
PREFHE, PREFHE-AES
and PREFHE-SGX: Secure Multiparty

Computation Protocols from Fully
Homomorphic Encryption and Proxy

ReEncryption with AES and Intel SGX

Cavidan Yakupoglu(B) and Kurt Rohloff

New Jersey Institute of Technology, Newark, NJ 07102, USA
{cy267,rohloff}@njit.edu

Abstract. We build our secure multiparty computation (MPC) proto-
cols on top of the fully homomorphic encryption (FHE) scheme, BFVrns,
and augment it with Proxy Re-Encryption (PRE). We offer three dis-
tinct secure MPC protocols that make use of the Advanced Encryption
Standard (AES) and Intel Software Guardian Extension (SGX). The
PREFHE protocol is based on FHE and PRE that offers a reasonable
computational time of milliseconds or seconds, depending on the func-
tion computed jointly on the parties’ encrypted data. It offers 4 rounds
and a communication cost that only depends on the parties’ cipher-
text size. PREFHE-AES employs AES-128 encryption, which reduces
the cost of communication to bits rather than kilobytes or megabytes
while maintaining the same number of rounds as PREFHE. PREFHE-
SGX is another novel approach that reduces the number of rounds from
4 to 3 by utilizing only one untrusted server. Additionally, it delivers a
reasonable level of performance that is applicable to real-world use cases.
We pioneer the use of SGX and FHE in secure MPC protocols, resulting
in reduced number of rounds. In the protocols, after parties send their
encrypted data to the server, they are not required to be online that
improves practicality in the protocols. Additionally, the parties are not
required to collaborate on any computations during the encryption and
decryption phases that makes our protocols more efficient than other
proposed protocols.

Keywords: Multiparty computation · Homomorphic encryption ·
RLWE · Proxy reencryption · Intel SGX

1 Introduction

With the improvement of technology, new approaches have been proposed such
as cloud storage/computing or distributed computing. While these services offer
ease and practicality in real life, it comes at a price of privacy. When we store

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 819–837, 2023.

https://doi.org/10.1007/978-3-031-25538-0_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_43&domain=pdf
http://orcid.org/0000-0001-9048-814X
http://orcid.org/0000-0003-0389-5092
https://doi.org/10.1007/978-3-031-25538-0_43

820 C. Yakupoglu and K. Rohloff

our data in the cloud, the cloud or other cloud users may snoop our confidential
data. To protect this sensitive information, storing the data in encrypted way is
the first step to solve this problem. This idea leads to another problem of making
computations on this data. Homomorphic encryption (HE) enables computation
of some functions on the encrypted data while FHE allows any kind of compu-
tation. Secure MPC takes this approach to another level with computing on the
encrypted data collaboratively. It enables n parties computing a function F on
n encrypted inputs, such that each party learns the result of the function but
not any others’ input.

Secure MPC was first introduced by Yao in 1986 [48] for two-party case and
multiparty case by Goldreich, Micali and Wigderson [27]. For constructing secure
MPC two different approaches have been proposed in general. The first method
is based on secure secret sharing where there is an honest majority among the
parties [4,10]. The second approach uses binary circuit representation of the
function [27,48]. Secure MPC has progressed in terms of efficiency with the recent
studies. Based on HE, many MPC studies were proposed such as [5,14,17,18,38].
After the introduction of FHE, many MPC studies were proposed based on FHE
such as [33] and FHE variants such as threshold FHE [3] and multikey FHE [34].

FHE refers to a family of encryption methods that allows evaluation of arbi-
trary computation on encrypted data. FHE was first proposed by Rivest et
al. [41] in 1978. It was an open problem until Gentry proved that FHE is possi-
ble by using lattices in his work [25] in 2009. After Gentry’s breakthrough, many
variants of FHE were proposed in the literature [19,43]. FHE offers privacy for
data and efficiency on distributed computing on encrypted data and enables
powerful privacy-preserving applications. One of these important applications
is the family of secure MPC protocols. FHE allows constructing efficient secure
MPC schemes. Lattice-based cryptography is known for its quantum resistance,
so our secure MPC protocols are quantum-resistant as well. We propose three
secure MPC protocols with BFVrns [7,22,29] that is a ring-learning with error
(RLWE) based FHE scheme. We offer efficient secure MPC implementations
based on PALISADE lattice cryptography library1 [39].

Efficiency of secure MPC is measured based on three metrics such as rounds,
computation cost and communication cost. Rounds refers to total number of
communication between parties and servers and among servers. Communication
cost is used for the amount of data that is transferred during the execution
of the protocol. Computation cost is the amount of computation conducted in
each party and server to process the protocol. Some studies suggest some secure
MPC protocols that computational and communication complexities of all the
parties who participate in the protocol depend on the complexity of the function
[4,10,27,30]. This type of protocols may not be efficient in real-life application
due to the high complexity of the function. Some recent protocols require com-
munication at every gate and all parties to be online [5,16,18] which is not
very possible all the time. In some protocols, decryption is jointly computed [34]
which is not very practical in most of use cases. The protocol of [3] requires the

1 https://gitlab.com/palisade/palisade-release.

https://gitlab.com/palisade/palisade-release

PREFHE, PREFHE-AES and PREFHE-SGX 821

parties to generate a joint public key online which is not always achievable in
real life. The study in [28] suggests a secure MPC protocol for a small class of
functions that is not enough for most of the applications. To overcome these
challenges, we introduce our FHE and PRE-based secure MPC construction and
its two variants with AES and SGX.

We introduce a novel concept of secure MPC as a hybrid of FHE and PRE.
Our secure MPC constructions mainly depend on FHE approach. We make use
of its proxy-reencryption (PRE) capability for constructing the secure MPC
protocols. PRE allows us to conduct computation on encrypted data which are
encrypted under many different keys while FHE enables secure computation
for two parties. The recent Threshold FHE schemes have some pitfalls that
a third party should know all secret keys of the parties to create a common
multiparty operation key. We overcome this problem by using PRE. PRE allows
reencryption of the ciphertext under a common key to enable evaluation of the
function on the given ciphertexts by different parties. It also enables reencrytion
of the result of the function evaluation under individual keys of each party so
that each party can decrypt the result without exchanging any keys or partial
decrypted results.

Our protocols depend on honest-but-curious (semi-malicious) security model
that is a prevalent security model used in practical implementations of secure
MPC due to performance reasons [6,9,20,21,32]. We assume that two untrusted
servers in the protocols do not collude. The assumption of existence of two non-
colluding servers is widely used in many studies [9,11,15,21]. Furthermore, we
propose further improvements to enhance the security model to malicious model
with non-interactive zero knowledge (NIZK) proofs proving plaintext knowl-
edge as done in the work [34]. Our protocols can be easily used by the privacy-
preserving applications such as auctions, electronic voting or secure machine
algorithms can be good use cases for our secure MPC protocols.

In our main protocol PREFHE, we assume that we have two non-colluding
but untrusted servers. One of the server is responsible for creating FHE param-
eters and generating common key pair and reencryption keys for each part.
Another one conducts evaluation of the function on the ciphertexts and reen-
cryption of the result. In PREFHE, the parties are involved in the protocol
while uploading their encrypted data and decrypting the final result. In the rest
of the protocol, any party does not need any further communication with the
servers. The communication between the clients or servers does not depend on
the complexity of the function to be evaluated. Also, the computation of the
parties/clients does not depend on the complexity of the function F . All parties
are not expected to be online after sending their encrypted data to the server.
In the encryption or decryption phase, we do not require any joint computation
by the parties. The parties only send their encrypted data to the server and they
get the final result in encrypted at the end of the protocol.

In the AES variation of PREFHE, PREFHE-AES, the parties send their
data encrypted under AES-128 that enables less communication cost between
the parties and the server (S1). We adapt the idea of the work in [36] to our

822 C. Yakupoglu and K. Rohloff

secure MPC protocol. This adaption creates an extra computational cost on the
server (S1), but this can be handled with improvements such as parallelization
or including special hardware for AES encryption/decryption. We propose SGX
variation of PREFHE as PREFHE-SGX that combines PALISADE library (for
implementation of the FHE scheme), Intel SGX technology and secure MPC. We
use Gramine as a bridge between PALISADE and Intel SGX to avoid adjusting
the PALISADE code to SGX [31].

1.1 Our Contributions

PREFHE: PREFHE proposes the first combination of FHE and PRE approach
for secure MPC protocols. It enables practical secure MPC implementation for
real-life use cases. It requires 4 rounds including key exchange phase which is
not included as a round in many previous works. The parties in the PREFHE
protocol are not required to be online after they send their encrypted data to
the server. This makes the protocol a good fit for the applications that do not
allow online access all the time. The parties send their data encrypted under the
BFVrns scheme that may result in kilobytes sometimes megabytes. This may
cause some problems in low-bandwidth network or applications that have small
memory or network channel. To handle this problem, we propose AES version
of PREFHE.

PREFHE-AES: To reduce the communication cost of PREFHE, the parties
send their data encrypted in AES-128 which has smaller data size to be sent to
the server. We reduce communication cost, but it comes at a price of computation
cost on the server side. Computing decryption of AES-128 homomorphically
is a costly operation. For applications that require less communication cost,
PREFHE-AES is a good fit with the same number of rounds as PREFHE at a
reasonable computational time.

PREFHE-SGX: For the applications that allow only one server or have
constraints of local computation, PREFHE-SGX is a convenient approach with
3 rounds that has less than most of the state-of-the-art protocols. It also intro-
duces reasonable computational cost which only depends on the function to be
evaluated. We lead adapting SGX and FHE together in secure MPC protocols
that leads practical use of secure MPC protocols in real-life applications.

Performance In Practice: Our three protocols provide reasonable amount
of running time on the client and server side with milliseconds or seconds that
mainly depends on the function. Even if circuit depth is high, we use an efficient
FHE scheme, BFVrns, that takes advantages of Residue Number System (RNS)
and packing of plaintext in SIMD manner [24,42].

1.2 Related Works

The idea of using threshold homomorphic encryption in MPC protocols was
first presented by Cramer, Damgard, and Nielsen [14]. Somewhat homomorphic
encryption was used to boost implementation of MPC protocols in some studies

PREFHE, PREFHE-AES and PREFHE-SGX 823

such as [5,18]. In their protocols, all parties compute proportional to the com-
plexity of the function to be computed and interact at every gate. Choudhury et
al. proposed better communication at a computation cost [12]. Their work sug-
gested a kind of interactive bootstrapping protocol to refresh ciphertexts. Cloud
server idea came with the work by Kamara et al. [30]. They proposed server-
aided MPC idea by assigning large amount of works from the computation to
some parties. Halevi et al. suggested the idea of secure computation on the web
to minimize communication between parties in the computation [28]. After FHE
is proposed by Gentry [25], new approaches based on FHE were suggested by
Lopez et al. [33,34] using multikey FHE approach. Asharov et al. presented an
efficient threshold FHE based secure MPC scheme in terms of round, commu-
nication and computation costs [3]. TFHE schemes allow to jointly generate a
common FHE public key along with a secret key that is shared by them later.
For decryption, they conduct a collobarative decryption process on ciphertexts
to get the final plaintext without learning others’ inputs. Garg et al. achieved 2-
round MPC from indistinguishability obfuscation [23]. As an optimization they
suggested another 2-round MPC protocol from multikey FHE that is indepen-
dent of the circuit to be computed. [37] proposes a Intel SGX as TEE and
FHE-based multiparty computation that makes use of a certification authority
(CA) for aunthentication of the parties. [46] presents a multiparty construction
that uses partial HE and Intel SGX as TEE. The latest two constructions do
not use Gramine.

2 Background

2.1 Fully Homomorphic Encryption Scheme: BFVrns

We give a brief explanation of the BFVrns scheme referenced from [7,22,29] but
mainly from [29]. Fan and Vercauteren [22] present the RLWE version of work
proposed by Brakerski in [7]. Residue Number System (RNS) variant of the BFV
scheme is presented by Halevi et al. [29] for more efficient procedures for BFV
and it is implemented in PALISADE library. BFVrns provides improvements
on decryption and homomorphic multiplication by using Chinese Remainder
Theorem (CRT) representation. BFVrns utilizes some parameters such as m,
t, q ∈ Z. t stands for plaintext modulus, N stands for φ(m) = N , ciphertext
modulus is q =

∏k
i=1, qi for the same size qi, σ is the standard deviation of error

distribution χ. rw stands for the size of the relinearization window. Let rings be
R = Z[x]/Φm(x), Rq = R/qR, Rt = R/tR. We choose a uniform αi ∈ Rq and
ei ← χ, qi

∗ = q/qi, q′
i = [qi

∗−1]qi , βi = [q′
iqi

∗s2 − αis + ei]q for i = 0, 1, . . . , k.
The public key consists of pk and Wi := (βi, αi).

– KeyGeneration: Secret Key: Sample s ← χ, set sk = (1, s) ∈ R2.
Public Key: Sample a ← Rq, e ← χ, set pk = ([−(a · s + e)]q, a) ∈ R2

q.
– Encryption(m, pk): m ∈ Rt, u ← χ, e0, e1 ← χ, ct = [u · pk + (e0, e1) +

(Δm, 0)] where Δ = q/t. Output ct.

824 C. Yakupoglu and K. Rohloff

– Decryption(ct, sk): ct = (ct[0], ct[1]), x = [〈sk, ct〉]q = [c[0] + c[1]s]q and
output m := [�x · t/q�]t.

– Add(ct0, ct1): Output [ct0 + ct1]q.
– Mult(ct0, ct1): For ct0, ct1, tensoring and relinearization are computed as

follows:
• Tensoring: c[0] = ct0[0]ct1[0], c[1] = ([ct0[0]ct1[1]+ [ct0[1]ct1[0]]q), c[2] =

ct0[1]ct1[1] and c = (c[0], c[1], c[2]). Output c′[i] = [�t/q · c[i]�]q for i =0,
1, 2.

• Relinearization: Decompose c′[2] into its CRT components c′[2][i] =
[c′[2]]qi , set c′′[0] = [

∑k
i=1 βic

′[2][i]]q, c′′[1] = [
∑k

i=1 αic
′[2][i]]q, output

ctmult = [(c′[0] + c′′[0], c′[1] + c′′[1])]q.
– MultiPartyKeyGen(pk): pk = (p0, p1), a ← p1, s ← χ, b = −(e+(a · s))+

p0, set new key pk′ = (b, a) and sk = s.
– ReKeyGen(newpk, oldsk): For rw = 0, newpk = (p0, p1), e1i, e2i ← χ,

ui ← χ. For each element in oldsk; c0i = p0 · ui + e1i + fi where fi are
elements at index i in oldsk. c1i = p1 ·ui + e2i. Set evalKey = ({c0k}, {c1k)}
for 0 ≤ k < v where v is the number of elements in oldsk. Output evalKey.

– ReEncrypt(evalKey, ciphertext): Apply KeySwitch on ciphertext with
evalKey.

– KeySwitch(evalKey, ciphertext): evalKey = (b, a). Set digitsC1 as CRT-
Decompose of ciphertext[1] on base rw, c1 = digitsC1[0] · a[0], c0 = c0 +
digitsC1[0]·b[0]. Set c0 = c0+

∑k−1
i=1 (digitsC1[i]·b[i]), c1 =

∑k−1
i=1 (digitsC1[i]·

a[i]) where k is size of digitsC1. Output newCiphertext = (c0, c1).

2.2 Intel SGX

The Trusted Execution Environment (TEE) is an approach for secure compu-
tation that enables the processing of sensitive data within the main processor’s
secure area (enclave). TEE delivers memory in secure enclaves for isolated com-
putation in the presence of a malicious host. Other processes, such as user or
kernel level operations, cannot modify the code contained within the enclave.
SGX is a hardware-assisted version of TEE that is available on various Intel
processors. SGX enables code to execute in a protected enclave that can com-
municate with other applications through a dedicated channel, but other appli-
cations cannot access the enclave itself [13]. Enclave execution takes place in
the protected mode (at ring 3) and follows the address translation done by the
operating system kernel [13]. SGX has remote attestation to prove the integrity
of the code running in the enclave. When a malicious party attacks a system, it
cannot access the code running/stored in the enclave. This reduces the attack
surface of the system. SGX has also some disadvantages as follow.

– Paging cost: Data is encrypted and decrypted during exchanging the data
between the enclave and outer program. This step creates latency during the
paging process.

– Memory limit: SGX has physical memory limit of 128 MB while the practical
limit is 90 MB [13,26].

PREFHE, PREFHE-AES and PREFHE-SGX 825

– Lack of library support: Some C++ operations or libraries cannot be used in
SGX such as vector from standard library and system calls.

In our study, SGX helps us to execute sensitive data in an untrusted server. In
PREFHE, we have to use two servers to prevent disclosing of parties’ data. In
the PREFHE-SGX version, one server handles the tasks of two servers. When
the server in PREFHE-SGX runs the sensitive data that helps decrypting the
clients’ encrypted data. In the new version, creating the common key pair and
reencryption key that use the secret key of common key pair take place in the
SGX enclave which cannot be tampered by the host server or any other malicious
third parties.

Gramine: Gramine is an open-source, lightweight Lib OS(Library Oper-
ating System) project that supports Intel SGX and allows users to run their
existing applications on Intel SGX [31]. Intel Labs initiated Gramine (previously
called Graphene) to provide an open-source compatibility layer for Intel SGX.
Gramine bridges various kind of applications and Intel SGX without modifying
the application code. Gramine supports native Linux binaries on all platforms.
We use Gramine to integrate PALISADE homomorphic encryption library and
Intel SGX. Since Intel SGX does not allow usage of some libraries, Gramine
handles this problem for developers. PALISADE, Gramine and Intel SGX are
first used by Takeshita et al. [45] while we pioneer using this system for building
secure MPC protocols.

3 Secure MPC Protocols

In this section, we introduce our three secure MPC protocols in detail.

3.1 PREFHE: Secure MPC from Multikey FHE and PRE

We construct a secure MPC protocol based on the BFVrns scheme which is
a prominent lattice-based FHE scheme. Our protocol is constructed on two
untrusted servers and n clients who want to run secure MPC on their secret
data collabaratively. We utilize PRE approach to enable privacy of the inputs of
the clients and the result of secure multiparty computation. PRE allows reen-
crypting different ciphertext under the same secret key. Indirectly, it also allows
decrypting the same input under different secret keys. In the protocol, we utilize
the PRE method proposed in [40] as a building block to manage two untrusted
server setting. We assume that these two servers do not collude and the clients
and S1 use a secure channel to prevent S2 to access any ciphertext which is
encrypted under reencryption keys generated with the common key pair. We
summarize how this protocol works step by step. Also, we provide the security
analysis for semi-malicious model (a.k.a. honest-but-curious model).

1. The untrusted server S2 decides on the FHE parameter set which is generated
by the work [47] and verified by LWE Estimator [2] that is used in Homomor-
phic Encryption Standard [1]. S2 decides on the client index j who initiates

826 C. Yakupoglu and K. Rohloff

Key Generation and S2 creates the crytocontext cc and a common key pair
CKPair from cc to reencrypt the ciphertext under the same key pairs, pub-
lishes FHE parameters, CKPair.pk and j to the clients as in Fig. 1.

2. The clients can check the security of the parameter set with LWE Estimator
and if it does not provide necessary security limit (i.e. at least 128-bit security
level), they can ask for S2 to generate a new parameter set and publish it to
all parties.

3. The client j initiates the Key Generation process and broadcasts his public
key as pkj .

4. Other clients operate Multiparty Key Generation using pkj . Each party
encrypts their data under their individual public key.

5. All clients operate ReKey Generation process to generate new encryption
keys to enable S1 to eval the function on the data.

6. The clients reencrypt their ciphertext under their new individual reencryption
keys. They send these new ciphertexts cptxtCi to S1. S1 evaluates the function
to be computed on these ciphertexts as in Fig. 2. S1 does not know the secret
key of the common key pair CKPair, thus S1 cannot decrypt the ciphertexts
of the clients.

7. As seen in Fig. 3, S2 creates reencryption keys to allow the clients to decrypt
the result under their individual secret keys. S2 sends these keys REKeyi to
S1 allowing that noone can see the result in plaintext including S1 and S2.

8. S1 reencrypts the result under corresponding new reencryption keys of the
clients and sends all ri to corresponding public key holder clients where 1 ≤
i ≤ n.

9. Each client decrypts their reencrypted ciphertext ri under their individual
secret keys and learns the result of the multiparty computation.

Clients Server2

FHE parameters, index j

CKPair=cc→ KeyGen()

Key Generation

kpj = cc→ KeyGen()

Publish kpj .pk

kpk = cc→ MultipartyKeyGen(kpj .pk) (for k! = j)

FHE Parameters, j, CKPair.pk

Fig. 1. Key generation and exchange phases of the PREFHE protocol.

PREFHE, PREFHE-AES and PREFHE-SGX 827

Clients Server1

result= cc→ EvalF({cptxtCi})

Encryption (for 0 ≤ i < n)

cptxti = cc→ Encrypt(kpi.pk, ptxti)

ReEncryption (for 0 ≤ i < n)

REKeyCi = cc→ ReKeyGen(CKPair.pk, kpi.sk)

cptxtCi = cc→ ReEncrypt(REKeyCi, cptxti)
{cptxtCi}

Fig. 2. Reencryption phase of PREFHE and PREFHE-SGX protocol.

Clients Server1 Server2

Re Encryption (for 0 ≤ i < n)

ri= cc→ ReEncrypt(REKeyi, result)

Re Encryption KeyGen (for 0 ≤ i < n)

REKeyi = cc→ ReKeyGen(kpi.pk, CKPair.sk)

Decryption (for 0 ≤ i < n)

cc→ Decrypt(kpi.sk, ri, DecResulti)

{REKeyi}

{ri}

Fig. 3. Second reencryption and decryption of the PREFHE protocol.

3.2 PREFHE-AES: Secure MPC from Multikey FHE and PRE
with AES

We combine the first version of our secure MPC protocol with AES-128 encryp-
tion method to reduce communication cost between the servers and clients. In
the previous scheme, the clients need to send their ciphertexts that are encrypted
under the BFVrns scheme. The ciphertext size in the FHE schemes is large such
as 2N log q bits where N is the ring dimension, log q is ciphertext modulus.
To overcome this problem, the clients send their data encrypted under AES-
128 encryption that results in a far smaller ciphertext sizes than the BFVrns
encrypted one. The ciphertext size in AES-128 depends on the plaintext size,
mode of operation and padding. The steps of the protocol are explained as fol-
lows:

1. The protocol starts with the key generation and key distribution as in Fig. 4.
The FHE parameters are decided by S2 as in PREFHE and distributed to
the clients. At the same time, S2 creates a cryptocontext cc and generates a
common key pair CKPair from cc to let the clients create their reencryption
keys and reencrypt their ciphertexts.

828 C. Yakupoglu and K. Rohloff

2. The clients generate their public, private key pairs and encrypt their data
under their AES-128 key as ci as in Fig. 4.

3. The clients encrypt their AES key with their FHE public key as cki.
4. They create reencryption key from the common key pair as REKPi and send

REKPi, ci and cki to S1.
5. S1 encrypts the ciphertexts with their FHE public keys and unravels the

ciphertexts with homomorphic AES-128 decryption (AES−1) as in Fig. 6.
6. S1 reencrypts these ciphertexts again under their corresponding reencryption

keys and evaluates the necessary function on the FHE ciphertexts.
7. S2 generates the second reencryption key to enable the ciphertexts to be

decrypted under individual private keys of the clients and sends REKeyRCi

to S1 as in Fig. 5.
8. S1 reencrypts the result with their respective reencryption keys and conducts

dimension reduction as in [8] to reduce the size of the ciphertexts, then S1

sends these ciphertexts to the corresponding clients.
9. The clients decrypt their ciphertext with their private keys and get the result

in plaintext.

Clients Server2

FHE parameters, index j

CKPair=cc→ KeyGen()

Key Generation

kpj = cc→ KeyGen()

Publish kpj .pk

kpk = cc→ MultipartyKeyGen(kpj .pk) (for k! = j)

FHE Parameters, j, CKPair.pk

Fig. 4. Key generation and distribution of the PREFHE-AES protocol.

PREFHE, PREFHE-AES and PREFHE-SGX 829

Clients Server1 Server2

Re Encryption (for 0 ≤ i < n)

rci= cc→ ReEncrypt(REKeyRCi, result)

Dimension Reduction (rci)[8]

Re Encryption KeyGen (for 0 ≤ i < n)

REKeyRCi = cc→ ReKeyGen(kpi.pk, CKPair.sk)

Decryption (for 0 ≤ i < n)

cc→ Decrypt(kpi.sk, rci, DecResulti)

{REKeyRCi}

{rci}

Fig. 5. The second reencryption and decryption phase of the PREFHE-AES protocol.

Clients Server1

ci = cc→ Encrypt(kpi.pk, ci)

ci = AES−1(ci, cki)

ReEncryption (for 0 ≤ i < n)

ci = cc→ ReEncrypt(REKPi.pk, ci)

result= cc→ EvalF({ci})

Encryption (for 0 ≤ i < n)

ci = AES(ki, ci)

REKPi = cc→ ReKeyGen(CKPair.pk, kpi.sk)

cki = cc→ Encrypt(kpi.pk, ki)
{ci, cki, REKPi}

Fig. 6. The first reencryption and evaluation of function F phase of the PREFHE-AES
protocol.

3.3 PREFHE-SGX: Secure MPC from Multikey FHE and PRE
with SGX

In this section, we present PREFHE-SGX that enables constructing the
PREFHE protocol with one-server setting. Intel SGX enables calculation of sen-
sitive data in the SGX enclave by protecting the data from the outer applications
or adversaries. The difference between this protocol and PREFHE is calculating

830 C. Yakupoglu and K. Rohloff

common key pair and reencryption keys in the SGX enclave. In PREFHE, S2

conducts these operations separately to prevent the clients’ data to be seen in
plaintext by S1.

Clients Server1

FHE parameters, index j

IN SGX ENCLAVE

CKPair=cc→ KeyGen()

Key Generation

kpj = cc→ KeyGen()

Publish kpj .pk

kpk = cc→ MultipartyKeyGen(kpj .pk) (for k! = j)

FHE Parameters, j, CKPair.pk

Fig. 7. Key exchange phase of the PREFHE-SGX protocol. (Grey box represents the
SGX enclave.)

Clients Server1

Re Encryption (for 0 ≤ i < n)

ri= cc→ ReEncrypt(REKeyi, result)

IN SGX ENCLAVE

Re Encryption KeyGen (for 0 ≤ i < n)

REKeyi = cc→ ReKeyGen(kpi.pk, CKPair.sk)

Decryption (for 0 ≤ i < n)

cc→ Decrypt(kpi.sk, ri, DecResulti)

{ri}

Fig. 8. Second reencryption and decryption of the PREFHE-SGX protocol. (Grey box
represents the SGX enclave.)

PREFHE, PREFHE-AES and PREFHE-SGX 831

With SGX, the secret key of the common key pair is stored in the SGX
enclave. The operations which use this secret key also locate in the SGX enclave
so that the server cannot decrypt the clients’ encrypted data. We refer the reader
to the explanation of PREFHE for further details due to space limit. In this
protocol, Gramine allows us to run PALISADE code on the SGX enclave without
any adjustments on the code. Figure 7, 2 and 8 depict the steps of the protocol
in order.

3.4 Correctness

Correctness of the protocols mainly depends on the BFVrns scheme given in
Sect. 2.1. Halevi et al. provides correctness proof of the scheme in [29]. We present
the correctness of the PREFHE protocol in this section. Other two protocols
follow the same correctness proof.

At the beginning of the protocol, KeyGeneration step creates the public, pri-
vate key pair for the encryption step. After this step, we make use of PRE scheme
that proposed in [40]. In this step, PRE allows encrypting of all ciphertexts under
the same key pair to evaluate a function on them. PRE has ReKeyGen routine
that creates new evalKey for transforming the ciphertext to another one. The
second step of PRE is ReEncryption step which calls KeySwitch routine due
to being a PRE operation. KeySwitch changes the given input ciphertext to
another ciphertext that is encrypted under the new key given in ReKeyGen
step. KeySwitch method uses the algorithm given in [8] as digit decomposition
method. Correctness of PRE scheme is proved in [40]. In this step all ciphertexts
are transformed to be encrypted under the same public key. The corresponding
secret key of this public key is only known by S2. All ciphertext are sent to
S1 to evaluate the function which clients want to calculate. S1 evaluates the
function on the ciphertexts. S2 runs ReKeyGen routine to create new evalKey
set for reencrypting the result to be decrypted under each clients’ secret key. S1

runs ReEncryption and sends the results to corresponding clients. Correctness of
this step also depends on the PRE scheme. Clients decrypt these new individual
ciphertexts with their secret key and open the result in plaintext. Correctness of
this protocol mainly depends on PRE which is used two times as a subroutine.

The final decryption of ciphertext after reencryption can be represented as
follows where pk = (p0, p1) and b = p0 · u[i] + e1[i] + s[i] from ReKeyGen
procedure:

c0 − s · c1 = c0 +

k−1∑

i=1

(digitsC1[i] · b[i]) − s ·
k−1∑

i=1

(digitsC1[i] · a[i])

= c0 +

k−1∑

i=1

(digitsC1[i] · (p0 · u[i] + e1[i] + s[i])) − s ·
k−1∑

i=1

(digitsC1[i] · a[i]).

(1)

832 C. Yakupoglu and K. Rohloff

After scaling down by t/q;

�(c0−s∗c1)t/q� = �t/q(c0−s ·
k−1∑

i=1

(digitsC1[i] ·a[i])+
k−1∑

i=1

(digitsC1[i] ·(p0 ·u[i]+e1[i]+s[i])))�.

(2)
�∑k−1

i=1 (digitsC1[i] · ((−e − as) · u[i] + e1[i] + s[i]))t/q� is small enough due to
q 	 t. It can be seen that

�(c0 − s · c1)t/q� = m (mod t). (3)

3.5 Security Analysis

Security for the Semi-honest Model: The semi-honest model implies that
all parties follow the protocol description, but they still try to gather informa-
tion about other parties’ inputs, intermediate results or overall outputs just by
looking at the protocol’s transcripts.

Security of the PREFHE protocol mainly depends on underlying FHE scheme
of the protocol and BFVrns depends on RLWE assumption as follows.

Definition 1. (RLWE [44]): For security parameter λ, f(x) = xn + 1 where
n is power of 2. q is q ≥ 2. Let the ring R = Z[X]/f(x) and Rq = R/qR.
χ is a distribution over Rq. RLWEQ,χ,n problem concerns about distinguishing
following two distributions. The first distribution is uniformly generated samples
(ai, bi) ∈ R2

q. In the second distribution, samples s from Rq uniformly, (ai, bi) ∈
R2

q where ai ← Rq uniformly and ei ← χ, bi = ai · s + ei. Since SVP problem
can be reduced to RLWE [35], RLWE is considered a hard problem.

KeyGen/MultipartyKeyGen: This step creates random sk and pk pairs
for the clients and its security depends on RLWE assumption.

Encryption: The clients encrypt their inputs under their public key so noone
else can decrypt and see their input.

ReKeyGen + ReEncrypt: This step depends on PRE scheme proposed in
[40] which is proved as IND-CPA secure in [40]. The clients create new evalKey
to reencrypt their encrypted inputs to allow function evaluations on all of the
clients’ data. This step requires individual sk so that noone else can create
other evalkey from their sk. These reencrypted ciphertexts are sent to only S1

through a secure channel to prevent any decryption by S2. According to our
assumption on two non-colluding servers, S1 cannot decrypt ciphertexts sent
by the clients and result of function evaluation on ciphertexts because it has
no access to CKPair.sk. Also, S2 cannot decrypt or manipulate ciphertexts
because it cannot see clients’ ciphertexts or the final result. S1 cannot get any
additional information from intermediate outputs. ReKeyGen + ReEncrypt is
used in 2., 3. and 4. rounds to prevent leaking any additional information about
the ciphertexts and result.

When all rounds come together, the PREFHE protocol ensures security in
the semi-honest model. We can improve the security model to malicious model
with NIZK protocols to prove plaintext knowledge as in the work proposed in
[34].

PREFHE, PREFHE-AES and PREFHE-SGX 833

4 Software Implementation

4.1 Implementation on PALISADE

Experimental Setup. We run the experiments on the Microsoft Azure Stan-
dard DC2s v2 virtual machine that has 2 cores and 8 GB memory running
Ubuntu 20.04. We use PALISADE lattice cryptography library version 1.10.6
[39] and Gramine version 1.12.

4.2 Perfomance

In this section, we analyze our secure MPC protocols in terms of three metrics
such as rounds, communication and computation complexity and compare with
the state-of-the-art protocols. Due to the unavailability of their implementations,
it is not possible to compare running times with other suggested protocols. We
compare the protocols such as [3,33,34,38] which provide semi-malicious security
model version to provide a fair comparison.

Rounds: PREFHE and PREFHE-AES propose 4 rounds while PREFHE-
SGX has 3 rounds in total. Each round in our protocols requires less computation
than the rounds in [33,34]. Our protocols do not require the parties to be online
after they send their encrypted data to the server. On the other hand, some
cutting-edge protocols require communication at every gate and the presence
of all parties online [5,16,18] which is not feasible in real-life applications. In
some protocols, decryption is jointly computed [34] that increases the number
of rounds. In the work presented in [33], encryption key is jointly computed
while in our protocols, this is not required which means more practicality. In our
protocols, Table 1 suggests that PREFHE-SGX has the less number of rounds.
In PREFHE-SGX, one server handles two servers’ jobs, so it reduces the number
of total rounds.

Communication Complexity: The communication cost between clients
and the server is independent of the function to be computed. In PREFHE and
PREFHE-AES, the communication cost between two servers is also independent
of the complexity of the function. The works in the [3,33], communication cost
depends on the length of the input and outputs. They generally contain a set of
indices, ciphertexts and eval keys which is larger than a ciphertext size.

Computation Complexity: In our protocols, the computation complexity
on the server S1 is linear in the size of the circuit computing F . Since multiplica-
tion of two ciphertexts is considered the most costly operation, the multiplicative
depth of the function mainly determines the computation cost.

Performance Results: Table 2 suggests that PREFHE has the fastest client
and servers time with 2 untrusted server setting. Since homomorphic decryption
of AES-128 takes a long time, Server 1 computation time of PREFHE-AES is
around 45 s which is still practical for real life. For functions having larger num-
ber of multiplications, computation cost can be improved with better hardware

2 https://github.com/gramineproject/gramine.

https://github.com/gramineproject/gramine

834 C. Yakupoglu and K. Rohloff

Table 1. Performance comparison of main and our protocols. (Communication com-
plexity refers to the communication cost between a client/party and server that evalu-
ates the function F . ‖c‖ represents size of a ciphertext and ‖cAES‖ stands for AES-128
encrypted ciphertext size.)

[33] [38] [3] PREFHE PREFHE-AES PREFHE-SGX

Rounds 4 4 5 4 4 3

Communication Comp. ‖I/O‖ ‖c‖ ‖I/O‖ ‖c‖ ‖cAES‖ ‖c‖
Computation Comp. (Server) |F | |F | |F | |F | |F | |F |

Table 2. Performance results of the protocols for t = 32769, m = 16384, log qi = 55,
σ = 3, rw = 0, λ = 128. F has one multiplication as an example in this experiment.
Time unit is ms. Client time represents the total runtime of one client.

PREFHE PREFHE-AES PREFHE-SGX

Client time 24.931 12.276 26.354

Server 1 time 19.183 45142.833 25836.862

Server 2 time 27.701 29.975 NA

and parallelization techniques. The client side of PREFHE-AES has better per-
formance over other two protocols due to outsourcing the encryption of the data
to Server 1. PREFHE-SGX performs better than PREFHE-AES for Server 1
but worse than PREFHE. The reason is that Server 1 in PREFHE-SGX handles
two servers’ tasks and it utilizes SGX that has paging latency.

Trade-Off Between Protocols: According to the needs of the application,
the user may consider trade-off between client and server side computations or
rounds or communication cost. For applications that have network bandwidth
constraints, the user may prefer PREFHE-AES over others. For computational
constraints or time sensitivity, PREFHE is the best fit with the short latency.
For the systems that allow one server in the secure MPC setting, PREFHE-SGX
signifies the best round-efficient one in all secure MPC protocols.

5 Conclusion

We propose three distinct secure MPC protocols constructed from FHE, AES-
128, and Intel SGX. PREFHE is highly efficient in real-world applications,
whereas PREFHE-AES introduces a communication-efficient protocol that is
highly efficient in low-bandwidth networks. PREFHE-SGX proposes a single-
server setting with 3 rounds and is a pioneer in the use of FHE and SGX in secure
MPC protocols. Our protocols’ communication costs are function-independent.
Additionally, our protocols do not require parties to be online following the trans-
mission of encrypted data to Server 1. The decryption phase does not require
any collaboration on the part of the parties, which increases the protocols’ prac-
ticality. We present efficient and secure MPC protocols that are applicable to a
variety of use cases in real life.

PREFHE, PREFHE-AES and PREFHE-SGX 835

References

1. Albrecht, M., et al.: Homomorphic encryption security standard. Technical report,
HomomorphicEncryption.org, Toronto, Canada, November 2018

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Providing Sound Foun-
dations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp.
351–371 (2019)

5. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

6. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. Cryptology ePrint Archive, Report 2011/344 (2011). https://
eprint.iacr.org/2011/344

9. Catrina, O., Kerschbaum, F.: Fostering the uptake of secure multiparty compu-
tation in e-commerce. In: 2008 Third International Conference on Availability,
Reliability and Security, pp. 693–700. IEEE (2008)

10. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure proto-
cols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, pp. 11–19 (1988)

11. Choi, S.G., Elbaz, A., Juels, A., Malkin, T., Yung, M.: Two-party computing with
encrypted data. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
298–314. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2 18

12. Choudhury, A., Loftus, J., Orsini, E., Patra, A., Smart, N.P.: Between a rock and
a hard place: interpolating between MPC and FHE. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8270, pp. 221–240. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42045-0 12

13. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive (2016)
14. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold

homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

15. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://eprint.iacr.org/2011/344
https://eprint.iacr.org/2011/344
https://doi.org/10.1007/978-3-540-76900-2_18
https://doi.org/10.1007/978-3-540-76900-2_18
https://doi.org/10.1007/978-3-642-42045-0_12
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/11535218_23

836 C. Yakupoglu and K. Rohloff

16. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

17. Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest majority: from
passive to active security at low cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 558–576. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 30

18. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

19. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

20. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03168-7 14

21. Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Generating private recommenda-
tions efficiently using homomorphic encryption and data packing. IEEE Trans. Inf.
Forensics Secur. 7(3), 1053–1066 (2012)

22. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144

23. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation (2014)

24. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 28

25. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: Stoc, pp.
169–178 (2009)

26. Gjerdrum, A.T., Pettersen, R., Johansen, H.D., Johansen, D.: Performance of
trusted computing in cloud infrastructures with intel SGX. In: CLOSER, pp. 668–
675 (2017)

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pp. 307–328 (2019)

28. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

29. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 5

30. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
Cryptology ePrint Archive (2011)

31. Kuvaiskii, D., Kumar, G., Vij, M.: Computation offloading to hardware accelerators
in intel SGX and Gramine library OS. arXiv preprint arXiv:2203.01813 (2022)

https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-03168-7_14
https://doi.org/10.1007/978-3-642-03168-7_14
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-030-12612-4_5
http://arxiv.org/abs/2203.01813

PREFHE, PREFHE-AES and PREFHE-SGX 837

32. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

33. López-Alt, A., Tromer, E., Vaikuntanathan, V.: Cloud-assisted multiparty compu-
tation from fully homomorphic encryption. Cryptology ePrint Archive (2011)

34. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234
(2012)

35. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

36. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, pp. 113–124 (2011)

37. Natarajan, D., Dai, W., Dreslinski, R.: CHEX-MIX: combining homomorphic
encryption with trusted execution environments for two-party oblivious inference
in the cloud. Cryptology ePrint Archive, Paper 2021/1603 (2021). https://eprint.
iacr.org/2021/1603

38. Peter, A., Tews, E., Katzenbeisser, S.: Efficiently outsourcing multiparty compu-
tation under multiple keys. IEEE Trans. Inf. Forensics Secur. 8(12), 2046–2058
(2013)

39. Polyakov, Y., Rohloff, K., Ryan, G.W.: Palisade lattice cryptography library
(2018). https://palisade-crypto.org/

40. Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanathan, V.: Fast proxy re-encryption
for publish/subscribe systems. ACM Trans. Privacy Secur. (TOPS) 20(4), 1–31
(2017)

41. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

42. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71(1), 57–81 (2014)

43. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Proceedings of
ASIACRYPT 2010, pp. 377–394 (2010)

44. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

45. Takeshita, J., McKechney, C., Pajak, J., Papadimitriou, A., Karl, R., Jung, T.:
GPS: integration of graphene, palisade, and SGX for large-scale aggregations of
distributed data. Cryptology ePrint Archive (2021)

46. Wu, P., Ning, J., Shen, J., Wang, H., Chang, E.C.: Hybrid trust multi-party com-
putation with trusted execution environment. In: The Network and Distributed
System Security (NDSS) Symposium 2022 (2022)

47. Yakupoglu, C., Kurt, R.: Parameter selection for computationally efficient use of
the BFVRNS FHE scheme. Under review (2022)

48. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE (1986)

https://doi.org/10.1007/978-3-642-13190-5_1
https://eprint.iacr.org/2021/1603
https://eprint.iacr.org/2021/1603
https://palisade-crypto.org/
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

	PREFHE, PREFHE-AES and PREFHE-SGX: Secure Multiparty Computation Protocols from Fully Homomorphic Encryption and Proxy ReEncryption with AES and Intel SGX
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Background
	2.1 Fully Homomorphic Encryption Scheme: BFVrns
	2.2 Intel SGX

	3 Secure MPC Protocols
	3.1 PREFHE: Secure MPC from Multikey FHE and PRE
	3.2 PREFHE-AES: Secure MPC from Multikey FHE and PRE with AES
	3.3 PREFHE-SGX: Secure MPC from Multikey FHE and PRE with SGX
	3.4 Correctness
	3.5 Security Analysis

	4 Software Implementation
	4.1 Implementation on PALISADE
	4.2 Perfomance

	5 Conclusion
	References

