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Abstract. XACML (eXtensible Access Control Markup Language) has
gained significant interest as a standard to define Attribute-Based Access
Control (ABAC) policies for different applications, especially web ser-
vices. XACML policies have become more complex and difficult to
administer in distributed systems, which increases the chance of anoma-
lies (redundancy, inconsistency, irrelevancy, and incompleteness). Due to
the lack of effective analysis mechanisms and tools, anomaly detection
and resolution are challenging, particularly in large and complex policy
sets. In this paper, we learn the characteristics of various types of anoma-
lies to predict anomaly types of unseen policy rules with the help of data
classification techniques. The effectiveness of our approach in predicting
policy anomalies has been demonstrated through experimental evalua-
tion. The discovered correlations between the anomaly types and the
number of subject and resource attribute expressions can help system
administrators improve the security and efficiency of XACML policies.

Keywords: Access control policies · XACML · ABAC · Policy
anomalies · Classification-based anomaly prediction · Security

1 Introduction

Access control policies have been used to secure and control resource sharing in
distinct applications such as web services (e.g., [26]), grid systems (e.g., [24]),
and database federations (e.g., [4]). In recent years, Attribute-Based Access
Control (ABAC) [7] policies have gained popularity in open distributed envi-
ronments [21]. ABAC defines permissions based on attributes that can be any
information describing subjects, resources, and environments, rather than their
identities. ABAC access control policies are specified by XACML (eXtensible
Access Control Markup Language) [22], which is a general-purpose access control
policy language. XACML has been utilized in a variety of applications ranging
from healthcare to transportation [1].

Due to the sophisticated expressiveness and increasing size of XACML poli-
cies, the consequences and effects of developed policies are not obvious to policy
administrators. Some anomalies such as redundancy, inconsistency, irrelevancy,
and incompleteness may arise in developing access control policies when there are

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 3–19, 2023.

https://doi.org/10.1007/978-3-031-25538-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_1


4 M. Davari and M. Zulkernine

not enough mechanisms to analyze a large number of policies. One of the issues
with ABAC policies is redundancy detection and removal. When the number of
policies to be parsed affects the response time of access requests, redundancy has
to be addressed to avoid processing of unnecessary policies. In a policy set, mul-
tiple policies may conflict with each other which is referred to as inconsistency.
Inconsistent policies overlap and yield different decisions. Inconsistency detec-
tion can mitigate conflict resolution activities. Irrelevancy occurs when access
control policies are not suitable for any user’s access requests. Irrelevancy detec-
tion can help policy administrators eliminate unused policies and make policy
maintenance easier. Incompleteness refers to a situation when the current access
control policies cannot cover an access request. By detecting this anomaly, some
security issues (e.g., mistakenly allowing access to intruders) can be avoided.
However, anomaly detection in XACML policies is complicated due to the fact
that XACML policies may be aggregated by various parties and maintained by
multiple administrators.

In this paper, we propose a data classification-based approach to predict
anomaly types (redundancy, inconsistency, irrelevancy, and incompleteness) in
XACML policies. To the authors’ knowledge, there are no XACML policy rule
sets that include these four types of anomalies. Therefore, the proposed approach
begins by building XACML policy rules. The rules are then clustered based on
their similarities and policy anomaly detection technique [3] is applied to each
cluster. Various data classification techniques (e.g., Random Forest, Decision
Tree) are then trained on these rules to discover the behavior of anomalies and
predict anomaly types of unseen rules. The experimental results show that the
classification-based approach is effective in predicting anomalies in large rule
sets. Furthermore, some correlations among the number of subject and resource
attribute expressions, rule sizes, and anomaly types are found. These insights can
assist system administrators to make XACML policies more secure and efficient.

The major contributions of this paper can be summarized as follows:

– The design and implementation of XACML policy anomaly prediction using
classification techniques.

– The anomaly (redundancy, inconsistency, irrelevancy, and incompleteness)
formalization for XACML policies.

– The discovery of correlations among anomaly types, rule sizes, and rule
attributes.

The rest of the paper is organized as follows: Sect. 2 presents background
information on XACML. Section 3 describes the XACML policy anomaly pre-
diction approach, which includes the XACML policy analysis and policy learning
procedure for anomaly prediction. In Sect. 4, the experiments are discussed and
the findings are analyzed. The related work, conclusion, and future work are
presented in Sects. 5 and 6, respectively.

2 Overview of XACML

In this section, we provide background information about XACML policies [22].
Access control policy specification and formalization in the XACML language
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have four parts: attributes and functions, rules, policies, and policy sets. XACML
policies are centered around attributes and functions that represent the charac-
teristics of subjects, resources, actions, and environments. A policy rule is made
up of three parts: effect (indicating whether access will be permitted or denied),
Boolean condition (specifying when the rule applies to an access request), and
target (grouping subjects, resources, and actions).

A policy consists of a target, a set of rules, and a rule combining algorithm. A
combining algorithm computes a decision when a policy has rules with conflicting
effects such as Deny-Overrides (i.e., if any rule evaluates to “Deny”, the final
decision is “Deny”), Permit-Overrides (i.e., if any rule evaluates to “Permit”,
the final decision is “Permit”), and First-Applicable (i.e., the effect of the first
rule that applies is the decision of the policy). A policy set is defined by a target,
a set of policies, and a policy combining algorithm (which is the same as the rule
combining algorithm). We provide formal definitions of XACML policies [27] in
the following paragraphs.

Definition 1 Rule. A rule Ru = (S,R,A,C,E) specifies a set of subjects S
(containing a set of subject attributes) can perform a set of actions A (a1, a2, · · · ,
am) over a set of resources R (consisting of a set of resource attributes) by effect
E under condition C. A policy P = {Ru1, Ru2, ..., Rum} contains a set of rules
Ru1, Ru2, ..., Rum.

Definition 2 Subject Attribute. Attributes describe the characteristics of a sub-
ject. Let S be a finite set of subjects and Atts is a finite set of subject attributes.
The value of attribute a ∈ Atts for subject s ∈ S is represented by the function
ds(a, s). Some subject attributes have just one value, while others have multiple
values. Single value attributes (Atts,1) have a unique value for each subject (e.g.,
subject id), and multiple value attributes (Atts,m) are a set of single values (e.g.,
courses).

Definition 3 Resource Attribute. Attributes that describe the characteristics
of resources. Let R and Attr be finite sets of resources and resource attributes,
respectively. The value of attribute a ∈ Attr for resource r ∈ R is represented
by function dr(a, r).

Definition 4 Attribute Expression. An attribute expression contains a set of
attributes, operators, and value tuples (att op val) (e.g., security level > 10).
The operators we consider in this paper are {≤, <,=, >,≥}. A subject attribute
expression (eS) is a function e that for each subject attribute a ∈ Atts, eS(a)
is either special value ⊥ (that indicates there is no constraint on the value of
attribute a) or a set of possible values. Similarly, resource attribute expression
(eR) is a function for resource attributes.

Definition 5 Access Request. An access request is represented as a tuple
(S,R,A, C), with S containing a finite set of subject attribute-value pairs
(atts1 = val1), (atts2 = val2), · · · , (attsn = valn). Similarly, R is a finite set
of resource attribute-value pairings (attr1 = val1), (attr2 = val2), · · · , (attrm
= valm). A is the request action, and C is a set of conditions.
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Definition 6 Any Value. If subject attributes or resource attributes of a rule
are not specified, it signifies that they do not impose any constraints on attribute
values, which we indicate with att = ∗.

In this paper, analysis and prediction are performed at the rule level, and
the influence of combining algorithms is ignored. When the number of rules
increases, the consequence of using the conflicting algorithms to override access
control decisions can be unpredictable [21]. These algorithms can handle conflicts
in incoming requests, but they were not developed to detect conflicts in policies.

Table 1. Sample policy rules.

Rule Subject Resource Action Condition Effect

Ru1
adminRole=
accountant

type=budget update s.project=r.project Permit

Ru2 isEmployee=true
type=task ;

proprietary=false
request

s.expertise=r.expertise;
s.project=r.project

Permit

Ru3

adminRole=
accountant,
planner

type=budget
read,
update

s.project=r.project Permit

Ru4 isEmployee=true
type=task,

proprietary=false
request s.project=r.project Deny

Ru5 isEmployee=true type=schedule update s.project=r.project Deny

Ru6 adminRole=planner type=budget request s.project=r.project Permit

3 XACML Policy Anomaly Prediction

The classification-based anomaly prediction aims to learn the characteristics of
rules with anomalies based on historical results and predict whether new rules
are normal or anomalous. We regard the mapping between policy rules and
anomaly types as a function of f : x → y in machine learning contexts, where x
is a rule and y is a type of rule. y indicates whether the rule is normal (i.e., has
no anomaly) or anomalous (i.e., has an anomaly) in the binary classification. In
the multi-class classification, y can be normal or an anomaly type (redundancy,
static and dynamic inconsistency, irrelevancy, and incompleteness). The main
goal is to learn function f to predict the type of an unseen rule. We provide
XACML policy anomaly definitions in Sect. 3.1. Then, XACML policy rules are
clustered and analyzed to identify the types of rules in Sect. 3.2. In the following
section, we present a policy learning procedure (including data pre-processing
and data-classification) that is required for anomaly prediction.
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3.1 XACML Policy Anomaly Definitions

We begin by defining different types of anomalies for XACML policy rules. For
further demonstration, we use some rules focusing on project management from
[27] that are listed in Table 1.

Definition 7 Redundancy (RED). Redundancy indicates similarities among
rules. Attributes of two rules with the same identifiers have intersecting val-
ues. Detecting and removing redundancies can improve policy evaluation perfor-
mance. Rule Ruj is redundant if and only if

– ∃Rui ∈ ACP.
– ∀ a ∈ Ruj .eS , ∃ a′ ∈ Rui.eS , Atts(a) = Atts(a′) → a ∩ a′ �= ∅ ∧

∀ b ∈ Ruj .eR, ∃ b′ ∈ Rui.eR, Attr(b) = Attr(b′) → b ∩ b′ �= ∅ ∧ Rui.A ∩
Ruj .A �= ∅ ∧ Rui.E = Ruj .E.

For example, rule Ru3 in Table 1 specifies that an accountant and a planner
assigned to a project can read and update the budget. Rule Ru1 indicates that
an accountant assigned to a project can update the project budget. As a result,
rule Ru1 is redundant in comparison to rule Ru3.

Definition 8 Inconsistency (INCON). Inconsistency can be divided into two
categories: static and dynamic.

Definition 8-1 Static inconsistency (SINCON). Static inconsistency refers to
a situation when there are at least two similar rules (i.e., two rules with the
same attribute identifiers have intersecting values) in the policy set that conflict
with each other. Consider rules Rui and Ruj . These two rules are statically
inconsistent if and only if

– ∀ a ∈ Rui.eS , ∃ a′ ∈ Ruj .eS , Atts(a) = Atts(a′) → a ∩ a′ �= ∅ ∧ ∀ b ∈
Rui.eR, ∃ b′ ∈ Ruj .eR, Attr(b) = Attr(b′) → b ∩ b′ �= ∅ ∧ Rui.A ∩ Ruj .A �=
∅ ∧ Rui.E �= Ruj .E.

For example, rule Ru2 specifies that an employee working on a project can
request to work on a non-proprietary task whose required areas of expertise
are among the employee’s areas of expertise, while rule Ru4 specifies that an
employee working on a project cannot request to work on the non-proprietary
task. Rules Ru2 and Ru4 are statically inconsistent.

Definition 8-2 Dynamic inconsistency (DINCON). Dynamic inconsistency
refers to a situation when an incoming access request triggers at least two rules
with conflicting decisions. The dynamic inconsistency relies on access requests
and occurs at runtime. Consider rules Rum and Run. These two rules are dynam-
ically inconsistent with respect to request req if and only if

– ∃ req = (S′, R′, A′).
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– ∃Rum ∈ ACP ∧ Run ∈ ACP | (∃ a ∈ S′ ,∃ a′ ∈ Rum.eS , Atts(a) =
Atts(a′) → a ∩ a′ �= ∅) ∧ (∃ a′′′ ∈ S′ ∧ ∃ a′′ ∈ Run.eS , Atts(a′′′) =
Atts(a′′) → a′′′ ∩ a′′ �= ∅) ∧ (∃ b ∈ R′ ,∃ b′ ∈ Rum.eR, Attr(b) = Attr(b′) →
b ∩ b′ �= ∅) ∧ (∃ b′′′ ∈ R′ ,∃ b′′ ∈ Run.eR, Attr(b′′′) = Attr(b′′) → b′′′ ∩ b′′ �=
∅) ∧ A′ ∩ Rum.A �= ∅ ∧ A′ ∩ Run.A �= ∅ ∧ Rum.E �= Run.E.

For example, when an incoming request is

<s.adminRole=accountant, s.isEmployee=true; r.type={budget, schedule};
s.project=r.project; action =update>

dynamic inconsistency occurs. Both rules Ru1 and Ru5 satisfy the conditions,
while they have conflicting effects. Therefore, rules Ru1 and Ru5 are dynamically
inconsistent.

Definition 9 Irrelevancy (IRR). Irrelevancy refers to a scenario where a rule is
never triggered for any kind of access request. A rule is irrelevant if and only if

– ∃Ru ∈ ACP.
– � req = (S′, R′, A′) | ∀ a ∈ Ru.eS , ∃ a′ ∈ S′, Atts(a) = Atts(a′) → a ∩ a′ =

a ∧ ∀ b ∈ Ru.eR, ∃ b′ ∈ Ru′, Attr(b) = Attr(b′) → b ∩ b′ = b ∧ A′ ∩ Ru.A �=
∅.

As an example, rule Ru6 specifies that a planner assigned to a project can request
to get information about the project budget. However, according to rule Ru3, an
accountant and a planner assigned to a project can read and update the budget
without sending the request. As a result, rule Ru6 is irrelevant with respect to
rule Ru3.

Definition 10 Incompleteness (INCOM). Rules are incomplete when existing
rules are unable to cover an access request. A rule is incomplete if and only if

– ∃ req = (S′, R′, A′).
– �Ru ∈ ACP | ∀ a ∈ Ru.eS , ∃ a′ ∈ S, Atts(a) = Atts(a′) → a ∩ a′ = a ∧

∀ b ∈ Ru.eR, ∃ b′ ∈ Ru′, Attr(b) = Attr(b′) → b ∩ b′ = b ∧ A′ ∩ Ru.A �= ∅.

A contractor working on a project, for example, requests information regarding
the project schedule. However, there is no policy to handle the request.

3.2 Rule Clustering and Analysis

Rule clustering makes the policy analysis scalable. A number of clustering algo-
rithms exist such as K-means [10] and hierarchical clustering [12]. However,
they face various challenges (e.g., determining the number of clusters, cluster
initialization) and are not effective for XACML rules. In this paper, we present
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a clustering algorithm that groups rules sharing similarities into a cluster as
the likelihood of anomalies (especially redundancies and static inconsistencies)
among similar rules is high. Similarities between rules in terms of subjects (Ss),
resources (Sr), actions (Sact), and conditions (Scon) are calculated for rules Rui

and Ruj as follows:

– S(Rui, Ruj) = ws Ss(Rui, Ruj) +wr Sr(Rui, Ruj) +wa Sact(Rui, Ruj) +wc

Scon(Rui, Ruj)
– Ss(Rui, Ruj) =

∑
attk∈(Rui.Atts ∩Ruj .Atts)

[ (ds(attk, Rui.s) ∩ ds(attk, Ruj .s))
/ (ds(attk , Rui.s) ∪ ds(attk , Ruj .s)) ]

– Sr(Rui, Ruj) =
∑

attk∈(Rui.Attr ∩Ruj .Attr)
[(dr(attk, Rui.r) ∩ dr(attk, Ruj .r))

/ (dr(attk , Rui.r) ∪ dr(attk , Ruj .r)) ]
– Sact(Rui, Ruj) = [Rui.act ∩ Ruj .act ] / [Rui.act ∪ Ruj .act ]
– Scon(Rui, Ruj) = [Rui.con ∩ Ruj .con ] / [Rui.con ∪ Ruj .con ]

where ws+wr +wa+wc = 1. The weight assignment may depend on application
needs. We consider weights of subject (ws), resource (wr), action (wa), and
condition (wc) equal (all weights are assigned to 1/4). When the similarity score
of two rules exceeds a threshold, they are grouped into a cluster. This score
may fluctuate depending on the rule set. In our work, we use the threshold of
0.8 which was suggested by Lin et al. [14], and it works fine. Furthermore, each
cluster has at least one rule, and each rule is grouped into one or more clusters.
We consider AND operator in the rule definition. A rule containing Boolean
expressions (e.g., OR, NOT ) is split into several rules.

When the rules are clustered, we apply the formal tree-based policy modeling
technique [3] for each cluster to analyze policy rules. To keep the tree as slim
as possible, we define the data structure of the tree as follows. The first level of
the tree is made up of action nodes, which show the actions of systems. Each
action node in the tree points to the resource nodes on the second level. Each
resource node is connected to the third level of the tree which contains subject
nodes. Each subject node points to the condition nodes at the fourth level of the
tree. Each condition node can then have one or two leaf nodes that represent the
effects of the rule. Leaf nodes of each rule store Rule ID and a Counter ref vari-
able. The Counter ref indicates whether the rule was triggered by any access
request or not. Anomalies within each cluster are detected by traversing the
policy trees from root to leaf node. Redundancies and static inconsistencies are
detected in each cluster1. Dynamic inconsistencies, irrelevancies, and incomplete-
ness can be detected by evaluating incoming access requests. When an incoming
access request is issued, a cluster with the highest similarity to the request is
identified. Then, rules in the corresponding cluster are evaluated with respect to
the incoming access request according to Definitions 7-10 mentioned in Sect. 3.1.

3.3 Policy Learning Procedure for Anomaly Prediction

To discover the characteristics of rules with anomalies, machine learning tech-
niques are applied to the rules generated by the XACML policy analysis (pre-
1 For more details, please refer to [3].
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sented in Sect. 3.2). Before applying the techniques, the rules need to be pre-
processed as follows:

1) Rules are parsed to organize attribute orders. The rule components are
divided into non-category and category attributes. Subject attributes,
resource attributes, actions, conditions, and effects are non-category
attributes. The type of rules that can be normal or anomalous is a cate-
gory attribute.

2) Missing attribute values are handled. Missing attribute values can arise in
any application. An approach for dealing with missing values is included in
some classification algorithms. For example, a missing value of a numerical
attribute is substituted with an average value of its attributes. They do
not, however, take into account the semantics of data. We address missing
values for subject and resource attributes using Definition 6. If values of
action and effect components are missing, the effect of the rule becomes
“not applicable”.

3) Continuous attributes are treated as some non-overlapping ranges to be effi-
cient in data mining. For example, the age attribute that has continuous
numerical values is converted into a range (e.g., infant, child, young adult).

4) Conditions in rules are addressed. For example, a subject can access a
resource during a specific time slot (8am-5pm) in a particular location (e.g.,
office). Permission is granted only if all the conditions are satisfied. Condi-
tions, subject attributes, and resource attributes can be expressed as Boolean
expressions; for example, subject.security level > 10. In policy sets, rules
are not uniformly structured necessarily. Rules may have complex Boolean
expressions with variable lengths. To apply data classification techniques,
we normalize these Boolean expressions. Boolean expression is converted to
Disjunctive Normal Form (DNF) (C1∨C2∨...∨Ci). Then, the rule is divided
into i rules with distinct conditions.

5) Intervals between rule components are managed. We find all potential unique
intervals among rule components when they overlap. For example, Rule 1
allows accountants and planners to change the project budget between 8am
and 5pm. Rule 2 denies accountants the right to change the project budget
between 12pm and 1pm. To convert the rules into non-overlapping rules,
our algorithm identifies all the boundaries: 8am, 12pm, 1pm, and 5pm. The
algorithm rewrites the rules as follows: Rule 1 allows accountants and plan-
ners to change the project budget between 8am and 12pm, Rule 2 denies
accountants the right to change the project budget between 12pm and 1pm,
Rule 3 allows planners to change the project budget between 12pm and 1pm,
and Rule 4 permits accountants and planners to change the project budget
between 1pm and 5pm.

6) Imbalanced categories of anomalies in rule sets are addressed. Usually, the
number of instances with anomalies is far less than the number of instances
without anomalies. Applying the classification techniques to an imbalanced
rule set has a high likelihood of over-fitting [16] (i.e., the category with the
dominant instance biases the classifier toward itself). We over-sample the
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minority classes by generating synthetic instances using SMOTE (Synthetic
Minority Oversampling Technique) [2].

Each rule is a feature vector containing subject attributes, resource
attributes, actions, conditions, effects, and anomaly types. A subset of rules
with anomalies are then utilized to learn anomaly characteristics. The accuracy
of classification algorithms may vary depending on applications. There is no sin-
gle algorithm that can outperform other algorithms in all feasible applications.
Therefore, we apply five classification techniques from diverse categories (e.g.,
tree-based classifiers, distance-based classifiers, probabilistic classifiers) to the
rules: Random Forest (RF), Decision Tree (DT), Naive Bayes (NB), Support
Vector Machine (SVM), and K-Nearest Neighbors (KNN). The classifiers may
have inherent classification inaccuracies, and various classifiers may provide dif-
ferent outcomes. As a result, we integrate the findings of multiple classifiers using
the majority voting (MV) [18]. The majority voting technique ensures that the
decisions of the classifiers are in agreement. Its decision, in particular, is a class
that the majority of classifiers predict. When the classifiers’ decisions are not in
agreement, it chooses a class at random.

4 Experimental Evaluation

The primary goal of this section is to evaluate the effectiveness and efficiency of
the proposed policy anomaly prediction approach. To achieve this, we perform
various experimental evaluations as described below.

4.1 Rule Sets and Settings

We are unable to get large real-world rule sets to evaluate the proposed approach.
Therefore, we create 18 synthetic rule sets. The number of subject attribute
expressions and resource attribute expressions are selected based on a normal
distribution with distinct means and variances. In the experiments, three means
of attribute expression for both subjects and resources are set to 3, 4, and 5,
and variances are set to 1. Six rule sets with size of 100, 1000, 2000, 3000, 4000,
and 5000 are built for each mean. Rule sets {RS1, · · · , RS6}, {RS7, · · · , RS12},
and {RS13, · · · , RS18} are constructed for the means of attribute expressions 3,
4, and 5, respectively. Attribute values can have different domains in practice.
We define attribute values as an integer type with values ranging from 1 to 100.
Subject attributes and resource attributes each have a lower and upper threshold.
The total number of subject and resource attributes is 20. Each rule can have
[1, 10] actions and [0, 10] conditions that are uniformly and randomly selected.
The effect of each policy is randomly picked as either “Permit” or “Deny”.

We build a set of access requests to evaluate the effectiveness of the pro-
posed approach in predicting dynamic inconsistencies, irrelevancies, and incom-
pleteness. The mean of attribute expressions for the requests is set to 10 and
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the variance is set to 2. The request set contains more than 10,000 requests.
We consider that requests only have one action. Requests with more than one
action are rewritten as multiple requests with one single action. The proposed
approach is implemented in Java 11. The experiments are conducted using an
Intel Core i7 1.99 GHz processor with 16 GB of RAM.

4.2 Policy Analysis

Rule sets {RS1, · · · , RS18} are analyzed based on the approach described in
Sect. 3.2. The analyzed rule sets are considered training rule sets for Sect. 4.3.

(a) Average Redundancy Rules. (b) Average Static Inconsistency Rules.

Fig. 1. Average redundancy and static inconsistency rules for 18 rule sets.

(a) Average Dynamic Inconsistency Rules. (b) Average Irrelevancy Rules.

(c) Average Incompleteness Rules.

Fig. 2. Average dynamic inconsistency, irrelevancy, and incompleteness rules.
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Result Analysis. Figures 1a and 1b show the average number of redundancies
and static inconsistencies for 18 rule sets, respectively. On average, there is a
significant number of redundancies and static inconsistencies. It is also observed
that these two anomalies behave similarly with respect to the number of rules
and means of attribute expressions. The average number of redundancies and
static inconsistencies increases with the number of rules. However, as the means
of attribute expressions increase, the growth rates of redundancies and static
inconsistencies decrease.

Figure 2 shows the average number of dynamic inconsistencies, irrelevancies,
and incompleteness for 18 rule sets. Figure 2a indicates that the behavior of
dynamic inconsistencies is similar to the behavior of redundancies and static
inconsistencies in terms of rule numbers and the means of attribute expres-
sions. Similar behavior for static and dynamic inconsistencies was found by Liu
et al. [15]. The average number of static inconsistencies is lower than the aver-
age number of dynamic inconsistencies. The reason is that policy administra-
tors pay more attention to rules with similar attributes when creating policies.
This can help decrease the number of static inconsistencies. It is difficult for
administrators to determine whether rules with different attribute identifiers are
inconsistent. Therefore, dynamic inconsistencies are ignored. As the majority
of inconsistencies are dynamic inconsistencies, some of the static inconsistency
detection approaches [11,13,21,25] may not successfully satisfy all actual system
requirements.

Fig. 3. Clustering, construction, and analysis time for 10,000 access requests for rule
sets RS1, · · · , RS6.

Despite the results shown in Figs. 1a, 1b, and 2a, the growth rates of irrel-
evancies increase when the means of attribute expressions increase (shown in
Fig. 2b). Similar to redundancies, static inconsistencies, and dynamic inconsis-
tencies, the average number of irrelevancies rises with the number of rules. On the
other hand, the average number of incompleteness decreases with the number of
rules. It can be observed from Fig. 2c that the average number of incompleteness
increases as the number of attribute expressions grows. However, larger means
of of attribute expressions have slower decreasing rates.

It can be observed from the above analysis that merely advising system
administrators to employ a large number of attributes to generate inconsistency-
free rule sets [15] is not effective. Although a high mean of attribute expressions
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can result in rule sets with fewer redundancies and (static and dynamic) inconsis-
tencies, it can also raise irrelevancies and incompleteness. A low mean of attribute
expressions, on the other hand, results in rule sets with fewer irrelevancies and
incompleteness, while it can also result in more redundancies and (static and
dynamic) inconsistencies. Redundancies and static inconsistencies rely on rules
and are independent of access requests, while dynamic inconsistencies, irrele-
vancies, and incompleteness depend on access requests. As the number of access
requests is far greater than the number of rules, rule sets with a low mean of
attribute expressions can cause fewer anomalies.

As the anomaly detection technique needs to search all trees to find anomalies
in the rule set, we collect time for building clusters, constructing policy trees,
and analyzing access requests. These time-based metrics rely on the number of
rules. In Fig. 3, we show the time for rule sets RS1, · · · , RS6. As this figure
indicates, rule clustering takes longer than tree construction. In addition, the
policy analysis takes a longer time than clustering and tree construction, which
is reasonable as we consider 10,000 access requests.

(a) Accuracy of the Rule Sets. (b) Precision of the Rule Sets.

(c) Recall of the Rule Sets. (d) False Positive Rate of the Rule Sets.

(e) Average Analysis Time.

Fig. 4. Efficiency of Anomaly Prediction for Rule Sets RS4, RS5, RS6.
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4.3 Anomaly Classification and Prediction

For the classification-based analysis, we use rule sets RS4, RS5, and RS6. As
the mean of the attribute expression is 3, the rule sets can balance the number
of various anomalies (presented in the previous section). Various classifiers are
constructed for the rule sets based on the approach presented in Sect. 3.3. We
consider both binary and multi-class classifications. The classifiers are trained
on 70% of the data and use 10-fold cross-validation and the Weka library [6], a
set of machine learning algorithms for data mining tasks.

Evaluation Metrics. To assess the efficiency of our classification-based
anomaly detection approach, we report accuracy, precision, recall, and false pos-
itive rate (FPR) defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)

True Positive (TP) is the number of rules that are predicted as anomalies, and
are truly anomalies. False Positive (FP) is the number of rules that are predicted
as anomalies, while they are truly normal. False Negative (FN) is the number of
rules that are predicted as normal, while they are truly anomalies. True Negative
(TN) is the number of rules predicted as normal, and they are truly normal.

Analysis Results. The effectiveness of multi-class classifiers is displayed in
Fig. 4. The accuracy, precision, and recall of all five classifiers (excluding K-
Nearest Neighbors) are above 70% using RS6 as shown in Figs. 4a, 4b, and
4c, respectively. Figure 4d shows that the false positive rate ranges from 4% to
7%, which is critical for security. The low false positive rate shows that the
classification-based detection methods are capable of detecting all anomalies.
However, the effectiveness of a classification-based approach varies based on the
employed classifiers. Some of the classifiers do not behave consistently. For exam-
ple, K-Nearest Neighbors has about 70% accuracy, precision, and recall in RS4.
It improves slightly in RS5, but it becomes worse in RS6. The majority voting,
on the other hand, achieves above 75% accuracy, precision, and recall for all rule
sets. The binary class classifiers indicate that the average accuracy, precision,
and recall for all six classification algorithms (including majority voting) are 99%
and the average false positive rate is 0.8%.

Figure 4e depicts the average analysis time for discovering anomalies using the
tree model, five classifiers, and majority voting technique. In general, classifiers
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outperform tree-based and majority voting policy analysis. The majority voting
is slower than five classifiers as it integrates the results of all classifiers employed
in classification-based policy analysis. However, it performs better than tree-
based policy analysis. Therefore, it can be concluded that majority voting is
effective in predicting policy anomalies.

5 Related Work

Policy anomaly assessment has attracted the attention of many researchers, and
different approaches have been proposed in this area. There are some efforts to
detect redundancies [11], inconsistencies [11,13,15,21,25], irrelevancies [17], and
incompleteness [20] in XACML and ABAC policies. Jebbaoui et al. [11] proposed
a semantic-based approach to detect redundancies and conflicts in XACML poli-
cies. The proposed approach was developed for a new set-based language named
SBA-XACML. Shu et al. [21] focused on statically-conflicting rules and pre-
sented a method to detect conflicts in ABAC policies by using rule reduction
and binary-search. They decomposed ABAC rules to identify redundancies and
reduce the number of intersection operations. To enhance the efficiency of the
proposed approach, they used binary search simultaneously. Liu et al. [15] pre-
sented a conflict detection method for ABAC policies based on the proposed
definition of rule conflict. They transferred implicit conflicting rules to explicit
conflicting rules and evaluated their approach by the proposed metrics.

The Satisfiability Modulo Theories (SMT) solver was another method for
detecting conflict in XACML policies. The Boolean portion of satisfiability check-
ing was separated from algorithms that employed property checking using SMT
logic solvers [25]. Rami et al. [17] detected conflicts, unreachable policies (i.e.,
irrelevancies), and incompleteness by using Answer Set Programming (ASP).
Expressing attributes that do not exist in AnsProlog [23] (e.g., strings) is difficult
to be modeled. Also, there are no experimental results to show the applicability
of their work. Fisler et al. [5] presented a tool called Margrave to analyze policies.
It translates policies into Multi-Terminal Binary Decision Diagrams (MTBDDs)
to answer user queries. Khoumsi et al. [13] proposed an automaton-based app-
roach for modeling, developing, and analyzing policies. They divided firewall
security policies into conflicting and non-conflicting anomalies.

There are a few works that use data mining-based and data classification tech-
niques to detect anomalies in access control policies. Shaikh et al. [20] adopted
data classification techniques to detect incompleteness in access control policies.
This approach consisted of three steps. Attributes were ordered and Boolean
expressions were normalized, a decision tree (which was a modification of C4.5)
was generated, and the proposed anomaly detection algorithm was executed
on the decision tree. In another study by Shaikh et al. [19], a modified C4.5
algorithm was proposed to detect inconsistencies and incompleteness in access
control policies. When the number of XACML policies increases, the complexity
and computation of some proposed algorithms grow, which makes the approach
inapplicable. Abu Jabal et al. [9] proposed a framework based on the provenance
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technique for policy analysis. They proposed structure-based and classification-
based approaches that focus on the RBAC domain.

Various approaches have been investigated to address the problem of anoma-
lies in access control rules [8]. Most of the existing approaches were developed
in the network management and RBAC domains. These studies are not effective
for predicting all four types of anomalies in XACML policies. Our classification-
based policy anomaly prediction approach is time efficient comparing tree-based
anomaly detection. Furthermore, past policy analysis research has concentrated
on only a few types of anomalies (the inconsistency being the most studied),
whereas our approach attempts to discover all types of anomalies.

6 Conclusion and Future Work

A large number of XACML policies may raise the risk of anomalies (redundancy,
inconsistency, irrelevancy, and incompleteness) in distributed systems. Anomaly
detection, on the other hand, is a difficult and expensive operation. In this paper,
we have presented an anomaly prediction approach for XACML policies based
on the data classification techniques. The proposed approach extracts XACML
policy rules and clusters them based on their similarities. Anomalies in each
cluster are then detected using the policy anomaly detection technique. Various
data classification techniques are trained on the rules to identify the behavior of
anomalies and predict the anomaly types of new rules. The experimental results
have shown that the majority voting technique can obtain accuracy, recall, and
precision of 80% and a false positive rate of 4%. Therefore, the proposed app-
roach has the capability to predict anomalies. Furthermore, the experiments have
shown that anomaly types can be correlated to the number of rules and attribute
expressions. It is notable that the limitation of the proposed approach is the lack
of real-world policies. As part of the future work, we plan to find an appropriate
number of attribute expressions to minimize the number of anomalies.
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