an organization can
get a constant insight into the robustness of the latest software build and ensure
speedy delivery of high-quality software. CI/CD is a method to frequently deliver
apps to customers by introducing automation into app development stages. Con-
tinuous Integration helps teams work more efficiently because the different com-
ponents of a complex system will more assuredly work together. By having each
piece of code verified by an automated build, a team is allowed to develop cohe-
sive software more rapidly. Leading to significantly reduced integration prob-
lems and quick error detection. However, once this bottleneck is overcome, CD
presents several benefits that directly influence the end product. Since CD - and
CI - are all about automation, it allows teams to focus on the actual product and
testing. Also, make it possible to integrate teams and processes with a unified
pipeline, thus standardizing the entire project.

Continuous practices are expected to provide several benefits such as: getting
more and quick feedback from the software development process and customers;
having frequent and reliable releases, which lead to improved customer satisfac-
tion and product quality; through CD, the connection between development and
operations teams is strengthened and manual tasks can be eliminated.

In DevOps, CI/CD along with testing plays a vital role since it results in
trustful services due to the use of agile development methods and concepts -
also embraced by the DevOps practices. Continuous integration tools orchestrate
several automated actions that, together, implement the deployment pipeline
pattern. Among the stages orchestrated by the pipeline are: package generation,
automated test execution for correctness verification, and deployment to both
development and production environments [24].

Continuous Delivery has been the approach to bring automation, quality,
and discipline to create a reliable and repeatable process to release software into
production. Pillars of DevOps : automated stages, quality, repeatable process,
automated test stages, and more [32].

Continuous delivery and continuous deployment will be used as synonyms,
also referred to as CD. CD usually means a developer’s application changes are
automatically bug tested and uploaded to a repository, where it can be later
deployed to a live production environment. Another approach to defining CD
is that it can refer to automatically releasing a developer’s changes from the

40 Á. Alves and C. Rocha

repository to production, where it is made available to customers. It addresses
the problem of overloading operations teams with manual processes that slow
down app delivery. CI/CD is really a process, often visualized as a pipeline, that
involves adding a high degree of ongoing automation and continuous monitoring
to app development [1].

4.3 Architecture

A Software Architecture is concerned with both structure and behavior, is con-
cerned with significant decisions only, may conform to an architectural style, is
influenced by its stakeholders and its environment, and embodies decisions based
on rationale. Some authors explore software design in the context of DevOps,
continuous delivery, and continuous deployment. However, developers may still
struggle with this in practice, since achieving the desired architecture can be
infeasible in a single first DevOps [24].

As well as defining structural elements, an architecture defines the interac-
tions between these structural elements. And are these interactions that provide
the desired system behavior [16].

Micro-services. When it comes to specifying among the various architectures,
the micro-services architecture stands out to aid the DevOps implementation.
As the size of a software systems increases, the computation algorithms and
data structures no longer constitute the major design problems. When systems
are constructed from many components, the overall system’s organization - the
software architecture - presents a new set of design problems [19].

Micro-services is a style of architecture that emphasizes dividing the system
into small and lightweight services that are purposely built to perform a very
cohesive business function and is an evolution of the traditional service-oriented
architecture style. This architecture is an approach to developing an application
as a set of small independent services. Each of the services is running in its
independent process [27]. As the software grows, it can be a great approach to
achieve scalability.

5 The Case Study

The previous section described several handy concepts that, when explored,
could represent a great advantage when refactoring a legacy code. Such con-
cepts obey a particular pattern when applied to the process of upgrading and
also refactoring itself.

In order to successfully achieve this work’s goal, there should be defined as
a well-structured process, specifically, agile developing methodologies.

5.1 Open Source Software (OSS)

Open source software is software with source code that anyone can inspect, mod-
ify and enhance [28]. Open source software can be defined as software distributed

Assuring the Evolvability of Legacy Systems in Devops 41

under a licensing agreement which allows the source code (computer code) to be
shared, viewed, and modified by other users and organizations [33].

Freedom with the source code allows developers to create unique solutions,
which can then be built upon by other community members. This process of
“crowdsourcing” allows for development shops to pull beyond their teams’ talents
and access a repository of information compiled by the community at large.

Open source solutions geared toward the enterprise often have thriving com-
munities around them, bound by a shared drive to support and improve a solu-
tion that both the enterprise and the community benefit from (and believe in).
The global communities united around improving these solutions introduce new
concepts and capabilities faster, better, and more effectively than internal teams
working on proprietary solutions. Not to mention that this brings several benefits
to the end-user as well.

Furthermore, utilizing DevOps solutions in the context of an open-source
community can be both time and cost-effective and also very practical to orga-
nizations in general. DevOps is a newer and less mature software practice. It
requires a new tool, process, and solutions development; in other words, the
developers will empirically implement the DevOps strategies according to its
organizational needs. Leveraging open source solutions can expedite that process.
Many of the key DevOps tools used today either are or started as open-source
solutions for DevOps problems, which certainly fits an open-source software
project’s objectives. While DevOps and open source are two entirely separate
things, though, the reality is that it’s difficult to separate the two at this point.
Many open source projects rely on DevOps tools and principles, and DevOps
depends heavily on open source applications as both the glue that binds it all
together and the engine that keeps everything moving [3].

Open-source software development, particularly its core tenets of collabora-
tion and transparency, has always been an integral part of DevOps. This is one
of the reasons that DevOps tends to be an easier adjustment for developers,
who tend to have experience with open-source software and its concepts and
technologies [5].

With OSS, community members have open access to the source code and can
use it in any way they see fit. Also, an open-source project can be altered and
extended by any developer familiar with the source code. This grants organiza-
tions freedom and long-term viability because hundreds of developers supporting
a widely adopted OSS project can be called upon long into the future.

5.2 Study Design

Methodology. Ethnography is a research method designed to describe and analyze
the social life and culture of a specific social system [15]. The central tenet of
this approach is to understand values, beliefs, or ideas shared for a group under
study from the members’ point of view. For this, the ethnographer needs to
become a member of the group, observing in detail what people actually do and
learning their language, social norms, rules, and artifacts.

42 Á. Alves and C. Rocha

Table 1. Study cases information

Project Mapknitter Noosfero Spectral workbench Salicml

Number of commits 2,512 commits 16,785 commits 1,271 commits 638 commits

Contributors 75 contributors 25 contributors 18 contributors 14 contributors

Lines of source code 60.863 lines 227.024 lines 46.201 lines 85.804 lines

Date of first

commit

26/04/2009 27/06/2007 27/09/2010 27/03/2018

License GPL v3 GPL v3 GPL v3 GPL v3

Main programming

language

Ruby Ruby Ruby Python

Framework version Rails 3.2.2 Rails 4.2.4 Rails 3.2.3 Django 2.2

Ethnographic research is a qualitative methodology which requires the
researcher to interpret the real world from the perspective of the informers in the
investigation [14]. And in software engineering context, it can strengthen inves-
tigations of social and human aspects in the software development process since
the significance of these aspects of software practice is already well-established.

In this work, we acquire data by using the ethnographic research method of
participant observation and documentation analysis. The participant observation
method makes it possible to explain and justify the meaning of the experiences
through the experience of the observer and allow the informant to judge what
is important rather than what he thinks is important. In addition to sensitivity,
the observer needs to interpret what is happening in the community around him.

Software developers find it easier to reveal the processes present in their
thoughts when communicating with other software developers, which makes this
communication a valuable opportunity to observe the development process. This
justifies why in this work, a method for data collection used was keep track of
the various communication tools used to exchange information regarding certain
project.

Contextualized Methodology. This study methodology has been fundamental in
the context of this work. Through it, it has been possible to collect every needed
data that has been later used to build the strategies/techniques. By observ-
ing and describing the entire process of implementing the DevOps culture in a
legacy project, it was possible to obtain very relevant data that has been used
to generate the DevOps strategies and their order of implementation.

There were four study cases conducted as shown in Table 1, each case had
its our peculiarities which has allowed us to apply a different approach at every
study. Each case study consisted in contributing to an open-source software com-
munity in terms of applying certain strategies to get the community to embrace
the DevOps culture and practices.

The first case was Noosfero, an open-source framework for social networking
that has around fourteen years since its first commit, nearly two hundred and fifty
thousand lines of code, twenty thousand commits and twenty-five contributors -
the most legacy of all cases. The second case analyzed was Mapknitter, which is
a project that is part of a huge ecosystem of services provided by the PublicLab

Assuring the Evolvability of Legacy Systems in Devops 43

community, it allows geographical data exporting and uploading, with around
seventy-five contributors, sixty thousand lines of code and eleven years old. The
third study case conducted was Spectral Workbench, which is also part of the
PublicLab ecosystem, a web based application to collect, archive, share, and
analyze spectral data. It has eighteen contributors, twelve hundred commits and
around forty-six thousand of lines.

In order to get a possible different point of view, the fourth case was con-
ducted mainly by Victor Moura. It consisted in the project Salicml, that has
around eighty-five thousand lines of code, fourteen contributors and over six
hundred commits. Salicml is a web application that processed business indica-
tors from cultural projects and presented them in a web dashboard.

In each project, the study has lasted 5–6 months, including the one conducted
by Victor Moura. The only exception to this has been the Noosfero case, in which
the it has lasted around a year - as it is the bigger project in number of lines.

As more studies have been conducted the pattern of strategies to be applied
were becoming more and more clear. During every case, it was noticed that
before starting any framework upgrade, it would be indispensable to cover the
project of tests. However, to test it properly, it would also be fascinating to know
which parts of the code I would be testing and how much of the project I would
be testing, that is, in percentage. Also, a smart idea would be automating the
entire test process since it increases the number of times exponentially one has
to trigger the command to run the tests.

All of this empirical work done in various legacy projects leads us to con-
clude that before adopting Continuous Integration, one should adopt Continuous
Testing before it. The interesting part is that every strategy has been obtained
through this, making the Case Study methodology very important for this work
accomplishment.

It is also worth mentioning that after the first case study conducted - Noosfero
- there was already a solid set of practices to-become-strategies and their most
adequate usage order. As there were more study cases, the strategies became
more and more evident and their order.

After the completion of every study case every information source was ana-
lyzed, as commits, issue reports, pull requests, informal communication tools
and such. By analyzing that kind of resource it was possible building the set
of practices, called Strategies in this paper. These resources also made possible
gathering the posthumous lessons learned from the cases experiences, that would
later become the foundation for this study.

6 Results

In Table 2, it is objectively pointed out which strategy and its order of usage to
every case during the study. The following sections details more about each case
(Table 3).

44 Á. Alves and C. Rocha

Table 2. Strategies per study case

Project Repository link Description Technique applied (in

order of usage)

Noosfero https://gitlab.com/

noosfero/noosfero/

An open-source framework for social

networking with blogs, e-Portfolios,

CMS, RSS, thematic discussion, events

scheduling, and more

Continuous

integration, legacy in

the box

Mapknitter https://github.com/

publiclab/

mapknitter/

A free and open-source software created

run by Public Lab. It lets people upload

their own aerial images in a web

interface over some existing map data,

share it, and export for print

Legacy in the box,

continuous

integration,

microservices

architecture,

continuous deploy

Spectral

Workbench

https://github.com/

publiclab/spectral-

workbench

A web based application to collect,

archive, share, and analyze spectral

data, for public lab DIY spectrometers

and other spectrometers

Continuous

integration, legacy in

the box, continuous

testing, continuous

deploy, microservices

architecture

Salicml https://github.com/

lappis-unb/salic-ml/

A web application that processed

business indicators from cultural

projects and presented them in a web

dashboard to optimize the analysis of

each project accountability by the

technical team from the Brazilian

Ministry of Culture

Continuous

integration,

continuous testing,

continuous deploy

Table 3. Noosfero comparative: before DevOps and after DevOps.

Noosfero

Before DevOps After DevOps

Docker/Docker compose Misconfigured. Services were

properly split but with several

misconfigurations. Not used in

production

Working properly for development and

production environments

Framework version Rails 4.2.4 with several deprecated

dependencies and vendors. A lot of

monkey-patches

Updated to Rails 5.1.6 with latest

features

Continuous integration GitLabCI builds took too long to

finish and had important pipelines

missing

Implemented caching to speed things

up and added missing builds to the

pipeline executor

Continuous deploy None None

Coding stylesheet None. Every developer had its own

technique

Configured a stylesheet and integrated

it with the CI pipelines, and fixed all

of the linting errors

6.1 Noosfero

Noosfero is a vast system, with over 70 database tables. Since there was a stable
Continuous Integration tool set up and microservices have been widely made use
of, there were only a couple of DevOps related improvements to do.

During the Noosfero study, which has been done first, there was a limited
implementation for containers and continuous integration. Since it was the first
upgrade of this kind that it has been worked on, a few errors have resulted in
valuable learnings. When the Rails framework upgrade started, it was noticed

https://gitlab.com/noosfero/noosfero/
https://gitlab.com/noosfero/noosfero/
https://github.com/publiclab/mapknitter/
https://github.com/publiclab/mapknitter/
https://github.com/publiclab/mapknitter/
https://github.com/publiclab/spectral-workbench
https://github.com/publiclab/spectral-workbench
https://github.com/publiclab/spectral-workbench
https://github.com/lappis-unb/salic-ml/
https://github.com/lappis-unb/salic-ml/

Assuring the Evolvability of Legacy Systems in Devops 45

that some steps should have been taken before, which would make the upgrade
less painful.

In the middle of the refactoring, the Continuous Integration pipeline could
have been improved by adding other testing stages, which could have identi-
fied some issues that appeared later. For instance, by previously adding a stage
that tested out the Docker image building, we could assure every time that we
included a change, this part of the project could remain stable. Also by includ-
ing a code quality and stylesheet compliance stage we could also assure that
our code refactoring was changing the code for the better, by making it more
maintainable for example.

The project was also not properly wrapped in a container image, which
should have been done before the upgrade started. By wrapping up the monolith
through the concept of Legacy in the box, there was a homogeneous environment
for every developer to work with. That has provided a consistent environment
for the Noosfero application. In a different approach, Docker containers ensure
consistency across multiple development and release cycles, thus standardizing
the Noosfero environment.

Realistically, containerizing Noosfero before upgrading the Rails framework
has been of great advantage; that meant parity, meaning that the Noosfero
images ran the same no matter which server or whose laptop they were running
on. The Noosfero study case only involved me as developer for this task, even
though the maintainers allowed me to freely experiment the strategies, as in
Mapknitter, due to the project complexity and few resources, by the end of
the study it was possible to apply only the Legacy in the Box and Continuous
Integration strategies.

It was also acknowledged that the Continuous Integration tool could be better
used in terms of performance, so all of the testing and integration pipelines have
been split to run in parallel since there was no inter-dependency between the
suites. A style-sheet guide has also been added to this pipeline using Rubocop
in order to enforce and obtain a more standardized code pattern (Table 4).

6.2 Mapknitter

The Mapknitter case study was a very challenging project. It includes various
sub-components; among them, there is the core application written in Rails
and a Javascript interface. At first, Docker has provided several benefits to the
Mapknitter project itself but mostly for the Rails framework upgrade. The time
required to build the container was very low, and in short time we had a working
developing environment. During the containerization process, we could notice
that the Travis CI tool had been using the production environment. So it was
necessary to split the development, test and production environments, which has
been done. With a few more improvements, Travis had set parallel jobs - what
caused the builds to run twice as fast.

So by first adopting the concept of Legacy in the box, leads the update to take
a further step and adopt the microservice architecture. That has been achieved
at first, by splitting the MySQL database and the Mapknitter web app. Later

46 Á. Alves and C. Rocha

Table 4. Mapknitter comparative: Before DevOps and after DevOps.

Mapknitter

Before DevOps After DevOps

Docker/Docker compose Misconfigured. Database and

services all wrapped in a

container. Only worked in

production

Working properly for development

and production environments

Framework version Deprecated Rails 3.2.2 with

several deprecated dependencies

Updated to Rails 5.2.3 with latest

features

Continuous integration Misconfigured TravisCI, worked

poorly

Improved to cached pipelines with

reduced timeouts with more

stages running in parallel

Continuous deploy Misconfigured JenkinsCI, didn’t

work

Improved build and startup steps

arrangement in order to have it

working the best way it could.

Every repository push would

trigger a build that could be

followed live.

Coding stylesheet None. Despite the other Org

repositories had it configured

Configured a stylesheet and

integrated it with the CI

pipelines, and fixed all of the

linting errors. Thus, making the

project following the org’s coding

patterns

we got also to containerize the ForeGo service, thus having three independent
services running alongside.

Later on the project, we also got to setup Rubocop linter and stylesheet,
which following the same standards used in Plots2 project - other project part
of the PublicLab community ecosystem. By doing this, now there was a more
cohesive and uniform set of projects in the organization. Also this linting tool
has been integrated with the continuous integration tool to keep track of the
syntax changes.

This refactoring involved two developers, me and another member of the
community, the maintainers let us work very freely through the process, what
has given us the chance to explore and try several ways of applying the strategies.
And by the end of the Mapknitter study it was possible to apply a wide set of
strategies, which were, in order: Legacy in the Box, Continuous Integration,
Microservices architecture and Continuous Deploy (Table 5).

6.3 Spectral Workbench

In this case study I was more mature, so there was already an implicit order of
strategies to be applied. First the docker workflow of the project was rewritten,
since it was an “old” repository - with very legacy code and practices, it required
some restructuring and refactoring on the configuration files. For instance, the
MySQL instance was not dockerized and there was no automation that aided a
developer to easily start coding.

Assuring the Evolvability of Legacy Systems in Devops 47

Table 5. Spectral workbench comparative: Before DevOps and after DevOps.

Spectral workbench

Before DevOps After DevOps

Docker/Docker compose None Working properly for
development and production
environments

Framework version Rails 3.2.3 with several
deprecated dependencies and
vendors

Updated to Rails 5.2.4 with
latest features

Continuous integration Misconfigured TravisCI,
worked poorly

Improved to cached pipelines
with reduced timeouts with
more stages running in parallel

Continuous deploy None Configured JenkinsCI pipelines.
Build and startup steps
arranged in order to have it
working the best way it could.
Every repository push would
trigger a build that could be
followed live

Coding stylesheet None Configured a stylesheet and
integrated it with the CI
pipelines, and fixed all of the
linting errors

The Continuous Integration tool needed to be configured to execute local
builds, so that we could obtain a testing environment that simulated faithfully
both the development and production environment. This same CI tool previously
was configured to run all tests at once - what caused the builds to take valuable
coding time. So I had to split the test running by groups, in a way that each test
suite was executed separately, thus taking advantage of the parallelism provided
by the tool.

When it comes to testing, a main request of one of the maintainers was the
configuration and inclusion of system tests and increase of the test coverage.
Both of the requirements have been accomplished.

After the Rails framework upgrade was complete, it was required a staging
environment so that we could test out the changes that were made on the cloud,
a staging environment. So along with the help of PublicLab’s sysadmin this was
set, in an automated manner. And with Rubocop we got to standardize the
coding style among the several contributors; the Rubocop settings used were the
same as the ones used in Plots2, Mapknitter and Spectral Workbench.

The Spectral Workbench study case only involved me as developer, the main-
tainers let me work very freely through the process, what gave me the chance
to explore and try new strategies, besides the ones I had used in previous study
cases, via Continuous Testing. And by the end of the study it was possible to
apply the greater set of strategies of all study cases: Continuous Integration,

48 Á. Alves and C. Rocha

Legacy in the Box, Continuous Testing, Continuous Deploy, Microservices archi-
tecture (Table 6).

6.4 Salicml

Table 6. Salicml Comparative: Before DevOps and after DevOps.

Salicml

Docker/Docker compose None Working properly in development
and production environments.
Included a private database proxy
to abstract VPN connections to
developers. Multiple configurations
to reflect every existing
environment

Framework version Django 2.2 Django 2.2

Continuous integration None Configured Gitlab CI tool to check
on docker builds and automated
test running. Integrated CI tool
with docker containers
management

Continuous deploy None Configured properly. Totally
automated by using Rancher and
Watchtower tools

Coding stylesheet None None

In the Salicml study I have not worked directly in this project, so that I could
obtain a third-party point of view regarding the DevOps strategies to apply and
their respective order of application. This different approach was very useful, as
it helped reasserting certain practices applied in the previous studies, and thus
it was possible forming them into strategies.

First it was included a docker development workflow for both development
and production environments. A private database proxy to abstract VPN con-
nections to developers was also included.

Also, the main application image was built from another custom image. In
practice, whenever a change was inserted into the codebase and it didn’t affect
the application’s dependencies, the requirements docker image didn’t have to be
rebuilt, thus optimizing the pipeline resources usage.

This refactoring involved Victor Moura, the maintainers allowed him to work
very freely through the process, what has given him the change to use a wide set
of tools. And by the end of the Salicml study it was possible to apply a great range
of strategies, which were, in order: Legacy in the Box, Continuous Integration,
Microservices architecture and Continuous Deploy. The main focus of this study
in question was containerizing the legacy software and assure evolvalibility of it
through the implementation of the Microservices architecture.

Assuring the Evolvability of Legacy Systems in Devops 49

7 Discussion

One of the most important things that could be extracted from those refactorings
is that the order of the strategies to apply matters a lot. For instance, if you
choose to implement Continuous Deploy in your legacy software before having
Continuous Integration set up, you could be taking a lot of risks by pushing
certain amount of untested code to the cloud, or even be wasting a lot of precious
time by manually testing it first and then deploying.

Considering another hypothetical case, one could choose to split the various
components of the legacy software in several services - thus taking advantage of
the Microservices architecture strategy - but it does that before implementing the
Legacy in the Box technique. It may be very complicated to keep this architecture
change flowing in a good pace without taking advantage of the various benefits
that a legacy in box tool, such as Docker, could bring. Actually, making the
refactoring way easier. In fact, it means that choosing the right order of strategies
to be applied could prevent one from taking several extra hours, even days, of
massive manual labor.

As the first strategy one should take to embrace DevOps in a legacy project
is having a Continuous Integration pipeline set up. With that - along with a
minimum test coverage - one can assure that the small pieces of code are still
working, thus guaranteeing a more trustful code base. It is also noticeable that
implementing CI strategy first will absorb the time a developer would take to
run tests every time future integrations happened.

After having the work environment CI-friendly, the next step one should
take is wrapping the legacy app in a container. Every configuration, third-party
packages, and abstraction get to be explicitly defined in a container image, also
being able to run anywhere basically.

Continuous Deploy and Testing are desired strategies, especially when it
comes to testing, but needing to deploy and test are not a bottleneck - until a
certain point, of course, and this affirmation also depends on the size, developers,
and business rules that this legacy software goes by. If one has the chance and
time to keep continuously testing the legacy code and implement an integration
to ship at every successful CI tool build, then those are convenient strategies to
adopt.

Moreover, implementing microservices is what one would call an utterly
optional strategy because it takes a lot of time and effort to do it correctly. If it
is not done right, you will only obtain a distributed monolith, with every said
“micro” service executing heavy operations. Furthermore, once one has adopted
the previous strategies, it is considerably less painful to implement it.

Based on the experiences acquired through the results achieved in this work,
the strategies implementation order should be:

(1) Continuous Integration
(2) Legacy in the Box
(3) Continuous Testing
(4) Continuous Deploy
(5) Microservices architecture.

50 Á. Alves and C. Rocha

Continuous Testing is by far the broadest strategy, meaning that almost
every legacy should adopt it when embracing the DevOps practices; it holds
great significance for organizations using DevOps for the regular deployment of
software into production. Continuous Testing in DevOps essentially interweaves
testing efforts into all stages of designing, developing, and deploying the software.
When it is adequately implemented, an organization can get a constant insight
into the robustness of the latest software build and ensure speedy delivery of
high-quality software.

When it comes to Continuous Integration, we can not say it is as “mandatory”
as Continuous Testing. However, it certainly is beneficial, and, indeed, it will
save a lot of the developers time. Of course, it could be painful at first for the
team, and adapting a legacy software to such practices could be considerably
expensive. Implementing a trustful CI pipeline could involve completely change
a software development culture, adapt the organization and workflow, automate
the testing bulk, and even provide certain infrastructure. Nevertheless, in the
long term, the benefits are countless.

By having each piece of code verified by an automated build, a team is allowed
to develop cohesive software more rapidly. Leading to significantly reduced inte-
gration problems and quick error detection. The main goal of Continuous Integra-
tion is to provide rapid feedback so that if a bug is introduced into the codebase,
it can be identified and corrected as soon as possible.

As in Continuous Integration, Continuous Deploy, when done right, is full
of benefits, but implementing a trustful pipeline may be irksome as in CI. The
technical parts are more comfortable than the organizational and cultural parts
when it comes to legacy software. However, once this bottleneck is overcome,
CD presents several benefits that directly influence the end product. Certainly,
Continuous Deploy, when done right, is very fruitful - primarily when used along
with Continuous Integration. Since failures are detected faster and fixed faster,
it leads to higher release rates, making it possible to evaluate new code faster -
and in smaller portions - thus allowing the developers to focus on the product
features themselves.

Containerization, or commonly legacy in the box, is by far the strategy that
presents one of the most significant benefits of all strategies. It is the fastest and
straightforward strategy to implement. It does not require special technical knowl-
edge and gives support to the other strategies. It is a common misconception that
using containers only makes sense if the app to be hosted is composed of microser-
vices, but monolithic deployments can benefit from containers. Using a container
provider for the legacy code immediately makes it easy to move the app from one
host to another just by migrating the previously generated container image. Every
developer is using the same container image - this means consistency. Several other
benefits intrinsically appear with the mentioned aspects, such as scalability, bare-
metal access to the hardware, easy distributing, and much.

Two significant benefits are perceived by using containers as part of the
Legacy in the Box strategy. First, resource utilization is much more efficient.
Second, containers are cheap in man-hours to maintain and represent only a few
costs a machine’s resources. Container technology supports streamlined build,

Assuring the Evolvability of Legacy Systems in Devops 51

test, and deployment from the same container images; it enables Continuous
Integration and Deploy. By using a container provider for the legacy code, one
can immediately make it easy to move the app from one host to another just by
migrating the previously generated container image.

Packaging the legacy code as a container, distributing it through an image
repository is very facilitated. Anyone with access can pull the container image
and run it. Every developer is using the same container image - this means
consistency.

In legacy apps context, the meaning of the word containerization needs to
be augmented to include all that is necessary to make an existing app ready to
adopt Legacy in the Box concept. That is, to an extent that is well balanced with
technical feasibility and expected business benefits. Choosing the right legacy
containerization technique within this spectrum is a matter of striking the right
balance between investment, business outcome, cost-effectiveness gain, technical
feasibility, and risk appetite [4].

While this practice delivers some benefits, it does not offer the full benefits
of modular, container-based application architecture. Using containerization to
the fullest involves refactoring the existing applications to adapt to the con-
tainers thoroughly. That could quickly scale out, thus providing better support
for microservices architecture. Container technology supports streamlined build,
test, and deployment from the same container images; it means better support
for Continuous Integration and Deploy.

At last, the Microservices strategy provides many advantages, but to the
right contexts. One of the most significant advantages of a microservice over a
monolithic architecture is that a microservice architecture allows different com-
ponents to scale at different rates. The flexibility of microservices lets a system
expand fast without requiring a significant increase in resources.

Also talking about the benefits of it, we have that, for instance, we know that
every single microservice work independently and thus can be written with differ-
ent technologies, and since all services are independent, developers are allowed
to add, replace, and remove different services without influencing the already
existent services.

Nevertheless, sometimes, using different languages, libraries, frameworks, and
data storage technologies can be intimidating and paralyzing for organizations
at first. They could become a “Frankenstein” of services that a long term. Plus,
not every team can handle the autonomy, and independence microservices offer.
Like any architectural approach, Microservices are hard to design correctly, and
one should plan a lot before adopting this strategy.

Finally, one should consider these techniques or strategies just the plain basics
the would start permitting the evolution and maintainability of a legacy code
with DevOps. That means continuously and safely update the legacy project’s
dependencies, keep refactoring the code so that its quality enhaces - by following
the SOLID and Clean Code premisses, this refactoring should also get done in
a way that leads to the componentization of the various parts of the code and
when adding new features, assure that these are matching the current language
standards.

52 Á. Alves and C. Rocha

It is also important to mention that throughout this entire automation pro-
cess the very own team of the legacy project qualifies in DevOps technologies,
thus adapting the development (Dev) and operations (Ops) processes and pre-
misses according to the DevOps culture.

8 Conclusion

The theme that this work is filled with is very relevant to the software community.
Having a guide on the most valuable software strategies is much needed. Having
a personal analysis of someone who has already been through the experience of
it, is even more relevant.

A realistic analysis of the DevOps strategies might help several teams that
aim to modernize their much-cherished legacy systems. It could give them guid-
ance to consider the upcoming steps to take and provide an overview of the
importance of certain things.

Based on real-world experience, we set out the strategies, benefits, and coun-
termeasures for each team with a specific condition or need. This work consisted
of obtaining abstract information from previous experiences when upgrading
legacy software. We have extracted data based on two of those experiences and
mashed into the strategies that have been portrait in previous sections.

Of course, the DevOps culture of practices presents several other practices
and mindsets to make beneficial strategies. However, the strategies presented
here were considered more relevant, and the ones that present the most impact
in outdated legacy software.

References

1. What is CI/CD? [n.d.]. https://www.redhat.com/en/topics/devops/what-is-ci-cd,
Accessed Dec 2019

2. 6 Key Challenges of DevOps Implementation (2006). http://blog.vassit.co.uk/6-
key-challenges-of-implementing-a-devops-strategy. Accessed Jan 2020

3. The Symbiotic Relationship of DevOps and Open Source (2016). https://
techspective.net/2016/06/01/symbiotic-relationshipdevops-open-source/.
Accessed Dec 2020

4. Containerization of legacy applications (2020). https://developer.ibm.com/
technologies/containers/articles/containerization-of-legacyapplications/. Accessed
Dec 2020

5. Open source leads to DevOps success (2020). https://techbeacon.com/devops/
open-source-leads-devops-success. Accessed Dec 2020

6. The Way of DevOps: A Primer on DevOps Principles and Practices (2020). https://
www.smartsheet.com/devops. Accessed Nov 2019

7. What is DevOp (2020). https://aws.amazon.com/devops/what-isdevops/?nc1=h
ls. Accessed Oct 2020

8. Balalaie, A., Heydarnoori, A., Jamshid, P.: An Experience Report on Migration to
a Cloud-Native Architecture, Microservices Architecture Enables DevOps (2016)

https://www.redhat.com/en/topics/devops/what-is-ci-cd,
http://blog.vassit.co.uk/6-key-challenges-of-implementing-a-devops-strategy
http://blog.vassit.co.uk/6-key-challenges-of-implementing-a-devops-strategy
https://techspective.net/2016/06/01/symbiotic-relationshipdevops-open-source/
https://techspective.net/2016/06/01/symbiotic-relationshipdevops-open-source/
https://developer.ibm.com/technologies/containers/articles/containerization-of-legacyapplications/
https://developer.ibm.com/technologies/containers/articles/containerization-of-legacyapplications/
https://techbeacon.com/devops/open-source-leads-devops-success
https://techbeacon.com/devops/open-source-leads-devops-success
https://www.smartsheet.com/devops
https://www.smartsheet.com/devops
https://aws.amazon.com/devops/what-isdevops/?nc1=h_ls
https://aws.amazon.com/devops/what-isdevops/?nc1=h_ls

Assuring the Evolvability of Legacy Systems in Devops 53

9. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Assuring the evolvability of
microservices: insights into industry practices and challenges. In: 019 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), Cleveland,
Ohio, USA (2014)

10. Wayne Cascio and Ramiro Montealegre. 2016. How Technology Is Changing Work
and Organizations (2016)

11. Chiang, C.-C., Bayrak, C.: Legacy Software Modernization (2006)
12. Chima. R.: Legacy Software: How To Tell If Your Software Needs Replacing.

https://www.bbconsult.co.uk/blog/legacy-software. Accessed Dec 2019
13. Noosfero Contributors. 2007. Noosfero. https://gitlab.com/noosfero/noosfero
14. Dobbert, M.L.: Ethnographic Research: Theory and Application for Modern

Schools and Societies (Praeger Studies in Ethnographic Perspectives on Ameri-
can Education), 1st edn. Praeger (1 January 1982), Nova Southeastern University,
Fort Lauderdale (2013)

15. Alex Edmonds, W., Kennedy, T.D.: An Applied Guide to Research Designs : Quan-
titative, Qualitative, and Mixed Methods, 2nd edn. SAGE Publications, Inc. (39
May 2016), Nova Southeastern University, Fort Lauderdale (2016)

16. Eeles. P.: What Is A Software Architecture? (2006)
17. Errickson-Connor, B.: Truth or Consequences (2003)
18. Fowler, M., Beck, K.: What Is Refactoring? In Refactoring: Improving the Design

of Existing Code, vol. 1, p. 9. O‘Reilly Media, Inc., Sebastopol (2002)
19. Garlan, D., Show, M.: An Interoduction to Software Architecture (1993)
20. Golden, B.: 3 reasons why you should always run microservices apps in contain-

ers (2019). https://techbeacon.com/app-devtesting/3-reasons-why-you-should-
always-run-microservices-appscontainers, Accessed Dec 2019

21. Greenough, C., Worth, D.J.: The Transformation of Legacy Software: Some Tools
and a Process (2003)

22. Saugatuck Technology Incorporated: Why DevOps Matters: Practical Insights on
Managing Complex & Continuous Change (2014)

23. Khanam. Z.: Analyzing Refactoring Trends and Practices in the Software Industry
(2018)

24. Leite, L., Rocha, C., Kon, F., Milojicic, D., Meirelles, P.: A Survey of DevOps
Concepts and Challenges (2019)

25. Meyer, M.: Continuous Integration and Its Tools (2014)
26. Murphy, N.: Site Reliability Engineering Book, 1st edn. O’Reilly Media, Google

Ireland (26 April 2016)
27. Namiot, D., Sneps-Sneppe, M.: On Micro-services Architecture (2014)
28. opensource.com. 2019: What is open source software? | Opensource.com. https://

opensource.com/resources/what-open-source. Accessed Dec 2019
29. Rajlich, V.: Five Recommendations for Software Evolvability (2018)
30. Hari Rao, G.: Devops for Legacy Systems - The Demand of the Changing Appli-

cations Landscape (2018)
31. Rizvi, S.A.M. Khanam, Z.: A Methodology for Refactoring Legacy Code (2011)
32. Danilo Sato, Arif Wider, and Christoph Windheuser. 2019. Continuous Delivery

for Machine Learning. (2019)
33. Singh, A., Bansal, R.K., Jha, N.: Open Source Software vs Proprietary Software

(2015)
34. Smeds, J., Nybom, K., Porres, I.: A Definition and Perceived Adoption Impedi-

ments, DevOps (2015)
35. Sommerville, I.: Software Engineering, 10th edn., Pearson; Hoboken (24 March

2015)
36. Zhu, L., Bass, L., Champlin-Scharff, G.: DevOps and Its Practices (2016)

https://www.bbconsult.co.uk/blog/legacy-software
https://gitlab.com/noosfero/noosfero
https://techbeacon.com/app-devtesting/3-reasons-why-you-should-always-run-microservices-appscontainers
https://techbeacon.com/app-devtesting/3-reasons-why-you-should-always-run-microservices-appscontainers
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source

UX-Painter: Fostering UX Improvement
in an Agile Setting

Juan Cruz Gardey1,2(B), Julián Grigera1,2,3, Gustavo Rossi1,2,
and Alejandra Garrido1,2

1 LIFIA, Fac. Informática, Univ. Nac. de La Plata, La Plata, Argentina
{jcgardey,juliang,gustavo,garrido}@lifia.info.unlp.edu.ar

2 CONICET, La Plata, Argentina
3 CIC-PBA, Pcia, La Plata, Argentina

Abstract. It is generally difficult in agile teams, specially those geo-
graphically distributed, to keep up with the user experience (UX) issues
that emerge on each product increment. UX designers need the help of
developers to set up user testing environments and to code improve-
ments to the user interface, while developers are too busy with function-
ality issues. This paper describes a tool called UX-Painter and shows
through a case study, how it may help in the above setting to synchro-
nize UX practices and allow for continuous UX improvement during an
agile development. UX-Painter allows designers to set up A/B testing
environments, exploring interface design alternatives without the need
of programming skills, through predefined transformations called client-
side web refactorings. Once a design alternative is selected to be imple-
mented in the application’s codebase, UX-Painter may also facilitate this
step, exporting the applied refactorings to different frontend frameworks.
Thus, we foster a method where UX backlog items can be systematically
tackled and resolved in an agile setting.

Keywords: Agile methods · User experience · Web engineering

1 Introduction

User Experience (UX) is crucial for the success of web applications. Adopting a
User-Centered Design (UCD) approach ensures that software products are ana-
lyzed, designed and evaluated pursuing a high usability and UX, by allocating a
significant amount of resources to user research [15]. However, UCD practices, as
many research studies have pointed out, do not integrate well with agile methods
[6,7,15]. While agile methods pursue customer satisfaction, UCD focuses on the
user needs [6,15], but most importantly, UCD practices are too costly for agile
teams, which usually cannot allot time for UX improvement during agile cycles.
Recent methods, like Lean UX, aim at incorporating user research and Design
Thinking practices into agile software development through a high degree of col-
laboration among UX designers and developers in a team [14]. Moreover, there
are several artifacts being used to promote collaboration and communication
c© Springer Nature Switzerland AG 2023
C. Rocha et al. (Eds.): WBMA 2021, CCIS 1642, pp. 54–65, 2023.
https://doi.org/10.1007/978-3-031-25648-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25648-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-25648-6_4

UX-Painter: Fostering UX Improvement in an Agile Setting 55

among team members in the early phases of product design [10]. However, there
is still a gap in practices and artifacts at late stages, when UX issues rise on
already deployed product increments and UX improvement should take place,
i.e., when solutions to UX issues should be evaluated, compared, communicated
to developers and implemented [11].

In a previous work, we have developed UX-Painter, a visual programming
tool for UX designers to set up alternative designs without the need of any
script programming knowledge [11]. The building blocks to create alternative
designs in UX-Painter are Client-Side Web Refactorings (CSWRs). A CSWR is a
predefined transformation on a webpage element or interaction, which is intended
to solve a specific UX issue while preserving the underlying functionality. UX-
Painter allows designers to quickly set up new versions of a production web
application by combining CSWRs. Thus, in an agile scenario where the UX of a
product increment is evaluated at the end of a sprint and the issues found are
incorporated in the next sprint backlog [9], UX designers may use UX-Painter
to test alternative fixes to those issues while development of other backlog items
proceeds.

The refactorings in UX-Painter are scripts that perform alterations on a ren-
dered web page. The alterations are intended to improve the user interaction
while preserving the underlying functionality [12]. An application version is cre-
ated by applying and saving a set of refactorings. A version may be exported to
be recreated on other browsers at the time of user testing.

Finally, once a particular version of the web application is selected after test-
ing, it must be added to the product backlog for its implementation in the next
sprint. However, in the context of time pressures imposed by agile development,
UX-related backlog items are often left unattended to prioritize other backlog
items such as bug fixes or new features. This context may lead to the accumu-
lation of UX debt [4]. The UX debt metaphor refers to a degraded UX quality
caused by shortcuts taken to speed up development and that becomes a burden
for agile teams to maintain. Having a large amount of UX debt can negatively
impact the users, affecting the application success.

Thus, the proposal in this work is to use UX-Painter once again, but this
time to help developers in the process of implementing the new version of the
application in the code base. For this purpose we have extended UX-Painter to
generate the code required by each and every CSWR in the selected applica-
tion version, for the libraries and frameworks used nowadays to build web user
interfaces [19]. Developers then may adapt this source code to fit it in the target
application instead of having to code the solutions from scratch. We believe that
using the generated code as a baseline can help developers to reduce the refac-
torings implementation effort, which in turn will allow to give more priority to
UX-related items as they become easier to solve.

Summarizing, the contribution of this work is an artifact that facilitates
the integration of UCD and agile methods, helping both roles involved in UX
improvement. On the one hand, UX-Painter helps UX designers to quickly
explore alternative designs. On the other hand, UX-Painter assists developers

56 J. C. Gardey et al.

when they have to code those design changes evaluated by UX designers. Our
case study that uses the ReactJS framework shows that the generated code
reduced refactorings implementation effort.

The paper is organized as follows. Next section describes some related work.
Section 3 describes how the UX improvement can be introduced in an agile pro-
cess. Section 4 shows UX-Painter in action with a concrete example, and Sect. 5
presents an extension which allows exporting the applied CSWRs to ReactJS1,
one of the most popular front-end libraries. We finish with a conclusion and
future work.

2 Related Work

The values and principles of agile methods make them quite appropriate to
involve users in the development process. Thus, incorporating UX aspects is
an issue that both the academy and industry have studied for years [6]. Studies
involving practitioners, like the one presented by Larusdottir et al. [16] show that
incorporating UX aspects in agile projects is difficult in practice, and UX pro-
fessionals need a more prominent role in the team. Many authors have indicated
the lack of support for including and tracing UX requirements in a systematic
and coordinated way [2,7]. In a recent study on an agile team in UK, Zaina et al.
[21] found many problems in the UX information flow, such as user perspective
aspects not being captured with artifacts, but rather verbally.

To bridge the gap between developers and UX designers in the team, proto-
typing has been widely used as an effective communication device among team
members and with end users [14]. Different approaches emerged to tackle UX
requirements in agile cycles with the help of prototyping, like UXUF-AP [18]
that proposes the use of prototypes along with UX and Usability guidelines.
Modern applications like Figma or InVision allow creating high fidelity proto-
toypes containing basic interactions, being an effective way to get a feel of the
final product. Similar tools have also been proposed by research groups, like
Poirot [20], to enable designers make style edits to websites, in a similar fashion
of browser developer tools, but with a heavier focus on UI design rather than
code edition. However, they do not support making quick changes to already
deployed user interfaces (UIs).

Different research works have tackled the need for applying quick alterations
to running UIs. The field of web augmentation proposes alterations to be applied
on the client-side, even of third party applications, for specific viewpoints or con-
texts [1]. For example, Ghiani et al. [13] use web augmentation to adapt the UI to
different contexts of use (technology, users or environment). Other approaches
propose empowering end-users, allowing them to create personalized contents
such as WebMakeUp [8]. Our work can be considered as web augmentation pro-
posal that, rather than personalizing content or adapting an interface to different
contexts, has the focus on improving the UX.

1 https://reactjs.org.

https://reactjs.org

UX-Painter: Fostering UX Improvement in an Agile Setting 57

Another approach worth mentioning is the technique of generating code from
raster images. There are studies that analyze how to facilitate UI development,
like the work of Bajammal et al. [3], or pix2code [5], which constitutes a good
alternative for materializing quickly drafted prototypes. The difference with our
approach is that they focus on deriving the code of the complete UI from mock-
ups, which is useful at early stages, but not for incremental adjustments required
to fix UX problems at later stages. There are however tool-supported approaches
that consider code generation from prototypes in later development stages over
already deployed UIs [17], but they use computer vision over annotated proto-
types, which involves an additional step.

3 A UX-Aware Agile Process

The use of digital artifacts is one of the key factors to achieve an integration
between the agile and UX worlds [6,7]. While their importance is clear, there
is a lack of artifacts used for communication between developers and designers,
specially when there already is a developed UI and it should be improved for a
better UX.

For that purpose, we propose UX-Painter to mediate collaboration between
developers and designers in two main stages of a UX-aware agile process (see
Fig. 1). One stage is when designers need to explore alternative designs as solu-
tions to UX problems found in the previous product increment, so they can do it
on their own without requiring developers’ assistance in setting up testing envi-
ronments. The second stage is when developers need to implement the selected
solutions in the next product increment. Figure 1 depicts an agile process (mid-
dle section) and the two stages where UX-Painter may participate: the first stage
is shown in blue in the upper side of the figure, and the second stage is shown
in orange in the lower side. The figure identifies three main activities in each
sprint: a sprint planning, in which the team selects from the product backlog
the features to be implemented in the sprint; the sprint execution, when the
team starts working on the selected features; and the sprint review, which is the
meeting at the end of the sprint intended to inspect and evaluate the product
increment built during the sprint.

In the process that we propose, the sprint review may be used to show the
product increment (PI) to the client and perform functionality testing as well as
user testing to evaluate UX [9]. During the next sprint planning, the discovered
UX issues may be incorporated in the sprint backlog to be handled by UX
designers. Then, during the sprint execution, designers may use UX-Painter to
explore design alternatives to fix the UX issues, creating new versions of the
PI. Thus, they can dispense developers from coding these new versions, and
developers instead can focus on adding or fixing functionality issues from the
product backlog. Moreover, designers may plan and execute new user tests of
the alternative versions generated with UX-Painter, to assess which one of them
works best.

58 J. C. Gardey et al.

Fig. 1. UX-Painter in an agile setting.

In this way, developers only participate in the UX improvement process when
they have to implement design changes (in terms of refactorings) that have been
tested. According to the process shown, these changes will be available in the
next sprint to be selected for implementation. Then, at the sprint planing of the
next iteration, developers can divide their work between solving the previous
UX issues and the rest of product backlog items, like new features or bug fixing.
When solving UX issues, developers can use the code generated by UX-Painter
to make the implementation of refactorings faster. Finally, in the review meeting
at the end of the sprint, the process starts again with designers conducting user
tests on the new PI and finding the new UX issues, which will be tackled in the
next sprint.

Reducing the time required to test alternative designs and to implement
them, can help both designers and developers to pay more attention to the UX
improvement that is important to keep the UX-debt under control, but without
losing the focus on adding new functionality, which is crucial in an agile setting.

UX-Painter: Fostering UX Improvement in an Agile Setting 59

Fig. 2. Checkout form of an e-commerce web application

4 UX-Painter in Action

UX-Painter is a web-extension that allows creating alternative designs of a web
application by applying small transformations through the assisted application of
Client-Side Web Refactorings (CSWRs). The alternative designs generated can
then be saved as application’s versions for further evaluations such as A/B testing
or inspection reviews [11]. To show a concrete example of the tool usage, suppose
that a team is working on an e-commerce web application2. In the previous
sprint, developers worked on the checkout process, building the UI shown in
Fig. 2. The UX team decided to use UX-Painter to inspect some design changes.
For example, the shipping form does not provide a client validation. Even when
the user submits the form without filling in any field, the information is sent to
the server for its validation. In order to minimize failed form submissions because
of incomplete information, a prior validation can be added to check mandatory
fields. The CSWR that includes this feature is Add Late Form Validation.

The changes are made on a specific version, so the first step to apply a refac-
toring is to create a new application’s version (see Fig. 3). When the new version
is edited, all the available CSWRs are listed. Once a refactoring is selected, the
tool guides the user through the process of applying it. This process is simi-
lar for all the refactorings: the user selects the target element to be refactored
directly over the target page, then fills in refactoring-specific parameters (Add
Late Form Validation requires the fields to be checked when the form is submit-
ted) and finally confirms the changes after observing a preview. For instance, in
Add Late Form Validation, the preview shows that when the submit button is
clicked, a red border is added to the mandatory empty fields.

2 https://github.com/bradtraversy/proshop mern.

https://github.com/bradtraversy/proshop_mern

60 J. C. Gardey et al.

Fig. 3. Alternative version of the shipping form with some refactorings applied. The
“eye” icons allow to show the target version.

UX-Painter gives the possibility to combine different refactorings to produce
larger design changes. In the form previously refactored, another UX issue is in
the country field. Given that it expects a value from a predefined list, using a
free text input to enter the value can be error-prone. In order to facilitate the
input, the country field can be replaced with a select box including predefined
options by applying Turn Input into Select. For this refactoring, the user must
provide the option list that will be displayed in the select box.

Postal code field can also be changed to improve the user interaction. In
particular, assuming that postal codes have only numbers and at most 5 digits,
a mask can be applied through the refactoring Format Input, to prevent the
format errors that may arise. Moreover, through Resize Input the field can be
narrowed to give the users a hint of the expected input length. The new version
of the shipping form is shown in Fig. 3, besides UX-Painter’s versions menu. It
can be observed that although the user interface suffered different modifications,
the underlying functionality was not altered, in the sense that a user is capable
of performing the same set of operations as in the original version.

The designer must save the version with all the applied CSWRs to persist the
changes. The tool saves in the browser’s local storage the information needed to
recreate each CSWR in future page’s visits. A version can contain refactorings
in different application pages. Anytime, the designer can choose which version to
see to compare the differences. Whenever an application page is loaded, the tool
executes all the refactorings belonging to the selected version that were applied
on the target URL.

The next step for the UX team is to assess if the new version generated really
causes an improvement for final users. The evaluation is important because it
could happen that a refactoring does not improve significantly the user interac-

UX-Painter: Fostering UX Improvement in an Agile Setting 61

tion on a specific application, or even the original UI can work better than the
refactored one. Moreover, there are alternative refactorings that serve the same
purpose, like Add Datepicker and Date Input into Selects that provide differ-
ent ways to enter a date. In this case, the best refactoring for each particular
situation depends on the context of use, so the different alternatives should be
evaluated to find the right solution. To this end, designers can use UX-Painter to
run user test sessions with some subjects to analyze how they interact with the
different application versions. Finally, if the new version works better than the
previous one, the UX team has to communicate the changes to developers to be
implemented in the application’s codebase during the following product incre-
ment. At this point, generating a preliminary version of the refactorings’ source
code can help developers to reduce the effort required for the implementation.

The next section describes the CSWR’s code generation.

5 Implementing Refactorings

Following with the case study described in the previous section, this section
shows the implementation of the refactorings applied in Fig. 3. Using UX-Painter
it is possible to automatically generate a basic implementation of the refactor-
ings for ReactJS (used in the application’s front-end) that developers might
adapt or refine when the evaluted UX issues have to be implemented on the
application’s codebase. Since each refactoring performs a very specific change,
the differences between multiple instances of the same refactoring are on the
parameters defined by the user who performs them. Therefore, it is possible to
develop a template code for each refactoring that then can be completed with
the parameters corresponding to a particular refactoring application.

In order to generate the code for a specific application version, the user must
click on the “source-code” icon (highlighted with a red box in the top right
of Fig. 3). Next, the tool shows a list of the generated ReactJS components.
Components are the building blocks of a ReactJS application; they are basically
JavaScript functions that define reusable pieces of the user-interface. For the
version described in the previous section, Fig. 4 shows that there is only one
component that contains the implementation for the whole shipping form. Since
there are CSWRs that apply very small changes, it may not be realistic to create
a different component for each refactoring. Instead, the tool looks for high-level
elements that were refactored like a form, and creates one component with all
the refactorings included in them. The generated source code for each refactoring
appears in Fig. 5.

The source code generation process for a refactoring (or a group of refac-
torings that modify the same DOM element) begins with creating a very basic
component consisting of the HTML code obtained from the refactored DOM
node. In our case study, the target node is the form element that contains all
the applied refactorings. Later, UX-Painter refines and augments this imple-
mentation according to the specifications of ReactJS and the changes that each
refactoring performs. For example, in the case of Add Late Form Validation, a

62 J. C. Gardey et al.

Fig. 4. ReactJS component generated for the alternative version. The user can observe
a preview before downloading it.

boolean state is added for each mandatory field, to control whether the field
is valid or not, and it is updated in the onSubmit event handler. This state is
also used to highlight an invalid field by adding a red border to it. Concerning
the implementation of the others refactorings, the tool replaces existing nodes
and modifies their attributes. While Turn Input into Select substitutes the text
input with the native select element including the corresponding options, For-
mat Input replaces the input field by a component imported from a third-party
library which encapsulates a text input with the logic of a mask.

Once the generated code is downloaded, it should be manually integrated
with the application’s codebase. This process depends on different factors of the
codebase such as how the UI is divided into different components, the dependen-
cies used, among others. Moreover, developers may need to extend the generated
implementation. For instance, the countries displayed in the select box probably
will be retrieved from an API instead of listing the options one by one, so the
API request must be integrated in the generated component. Another example
of a possible extension is in the fields validation. The refactoring Add Late Form
Validation only validates that the fields are not sent empty to the server, but
other validations like input formats compliance may also be required.

Thus, the goal of UX-Painter is not to give a full implementation of the
CSWRs to paste directly in the codebase, but to provide a potential solution
that developers can use as a starting point to integrate these refactorings into
the target application. By observing the provided implementation, developers
can at least understand how the refactorings work under the hood, and to get
the HTML and CSS code modified by each refactoring.

UX-Painter: Fostering UX Improvement in an Agile Setting 63

Fig. 5. Code generated by UX-Painter. Changes imposed by each refactoring are high-
lighted and marked.

The results of using UX-Painter to generate the refactored code were quite
promising, as code integration was straightforward. The structure of the gener-
ated component for the shipping form is similar to that of the codebase, which
can be observed in the GitHub repository. We decided to use a third-party web
application to avoid any bias of coding the case study ourselves.

Further experiments are necessary, as these results are limited to a single
case study, and the selected application is small-sized (so the code could fit in
the available space). Although other cases may show that the refactored code
offered by UX-Painter is not entirely suitable or difficult to integrate, we believe
that the tool is helpful for both designers and developers, for experimenting with
ready-to-apply solutions to UX problems, for communicating this solutions to
the whole team, and to provide at least good hints of how to code them.

6 Conclusion

This paper described UX-Painter, a tool that allows synchronizing and commu-
nicating UX practices, fostering a method for the systematic improvement of UX
issues. This is especially relevant in the context of in agile cycles, since they focus

64 J. C. Gardey et al.

on delivering new functionality in short periods of time, which can be prone to
generate UX debt. We believe that the nature of UX-painter makes it particu-
larly useful in an agile setting because it provides support to set up alternative
designs for testing purposes, and it also facilitates their implementation. This
allows developers to tackle the UX issues without leaving aside the new features
that have to be implemented in each product increment. Although the concrete
implementation of each refactoring depends on the target application codebase,
our case study shows that the generated code by UX-Painter can reduce the load
on developers to remediate UX issues.

Future work includes the assessment of the tool with the workflow proposed
in a real context of use. In particular, we plan to evaluate if the refactorings
provided are suitable for the solutions that designers want to test during a sprint,
and to incorporate new refactorings to the existing catalog. Moreover, we also
have to assess the effectiveness of the generated code to reduce developers effort
required to implement the refactorings.

Concerning the code generation, we have described here the implementation
with ReactJS, and our next work will include adding full support for other front-
end frameworks widely used such as Angular3 and Vue.js4. To this end, it will
be necessary to analyze the similarities and differences of the products in order
to develop a framework that allows to generate refactorings implementation for
all of them.

References

1. Aldalur, I., Winckler, M., Dı́az, O., Palanque, P.: Web augmentation as a promising
technology for end user development. In: Paternò, F., Wulf, V. (eds.) New Perspec-
tives in End-User Development, pp. 433–459. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60291-2 17

2. Almughram, O., Alyahya, S.: Coordination support for integrating user centered
design in distributed agile projects. In: 15th IEEE/ACIS International Conference
on Software Engineering Research, Management and Applications, pp. 229–238
(2017)

3. Bajammal, M., Mazinanian, D., Mesbah, A.: Generating reusable web components
from mockups. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, pp. 601–611 (2018)

4. Baltes, S., Dashuber, V.: UX debt: developers borrow while users pay (2021).
https://arxiv.org/abs/2104.06908

5. Beltramelli, T.: pix2code: generating code from a graphical user interface screen-
shot. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, pp. 1–6 (2018)

6. Brhel, M., Meth, H., Maedche, A., Werder, K.: Exploring principles of user-centered
agile software development: a literature review. Inf. Softw. Technol. 61, 163–181
(2015)

7. Da Silva, T.S., Silveira, M.S., Maurer, F., Silveira, F.F.: The evolution of agile
UXD. Inf. Softw. Technol. 102, 1–5 (2018)

3 https://angular.io.
4 https://vuejs.org.

https://doi.org/10.1007/978-3-319-60291-2_17
https://doi.org/10.1007/978-3-319-60291-2_17
https://arxiv.org/abs/2104.06908
https://angular.io
https://vuejs.org

UX-Painter: Fostering UX Improvement in an Agile Setting 65

8. Dı́az, O., Aldalur, I., Arellano, C., Medina, H., Firmenich, S.: Web mashups with
WebMakeup. In: Daniel, F., Pautasso, C. (eds.) RMC 2015. CCIS, vol. 591, pp.
82–97. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28727-0 6

9. Firmenich, S., Garrido, A., Grigera, J., Rivero, J.M., Rossi, G.: Usability improve-
ment through A/B testing and refactoring. Software Qual. J. 27(1), 203–240 (2019)

10. Garcia, A., da Silva, T.S., Silveira, M.S.: Artifact-facilitated communication in
agile user-centered design. In: Kruchten, P., Fraser, S., Coallier, F. (eds.) XP 2019.
LNBIP, vol. 355, pp. 102–118. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-19034-7 7

11. Gardey, J.C., Garrido, A., Firmenich, S., Grigera, J., Rossi, G.: UX-painter: an
approach to explore interaction fixes in the browser. Proc. ACM Hum. Comput.
Interact. 4(EICS) (2020)

12. Garrido, A., Rossi, G., Distante, D.: Refactoring for usability in web applications.
IEEE Softw. 28(3), 60–67 (2011)

13. Ghiani, G., Manca, M., O, F.P.: Personalization of context-dependent applications
through trigger-action rules. In: ACM TOCHI. vol. 24 (2017)

14. Gothelf, J., Seiden, J.: Lean UX: Designing Great Products with Agile Teams.
O’Reilly Media, Inc. (2016)

15. Jurca, G., Hellmann, T.D., Maurer, F.: Integrating agile and user-centered design:
a systematic mapping and review of evaluation and validation studies of agile-UX.
In: Proceedings - 2014 Agile Conference, pp. 24–32 (2014)

16. Larusdottir, M., Gulliksen, J., Cajander, Å.: A license to kill-improving UCSD in
agile development. J. Syst. Softw. 123, 214–222 (2017)

17. Moran, K., Bernal-Cárdenas, C., Curcio, M., Bonett, R., Poshyvanyk, D.: Machine
learning-based prototyping of graphical user interfaces for mobile apps. IEEE
Trans. Softw. Eng. 46(2), 196–221 (2018)

18. de Oliveira Sousa, A., Valentim, N.M.C.: Prototyping usability and user experi-
ence: a simple technique to agile teams. In: Proceedings of the XVIII Brazilian
Symposium on Software Quality, pp. 222–227 (2019)

19. stateofjs: Worldwide usage of javascript front-end libraries. (2021). https://2021.
stateofjs.com/en-US/libraries/front-end-frameworks

20. Tanner, K., Johnson, N., Landay, J.A.: Poirot: a web inspector for designers. In:
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems,
pp. 1–12 (2019)

21. Zaina, L., Sharp, H., Barroca, L.: UX information in the daily work of an agile
team: a distributed cognition analysis. Int. J. Hum. Comput. Stud. 147 (2021)

https://doi.org/10.1007/978-3-319-28727-0_6
https://doi.org/10.1007/978-3-030-19034-7_7
https://doi.org/10.1007/978-3-030-19034-7_7
https://2021.stateofjs.com/en-US/libraries/front-end-frameworks
https://2021.stateofjs.com/en-US/libraries/front-end-frameworks

Applying Agile Management
on Communities of Practice and

Startups: A Survey

Daniel Lima and Rodrigo Cursino(B)

CESAR School, Recife, Pernambuco, Brazil
{dnl,rbc}@cesar.school

Abstract. The work in communities has been expanding since the
ascensus of technology-based companies, today called startups. Whether
created informally or having a supporting company behind, it’s hard to
find any company that does not have at least a internal discussion group
on the topic or support external initiatives related to topics and practices
of interest. Today, events, formal and exclusive groups and meetups exist
within this collaborative environment. This work aims to understand the
motivations that these communities have to adopt Agile Methods in their
management and how beneficial this can become for the management of
knowledge transfer. 68 respondents stated that safe learning environ-
ments make the best positioned companies in their ecosystems and allow
that new products are developed in a more collaborative way, even if
unofficially, it can generate financial savings and learnings journeys.

Keywords: Agile management · Communities of practice ·
Communities of startups · Project management

1 Introduction

A community of practice (CoP) is a group of people who share a common con-
cern, a set of problems, an interest in a topic, or a passion for something they
do. They learn together how to do fulfill both individual and group goals and
they interact regularly [1].

The emergence of startup communities in Brazil often takes place through
connections created during events and meetups [2]. One example is the Startup
Weekend1, by Techstars. In Brazil, this event is quite traditional and have
already had several editions. Another example of a community is Manguezal2

which brings together professionals from several startups of Porto Digital3, one
of the largest technology and innovation parks in Brazil.

In some entrepreneurial communities, the target audience must always be
more than 50% of the presence in activities and events. Feld et al. say if in a
1 https://www.techstars.com/communities/startup-weekend.
2 https://manguez.al/.
3 https://www.portodigital.org/.

c© Springer Nature Switzerland AG 2023
C. Rocha et al. (Eds.): WBMA 2021, CCIS 1642, pp. 66–78, 2023.
https://doi.org/10.1007/978-3-031-25648-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25648-6_5&domain=pdf
https://www.techstars.com/communities/startup-weekend
https://manguez.al/
https://www.portodigital.org/
https://doi.org/10.1007/978-3-031-25648-6_5

Applying Agile Management on CoP and Startups: A Survey 67

startup community, for example, the presence of entrepreneurs is lower than 50%
of the audience at an event or lecture, there is a fundamental problem, since the
audience to whom he addresses his speech is not present. The same applies to
communities of practice and business [3]. Also for you building a community of
practice is necessary to articulate its values and identify suitable people to rep-
resent such values [1]. Regardless of the type of community, whenever someone
new member joins, the community itself acts as a support network, aggregating
the new members to their culture and their purpose [1]. Based on the principles
of the Agile Manifesto, we can reinforce that communities of practices and star-
tups seek to structure themselves through self-organizing teams that work in a
collaborative way throughout the project [1,4].

As much as the Manifesto for Agile Software Development defines that the
interactions between the individuals involved in a software project should be
more important than processes and tools, it does not exclude the need to have
them used in a structured way [4]. Correlate the principles of the Agile Manifesto
with the practices and needs of consultative groups, communities and events of
innovation, entrepreneurship and technology are becoming common, given its
easy applicability and also the number of members that uses such agile methods
and practices in their work teams [5].

However, despite understanding the benefits of agile methods and learning
processes, cases and existing collaborations in startup communities and practices
Brazilian companies, we understand that there is room to connect more substan-
tially the use of agile methodologies in the management of these initiatives.

So, the purpose of this work is to understand which agile methodologies and
practices are used in the management or activities of communities of practice
and startups. Also, we want to understand what are the objectives and benefits
that organizations aim when creating and managing communities.

This work is organized based on the following structure: Sect. 2 presents the
related works; the Research Method is presented in Sect. 3; Sect. 4 details the
Results of the research; and the conclusion and future works are detailed in
Sect. 5.

2 Related Works

Although there are several articles and scientific studies on Communities of
Practices, many of them focus on knowledge management [6]. When we talk
about Startup communities, there are several classic issues for continuity and
longevity of organic communities such as these, including the commitment that
should be in long term, but ends up becoming something to fill vacant spaces in
the daily lives of entrepreneurs [3].

Feld et al., in their PhD Thesis, says that the commitment of entrepreneurs,
who are part of Startup Communities, should be based in a long-term (in an
average of 20 years, for example), respecting their limits and moments of life
within ecosystems [3].

Emily Weber, on the other hand, says that in companies, employees have the
desire for connecting with other people, throughout life and career, besides the

68 D. Lima and R. Cursino

need to be connected or supported by others [1]. Communities of practices can
identify their members’ soft skills and thus act as part of the personal develop-
ment of the people involved there.

Considering communities that are under the corporate seal of some orga-
nization, Jono Bacon states in his work that hiring a professional community
management team is essential to its success [7].

This team needs to be integrated with the company’s goals and needs to have
a solid training. Usually teams split up into three groups: community directors,
managers of communities (Community Managers) and community evangelists
(Community Evangelists). And all these people need to have specific domains
in certain areas that the community is focused on discussing; be a kind person
who generates empathy between people, becoming a focal point, especially for
those who are arriving; and willing to grow, aligning strategies and leadership
for rapid changes that may arise throughout the journey.

Borzillo et al. have as research objective to provide managers, researchers and
consultants insights regarding the ways in which CoPs can support the refine-
ments of products, discovery of new ones and the creation of learning spaces, so
that the organizations can improve the adoption of agile practices and perform
collaboration [8].

Finally, Kalenda et al. relate communities of practice as practice commonly
applied when organizations want to adopt agility at scale. CoPs help in actions
such as knowledge sharing and promotion of best practices on tools and processes
among agile teams. Furthermore, they can also be used for coaching, coordination
and continuous improvement processes [9].

3 Research Method

Survey is a research method that aims to gather data from a population of inter-
est. Despite being widely used in software engineering, Survey-based research
faces several challenges [10]. In this sense, this research is supported by the
guideline for conducting surveys in software engineering proposed by J. Lin̊aker
et al. [11].

The objective of this research is to understand which agile methodologies and
practices are used in the management or activities of communities of practice
and startups. In addition, this study seeks to understand what are the objectives
and benefits that organizations aim when creating and managing communities.

3.1 Research Questions

To fulfill the general objective, we formulate the following research questions:

– RQ01: What agile methods and practices are being used in management and
operation of communities?

– RQ02: What are the main objectives of the companies and the aimed benefits
when adopting communities?

Applying Agile Management on CoP and Startups: A Survey 69

3.2 Target Audience

As this study is related to communities, the target audience considered to under-
stand their practices and needs, is based by entrepreneurs, employees of informa-
tion technology companies, students in the fields of technology, business schools
and people who are part of innovation ecosystems.

It is possible to observe in Table 1 the list of the types of communities and the
main roles that the target audience of this research can play. Also, we also con-
sidered investors, startup programs managers, innovation parks and corporate
ventures, spread across the Brazilian innovation ecosystems.

Table 1. Types of communities and roles of target audience.

Type of Communities Roles in communities

- Startup communities
- Communities of practice
- Business communities

- Leadership
- Regular member
- Guest member
- Support
- consultant
- Mentor
- Investor

3.3 Research Tool

An online questionnaire with a total of 30 questions was implemented for data
collection. They were distributed into the following groups: (i) demographic, (ii)
agile methods and (iii) community management. A summary of the questions
can be seen in Table 2.

The first set of questions is related to demographic data about the partici-
pants, their organizations/companies and from which communities they partic-
ipate. We aim to understand how people develop new learning by joining the
communities activities and events and sharing good practices into their organi-
zations. Also, how their roles as members or leaders, for example, interfere in
the management of communities and their longevity.

In the second group of questions, we want to understand the degree of knowl-
edge of the participants about agile methods and practices and how they adopt
them within the management activities of communities and their impact on the
ecosystems that are involved.

Finally, the last set of questions seeks to know what the goals and benefits are
found in the management of different types of communities: practice, startups
or business.

The survey has a mix of open and closed questions. For closed ones were
developed single-choice (SC) responses or multiple choice (MC) responses. For
questions with multiple choice answers, the option “others” has been added.

70 D. Lima and R. Cursino

Table 2. Summary view of the questionnaire.

Group Id Question Type

Demographic Q01 What’s your name? Open (optional)

Q02 What’s your email? ? Open (optional)

...

Q08 Do you act or are part of a community
(startups, practices, business...)?

Closed (SC)

Q07 What is the size of the company do you work
for?

Closed (MC)

Q08.1 How long have you been working in the
community(s)?

Closed (SC)

Q08.2 What types of community(s) do you operate in? Closed (MC)

Q08.3 What is your role in the community(ies)? Closed (MC)

Agile
methods

Q09 How long have you been working with
methodologies agile?

Closed (SC)

Q10 How do you see the adoption of agile
methodologies in your company?

Closed (SC)

Q10.1 In your opinion, what are the benefits found in
companies that adopt or encourage the creation
of communities?

Open

...

Q12.2 What agile practices do you use or have used in
your company?

Open

Q12.3 What agile practices do you use or have used? Closed (MC)

Community
management

Q13 How does your company handle knowledge
sharing?

Closed (MC)

...

Q15 What management methodology/practice have
you used/used?

Closed (MC)

Q16 Have you applied any management practices in
your community(ies)?

Open

...

Q18 In your opinion, what is the importance of using
agile methods in community management?

Likert scale

Q19 What agile methods have you used within the
community(ies)?

Closed (MC)

...

Q21 Which of these characteristics, in your opinion,
define well the role of the community within a
company?

Closed (MC)

Applying Agile Management on CoP and Startups: A Survey 71

Thus, respondents can enter specific answers, not listed above. In question 18
we used the Importance Level Likert Scale: 1 - not important; 2 - maybe it
is important; 3 - it is important; 4 - is very important. For open questions,
respondents can enter their responses in their own words, without the need of
a standard. Questions 01 and 02 seek to capture name and e-mail and they are
not mandatory.

3.4 Data Collection

This study used accidental sampling [11]. This means that the criterion of selec-
tion of samples is convenience. In this case, the researchers recruited participants
of their professional connections and networking.

Each researcher set up a list of invitations with contacts from different com-
panies and projects that use agile methodologies and have connection with com-
munities. Another criterion used to make these lists was selecting people from
different regions, so that we could have representatives from all over Brazil.

In addition, the survey was disseminated and shared in groups from some
communities and also through some social networks like LinkedIn and Twitter.

The data collection phase took place between 8/17/2020 and 9/23/2020. The
tool used for sending the research form, collecting and analyzing the data was
Google Forms4.

4 Results

In the following subsections, we summarize the results obtained from the appli-
cation of the online survey based on the research questions. Furthermore, in the
Subsect. 4.1 we present the results related to the demography of participants,
including age and type of company.

4.1 Demographic Data

62 participants completed the responses on the submitted survey. They represent
States of the 5 regions of Brazil, as shown in Fig. 1, with 63,2% respondents from
states in the Northeast region, 14,3% from Southeast, 8,1% from South, 8% from
the North and 6,4% from the Midwest region.

In Figs. 2(a) and 2(b) we can see that most respondents are cis men (51%)
aged between 25 and 44 years (69,4%). Answers denote that the participation
over 45 years old, who participate in communities of practices, startups and
entrepreneurship is still very small, no adding a fifth of respondents. This is
notable in events and gatherings face-to-face. Communities can be an excellent
gateways to this new universe, since they are open to the point of attracting
public with this age group.

Regarding the size of the companies they work for, based on the quantity
of employees, it is possible to observe that the massive majority of respondents
4 https://www.google.com/intl/pt-BR/forms/about/.

https://www.google.com/intl/pt-BR/forms/about/

72 D. Lima and R. Cursino

Fig. 1. Distribution of participants by regions of Brazil.

Fig. 2. Distribution of participants by gender and age group.

Applying Agile Management on CoP and Startups: A Survey 73

works in small or micro companies (76.6%), having up to 49 employees. 17% of
respondents work in companies with up to 99 employees and the others (6.4%)
in organizations with more than 100 employees.

4.2 RQ01: What Agile Methods and Practices are Being Used
in Management and Operation of Communities?

Respondents needed to inform about their experience with the use of Agile
Methodologies and all (100%) said they already use them, or used them in some
time in your professional life. However, only 11.1% said that at the moment they
are not working in any company or project based on over Agile Methods. 33.3%
of respondents reported that their company adopts agility in its management,
not limited to projects.

In addition, as we can see in Fig. 3, respondents assess that they are very
important (62.5%) or important (25%) the use of agile methodologies for the
community management. Only 6.3% understand that maybe it’s not important
and another 6.3% understand that agile methods do not influence the activity
of management.

Fig. 3. Importance of the use of agile methods in community management.

When asked about agile methods used in managing communities (Fig. 4), we
had Scrum and Kanban as the most indicated with 66.7% and 56.3%, respec-
tively. These results are consistent and aligned with the result of the State of
Agile Report that points out that the methods most popular agile methods
applied in projects, consultancies and communities are the Scrum and Kanban
or hybrid applications of these methodologies [5]. Lean was also cited having
33.3% of responses. 25% of respondents say they never have made use of the
methods for the practice of community management. The use of ORK (Objec-
tives and Key Results) and other methodologies had each 2.1%. Examples of
these other methods are Design Thinking and Design Sprint.

74 D. Lima and R. Cursino

Fig. 4. Main agile methods applied in community management.

Even though we have respondents who claim not to use agile methodolo-
gies in managing communities, most companies use project management tools,
which were born based on the existing Agile Methods, like Trello5, Asana6 and
BitBucket7, for example. In a survey done by Da Silva et al., more than 50%
of startups in Pernambuco (Brazil) in the growth phase (called scale ups), use
these tools and adopt the agile culture within their teams [12].

Finally, it is possible to observe in Fig. 5 the agile practices most adopted
in the day-to-day life of communities of practices and startups. The application
of user stories to document and refine what needs to be done appears with
44.4% of responses. The user stories are organized, prioritized and managed
using backlogs (77.8%) where the members choose the topics that will be worked
on the communities meetings. Retrospectives (66.7%) are also indicated as a
very common and often used practice to understand progress of the actions of
the groups and how they can improve continuously and systematically their
activities. Working in pairs (11.1%) and other practices (33.3%), such as the use
of planning poker or review meetings are also part of the results. In this question,
respondents could select more than one of the applied practice.

4.3 RQ02: What are the Main Objectives of the Companies
and the Aimed Benefits When Adopting Communities?

The massive majority of respondents (91.8%) stated that their organization is
involved in some way with communities. This collaboration can be concretized
in many different ways. As we can see in Fig. 6, the company itself participates in

5 https://trello.com/pt-BR/about.
6 https://asana.com/.
7 https://bitbucket.org/.

https://trello.com/pt-BR/about
https://asana.com/
https://bitbucket.org/

Applying Agile Management on CoP and Startups: A Survey 75

Fig. 5. Main agile practices applied in community management.

business communities (68.8%) or support its employees to collaborate as mem-
bers of external communities of practice (62.5%). Community support through
sponsorship (37.5%) for the promotion of actions or events is also a way to imple-
ment the collaboration. Finally, companies have sought to encourage the creation
of internal communities of practices to the organization (35.4%). This action is
highlighted by the study of Kalenda et al. which relates communities of practice
as spaces for learning, knowledge sharing and promotion of best practices for
agile teams [9].

Fig. 6. Ways organizations support communities of practice and startups.

76 D. Lima and R. Cursino

In the cloud of words and expressions shown in Fig. 7 it is possible to observe
the main benefits pointed out by respondents in relation to adoption or support
from communities of practice or startup. The most cited are the promotion of
the collaboration between the members and the potentialization of the sharing
of the knowledge covered in meetings and activities. We also have the advantage
of communities create spaces for problem solving and focus in innovation. We
reaffirm that these results are in line with studies that link the actions of com-
munities with collaboration, coordination, processes of learning and continuous
improvement [9].

Fig. 7. Benefits for supporting or creating communities of practice and startups.

Another benefit pointed out is that communities promote partnerships and
new businesses, through the development of a support network and networking.
Thus, it is possible to create spaces for commercial negotiations within the com-
munity, positioning of the company with the community, and especially imple-
menting a collaborative culture. A final benefit indicated is the adaptability
competence that communities promote. Be connected, promoting the collabo-
ration and engagement with customers, users and other stakeholders is a key
point of agile methods, as well as considering changes and part of the product
and service development journey [4]. These benefits are also in line with the
State of Agile report which concludes that some of the main reasons for adopt-
ing agile methods and practices are linked to ability to quickly adapt to changes,
reprioritizing what you need be done [5].

In addition to the benefits analyzed, the respondents pointed out the char-
acteristics that better understand defining the purpose of communities within
a company or business environment. Figure 8 shows that exchanging experi-
ence (87.5%) and collaboration between project teams or companies (68.8%) are
important objectives of the communities. These are also considered a place of
inspiration (64.6%), where collaboration and exchange of knowledge, through
safe learning environments (45.8%), can be enhanced. Finally, communities are
spaces for promoting networking and that can also be used for attracting and
hiring talents (45.8%) for companies.

Applying Agile Management on CoP and Startups: A Survey 77

Fig. 8. Objectives of the startup and communities of practice.

5 Conclusion and Future Work

This work aimed to better understand the scenario of community management of
startups, practices and business in Brazil and how much the agile methodologies
help in managing these collaborative environments.

The study carried out a survey, which had a total of 68 respondents from
various states of Brazil, in an investigation conducted to identify the methods
and agile practices used in communities and for what purposes they have been
used by companies.

The main agile methods used in the communities are Scrum and Kanban, in
addition to agile practices such as the use of backlogs, ceremonies of retrospec-
tives and carrying out activities in pair.

Several benefits found in companies that adopt or encourage the creation of
communities within their environments. The respondents believe that this can
generate better knowledge of scenarios and greater ability to adapt to changes. It
is also possible to note that companies that are involved with community actions
have a greater engagement with its customers and employees and within the
ecosystem of companies, generating a richer networking. Despite this perception
we understand that is interesting to develop further investigations on this topic
so that we can gather more data and conclusions.

Despite the results presented, it is important to highlight some threats to
the validity of this study: (i) the number of respondents could be higher, which
would help in a better generalization of the results; (ii) the research focuses on
several possible types of communities. It would be interesting to focus on the
most used types so that the conclusions could be more specific and useful for the
communities; (iii) most of the respondents were from Northeast region (63,2%).
It is possible that the answers may have a greater bias in this region of Brazil.

78 D. Lima and R. Cursino

We also think that new studies needs to be carried out to understand more
deeply what impact can be generated in communities that, even organic and/or
voluntary, adopt agile management methods and how their members replicate
these experiences in their work environments. In addition, it is important to
know more deeply, how more traditional companies engage with communities
and how employees more resistant to change see this new way of exchanging
knowledge, sharing experiences and maintaining continuous improvement in pro-
fessional environments. Understand how companies that do not have a focus or
business on IT have adopted agile methods to manage their communities of
practice is also an opportunities for future works. Finally, it is interesting to
try to understand how the events, actions and management of communities are
happening in the pandemic context, considering the period of remote work and
social distance that we are experiencing.

References

1. Webber, E.: Building Successful Communities of Practice: Discover How Learning
Together Makes Better Organisations. Drew London Limited (2016)

2. Silveira, A., Santino, F., Olivense, H.: Entrepreneurial intention of the participants
of the startup weekend: Longitudinal analysis. Int. J. Adv. Manag. Econ. 6(1), 90–
102 (2017)

3. Feld, B..: Startup Communities: Building an Entrepreneurial Ecosystem in Your
city. John Wiley & Sons (2020)

4. Fowler, M., Highsmith, J., et al.: The agile manifesto. Softw. Dev. 9(8), 28–35
(2001)

5. Ai, D.: 14th Annual State of Agile Report (2021) (acessado em 30 de Junho de
2021.https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report

6. Palincsar, A.S., Magnusson, S.J., Marano, N., Ford, D., Brown, N.: Designing a
community of practice: principles and practices of the GISML community. Teach.
Teach. Educ. 14(1), 5–19 (1998)

7. Bacon, J.: People Powered: How Communities Can Supercharge Your Business,
Brand, and Teams. HarperCollins Leadership (2019)

8. Borzillo, S., Schmitt, A., Antino, M.: Communities of practice: keeping the com-
pany agile. J. Bus. Strategy 33 (2012)

9. Kalenda, M., Hyna, P., Rossi, B.: Scaling agile in large organizations: practices,
challenges, and success factors. J. Softw. Evol. Process 30(10), e1954 (2018)

10. Molleri, J.S., Petersen, K., Mendes, E.:Survey guidelines in software engineering.
In: Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement - ESEM 2016, pp. 1–6 (2016). http://dl.
acm.org/citation.cfm?doid=2961111.2962619

11. LinÂker, J., Sulaman, S.M., de Mello, R.M., Hˆst, M., Runeson, P.: Guidelines for
conducting surveys in software engineering. Technical report (2015)

12. da Silva, K.T.C., de Farias Junior, I., Moura, H.: Estudo exploratório sobre geren-
ciamento de projetos em startups pernambucanas. Revista dos Mestrados 8(2019).
ISSN:2317-0115

https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report
http://dl.acm.org/citation.cfm?doid=2961111.2962619
http://dl.acm.org/citation.cfm?doid=2961111.2962619

Scrum in Strongly Hierarchical
Organizations: A Literature Review

Fernando Rodrigues de Sá(B)

Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal do Ar Eduardo Gomes,
No. 50 - Vila das Acácias, São José dos Campos, SP 12228-901, Brazil

desa@ita.br

http://www.ita.br

Abstract. This work aims to present a literature review of the applica-
tion of Scrum in highly hierarchical organizations. The author initially
defined three main bibliographic bases in Computer Science in the search
strategy applied to this research, which resulted in 369 articles found.
The application of exclusion criteria specified in the study resulted in
twelve articles described in this paper. In addition to the twelve articles
identified and analyzed through the literature review, this paper also
presented other relevant articles about the topic and three previous arti-
cles from the author. Despite the apparent contradiction between agile
teams with horizontal interaction between their members and organiza-
tions based on command and control structures, it is clear that compat-
ibility in the application of agile methods in these strongly hierarchical
organizations is possible.

Keywords: Agile methods · Scrum · Hierarchy

1 Introduction

In the 1990s, the popularization of personal computers and the internet increased
the demand for software development. Changes in market needs became frequent.
Developers were spending more time analyzing how to develop systems than on
action. Thus, traditional processes in software development became cumbersome
and costly and failed to meet new demands that arose [24].

In February 2001, a group of seventeen people related to software develop-
ment, unhappy with the software development processes of the time, met at a
ski resort in the US state of Utah to seek an alternative to these processes, which
no longer met the new demands of the market. The Manifesto for Agile Software
Development emerged, composed of four values [3]:

– Individuals and interactions over processes and tools;
– Working software over comprehensive documentation;
– Customer collaboration over contract negotiation; e
– Responding to change over following a plan.
c© Springer Nature Switzerland AG 2023
C. Rocha et al. (Eds.): WBMA 2021, CCIS 1642, pp. 79–91, 2023.
https://doi.org/10.1007/978-3-031-25648-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25648-6_6&domain=pdf
http://orcid.org/0000-0003-3174-1023
https://doi.org/10.1007/978-3-031-25648-6_6

80 F. R. de Sá

The philosophy behind the Manifesto is to value items on the left, highlighted
in bold, more than items on the right.

Over time, agile methods have become increasingly popular in software devel-
opment, and entire organizations have adopted them in managing their activities.
In the year 2021, the adoption of agile practices in software development teams
increased to 87%, a significant number compared to the 37% registered in the
previous year [10].

Despite the increasing popularity of agile methods, organizations still face
several challenges in their adoption. Among the most significant barriers to
adopting agile practices, the following stand out: Organizational culture in dis-
agreement with agile values; Pervasive resistance to change in organizations; and
Insufficient leadership participation [10].

Agile Development Teams are self-managed, so no one tells how team mem-
bers should do the work. These teams are structured and allowed to organize
their work. Also, there is no hierarchy among the [23] team members.

No hierarchy in the horizontal interaction between individuals in agile teams
conflicts with conventional structures, such as the one presented by the Classical
Management Theory, proposed by Henry Fayol in 1916 [6]. In the company’s
view, from the administrative management, the unity of command, authority,
and responsibility prevails.

This conflict between the horizontal iteration in agile teams and organizations
based on command and control results in an apparent incompatibility between
agile teams and organizations. So the objective of this research is to present
a literature review on works that apply Agile Methods in strongly hierarchical
environments.

2 Literature Review

This Section presents works focused on applying agile methods in strongly hier-
archical environments. Since these works align with this research’s objective, the
author defined a search strategy to expand the scope of studies of interest.

2.1 Search Strategy

In the search strategy applied to this research, three of the main bibliographic
bases in Computer Science [14] were initially defined to be searched, presented
in Table 1.

Table 1. Bibliographic bases used to search for relevant works.

Bibliographic base Internet address

IEEE Xplore https://ieeexplore.ieee.org

Scopus https://scopus.com

Springer Link https://link.springer.com

https://ieeexplore.ieee.org
https://scopus.com
https://springerlink.bibliotecabuap.elogim.com

Scrum in Strongly Hierarchical Organizations: A Literature Review 81

Then, the main search terms were defined based on the keywords: Scrum;
agile; and hierarch. Since the keyword agile results in knowledge domains unre-
lated to this research, the search was performed using the terms agile devel-
opment and agile methods. As for the keyword hierarchy, due to its origin in
the military, the search term hierarchy was used with the following variations:
army; air force; navy; military; and armed forces. Thus, the search term
used in the search in the bibliographic bases was as follows:

(Scrum OR agile development OR agile methods)
AND

(hierarchy OR army OR air force OR navy OR military OR armed
forces)

In the first line of the search term, the group of keywords in parentheses
refers to Scrum or other agile methods. In the center line, the logical connective
AND indicates that the results must contain keywords from both groups, from
the first and third lines. The third line presents the group of keywords related
to hierarchy and other variations defined in this research. The connective OR
indicates that in each group, there must be at least one of the keywords of the
respective group in the search result. The Table 2 presents the results obtained
in each bibliographic database, totaling 369 results found.

Table 2. The number of results from the bibliographic databases searched.

IEEE Xplore Scopus Springer Link

48 118 203

The first search in the Springer Link database showed 1022 results, many of
which were irrelevant to this literature review. Thus, the search in this database
was repeated, considering only results obtained from indexed journals (126) and
conferences (77), totaling 203 results, as shown in the table above.

2.2 Exclusion Criteria

The next step was the analysis of titles and abstracts of the total works resulting
from the searches carried out to identify the intersection with the theme of this
research, in addition to eliminating duplicity of results. The exclusion criteria
for articles were:

– Article topic not related to this research (242 excluded results);
– Article addresses other aspects related to agile methods, unrelated to their

application in hierarchical environments (87 excluded results);
– Article does not address the application of agile methods, even though it is

related to hierarchical environments (4 results excluded);

82 F. R. de Sá

– Article addresses acquisition of software developed by agile methods for
hierarchical environments (13 results excluded); and

– Article by the same author as this research, which presents results obtained
with this research (5 excluded results, referring to 3 different articles).

2.3 Search Results

The exclusion criteria eliminated 351 articles, resulting in the selection of 18
works related to the theme of this research. However, six of them appeared on
two different bases. Thus, duplicate articles were disregarded, totaling 12 works
in this literature review section. Table 3 presents the total number of articles
included in this literature review, those found in duplicate databases, and those
excluded.

Table 3. Selection of related works.

Base Include Duplicated Exclude Total

IEEE Xplore 5 3 40 48

Scopus 5 3 110 118

Springer Link 2 0 201 203

Total 12 6 351 369

The following section presents the syntheses of the works analyzed in this
literature review. The first six works presented refer to the adoption of Scrum
by the Italian Army.

3 Summary of Works

[7] presented an overview of the adoption of Scrum by the Italian Army for
developing software systems using open-source technologies. According to the
authors, software systems are very complex in the military environment, and
applying agile methods is a challenge.

Scrum defines a high-level approach and mindset for the team that promotes
change management and flexibility in work organization to meet customer needs.
This work presented the Scrum Team’s organization in the Italian Army’s specific
context.

[7] highlighted that the work in question was just an initial step toward pro-
viding a comprehensive analysis of how open-source software and agile methods
can be used in this environment, reducing costs and increasing the effectiveness
of development teams.

Despite using Scrum for project management, the article’s main objective
was to present a model to assess the quality level of their development process,
seeking affordable solutions based on Free Software.

Scrum in Strongly Hierarchical Organizations: A Literature Review 83

[18] presented the evolution of the Italian Army’s Command and Control
(C2) software using agile methods. The introduction of agile in developing highly
reliable software was not easy and involved the generation of a new agile method-
ology called the Italian Army Agile (ITA2).

The introduction of agile in the Italian Army was motivated by faster adapta-
tion to the dynamic needs of missions. A drastic reduction in the defense budget
in Italy has also inspired agile adoption.

According to the authors, they dedicated most of the effort to generating an
adequate production structure for the system to create an innovative technical
and cultural environment. Most of the difficulties encountered in this innovation
process were human due to cultural resistance based on consolidated practices.

[19] presented challenges in adopting agile methods in a mixed development
team formed by Italian Army soldiers and civilians. Based on agile methodolo-
gies, close communication and continuous interaction with the customer allowed
the team to become familiar with the complex concepts related to the Intelligence
Preparation of the Battlefield (IPB).

Among the challenges, the conflict between team members stood out, con-
sidering the rigid military mentality, with disagreements and clashes between
members of a hierarchical, organizational, cultural, and sometimes “political”
nature.

Despite this, the agile approach allowed the development of valuable listening
and empathy skills, which proved to be perfectly aligned with the “democratic”
interaction of agile teams. Thus, [19] stated that agile methods led civilians
to meet deadlines and scheduled schedules. On the other hand, the military
developed a new behavioral attitude that made their relationship with civilians
much smoother.

In 4 months, all teams proved capable of cooperating closely and working col-
laboratively, thus building a virtuous cycle of trust and sharing common goals,
which is essential for overcoming challenges. In addition, they created several
communication tools to identify user needs, social relationships, and collabora-
tions.

[9] report the need identified by the General Staff of the Italian Army for a
strategic management tool for its numerous and extensive infrastructures. The
first attempt to find a solution relied on the traditional software engineering
approach, which pointed out the difficulty of producing a detailed and accu-
rate requirements document. Implementing a customized software development
methodology based on the Agile Scrum Method produced excellent results. The
adapted process focused on the relationship between users and developers. As a
result, the authors highlighted the reduction of software costs and user satisfac-
tion.

[5] presented a case study of Scrum application in the Italian Army. The
project started with one team and, after about one operation, grew to about
seven teams, distributed partially and geographically.

84 F. R. de Sá

The team members were approximately one-third military and two-thirds
civilian developers. Most had a master’s degree in Computer Science, Computer
Engineering, or a related field.

The authors identified resistance to the paradigm shift and the need for
support at the highest level to guarantee the continuity of the selected process,
despite having positive results.

[5] presents user community governance aspects introduced by [18] created for
a structure in which specialists can act as PO, determining the decision-making
power of their superiors. This step requires the involvement of high-ranking
officials in the Army.

According to [5], the work presented the following originalities:

– The military domain of the study is considerably unexplored in other studies;
– The breadth of experimentation, which took 17 months, starting with 1 team

and ending with seven teams; and
– Considering productivity as part of the analysis, with clear evidence of the

positive effect of applying agile methods.

[4] summarized the results of the experience of applying agile methods in the
defense sector, mainly characterized by embedded and mission-critical software,
reported by [5]. The Italian Army approved the project as a pilot to verify
the possibility of reducing development costs. At the same time, to produce
a product that better responds to changes in the conditions of the theater of
operations, where confrontation often becomes asymmetric and requires much
faster reaction times than the conventional approach.

After 13 five-week sprints, the team involved in the project delivered a com-
plete product, which met all user requirements, in addition to meeting the regu-
latory requirements of the Italian Army. A concerted effort was needed to change
the development culture to achieve this result. Even counting this effort as part
of the development costs, the total costs were lower than those of the traditional
development method.

[4] described the results as impressive and reassuring, even with the conse-
quent criticality of the natural resistance to change and the need for support at
the highest possible level to ensure the continuity of the process. In summary,
the authors identified:

– Increase in productivity with a notable reduction in cost per line of code,
compared to the scene before the adoption of agile methods, in addition to a
significant increase in tasks developed per Sprint, with a reduction of lines of
code per task, as the project advanced;

– Increase in quality, both in terms of defect reduction and in terms of the
team’s predictive ability, which reached high levels of accuracy; and

– Customer satisfaction, which has reached never before seen levels.

Two articles report the adoption of agile methods in the Israeli Air Force. In
the first, [11] presented the facilitation of an XP training for ten Israeli Air Force
officers. The team consisted of 60 qualified developers and testers, organized in

Scrum in Strongly Hierarchical Organizations: A Literature Review 85

a hierarchical structure of small groups using short development cycles. The
Organization’s chain of command supported this work.

Since the team was relatively large and its members had different individual
interests, changes in how they carried out the project could not happen overnight
but rather in a gradual and carefully planned stage-based process. After the
training, they created a specific methodology for implementing XP. As a result
of the process, a team started working with XP on a new project, described in
the following work.

The second work presented the adoption of XP by the Israeli Air Force to
reduce delivery time and increase communication and collaboration with cus-
tomers in a large and difficult-to-change organization concerning fixed regula-
tions, project approval, management method, and organizational structure [12].

So the project started under close management supervision, with high hopes
of being a prototype for implementing XP in other teams on the one hand
and fears of XP’s incompatibility with the military environment on the other.
To deal with this dual perspective, presenting the benefits and pitfalls of the
method, an accurate and continuous measurement of the development process
was established.

They used two primary research approaches to evaluate the XP implementa-
tion process. The first was a qualitative approach to understanding the process
from the participants’ point of view. The second approach was quantitative,
aiming to measure the effectiveness of the process. They collected data through
observations, biweekly reflection, and discussion sessions on the process. They
also used questionnaires, interviews, and proprietary metrics to communicate
which behaviors are most valued or most problematic, enabling faster and more
accurate decision-making by project leadership and sharing project information
with senior management.

As a result of the qualitative metrics, the more experienced participants
emphasized the actual feedback received every two weeks, the fixed delivery
dates, the ease of matching inexperienced people to the project, and the way
they are aware of problems almost immediately when they occur. Younger par-
ticipants were satisfied with the communication and direct connection with cus-
tomers and the process. Most developers wrote the word “people” answering
what they liked best.

As for quantitative metrics, managers highlighted the importance of using
project progress graphs for decision making and stated that these metrics could
help scale XP, for example, to manage multiple teams developing a single large
project.

[13] presented the adoption and scale of Scrum in a telecommunications com-
pany, guided by standardization and regulated at a national level, with lengthy
development cycles. He described the company as a predictable development
machine with extensive mechanisms to ensure predictability and control at the
expense of flexibility and customer proximity.

The author pointed out that it is necessary to rethink the general approach
and address some fundamental, synergistically connected issues to succeed with

86 F. R. de Sá

the organizational architecture. Without addressing all problems, there is a risk
of wasted effort. The issues raised were: focus on people, not on technologies or
techniques; simplicity; and iterative and incremental work.

The paper presented by [1] suggests enough similarities between the nature of
combat in warfare and software development to warrant a comparison between
military combat philosophy and the principles of agile software development.

When it comes to war combat, military personnel consider themselves agile.
Military command and control are often considered key to rigid, hierarchical
decision-making. The phrase “command and control culture” has become com-
mon in the agile community to describe rigorous process-centric organizations
with centralized authority. However, the military considers tight control to be
highly undesirable.

A decentralized command structure bases the military approach on agility,
where harmonious initiative achieves unity of purpose. An analysis of military
field manuals suggests four synergistic elements underpin the balanced initiative:
doctrine, training, leadership, and trust.

For the author, achieving agility depends on the organization’s training poli-
cies, leadership and development of leaders within the organization, and whether
corporate policies encourage or inhibit the emergence of trust. While collabo-
ration, face-to-face conversations, and trust support the Agile Principles, the
importance of developing the skills that support these principles is not explicitly
stated.

The work presented by [2] reports the experience in contracting Command
and Control systems projects acquired by the North Atlantic Treaty Organiza-
tion (NATO). For managing this type of project, it is necessary to balance the
monitoring of traditional metrics of cost, schedule, and scope with risk, value,
and quality. In addition, there is the added complexity of obtaining NATO com-
mittee approval for all plans and corresponding changes in course. Unlike other
hierarchical military environments and democratic alignments, NATO requires
complete consensus for decisions, which takes time.

This posed challenges for NATO product managers in acquiring systems using
agile processes, which required quick decisions. These challenges become exacer-
bated when traditional consensus frameworks and change request processes are
built around conventional cascading contracts, resulting in conflict.

[17] studied how a medium-sized Finnish company, in the transition to agile
methods, managed the development of its software products. Governance roles,
responsibilities, and results appeared to be in place at different organizational
levels. However, closer inspection revealed challenges in practical implementa-
tion. There were many roles and levels of hierarchy with information consistency
issues between them. The prioritization of high-level goals was unclear and made
it difficult to plan and organize development work based on business value. Track-
ing from high-level goals to more detailed plans was easily corrupted due to poor
planning practices. Monitoring daily work progress was poorly done and not tied
to high-level objectives. Consequently, feedback loops were inadequate, making
it impossible for management to take timely corrective action.

Scrum in Strongly Hierarchical Organizations: A Literature Review 87

The authors identified challenges in communication, roles, and responsibili-
ties. The two significant challenges in communication were the lack of commu-
nication between PO and their teams and the lack of feedback loops. Roles and
responsibilities’ challenges embraced the team structure, which conflicted with
agile principles; the application of the PO role in a broad and complex con-
text; and the lack of business priorities. Such challenges were mainly related to
the governance of the company’s software development in the transition to agile
methods.

In addition to the twelve articles identified and analyzed through the lit-
erature review carried out in this section, the following section presents other
relevant works.

4 Complementary Works

[16] made a brief report published on the US Army website about the use of
Scrum in one of their organizations, consisting of an adapted model to task and
project management process that focuses on transforming products and actions
into textitSprints biweekly. The model improved the organization’s response
time in several ways. As it was an internet article, there were no detailed reports
on the model.

[25] recounted how his 10-year experience in the US Navy made him a better
SM, highlighting issues surrounding the SM’s influence on the team.

[15] presented a comparison between the skills acquired by military veterans
that they bring to life, useful in the role of an SM.

A Scrum Master is [15]:

– Facilitator/Communicator;
– Mentor/team coach;
– Impediment remover/troubleshooter;
– Server leader;
– Guardian of the Scrum process; and
– Contact for PO and Stakeholders.

A veteran, according to [15]:

– Has Team Loyalty - Military personnel carries an intrinsic understanding
of how commitment increases team proficiency and builds trust in a work
environment. Military personnel generally outperform other candidates in
teamwork experience;

– Has a Credible Work Ethic - knows the importance of adhering to a
process and schedule and consistently performing at work demonstrates pro-
fessional maturity. Through their services, training, and lifestyle, ex-military
personnel typically have a work ethic that sets a standard for teams;

– Driven by Productivity - In the workplace, self-discipline is at the heart
of self-organizing teams. Soldiers train to work for efficiency, ask for guidance
when needed, and exercise self-discipline in professional settings;

88 F. R. de Sá

– Has Comprehensive Communication Skills - Military personnel under-
stand diversity in the workplace and know that good communication needs
to be flexible. Most have traveled extensively and understand the nuances
of international cultures and communication styles. This awareness, along
with technical literacy, can serve to optimize communication efforts across
organizations and cultures; and

– It’s an Adaptive Process Follower - few things are more ingrained in the
military than process following. When a process is inadequate, they adapt it
as needed and revert to the default process.

In an article posted on the US Air Force Air Education and Training Com-
mand website, [20] points out that the term Agile is becoming popular among
senior leaders in the Department of Defense. This term was often linked to the
importance of developing functional and innovative software that best equips
the warrior to respond to uncertain and ever-changing environments.

According to the author, while the private sector adopted Agile long ago, the
Department of Defense is starting to incorporate the method into acquisition
programs and other projects. In this regard, in the literature review of this
Section, I identified six works with reports of software acquisition through agile
development for the North American Department of Defense. As it is about
the purchase, the works are not about applying agile methods in hierarchical
environments of interest to this research.

The following section presents the three previous articles from this author.

5 Previous Articles from this Author

[22] presented the first challenges in adopting agile methods at the Aeronautics
Computing Center of São José dos Campos (CCA-SJ). The CCA-SJ is an orga-
nization of the Brazilian Air Force (FAB) that develops software systems and
flight simulators for the FAB.

In the article, [22] presented the problems encountered in the organization
before the adoption of Scrum. To address these problems, the authors applied
an Organizational Climate Survey, which pointed out the main factors that con-
tributed to the low level of satisfaction of the CCA-SJ military at the time.

After analyzing the survey results, the authors created and implemented an
action plan, which resulted in immediate improvements in the organization’s
climate.

In the second article, the author presented the lessons learned from adopting
Scrum. The main lessons learned presented in the article were [8]:

– Transparency is the key to gaining trust;
– The importance of working top-down and bottom-up approaches simultane-

ously;
– Reinforcing the importance of applying Scrum values, principles, and prac-

tices; and

Scrum in Strongly Hierarchical Organizations: A Literature Review 89

– A case of success becomes an example for other teams and encourages changes
that may occur.

The third article from this author presents the turning point to success in
agile adoption: Institutional Support. He also shared teachings from the Brazilian
Air Force Pilots to agile teams, and Learning Lessons from the Scrum adoption
in the CCA-SJ [21].

6 Final Considerations

This article presented a literature review on applying Scrum in strongly hier-
archical organizations. This review showed twelve articles about the topic, in
addition to three previous articles from the author.

Despite the apparent contradiction between agile teams with horizontal inter-
action between their members and organizations based on command and control
structures, it is clear that compatibility in the application of agile methods in
these strongly hierarchical organizations is possible.

References

1. Adolph, S.: Are we ready to be unleashed? A comparative analysis between agile
software development and war fighting. In: Agile Development Conference (ADC
2005), pp. 20–28 (July 2005). https://doi.org/10.1109/ADC.2005.13

2. Aker, S., Audin, C., Lindy, E., Marcelli, L., Massart, J.P., Okur, Y.: Lessons learned
and challenges of developing the NATO air command and control information
services. In: 2013 IEEE International Systems Conference (SysCon), pp. 791–800
(April 2013). https://doi.org/10.1109/SysCon.2013.6549974

3. Beck, K., et al.: Manifesto for Agile Software Development Twelve Principles of
Agile Software (2001). http://www.agilemanifesto.org

4. Benedicenti, L., Messina, A., Sillitti, A.: Iagile: mission critical military software
development. In: Proceedings - 2017 International Conference on High Performance
Computing and Simulation, HPCS 2017, pp. 545–552 (2017). https://doi.org/10.
1109/HPCS.2017.87

5. Benedicenti, L., et al.: Applying scrum to the army: a case study. In: Proceedings
- International Conference on Software Engineering, pp. 725–727 (2016). https://
doi.org/10.1145/2889160.2892652

6. Chiavenato, I.: Introdução à Teoria Geral da Administração, 2nd edn. Campus,
Rio de Janeiro (2000)

7. Cotugno, F.R., Messina, A.: Adapting SCRUM to the Italian army: methods and
(open) tools. IFIP Adv. Inf. Commun. Technol. 427, 61–69 (2014). https://doi.
org/10.1007/978-3-642-55128-4 7

8. de Sá, F.R., Vieira, R.G., da Cunha, A.M.: Lessons learned from the agile transfor-
mation of an aeronautics computing center. In: Meirelles, P., Nelson, M.A., Rocha,
C. (eds.) WBMA 2019. CCIS, vol. 1106, pp. 85–91. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-36701-5 7

https://doi.org/10.1109/ADC.2005.13
https://doi.org/10.1109/SysCon.2013.6549974
http://www.agilemanifesto.org
https://doi.org/10.1109/HPCS.2017.87
https://doi.org/10.1109/HPCS.2017.87
https://doi.org/10.1145/2889160.2892652
https://doi.org/10.1145/2889160.2892652
https://doi.org/10.1007/978-3-642-55128-4_7
https://doi.org/10.1007/978-3-642-55128-4_7
https://doi.org/10.1007/978-3-030-36701-5_7
https://doi.org/10.1007/978-3-030-36701-5_7

90 F. R. de Sá

9. Dettori, D., Salomoni, S., Sanzari, V., Trenta, D., Ventrelli, C.: Ita army agile soft-
ware implementation of the LC2EVO army infrastructure strategic management
tool. In: Ciancarini, P., Sillitti, A., Succi, G., Messina, A. (eds.) Proceedings of 4th
International Conference in Software Engineering for Defence Applications. AISC,
vol. 422, pp. 35–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
27896-4 4

10. Digital.ai: 15th Annual State Of Agile Report | Digital.ai. Tech. rep., Digital.ai
(2021). https://digital.ai/resource-center/analyst-reports/state-of-agile-report

11. Dubinsky, Y., Hazzan, O., Keren, A.: Introducing extreme programming into a soft-
ware project at the Israeli air force. In: Baumeister, H., Marchesi, M., Holcombe, M.
(eds.) XP 2005. LNCS, vol. 3556, pp. 19–27. Springer, Heidelberg (2005). https://
doi.org/10.1007/11499053 3

12. Dubinsky, Y., Talby, D., Hazzan, O., Keren, A.: Agile metrics at the Israeli Air
Force. In: Agile Development Conference (ADC 2005), pp. 12–19 (2005). https://
doi.org/10.1109/ADC.2005.8

13. Duka, D.: Adoption of agile methodology in software development. In: 2013 36th
International Convention on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), pp. 426–430 (May 2013)

14. Felizardo, K., Nakagawa, E., Fabbri, S., Ferrari, F.: Revisao sistematica da liter-
atura em engenharia de software: teoria e pratica, 1st edn. Elsevier, Rio de Janeiro
(2017)

15. Friend, T.: Why Military Veterans Make Great Scrum Masters (2014). http://blog.
eliassen.com/why-military-veterans-make-great-scrum-masters

16. Horton, J.: Scrum is the word in the 193rd (2015). https://www.army.mil/article/
145252/scrum is the word in the 193rd

17. Lehto, I., Rautiainen, K.: Software development governance challenges of a middle-
sized company in agile transition. In: 2009 ICSE Workshop on Software Devel-
opment Governance, pp. 36–39 (May 2009). https://doi.org/10.1109/SDG.2009.
5071335

18. Messina, A., Fiore, F.: The Italian Army C2 evolution: from the current SIAC-
CON2 land command & control system to the LC2EVO using agile software devel-
opment methodology. In: 2016 International Conference on Military Communica-
tions and Information Systems, ICMCIS 2016, pp. 1–8 (2016). https://doi.org/10.
1109/ICMCIS.2016.7496585

19. Gazzerro, S., Muschitiello, A.F., Pasqui, C.: Agile Plus New army diffused and
shared leadership. In: Ciancarini, P., Sillitti, A., Succi, G., Messina, A. (eds.) Pro-
ceedings of 4th International Conference in Software Engineering for Defence Appli-
cations. AISC, vol. 422, pp. 163–179. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-27896-4 14

20. Poland, C.: The Air Force is becoming more Agile - one project at
a time (2019). https://www.aetc.af.mil/News/Article/1823544/the-air-force-is-
becoming-more-agile-one-project-at-a-time/

21. de Sa, F.R., Godoi Vieira, R., Cunha, A.M.d.: Learning lessons from the scrum
adoption in the Brazilian Air Force. IT Profes. 24(1), 49–55 (2022). https://doi.
org/10.1109/MITP.2021.3132310, https://ieeexplore.ieee.org/document/9717273/

22. de Sá, F.R., de Resende Lucas, E.L., de Oliveira, A.D.: Scrum in a strongly hier-
archical organization. In: Tonin, G.S., Estácio, B., Goldman, A., Guerra, E. (eds.)
WBMA 2018. CCIS, vol. 981, pp. 97–102. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-14310-7 7

23. Schwaber, K., Sutherland, J.: The Scrum Guide The Definitive Guide to Scrum:
The Rules of the Game. Tech. rep., Scrum.org (2020)

https://doi.org/10.1007/978-3-319-27896-4_4
https://doi.org/10.1007/978-3-319-27896-4_4
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://doi.org/10.1007/11499053_3
https://doi.org/10.1007/11499053_3
https://doi.org/10.1109/ADC.2005.8
https://doi.org/10.1109/ADC.2005.8
http://blog.eliassen.com/why-military-veterans-make-great-scrum-masters
http://blog.eliassen.com/why-military-veterans-make-great-scrum-masters
https://www.army.mil/article/145252/scrum_is_the_word_in_the_193rd
https://www.army.mil/article/145252/scrum_is_the_word_in_the_193rd
https://doi.org/10.1109/SDG.2009.5071335
https://doi.org/10.1109/SDG.2009.5071335
https://doi.org/10.1109/ICMCIS.2016.7496585
https://doi.org/10.1109/ICMCIS.2016.7496585
https://doi.org/10.1007/978-3-319-27896-4_14
https://doi.org/10.1007/978-3-319-27896-4_14
https://www.aetc.af.mil/News/Article/1823544/the-air-force-is-becoming-more-agile-one-project-at-a-time/
https://www.aetc.af.mil/News/Article/1823544/the-air-force-is-becoming-more-agile-one-project-at-a-time/
https://doi.org/10.1109/MITP.2021.3132310
https://doi.org/10.1109/MITP.2021.3132310
https://ieeexplore.ieee.org/document/9717273/
https://doi.org/10.1007/978-3-030-14310-7_7
https://doi.org/10.1007/978-3-030-14310-7_7

Scrum in Strongly Hierarchical Organizations: A Literature Review 91

24. Sommerville, I.: Engenharia de Software, 9th edn. Pearson Prentice Hall, São Paulo
(2011)

25. Wortham, T.: How Military Tactics Made Me a Better Scrum Mas-
ter (2014). https://www.spikesandstories.com/how-military-tactics-made-me-a-
better-scrum-master/

https://www.spikesandstories.com/how-military-tactics-made-me-a-better-scrum-master/
https://www.spikesandstories.com/how-military-tactics-made-me-a-better-scrum-master/

Short Papers

Experience in Implementing the Scrum
Framework in Incubated Companies

Ludimila Monjardim Casagrande(B)

Apoema Consulting and Training, Vitória, ES, Brazil
ludimila.casagrande@apoemaconsultoria.com.br

Abstract. This article presents the experience of implementing the Scrum frame-
work in incubated companies in the Information Technology field. The main goal
of this study was to demystify the idea that a senior team is required for the
application and good performance of Scrum. Another goal was to verify the time
needed for companies to start using the framework and to identify the time it takes
for teams to achieve stability in the project. In addition, we observed the velocity
rates, if there was an increase in velocity during the project execution, and we also
inspected the differences between what was planned and what was performed. In
terms of methodology, this is a case study performed by market professionals.

Keywords: Scrum · Project management · Agile development · Velocity rates

1 Introduction

There are some frequent concerns and issues related to Scrum, especially for those who
are getting introduced to this framework for the first time. When they are presented to
the Scrum framework, many directors and managers think that a senior team is needed
to make self-organization – one of the framework’s key practices. They believe that only
very experienced professionals are capable of managing their own work and having the
autonomy to make decisions without having to consult with an immediate supervisor.
Many practical experiences, however, show that this impression is actually a myth, and
this is a fact that is demonstrated in this report.

Many people also do not believe in the promised increase in the development velocity,
given the fact that the proposed Scrum framework includes four formal ceremonies or
events. Since they are familiar with endless and unproductive meetings, it is natural for
them to feel that way. However, all Scrum elements have a clear purpose, with a limited
duration, and are strongly based on research, data, and experience as described in [1].

Other common concerns are related to the time needed to train the team and to
implement Scrum, in addition to the time needed to achieve stability in the project given
the new way of managing and working.

Therefore, this article reports the experience of implementing Scrum in incubated
companies and presents information regarding the aforementioned issues.

© Springer Nature Switzerland AG 2023
C. Rocha et al. (Eds.): WBMA 2021, CCIS 1642, pp. 95–102, 2023.
https://doi.org/10.1007/978-3-031-25648-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25648-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-25648-6_7

96 L. M. Casagrande

2 Context

In 2017/2018, the Apoema Consulting and Training company developed a training
and support project for Scrum implementation in three technology-based companies
incubated at TecVitória – the largest business incubator in the state of Espírito Santo,
Brazil.

In addition to providing companies withmanagement innovation, one of the project’s
goals was to observe people’s behavior and the result of applying Scrum in companies
still in formation and with inexperienced teams.

Two cases with quite different characteristics were selected and are reported in this
article. The names of companies will be omitted to safeguard them and to present the
cases in greater detail.

In Case 1, the company was a software factory, and the customer was off-site and a
large-scale business. The project was also large-scale, considering the scope size, and
critical to the end customer. The supplier (incubated) company had practically no expe-
rience with Scrum, but already knew a little about it. The project was developed by
a predominantly junior team, mostly composed of 4 developers, including 3 interns,
and growing to 6 developers (4 interns) at particular times. The company’s track record
included projects that had exceeded their initial budget by 50–100%; therefore, the
company was looking for a solution to keep the project costs within the planned contin-
gency or, at the very least, to reduce losses. The projects were carried out according to the
traditional management approach. This company shall be namedCompany 1 henceforth.

The context of Case 2 is quite different from the first. In this case, the software
product belonged to the company itself and therefore the customer or main provider
of requirements was in-house. The system was already in production and had several
off-site customers, who eventually requested changes and bug fixes. Corrective changes
needed to be prioritized because the system was already in production, which usually
negatively affected the planning of team activities.

The CEO, the CTO, and the lead of the support teamwere looking for a management
solutionwith themaingoal of organizing thedevelopment activities so that itwas possible
to make the required corrections, meet the demands of the customers and the internal
demands for efficient system improvements.A second goalwas to increase teamvelocity.

3 Theoretical Background

Scrum is a lightweight framework that helps people, teams, and businesses generate
value through adaptive solutions for complex problems [2]. Thus, Scrum suggests a
structure to organize the work and to increase the performance of agile teams so that
they can make frequent deliveries, in the shortest possible time and in order to efficiently
respond to constant change requests.

Scrum follows an iterative and incremental development approach to enable quick
and frequent product increment deliveries, and to improve the predictability and risk
control, since the customer feedback is collected constantly and at short intervals, and
there is an evolution of the product at each iteration which, in Scrum, is called Sprint
[3].

Experience in Implementing the Scrum Framework 97

There are three roles in Scrum, each with different responsibilities within the Scrum
Team, namely: Developers, Product Owner, and Scrum Master.

In summary, Scrum requires a Scrum Master to promote an environment where: (1)
a Product Owner orders the work for a complex problem into a Product Backlog (list
of product features or to-do items); (2) the Scrum Team turns a selection of the work
into an Increment of Value during a Sprint and (3) the Scrum Team and its stakeholders
inspect the results and adjust for the next Sprint [2].

Relevant information that can assist teams in implementing Scrum can be found at
[4] and [5].

4 Methodology

To start the agile project management in a company, the Scrum authors Ken Schwaber
and Jeff Sutherland recommend the selection of a pilot project, and the application of
the Scrum framework only to this particular project at the first moment [4]. Following
this recommendation is important because adopting any agile management approach, in
general, requires a cultural change, which is also called a mindset change, especially in
cases where the company is used to following a traditional management approach such
as practices recommended by PMI/PMBOK, for example.

Due to this adaptation need, it is important to promote changes gradually. In addition,
it is common to have some resistance from team members, from the client, and even
from managers in some cases.

In Company 1, the vast majority of projects were developed for the same customer;
and, following the recommendation of the Scrum authors, one of these projects was
chosen as a pilot. The criterion that determined this choice was the existence of a poorly
detailed scope, subject to many changes, and a high degree of uncertainty regarding the
requirements and operation of some of the system modules; in addition, the recurring
incidence of not meeting deadlines and cost overruns in projects developed specifically
for that customer. When the consultancy was hired, the project had already been mar-
keted in the traditional management terms, that is, with a closed deal regarding scope,
deadline, and cost. The supplier company, however, opted for an agile execution in order
to minimize risks and possible losses.

Company 2 only had one system, and, in this case, there was no need to choose.
In both cases, all members of the development teams of the selected projects and their

superiors (considering the companies’ functional hierarchies) attended a 20-h training
about the agility concept and the Scrum framework. By doing that, an alignment of all
involved people was obtained regarding the newmanagement proposal and the new way
of organizing the projects’ work.

During the training, the most controversial points, such as open scope, flexibility
regarding changes, the team’s self-organization, the non-existence of a project manager
were pointed out and widely discussed.

The second step was to sensitize the external client (in Case 1) about the benefits
that could be achieved by adopting Scrum and the alignment regarding their role and
responsibilities in the project. The presentation of the benefits was based on research
data found in [6, 7], and [8]. The involvement of the hierarchical superiors in the training

98 L. M. Casagrande

stage and the sensitizing of the external client were based on the fact that the aspects
of “executive management support” and “user (customer) involvement” were identified
as critical factors for the success of IT projects in the research accomplished by the
Standish Group [6].

The third step, in both cases, was a brief project setup stage, where preliminary
decisions were made and when there was a discussion about the stages of the pro-
cess development or workflow, the standard sprint duration, the definition of done, the
columns that should compose the Kanban board, the management tools to be adopted,
the measurement units to be used for activities and tasks, the ideal team size, the required
skills, and competences, among other relevant aspects to start the project. At this point,
the teams also defined who would be the Scrum Master and Product Owner of each
project, and the acquisition and configuration of the adopted tools were carried out.

The fourth step was the actual start of Scrum execution. In both cases, all events
were monitored during the initial sprints by Apoema’s consultant, who offered support
and cleared up questions about the correct application of the framework, and all events
were carried out in accordance with what is recommended in the official Scrum guide
[2, 3], and based on the agile development principles [9, 10].

5 Presentation and Analysis of Results

5.1 Case 1

As previously mentioned, the project in Case 1 was marketed following the traditional
approach, that is, with closed scope, cost, and deadline, and was selected by the supplier
company as a pilot project for agile execution using Scrum, aiming to reduce losses with
delays and reworking.

The time between the end of the team training and the beginning of the first sprint,
that is, the time it took to properly start the execution of Scrum was one month because
the project was planned in the traditional way and due to the need to sensitize the external
client, which was quite conservative.

The sprints lasted for 15 days, and the project development team was predominantly
junior, mostly composed of 4 developers, up to 6 developers at certain times. The team’s
previous experience in Scrum projects was next to null. The entire team completed
Apoema’s 20-h training before starting the project, including the company’s CEO and
CTO.

What could be observed by analyzing the velocity graphs (Fig. 1, Fig. 2), extracted
from the Jira management tool, is a low rate of team velocity during the first 3 sprints,
that is, during the first 45 days of the project, which was expected due to the team’s
adaptation to the new management model, new technologies that were adopted in the
project and the practice of implementing automated tests, which had never been done in
the company before.

By better adjusting the planning to the actual capacity shown by the team, the pre-
dicted goal was reached in Sprint 4 (Table 1). From this point on, the team started to
perform well above the initial sprints and achieved the goal again in Sprint 6 (Table 2).
It can also be observed that the team starts from a rate of 22 points in the first sprint and

Experience in Implementing the Scrum Framework 99

Table 1. Results achieved in sprints 1 to 5 of Case 1.

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5

Total planned points 47 42 48 36 53

Total completed points 22 29 21 36 50

Average rate in points 22 25.5 24.0 27.0 31.6

Fig. 1. Velocity graph including sprints 1 to 5 of Case 1.

Table 2. Results achieved in sprints 6 to 10 of Case 1.

Sprint 6 Sprint 7 Sprint 8 Sprint 9 Sprint 10

Total planned points 57 42 49 51 50

Total completed points 57 35 38 52 44

Average rate in points 35.8 35.7 36.0 37.8 38.4

reaches a total average rate of 38.4 points in Sprint 10. In addition, the velocity rate is
31.6 points in sprints 1 to 5 and becomes 45.2 points in sprints 6 to 10, which proves the
increase in velocity in just 5 months of Scrum implementation and use.

Another fundamental aspect that needs to be analyzed is the difference between what
was planned and what was carried out, as this factor determines the rate of delay and
extra costs of the project. In this case, the average rate of unreached points was 19.5%,
considering the 10 sprints, and it was only 10% if we consider the last 5 analyzed sprints.
Assuming that the project’s contingency rate is 20%, which is a commonly practiced
value, the actual rate presented is within predicted, even given the team’s inexperience
with the agile approach, with the automated tests, and some of the adopted technologies.

The most significant fluctuations in the planned values occurred due to holidays or
the eventual allocation of more developers to the project in certain sprints.

100 L. M. Casagrande

Fig. 2. Velocity graph including sprints 6 to 10 of Case 1.

5.2 Case 2

The context of this second case is quite different from the first. In this case, the software
product belongs to the company itself and, therefore, the “client” or the main require-
ments provider is internal. However, the system is already in production and has several
off-site customers, who eventually request changes and bug fixes. Corrective changes
need to be prioritized because the system is already in use, which often affects the
planning of team activities.

The company’s CEO and CTO, the person responsible for the support team and the
development team chose to adopt the Scrum framework with themain goal of organizing
the development activities so that it was possible tomake the necessary corrections, meet
customer demands and internal demands for system improvements. A second goal was
to increase team velocity.

Before starting the implementation, all development team members, the CTO, the
CEO, and the support team lead completed Apoema’s 20-h training. The implementation
started one week after the end of the training.

A sprint length of 15 days was chosen, and the team consisted of 1 senior developer
and 2 interns. The team’s previous experience with Scrum projects was limited.

After a troubled start that lasted about 2 months (4 sprints), with sudden fluctuations
in performance caused mainly by the high cumulative number of bugs to be fixed and
changes in the scope of the sprints, the team’s work finally began to reach the desired
stability from Sprint 5 onwards, when the planned goal was exceeded, as can be seen in
the velocity graph (Fig. 3). From there, the team finds its balance point and maintains an
average velocity rate of 33.6 points completed per cycle (Table 3) in the final 7 sprints
analyzed (5 to 11); in the first 5 sprints, the average was 22.5 points (value reported by
the team). This demonstrates, once again, the velocity gain and the achieved level of
organization with the adoption of Scrum.

By analyzing the difference between what was planned and the actual results, which
are related to the excess cost of product development, it appears that the average rate of
unrealized points was 6%, if we consider sprints from 5 to 11, and 17%, if we consider
the last 5 sprints (7 to 11), which are below the usual 20% contingency rate.

Experience in Implementing the Scrum Framework 101

Table 3. Results achieved in sprints 5 to 11 of Case 2.

Sprint 5 Sprint 6 Sprint 7 Sprint 8 Sprint 9 Sprint 10 Sprint 11

Total planned points 19 35 37 40 45 42 44

Total completed points 26 38 36 35 32 36 32

Average rate in points 26 32 33.3 33.8 33.4 33.8 33.6

Fig. 3. Velocity graph including sprints 5 to 11 of Case 2.

It is also observed in this case that there is an attempt to increase the team’s velocity
by increasing the planned work, especially from Sprint 8. What is found, however, after
successive sprints, is that the team is not able to achieve a result higher than 38 points,
which is, therefore, the limit of its capacity. In this case, the ideal is to adjust the planning
to the identified capacity of this team. If there is a real need to complete a higher number
of points per sprint, the results indicate that it is necessary to allocate onemore developer
to achieve the goals.

In all cases, the correct use of Scrum (considering the framework rules described
in the official guide) and a good management tool, such as Jira, for example, provide
valuable information to track the project progress and deviations for proper decision-
making.

6 Conclusion

Therefore, as an answer to the investigation questions, the time needed to set up the
project and to start the Scrum execution, after training the team, was one month in
Case 1 and only one week in Case 2. In all implementation cases supported by Apoema
Consulting, it was never necessary a setup time superior to one month (this information
is based on our experience in implementing the Scrum framework over the last 5 years).

As for the time to reach stability, in Case 1 this occurred after 45 days after the start of
the Scrum execution, and in Case 2, after 2 months. In the overall experience at Apoema
Consulting, themaximum time to reach stability was 3months. This time period depends
on the nature and complexity of the project, both in terms of requirements and regarding

102 L. M. Casagrande

the technologies used, in addition, of course, to the experience and level of knowledge
of the team members.

In both cases, the team’s velocity gains were observed during the course of the
project. In Case 1, the team started from an average rate of 24 completed points per
sprint in the first 3 sprints and reached an average rate of 38.4 points per sprint in the
first 10 sprints of the project. In Case 2, the team starts from an average rate of 22.5 points
completed per sprint in the first 5 sprints and reaches an average velocity of 33.6 points
completed per iteration in the last 7 analyzed sprints (5 to 11). Furthermore, in both
cases, the extra costs of the project (deviation between planned x performed) remained
within the contingency margin.

Finally, it was observed that, although both companies in the study are still in forma-
tion and the teams are predominantly comprised of inexperienced developers, especially
concerning management experience, they were both able to self-organize. Initiatives
and leadership attitudes were found in the interns, since the Scrum framework encour-
ages and is open to this, thus demystifying the idea that a senior team is needed for the
successful use of Scrum.

References

1. Sutherland, J.; Sutherland, J.J.: Scrum: the Art of Doing Twice the Work in Half the Time.
Currency. Penguin Random House, New York City (2014)

2. Schwaber, K., Sutherland, J.: The Scrum Guide - The Definitive Guide to Scrum: the Rules
of the Game. Scrum.org. (2020)

3. Schwaber, K., Sutherland, J.: The Scrum Guide - The Definitive Guide to Scrum: The Rules
of the Game (2017)

4. Schwaber, K., Sutherland, J.: Software in 30 Days: How Agile Managers Beat the Odds,
Delight Their Customers, and Leave Competitors in the Dust. Wiley, New Jersey (2012)

5. Sabbagh, R.: Scrum: gestão ágil para projetos de sucesso. Casa do Código, São Paulo (2013)
6. Project Smart: The Standish Group Chaos Report 2014. https://www.projectsmart.co.uk/

white-papers/chaos-report.pdf. Accessed 12 June 2021
7. Scrum Alliance: The 2016 State of Scrum Report (2016)
8. VersionOne: 11th Annual State of Agile™ Report, 2017. https://stateofagile.com/#ufh-c-702

7494-state-of-agile. Accessed 12 June 2021
9. Beck, K., Schwaber, K., Sutherland, J. et al.: Principles Behind the Agile Manifesto (2001).

http://agilemanifesto.org/principles.html. Accessed 12 June 2021
10. Scrum.org. The Home of Scrum: What is Scrum? https://www.scrum.org/resources/what-is-

scrum. Accessed 12 June 2021

https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
https://stateofagile.com/#ufh-c-7027494-state-of-agile
http://agilemanifesto.org/principles.html
https://www.scrum.org/resources/what-is-scrum

Study of a Software Development Team’s
Adaptations to Remote Work During

the COVID-19 Pandemic

Diego A. S. Lisbôa(B), Thayssa A. da Rocha(B), Letícia S. Machado(B),
Clara M. Caldeira(B), and Cleidson R. B. de Souza(B)

Federal University of Pará, Belém, Brazil
diegolisboa@ufpa.br, thayssa.tocha@icen.ufpa.br,

leticia.smachado@gmail.com, cmarque@iu.edu,

cleidson.desouza@acm.org

Abstract. The social distancing practices adopted to contain the spread of the
COVID-19 pandemic led many companies to migrate to remote work in a com-
pulsory and unplanned way. This sudden transition to working from home has
caused profound changes in personal and professional relationships. In this paper,
we present the results of a qualitative observational study about the adaptations
made in the software process activities of a software development coordinator of
a Brazilian university. These adaptations aimed to support the transition to remote
work during the pandemic, without letting the organization lose its essence in
adopting agile practices. These adaptations were analyzed based on the technical
aspects (hard skills) and behavioral aspects (soft skills) of the employees of the
researched organization.

Keywords: Adaptation · Agile practices · Remote work · Pandemic

1 Introduction

Software development has long been recognized by researchers [1] as a social activity.
Practitioners also recognize the importance of interaction between those involved in
software development activities, as explained in the first value of the agile manifesto:
“individuals and interactions more than processes and tools”. The third agile value also
points to the importance of collaboration between members: “collaboration with the
customer more than contract negotiation” [2].

In 2020, the whole world was surprised by the coronavirus pandemic (COVID-
19), which brought with it various restrictions on interactions between people, causing
profound changes in the personal and professional lives of individuals. In this context,
many companies have been forced to work remotely in a very short period of time. In this
scenario, people are working remotely, but not in an office or prepared environment, but
from their beds, kitchen tables, sofas and with all their families promoting interruptions,
needing assistance, etc. [3].

© Springer Nature Switzerland AG 2023
C. Rocha et al. (Eds.): WBMA 2021, CCIS 1642, pp. 103–109, 2023.
https://doi.org/10.1007/978-3-031-25648-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25648-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-25648-6_8

104 D. A. S. Lisbôa et al.

This paper describes a work in progress on the adaptations made to the software
process activities of a Brazilian university coordination called COTIC and its transition
to remoteworking during theCOVID-19. The technical and behavioral aspects ofCOTIC
employees were used in this research as an analytical lens to “evaluate” how effective
adaptations were in supporting the remote work process during the pandemic and in
helping to maintain the adoption of agile practices.

2 Context and Methodology

The name of the researched organization is COTIC. Its objective is the development
of software systems required by one of the university’s departments. It also provides
support to the systems in its existing portfolio of projects. During the research phase,
the team was composed of ten people, organized according to and using the practices of
the Scrum framework [4].

The methodology used was qualitative empirical research, by means of participative
observation of the work process of the COTIC team. This was possible because one of
the authors is a COTIC employee and is part of the team. The data collection phase
took place from March to December 2020, and all its main activities were carried out
remotely during this period.

Data collection was conducted through participant observation of the team’s work
routine, including interactions between the team and its stakeholders. Field notes were
prepared based on records of conversations from communication tools; activities docu-
mented in collective project management tools; artifacts stored in the shared repository;
and feedback from participants in retrospective and other meetings.

Hard skills are the technical requirements and knowledge that a person must have to
perform a task. These include the theoretical foundations and practical exposure that an
individual must have to successfully perform the planned task. Soft skills, on the other
hand, have their roots in psychology and cover a wide range of characteristics involving
personality types, social interaction skills, communication, and personal habits [5].

3 COTIC’s Software Process Before the Pandemic

COTIC’s software development process consists of seven activities, as shown below:

3.1 Build Comprehensive Model

This activity aims to align with the stakeholders the ideas regarding the minimum viable
product to be built and its increments. The participants in this activity, used tools such
as whiteboard, flip-charts and post-it’s.

3.2 Plan Releases

This activity aims to define the sequence in which the product’s functionalities will be
delivered. The participants of this activity used as main tool the physical framework
called MVP Canvas.

Study of a Software Development Team’s Adaptations 105

3.3 Build Product Backlog

This activity aims to create and elaborate an effective and collaborative product backlog.
The participants of this activity used as main tool the physical framework called PBB
Canvas.

3.4 Run Sprint

This activity is related to the execution of the Sprints for building the product. The par-
ticipants of this activity used tools such as: User Stories cards on post-it notes; Kanban
board for visual management of the work progress; Adobe XD and Bizagi tools for pro-
totyping and modeling; Eclipse IDE and PhpMyAd-min for software development and
database management; GitLab for version control; and Cypress for automated testing.

3.5 Upgrade Product Version

This activity aims to integrate the code of the User Stories developed to make the version
available for approval. The participants of this activity use the GIT-FTP tool as the main
tool.

3.6 Homologate Product Version

This activity aims to present a new version of the software product to the Product Owner,
in a homologation environment, for evaluation. The participants of this activity usedUser
Stories cards as the main tool.

3.7 Deliver Product Version

This activity aims to make the new version of the product available to end users in a
production environment. The participants of this activity used GIT-FTP as their main
tool.

3.8 Considerations

The high-level description of the COTIC software development process presented in this
chapter allows for some observations. First, it is possible to identify the performance of
various coordination and alignment activities in person with the entire team. In addition,
we can see the use of tools that require the presence of everyone in the same shared
physical space. For example, release planning requires the collaborative construction
of an artifact (Canvas MVP), using a physical board and post-it’s. Other examples of
similar activities and their respective artifacts include: (i) the construction of the Product
Backlog, generating the PBB Canvas as an artifact; (ii) the Sprint planning meeting,
generating the Sprint Backlog as an artifact; (iii) the daily meetings between the Scrum
Team members, generating the planning of the day’s activities as an artifact; (iv) and
the Sprint retrospective meetings, generating as an artifact a kanban board containing
the main information discussed in the meeting. With the COVID-19 pandemic and the
need for social isolation, this process has been modified as will be described in the next
chapter.

106 D. A. S. Lisbôa et al.

4 COTIC’s Software Process During the Pandemic

With the sudden migration to remote working, adaptations were necessary for the exe-
cution of the existing software development process. As a COTIC employee, the first
author of this paper was responsible for adapting this process while maintaining agile
software development practices but adapted for the remote work context. In general,
it was observed that the process activities and those responsible for their execution
remained unchanged.

During the stages of the Build Comprehensive Model, Plan Releases, Build Prod-
uct Backlog and Approve Product Version process, the meetings between the people
responsible for the tasks were held by videoconference through the Google Meet tool.
TheGoogleDrive toolwas adopted for file sharing during the entire remotework process.

In the Build Comprehensive Model and Plan Releases activities, with the limitation
of using physical boards, the Web Mural tool with the Lean Inception theme [6] was
adopted for visual management of these activities, allowing simultaneous collaboration
of members to the virtual board.

To build the Product Backlog, the Web Mural tool was again used with the Product
backlogCanvas template [7], to visuallymanage the activities. In addition, the Trello tool
was used to organize the Product Backlog items generated in this activity. This tool was
also used during the execution of the Sprint. For the internal communication among the
members of the agile team, the Discord tool was used, which allows the use of voice over
IP and the creation of communication channels via text, audio, and videoconferences.
At COTIC the channels are organized by project, plus the socialization and technical
and business support channels offering access and free contribution at any time of the
day to all internal COTIC members (Scrum Master, Product Owner, Scrum Team). The
socialization channel, called #topic-off, was used for informal conversations among the
members of the agile team, with links to courses and training, information about the
COVID-19 pan-demy and general topics. The technical support and business channels,
called #help-technical and #help- business, were used for technical questions and to
understand the business rules of the User Stories, respectively. All channels were used
by the team, being the #topic-off the most frequent, especially for updating information
about the pandemic, including the vaccine.

The activities related to the construction of the User Stories were performed in pairs,
assigned in the Trello tool according to the availability information in the pairing spread-
sheet available on Google Drive. On the other hand, the retrospective meetings were held
with the help of the FunRetro tool that allows the visual management of the Sprint ret-
rospective ceremony, registration of the participants’ information and organization of
the meeting duration. We also started to use other GitLab resources, such as Wiki, for
knowledge management: Scrum Team members recorded the standard procedures for
the execution of certain activities, allowing collaborators to have access to this content,
in case required.

In the activities of Increment and Deliver Product Version, communication between
the team was carried out via Discord and the Trello tool was used to indicate the User
Stories that were part of the product version. Relevant artifacts were shared via Google
Drive so that everyone involved could access and contribute. Finally, in the Product

Study of a Software Development Team’s Adaptations 107

Version Approval activity, the Trello tool was used to manage User Stories and any
changes, defects and improvements requested by the Product Owner.

5 Results

The results observed in this research will be presented according to the technical and
behavioral abilities of COTIC’s employees.

5.1 Hard Skills

• Use of collaborative tools that enable quick feedbacks and visual management of
information, such as: Wall Tool for the dynamics of conception and elaboration of the
product Backlog; Trello used as the team’s task board; Discord for communication
among team members; and FunRetro for the team’s retrospective dynamics.

• Flexibility in theworkload of the ScrumTeammembers, based on the pairing’s spread-
sheet, allowing greater coupling for development tasks, such as pair programming and
programming Dojos; It was also observed the use of knowledge management tools
to register tasks that for some reason, are not performed in pairs. In this way, if it is
necessary to perform the task again, any member of the team can try to solve it.

• Creation, in the Discord tool, of specific channels for collaboration among the team, in
addition to the use of the pairing spreadsheet, covering allmembers of theScrumTeam,
which helped to foster an environment conducive to cooperation and collaboration.

• It was also observed that in the team’s retrospectivemeetings, questions were included
regarding the good use of the collaborative tools and if there were any difficulties in
using them.

• Support from top management for this adaptation of the process, the use of collab-
orative tools to be used, besides its self-organization for managing the workload of
its collaborators and for adapting its work process by keeping the adoption of agile
software development practices; Another aspect observed was the creation of a prac-
tice guide for the transition to remote work. This guide should contain organizational
guidelines and tips for the proper use of collaborative tools and the steps of the work
process tasks.

5.2 Soft Skills

• Increased number of remote meetings with shorter duration time (two hours max-
imum) for inspection and alignment of activities; Also observed was an increase
in the daily frequency of feedbacks, help and support among employees; Another
relevant factor was the importance of meetings being held preferably with the cam-
eras on, because gestures and facial expressions also contribute to a good common
understanding between members.

• Decrease in the learning curve among less experienced members, making it easier for
newmembers to adapt to the activities; The flexibility of the workload also provided a
greater sense of trust in the team, because teammemberswho in the face-to-facemodel
worked different shifts, could have the chance to work together on development tasks,

108 D. A. S. Lisbôa et al.

sharing technical learning and life experiences; It was also observed the importance
of the pairings spreadsheet organization, to avoid the creation of subgroups within
the team. This organization is also important so that the allocation of tasks is done
proportionally to the level of knowledge of the pairs.

• Socialization channels, created in the Discord tool, allowed informal and spontaneous
communication among team members to exchange knowledge, feedbacks and to try
to minimize, as far as possible, the stress and the feeling of isolation caused by
the pandemic. In this sense, employees were oriented about the balance between
professional and personal life to maintain a sustainable remote work routine.

• Large number of interruptions due to physical and logical infrastructure problems;
There were also reported situations of members with health problems, such as back
pain and eye problems, which were most likely caused by the poor ergonomics of the
employees’ homework environment.

• Another important characteristic is to have more sensitivity and common sense for
the pressure to deliver demands and to charge for higher productivity in this pandemic
period, because we are not in a context of common remote work, but in a pandemic
context, where each employee can deal with the situation in different ways. These
pressures, if not well managed, can cause an environment of tension and attrition
among team members.

6 Conclusion

Themain contributionof thisworkwas to present adaptationsmade to theworkprocess of
an information technology team in a department of a Brazilian university. These adapta-
tions were necessary due to the sudden and mandatory transition to remote work needed
to help maintain social distance during the COVID-19 pandemic. We also presented
some of the adaptations observed in relation to agile software development practices,
both from the technical (hard skills) and behavioral (soft skills) points of view of its
collaborators.

As future work, it would be interesting to consider how effective these adaptations
in the software process were from the point of view of productivity in the context of
the observed team, as well as the team’s perception regarding satisfaction with these
adaptations.

References

1. Curtis, B., Krasner, H., et al.: A field study of the software design process for large systems.
Commun. ACM 31(11), 1268–1287 (1988)

2. Agile Manifesto. http://agilemanifesto.org/. Accessed 10 May 2021
3. Ralph, P., Baltes, S., Adisaputri, G., et al.: Pandemic programming. Empir. Softw. Eng. 25(6),

4927–4961 (2020)
4. Schwaber, K., Sutherland, J.: The ScrumGuide.<https://www.scrum-guides.org/docs/scrumg

uide/v2020/2020-Scrum-Guide-PortugueseBR-2.0.0.pdf>. Accessed 26 May 2021
5. Ahmed, F., Capretz, L.F., Bouktif, S., Campbell, P.: Soft skills and software development: a

reflection from software industry. Int. J. Inf. Processing Manag. 4, 171–191 (2013)

http://agilemanifesto.org/
https://www.scrum-guides.org/docs/scrumguide/v2020/2020-Scrum-Guide-PortugueseBR-2.0.0.pdf

Study of a Software Development Team’s Adaptations 109

6. Caroli, P.: Lean Inception: Como alinhar pessoas e construir o produto certo. Edição 1. São
Paulo, Editora Caroli (2018)

7. Aguiar, F., Caroli, P.: Product Backlog Building: Um guia prático para criação e refinamento
de backlog para produtos de sucesso. Edição 1. São Paulo, Editora Caroli (2021)

Agile Requirements Engineering Practices:
A Survey in Brazilian Software Development

Companies

Juan Carlos Barata1(B), Diego Lisboa2(B), Laudelino Cordeiro Bastos1(B),
and Adolfo Neto1(B)

1 Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, Brazil
juan.barata.si@gmail.com, {bastos,adolfo}@utfpr.edu.br

2 Universidade Federal do Pará (UFPA), Belém, Brazil
diegolisboa@ufpa.br

Abstract. Requirements Engineering (RE) is one of the prime areas in software
development. Since agile software development englobes several emerging tech-
niques and advocates for continuous improvement, it urges the question of which
agile RE practices are currentlymost used, their characteristics, and the challenges
in their employment. The aim of this work is to investigate and categorize the
collection and specification of agile requirements practices based on how profes-
sionals perceive their importance for a software project that applies agile method-
ologies. Thus, a survey was carried out with forty-six (46) Brazilian software
development professionals, inquiring which methods are used for the collection
and specification of agile requirements, as well as the features, benefits, and dif-
ficulties when employing the methods. The responses allowed us to perform data
analysis and identify the relationships between the respondents’ experience and
the viewpoints on the collection methods and the agile requirements specification.
In addition, it was noted that the adoption of these methods is still very recent.
They have mainly been used for less than five years. Moreover, it was noted that,
for most respondents, there are yet significant challenges and advances to be made
for better efficiency in applying the informed methods.

1 Introduction

The main objective of requirements engineering (RE) is to identify the demands of
stakeholders, which are people or organizations that will be affected by the system and
possess influence, direct or indirect, over the system requirements. Consequently, it is
essential to understand the issue and its context, elicit the requirements for the system,
analyze, document, and validate them [14].

RE is intended to elicit, organize, and document the software requirements based
on a process that establishes and maintains an agreement among stakeholders [8]. It is
a communication process that will stipulate what the software must do, its functions,
essential and desirable properties, and restrictions [23].

RE practices employed by agile teams differ from those applied in traditional RE [5].
Similar to any process, REmust be continuously improved. Agile software development

© Springer Nature Switzerland AG 2023
C. Rocha et al. (Eds.): WBMA 2021, CCIS 1642, pp. 110–119, 2023.
https://doi.org/10.1007/978-3-031-25648-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25648-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-25648-6_9

Agile Requirements Engineering Practices 111

methods recommend adopting a step-by-step approach to improve software development
processes and adaptation to the altered conditions (e.g., focusing on introducing or
improving unique practices) rather than changing all at once.

Over the years, many survey studies conducted have investigated the selection level
of agile practices [1, 2, 4, 6, 7, 9, 15, 17–19, 21] in software development projects,
including the ‘State of Agile’ report (Digital.ai, 2020). Therefore, it is apparent the
importance of agile methods and their practices for the software development industry.

The research question in this study is based on the following gap: “What are the main
techniques, characteristics, and challenges of employing agile methods in the collection
and specification of requirements?”. We described the employment of the collection
and specification of agile requirements adopted by software development companies,
focusing on techniques, characteristics, and challenges of the technique practitioners. A
surveywas carried out,where forty-six (46) participants and practitioners from thirty-one
(31) Brazilian companies (public and private) answered about the numerous collection
and specification techniques of agile requirements. The results exhibited an overview of
the employment of these techniques in private and public organizations.

The remainder of this work is organized as follows: Sect. 2 presents the description of
the work reports; Sect. 3 displays the research methodology; Sect. 4 shows the research
report; Sect. 5 presents the discussion and conclusion of the study.

2 State of the Art

Recently, the literature has described the employment of RE in projects that adopt agile
methods and demonstrated their importance since one of the main reasons for software
projects failures is the poor collection of requirements [11]. According to SAITO [20], a
successful software project depends on the quality of the Software Requirements Spec-
ification (SRS) model. SRS inadequately done is a catalyst for other issues throughout
the software project, mainly when the process adopts agile forms of software develop-
ment, as many practitioners skip some steps and produce important artifacts, causing
inefficiency in the requirements specification.

In the work published by MEDEIROS [16], the author emphasizes that an inad-
equate SRS is an enhancer of other issues throughout the software project, especially
when applying agile methods. According to the author, it was indicated that in agile envi-
ronments, SRS are generally superficial, insufficient, and inadequate. Consequently, the
author proposed an agile approach for SRS, using a set of good practices fromAgile-RE,
such as Agile Modeling, Prototypes, and Scenario Testing features, in order to propose
an agile SRS process.

Thus, by examining several techniques and approaches for the collection and speci-
fication of requirements in agile software development projects, this work aims to inves-
tigate the techniques, characteristics, and challenges in the collection and specification
of agile requirements currently employed by private and public companies through a
questionnaire, to collect accurate data on the full adoption of agile methods in software
development.

112 J. C. Barata et al.

3 Research Methodology

This study aims to illustrate the characteristics and challenges in employing the collection
and specification of agile requirements by private and public companies. A survey was
carried out as the research method. According to WOHLIN [25], surveys are used when
a technique or tool has already occurred or before it was conducted.

The characteristics are described for which agile method is employed, how the
respondents first learned about Agile-RE, level of knowledge, time of use, and benefits
achieved after applying the method. The challenges were defined through hypothesis
and determined according to the authors cited in Sect. 2. Overall, a total of five (5)
hypotheses were established, which are listed below:

• H1. Low client availability is a relevant challenge;
• H2. Inadequate c between client and team is a relevant challenge;
• H3. The lack of transparency between client’s needs and solutions is a relevant
challenge;

• H4. Inefficient change control in requirements is a relevant challenge;
• H5. Insufficient documentation for implementation, maintenance, and/or training is a
relevant challenge.

3.1 Survey Validation

Before sharing, the survey was validated with the research group: a professor from
Universidade Tecnológica Federal do Paraná (UTFPR), a professor from Universidade
Federal do Pará (UFPA), a part of the software development team from Coordenadoria
de Tecnologia da Informação e Comunicação da Pró-Reitoria de Ensino de Graduação
(COTIC/PROEG) da UFPA and a part of the software development team from a private
company. The questions from the pilot survey were answered by the research group and,
after that, the survey feedback was made.

3.2 Planning and Scheduling the Survey

The survey was conducted virtually through the Google Forms platform. The link for the
survey was shared in five social media: LinkedIn, Facebook, Instagram, WhatsApp, and
Telegram. The collected data was stored in the Zenodo online repository and is available
in the Portuguese version.

3.3 Analyzing the Results

The responseswere analyzed through frequency and percentages that were automatically
generated by the Google Forms platform.

Agile Requirements Engineering Practices 113

4 Results

A total of forty-six (46) responses were collected, in which forty-four (44) respondents
informed that they work with collection and specification of requirements, and only two
respondents do not work with requirements but are a part of a software development
team. 69.6% of respondents work in private companies and 30.4% in public companies.
91.7% of respondents work in national companies and 8.3% inmultinational companies,
working in different positions, as shown in Fig. 1.

Fig. 1. Distribution of working positions among the survey respondents.

4.1 Characterization of Employed Methods for the Collection of Requirements

In the first question of the questionnaire, we identified which methods are employed by
companies for the collection of requirements by inquiring: “What is the main method
used for the collection of requirements in software projects that employ agile methods?”.
Table 1 shows that Interviews with Stakeholders (56.6%), Lean Inception (17.4%), and
Design Thinking (13%) are the most used methods.

Table 1. Percentage of respondents that informed the use of each collection of requirements
method.

Collection of requirements methods Percentage of respondents (%)

Interview with stakeholders 56.6

Lean inception 17.4

Design thinking 13

Workshops 4.3

Lean Iron analysis 2.2

Others 2.2

114 J. C. Barata et al.

Based on the results, 4.4% of respondents stated that they learned about the method
through internet research, 30.4% learned through the academy, 23.9% learned through
training or courses, and 39.2% learned through their workplace.

As reported in the survey, 10.9% of respondents claimed that collection of require-
ments is used in their team for less than one (1) year, 23.9% use it between one (1) and
two (2) years, 23.9% use it between two (2) and four (4) years, 8.7% use it between four
(4) and five (5) years, and 32.6% use it for more than five (5) years. Moreover, 2.2%
of respondents informed that they possess little knowledge about the method, 36.9%
have intermediate knowledge, 28.3% have high knowledge, and 32.6% have enough
knowledge about the method to consider themselves experts.

In the survey, we asked: “Whatwould be the benefits achieved by adopting the collec-
tion of requirementsmethods employed in the company they operate?”. Figure 2 exhibits
that the main benefits achieved were: Understanding the client’s needs, Scope visibility,
Faster validation, MVP (Minimum Viable Product) alignment, and team collaboration.
The least mentioned benefits were: Practicality, Standardization, and Satisfaction. In
addition, three (3) respondents were unable to respond to the question. The respondents
could mention more than one benefit.

Fig. 2. Benefits of employing the collection of requirements methods mentioned by the respon-
dents.

4.2 Characterization of EmployedMethods for the Specification of Requirements

After finishing the questions about the collection of requirements, we seek to identify
which methods are used for the specification of requirements. We asked: “What are
the main methods employed for the specification of requirements in software projects
that uses agile methods?”. Table 2 displays the most used methods: Users History with
60.9%, Product Backlog Building (PBB) with 15.2%, and Prototypes with 13.0%.

Based on the results, 2.2% of respondents stated that they learned about the method
through internet research, 21.8% learned through the academy, 41.3% learned through
training or courses, and 34.8% learned through their workplace.

Agile Requirements Engineering Practices 115

Table 2. Percentage of respondents that informed the use of each specification of requirements
method.

Specification of requirements methods Percentage of respondents (%)

Users history 60.9

Product Backlog Building (PBB) 15.2

Prototypes 13.0

Casos de uso 10.9

Concerning the time of use, 19.6% stated that specification of requirements is used
in their team for less than one (1) year, 21.7% use it between one (1) and two (2) years,
32.6% use it between two (2) and four (4) years, 2.2% use it between four (4) and five (5)
years, and 23.9% use it for more than five (5) years. Furthermore, 2.2% of respondents
informed that they possess little knowledge about the method, 36.9% have intermediate
knowledge, 32.6% have high knowledge, and 28.3% have enough knowledge about the
method to consider themselves experts.

We also asked: “What would be the benefits achieved by adopting the specification
of requirements methods employed in the company they operate?”. Figure 3 reveals
that the main benefits cited were: Clarity, Problem identification, Objectivity, Features
Partitioning, and Features Listing. Adherence to the process, The use of documentation,
and Standardization were the least mentioned benefits. The respondents could mention
more than one benefit.

Fig. 3. Benefits of employing the specification of requirements methods mentioned by the
respondents.

The questionnaire also included questions about the work team satisfaction with the
employment of the collection and specification of requirements methods mentioned by

116 J. C. Barata et al.

the respondents. For 19.6% of respondents, the team is neither satisfied nor unsatisfied,
50% is more or less satisfied, and 30.4% is very satisfied.

4.3 Challenges in the Employment of the Collection and Specification
of Requirements Methods

In order to verify and identify the challenges in the employment of the collection and
specification of requirements methods, we asked: “What are the difficulties, limitations,
challenges, and points to improve in the employment of the collection and specification
of requirements methods?”. 73.9% of respondents informed “Yes” and 26.1% informed
“No”. It is essential to highlight that the five (5) hypotheses of possible challenges were
added to the question to verify their relevance. Table 3 shows the indication percentage
that respondents marked as a challenge in employing the methods.

Table 3. Challenges in adopting the collection and specification of requirements mentioned by
the respondents.

Challenges in adopting the collection and specification of
requirements

Percentage of respondents (%)

Low client availability 39.5

Inefficient change control in requirements 18.4

Insufficient documentation 13.2

Inadequate interaction 13.2

The lack of transparency between client’s needs and
solution

5.3

Lack of knowledge from the development team 2.6

Lack of domain and agile mindset from the team 2.6

Platform limitations 2.6

Lack of knowledge about the methods 2.6

Concerning the initial hypotheses, the following results were obtained:

• H1. Low client availability is a relevant challenge: according to Table 4, it was
identified that low client availability possesses the highest indication percentage
(39.5%);

• H2. Inadequate interaction between client and team is a relevant challenge: itwas noted
that inadequate interaction between client and team had an indication percentage of
13.2%. The same percentage was observed in H5;

• H3. The lack of transparency between client’s needs and solutions is a relevant
challenge: it was observed that the lack of transparency between client’s needs and
solutions was the least indicated by respondents (5.3%);

• H4. Inefficient change control in requirements is a relevant challenge: H4 was the
second most indicated challenge with a percentage of 18.4%;

Agile Requirements Engineering Practices 117

• H5. Insufficient documentation for implementation, maintenance, and/or training is a
relevant challenge: The percentage observed in H2 was the same as H5, with 13.2%.

5 Conclusions

This work aimed to describe the characteristics and challenges in employing the collec-
tion and specification of agile requirements by private and public companies. A survey
was carried out as the research method, where forty-six (46) responses were collected
from practitioners in software analysis and development teams. The results showed the
characteristics and challenges of the collection and specification of requirements meth-
ods adopted by private and public companies when using agile software development
methods.

In projects that employ agilemethods,when analyzing the collection of requirements,
it was observed that the main applied methods are Interviews with Stakeholders, Lean
Inception, and Design Thinking. In addition, it was noticed that these methods are being
used for less than five (5) years (67.4% of respondents). However, 32.6% of respondents
stated that they knowenough about themethods to consider themselves experts. Themain
benefits in using the collection of requirements methods mentioned by the respondents
are: Understanding the client’s needs, Scope visibility, and Faster validation.

In relation to the specification of requirements in projects that employ agile methods,
the Users History, PBB, and Prototypes were the most mentioned methods used. It was
also noticed that 73.9% of respondents use these requirements methods for less than four
(4) years, and 97.8% consider themselves with intermediate, high, and advanced knowl-
edge about the methods. According to the respondents, the main benefits in employ-
ing the specification of requirements methods are: Clarity, Problem identification, and
Objectivity.

Concerning the challenges and points to improve in the employment of collection
and specification of agile requirements, 73.9% of respondents informed that there are
challenges and points of improvement. The four (4) main relevant challenges identi-
fied were: low client availability, inefficient change control in requirements, insufficient
documentation for implementation, maintenance, and/or training is a relevant challenge,
and inadequate interaction between client and team.

Therefore, the collected data suggest that the employment of collection and spec-
ification of agile requirements are still very recent and are mainly used for less than
five (5) years, but there are several knowledgeable workers that can apply these meth-
ods accordingly. Nevertheless, for most respondents, the collection and specification of
requirements still have significant challenges and improvements for their proper and
efficient use.

Overall, the data allows new research options for the future, such as “what strate-
gies could be applied to obtain more availability from clients?”, “what can be done to
maintain an efficient change control in requirements?”, “how to maintain and improve
the interaction with stakeholders?”, and “how to improve projects documentation?”.
These research options can assist in improving the employment of Agile-RE in software
analysis and development project teams in private and public organizations.

118 J. C. Barata et al.

References

1. Ali, M.A.: Survey on the state of agile practices implementation in Pakistan. Int. J. Inf.
Commun. Technol. Res. 2(4) (2012)

2. Barabino, G., Grechi, D., Tigano, D., Corona, E., Concas, G.: Agile methodologies in web
programming: a survey. In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179,
pp. 234–241. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06862-6_16

3. Boness, K.D., Harrison, R., 2007. Goal sketching: towards ágil requirements engineering. In:
second International Conference on Software Engineering Advances (ICSEA)

4. Buchalcevova, A.: Research of the Use of AgileMethologies in the Cezch Replubic. Springer,
Information Systems Development (2009)

5. Cao, L., Ramesh, B.: Agile requirements engineering practices: an empirical study. Softw.
IEEE 25(1), 60–67 (2008)

6. Causevic, A., Sundmark, D., Punnekkat, S.: An industrial survey on contemporary aspects
of software testing. In: Proceedings of 3rd International Conference on Software Testing,
Verification and Validation (ICST). IEEE (2010)

7. Doyle, M., Williams, L., Cohn, M., Rubin, K.S.: Agile software development in practice.
In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 32–45. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06862-6_3

8. Engholm, H.: Engenharia de Software na Prática, Novatec, São Paulo (2010)
9. Hussain, Z., Slany,W., Holzinger, A.: Current state of agile user-centered design: a survey. In:

Holzinger, A., Miesenberger, K. (eds.) USAB 2009. LNCS, vol. 5889, pp. 416–427. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10308-7_30

10. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic literature
review on agile requirements engineering practices and challenges. Compt. Human Behav.
51, 915–929 (2016)

11. Kassab, M.: The changing landscape of requirements engineering practices over the
past decade. In: Proceedings of 5th International Workshop on Empirical Requirements
Engineering (EmpiRE). IEEE (2015)

12. Kassab, M.: An empirical study on the requirements engineering practices for agile software
development. In: Proceedings of 40th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA). IEEE (2014)

13. Kassab, M., Neill, C., Laplante, P.: State of practice in requirements engineering: contempo-
rary data. Innov. Syst. Softw. Eng. 10(4), 235–241 (2014). https://doi.org/10.1007/s11334-
014-0232-4

14. Kotonya, G., Sommerville, I.: Requirements engineering with viewpoints. Softw. Eng. J. 11,
5–18 (1998)

15. Kurapati, N., Manyam, V.S.C., Petersen, K.: Agile software development practice adoption
survey. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 16–30. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30350-0_2

16. Medeiros, J.R.V.: Na approach to support the requirements specification in agile software
development (2017)

17. Nazir, N., Hasteer, N., Bansal, A.: A survey on agile practices in the Indian it industry. In:
Proceedings of 6th International Conference on Cloud System and Big Data Engineering
(Confluence). IEEE (2016)

18. Papatheocharous, E., Andreou, A.S.: Empirical evidence and state of practice of software
agile teams. J. Softw. 26(9) (2014)

19. Rodríguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage in
Finnish software industry. In: Proceedings of International SymposiumonEmpirical Software
Engineering and Measurement (ESEM). ACM-IEEE (2012)

https://doi.org/10.1007/978-3-319-06862-6_16
https://doi.org/10.1007/978-3-319-06862-6_3
https://doi.org/10.1007/978-3-642-10308-7_30
https://doi.org/10.1007/s11334-014-0232-4
https://doi.org/10.1007/978-3-642-30350-0_2

Agile Requirements Engineering Practices 119

20. Saito, S., Takeuchi, M., Hiraoka, M., Kitani, T.: Requirements clinic: third party inspection
methodology and practice for improving the quality of software requirements specifications.
In: 21st IEEE International Requirements Engineering Conference (RE) (2013)

21. Salo, O., Abrahamsson, P.: Agile methods in European embedded software development
organisations: a survey on the actual use and usefulness of extreme programming and scrum.
IET Softw. 2(1), 58–64 (2008)

22. Solinski, A., Petersen, K.: Prioritizing agile benefits and limitations in relation to practice
usage. Softw. Qual. J. 24(2), 447–482 (2014). https://doi.org/10.1007/s11219-014-9253-3

23. Sommerville, I.: Software Engineering, 7th edn., Addison Wesley, Boston (2018)
24. Wang, X., Zhao, L., Wang, Y., Sun, J.: The role of requirements engineering practices in agile

development: an empirical study. In: Zowghi, D., Jin, Z. (eds.) requirements engineering.
CCIS, vol. 432, pp. 195–209. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43610-3_15

25. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A. Experimentation
in SoftwareEngineering. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29044-2

https://doi.org/10.1007/s11219-014-9253-3
https://doi.org/10.1007/978-3-662-43610-3_15
https://doi.org/10.1007/978-3-642-29044-2

Author Index

Almeida, Hyggo 3
Alves, Álax 32
Araújo, Acássio dos A. 18

Barata, Juan Carlos 110
Bastos, Laudelino Cordeiro 110

Caldeira, Clara M. 103
Casagrande, Ludimila Monjardim 95
Costa, Alexandre 3
Cursino, Rodrigo B. 18
Cursino, Rodrigo 66

da Rocha, Thayssa A. 103
de Castro, Jhonatan S. 18
de Sá, Fernando Rodrigues 79
de Souza, Cleidson R. B. 103

Freire, Arthur 3

Gardey, Juan Cruz 54
Garrido, Alejandra 54
Gorgônio, Kyller 3
Grigera, Julián 54

Lima, Daniel 66
Lisbôa, Diego A. S. 103
Lisboa, Diego 110

Machado, Letícia S. 103
Melo, Ana 18

Neto, Adolfo 110
Neto, Manuel 3

Perkusich, Angelo 3
Perkusich, Mirko 3

Rocha, Carla 32
Rossi, Gustavo 54

Santos, Wylliams B. 18

	 Preface
	 Organization
	 Contents
	Full Papers
	Using a Teamwork Quality Instrument to Improve Agile Teams' Effectiveness: Practical Use Cases
	1 Introduction
	2 Background and Related Works
	2.1 Team Radar Plot Usage to Diagnose and Improve Teamwork
	2.2 Teamwork Bayesian Network Model (TWQ-BN)
	2.3 Software Development Teams Working from Home During COVID-19

	3 Methodology
	3.1 Research Context
	3.2 TWQ-BN Adaptation
	3.3 Use Cases Definition Process

	4 Use Cases
	4.1 Use Case #1
	4.2 Use Case #2

	5 Discussion
	6 Conclusions
	References

	Agile Methodology Brazilian Workshop - Agile Brazil: A Decade of Software Testing
	1 Introduction
	2 Background
	2.1 Brazilian Workshop on Agile Methods
	2.2 Agile Testing

	3 Research Method
	3.1 Research Questions
	3.2 Search Strategy, Sources and Selection of Papers
	3.3 Data Extraction

	4 Results
	4.1 RQ1: Which are the Main Authors Who have Published Papers (and Other Materials) Related to Software Testing in the WBMA?
	4.2 RQ2: What are the Main Institutions that have Published Articles (and Other Materials) Related to Software Testing at the WBMA?
	4.3 RQ3: Which Articles Published in the WBMA Related to Software Testing have the Most Impact (Cited By)?
	4.4 RQ4: What are the Main Types of Contributions to Software Testing in the WBMA?

	5 Related Work
	6 Limitations and Threats
	7 Conclusion and Future Works
	References

	Assuring the Evolvability of Legacy Systems in Devops Transformation/Adoption: Insights of an Experience Report
	1 Introduction and Motivation
	2 Related Works
	3 Background
	3.1 DevOps - Practices and Strategies
	3.2 Legacy Software and Its Challenges

	4 Strategies to Bring DevOps into Legacy Code
	4.1 Legacy in the Box
	4.2 Testing, Integrating and Deploying Continuously
	4.3 Architecture

	5 The Case Study
	5.1 Open Source Software (OSS)
	5.2 Study Design

	6 Results
	6.1 Noosfero
	6.2 Mapknitter
	6.3 Spectral Workbench
	6.4 Salicml

	7 Discussion
	8 Conclusion
	References

	UX-Painter: Fostering UX Improvement in an Agile Setting
	1 Introduction
	2 Related Work
	3 A UX-Aware Agile Process
	4 UX-Painter in Action
	5 Implementing Refactorings
	6 Conclusion
	References

	Applying Agile Management on Communities of Practice and Startups: A Survey
	1 Introduction
	2 Related Works
	3 Research Method
	3.1 Research Questions
	3.2 Target Audience
	3.3 Research Tool
	3.4 Data Collection

	4 Results
	4.1 Demographic Data
	4.2 RQ01: What Agile Methods and Practices are Being Used in Management and Operation of Communities?
	4.3 RQ02: What are the Main Objectives of the Companies and the Aimed Benefits When Adopting Communities?

	5 Conclusion and Future Work
	References

	Scrum in Strongly Hierarchical Organizations: A Literature Review
	1 Introduction
	2 Literature Review
	2.1 Search Strategy
	2.2 Exclusion Criteria
	2.3 Search Results

	3 Summary of Works
	4 Complementary Works
	5 Previous Articles from this Author
	6 Final Considerations
	References

	Short Papers
	Experience in Implementing the Scrum Framework in Incubated Companies
	1 Introduction
	2 Context
	3 Theoretical Background
	4 Methodology
	5 Presentation and Analysis of Results
	5.1 Case 1
	5.2 Case 2

	6 Conclusion
	References

	Study of a Software Development Team's Adaptations to Remote Work During the COVID-19 Pandemic
	1 Introduction
	2 Context and Methodology
	3 COTIC’s Software Process Before the Pandemic
	3.1 Build Comprehensive Model
	3.2 Plan Releases
	3.3 Build Product Backlog
	3.4 Run Sprint
	3.5 Upgrade Product Version
	3.6 Homologate Product Version
	3.7 Deliver Product Version
	3.8 Considerations

	4 COTIC’s Software Process During the Pandemic
	5 Results
	5.1 Hard Skills
	5.2 Soft Skills

	6 Conclusion
	References

	Agile Requirements Engineering Practices: A Survey in Brazilian Software Development Companies
	1 Introduction
	2 State of the Art
	3 Research Methodology
	3.1 Survey Validation
	3.2 Planning and Scheduling the Survey
	3.3 Analyzing the Results

	4 Results
	4.1 Characterization of Employed Methods for the Collection of Requirements
	4.2 Characterization of Employed Methods for the Specification of Requirements
	4.3 Challenges in the Employment of the Collection and Specification of Requirements Methods

	5 Conclusions
	References

	Author Index

