
123

Fengjun Li
Kaitai Liang
Zhiqiang Lin
Sokratis K. Katsikas (Eds.)

Security and Privacy
in Communication
Networks
18th EAI International Conference, SecureComm 2022
Virtual Event, October 2022
Proceedings

462

Lecture Notes of the Institute
for Computer Sciences, Social Informatics
and Telecommunications Engineering 462

Editorial Board Members

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong, China

Geoffrey Coulson
Lancaster University, Lancaster, UK

Falko Dressler
University of Erlangen, Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Piacenza, Italy

Mario Gerla
UCLA, Los Angeles, USA

Hisashi Kobayashi
Princeton University, Princeton, USA

Sergio Palazzo
University of Catania, Catania, Italy

Sartaj Sahni
University of Florida, Gainesville, USA

Xuemin Shen
University of Waterloo, Waterloo, Canada

Mircea Stan
University of Virginia, Charlottesville, USA

Xiaohua Jia
City University of Hong Kong, Kowloon, Hong Kong

Albert Y. Zomaya
University of Sydney, Sydney, Australia

https://orcid.org/0000-0002-4140-287X

More information about this series at https://link.springer.com/bookseries/8197

https://springerlink.bibliotecabuap.elogim.com/bookseries/8197

Fengjun Li · Kaitai Liang · Zhiqiang Lin ·
Sokratis K. Katsikas (Eds.)

Security and Privacy
in Communication
Networks
18th EAI International Conference, SecureComm 2022
Virtual Event, October 2022
Proceedings

Editors
Fengjun Li
University of Kansas
Lawrence, KS, USA

Zhiqiang Lin
The Ohio State University
Columbus, OH, USA

Kaitai Liang
Delft University of Technology
Delft, The Netherlands

Sokratis K. Katsikas
Norwegian University of Science and Tech
Gjøvik, Norway

ISSN 1867-8211 ISSN 1867-822X (electronic)
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering
ISBN 978-3-031-25537-3 ISBN 978-3-031-25538-0 (eBook)
https://doi.org/10.1007/978-3-031-25538-0

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4079-2228
https://orcid.org/0000-0001-6527-5994
https://orcid.org/0000-0003-0262-7678
https://orcid.org/0000-0003-2966-9683
https://doi.org/10.1007/978-3-031-25538-0

Preface

We are delighted to introduce the proceedings of the 18th EAI International Conference
on Security and Privacy in Communication Networks (SecureComm 2022). This con-
ference brought together researchers and practitioners working in academia, industry,
government, to explore important research directions in the field.

These proceedings contain 40 papers, which were selected from 126 submissions (an
acceptance rate of 31.7%) from universities, national laboratories, and the private sector
from the Americas, Europe, Asia, Australasia, and Africa. All the submissions went
through an extensive review process by internationally recognized experts in cybersecu-
rity. The accepted papers are authored by researchers from 11 countries, with China and
the USA being the top two countries with the most papers. These proceedings also con-
tain three papers from the International Workshop on Security and Privacy-preserving
Solutions in the Internet of Things (S/P-IoT).

Any successful conference requires the contributions of different stakeholder groups
and individuals, who have unselfishly volunteered their time and energy in disseminating
the call for papers, submitting their research findings, participating in the peer reviews
and discussions, etc. First and foremost, we would like to offer our gratitude to the
entire Organizing Committee for guiding the entire process of the conference. We are
also deeply grateful to all the Technical Program Committee members for their time
and efforts in reading, commenting, debating, and finally selecting the papers. We also
thank all the external reviewers for assisting the Technical Program Committee in their
particular areas of expertise as well as all the authors, participants, and session chairs
for their valuable contributions. Support from the Steering Committee and EAI staff
members was also crucial in ensuring the success of the conference. It was a great
privilege to be working with such a large group of dedicated and talented individuals.

The 18th SecureCommConference was originally planned to be held in Kansas City,
KS, USA. It is unfortunate that we had to revert to an online conference in 2022. We
hope that the discussions and interactions were enjoyable, and that the proceedings will
stimulate further research.

October 2022 Fengjun Li
Kaitai Liang
Zhiqiang Lin

Sokratis K. Katsikas

Conference Organization

Steering Committee

Imrich Chlamtac Bruno Kessler Professor, University of Trento,
Italy

Guofei Gu Texas A&M University, USA
Peng Liu Pennsylvania State University, USA
Sencun Zhu Pennsylvania State University, USA

Organizing Committee

General Co-chairs

Fengjun Li University of Kansas, USA
Kaitai Liang TU Delft, The Netherlands

TPC Chair and Co-chair

Zhiqiang Lin The Ohio State University, USA
Sokratis Katsikas Norwegian University of Science and Technology,

Norway

Sponsorship and Exhibit Chair

Drew Davidson The University of Kansas, USA

Local Chairs

Bo Luo The University of Kansas, USA
Alex Bardas The University of Kansas, USA

Workshops Chairs

Lannan Luo George Mason University, USA
Fatih Turkmen University of Groningen, The Netherlands

Publicity and Social Media Chairs

Peng Liu Pennsylvania State University, USA
Jingqiang Lin University of Science and Technology of China,

China

viii Conference Organization

Publications Chairs

Jun Shao Zhejiang Gongshang University, China
Stjepan Picek Radboud University, The Netherlands

Web Chair

Apostolis Zarras TU Delft, The Netherlands

Technical Program Committee

Ali Abbasi Ruhr-University Bochum, Germany
Sharif Abuadbba CSIRO’s Data61, Australia
Mohiuddin Ahmed Edith Cowan University, Australia
Nadeem Ahmed The University of New South Wales (UNSW),

Australia
Magnus Almgren Chalmers University of Technology, Sweden
Ehab Al-Shaer Carnegie Mellon University, USA
Marios Anagnostopoulos Aalborg University, Denmark
Giovanni Apruzzese University of Liechtenstein, Liechtenstein
David Arroyo Spanish National Research Council, Spain
Elias Athanasopoulos University of Cyprus, Cyprus
Razvan Beuran Japan Advanced Institute of Science and

Technology, Japan
Silvia Bonomi Sapienza University of Rome, Italy
Sanchuan Chen Fordham University, USA
Bo Chen Michigan Technological University, USA
Guoxing Chen Shanghai Jiao Tong University, China
Franco Chiaraluce Università Politecnica delle Marche, Italy
Fabio Di Franco ENISA, Greece
Shanqing Guo Shandong University, China
Guillaume Hiet CentraleSupélec, France
Darren Hurley-Smith Royal Holloway University of London, UK
Taeho Jung University of Notre Dame, USA
Nesrine Kaaniche Télécom SudParis, France
Georgios Kavallieratos Norwegian University of Science and Technology,

Norway
Igor Kotenko St. Petersburg Institute for Informatics and

Automation, Russia
Platon Kotzias Norton LifeLock Research Labs, USA
Shaofeng Li PengCheng Laboratory, China
Juanru Li Shanghai Jiao Tong University, China
Ming Li UT Arlington, USA
George Loukas University of Greenwich, UK

Conference Organization ix

Bo Luo University of Kansas, USA
Xiapu Luo The Hong Kong Polytechnic University,

Hong Kong, China
Leandros Maglaras De Montfort University, UK
Kalikinkar Mandal University of New Brunswick, Canada
Evangelos Markatos ICS-FORTH, Greece
Fabio Martinelli Italian National Research Council, Italy
Wojciech Mazurczyk Warsaw University of Technology, Poland
Weizhi Meng Technical University of Denmark, Denmark
Nour Moustafa UNSW Canberra, Australia
Mehari Msgna Norwegian University of Science and Technology,

Norway
Toni Perkovic University of Split, Croatia
Roberto Di Pietro Hamad Bin Khalifa University, Qatar
Nikolaos Pitropakis Edinburgh Napier University, UK
Gabriele Restuccia University of Palermo, Italy
Roland Schmitz Stuttgart Media University, Germany
Thomas Schreck Munich University of Applied Sciences, Germany
Georgios Spathoulas Norwegian University of Science and Technology,

Norway
Yuzhe Tang Syracuse University, USA
Jacques Traore Orange Labs, France
Ding Wang Nankai University, China
Christos Xenakis University of Piraeus, Greece
Qiben Yan Michigan State University, USA
Guomin Yang University of Wollongong, Australia
Xu Yuan University of Louisiana at Lafayette, USA
Apostolis Zarras TU Delft, The Netherlands
Yingpei Zeng Hangzhou Dianzi University, China
Ning Zhang Washington University in St. Louis, USA
Tianwei Zhang Nanyang Technological University, Singapore
Xiaokuan Zhang George Mason University, USA
Yue Zhang The Ohio State University, USA
Qingchuan Zhao City University of Hong Kong, Hong Kong, China
Ziming Zhao University at Buffalo, USA
Haojin Zhu Shanghai Jiaotong University, China
Urko Zurutuza Mondragon Unibertsitatea, Spain

Contents

AI for Security

Classification-Based Anomaly Prediction in XACML Policies 3
Maryam Davari and Mohammad Zulkernine

An Evolutionary Learning Approach Towards the Open Challenge of IoT
Device Identification . 20
Jingfei Bian, Nan Yu, Hong Li, Hongsong Zhu, Qiang Wang,
and Limin Sun

SecureBERT: A Domain-Specific Language Model for Cybersecurity 39
Ehsan Aghaei, Xi Niu, Waseem Shadid, and Ehab Al-Shaer

CapsITD: Malicious Insider Threat Detection Based on Capsule Neural
Network . 57
Haitao Xiao, Chen Zhang, Song Liu, Bo Jiang, Zhigang Lu, Fei Wang,
and Yuling Liu

Towards High Transferability on Neural Network for Black-Box
Adversarial Attacks . 72
Haochen Zhai, Futai Zou, Junhua Tang, and Yue Wu

Coreference Resolution for Cybersecurity Entity: Towards Explicit,
Comprehensive Cybersecurity Knowledge Graph with Low Redundancy 89
Zhengyu Liu, Haochen Su, Nannan Wang, and Cheng Huang

Applied Cryptography

Another Lattice Attack Against ECDSA with the wNAF to Recover More
Bits per Signature . 111
Ziqiang Ma, Shuaigang Li, Jingqiang Lin, Quanwei Cai, Shuqin Fan,
Fan Zhang, and Bo Luo

MAG-PUF: Magnetic Physical Unclonable Functions for Device
Authentication in the IoT . 130
Omar Adel Ibrahim, Savio Sciancalepore, and Roberto Di Pietro

A Cross-layer Plausibly Deniable Encryption System for Mobile Devices 150
Niusen Chen, Bo Chen, and Weisong Shi

xii Contents

Binary Analysis

Language and Platform Independent Attribution of Heterogeneous Code 173
Farzaneh Abazari, Enrico Branca, Evgeniya Novikova,
and Natalia Stakhanova

Multi-relational Instruction Association Graph for Cross-Architecture
Binary Similarity Comparison . 192
Qige Song, Yongzheng Zhang, and Shuhao Li

Cost-Effective Malware Classification Based on Deep Active Learning 212
Qian Qiang, Yige Chen, Yang Hu, Tianning Zang, Mian Cheng,
Quanbo Pan, Yu Ding, and Zisen Qi

Blockchain

CTDRB: Controllable Timed Data Release Using Blockchains 231
Jingzhe Wang and Balaji Palanisamy

FairBlock: Preventing Blockchain Front-Running with Minimal Overheads 250
Peyman Momeni, Sergey Gorbunov, and Bohan Zhang

Blockchain-Based Ciphertext Policy-Hiding Access Control Scheme 272
Ruizhong Du and Tianhe Zhang

Granting Access Privileges Using OpenID Connect in Permissioned
Distributed Ledgers . 290
Shohei Kakei, Yoshiaki Shiraishi, and Shoichi Saito

Decentralized and Efficient Blockchain Rewriting with Bi-level Validity
Verification . 309
Kemin Zhang, Li Yang, Lu Zhou, and Jianfeng Ma

Cryptography

TERSE: Tiny Encryptions and Really Speedy Execution for Post-Quantum
Private Stream Aggregation . 331
Jonathan Takeshita, Zachariah Carmichael, Ryan Karl, and Taeho Jung

Symmetrical Disguise: Realizing Homomorphic Encryption Services
from Symmetric Primitives . 353
Alexandros Bakas, Eugene Frimpong, and Antonis Michalas

Contents xiii

Replicated Additive Secret Sharing with the Optimized Number of Shares 371
Juanjuan Guo, Mengjie Shuai, Qiongxiao Wang, Wenyuan Li,
and Jingqiang Lin

Generic 2-Party PFE with Constant Rounds and Linear Active Security,
and Efficient Instantiation . 390
Hanyu Jia, Xiangxue Li, Qiang Li, Yue Bao, and Xintian Hou

Data Security

A Random Reversible Watermarking Scheme for Relational Data 413
Qiang Liu, Hequ Xian, Jiancheng Zhang, and Kunpeng Liu

Enabling Accurate Data Recovery for Mobile Devices Against Malware
Attacks . 431
Wen Xie, Niusen Chen, and Bo Chen

Bootstrapping Trust in Community Repository Projects . 450
Sangat Vaidya, Santiago Torres-Arias, Justin Cappos, and Reza Curtmola

Intrusion Detection

Assessing the Quality of Differentially Private Synthetic Data for Intrusion
Detection . 473
Md Ali Reza Al Amin, Sachin Shetty, Valerio Formicola, and Martin Otto

Forensic Analysis and Detection of Spoofing Based Email Attack Using
Memory Forensics and Machine Learning . 491
Sanjeev Shukla, Manoj Misra, and Gaurav Varshney

AttackMiner: A Graph Neural Network Based Approach for Attack
Detection from Audit Logs . 510
Yuedong Pan, Lijun Cai, Tao Leng, Lixin Zhao, Jiangang Ma, Aimin Yu,
and Dan Meng

Hiatus: Unsupervised Generative Approach for Detection of DoS
and DDoS Attacks . 529
Sivaanandh Muneeswaran, Vinay Sachidananda, Rajendra Patil,
Hongyi Peng, Mingchang Liu, and Mohan Gurusamy

Mobile Security

What Data Do the Google Dialer and Messages Apps on Android Send
to Google? . 549
Douglas J. Leith

xiv Contents

Detection and Privacy Leakage Analysis of Third-Party Libraries
in Android Apps . 569
Xiantong Hao, Dandan Ma, and Hongliang Liang

Secure CV2X Using COTS Smartphones over LTE Infrastructure 588
Spandan Mahadevegowda, Ryan Gerdes, Thidapat Chantem,
and Rose Qingyang Hu

Network Security

DQR: A Double Q Learning Multi Agent Routing Protocol for Wireless
Medical Sensor Network . 611
Muhammad Shadi Hajar, Harsha Kalutarage, and M. Omar Al-Kadri

Message Recovery Attack of Kyber Based on Information Leakage
in Decoding Operation . 630
Mengyao Shi, Zhu Wang, Tingting Peng, and Fenghua Li

PII-PSM: A New Targeted Password Strength Meter Using Personally
Identifiable Information . 648
Qiying Dong, Ding Wang, Yaosheng Shen, and Chunfu Jia

Privacy

Silver Surfers on the Tech Wave: Privacy Analysis of Android Apps
for the Elderly . 673
Pranay Kapoor, Rohan Pagey, Mohammad Mannan, and Amr Youssef

MetaPriv: Acting in Favor of Privacy on Social Media Platforms 692
Robert Cantaragiu, Antonis Michalas, Eugene Frimpong,
and Alexandros Bakas

Adversary for Social Good: Leveraging Attribute-Obfuscating Attack
to Protect User Privacy on Social Networks . 710
Xiaoting Li, Lingwei Chen, and Dinghao Wu

Software Security

No-Fuzz: Efficient Anti-fuzzing Techniques . 731
Zhengxiang Zhou, Cong Wang, and Qingchuan Zhao

eSROP Attack: Leveraging Signal Handler to Implement Turing-Complete
Attack Under CFI Defense . 752
Tianning Zhang, Miao Cai, Diming Zhang, and Hao Huang

Contents xv

Breaking Embedded Software Homogeneity with Protocol Mutations 770
Tongwei Ren, Ryan Williams, Sirshendu Ganguly, Lorenzo De Carli,
and Long Lu

Security and Privacy-Preserving Solutions in the Internet of Things
(S/P-IoT) Workshop

A Generalized Unknown Malware Classification . 793
Nanda Rani, Ayushi Mishra, Rahul Kumar, Sarbajit Ghosh,
Sandeep K. Shukla, and Priyanka Bagade

Research on the Grouping Method of Side-Channel Leakage Detection 807
Xiaoyi Duan, Ye Huang, YongHua Su, Yujin Li, and XiaoHong Fan

PREFHE, PREFHE-AES and PREFHE-SGX: Secure Multiparty
Computation Protocols from Fully Homomorphic Encryption and Proxy
ReEncryption with AES and Intel SGX . 819
Cavidan Yakupoglu and Kurt Rohloff

Author Index . 839

AI for Security

Classification-Based Anomaly Prediction
in XACML Policies

Maryam Davari(B) and Mohammad Zulkernine

School of Computing, Queen’s University, Kingston, Canada
{maryam.davari,mz}@queensu.ca

Abstract. XACML (eXtensible Access Control Markup Language) has
gained significant interest as a standard to define Attribute-Based Access
Control (ABAC) policies for different applications, especially web ser-
vices. XACML policies have become more complex and difficult to
administer in distributed systems, which increases the chance of anoma-
lies (redundancy, inconsistency, irrelevancy, and incompleteness). Due to
the lack of effective analysis mechanisms and tools, anomaly detection
and resolution are challenging, particularly in large and complex policy
sets. In this paper, we learn the characteristics of various types of anoma-
lies to predict anomaly types of unseen policy rules with the help of data
classification techniques. The effectiveness of our approach in predicting
policy anomalies has been demonstrated through experimental evalua-
tion. The discovered correlations between the anomaly types and the
number of subject and resource attribute expressions can help system
administrators improve the security and efficiency of XACML policies.

Keywords: Access control policies · XACML · ABAC · Policy
anomalies · Classification-based anomaly prediction · Security

1 Introduction

Access control policies have been used to secure and control resource sharing in
distinct applications such as web services (e.g., [26]), grid systems (e.g., [24]),
and database federations (e.g., [4]). In recent years, Attribute-Based Access
Control (ABAC) [7] policies have gained popularity in open distributed envi-
ronments [21]. ABAC defines permissions based on attributes that can be any
information describing subjects, resources, and environments, rather than their
identities. ABAC access control policies are specified by XACML (eXtensible
Access Control Markup Language) [22], which is a general-purpose access control
policy language. XACML has been utilized in a variety of applications ranging
from healthcare to transportation [1].

Due to the sophisticated expressiveness and increasing size of XACML poli-
cies, the consequences and effects of developed policies are not obvious to policy
administrators. Some anomalies such as redundancy, inconsistency, irrelevancy,
and incompleteness may arise in developing access control policies when there are

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 3–19, 2023.

https://doi.org/10.1007/978-3-031-25538-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_1

4 M. Davari and M. Zulkernine

not enough mechanisms to analyze a large number of policies. One of the issues
with ABAC policies is redundancy detection and removal. When the number of
policies to be parsed affects the response time of access requests, redundancy has
to be addressed to avoid processing of unnecessary policies. In a policy set, mul-
tiple policies may conflict with each other which is referred to as inconsistency.
Inconsistent policies overlap and yield different decisions. Inconsistency detec-
tion can mitigate conflict resolution activities. Irrelevancy occurs when access
control policies are not suitable for any user’s access requests. Irrelevancy detec-
tion can help policy administrators eliminate unused policies and make policy
maintenance easier. Incompleteness refers to a situation when the current access
control policies cannot cover an access request. By detecting this anomaly, some
security issues (e.g., mistakenly allowing access to intruders) can be avoided.
However, anomaly detection in XACML policies is complicated due to the fact
that XACML policies may be aggregated by various parties and maintained by
multiple administrators.

In this paper, we propose a data classification-based approach to predict
anomaly types (redundancy, inconsistency, irrelevancy, and incompleteness) in
XACML policies. To the authors’ knowledge, there are no XACML policy rule
sets that include these four types of anomalies. Therefore, the proposed approach
begins by building XACML policy rules. The rules are then clustered based on
their similarities and policy anomaly detection technique [3] is applied to each
cluster. Various data classification techniques (e.g., Random Forest, Decision
Tree) are then trained on these rules to discover the behavior of anomalies and
predict anomaly types of unseen rules. The experimental results show that the
classification-based approach is effective in predicting anomalies in large rule
sets. Furthermore, some correlations among the number of subject and resource
attribute expressions, rule sizes, and anomaly types are found. These insights can
assist system administrators to make XACML policies more secure and efficient.

The major contributions of this paper can be summarized as follows:

– The design and implementation of XACML policy anomaly prediction using
classification techniques.

– The anomaly (redundancy, inconsistency, irrelevancy, and incompleteness)
formalization for XACML policies.

– The discovery of correlations among anomaly types, rule sizes, and rule
attributes.

The rest of the paper is organized as follows: Sect. 2 presents background
information on XACML. Section 3 describes the XACML policy anomaly pre-
diction approach, which includes the XACML policy analysis and policy learning
procedure for anomaly prediction. In Sect. 4, the experiments are discussed and
the findings are analyzed. The related work, conclusion, and future work are
presented in Sects. 5 and 6, respectively.

2 Overview of XACML

In this section, we provide background information about XACML policies [22].
Access control policy specification and formalization in the XACML language

Classification-Based Anomaly Prediction in XACML Policies 5

have four parts: attributes and functions, rules, policies, and policy sets. XACML
policies are centered around attributes and functions that represent the charac-
teristics of subjects, resources, actions, and environments. A policy rule is made
up of three parts: effect (indicating whether access will be permitted or denied),
Boolean condition (specifying when the rule applies to an access request), and
target (grouping subjects, resources, and actions).

A policy consists of a target, a set of rules, and a rule combining algorithm. A
combining algorithm computes a decision when a policy has rules with conflicting
effects such as Deny-Overrides (i.e., if any rule evaluates to “Deny”, the final
decision is “Deny”), Permit-Overrides (i.e., if any rule evaluates to “Permit”,
the final decision is “Permit”), and First-Applicable (i.e., the effect of the first
rule that applies is the decision of the policy). A policy set is defined by a target,
a set of policies, and a policy combining algorithm (which is the same as the rule
combining algorithm). We provide formal definitions of XACML policies [27] in
the following paragraphs.

Definition 1 Rule. A rule Ru = (S,R,A,C,E) specifies a set of subjects S
(containing a set of subject attributes) can perform a set of actions A (a1, a2, · · · ,
am) over a set of resources R (consisting of a set of resource attributes) by effect
E under condition C. A policy P = {Ru1, Ru2, ..., Rum} contains a set of rules
Ru1, Ru2, ..., Rum.

Definition 2 Subject Attribute. Attributes describe the characteristics of a sub-
ject. Let S be a finite set of subjects and Atts is a finite set of subject attributes.
The value of attribute a ∈ Atts for subject s ∈ S is represented by the function
ds(a, s). Some subject attributes have just one value, while others have multiple
values. Single value attributes (Atts,1) have a unique value for each subject (e.g.,
subject id), and multiple value attributes (Atts,m) are a set of single values (e.g.,
courses).

Definition 3 Resource Attribute. Attributes that describe the characteristics
of resources. Let R and Attr be finite sets of resources and resource attributes,
respectively. The value of attribute a ∈ Attr for resource r ∈ R is represented
by function dr(a, r).

Definition 4 Attribute Expression. An attribute expression contains a set of
attributes, operators, and value tuples (att op val) (e.g., security level > 10).
The operators we consider in this paper are {≤, <,=, >,≥}. A subject attribute
expression (eS) is a function e that for each subject attribute a ∈ Atts, eS(a)
is either special value ⊥ (that indicates there is no constraint on the value of
attribute a) or a set of possible values. Similarly, resource attribute expression
(eR) is a function for resource attributes.

Definition 5 Access Request. An access request is represented as a tuple
(S,R,A, C), with S containing a finite set of subject attribute-value pairs
(atts1 = val1), (atts2 = val2), · · · , (attsn = valn). Similarly, R is a finite set
of resource attribute-value pairings (attr1 = val1), (attr2 = val2), · · · , (attrm
= valm). A is the request action, and C is a set of conditions.

6 M. Davari and M. Zulkernine

Definition 6 Any Value. If subject attributes or resource attributes of a rule
are not specified, it signifies that they do not impose any constraints on attribute
values, which we indicate with att = ∗.

In this paper, analysis and prediction are performed at the rule level, and
the influence of combining algorithms is ignored. When the number of rules
increases, the consequence of using the conflicting algorithms to override access
control decisions can be unpredictable [21]. These algorithms can handle conflicts
in incoming requests, but they were not developed to detect conflicts in policies.

Table 1. Sample policy rules.

Rule Subject Resource Action Condition Effect

Ru1
adminRole=
accountant

type=budget update s.project=r.project Permit

Ru2 isEmployee=true
type=task ;

proprietary=false
request

s.expertise=r.expertise;
s.project=r.project

Permit

Ru3

adminRole=
accountant,
planner

type=budget
read,
update

s.project=r.project Permit

Ru4 isEmployee=true
type=task,

proprietary=false
request s.project=r.project Deny

Ru5 isEmployee=true type=schedule update s.project=r.project Deny

Ru6 adminRole=planner type=budget request s.project=r.project Permit

3 XACML Policy Anomaly Prediction

The classification-based anomaly prediction aims to learn the characteristics of
rules with anomalies based on historical results and predict whether new rules
are normal or anomalous. We regard the mapping between policy rules and
anomaly types as a function of f : x → y in machine learning contexts, where x
is a rule and y is a type of rule. y indicates whether the rule is normal (i.e., has
no anomaly) or anomalous (i.e., has an anomaly) in the binary classification. In
the multi-class classification, y can be normal or an anomaly type (redundancy,
static and dynamic inconsistency, irrelevancy, and incompleteness). The main
goal is to learn function f to predict the type of an unseen rule. We provide
XACML policy anomaly definitions in Sect. 3.1. Then, XACML policy rules are
clustered and analyzed to identify the types of rules in Sect. 3.2. In the following
section, we present a policy learning procedure (including data pre-processing
and data-classification) that is required for anomaly prediction.

Classification-Based Anomaly Prediction in XACML Policies 7

3.1 XACML Policy Anomaly Definitions

We begin by defining different types of anomalies for XACML policy rules. For
further demonstration, we use some rules focusing on project management from
[27] that are listed in Table 1.

Definition 7 Redundancy (RED). Redundancy indicates similarities among
rules. Attributes of two rules with the same identifiers have intersecting val-
ues. Detecting and removing redundancies can improve policy evaluation perfor-
mance. Rule Ruj is redundant if and only if

– ∃Rui ∈ ACP.
– ∀ a ∈ Ruj .eS , ∃ a′ ∈ Rui.eS , Atts(a) = Atts(a′) → a ∩ a′ �= ∅ ∧

∀ b ∈ Ruj .eR, ∃ b′ ∈ Rui.eR, Attr(b) = Attr(b′) → b ∩ b′ �= ∅ ∧ Rui.A ∩
Ruj .A �= ∅ ∧ Rui.E = Ruj .E.

For example, rule Ru3 in Table 1 specifies that an accountant and a planner
assigned to a project can read and update the budget. Rule Ru1 indicates that
an accountant assigned to a project can update the project budget. As a result,
rule Ru1 is redundant in comparison to rule Ru3.

Definition 8 Inconsistency (INCON). Inconsistency can be divided into two
categories: static and dynamic.

Definition 8-1 Static inconsistency (SINCON). Static inconsistency refers to
a situation when there are at least two similar rules (i.e., two rules with the
same attribute identifiers have intersecting values) in the policy set that conflict
with each other. Consider rules Rui and Ruj . These two rules are statically
inconsistent if and only if

– ∀ a ∈ Rui.eS , ∃ a′ ∈ Ruj .eS , Atts(a) = Atts(a′) → a ∩ a′ �= ∅ ∧ ∀ b ∈
Rui.eR, ∃ b′ ∈ Ruj .eR, Attr(b) = Attr(b′) → b ∩ b′ �= ∅ ∧ Rui.A ∩ Ruj .A �=
∅ ∧ Rui.E �= Ruj .E.

For example, rule Ru2 specifies that an employee working on a project can
request to work on a non-proprietary task whose required areas of expertise
are among the employee’s areas of expertise, while rule Ru4 specifies that an
employee working on a project cannot request to work on the non-proprietary
task. Rules Ru2 and Ru4 are statically inconsistent.

Definition 8-2 Dynamic inconsistency (DINCON). Dynamic inconsistency
refers to a situation when an incoming access request triggers at least two rules
with conflicting decisions. The dynamic inconsistency relies on access requests
and occurs at runtime. Consider rules Rum and Run. These two rules are dynam-
ically inconsistent with respect to request req if and only if

– ∃ req = (S′, R′, A′).

8 M. Davari and M. Zulkernine

– ∃Rum ∈ ACP ∧ Run ∈ ACP | (∃ a ∈ S′ ,∃ a′ ∈ Rum.eS , Atts(a) =
Atts(a′) → a ∩ a′ �= ∅) ∧ (∃ a′′′ ∈ S′ ∧ ∃ a′′ ∈ Run.eS , Atts(a′′′) =
Atts(a′′) → a′′′ ∩ a′′ �= ∅) ∧ (∃ b ∈ R′ ,∃ b′ ∈ Rum.eR, Attr(b) = Attr(b′) →
b ∩ b′ �= ∅) ∧ (∃ b′′′ ∈ R′ ,∃ b′′ ∈ Run.eR, Attr(b′′′) = Attr(b′′) → b′′′ ∩ b′′ �=
∅) ∧ A′ ∩ Rum.A �= ∅ ∧ A′ ∩ Run.A �= ∅ ∧ Rum.E �= Run.E.

For example, when an incoming request is

<s.adminRole=accountant, s.isEmployee=true; r.type={budget, schedule};
s.project=r.project; action =update>

dynamic inconsistency occurs. Both rules Ru1 and Ru5 satisfy the conditions,
while they have conflicting effects. Therefore, rules Ru1 and Ru5 are dynamically
inconsistent.

Definition 9 Irrelevancy (IRR). Irrelevancy refers to a scenario where a rule is
never triggered for any kind of access request. A rule is irrelevant if and only if

– ∃Ru ∈ ACP.
– � req = (S′, R′, A′) | ∀ a ∈ Ru.eS , ∃ a′ ∈ S′, Atts(a) = Atts(a′) → a ∩ a′ =

a ∧ ∀ b ∈ Ru.eR, ∃ b′ ∈ Ru′, Attr(b) = Attr(b′) → b ∩ b′ = b ∧ A′ ∩ Ru.A �=
∅.

As an example, rule Ru6 specifies that a planner assigned to a project can request
to get information about the project budget. However, according to rule Ru3, an
accountant and a planner assigned to a project can read and update the budget
without sending the request. As a result, rule Ru6 is irrelevant with respect to
rule Ru3.

Definition 10 Incompleteness (INCOM). Rules are incomplete when existing
rules are unable to cover an access request. A rule is incomplete if and only if

– ∃ req = (S′, R′, A′).
– �Ru ∈ ACP | ∀ a ∈ Ru.eS , ∃ a′ ∈ S, Atts(a) = Atts(a′) → a ∩ a′ = a ∧

∀ b ∈ Ru.eR, ∃ b′ ∈ Ru′, Attr(b) = Attr(b′) → b ∩ b′ = b ∧ A′ ∩ Ru.A �= ∅.

A contractor working on a project, for example, requests information regarding
the project schedule. However, there is no policy to handle the request.

3.2 Rule Clustering and Analysis

Rule clustering makes the policy analysis scalable. A number of clustering algo-
rithms exist such as K-means [10] and hierarchical clustering [12]. However,
they face various challenges (e.g., determining the number of clusters, cluster
initialization) and are not effective for XACML rules. In this paper, we present

Classification-Based Anomaly Prediction in XACML Policies 9

a clustering algorithm that groups rules sharing similarities into a cluster as
the likelihood of anomalies (especially redundancies and static inconsistencies)
among similar rules is high. Similarities between rules in terms of subjects (Ss),
resources (Sr), actions (Sact), and conditions (Scon) are calculated for rules Rui

and Ruj as follows:

– S(Rui, Ruj) = ws Ss(Rui, Ruj) +wr Sr(Rui, Ruj) +wa Sact(Rui, Ruj) +wc

Scon(Rui, Ruj)
– Ss(Rui, Ruj) =

∑
attk∈(Rui.Atts ∩Ruj .Atts)

[(ds(attk, Rui.s) ∩ ds(attk, Ruj .s))
/ (ds(attk , Rui.s) ∪ ds(attk , Ruj .s))]

– Sr(Rui, Ruj) =
∑

attk∈(Rui.Attr ∩Ruj .Attr)
[(dr(attk, Rui.r) ∩ dr(attk, Ruj .r))

/ (dr(attk , Rui.r) ∪ dr(attk , Ruj .r))]
– Sact(Rui, Ruj) = [Rui.act ∩ Ruj .act] / [Rui.act ∪ Ruj .act]
– Scon(Rui, Ruj) = [Rui.con ∩ Ruj .con] / [Rui.con ∪ Ruj .con]

where ws+wr +wa+wc = 1. The weight assignment may depend on application
needs. We consider weights of subject (ws), resource (wr), action (wa), and
condition (wc) equal (all weights are assigned to 1/4). When the similarity score
of two rules exceeds a threshold, they are grouped into a cluster. This score
may fluctuate depending on the rule set. In our work, we use the threshold of
0.8 which was suggested by Lin et al. [14], and it works fine. Furthermore, each
cluster has at least one rule, and each rule is grouped into one or more clusters.
We consider AND operator in the rule definition. A rule containing Boolean
expressions (e.g., OR, NOT) is split into several rules.

When the rules are clustered, we apply the formal tree-based policy modeling
technique [3] for each cluster to analyze policy rules. To keep the tree as slim
as possible, we define the data structure of the tree as follows. The first level of
the tree is made up of action nodes, which show the actions of systems. Each
action node in the tree points to the resource nodes on the second level. Each
resource node is connected to the third level of the tree which contains subject
nodes. Each subject node points to the condition nodes at the fourth level of the
tree. Each condition node can then have one or two leaf nodes that represent the
effects of the rule. Leaf nodes of each rule store Rule ID and a Counter ref vari-
able. The Counter ref indicates whether the rule was triggered by any access
request or not. Anomalies within each cluster are detected by traversing the
policy trees from root to leaf node. Redundancies and static inconsistencies are
detected in each cluster1. Dynamic inconsistencies, irrelevancies, and incomplete-
ness can be detected by evaluating incoming access requests. When an incoming
access request is issued, a cluster with the highest similarity to the request is
identified. Then, rules in the corresponding cluster are evaluated with respect to
the incoming access request according to Definitions 7-10 mentioned in Sect. 3.1.

3.3 Policy Learning Procedure for Anomaly Prediction

To discover the characteristics of rules with anomalies, machine learning tech-
niques are applied to the rules generated by the XACML policy analysis (pre-
1 For more details, please refer to [3].

10 M. Davari and M. Zulkernine

sented in Sect. 3.2). Before applying the techniques, the rules need to be pre-
processed as follows:

1) Rules are parsed to organize attribute orders. The rule components are
divided into non-category and category attributes. Subject attributes,
resource attributes, actions, conditions, and effects are non-category
attributes. The type of rules that can be normal or anomalous is a cate-
gory attribute.

2) Missing attribute values are handled. Missing attribute values can arise in
any application. An approach for dealing with missing values is included in
some classification algorithms. For example, a missing value of a numerical
attribute is substituted with an average value of its attributes. They do
not, however, take into account the semantics of data. We address missing
values for subject and resource attributes using Definition 6. If values of
action and effect components are missing, the effect of the rule becomes
“not applicable”.

3) Continuous attributes are treated as some non-overlapping ranges to be effi-
cient in data mining. For example, the age attribute that has continuous
numerical values is converted into a range (e.g., infant, child, young adult).

4) Conditions in rules are addressed. For example, a subject can access a
resource during a specific time slot (8am-5pm) in a particular location (e.g.,
office). Permission is granted only if all the conditions are satisfied. Condi-
tions, subject attributes, and resource attributes can be expressed as Boolean
expressions; for example, subject.security level > 10. In policy sets, rules
are not uniformly structured necessarily. Rules may have complex Boolean
expressions with variable lengths. To apply data classification techniques,
we normalize these Boolean expressions. Boolean expression is converted to
Disjunctive Normal Form (DNF) (C1∨C2∨...∨Ci). Then, the rule is divided
into i rules with distinct conditions.

5) Intervals between rule components are managed. We find all potential unique
intervals among rule components when they overlap. For example, Rule 1
allows accountants and planners to change the project budget between 8am
and 5pm. Rule 2 denies accountants the right to change the project budget
between 12pm and 1pm. To convert the rules into non-overlapping rules,
our algorithm identifies all the boundaries: 8am, 12pm, 1pm, and 5pm. The
algorithm rewrites the rules as follows: Rule 1 allows accountants and plan-
ners to change the project budget between 8am and 12pm, Rule 2 denies
accountants the right to change the project budget between 12pm and 1pm,
Rule 3 allows planners to change the project budget between 12pm and 1pm,
and Rule 4 permits accountants and planners to change the project budget
between 1pm and 5pm.

6) Imbalanced categories of anomalies in rule sets are addressed. Usually, the
number of instances with anomalies is far less than the number of instances
without anomalies. Applying the classification techniques to an imbalanced
rule set has a high likelihood of over-fitting [16] (i.e., the category with the
dominant instance biases the classifier toward itself). We over-sample the

Classification-Based Anomaly Prediction in XACML Policies 11

minority classes by generating synthetic instances using SMOTE (Synthetic
Minority Oversampling Technique) [2].

Each rule is a feature vector containing subject attributes, resource
attributes, actions, conditions, effects, and anomaly types. A subset of rules
with anomalies are then utilized to learn anomaly characteristics. The accuracy
of classification algorithms may vary depending on applications. There is no sin-
gle algorithm that can outperform other algorithms in all feasible applications.
Therefore, we apply five classification techniques from diverse categories (e.g.,
tree-based classifiers, distance-based classifiers, probabilistic classifiers) to the
rules: Random Forest (RF), Decision Tree (DT), Naive Bayes (NB), Support
Vector Machine (SVM), and K-Nearest Neighbors (KNN). The classifiers may
have inherent classification inaccuracies, and various classifiers may provide dif-
ferent outcomes. As a result, we integrate the findings of multiple classifiers using
the majority voting (MV) [18]. The majority voting technique ensures that the
decisions of the classifiers are in agreement. Its decision, in particular, is a class
that the majority of classifiers predict. When the classifiers’ decisions are not in
agreement, it chooses a class at random.

4 Experimental Evaluation

The primary goal of this section is to evaluate the effectiveness and efficiency of
the proposed policy anomaly prediction approach. To achieve this, we perform
various experimental evaluations as described below.

4.1 Rule Sets and Settings

We are unable to get large real-world rule sets to evaluate the proposed approach.
Therefore, we create 18 synthetic rule sets. The number of subject attribute
expressions and resource attribute expressions are selected based on a normal
distribution with distinct means and variances. In the experiments, three means
of attribute expression for both subjects and resources are set to 3, 4, and 5,
and variances are set to 1. Six rule sets with size of 100, 1000, 2000, 3000, 4000,
and 5000 are built for each mean. Rule sets {RS1, · · · , RS6}, {RS7, · · · , RS12},
and {RS13, · · · , RS18} are constructed for the means of attribute expressions 3,
4, and 5, respectively. Attribute values can have different domains in practice.
We define attribute values as an integer type with values ranging from 1 to 100.
Subject attributes and resource attributes each have a lower and upper threshold.
The total number of subject and resource attributes is 20. Each rule can have
[1, 10] actions and [0, 10] conditions that are uniformly and randomly selected.
The effect of each policy is randomly picked as either “Permit” or “Deny”.

We build a set of access requests to evaluate the effectiveness of the pro-
posed approach in predicting dynamic inconsistencies, irrelevancies, and incom-
pleteness. The mean of attribute expressions for the requests is set to 10 and

12 M. Davari and M. Zulkernine

the variance is set to 2. The request set contains more than 10,000 requests.
We consider that requests only have one action. Requests with more than one
action are rewritten as multiple requests with one single action. The proposed
approach is implemented in Java 11. The experiments are conducted using an
Intel Core i7 1.99 GHz processor with 16 GB of RAM.

4.2 Policy Analysis

Rule sets {RS1, · · · , RS18} are analyzed based on the approach described in
Sect. 3.2. The analyzed rule sets are considered training rule sets for Sect. 4.3.

(a) Average Redundancy Rules. (b) Average Static Inconsistency Rules.

Fig. 1. Average redundancy and static inconsistency rules for 18 rule sets.

(a) Average Dynamic Inconsistency Rules. (b) Average Irrelevancy Rules.

(c) Average Incompleteness Rules.

Fig. 2. Average dynamic inconsistency, irrelevancy, and incompleteness rules.

Classification-Based Anomaly Prediction in XACML Policies 13

Result Analysis. Figures 1a and 1b show the average number of redundancies
and static inconsistencies for 18 rule sets, respectively. On average, there is a
significant number of redundancies and static inconsistencies. It is also observed
that these two anomalies behave similarly with respect to the number of rules
and means of attribute expressions. The average number of redundancies and
static inconsistencies increases with the number of rules. However, as the means
of attribute expressions increase, the growth rates of redundancies and static
inconsistencies decrease.

Figure 2 shows the average number of dynamic inconsistencies, irrelevancies,
and incompleteness for 18 rule sets. Figure 2a indicates that the behavior of
dynamic inconsistencies is similar to the behavior of redundancies and static
inconsistencies in terms of rule numbers and the means of attribute expres-
sions. Similar behavior for static and dynamic inconsistencies was found by Liu
et al. [15]. The average number of static inconsistencies is lower than the aver-
age number of dynamic inconsistencies. The reason is that policy administra-
tors pay more attention to rules with similar attributes when creating policies.
This can help decrease the number of static inconsistencies. It is difficult for
administrators to determine whether rules with different attribute identifiers are
inconsistent. Therefore, dynamic inconsistencies are ignored. As the majority
of inconsistencies are dynamic inconsistencies, some of the static inconsistency
detection approaches [11,13,21,25] may not successfully satisfy all actual system
requirements.

Fig. 3. Clustering, construction, and analysis time for 10,000 access requests for rule
sets RS1, · · · , RS6.

Despite the results shown in Figs. 1a, 1b, and 2a, the growth rates of irrel-
evancies increase when the means of attribute expressions increase (shown in
Fig. 2b). Similar to redundancies, static inconsistencies, and dynamic inconsis-
tencies, the average number of irrelevancies rises with the number of rules. On the
other hand, the average number of incompleteness decreases with the number of
rules. It can be observed from Fig. 2c that the average number of incompleteness
increases as the number of attribute expressions grows. However, larger means
of of attribute expressions have slower decreasing rates.

It can be observed from the above analysis that merely advising system
administrators to employ a large number of attributes to generate inconsistency-
free rule sets [15] is not effective. Although a high mean of attribute expressions

14 M. Davari and M. Zulkernine

can result in rule sets with fewer redundancies and (static and dynamic) inconsis-
tencies, it can also raise irrelevancies and incompleteness. A low mean of attribute
expressions, on the other hand, results in rule sets with fewer irrelevancies and
incompleteness, while it can also result in more redundancies and (static and
dynamic) inconsistencies. Redundancies and static inconsistencies rely on rules
and are independent of access requests, while dynamic inconsistencies, irrele-
vancies, and incompleteness depend on access requests. As the number of access
requests is far greater than the number of rules, rule sets with a low mean of
attribute expressions can cause fewer anomalies.

As the anomaly detection technique needs to search all trees to find anomalies
in the rule set, we collect time for building clusters, constructing policy trees,
and analyzing access requests. These time-based metrics rely on the number of
rules. In Fig. 3, we show the time for rule sets RS1, · · · , RS6. As this figure
indicates, rule clustering takes longer than tree construction. In addition, the
policy analysis takes a longer time than clustering and tree construction, which
is reasonable as we consider 10,000 access requests.

(a) Accuracy of the Rule Sets. (b) Precision of the Rule Sets.

(c) Recall of the Rule Sets. (d) False Positive Rate of the Rule Sets.

(e) Average Analysis Time.

Fig. 4. Efficiency of Anomaly Prediction for Rule Sets RS4, RS5, RS6.

Classification-Based Anomaly Prediction in XACML Policies 15

4.3 Anomaly Classification and Prediction

For the classification-based analysis, we use rule sets RS4, RS5, and RS6. As
the mean of the attribute expression is 3, the rule sets can balance the number
of various anomalies (presented in the previous section). Various classifiers are
constructed for the rule sets based on the approach presented in Sect. 3.3. We
consider both binary and multi-class classifications. The classifiers are trained
on 70% of the data and use 10-fold cross-validation and the Weka library [6], a
set of machine learning algorithms for data mining tasks.

Evaluation Metrics. To assess the efficiency of our classification-based
anomaly detection approach, we report accuracy, precision, recall, and false pos-
itive rate (FPR) defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)

True Positive (TP) is the number of rules that are predicted as anomalies, and
are truly anomalies. False Positive (FP) is the number of rules that are predicted
as anomalies, while they are truly normal. False Negative (FN) is the number of
rules that are predicted as normal, while they are truly anomalies. True Negative
(TN) is the number of rules predicted as normal, and they are truly normal.

Analysis Results. The effectiveness of multi-class classifiers is displayed in
Fig. 4. The accuracy, precision, and recall of all five classifiers (excluding K-
Nearest Neighbors) are above 70% using RS6 as shown in Figs. 4a, 4b, and
4c, respectively. Figure 4d shows that the false positive rate ranges from 4% to
7%, which is critical for security. The low false positive rate shows that the
classification-based detection methods are capable of detecting all anomalies.
However, the effectiveness of a classification-based approach varies based on the
employed classifiers. Some of the classifiers do not behave consistently. For exam-
ple, K-Nearest Neighbors has about 70% accuracy, precision, and recall in RS4.
It improves slightly in RS5, but it becomes worse in RS6. The majority voting,
on the other hand, achieves above 75% accuracy, precision, and recall for all rule
sets. The binary class classifiers indicate that the average accuracy, precision,
and recall for all six classification algorithms (including majority voting) are 99%
and the average false positive rate is 0.8%.

Figure 4e depicts the average analysis time for discovering anomalies using the
tree model, five classifiers, and majority voting technique. In general, classifiers

16 M. Davari and M. Zulkernine

outperform tree-based and majority voting policy analysis. The majority voting
is slower than five classifiers as it integrates the results of all classifiers employed
in classification-based policy analysis. However, it performs better than tree-
based policy analysis. Therefore, it can be concluded that majority voting is
effective in predicting policy anomalies.

5 Related Work

Policy anomaly assessment has attracted the attention of many researchers, and
different approaches have been proposed in this area. There are some efforts to
detect redundancies [11], inconsistencies [11,13,15,21,25], irrelevancies [17], and
incompleteness [20] in XACML and ABAC policies. Jebbaoui et al. [11] proposed
a semantic-based approach to detect redundancies and conflicts in XACML poli-
cies. The proposed approach was developed for a new set-based language named
SBA-XACML. Shu et al. [21] focused on statically-conflicting rules and pre-
sented a method to detect conflicts in ABAC policies by using rule reduction
and binary-search. They decomposed ABAC rules to identify redundancies and
reduce the number of intersection operations. To enhance the efficiency of the
proposed approach, they used binary search simultaneously. Liu et al. [15] pre-
sented a conflict detection method for ABAC policies based on the proposed
definition of rule conflict. They transferred implicit conflicting rules to explicit
conflicting rules and evaluated their approach by the proposed metrics.

The Satisfiability Modulo Theories (SMT) solver was another method for
detecting conflict in XACML policies. The Boolean portion of satisfiability check-
ing was separated from algorithms that employed property checking using SMT
logic solvers [25]. Rami et al. [17] detected conflicts, unreachable policies (i.e.,
irrelevancies), and incompleteness by using Answer Set Programming (ASP).
Expressing attributes that do not exist in AnsProlog [23] (e.g., strings) is difficult
to be modeled. Also, there are no experimental results to show the applicability
of their work. Fisler et al. [5] presented a tool called Margrave to analyze policies.
It translates policies into Multi-Terminal Binary Decision Diagrams (MTBDDs)
to answer user queries. Khoumsi et al. [13] proposed an automaton-based app-
roach for modeling, developing, and analyzing policies. They divided firewall
security policies into conflicting and non-conflicting anomalies.

There are a few works that use data mining-based and data classification tech-
niques to detect anomalies in access control policies. Shaikh et al. [20] adopted
data classification techniques to detect incompleteness in access control policies.
This approach consisted of three steps. Attributes were ordered and Boolean
expressions were normalized, a decision tree (which was a modification of C4.5)
was generated, and the proposed anomaly detection algorithm was executed
on the decision tree. In another study by Shaikh et al. [19], a modified C4.5
algorithm was proposed to detect inconsistencies and incompleteness in access
control policies. When the number of XACML policies increases, the complexity
and computation of some proposed algorithms grow, which makes the approach
inapplicable. Abu Jabal et al. [9] proposed a framework based on the provenance

Classification-Based Anomaly Prediction in XACML Policies 17

technique for policy analysis. They proposed structure-based and classification-
based approaches that focus on the RBAC domain.

Various approaches have been investigated to address the problem of anoma-
lies in access control rules [8]. Most of the existing approaches were developed
in the network management and RBAC domains. These studies are not effective
for predicting all four types of anomalies in XACML policies. Our classification-
based policy anomaly prediction approach is time efficient comparing tree-based
anomaly detection. Furthermore, past policy analysis research has concentrated
on only a few types of anomalies (the inconsistency being the most studied),
whereas our approach attempts to discover all types of anomalies.

6 Conclusion and Future Work

A large number of XACML policies may raise the risk of anomalies (redundancy,
inconsistency, irrelevancy, and incompleteness) in distributed systems. Anomaly
detection, on the other hand, is a difficult and expensive operation. In this paper,
we have presented an anomaly prediction approach for XACML policies based
on the data classification techniques. The proposed approach extracts XACML
policy rules and clusters them based on their similarities. Anomalies in each
cluster are then detected using the policy anomaly detection technique. Various
data classification techniques are trained on the rules to identify the behavior of
anomalies and predict the anomaly types of new rules. The experimental results
have shown that the majority voting technique can obtain accuracy, recall, and
precision of 80% and a false positive rate of 4%. Therefore, the proposed app-
roach has the capability to predict anomalies. Furthermore, the experiments have
shown that anomaly types can be correlated to the number of rules and attribute
expressions. It is notable that the limitation of the proposed approach is the lack
of real-world policies. As part of the future work, we plan to find an appropriate
number of attribute expressions to minimize the number of anomalies.

References

1. https://www.oasis-open.org/ XACML references and products, version 1.85.
https://www.oasis-open.org/committees/download.php/42588/xacmlRefs-V1-85.
html#Products. (Accessed 28 Dec 2021)

2. Chawla, N.V., Bowyer, K.W., Hall, L.W., Kegelmeyer, W.P.: Synthetic minority
over-sampling technique: SMOTE. J. Artifi. Intell. Res. 16, 321–357 (2002)

3. Davari, M., Zulkernine, M.: Policy modeling and anomaly detection in ABAC poli-
cies. In: Luo, B., Mosbah, M., Cuppens, F., Ben Othmane, L., Cuppens, N., Kallel,
S. (eds.) CRiSIS 2021. LNCS, vol. 13204, pp. 137–152. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-02067-4 9

4. Dawson, S., Qian, S., Samarati, P.: Providing security and interoperation of het-
erogeneous systems. In: Security of Data and Transaction Processing, pp. 119–145.
Springer (2000). https://doi.org/10.1007/978-1-4615-4461-6 5

https://www.oasis-open.org/
https://www.oasis-open.org/committees/download.php/42588/xacmlRefs-V1-85.html#Products
https://www.oasis-open.org/committees/download.php/42588/xacmlRefs-V1-85.html#Products
https://doi.org/10.1007/978-3-031-02067-4_9
https://doi.org/10.1007/978-1-4615-4461-6_5

18 M. Davari and M. Zulkernine

5. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and
change-impact analysis of access-control policies. In: Proceedings of the 27th Inter-
national Conference on Software Engineering, pp. 196–205 (2005)

6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten. I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter
11(1), 10–18 (2009)

7. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations (draft). NIST Special Public. 800(162), 1–54 (2013)

8. Jabal, A.A., et al.: Methods and tools for policy analysis. ACM Comput. Surv.
(CSUR) 51(6), 1–35 (2019)

9. Jabal, A.A., et al.: Profact: A provenance-based analytics framework for access
control policies. IEEE Trans. Serv. Comput. (2019)

10. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall Inc. (1988)
11. Jebbaoui, H., Mourad, A., Otrok, H., Haraty, R.: Semantics-based approach for

detecting flaws, conflicts and redundancies in XACML policies. Comput. Elect.
Eng. 44, 91–103 (2015)

12. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254
(1967)

13. Khoumsi, A., Erradi, M., Krombi, W.: A formal basis for the design and analysis of
firewall security policies. J. King Saud Univ. Comput. Inf. Sci. 30(1), 51–66 (2018)

14. Lin, D., Rao, P., Ferrini, R., Bertino, E., Lobo, J.: A similarity measure for com-
paring xacml policies. IEEE Trans. Knowl. Data Eng. 25(9), 1946–1959 (2012)

15. Liu, G., Pei, W., Tian, Y., Liu, C., Li, S.: A novel conflict detection method for
ABAC security policies. J. Ind. Inf. Integr. 22, 100200 (2021)

16. Ostrand, T.J., Weyuker, E.J.: How to measure success of fault prediction models.
In: 4th International Workshop on Software Quality Assurance

17. Ramli, C.D.P.K.: Detecting incompleteness, conflicting and unreachability
XACML policies using answer set programming. arXiv preprint arXiv:1503.02732
(2015)

18. Ruta, D., Gabrys, B.: Classifier selection for majority voting. Inf. Fusion 6(1),
63–81 (2005)

19. Shaikh, R.A., Adi, K., Logrippo, L.: A data classification method for inconsistency
and incompleteness detection in access control policy sets. Int. J. Inf. Sec. 16(1),
91–113 (2017)

20. Shaikh, R.A., Adi, K., Logrippo, L., Mankovski, S.: Detecting incompleteness in
access control policies using data classification schemes. In: 5th International Con-
ference on Digital Information Management (ICDIM), pp 417–422. IEEE (2010)

21. Shu, C.-c., Yang, E.Y., Arenas, A.E.: Detecting conflicts in ABAC policies with
rule-reduction and binary-search techniques. In: International Symposium on Poli-
cies for Distributed Systems and Networks, pp. 182–185. IEEE (2009)

22. OASIS Standard. Extensible access control markup language (XACML) version
3.0. 2008. http://docs.oasis---open.or/xacmmL2.0/access control-xacml-2.0core.
spec---OS.pa1 (2013)

23. Sureshkumar, A., De Vos, M., Brain, M., Fitch, J.: Ape: An ansprolog* environ-
ment. See De Vos and Schaub 2007, 101–115 (2007)

24. Thompson, M.R., Essiari, A., Mudumbai, S.: Certificate-based authorization policy
in a PKI environment. ACM Trans. Inf. Syst. Sec. (TISSEC) 6(4), 566–588 (2003)

25. Turkmen, F., den Hartog, J., Ranise, S., Zannone, N.: Analysis of XACML Policies
with SMT. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 115–
134. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7 7

http://arxiv.org/abs/1503.02732
http://docs.oasis---open.or/xacmmL2.0/access_control-xacml-2.0core.spec---OS.pa1
http://docs.oasis---open.or/xacmmL2.0/access_control-xacml-2.0core.spec---OS.pa1
https://doi.org/10.1007/978-3-662-46666-7_7

Classification-Based Anomaly Prediction in XACML Policies 19

26. Wimmer, M., Kemper, A., Rits, M., Lotz, V.: Consolidating the access control of
composite applications and workflows. In: Damiani, E., Liu, P. (eds.) DBSec 2006.
LNCS, vol. 4127, pp. 44–59. Springer, Heidelberg (2006). https://doi.org/10.1007/
11805588 4

27. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies. IEEE Trans.
Depend. Sec. Comput. 12(5), 533–545 (2014)

https://doi.org/10.1007/11805588_4
https://doi.org/10.1007/11805588_4

An Evolutionary Learning Approach
Towards the Open Challenge of IoT

Device Identification

Jingfei Bian1,2, Nan Yu1,2, Hong Li1,2, Hongsong Zhu1,2(B), Qiang Wang1,2,
and Limin Sun1,2

1 Beijing Key Laboratory of IOT Information Security Technology,
Institute of Information Engineering, CAS, Beijing, China

{bianjingfei,yunan,lihong,zhuhongsong,wangqiang3113,sunlimin}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Internet of Things (IoT) device identification has become an
indispensable prerequisite for secure network management and security
policy implementation. However, existing passive device identification
methods work under a “closed-world” assumption, failing to take into
account the emergence of new and unfamiliar devices in open scenar-
ios. To combat the open-world challenge, we propose a novel evolution-
ary model which can continuously learn with new device traffic. Our
model employs a decoupled architecture suitable for evolutionary learn-
ing, which consists of device feature representation and device inference.
For device feature representation, an auto-encoder based on metric learn-
ing is innovatively introduced to mine latent feature representation of
device traffic and form independent compact clusters for each device.
For device inference, the nearest class mean (NCM) classification strat-
egy is adopted on the feature representation. In addition, to alleviate the
forgetting of old devices during evolutionary learning with new devices,
we develop a less-forgetting constraint based on spatial knowledge distil-
lation and impose control on the distribution distance between clusters
to reduce inter-class interference. We evaluate our method on the union
of three public IoT traffic datasets, in which the accuracy is as high as
87.9% after multi-stage evolutionary learning, outperforming all state-
of-the-art methods under diverse experimental settings.

Keywords: IoT device identification · Deep learning · Closed-world ·
Evolutionary model · NCM · Spatial knowledge distillation

1 Introduction

In recent years, deep learning has been employed to solve increasingly serious net-
work security problems, especially passive IoT device identification [5,9,14,23–
26,29], which has shown unlimited potential and achieved remarkable suc-
cess. However, once the device identification model that performs well in the

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 20–38, 2023.

https://doi.org/10.1007/978-3-031-25538-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_2

An Evolutionary Learning Approach for IoT Device Identification 21

laboratory is deployed in a real open environment, it will fall into the dilemma
of performance degradation [28]. One of the main reasons behind the dilemma is
that the model is based on a biased assumption during the designing phase, that
is, the IoT device types at training time and the IoT device types to be identi-
fied are from the same set of predefined types. However, the practical scenarios
are complex and changeable, where new and unknown devices will continue to
emerge. The knowledge acquired by the static model from the old device traffic
will become outdated and unavailable in a short period. Hence, this assumption
deviates from reality, which causes the notorious open-world [12] problem during
the model deployment phase.

To address the problem of the open-world, most of the existing methods [9,13]
are based on the idea of Out-of-Distribution for detection. They not only allow
the model to identify the known devices but also detects the unknown, which
have made some progress. However, the methods merely mark unfamiliar devices
as unknown without considering how to further recognize unknown devices. A
realistic scenario for IoT device identification is, as time goes by when devices
that have never been seen appear on the network, it is more imperative for the
model to continuously learn, upgrade and evolve with the new data to adapt to
the variations, rather than just to identify as the unknown. Therefore, we intend
to solve the open-world problem in the field of IoT device identification from the
perspective of model evolution. Our insight is that the fundamental solution for
the open-world problem should be to accept new devices, not reject them, just
as human beings always have the ability to continuously learn and internalize
knowledge in new environments. To achieve the goal, we propose a novel evo-
lutionary model which can continuously learn with new device traffic. And we
borrow ideas from class incremental learning [15] and continuous learning [19] in
the field of image recognition to overcome the inevitable catastrophic forgetting
that arises in evolutionary learning. As far as we know, there is currently no evo-
lutionary learning method in the field of passive network device identification,
which is one of the motivations of this paper.

Our Method. We adopt a decoupled architecture for evolutionary learning,
divided into representation and device inference. For representation, we design an
automatic feature representation scheme for device traffic, which is data-centric.
In specific, we propose an auto-encoder mapping algorithm based on metric
learning to mine latent features suitable for evolutionary learning and automat-
ically perform feature space layout with intra-class compactness and inter-class
separation. Following, for device inference, we make use of the Nearest Class
Mean (NCM) classification strategy on the latent representation. Additionally,
to alleviate the catastrophic forgetting of old devices during evolutionary learn-
ing, we only leverage a tiny number of representative exemplars to ensure the
continuity of knowledge in the evolutionary learning process based on the Spatial
Knowledge Distillation.

Contributions. In summary, the paper has following main contributions:

– We innovatively propose an evolutionary learning method to overcome the
open-world problem of passive IoT device identification. We introduce a

22 J. Bian et al.

decoupled architecture suitable for evolutionary learning, divided into device
feature representation and device inference.

– To alleviate catastrophic forgetting during evolutionary learning, we develop
a less-forgetting constraint based on Spatial Knowledge Distillation and intro-
duce metric learning to control the inter-class distribution distance.

– We evaluate our method on the union of three public datasets [3,17,24], with
traffic data from 66 different types of devices. The experimental results show
that our method outperforms existing methods under diverse settings, with
an accuracy of up to 87.9% after multi-stage evolutionary learning.

The remainder of the paper is organized as follows: Sect. 2 details our pro-
posed method. The experiment and evaluation are presented in Sect. 3. Section 4
reviews related work and we discuss and conclude all the work in Sect. 5.

2 Proposed Method

2.1 Motivation and Problem Definition

Due to the rapid development of IoT applications, tens of thousands of new
devices, which have never appeared before, emerge in the network every day [12].
Therefore, in practical scenarios, the network devices are usually in a process of
dynamic change and continuous increase [28], which brings difficulties for passive
IoT device identification. Actually, the main challenge in the open scenario is
the introduction of the new class.

Device Traffic data

Feature Extractor &
Classifier

Feature Extractor &
Classifier

Feature Extractor &
ClassifierUpgrade Upgrade Upgrade

⋯
⋯

New devices New devices10 ⋯
⋯

…

…

Fig. 1. General scenarios of model evolution.

We consider that the fundamental strategy to solve the open-world problem
is to make the model continuously evolve during the life cycle to adapt to the
transformation of the network. We regard the introduction of each batch of
new devices as an evolution task. As shown in Fig. 1, in the open scenarios, the
unknown number of tasks with previously unseen devices arrive at the model
sequentially, denoted as T0, T1, · · · , Tt, · · · . The new traffic data contained in
the task Tt at time point t-th is Xt = {xt

i, y
t
i}Nt

i=0, where, xt
i and yt

i ∈ Ct is
i-th device traffic sample and its label respectively. Nt is the number of samples
and Ct represents the disjoint label set at time point t-th, where Ct ∧ Ck =

An Evolutionary Learning Approach for IoT Device Identification 23

∅,∀k ∈ {0, 1, · · · , t − 1}. The model of the current stage can only be upgraded
and evolved based on the currently visible new device data set and the model of
the previous stage. And it would be evaluated on the test sets Zt, whose label
set is the union of all the encountered classes

⋃t
j=0 Cj .

Our problem scope is how to effectively continuously evolve the model when
traffic data for new devices is available or only a few traffic data is available. A
naive idea is to use the latest traffic data to fine-tune the model of the previ-
ous task without much consideration when the new data arrives. However, the
approach will lead to serious catastrophic forgetting [4]. Because the model will
pay too much attention to the latest task, and the performance on the old tasks
will drop significantly. The other simplest way is to store all the data that has
appeared, and every time a new task comes, retrain a new model from scratch
using all the data. However, this scheme greatly wastes storage and computing
resources and even involves privacy protection issues, which is not feasible in
practical applications. The above two ideas are extreme choices between con-
sumption and performance, and also show the main difficulty of model evolu-
tion: how to avoid forgetting and achieve better performance while reducing the
consumption of memory and computing resources.

2.2 Overall Framework

In this section, we present the overall framework of the method, as shown in
Fig. 2. Following, we begin by describing our analysis and findings, which underlie
our design.

Latent space

Device Feature Representation

Encoder Decoder

T0 T1 T2

Knowledge
Distillation

Knowledge
Distillation

Preprocessing

Evolutionary Learning

old

new

new

old

new

AE

ℎ
ReconstructionRepresentation

Raw traffic data

T0

T1

T4

T3

T2

New devices

New devices

→ ℝ ℝ →

m

m m

m

m

If initialization : Auto-layout based on metric loss: 1 + 1 2;

If evolution : Avoid forgetting based on knowledge distillation: 1 + 1 2 + 2 3.

Exemplar Management

…

rehearsal
herding

rehearsal
herding

1 2

3

Truncation; Padding

C
onversion

N
orm

alization

TC
P session extraction

herding

Device Inference with NCM

4

Fig. 2. The framework of our method.

24 J. Bian et al.

1. Feature representation of device traffic. Most IoT device identification meth-
ods [23–26] rely on handcrafted features. But for evolutionary learning, it is
impossible to expect current handcrafted features to be useful for modeling
new device behaviors in the future. Therefore, it is necessary to design a
traffic feature representation method suitable for evolutionary learning that
directly relies on the data itself rather than hand-designed.

2. Defects of traditional network architecture. The usual classification neural
network can be interpreted as a feature extractor followed by a classifier. For
evolutionary learning, a universal feature extractor is crucial. If the extracted
features only serve the current task, when a new device arrives, the parameters
of the extractor will be drastically modified to regain new features favorable
for the new task, which will exacerbate forgetting. In addition, the usual clas-
sifier is a linear fully-connected layer with as many softmax output nodes
as classes observed so far. Rebuffi has shown in [20] that linear classification
layers can become unstable and uncontrolled during evolutionary learning.
Moreover, when learning to identify new devices, it is necessary to adjust and
increase the output units of the network structure, which is cumbersome and
inconvenient. In summary, traditional task-centric feature extraction meth-
ods and linear fully-connected classification are detrimental to evolutionary
learning.

3. Inter-class confusion and interference. Figure 3 presents our findings from
experiments on the IoT device dataset of UNSW [24]. The features of the well-
trained devices form respective distribution regions, and there is no overlap
between the features of base classes. However, with the introduction of the
new device, the features of the old devices are confused and overlapped. We
argue that the confusion between features of the old classes directly leads to
catastrophic forgetting. We will explain later how to use metric learning to
control the inter-class separation to reduce confusion and interference.

(a) Initial(T0)
Device A Device B

(b) Evolutionary(T1)

Fig. 3. Feature distribution of old classes. On the basis of the well-trained model for
classifying device A and device B, we use finetuning to evolutionary learn novel device
and observe the feature space distribution. 3(a) Initially, the feature distribution of the
base class is well separated. 3(b) During evolutionary learning, the feature distributions
of the old classes are confused and overlapped.

An Evolutionary Learning Approach for IoT Device Identification 25

2.3 Preprocessing

Generally, we can capture the traffic data by deploying sniffers on the gateway or
the router. In the application scenarios, the devices will generate different traffic
according to the special services. The service-related traffic behavior provides
various device features, which facilitate IoT device identification [12]. However,
most existing feature extraction methods rely on handcrafting. They are designed
from closed scenarios where all training data is known. In the open world, it is
impossible to anticipate which crafted features are useful to unknown devices.
Therefore, hand-crafted methods are not suitable for evolutionary learning.

In contrast to methods that rely on hand-crafted features, we would like to
make the model automatically mine latent features from traffic data. We find that
when a device provides services, it always produces the natural sequences of TCP
packets that are highly related to its services. In contrast, due to the connection-
less nature of the UDP protocol, the network behavior based on UDP is less
distinguishable than TCP, such as the largest number of UDP network services,
NTP and DNS, the inadequacies of which have been discussed in [9]. Hence we
consider using the TCP session as the basic unit to present traffic. In specific, we
split a TCP session by the network five-tuple (source IP, source port, protocol,
destination IP, destination port) and the session establishment or teardown flag.
However, due to uncontrollable reasons such as network congestion, captured
packets may be out of order, lost, or repeated, so we correct or ignore them
according to the five-tuples, sequence numbers and timestamp intervals.

Packets

header TCP payload

The basic unit of the traffic session

Fig. 4. The basic unit of TCP session.

Then, we extract the TCP payload of all sessions and drop the headers to
avoid the model over-fitting with IP and MAC addresses [18]. A TCP session
includes the whole process of network communication between a pair of device
subjects, the dominant and responder. We arrange all communications of a ses-
sion in a vertical request-response sequence, forming a 2D matrix. It is observed
that most TCP sessions are short and compact, almost ending the session within
the first 16 interactions. Therefore, we intercept the first 16 packets, keep the
first 256 bytes of each payload, and pad any shortfalls with zeros so that we can
express the TCP session with a smaller size. Additionally, for encrypted traffic of
SSL/TLS, the first 16 packets always contain the entire process of key exchange
and key negotiation, which is beneficial for the identification of encrypted traf-
fic. Before the training data is fed into the neural network, the data will be

26 J. Bian et al.

converted from each byte to decimal and normalized. As shown in Fig. 5, we
randomly sample 4 sessions of 6 devices from the public dataset UNSW [24] and
visualize them using grayscale maps. It is found that behavioral patterns differed
significantly between devices.

Belkin Wemo Switch Withings Smart Scale

TP-Link Smart Plug

Wans Cam

Minger Light Strip Chime Doorbell

Fig. 5. Grayscale visualization of preprocessed data.

2.4 Device Feature Representation Learning

The analysis at the beginning of this section shows the limitations of traditional
architectures. Thus we abandon the structural form of a task-centric extractor
followed by the fully connected classifier, and creatively employ the stacked auto-
encoder to learn latent representations for devices. Figure 2 shows the architec-
ture of our method. We value the good representation ability of the auto-encoder.
Given the inputs X ∈ X and features h ∈ R

d, the auto-encoder can be divided
into two parts: encoder f : X → R

d and decoder g : Rd → X , which solves the
mapping to minimize the reconstruction loss between the inputs and outputs:

L1 =
1
N

N∑

i=1

‖ xi − g[f(xi)] ‖22 . (1)

Here, encoder f maps the original inputs X to latent space features h = f(X)
and decoder g reconstructs h back to X, X̃ = g(h). The output h of the encoder
is named encoded feature or encoded embedding. We design the dimension d of
h to be far smaller than the input, forcing the f to capture the most prominent
and representative features. Therefore, the captured features are good represen-
tations, as they do not serve a specific task, but work to characterize and express
all latent information.

However, the auto-encoder is not well compatible with traditional fully con-
nected classification layers, and auto-encoders cannot perform classification tasks
independently. Hence, we introduce metric learning [21] into the representation
of auto-encoder to automatically achieve independent compact spatial distribu-
tions. Specifically, we combine ideas from auto-encoding and metric learning to
produce a compact, representative, and class-separable embedding space:

L2 =
1
N

N∑

i=1

max
(‖f(xa

i) − f(xp
i)‖22 − ‖f(xa

i) − f(xn
i)‖22 + m, 0

)
. (2)

An Evolutionary Learning Approach for IoT Device Identification 27

Equation (2) refers to the triplet loss [21], which takes a triple of samples
(xa

i , x
p
i , x

n
i) and enforce the xa

i (anchor sample) of a certain device to be closer
to all xp

i (positive sample) of the same device than to xn
i (negative sample) of any

other device in the feature space. Here, ‖f(xa
i)−f(xp

i)‖22 represents the Euclidean
distance metric between the anchor and the positive, and ‖f(xa

i) − f(xn
i)‖22

represents the Euclidean distance metric between the anchor and the negative.
m is the minimum interval between positive and negative samples relative to
the anchor sample. As illustrated in the latent space in Fig. 2, The loss function
intents to ensure that any traffic samples from different devices are sufficiently
far apart.

As shown in Fig. 2, combining with Eq. (1) and Eq. (2), encoder f can map
the traffic to a latent space with tight clusters classes of different devices, which
could be used for identification. The process is like we employ an encoder to
assign the most appropriate and compact feature distribution for each device.
Our representation learning method is not task-centric. The metric-based encod-
ing algorithm can extract common latent features, which solves the problem
of traditional feature extractors. In addition, we can intervene in the spatial
layout by controlling the parameter m, which we will discuss in subsequent exper-
iments to address the problem of confusion and interference. It is worth
mentioning that, during evolutionary learning, we do not need to add neurons
in the output layer of a deep network model to accommodate new devices, but
can easily expand new devices in the latent representation space.

Algorithm 1: Device Inference
Input: Devices data set X = {x0, · · · , xN−1}; devices class Y = {y1, · · · , yK};

the number of samples in each class subset is N1, · · · , NK ; the test set
(x̂j , ŷj) ∈ Z, where j = 0, · · · , ̂N − 1, ̂N is the total number of test
samples; The encoder f .

Output: The inferred device class y.
1 for class k = 1 to K do

2 μk = 1
Nk

∑Nk−1
i=0 f(xk

i) ; // The mean of the class k

3 end
// Device Inference

4 for j = 0 to ̂N do
5 for k = 1 to K do

6 dk
j = ‖x̂j − μk‖2

2

7 end

8 y∗
j = arg min

k=1,2,··· ,K
dk
j ; // NCM Classification Strategy

9 end

2.5 Device Inference

In the device feature representation, we propose an auto-encoder mapping
method based on metric learning to automatically perform feature space layout
with intra-class compactness and inter-class separation. Following, for device

28 J. Bian et al.

inference, we properly make use of the nearest class mean (NCM) classification
strategy [20]. As described in Algorithm 1, we first use an auto-encoder to map
the traffic data of all devices into the feature space and then obtain the mean fea-
ture vector for each device. Finally, we assign class labels based on the smallest
distance from the mean vector in the feature space. Figure 6 visualizes the main
idea of our device inference method. The entire feature space can be regarded as
a multidimensional Voronoi Diagram. The embeddings of traffic samples for each
class form corresponding regions, called Voronoi cells, consisting of all points that
are closer to the mean vector of the class than any other classes. The inference
of the device type is to determine in which cell it is mapped.

Fig. 6. Device inference with NCM. Combining metric learning and NCM strategy, the
feature space is naturally formed similar to the Voronoi Diagram. Take the Voronoi
diagram in 2-D space as an example, where v1, · · · , v9 are the mean vectors of classes.

2.6 Evolutionary Learning

Algorithm 2: Exemplar Management
Input: Devices data set X = {x0, · · · , xN−1}; devices class Y = {y1, · · · , yK};

the number of samples in each class subset is N1, · · · , NK ; the encoder
f ; the size of exemplar set S.

Output: The exemplar set P .
1 for class k = 1 to K do

2 μk = 1
Nk

∑Nk−1
i=0 f(xk

i) ; // The mean of the class k

3 P k = {} ; // Initialization

4 for j = 0 to S − 1 do

5 pj ← arg min
x∈Xk\Pk

∥

∥

∥μk − 1
j

[

f(x) +
∑j−1

z=1 f(pz)
]∥

∥

∥

6 Add pj to P k

7 end

8 P ← (

P 1, P 2, · · · , PK
)

; // Add to the set P

9 end

An Evolutionary Learning Approach for IoT Device Identification 29

Representative Exemplar Management. We have designed a model archi-
tecture suitable for evolutionary learning. However, during continuous learning
with new devices, it is also necessary to overcome the inevitable forgetting of
old devices. To help the model acquire knowledge from old classes, we use an
exemplar manager to manage the most representative samples from old data for
knowledge replay to avoid forgetting. When a set of new devices is added to
the current model, we select a subset of the most representative samples from
these classes and store them. In our work, we consider a manager with minimal
storage compared to the original dataset, and select representative samples for
each class to manage when new tasks arrive. For the selection of typical samples,
we introduce the method of herding, which is detailed in Algorithm 2. When the
device samples are added to the exemplar set, the algorithm guarantees that the
average feature vector of the exemplar set most closely approximates the average
feature vector of the overall sample set.

Algorithm 3: Evolutionary Learning
Input: A series of tasks arriving by time T0, · · · , Tt and the training data of

each task X0, · · · , Xt; the test tasks Z0, · · · , Zt; the model f ; the size of
exemplar set S.

Output: Evolutionary model f∗; device identification results Y .
1 Preprocess raw traffic data from network devices;

// Initial Stage

2 if the first task T0 arrives then
3 D0 ← {(x, y) : x ∈ X0};
4 Run training with loss function:

f0 ← arg min
f

L1 + λ1L2, (3)

that L1 serves as Reconstruction Loss and L2 serves as Metric Loss;
5 P0 ← ExemplarManage(D0, S);
6 Y0 ← DeviceInference(Z0, f0);

7 end
// Evolutionary Stage

8 while task Tt ∈ {T1, T2, T3, · · · } arrive do

9 Dt ← {(x, y) : x ∈ Xt} ∪
t−1
⋃

j=0

{(x, y) : x ∈ Pj};

10 Knowledge replay with less consumption:

ft ← arg min
f

L1 + λ1L2 + λ2L3, (4)

11 Pt ← ExemplarManage(Dt, S) ; // get the exemplars set

12 Yt ← DeviceInference(Zt, ft);

13 end

30 J. Bian et al.

Spatial Knowledge Distillation. As described in Algorithm 3, evolutionary
learning is divided into two stages: initialization and evolution. In general, the
initial stage is the same as traditional learning, which learns to identify all IoT
devices in T0 by solving the constraint (3). The evolutionary stage is following
the initial stage. As a sequence of tasks T0, T1, · · · , Tt arrive, the model needs to
be re-learn based on the model obtained in the previous stage to continuously
enhance the classification ability. During the training process for new tasks, we
need to avoid using all the old training traffic data used in historical tasks, but
not overly impair the ability to recognize old devices. So we introduce the method
of knowledge distillation [7] into the stage of evolutionary training to alleviate
the problem of catastrophic forgetting:

L3 =
∑

xi∈Dt

δxi∈(P0,P2,··· ,Pt−1)‖ft(xi) − ft−1(xi)‖22, (5)

where the term is named Spatial Knowledge Distillation, δ indicates true
when xi ∈ (P0, P2, · · · , Pt−1). We regard the model of the previous stage as the
teacher model and the model of the new stage as the student model. Then we
transfer the knowledge from the model of the previous task stage Tt to the next
task stage Tt+1 with the constraint (5). In addition to learning the old knowledge,
the student model needs to undertake more work. It not only needs to learn the
knowledge of the teacher model in Tt but also to learn new knowledge in the
new task Tt+1. The process of dynamic evolution is visualized in Fig. 7.

Fig. 7. Visualization of dynamic evolution.

3 Experiments and Results

3.1 Experimental Setups and Datasets

Our experiments are based on three public datasets: IoT Traffic Traces of UNSW
[24], Sentinel [17], and LSIF [3]. The detailed setup of the dataset and experi-
ments will be described as follows.

Traffic Traces of UNSW. The dataset is open-source traffic data collected
in 2018 by researchers at the UNSW in the process of studying IoT assets and
tracking the behavior of IoT devices, recording daily traffic data for 3 month
period. The dataset includes smart cameras, plugs, sensors, health monitors,
etc., with a total of 30 network devices.

An Evolutionary Learning Approach for IoT Device Identification 31

IoT Sentinel. The dataset is network device data generated by Miettinen [17]
in the research on managing security and privacy risks posed by insecure IoT
devices. The devices are mainly a representative set of consumer-oriented IoT
devices, with 23 device data covering the most common types of devices such as
smart lighting, home automation, and household appliances.

LSIF. Charyyev et al. [3] set up an experimental platform that automatically
collects network traffic. The data set contains data on Internet devices produced
by different manufacturers, which recorded network devices such as smart plugs,
smart light bulbs, doorbells, and cameras. This dataset collects network traffic
generated from experiments over approximately 20 d.

Experimental Setups. We choose the popular 18-layer ResNet as the under-
lying CNN network for all methods for comparative experiments. During the
experiments, we use the Adam optimizer with which the learning rate starts
at 0.001, the decay coefficient is set to 0.96, and the batch size is 256. In our
method, the hyper-parameters λ1 and λ2 in the loss function are both set to 1
and the dimension of the encoding layer is set to 100. For the dataset, in order
to perform multi-stage evolutionary learning, we merge all datasets together,
remove the data of all duplicate devices, and then integrate the extracted TCP
session data into a large dataset containing 66 different classes for experiments.
We set the number of downsampling to 4000 and split the training and test
sets with a ratio of 8:2. The number of exemplars per class is set to 50, which
only accounts for a very small proportion of the original data, around 0.01. In
addition, parameters such as task capacity c, number of exemplars per class n,
and boundary distance m will be discussed in detail in the later sections. In the
experiments, we aim to answer the following research questions:

Q1 - How about the accuracy of our proposed method after multi-stage evolu-
tionary learning?

Q2 - How well do various methods perform in evolutionary learning for the
anti-forgetting of old devices?

Q3 - How do key parameters affect evolutionary learning in experiments and
how do we make trade-offs in performance, computational resources, and
memory?

3.2 Accuracy Evaluation (Q1)

In this evaluation, our main purpose is to test the accuracy of our method after
multi-stage evolutionary learning. We conduct comparative experiments with
various state-of-the-art methods [15], including LwF-M [11], iCarl [20], LUCIR
[8], EEIL [2] and il2m [1]. Note that the LwF-M here is an improvement of the
original LwF method, adding the method of representative exemplars to improve
the accuracy. In addition, we compare our method with the naive finetune
method and joint learning method. Finetune is a naive idea and refers to fine-
tuning models directly as new tasks arrive without any knowledge-preserving
effort, which is considered as one of the baselines for models in evolutionary

32 J. Bian et al.

learning. The joint learning method represents storing all historical traffic data.
Every time a new task is trained, a new model is reconstructed from scratch using
all the data, which wastes huge computing resources and storage. Although the
joint learning method is not available in practical scenarios, it can be regarded
as the highest upper bound.

We set up a fair comparison experiment basis, all methods perform multiple
comparisons at task capacities of 2, 5, and 10, respectively, where the task capac-
ity refers to the number of new devices included in each task. The comparison
results are shown in Fig. 8. We summarize the results as follows:

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66

A
cc

.

The number of classes

iCarl LwF-E EEIL il2m
LUCIR finetune joint Our Methods

(a) The task capacity of 2.

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

6 11 16 21 26 31 36 41 46 51 56 61 66

A
cc

.

The number of classes

iCarl LwF-E EEIL il2m
LUCIR finetune joint Our Methods

(b) The task capacity of 5.

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

16 26 36 46 56 66

A
cc

.

The number of classes

iCarl LwF-E EEIL il2m
LUCIR finetune joint Our Methods

(c) The task capacity of 10.

Fig. 8. Accuracy evaluation.

– Our method significantly outperforms state-of-the-art methods under diverse
experimental settings and is closest to the joint method. Furthermore, the
memory consumption of our model is only 0.045, 0.09, and 0.165 of the joint
method, respectively. Specifically, for the experiments with task capacities of
2, 5, and 10, we end up with an accuracy of 83.94 ± 0.50%, 87.35 ± 0.50%,
and 87.96 ± 0.50%, while the finetune is just 32.53%, 31.24%, and 46.61%.
In addition to our method, il2m performs better in fewer task stages with an
accuracy of 75.43%, 79.54%, and 82.21%. EEIL performs better in more task
stages on tasks with an accuracy of 80.82%, 80.73%, and 78.51%.

An Evolutionary Learning Approach for IoT Device Identification 33

– Since the total number of devices is 66, the smaller the task capacity, the more
stages for evolutionary learning. Comparing the three experimental results, it
can be found that as the number of task stages increases evolutionary learning
becomes more difficult.

3.3 Anti-forgetting Evaluation (Q2)

As shown in Fig. 9, in the experiment with a task capacity of 10, we use the con-
fusion matrix and F1 score to compare and analyze the forgetting that occurs
in the evolutionary learning process of various methods. The vertical axis rep-
resents the correct device type, and the horizontal axis represents the predicted
device type. LUCIR produces the worst forgetting problem. Its F1 score is only
75.65%. Additionally, other methods such as EEIL and LwF-E show an excessive
preference for the latest learned devices. In contrast, our method performs well
on both old and new devices, producing a better confusion matrice where the
activations are mostly distributed at the diagonal. The F1 score of our method
is 88.31%. In conclusion, our method effectively alleviates the forgetting of old
devices during evolutionary learning.

(a) iCarl (F1: 78.23%) (b) LwF-E (F1: 76.75%) (c) EEIL (F1: 77.20%)

(d) il2m (F1: 81.68%) (e) LUCIR (F1: 75.65%) (f) Our Method (F1: 88.31%)

Fig. 9. Confusion matrix and F1.

3.4 Sensitivity Analysis (Q3)

As mentioned earlier, the farther the boundaries of different classes in the feature
space are, the less likely they are to interfere and confuse each other. Therefore,

34 J. Bian et al.

we discuss the contribution of the parameter m to the accuracy of evolutionary
learning. In this experiment, the task capacity is set to 10, and other hyper-
parameters are set to the default configuration. As shown in Fig. 10(a), it can
be found that when the m becomes larger and larger, the final accuracy rate
also becomes higher. When m is 1, the accuracy rate can reach about 84%, and
when m is 10, the accuracy rate can reach about 88%. This result proves our
findings, and also shows that the greater the spatial distance, the better the
effect of evolutionary learning in the process of evolutionary learning.

As shown in Fig. 10(b), the experiments investigate the effect of the num-
ber of exemplars in the exemplar manager for evolutionary learning. It is found
that as the number of exemplars decreases, the accuracy also decreases, which
is the same result as we expected. Because the larger the number of exemplars,
the more knowledge of old IoT devices can be represented, and therefore more
knowledge can be retained with the distillation loss. However, we have to take
into account that as the number of samples increases, so does the memory foot-
print, so ultimately we have to strike the right balance between performance and
memory.

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

A
cc

.

m

(a) The analysis of m.

0

1

2

3

4

5

6

0.65

0.70

0.75

0.80

0.85

0.90

0.95

50 40 30 20 10

R
elative storage O

ccupancy

A
cc

.

The Number of Exemplars

(b) The analysis of exemplars.

Fig. 10. Sensitivity analysis.

4 Related Work

4.1 Identification of Network Devices

In order to better manage the network space, it is necessary to implement appro-
priate security policies for different devices, but the premise is to accurately
detect and identify network devices [22,31].

The specific feature-based approaches focus on discovering various useful
features for device identification. PingPong [26] introduces an efficient way to
automatically extract packet-level signatures from traffic. Then, Wan et al. [27]
propose an improved method for PingPong. Sivanathan proposes statistical prop-
erties of more than 20 IoT devices in his research work [25]. Then, in his recent
research works [23,24], it is found that using the Naive Bayes classifier on the
activity period, port number, domain name, and cipher suite can achieve bet-
ter performance in classifying 28 commercial IoT devices. Feng [6] proposes a

An Evolutionary Learning Approach for IoT Device Identification 35

method to automatically generate rule features and annotate IoT devices. In
addition, deep learning technology is also gradually applied in device identifi-
cation. Meidan et al. [16] design a multi-stage meta classifier for IoT devices.
[14,29] shows that the best IoT device classification results can be obtained by
combining CNN and RNN. Fan [5] proposes a semi-supervised model based on
CNN and multi-task learning.

Although the above methods have made some progress, when the processed
device is not in the training set, the above methods will encounter the crit-
ical open-world problem. Yu [30] proposes an identification scheme with good
scalability, but the limitation is that it depends on the traffic of the network con-
nection stage. Recently, Hu [9] proposes out-of-distribution (OOD) with EVT to
detect unknown devices to improve generalization.

4.2 Class Incremental Learning

Human learning mechanisms are different from machine learning models.
Humans can continue to learn new knowledge without forgetting, but machine
learning models usually only perform well on the latest learning tasks. Once they
continue to learn new knowledge, they will forget the previous [19]. Therefore,
it has drawn attention to class incremental learning [15].

The regularization-based method aims to constrain the optimization direction
of the model in the new task and minimize the interference caused by the old task.
Kirkpatrick [10] introduces an additional regularization term that consolidates
important parameters from the previous task. Then, LwF [11] is the first to
use the idea of knowledge distillation to preserve knowledge from past tasks.
The idea based on bias correction aims to address the problem of task bias.
Castro [2] proposes an efficient bias correction-based end-to-end incremental
learning method. EEIL [8] develops a unified processing framework with three
components to reduce the impact of imbalance. Belouadah et al. [1] propose
an incremental learning approach that utilizes finetuning and a dual memory
mechanism il2m to reduce the negative effects of catastrophic forgetting. The
rehearsal-based method is considered to be the most promising method, aiming
at replaying some key knowledge of old tasks when learning new tasks, just like
reviewing old knowledge when learning new knowledge. iCaRL [20] combines
playback and distillation loss to transfer knowledge, which inspires the method
proposed in this paper.

5 Conclusion and Future Work

This work is devoted to solving the open-world problem of IoT device recogni-
tion from the perspective of model evolution. We propose a novel evolutionary
model which can continuously learn with new device traffic. In specific, we rep-
resent the traffic rationally and introduce a metric learning-based auto-encoder
to mine latent features of device traffic. Then we utilize the NCM classification
strategy for device inference. We find that the less-forgetting constraint based

36 J. Bian et al.

on knowledge replay and the independent compact spatial distribution can cope
with the catastrophic forgetting of old devices in evolutionary learning. During
evolutionary learning, our method does not need to store all the device data and
only requires very few representative samples to achieve high performance. The
results of comparative experiments show that our method outperforms the state-
of-the-art incremental learning methods. In future work, we will study how to
use the few-shot learning method to reduce the workload of manual annotation,
thereby improving the efficiency of model evolutionary learning.

Acknowledgement. This work was supported by the National Key Research
and Development Program of China (Grant No.2018YFB0803402), the Young
Scientists Fund of the National Natural Science Foundation of China (Grant
No.61702504) and the Industrial Internet Innovation and Development Project (Grant
No.KFZ0120200004).

References

1. Belouadah, E., Popescu, A.: Il2m: Class incremental learning with dual memory.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 583–592 (2019)

2. Castro, F.M., Maŕın-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end
incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01258-8 15

3. Charyyev, B., Gunes, M.H.: Iot traffic flow identification using locality sensitive
hashes. In: ICC 2020–2020 IEEE International Conference on Communications
(ICC), pp. 1–6. IEEE (2020)

4. Delange, M., et al.: A continual learning survey: Defying forgetting in classification
tasks. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

5. Fan, L., et al.: An iot device identification method based on semi-supervised learn-
ing. In: 2020 16th International Conference on Network and Service Management
(CNSM), pp. 1–7. IEEE (2020)

6. Feng, X., Li, Q., Wang, H., Sun, L.: Acquisitional rule-based engine for discover-
ing {Internet-of-Things} devices. In: 27th USENIX Security Symposium (USENIX
Security 18), pp. 327–341 (2018)

7. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural net-
work, vol. 2(7). arXiv preprint arXiv:1503.02531 (2015)

8. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incre-
mentally via rebalancing. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 831–839 (2019)

9. Hu, X., Li, H., Shi, Z., Yu, N., Zhu, H., Sun, L.: A robust IoT device identification
method with unknown traffic detection. In: Liu, Z., Wu, F., Das, S.K. (eds.) WASA
2021. LNCS, vol. 12937, pp. 190–202. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-85928-2 15

10. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc.
Natl. Acad. Sci. 114(13), 3521–3526 (2017)

11. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach.
Intell. 40(12), 2935–2947 (2017)

https://doi.org/10.1007/978-3-030-01258-8_15
https://doi.org/10.1007/978-3-030-01258-8_15
http://arxiv.org/abs/1503.02531
https://doi.org/10.1007/978-3-030-85928-2_15
https://doi.org/10.1007/978-3-030-85928-2_15

An Evolutionary Learning Approach for IoT Device Identification 37

12. Liu, Y., Wang, J., Li, J., Niu, S., Song, H.: Machine learning for the detection
and identification of internet of things (iot) devices: A survey. arXiv preprint
arXiv:2101.10181 (2021)

13. Liu, Z., Cai, L., Zhao, L., Yu, A., Meng, D.: Towards open world traffic classi-
fication. In: Gao, D., Li, Q., Guan, X., Liao, X. (eds.) ICICS 2021. LNCS, vol.
12918, pp. 331–347. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86890-1 19

14. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Network traffic
classifier with convolutional and recurrent neural networks for internet of things.
IEEE Access 5, 18042–18050 (2017)

15. Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., van de Wei-
jer, J.: Class-incremental learning: survey and performance evaluation on image
classification. arXiv preprint arXiv:2010.15277 (2020)

16. Meidan, Y., et al.: Profiliot: a machine learning approach for iot device identifi-
cation based on network traffic analysis. In: Proceedings of the Symposium On
Applied Computing, pp. 506–509 (2017)

17. Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A.R., Tarkoma, S.:
Iot sentinel: Automated device-type identification for security enforcement in iot.
In: 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pp. 2177–2184. IEEE (2017)

18. Ortiz, J., Crawford, C., Le, F.: Devicemien: network device behavior modeling for
identifying unknown iot devices. In: Proceedings of the International Conference
on Internet of Things Design and Implementation, pp. 106–117 (2019)

19. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: A review. Neural Netw. 113, 54–71 (2019)

20. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier
and representation learning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2001–2010 (2017)

21. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE Conference On Computer
Vision And Pattern Recognition, pp. 815–823 (2015)

22. Shahid, M.R., Blanc, G., Zhang, Z., Debar, H.: Iot devices recognition through
network traffic analysis. In: 2018 IEEE International Conference on Big Data (Big
Data), pp. 5187–5192. IEEE (2018)

23. Sivanathan, A.: Iot behavioral monitoring via network traffic analysis. arXiv
preprint arXiv:2001.10632 (2020)

24. Sivanathan, A., et al.: Classifying iot devices in smart environments using network
traffic characteristics. IEEE Trans. Mob. Comput. 18(8), 1745–1759 (2018)

25. Sivanathan, A., et al.: Characterizing and classifying iot traffic in smart cities and
campuses. In: 2017 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 559–564. IEEE (2017)

26. Trimananda, R., Varmarken, J., Markopoulou, A., Demsky, B.: Pingpong: Packet-
level signatures for smart home device events. arXiv preprint arXiv:1907.11797
(2019)

27. Wan, Y., Xu, K., Wang, F., Xue, G.: Iotathena: Unveiling iot device activities from
network traffic. IEEE Trans. Wireless Commun. 21(1), 651–664 (2021)

28. Yang, L., et al.: {CADE}: Detecting and explaining concept drift samples for secu-
rity applications. In: 30th {USENIX} Security Symposium ({USENIX} Security
2021) (2021)

http://arxiv.org/abs/2101.10181
https://doi.org/10.1007/978-3-030-86890-1_19
https://doi.org/10.1007/978-3-030-86890-1_19
http://arxiv.org/abs/2010.15277
http://arxiv.org/abs/2001.10632
http://arxiv.org/abs/1907.11797

38 J. Bian et al.

29. Yin, F., Yang, L., Wang, Y., Dai, J.: Iot etei: End-to-end iot device identification
method. In: 2021 IEEE Conference on Dependable and Secure Computing (DSC),
pp. 1–8. IEEE (2021)

30. Yu, L., Liu, T., Zhou, Z., Zhu, Y., Liu, Q., Tan, J.: Wdmti: wireless device manu-
facturer and type identification using hierarchical dirichlet process. In: 2018 IEEE
15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp.
19–27. IEEE (2018)

31. Yu, L., Luo, B., Ma, J., Zhou, Z., Liu, Q.: You are what you broadcast: Identifica-
tion of mobile and {IoT} devices from (public){WiFi}. In: 29th USENIX security
symposium (USENIX security 2020). pp. 55–72 (2020)

SecureBERT: A Domain-Specific Language
Model for Cybersecurity

Ehsan Aghaei1(B), Xi Niu1, Waseem Shadid1, and Ehab Al-Shaer2

1 University of North Carolina at Charlotte, Charlotte, USA
{eaghaei,xniu2,waseem}@uncc.edu

2 Carnegie Mellon University, Pittsburgh, USA
ehab@cmu.edu

Abstract. Natural Language Processing (NLP) has recently gained
wide attention in cybersecurity, particularly in Cyber Threat Intelligence
(CTI) and cyber automation. Increased connection and automation have
revolutionized the world’s economic and cultural infrastructures, while
they have introduced risks in terms of cyber attacks. CTI is information
that helps cybersecurity analysts make intelligent security decisions, that
is often delivered in the form of natural language text, which must be
transformed to machine readable format through an automated proce-
dure before it can be used for automated security measures.

This paper proposes SecureBERT, a cybersecurity language model
capable of capturing text connotations in cybersecurity text (e.g., CTI)
and therefore successful in automation for many critical cybersecurity
tasks that would otherwise rely on human expertise and time-consuming
manual efforts. SecureBERT has been trained using a large corpus of
cybersecurity text. To make SecureBERT effective not just in retain-
ing general English understanding, but also when applied to text with
cybersecurity implications, we developed a customized tokenizer as well
as a method to alter pre-trained weights. The SecureBERT is evaluated
using the standard Masked Language Model (MLM) test as well as two
additional standard NLP tasks. Our evaluation studies show that Secure-
BERT outperforms existing similar models, confirming its capability for
solving crucial NLP tasks in cybersecurity.

Keywords: Cyber automation · Cyber threat intelligence · Language
model

1 Introduction

The adoption of security automation technologies has grown year after year.
Cyber security industry is saturated with solutions that protect users from mali-
cious sources, safeguard mission-critical servers, and protect personal informa-
tion, healthcare data, intellectual property, and sensitive financial data. Enter-
prises invest in technology to handle such security solutions, typically aggregat-
ing a large amount of data into a single system to facilitate in organizing and

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
Published by Springer Nature Switzerland AG 2023. All Rights Reserved
F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 39–56, 2023.
https://doi.org/10.1007/978-3-031-25538-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_3

40 E. Aghaei et al.

retrieving key information in order to better identify where they face risk or
where specific traffic originates or terminates. Recently, as social networks and
ubiquitous computing have grown in popularity, the overall volume of digital
text content has increased. This textual contents span a range of domains, from
a simple tweet or news blog article to more sensitive information such as medi-
cal records or financial transactions. In cybersecurity context, security analysts
analyze relevant data to detect cyber threat-related information, such as vulner-
abilities, in order to monitor, prevent, and control potential risks. For example,
cybersecurity agencies such as MITRE, NIST, CERT, and NVD invest millions
of dollars in human expertise to analyze, categorize, prioritize, publish, and fix
disclosed vulnerabilities annually. As the number of products grows, and there-
fore the number of vulnerabilities increases, it is critical to utilize an automated
system capable of identifying vulnerabilities and quickly delivering an effective
defense measure.

By enabling machines to swiftly build or synthesize human language, natural
language processing (NLP) has been widely employed to automate text analytic
operations in a variety of domains including cybersecurity. Language models,
as the core component of modern text analytic technologies, play critical role
in NLP applications by enabling computers to interpret qualitative input and
transform it into quantitative representations. There are several well-known and
well-performing language models, such as ELMO [20], GPT [21], and BERT [12],
trained on general English corpora and used for a variety of NLP tasks such as
machine translation, named entity recognition, text classification, and semantic
analysis. There is continuous discussion in the research community over whether
it is beneficial to employ these off-the-shelf models as a baseline, and then fine-
tune them through domain-specific tasks. The assumption is that the fine-tuned
models will retain the basic linguistic knowledge in general English and mean-
while develop “advanced” knowledge in the domain while fine tuning [7].

However, certain domains, such as cybersecurity, are indeed highly sensitive,
dealing with processing of critical data and any error in this procedure may
expose the entire infrastructure to the cyber threats, and therefore, automated
processing of cybersecurity text requires a robust and reliable framework. Cyber-
security terms are either uncommon in general English (such as ransomware,
API, OAuth, exfilterate, and keylogger) or have multiple meanings (homographs)
in different domains (e.g., honeypot, patch, handshake, and virus). This existing
gap in language structure and semantic contexts complicates text processing and
demonstrates the standard English language model may be incapable of accom-
modating the vocabulary of cybersecurity texts, leading to a restricted or limited
comprehension of cybersecurity implications.

In this study, we address this critical cybersecurity problem by introducing a
new language model called SecureBERT by employing the state-of-the-art NLP
architecture called BERT [12], which is capable of processing texts with cyber-
security implications effectively. SecureBERT is generic enough to be applied
in a variety of cybersecurity tasks, such as phishing detection [10], code and
malware analysis [24], intrusion detection [2], etc. SecureBERT is a pre-trained

SecureBERT 41

cybersecurity language model that have the fundamental understanding of both
the word-level and sentence-level semantics, which is an essential building block
for any cybersecurity report. In this context, we collected and processed a large
corpus of 1.1 billion words (1.6 million in vocabulary size) from a variety of
cybersecurity text resources, including news, reports and textbooks, articles,
research papers, and videos. On top of the pre-trained tokenizer, we developed a
customized tokenization method that preserves standard English vocabulary as
much as possible while effectively accommodating new tokens with cybersecurity
implication. Additionally, we utilized a practical way to optimize the retraining
procedure by introducing random noise to the pre-trained weights. We rigor-
ously evaluated the performance of our proposed model through three different
tasks such as standard Masked Language Model (MLM), sentiment analysis, and
Named Entity Recognition (NER), to demonstrate SecureBERT’s performance
in processing both cybersecurity and general English inputs.

2 Overview of BERT Language Model

BERT (Bidirectional Encoder Representations from Transformers) [12] is a
transformer-based neural network technique for natural language processing pre-
training. BERT can train language models based on the entire set of words in
a sentence or query (bidirectional training) rather than the traditional way of
training on the ordered sequence of words (left-to-right or combined left-to-right
and right-to-left). BERT allows the language model to learn word context based
on surrounding words rather than just the word that immediately precedes or
follows it.

BERT leverages Transformers, an attention mechanism that can learn con-
textual relations between words and subwords in a sequence. The Transformer
includes two separate mechanisms, an encoder that reads the text inputs and a
decoder that generates a prediction for the given task. Since BERTś goal is to
generate a language model, only the encoder mechanism is necessary [27]. This
transformer encoder reads the entire data at the same time instead of reading
the text in order.

Building a BERT model requires two steps: pre-training and fine-tuning. In
pre-training stage, the model is trained on unlabeled data against two different
pre-training tasks, namely Masked LM (MLM) and Next Sentence Prediction
(NSP). MLM typically masks some percentage of the input tokens (15%) at
random and then predicts them through a learning procedure. In this case, the
final hidden vectors corresponding to the mask tokens are fed into an output soft-
max over the vocabulary. NSP is mainly designed to understand the relationship
between two sentences, which is not directly captured by language modeling. In
order to train a model that understands sentence relationships, it trains for a
binarized next sentence prediction task that can be trivially generated from any
monolingual corpus, in which it takes a pair of sentences as input and in 50% of
the times in replaces the second sentence with a random one from the corpus.
To perform fine-tuning, the BERT model is launched with pre-trained parame-
ters and then all parameters are fine-tuned using labeled data from downstream

42 E. Aghaei et al.

tasks. BERT model has a unified architecture across different tasks, and there
is a minor difference between pre-trained and final downstream architecture.
The pre-trained BERT model used Books Corpus (800M words) and English
Wikipedia (2,500M words) and improved the state-of-the-art for eleven NLP
tasks such as getting a GLUE [28] score of 80.4%, which is 7.6% of definite
improvement from the previous best results, and achieving 93.2% accuracy on
Stanford Question Answering Dataset (SQuAD) [23].

A derivative of BERT, which is claimed to be a robustly optimized version
of BERT with certain modifications in the tokenizer and the network architec-
ture, and ignored NSP task during training, is called RoBERTa [19]. RoBERTa
extends BERT’s MLM, where it intentionally learns to detect the hidden text
part inside otherwise unannotated language samples. With considerably bigger
mini-batches and learning rates, RoBERTa changes important hyperparameters
in BERT training, enabling it to noticeably improve on the MLM and accord-
ingly the overall performance in all standard fine-tuning tasks. As a result of the
enhanced performance and demonstrated efficacy, we develop SecureBERT on
top of RoBERTa.

3 Data Collection

We collected a large number (98, 411) of online cybersecurity-related text data
including books, blogs, news, security reports, videos (subtitles), journals and
conferences, white papers, tutorials, and survey papers, using our web crawler
tool1. We created a corpus of 1.1 billion words splitting it to 2.2 million docu-
ments each with average size of 512 words using the Spacy2 text analytic tool.
Table 1 shows the resources and the distribution of our collected dataset for
pre-training the SecureBERT.

This corpora contains various forms of cybersecurity texts, from basic infor-
mation, news, Wikipedia, and tutorials, to more advanced texts such as CTI,
research articles, and threat reports. When aggregated, this collection offers a
wealth of domain-specific connotations and implications that is quite useful for
training a cybersecurity language model. Table 2 lists the web resources from
which we obtained our corpus.

4 Methodology

We present two approaches in this section for refining and training our domain-
specific language model. We begin by describing a strategy for developing a
customized tokenizer on top of the pre-trained generic English tokenizer, followed
by a practical approach for biasing the training weights in order to improve
weight adjustment and therefore a more efficient learning process.

1 Sample data: https://dropbox.com/sh/jg45zvfl7iek12i/AAB7bFghED9GmkO5YxpP
LIuma?dl=0.

2 https://spacy.io/usage.

https://dropbox.com/sh/jg45zvfl7iek12i/AAB7bFghED9GmkO5YxpPLIuma?dl=0
https://dropbox.com/sh/jg45zvfl7iek12i/AAB7bFghED9GmkO5YxpPLIuma?dl=0
https://spacy.io/usage

SecureBERT 43

Table 1. The details of collected cybersecurity corpora for training the SecureBERT.

Type No. Documents
Articles 8,955
Books 180
Survey Papers 515
Blogs/News 85,953
Wikipedia (cybersecurity) 2,156
Security Reports 518
Videos 134
Total 98,411

Vocabulary size 1,674,434 words
Corpus size 1,072,798,637 words
Document size 2,174,621 documents (paragraphs)

Table 2. The resources collected for cybersecurity textual data.

Websites

Trendmicro, NakedSecurity, NIST, GovernmentCIO Media, CShub, Threatpost,
Techopedia, Portswigger, Security Magazine, Sophos, Reddit, FireEye, SANS,
Drizgroup, NETSCOUT, Imperva, DANIEL MIESSLER, Symantec, Kaspersky,
PacketStorm, Microsoft, RedHat, Tripwire, Krebs on Security, SecurityFocus,
CSO Online, InfoSec Institute, Enisa, MITRE
Security Reports and Whitepapers
APT Notes, VNote, CERT, Cisco Security Reports, Symantec Security Reports
Books, Articles, and Surveys
Tags: cybersecurity, vulnerability, cyber attack, hack
ACM CCS: 2014-2020 , IEEE NDSS (2016-2020), IEEE Oakland (1980-2020)
IEEE Security and Privacy (1980-2020), Arxiv, Cybersecurity and Hacking books
Videos (YouTube)
Cybersecurity courses, tutorial, and conference presentations

4.1 Customized Tokenizer

A word-based tokenizer primarily extracts each word as a unit of analysis, called
a token. It assigns each token a unique index, then uses those indices to encode
any given sequence of tokens. Pre-trained BERT models mainly return the weight
of each word according to these indices. Therefore, in order to fully utilize a pre-
trained model to train a specialized model, the common token indices must
match, either using the indices of the original or the new customized tokenizer.

44 E. Aghaei et al.

For building the tokenizer, we employ a byte pair encoding (BPE) [25]
method to build a vocabulary of words and subwords from the cybersecurity
corpora, as it is proven to have better performance versus word-based tokenizer.
Character based encoding used in BPE allows for the learning of a small subword
vocabulary that can encode any input text without introducing any "unknown"
tokens [22]. Our objective is to create a vocabulary that retains the tokens
already provided in RoBERTa’s tokenizer while also incorporating additional
unique cybersecurity-related tokens. In this context, we extract 50, 265 tokens
from the cybersecurity corpora to generate the initial token vocabulary ΨSec. We
intentionally make the size of ΨSec the same with that of the RoBERTa’s token
vocabulary ΨRoBERTa as we intended to imitate original RoBERTa’s design.

If ΨSec represents the vocabulary set of SecureBERT, and ΨRoBERTa denotes
the vocabulary set of original RoBERTa, both with size of 50, 265, ΨSec shares
32, 592 mutual tokens with ΨRoBERTa leaving 17, 673 tokens contribute uniquely
to cybersecurity corpus, such as firewall, breach, crack, ransomware, malware,
phishing, mysql, kaspersky, obfuscated, and vulnerability, where RoBERTa’s tok-
enizer analyzes those using byte pairs:

Vmutual = ΨSec ∩ ΨRoBERTa → 32, 592 tokens

Vdistinct = ΨSec − ΨRoBERTa → 17, 673 tokens

Studies [29] shows utilizing complete words (not subwords) for those are
common in specific domain, can enhance the performance during training since
alignments may be more challenging to understand during model training, as
target tokens often require attention from multiple source tokens. Hence, we
choose all mutual terms and assign their original indices, while the remainder
new tokens are assigned random indices with no conflict, where the original
indices refers to the indices in RoBERTa’s tokenizer, to build our tokenizer.
Ultimately, we develop a customized tokenizer with a vocabulary size similar to
that of the original model, which includes tokens commonly seen in cybersecurity
corpora in addition to cross-domain tokens. Our tokenizer encodes mutual tokens
Vmutual as original model, ensuring that the model returns the appropriate pre-
trained weights, while for new terms Vdistinct the indices and accordingly the
weights would be random.

4.2 Weight Adjustments

The RoBERTa model already stores the weights for all the existing tokens in
its general English vocabulary. Many tokens such as email, internet, computer,
and phone in general English convey similar meanings as in the cybersecurity
domain. On the other hand, some other homographs such as adversary, virus,
worm, exploit, and crack carry different meanings in different domains. Using
the weights from RoBERTa as initial weights for all the tokens, and then re-
training against the cybersecurity corpus to update those initial weights will
in fact not updating much leading to overfitting condition in training on such
tokens because the size of the training data for RoBERTa (16 GB) is 25 times

SecureBERT 45

larger than that for SecureBERT. When a neural network is trained on a small
dataset, it may memorize all training samples, resulting in overfitting and poor
performance in evaluation. Due to the unbalance or sparse sampling of points in
the high-dimensional input space, small datasets may also pose a more difficult
mapping task for neural networks to tackle.

One strategy for smoothing the input space and making it simpler to learn
is to add noise to the model during training to increase the robustness of the
training process and reduces generalization error. Referring to previous works
on maintaining robust neural networks [18,31,33], incorporation of noise to an
unstable neural network model with a limited training set can act as a regular-
izer and help reduce overfitting during the training. It is generally stated that
introducing noise to the neural network during training can yield in substantial
gains in generalization performance in some cases. Previous research has demon-
strated that such noise-based training is analogous to a form of regularization
in which an additional term is introduced to the error function [8]. This noise
can be imposed to either input data or between hidden layers of the deep neural
networks. When a model is being trained from scratch, typically noise can be
added to the hidden layers at each iteration, whereas in continual learning, it
can be introduced to input data to generalize the model and reduce error [4,16].

For training SecureBERT as continual learning process, rather than using
the initial weights from RoBERTa directly, we introduce a small “noise” to the
weights of the initial model for those mutual tokens, in order to bias these tokens
to “be a little away” from the original tokens meanings in order to capture their
new connotations in a cybersecurity context, but not “too far away” from stan-
dard language since any domain language is still written in English and still car-
ries standard natural language implications. If a token conveys a similar meaning
in general English and cybersecurity, the adjusted weight during training will
conceptually tend to converge to the original vector space as the initial model.
Otherwise, it will deviate more from the initial model to accommodate its new
meaning in cybersecurity. For those new words introduced by the cybersecurity
corpus, we use the Xavier weight initialization algorithm [14] to assign initial
weights.

We instantiated the SecureBERT by utilizing the architecture of pre-trained
RoBERTa-base model, which consists of twelve hidden transformer and atten-
tion layers, and one input layer. We adopted the base version (RoBERTa-base)
given the efficiency and usefulness. Smaller models are less expensive to train,
and the cybersecurity domain has far less diversity of corpora than general lan-
guage, implying that a compact model would suffice. The model’s size is not the
only factor to consider; usability is another critical factor to consider when eval-
uating a model’s quality. Since large models are difficult to use and expensive
to maintain, it is more convenient and practical to use a smaller and portable
architecture.

Each input token is represented by an embedding vector with a dimension of
768 in pre-trained RoBERTa. Our objective is to manipulate these embedding
vector representations for each of the 50, 265 tokens in the vocabulary by adding

46 E. Aghaei et al.

a small symmetric noise. Statistical symmetric noise with a probability density
function equal to the normal distribution is known as Gaussian noise. We intro-
duce this noise by applying a random Gaussian function to the weight vectors.
Therefore, for any token t, let �Wt be the embedding vector of token tas follows:

�Wt = [wt
1, w

t
2, ..., w

t
768] (1)

where wt
k represents the kth element of the embedding vector for token t.

Let notation N (μ, σ) be normal distribution where μ denotes the mean and
σ the standard deviation. For each weight vector �Wt, the noisy vector �W ′

t is
defined as follows:

�W ′
t ← �Wt ⊕ (�Wt � ε), ε ∼ N (μ, σ) (2)

where ε represents the noise value, and ⊕ and � means element-wise addition
and multiplication, respectively.

The SecureBERT model is designed to emulate the RoBERTa’s architecture,
as shown in 1. To train SecureBERT for a cybersecurity language model, we use
our collected corpora and customized tokenizer. SecureBERT model contains 12
hidden layers and 12 attention heads, where the size of each hidden state has
the dimension of 768, and the input embedding dimension is 512, the same with
RoBERTa. In RoBERTa (768×50265 elements), the average and variance of the
pretrained embedding weights are −0.0125 and 0.0173, respectively. We picked
mu = 0 and sigma = 0.01 to generate zero-mean noise value since we want the
adjusted weights to be in the same space as the original weights. We replace
the original weights in the initial model with the noisy weights calculated using
Eq. 2.

5 Evaluation

We trained the model against MLM using dynamic masking using RoBERTa’s
hyperparameters running for 250, 000 training steps for 100 h on 8T V100 GPUs
with Batch_size = 18, the largest possible mini-batch size for V100 GPUs. We
evaluate the model on cybersecurity masked language modeling and other gen-
eral purpose underlying tasks including sentiment analysis and named entity
recognition (NER) to further show the performance and efficiency of Secure-
BERT in processing the cybersecurity text as well as reasonable effectiveness in
general language.

5.1 Masked Language Model (MLM)

In this section, we evaluate the performance of SecureBERT in predicting the
masked word in an input sentence, known as the standard Masked Language
Model (MLM) task.

Owing to the unavailability of a testing dataset for the MLM task in the
cybersecurity domain, we create one. We extracted sentences manually from a
high-quality source of cybersecurity reports - MITRE technique descriptions,

SecureBERT 47

Fig. 1. SecureBERT architecture for pre-training against masked words.

which are not included in pre-training dataset. Rather than masking an arbi-
trary word in a sentence, as in RoBERTa, we masked only the verb or noun in the
sentence because a verb denotes an action and a noun denotes an object, both
of which are important for understanding the sentence’s semantics in a cyberse-
curity context. Our testing dataset contains 17, 341 records, with 12, 721 records
containing a masked noun (2, 213 unique nouns) and 4, 620 records containing
a masked verb (888 unique masked verbs in total). Figure 2a and 4b show the
MLM performance for predicting the masked nouns and verbs respectively. Both
figures present the prediction hit rate of the masked word in topN model predic-
tion. SecureBERT constantly outperforms RoBERTa-base, RoBERTa-large and
SciBERT even though the RoBERTa-large is a considerably large model trained
on a massive corpora with 355M parameters (Fig. 1).

Our investigations show that RoBERTa-large (much larger than RoBERTa-
base which we used as initial model) is pretty powerful language model in gen-
eral cybersecurity language. However, when it comes to advance cybersecurity
context, it constantly fails to deliver desired output. For example, three cyberse-
curity sentences are depicted in Fig. 3, each with one word masked. Three terms
including reconnaissance, hijacking, and DdoS are commonly used in cybersecu-
rity corpora. SecureBERT is able to understand the context and properly predict
these masked words, while RoBERTa’s prediction is remarkably different When
it comes to cybersecurity tasks including cyber threat intelligence, vulnerability
analysis, and threat action extraction [1,3], such knowledge is crucial and uti-
lizing a model with SecureBERT’s properties would be highly beneficial. The
models do marginally better in predicting verbs than nouns, according to the
prediction results.

48 E. Aghaei et al.

(a) Performance in predicting objects. (b) Performance in predicting verbs.

Fig. 2. Cybersecurity masked word prediction evaluation on RoBERTa-base,
RoBERTa-large, SciBERT, and SecureBERT.

Fig. 3. A comparative example of predicting masked token. SecureBERT shows a
good understanding of cybersecurity context while other models constantly failed in
advanced texts.

5.2 Ablation Study

SecureBERT outperforms existing language models in predicting cybersecurity-
related masked tokens in texts, demonstrating its ability to digest and interpret
in-domain texts. To enhance its performance and maintain general language
understanding, we used specific strategies such as the development of custom
tokenizers and weight adjustment.

SecureBERT employs an effective weight modification by introducing a small
noise to the initial weights of the pre-trained model when trained on a smaller
corpus than off-the-shelf large models, enabling it to better and more efficiently
fit the cybersecurity context, particularly in learning homographs and phrases
carrying multiple meanings in different domains. As a result of the noise, this
technique puts the token in a deviated space, allowing the algorithm to adjust
embedding weights more effectively.

In Table 3, given a few simple sentences containing common homographs in
cybersecurity context, we provide the masked word prediction of four different

SecureBERT 49

models, including SB (SecureBERT), SB* (SecureBERT trained without weight
adjustment), RB (RoBERTa-base), and RL (RoBERTa-large). For example, word
Virus in cybersecurity context refers to a malicious code that spreads between
devices to damage, disrupt, or steal data. On the other hand, a Virus is also a
nanoscopic infectious agent that replicates solely within an organism’s live cells.
In simple sentence such as “Virus causes <mask>.”, four models deliver different
prediction, each corresponding to associated context. RB and RL return cancer,
infection and diarrhea, that are definitely correct in general (or medical) context,
they are wrong in cybersecurity domain though. SB* returns a set of words includ-
ing problem, disaster and crashes, which differ from the outcomes of generic mod-
els, yet far away from cybersecurity implication. Despite, SB predictions which
are DoS, crash, and reboot clearly demonstrate how weight adjustment helps in
improved inference of the cybersecurity context by returning the most relevant
words for the masked token.

Customized tokenizer, on the other hand, also plays an important role in
enhancing the performance of SecureBERT in MLM task, by indexing more
cybersecurity related tokens (specially complete words as mentioned in Sect. 4.1).
To further show the impact of SecureBERT tokenizer in returning correct mask
word prediction, we train SecureBERT with original RoBERTa’s tokenizer with-
out any customization (but with weight adjustment). As depicted in Fig. 4a
and Fig. 4b, when compared to the pre-trained tokenizer, SecureBERT’s tok-
enizer clearly has a higher hit rate, which highlights the significance of creating
a domain-specific tokenizer for any domain-specific language model.

5.3 Fine-Tuning Tasks

To further proof the performance of SecureBERT in handling the general NLP
tasks, we conduct two training experiments including sentiment analysis as well
as named entity recognition (NER).

Task1: Sentiment Analysis

In the first task, we intend to evaluate the SecureBERT in comprehending gen-
eral English language in form of sentiment analysis. Thus, we use publicly avail-
able Rotten Tomatoes dataset3 that contains corpus of movie reviews used for
sentiment analysis. Socher et al. [26] used Amazon’s Mechanical Turk to create
fine-grained labels for all parsed phrases in the corpus. The dataset is comprised
of tab-separated files with phrases from the Rotten Tomatoes dataset. Each Sen-
tence has been parsed into many phrases by the Stanford parser. Each phrase
has a “Phrase Id” and each sentence contains a “Sentence Id” while there is no
duplicated phrase included in the dataset. Phrases are labeled with five sen-
timent impressions including negative, somewhat negative, neutral, somewhat
positive, and positive. We build a single layer MLP on top of the four mod-
els as classification layer to classify the phrases to the corresponding label. We
3 https://www.kaggle.com/c/movie-review-sentiment-analysis-kernels-only.

https://www.kaggle.com/c/movie-review-sentiment-analysis-kernels-only

50 E. Aghaei et al.

Table 3. Shows the masked word prediction results returned by SecureBERT (SB),
SecureBERT without weight adjustment (SB*), RoBERTa-base (RB) and RoBERTa-
large (RL) in sentences containing homographs

Masked sentence Model predictions

Virus causes <mask> SB: DoS | crash | reboot
SB*: problems | disaster | crashes
RB: cancer | autism | paralysis
RL: cancer | infection | diarrhea

Honeypot is used in <mask> SB: Metasploit | Windows | Squid
SB*: images | software | cryptography
RB: cooking | recipes | baking
RL: cooking | recipes | baking

A worm can <mask> itself to spread SB: copy | propagate | program
SB*: use | alter | modify
RB: allow | free | help
RL: clone | use | manipulate

Firewall is used to <mask> SB: protect | prevent | detect
SB*: protect | hide | encrypt
RB: protect | communicate | defend
RL: protect | block | monitor

zombie is the other name for a <mask> SB: bot | process | trojan
SB*: worm | computer | program
RB: robot | clone | virus
RL: vampire | virus | person

trained two version of the SecureBERT called raw SecureBERT and modified
SecureBERT. The former model is the version of our model in which we uti-
lized customized tokenizer and the weight adjustment method, while the latter
is the original RoBERTa model trained as is, using the collected cybersecurity
corpora. We trained the model for 1,500 steps with learningrate = 1e − 5 and
Batch_size = 32, to minimize the error of CrossEntropy loss function employ-
ing Adam optimizer and Softmax as the activation function in the classifica-
tion layer. Figure 6 shows the SecureBERT’s architecture for sentiment analysis
Fig. 5.

In Table 4, we show the performance of both models and compared it with
original RoBERTa-base and SciBERT, fine-tuned on Rotten Tomatoes dataset.
As illustrated, despite the fact that SciBERT is trained on a broader range of
domains (biomedical and computer science), both SecureBERT versions per-
form quite similarly to SciBERT. In addition, the 2.23% and 2.02% difference
in accuracy and F1-score with RoBERTa-base demonstrates the effectiveness of
SecureBERT in analysing the general English language as well. Furthermore, the

SecureBERT 51

(a) Performance in predicting objects. (b) Performance in predicting verbs.

Fig. 4. Demonstrating the impact of the customized tokenizer in masked word predic-
tion performance.

Fig. 5. SecureBERT architecture for sentiment analysis downstream task.

modified model perform slightly better than the raw version by 0.34% accuracy
and 0.71% F1-score improvement. In the second task, we fine-tune the Secure-
BERT to conduct cybersecurity-related name entity recognition (NER). NER is
a special task in information extraction that focuses on identifying and classify-
ing named entities referenced in unstructured text into predefined entities such
as person names, organizations, places, time expressions, etc.

Since general purpose NER models may not always function well in cyber-
security, we must employ a domain-specific dataset to train an effective model
for this particular field. Training a NER model in cybersecurity is a challenging
task since there is no publicly available domain-specific data and, even if there
is, it is unclear how to establish consensus on which classes should be retrieved
from the data. Nevertheless, here we aim to fine-tune the SecureBERT on a rela-
tively small sized dataset that is related to cybersecurity just to show the overall
performance and compare it with the existing models. MalwareTextDB [17] is a
dataset containing 39 annotated APT reports with a total of 6,819 sentences. In

52 E. Aghaei et al.

Table 4. Shows the performance of different models on general English sentiment
analysis task.

Model name Error Accuracy F1-score

RoBERTa-base 0.733 69.46 69.12
SciBERT 0.768 67.76 67.08
SecureBERT (raw) 0.788 66.89 66.39
SecureBERT (modified) 0.771 67.23 67.10

the NER version of this dataset, the sentences are annotated with four different
tags including:

Action: referring to an event, such as “registers”, “provides” and “is written”.

Subject: referring to the initiator of the Action such as “The dropper” and “This
module”

Object: referring to the recipient of the Action such as “itself”, “remote persis-
tent access” and “The ransom note”; it also refers to word phrases that provide
elaboration on the Action such as “a service”, “the attacker” and “disk”.

Modifier: referring to the tokens that link to other word phrases that provide
elaboration on the Action such as “as” and “to”.

In each sentence in addition, all the words that are not labeled by any of the
mentioned tags as well as pad tokens will be assigned by a dummy label (“O”)
exclude them in calculating performance metrics.

For Named Entity Recognition, we take the hidden states (the transformer
output) of every input token from the last layer from SecureBERT. These tokens
are then fed to a fully connected dense layer with N units where N equals to
the total number of defined entities. Since SecureBERT’s tokenizer breaks some
words into pieces (Bytes), in such cases we just predict the first piece of the
word.

Fig. 6. SecureBERT architecture for named entity recognition (NER).

SecureBERT 53

Table 5. Shows the performance of different models trained on MalwareTextDB
dataset for NER task.

Model name Precision Recall F1-score

RoBERTa-base 84.92 87.53 86.20
SciBERT 83.19 85.84 84.49
SecureBERT (raw) 86.08 86.81 86.44
SecureBERT (modified) 85.24 88.10 86.65

We trained the model in 3 epochs with learningrate = 2e−5 and batchsize =
8, to minimize the error of CrossEntropy loss function using Adam optimizer
and Softmax as the activation function in the classification layer.

Similar to the previous task, Table 5 shows the performance of both Secure-
BERT’s version as well as two other models. As depicted, modified Secure-
BERT outperforms all other models, despite the fact that MalwareTextDB
dataset still contains many sentences with general English meaning and is not
an cybersecurity-specific corpora.

6 Related Works

Beltagy et al. [7] unveiled SciBERT following the exact BERT’s architecture, a
model that improves performance on downstream scientific NLP tasks by exploit-
ing unsupervised pretraining from scratch on a 1.14M multi-domain corpus of
scientific literature, including 18% computer science and 82% biomedical domain.

In a similar work on biomedical domain, Gu et al. [15] introduced BioBERT
focusing particularly on biomedical domain using BERT architecture and pub-
licly available biomedical datasets. This work also creates a benchmark for
biomedical NLP featuring a diverse set of tasks such as named entity recognition,
relation extraction, document classification, and question answering. Clinical-
BERT [5] is another domain adaptation model based on BERT which is trained
on clinical text from the MIMIC-III database.

Thus far, utilizing language models such as BERT for cybersecurity applica-
tions is quite limited. CyBERT [6] presents a classifier for cybersecurity feature
claims by fine-tuning a pre-trained BERT language model for the purpose of
identifying cybersecurity claims from a large pool of sequences in ICS device
documents. There are also some other studies working on fine-tuning of BERT
in cybersecurity domain. Das et al. [11] fine-tunes BERT to hierarchically clas-
sify cybersecurity vulnerabilities to weaknesses. Additionally, there are several
studies on fine-tuning BERT for NER tasks such as [9,32] and [13]. Yin et al.
[30] fine-tuned pre-trained BERT against cybersecurity text and developed a
classification layer on top of their model, ExBERT, to extract sentence-level
semantic features and predict the exploitability of vulnerabilities. There is also
another model called SecBERT4 published in Github repository which trains
4 https://github.com/jackaduma/SecBERT.

https://github.com/jackaduma/SecBERT

54 E. Aghaei et al.

BERT on cybersecurity corpus from “APTnotes”5, “Stucco-Data: Cyber secu-
rity data sources”6, “CASIE: Extracting Cybersecurity Event Information from
Text”7, and “SemEval-2018 Task 8: Semantic Extraction from CybersecUrity
REports using Natural Language Processing (SecureNLP). However, at the time
of submitting this paper, we could not find any article to learn more about the
details and the proof-of-concept to discuss.

7 Conclusions and Future Works

This study introduces SecureBERT, a transformer-based language model for
processing cybersecurity text language based on RoBERTa. We presented two
practical ways for developing a successful model that can capture contextual
relationships and semantic meanings in cybersecurity text by designing a cus-
tomized tokenization tool on top of RoBERTa’s tokenizer and altering the pre-
trained weights. SecureBERT is trained to utilize a corpus of 1.1 billion words
collected from a range of online cybersecurity resources. SecureBERT has been
evaluated using the standard Masked Language Model (MLM) as well as the
named entity recognition (NER) task. The evaluation outcomes demonstrated
promising results in grasping cybersecurity language.

References

1. Aghaei, E., Al-Shaer, E.: Threatzoom: neural network for automated vulnerability
mitigation. In: Proceedings of the 6th Annual Symposium on Hot Topics in the
Science of Security, pp. 1–3 (2019)

2. Aghaei, E., Serpen, G.: Host-based anomaly detection using eigentraces feature
extraction and one-class classification on system call trace data. J. Inf. Assurance
Sec. (JIAS) 14(4), 106–117 (2019)

3. Aghaei, E., Shadid, W., Al-Shaer, E.: ThreatZoom: hierarchical neural network for
CVEs to CWEs classification. In: Park, N., Sun, K., Foresti, S., Butler, K., Saxena,
N. (eds.) SecureComm 2020. LNICST, vol. 335, pp. 23–41. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63086-7_2

4. Ahn, H., Cha, S., Lee, D., Moon, T.: Uncertainty-based continual learning with
adaptive regularization. In: Advances in Neural Information Processing Systems
32 (2019)

5. Alsentzer, E., et al.: Publicly available clinical bert embeddings. arXiv preprint
arXiv:1904.03323 (2019)

6. Ameri, K., Hempel, M., Sharif, H., Lopez, J., Jr., Perumalla, K.: Cybert: Cyber-
security claim classification by fine-tuning the bert language model. J. Cybersec.
Privacy 1(4), 615–637 (2021)

7. Beltagy, I., Lo, K., Cohan, A.: Scibert: A pretrained language model for scientific
text. arXiv preprint arXiv:1903.10676 (2019)

5 https://github.com/kbandla/APTnotes.
6 https://stucco.github.io/data/.
7 https://ebiquity.umbc.edu/_file_directory_/papers/943.pdf.

https://doi.org/10.1007/978-3-030-63086-7_2
http://arxiv.org/abs/1904.03323
http://arxiv.org/abs/1903.10676
https://github.com/kbandla/APTnotes
https://stucco.github.io/data/
https://ebiquity.umbc.edu/_file_directory_/papers/943.pdf

SecureBERT 55

8. Bishop, C.M.: Training with noise is equivalent to tikhonov regularization. Neural
Compu. 7(1), 108–116 (1995). https://doi.org/10.1162/neco.1995.7.1.108

9. Chen, Y., Ding, J., Li, D., Chen, Z.: Joint bert model based cybersecurity named
entity recognition. In: 2021 The 4th International Conference on Software Engi-
neering and Information Management, pp. 236–242 (2021)

10. Dalton, A., et al.: Active defense against social engineering: The case for human
language technology. In: Proceedings for the First International Workshop on Social
Threats in Online Conversations: Understanding and Management, pp. 1–8 (2020)

11. Das, S.S., Serra, E., Halappanavar, M., Pothen, A., Al-Shaer, E.: V2w-bert: A
framework for effective hierarchical multiclass classification of software vulnerabil-
ities. In: 2021 IEEE 8th International Conference on Data Science and Advanced
Analytics (DSAA), pp. 1–12. IEEE (2021)

12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

13. Gao, C., Zhang, X., Liu, H.: Data and knowledge-driven named entity recogni-
tion for cyber security. Cybersecurity 4(1), 1–13 (2021). https://doi.org/10.1186/
s42400-021-00072-y

14. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference On
Artificial Intelligence And Statistics, pp. 249–256. JMLR Workshop and Conference
Proceedings (2010)

15. Lee, J., et al.: Biobert: a pre-trained biomedical language representation model for
biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)

16. Li, X., Yang, Z., Guo, P., Cheng, J.: An intelligent transient stability assessment
framework with continual learning ability. IEEE Trans. Industr. Inf. 17(12), 8131–
8141 (2021)

17. Lim, S.K., Muis, A.O., Lu, W., Ong, C.H.: MalwareTextDB: A database for anno-
tated malware articles. In: Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pp. 1557–1567. Asso-
ciation for Computational Linguistics, Vancouver, Canada (July 2017). https://doi.
org/10.18653/v1/P17-1143, https://aclanthology.org/P17-1143

18. Liu, X., Cheng, M., Zhang, H., Hsieh, C.-J.: Towards robust neural networks via
random self-ensemble. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11211, pp. 381–397. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01234-2_23

19. Liu, Y., et al.: Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

20. Peters, M.E., et al.: Deep contextualized word representations. arXiv preprint
arXiv:1802.05365 (2018)

21. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language
understanding by generative pre-training (2018)

22. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI
Blog 1(8), 9 (2019)

23. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

24. Sajid, M.S.I., Wei, J., Alam, M.R., Aghaei, E., Al-Shaer, E.: Dodgetron: Towards
autonomous cyber deception using dynamic hybrid analysis of malware. In: 2020
IEEE Conference on Communications and Network Security (CNS), pp. 1–9. IEEE
(2020)

https://doi.org/10.1162/neco.1995.7.1.108
http://arxiv.org/abs/1810.04805
https://doi.org/10.1186/s42400-021-00072-y
https://doi.org/10.1186/s42400-021-00072-y
https://doi.org/10.18653/v1/P17-1143
https://doi.org/10.18653/v1/P17-1143
https://aclanthology.org/P17-1143
https://doi.org/10.1007/978-3-030-01234-2_23
https://doi.org/10.1007/978-3-030-01234-2_23
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1606.05250

56 E. Aghaei et al.

25. Shibata, Y., et al.: Byte Pair Encoding: A Text Compression Scheme That Accel-
erates Pattern Matching (1999)

26. Socher, R., et al.: Recursive deep models for semantic compositionality over a
sentiment treebank. In: Proceedings of the 2013 Conference On Empirical Methods
in Natural Language Processing, pp. 1631–1642 (2013)

27. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

28. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: Glue: A multi-
task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461 (2018)

29. Wang, C., Cho, K., Gu, J.: Neural machine translation with byte-level subwords.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp.
9154–9160 (2020)

30. Yin, J., Tang, M., Cao, J., Wang, H.: Apply transfer learning to cybersecurity:
Predicting exploitability of vulnerabilities by description. Knowl.-Based Syst. 210,
106529 (2020)

31. You, Z., Ye, J., Li, K., Xu, Z., Wang, P.: Adversarial noise layer: Regularize neu-
ral network by adding noise. In: 2019 IEEE International Conference on Image
Processing (ICIP), pp. 909–913. IEEE (2019)

32. Zhou, S., Liu, J., Zhong, X., Zhao, W.: Named entity recognition using bert with
whole world masking in cybersecurity domain. In: 2021 IEEE 6th International
Conference on Big Data Analytics (ICBDA), pp. 316–320. IEEE (2021)

33. Zur, R.M., Jiang, Y., Pesce, L.L., Drukker, K.: Noise injection for training artificial
neural networks: A comparison with weight decay and early stopping. Med. Phys.
36(10), 4810–4818 (2009)

http://arxiv.org/abs/1804.07461

CapsITD: Malicious Insider Threat
Detection Based on Capsule

Neural Network

Haitao Xiao1,2, Chen Zhang1, Song Liu1, Bo Jiang1,2, Zhigang Lu1,2,
Fei Wang3, and Yuling Liu1,2(B)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{xiaohaitao,zchen,liusong1106,jiangbo,luzhigang,liuyuling}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
wangfei@ict.ac.cn

Abstract. Insider threat has emerged as the most destructive security
threat due to its secrecy and great destructiveness to the core assets. It
is very important to detect malicious insiders for protecting the secu-
rity of enterprises and organizations. Existing detection methods seldom
consider correlative information between users and can not learn the
extracted features effectively. To address the aforementioned issues, we
present CapsITD, a novel user-level insider threat detection method.
CapsITD constructs a homogeneous graph that contains the correlative
information from users’ authentication logs and then employs a graph
embedding technique to embed the graph into low-dimensional vectors
as structural features. We also design an anomaly detection model using
capsule neural network for CapsITD to learn extracted features and iden-
tify malicious insiders. Comprehensive experimental results on the CERT
dataset clearly demonstrate CapsITD’s effectiveness.

Keywords: Insider threat detection · Capsule neural network · Graph
embedding

1 Introduction

Nowadays, insider threats are acknowledged as one of the most dangerous cyber
threats to an organization’s network and data security. Insider threats are harder
to detect than external threats since insiders are generally permitted to access
internal information systems and are knowledgeable about the organization’s
structure and security procedures. According to Securonix’s insider threat report
2020 [1], 80% of employees who are about to terminate their employment with
their company tend to take some sensitive data with them. The insider threat
report 2021 issued by Gurucul shows that 98% of organizations feel vulnerable

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 57–71, 2023.

https://doi.org/10.1007/978-3-031-25538-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_4

58 H. Xiao et al.

to insider attacks and 49% of organizations can not detect insider threats or
can only detect them after data has left the organization [2]. Security problems
caused by insiders are becoming more and more serious. It is vital to detect
insider threats accurately and promptly.

In order to detect malicious insiders, many approaches have been proposed.
These approaches can be divided into signature-based approaches and anomaly-
based approaches. Signature-based approaches mainly depend on known-bad
events’ signatures and can not detect unknown threats. Current anomaly-based
approaches are mainly focused on user behavior profiles and use machine learning
algorithms [3], deep learning algorithms [4,5] to detect malicious insiders. There
are two limitations in the previous approaches. Firstly, previous approaches [3,5]
have not considered the correlative information between users. The correlative
information can reflect the user’s aggregation. Users with the same behavior
tend to have similar attributes, and such correlative information can help detect
malicious insiders. Secondly, previous approaches [4] fail to learn the extracted
features effectively, and there is an urgent need to find a more suitable learning
method that can adequately learn the extracted features.

To overcome these limitations, we propose CapsITD, a user-level malicious
insider threat detection method based on capsule neural network, which lever-
ages graph embedding technique and capsule neural network. First, we extract
statistical features based on users’ daily activities and communications. Then,
we construct a homogeneous graph using the users’ authentication logs to rep-
resent the correlative information. To efficiently learn correlative information,
graph embedding is employed to embed the graph into low-dimensional vectors as
structural features. Finally, we design an anomaly detection model using capsule
neural network to learn statistical features and structural features adequately.
According to the experimental results, CapsITD outperforms both traditional
machine learning methods and state-of-the-art deep learning methods.

Our contributions can be summarized as follows:

– We construct a homogeneous graph that contains the correlative informa-
tion from users’ authentication logs and use a graph embedding technique
to generate structural features which are helpful for user-level insider threat
detection.

– We design a deep learning-based anomaly detection model, which can learn
the extracted features effectively and achieve improved performance for
detecting malicious insiders.

– We evaluate our method using a universal insider threat dataset (CERT ver-
sion 4.2). The results show that our method is effective, competitive, and able
to achieve state-of-the-art performance.

The remaining part of the paper proceeds as follows. Section 2 reviews the
related studies. Section 3 presents the proposed methods and explains the learn-
ing algorithm. Section 4 covers the experiments and results analysis. Finally,
Sect. 5 contains the conclusions.

Malicious Insider Threat Detection Based on Capsule Neural Network 59

2 Related Work

2.1 Insider Threat Detection

At present, existing insider threat detection methods can mainly be divided into
two categories: signature-based methods and anomaly-based methods [6].

Signature-based method is to design a signature for each known insider
threat, match incoming user behavior data with existing signatures, and identify
users that match the signatures as insiders. Nguyen et al. [7] built a series of
rules for exposing unusual system calls relating to the file system and detecting
known abnormal actions effectively. However, the signature-based method heav-
ily relies on domain expertise and can not cope with previously unknown insider
threats.

Anomaly-based method is to calculate the deviation of current behavior from
normal behavior and identify users that have a large deviation as insiders. Most
existing anomaly-based methods are based on machine learning or deep learning
and generally build an anomaly detection model based on historical user behav-
ior data. Then use the fitted model to determine whether the user is an insider.
Le et al. [3] adopted self-organizing map and C4.5 decision tree to detect mali-
cious insiders using the numerical features extracted from user behavior data.
Jiang et al. [4] proposed a graph convolutional network based model to identify
users with abnormal behavior. Gayathri et al. [5] employed a pre-trained deep
convolutional neural network for anomaly detection to identify malicious insid-
ers. These methods either ignore the correlative information between users or
can not learn the extracted features effectively.

2.2 Graph Embedding

Graph embedding aims at learning the representative embeddings as low dimen-
sional vectors for each node in a graph. The embedding vectors represent the
structure of nodes and can be used in downstream prediction tasks, such as node
classification and link prediction.

Graph embedding technique is also used in the anomaly detection field. Wei et
al. [8] used graph embedding to capture comprehensive relationships for detect-
ing anomalous logon activities. Bowman et al. [9] built an authentication graph
and used graph embedding to learn latent representations of the authenticating
entities. Then, they identified low-probability authentication events to detect
anomalous users. The above methods improve the learning performance by using
the graph embedding technique.

2.3 Capsule Neural Network

Capsule neural network was first proposed by Hinton [10]. Unlike traditional
neural network, capsule neural network uses vector instead of scalar as a neuron
in traditional neural network and drops the pooling operation to retain feature
spatial information. By this means, the capsule neural network has a momentous

60 H. Xiao et al.

improvement compared to the traditional neural network. The capsule neural
network is widely utilised in the field of anomaly detection. For example, Zhang
et al. [11] presented a capsule neural network based intrusion detection method.
Li et al. [12] employed a capsule neural network to detect anomalous images.
They have proved the great power of the capsule neural network for feature
learning.

3 Methodology

Fig. 1. The framework of CapsITD

Figure 1 illustrates the framework of CapsITD. CapsITD consists of two com-
ponents: feature extraction module and anomaly detection module.

In the feature extraction module, we first count frequency-based and content-
based information about user behavior from users’ multisource activity logs as
statistical features. Then we construct a homogeneous graph based on users’
authentication logs and embed the graph into low-dimensional vectors as struc-
tural features. We concatenate and convert statistical features and structural
features into the form of feature matrices, which are suitable as input to the
neural network for the next module.

In the anomaly detection module, we train the anomaly detection model
based on a capsule neural network to detect the users as benign or malicious
using the feature matrices generated in the previous module.

3.1 Feature Extraction Module

The goal of the feature extraction module is to collect useful users’ characteris-
tics to identify malicious insiders. To obtain more comprehensive and effective
features from users’ multisource activity logs, as shown in Fig. 2, we extract the
features from the statistical aspect and structural aspect respectively.

Malicious Insider Threat Detection Based on Capsule Neural Network 61

Fig. 2. The process of feature extraction

Statistical Feature Extraction. Statistical features can reflect the behavioral
patterns of users and help us identify potential malicious users. In this work,
we design 31 statistical features from users’ multisource activity logs based on
[13,14]. The statistical features can be categorised into frequency-based features
and content-based features.

Table 1. Frequency-based features

Data source Feature name

Logon Logon/Logoff times, Off-work Logon/Logoff times,
Number of PC for Logon/Logoff

Device Number of Device Connection,
Number of Off-work Device Connection,
Number of PC for Device Connection

File Number of Different Files, Number of Total Files,
Number of Off-work Files, Number of .exe Files,
Number of PC for Files

Email Number of Sent Emails, Number of Out Organization Emails,
Number of In Organization Emails, Average Email Size,
Number of Email Attachments, Number of Receivers of Sent Emails,
Number of Off-work Sent Emails, Number of PC for Emails

HTTP Number of Web Pages Browsed,
Number of Off-work Web Pages Browsed

On the one hand, we derive frequency-based features from users’ daily activ-
ities using the frequency information, which can reveal the typical behavioral
patterns of users. The frequency-based features are the daily average counts of
different types of actions the user performs, such as logon and logoff times, off-
work hours logon and logoff times, and the number of PCs for emails. Based on
the aggregation of logon and logoff activities, we define the work time as 8:00 to
19:00 [14]. Table 1 lists the detailed frequency-based features.

62 H. Xiao et al.

Table 2. Content-based features

Data source Feature name

Email Number of Sentiment-related Emails

HTTP Number of Wikileak-related, Jobhunting-related,
Hacking-related, Cloudstorage-related,
Social-related, Sentiment-related Web Pages

On the other hand, we derive content-based features using the contents of
users’ communication. The content-based features are based on the content of
emails and web pages, such as the sentiment tendency of emails [13] and different
types of web pages. The detailed content-based features are listed in Table 2.

Structural Feature Extraction. Structural features can reflect the correl-
ative information of users. The correlative information of users is represented
by the edges of the graph, and users with similar behaviors tend to be closer
together. This information can help us detect malicious insiders. Structural fea-
ture extraction can be separated into two steps: graph construction and graph
embedding. The first step is to construct a user authentication connection graph
based on the users’ authentication logs. Then, we use graph embedding to derive
latent node representations from the previously constructed graph and embed
the nodes into low-dimensional vectors containing the correlative information of
users. The low-dimensional vectors generated by graph embedding are used as
structural features.

Graph Construction. The user authentication connection graph is defined as a
homogeneous graph G = (V,E). This graph has a node type mapping φ : V → A
and an edge type mapping ψ : E → R , where V denotes the node set and E
denotes the edge set, A = {user} and R = {connection}. We define two users
have a connection only if they log on to the same computer. Specifically, if useri
logs on to the computerk and userj logs on to the computerk too, there is a
connection between useri and userj .

Graph Embedding. Graph embedding is the process of transforming a graph into
a low-dimensional space while preserving the graph’s information. The goal is to
convert each node in the graph G into a low-dimensional vector while retaining
relations between nodes.

The process of user authentication connection graph embedding is divided
into two steps: First, we sample graph G using fixed-length random walks.
Specifically, we explore r fixed-length random walks for any node in the graph
G = (V,E) and generate node sequences set S = {s1, s2, ..., sm}, where the ith
random walk sequence is denoted as si and the total number of sequences is

Malicious Insider Threat Detection Based on Capsule Neural Network 63

denoted as m. Then, we learn a d-dimensioal representation for each unique user
u. In this step, the skip-gram model is utilised to acquire the embedding vector
of each node over the sequence set S by maximizing the objective function f as
Eq. 1.

f =
∑

u∈W

logP (N(u) | u) (1)

where W is the vocabulary of unique nodes representing users. N(u) is the set
of neighborhoods of node u ∈ V . The probability of observing nodes P (N(u)|u)
is defined by a softmax unit:

P (N(u) | u) =
∏

ni∈N(u)

exp
(
v′T
ni

vu
)

∑|W |
w=1 exp (v′T

w vu)
(2)

where v and v′ are two vectors which represent of the node u. And v is the
ultimately embedding vector of node u. If two nodes have similar authentica-
tion patterns, their embedding vectors will commonly occur together after the
convergence of the skip-gram model.

Feature Conversion. Feature conversion is to transform the extracted fea-
tures into a form that is suitable for the input of the capsule neural network
based anomaly detection model. We directly concatenate the statistical feature
vectors with structural feature vectors as concatenating features. Then the con-
catenating features will be normalized by min-max normalization, which limits
the value range to [0, 1]. The normalization can eliminate the magnitude differ-
ences between features and avoid the impact on the detection model. Finally,
we convert normalized concatenating features to 6× 6 two-dimensional feature
matrices as the input of the anomaly detection model.

3.2 Anomaly Detection Module

The goal of the anomaly detection module is to detect anomalous users and
identify malicious insiders. A strong learning model is required for learning the
extracted features in the previous module. Neural networks generally have excel-
lent feature learning capabilities over other algorithms. The convolutional neural
network is one of the most classic algorithms in neural networks. As described
in Sect. 2, capsule neural network can make up for the shortage of convolutional
neural network. So we choose the capsule neural network as our anomaly detec-
tion model. The model architecture is made up of convolutional layer, primary
capsule layer, and digit capsule layer as shown in Fig. 3.

64 H. Xiao et al.

Fig. 3. Structure of capsule neural network

In the convolutional layer(Conv1), Conv1 has 64 channels each make up of
3 × 3 filters with a stride of 1, a padding of 1, and ReLu activation applied to
a 6 × 6 × 1 matrix which represents the concatenating features. Conv1 outputs
64 channel matrices of features with the size 6 × 6. This layer transforms pixel
intensities into local feature detector activity, which is subsequently sent into
the primary capsules.

The primary capsule layer is a convolutional capsule layer. This layer is made
up of 32 channels of convolutional 8D capsules. Each primary capsule has eight
convolutional units, each having a 3 × 3 kernel and a stride of 1. We execute
primary capsule operation on 64 channel matrices of features and generate 6 ×
6× 32 outputs. Each capsule in the 6× 6 grid shares its weights with the others.

The third layer is digit capsule layer. This layer contains one 16D capsule for
each digit class, and each of these capsules gets input from every capsule in the
layer beneath it. As shown in Eq. 3, the overall input to capsule sj is a weighted
sum over all prediction vector ûj|i from the capsules in the layer beneath it and
the coupling coefficients cij determined by the iterative dynamic routing process.
The ûj|i is produced by the Eq. 4, where Wij is a weight matrix.

sj =
∑

i

cijûj|i (3)

ûj|i = Wijui (4)

The coupling coefficients cij is produced by the Eq. 5, where bij is the log prior
probabilities that capsule i coupled to capsule j.

cij =
exp (bij)∑
k exp (bik)

(5)

The probability of an entity is represented by the length of the output vector
of a capsule. Thus, we utilise a non-linear squashing function to ensure that
short vectors get shrunk to almost zero length and long vectors get shrunk to
a length slightly below 1. Equation 6 shows the squashing function, where vj is
the capsule j ’s vector output and sj is its overall input.

vj =
‖sj‖2

1 + ‖sj‖2
sj

‖sj‖ (6)

Malicious Insider Threat Detection Based on Capsule Neural Network 65

To update the parameters of the entire network, we use the margin loss function
Lk for each digit capsule, k:

Lk = Tk max
(
0, m+ − ‖vk‖)2

+ λ (1 − Tk) max
(
0, ‖vk‖ − m−)2 (7)

where Tk = 1 if the class k is present, otherwise Tk = 0. The two hyperparame-
ters, m+ and m− are set to 0.9 and 0.1. λ is a regularization parameter and is
set to 0.5. To achieve better accuracy, we add reconstruct loss into the final loss
as well.

4 Experiments and Results

This section is devoted to evaluating the performance of CapsITD. First, we
introduce the dataset utilised for evaluation. Then, we describe the evaluation
metrics and experiment setup specifically. The experiment results are then dis-
cussed and compared to three classical machine learning algorithms (logistic
regression, support vector machine, and random forest) as well as two deep
learning algorithms (convolutional neural network and graph convolutional net-
work [4]). We also set a comparative experiment between statistical features and
concatenated features to evaluate the effort of correlative information and test
the influence of different anomalous sample ratios to verify the robustness of
CapsITD.

4.1 Dataset

We use a universal insider threat dataset (CERT version 4.2) from Carnegie
Mellon University [15]. This dataset consists of multisource activity logs of 1000
users and 1003 computers over a period of 17 months from January 2010 to
May 2011. The multisource activity logs contain user login, removable device
usage, file access, email communication, and web browsing history. The dataset
covers 70 malicious insiders and three insider threat scenarios, which are data
exfiltration, intellectual property theft, and IT sabotage.

4.2 Evaluation Metrics

In the experiments, four well-known metrics are adopted for our evaluation:
Accuracy, F-measure, AUC (Area Under the ROC Curve), and Recall. Accuracy
is the ratio of correctly predicted observations to total observations. F-measure
is the weighted average of precision and recall. AUC is a metric for evaluating
the pros and cons of a binary classification model. Recall is the ratio of correctly
predicted positive observations to all observations in the true class.

66 H. Xiao et al.

4.3 Experiment Setup

Our experiments are performed on a PC with Intel Core i5-10500 CPU @
3.10GHz, 16GB RAM, and 64-bit Windows 10 Professional OS. We use Sklearn
0.24.1 to implement the machine learning algorithm and PyTorch 1.7.1 to imple-
ment the deep learning algorithm.

In the CERT dataset, we process the multisource activity logs of users and
derive statistical features from these logs as demonstrated in Sect. 3. The dimen-
sion of statistical features is 31. Then we construct the user authentication con-
nection graph using 1000 users’ authentication logs and embed the nodes into
low-dimensional vectors. The hyperparameters of graph embedding are as fol-
lows: We set the walk length l = 30 and the number of walks per node r = 200
in random walk. We set the vector’s dimension d = 5 and the window size to 10
in skip-gram. After that, we concatenate and transform the extracted features
into a 6 × 6 feature matrix as the input to the capsule neural network for each
user. The hyperparameters of the capsule neural network are set as follows: The
training epoch is set to 50, and the learning rate is set at 0.001.

4.4 Experimental Results

To evaluate the proposed method comprehensively, we first compare CapsITD
with three classical machine learning methods and two deep learning methods.
Then we expand the experiment to evaluate the effectiveness of correlative infor-
mation and the robustness of CapsITD.

Table 3. Comparison results with other methods

Method Accuracy F-measure AUC Recall

LR 0.910 0.794 0.755 0.533

SVM 0.920 0.811 0.761 0.533

RF 0.920 0.803 0.747 0.500

CNN 0.965 0.926 0.897 0.800

GCN 0.945 – – 0.833

CapsITD 0.980 0.958 0.933 0.867

Comparison with Other Methods. We compare the experimental results of
the CapsITD with three classical machine learning algorithms such as Logistic
Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and
two deep learning algorithms such as Convolutional Neural Network (CNN), and
Graph Convolutional Network (GCN) [4]. However, since the GCN method does
not describe its algorithm in detail, we only refer to the detection results of the
CERT dataset as shown in [4] and set up the same dataset partition. The training
set and test set are selected the same way as the [4]. The training set contains

Malicious Insider Threat Detection Based on Capsule Neural Network 67

160 normal users and 40 abnormal users, and the test set contains 170 normal
users and 30 abnormal users. The comparison results between CapsITD and
other methods on the CERT dataset are shown in Table 3. We can observe that
CapsITD outperforms the other five competing algorithms. The deep learning
algorithms outperform the other three machine learning algorithms. Compared
with the GCN model proposed by [4], CapsITD is higher 3.5% accuracy and 3.4%
recall than the GCN model. CapsITD is competent for insider threat detection
since the performance of CapsITD outperforms other existing models.

Table 4. Comparison between statistical features and concatenated features

Method Accuracy F-measure AUC Recall

LRstat 0.895 0.764 0.732 0.500

LRconc 0.910 0.794 0.755 0.533

SVMstat 0.905 0.779 0.738 0.500

SVMconc 0.920 0.811 0.761 0.533

RFstat 0.895 0.715 0.664 0.333

RFconc 0.920 0.803 0.747 0.500

CNNstat 0.950 0.889 0.847 0.700

CNNconc 0.965 0.926 0.897 0.800

CapsITDstat 0.970 0.936 0.900 0.800

CapsITDconc 0.980 0.958 0.933 0.867

The Effectiveness of Correlative Information. To evaluate the effective-
ness of correlative information, we compare the models with statistical features
and concatenated features. The experimental results are shown in Table 4, where
the subscripts are stat for only statistical features and conc for concatenated fea-
tures. The concatenated features, which incorporate correlative information, are
improved in all three machine learning methods and two deep learning meth-
ods compared to only statistical features. The most significant improvement is
the random forest, where the random forest model using concatenated features
improves accuracy by 2.5% compared to the random forest model using only
statistical features. CapsITD with concatenated features outperforms CapsITD
with only statistical features in terms of 1% accuracy, 2.2% F-measure, 3.3%
AUC, and 6.7% recall. In general, correlative information can further improve
the performance of detecting malicious insiders.

68 H. Xiao et al.

Table 5. Different anomalous sample ratios

Anomalous sample ratio Normal Abnormal

10% 280 28

15% 280 42

20% 280 56

25% 280 70

Performance on Different Anomalous Sample Ratios. To evaluate the
robustness of CapsITD, we compare the models with different anomalous sample
ratios. Table 5 shows the data with varying ratios of anomalous samples. Since
the total number of anomalous samples in the dataset is 70, we set the number of
normal samples at 280 to ensure that different anomalous sample ratios can be
selected. In this experiment, we test the models on different ratios of anomalous
samples. The proportion of training set to test set is 6:4.

(a) Accuracy (b) F-measure

(c) AUC (d) Recall

Fig. 4. Performance on different anomalous sample ratios

As shown in Fig. 4, they are the performance of three machine learning algo-
rithms: Logistic Regression (LR), Support Vector Machine (SVM), Random For-
est (RF), and two deep learning algorithms: Convolutional Neural Networks
(CNN) and Our Proposed Method (CapsITD). We make the following obser-
vations: CapsITD is always higher than CNN of the four metrics. And deep

Malicious Insider Threat Detection Based on Capsule Neural Network 69

learning-based approaches have significant improvements over machine learning-
based approaches. According to Fig. 4(d), the ability of all models to detect
malicious insiders increases as the ratio of anomalous samples rises. However,
Fig. 4(a) shows the accuracy of machine learning-based approaches decreases as
the ratio of anomalous samples rises. This is due to the poor ability to identify
anomalous samples by machine learning-based approaches.

Fig. 5. The confusion matrix of RF on different anomolous sample ratios

As shown in Fig. 5, they are the confusion matrices of the random forest
model under different anomalous sample ratios. It can be seen that the random
forest can detect all normal samples under different anomalous sample ratios,
but has a poor ability to identify anomalous samples. As the ratio of anomalous
samples increases, the random forest model can gradually distinguish anomalous
samples, but the accuracy tends to slightly decrease due to the large base of nor-
mal samples. The situation for the other machine learning-based approaches
is the same as random forest. It demonstrates that machine learning-based
approaches are unable to learn from the extracted features to classify normal
and abnormal samples effectively. Meanwhile, deep learning-based approaches
show an increasing trend in all metrics as the ratio of anomalous samples rises.
It means that deep learning-based approaches can learn more from the extracted
features to classify normal and abnormal samples precisely. In summary, Cap-
sITD still outperforms other methods on different anomalous sample ratios. This
experiment shows the robustness of CapsITD.

5 Conclusion

In this paper, we present CapsITD, a novel user-level approach for insider threat
detection. This approach can effectively detect malicious insiders from users’
multisource activity logs. Firstly, we extract statistical features based on users’
daily activities and communications. Secondly, we construct a homogeneous
graph based on users’ authentication logs. The constructed graph can represent
the correlative information between users. We then use a graph embedding tech-
nique to embed the graph into low-dimensional vectors as structural features.
Thirdly, we design an anomaly detection model using capsule neural network
to learn statistical features and structural features adequately. The results of

70 H. Xiao et al.

the comparative experiments reveal that our proposed approach has superior
performance compared with other existing approaches. In our expansive experi-
ments, we verified the effectiveness of correlative information and the robustness
of CapsITD.

Acknowledgment. This work is supported by National Key Research and Devel-
opment Program of China (No.2021YFF0307203, No.2019QY1300), and NSFC (No.
61902376), Youth Innovation Promotion Association CAS (No.2021156), the Strategic
Priority Research Program of Chinese Academy of Sciences (No. XDC02040100). This
work is also supported by the Program of Key Laboratory of Network Assessment
Technology, the Chinese Academy of Sciences, Program of Beijing Key Laboratory of
Network Security and Protection Technology.

References

1. 2020 Securonix Insider Threat Report. https://www.securonix.com/resources/
2020-insider-threat-report/. (Accessed 29 Dec 2021)

2. 2021 Insider threat report. https://gurucul.com/2021-insider-threat-report.
(Accessed 29 Dec 2021)

3. Le, D.C., Zincir-Heywood, A.N.: Evaluating insider threat detection workflow using
supervised and unsupervised learning. In: 2018 IEEE Security and Privacy Work-
shops (SPW), pp. 270–275. IEEE (2018)

4. Jiang, J., et al.: Anomaly detection with graph convolutional networks for insider
threat and fraud detection. In: MILCOM 2019–2019 IEEE Military Communica-
tions Conference (MILCOM), pp. 109–114. IEEE (2019)

5. Gayathri, R., Sajjanhar, A., Xiang, Y.: Image-based feature representation for
insider threat classification. Appl. Sci. 10(14), 4945 (2020)

6. Liu, L., De Vel, O., Han, Q.L., Zhang, J., Xiang, Y.: Detecting and preventing
cyber insider threats: A survey. IEEE Commun. Surv. Tutorials 20(2), 1397–1417
(2018)

7. Nguyen, N., Reiher, P., Kuenning, G.H.: Detecting insider threats by monitoring
system call activity. In: IEEE Systems, Man and Cybernetics Society Information
Assurance Workshop, vol. 2003, pp. 45–52. IEEE (2003)

8. Wei, R., Cai, L., Yu, A., Meng, D.: Age: authentication graph embedding for
detecting anomalous login activities. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds.)
ICICS 2019. LNCS, vol. 11999, pp. 341–356. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-41579-2 20

9. Bowman, B., Laprade, C., Ji, Y., Huang, H.H.: Detecting lateral movement in
enterprise computer networks with unsupervised graph ai. In: 23rd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020), pp.
257–268 (2020)

10. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In:
Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol.
6791, pp. 44–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21735-7 6

11. Zhang, X., Yin, S.: Intrusion detection model of random attention capsule network
based on variable fusion. J. Commun. 41(11), 160 (2020)

12. Li, X.: Anomaly Detection Based on Disentangled Representation Learning. Ph.D.
thesis, Université d’Ottawa/University of Ottawa (2020)

https://www.securonix.com/resources/2020-insider-threat-report/
https://www.securonix.com/resources/2020-insider-threat-report/
https://gurucul.com/2021-insider-threat-report
https://doi.org/10.1007/978-3-030-41579-2_20
https://doi.org/10.1007/978-3-030-41579-2_20
https://doi.org/10.1007/978-3-642-21735-7_6
https://doi.org/10.1007/978-3-642-21735-7_6

Malicious Insider Threat Detection Based on Capsule Neural Network 71

13. Jiang, J., et al.: Prediction and detection of malicious insiders’ motivation based on
sentiment profile on webpages and emails. In: MILCOM 2018–2018 IEEE Military
Communications Conference (MILCOM), pp. 1–6. IEEE (2018)

14. Chattopadhyay, P., Wang, L., Tan, Y.P.: Scenario-based insider threat detection
from cyber activities. IEEE Trans. Comput. Soc. Syst. 5(3), 660–675 (2018)

15. Glasser, J., Lindauer, B.: Bridging the gap: A pragmatic approach to generating
insider threat data. In: 2013 IEEE Security and Privacy Workshops, pp. 98–104.
IEEE (2013)

Towards High Transferability on Neural
Network for Black-Box Adversarial

Attacks

Haochen Zhai, Futai Zou(B), Junhua Tang, and Yue Wu

School of Electronic Information and Electrical Engineering,
Shanghai Jiaotong University, Shanghai, China

{516021910264,zoufutai,junhuatang,wuyue}@sjtu.edu.cn

Abstract. Adversarial examples are one of the biggest potential risks
faced by the modern neural networks, threatening the application with
high sensitiveness. To improve the efficiency of black-box attacks, and
eventually achieve the purpose of reducing the query number by a large
margin when keeping a high attack success rate, we propose a NES-
based gradient estimation method, which greatly reduces the queries via
a heuristic way. We also use ADAM-based perturbation update rules to
improve the strength of iterative attacks. Besides, to make the whole
method more flexible, meta learning is introduced to generate gradi-
ents on multiple substitute models and train an initial meta model with
stronger generalization ability for online attacks. Experiments on MNIST
and CIFAR10 show that META-NES-ADAM attack greatly reduces
query number while sacrificing a little attack success rate when attacking
black-box models.

Keywords: Black-box attack · Meta learning · Adversarial examples ·
Query

1 Introduction

With the wide application of neural network, its lack of interpretability and
formal description is one of the problems restricting its further development.
Under normal conditions, neural network can calculate the final task-related
prediction value through internal reasoning, while there is no explicit reasoning
mode for human understanding in the intermediate process. The exploration of
its reasoning basis is an independent research. Sometimes mapping the output
value of the shallow neural network back to the original input space can obtain
some useful clues related to the final task, but for the complex (nonlinear) deep
network, its deep reasoning basis is still unclear. This will lead to two serious
technical challenges in the application of neural network: firstly, malicious input
will lead to the network to get far away from the actual output results, such
as the adversarial examples in image and natural language; Secondly, due to its
unclear internal reasoning mechanism, it is impossible to set up limited rules to

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 72–88, 2023.

https://doi.org/10.1007/978-3-031-25538-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_5

Towards High Transferability on Neural Network 73

make up for the reasoning logic of the network, and the reliability of reasoning
depends entirely on the robustness of the network. The above challenges lead to
the current application of neural network is still in the level of easy to attack and
difficult to defend. In the face of applications with high-security requirements,
such as face recognition and automatic driving, it often needs additional physical
information to ensure security, or human intervention to prevent accidents, which
makes the deployment and application process of neural network have large
technology overlap and excessive resource allocation.

To understand and infer the internal operation mechanism of neural network,
we try to control the input and output parts of neural network from the per-
spective of attackers, so as to provide a powerful analysis and verification means
for the establishment of subsequent defense mechanisms. We will focus on how
to attack efficiently under specific conditions (the attacker does not grasp the
specific structure and parameter information of neural network) in the process
of adversarial examples construction. Attacking efficiently here mainly includes
two meanings: one is how to search for perturbation vector with high success
rate at low query cost, and the other is how to attack as many unknown models
as possible with one perturbation vector. However, in the process of research,
we also notice the limitations of current algorithms: most of the research sce-
narios are limited to white-box conditions, and lack analysis methods and tools
for unknown models, which greatly hinders our comprehensive understanding of
neural networks. Our preliminary empirical analysis shows that the perturba-
tions searched from a large number of neural networks with different structures
are indeed closely related. For the black-box model, the perturbation calculated
from the white-box model can be easily transferred to the black-box for effective
attack. For the query times, although the query number needed for gradient esti-
mation has been greatly optimized by ZOO [1] and AutoZOOM [2], and there
have been many active researches in recent years, it is still in its infancy [1,3].

At present, many attack algorithms are directly related to gradient in white-
box scenario, while gradient estimation method and iteration strategy need to be
further considered in black-box scenario. Complex gradient estimation and ineffi-
cient iteration strategy are the two reasons for the unsatisfactory query efficiency
and performance. At the same time, the requirement of black-box transferability
is more and more strict. The success rate of attacking unknown model trans-
ferred from the perturbation of typical white-box attack is usually limited, and it
needs to consume a certain number of queries to transfer effectively to improve
the attack success rate. Typical schemes for transferring include autoencoder
[2], natural evolution strategy [4] and so on. Based on the technical challenges
and research status, this paper combines ADAM update rules and NES, and
then introduces the meta learning frameworks, obtaining a high-transferability
and efficient-estimation black-box attack method, which is called META-NES-
ADAM attack.

This paper mainly makes the following contributions:

1. We combine ADAM update rules and NES for the first time, which makes full
use of the historical information in the gradient estimation process ignored
by the traditional algorithm. Without introducing additional query consump-

74 H. Zhai et al.

tion, the average attack success rate of black-box attack is improved as high
as 8%.

2. We integrate the meta learning into the step of gradient estimation, and
introduce the periodic gradient estimation strategy. Although a small amount
of attack success rate is sacrificed, the query number is greatly reduced, so as
to ensure the efficient operation of the whole method.

3. Our method has a high degree of adaptive learning ability and transforms the
idea of black-box attack from ”attack specific model” to ”learn how to attack”.
It can carry out long-term offline learning in different types of datasets and
models, and then obtain an initial meta model with stronger generalization
ability, which can quickly adapt to any dataset and model online.

2 Related Work

White-Box Attack. Typical white-box attack methods include FGSM [5],
PGD [6], DeepFool [7] and C&W attack [8] whose important assumption is
that the attacker can grasp the specific structure and parameter information of
neural network to obtain gradient and loss. Other white-box attack algorithms
[9–11] mainly make great improvements to FGSM. For example, [9] introduces
momentum into the iterative FGSM to accelerate and stabilize the whole itera-
tive search process. Considering neural networks have the translation-invariant
property, [10] optimizes an adversarial image by using a set of translated images
to improve the generalization ability of white-box attack.

Black-Box Attack. In contrast, the black-box attack setting prohibits any
access to internal configurations, which is more in line with the real scene. [12]
trains a substitute model and deploys a white-box attack to it, so the attack
transferability from the substitute model to the target model determines the
effectiveness of black-box attacks. Because the black-box model can’t get the
gradient by back propagation, finite difference method [13] is a classical way of
black-box attack to estimate gradient. [1] proposes a coordinate descent-based
method employing only the zeroth order oracle without gradient information,
and attains comparable performance to C&W attack. To reduce queries and
increase efficiency in finite difference, RG (Random Grouping) and PCA (Prin-
cipal Component Analysis) are introduced [14].

NES. Natural Evolution Strategies(NES) is introduced into deep learning by sal-
imans et al. to solve derivative-free optimization problems [15]. NES maximizes
the expected value of the loss function under the search perturbation instead
of directly maximizing the objective function F (x). [4] proposes the variant of
NES to construct adversarial examples in the query-limited setting, using NES
for the black-box gradient estimation and employing PGD with the estimated
gradient. This method does not require the substitute network and allows gra-
dient estimation in much fewer queries than the typical finite difference method.
Besides, many researchers applies NES to the project successfully[15,16].

Towards High Transferability on Neural Network 75

Meta Learning. The core idea of meta learning is to make machine learning
model have the ability to learn new concepts and skills with only a small amount
of data [17]. A good meta learning model should have strong adaptability and
generalization ability. Different from the traditional method, meta learning can
change the parameters of the model through the adaptive process which is called
Few Shot Learning(FSL). The model completes the transformation from the
original domain to the target domain, and then it can perform tasks in the
target domain. OpenAI develops first-order meta learning algorithm: Reptile
[18], which trains to minimize loss on the expectation over training tasks and
optimizes for within-task generalization. In fact, there are many examples of
applying meta learning to the field of adversarial Attacks[19–21]. [21] proposes
a query-efficient meta attack method, which obtains prior information from the
successful attack patterns and uses it for efficient optimization without sacrificing
too much attack performance.

3 Method

3.1 NES-Based Gradient Estimation Algorithm

We introduce antithetic sampling [4] based on the original NES. More specifically,
random Gaussian distribution is chosen as the search distribution; That is, we
have θ = x + σδ around the image, where δ ∼ N(0, I). We sample half of the
Gaussian noise for i ∈ {1, ..., n

2 } rather than directly generate n values from
the distribution and the other half is set to be negative: δj = −δn−j+1, where
j ∈ {(n

2 + 1), ..., n}. This optimization approach has been empirically proven
to improve the performance of NES [4,15]. Therefore, the gradient estimation
function we actually used is shown as follows:

∇E[M(θ)] ≈ 1
σn

∑

i=1

δiM(θ + σδi) (1)

NES gradient estimation algorithm is shown in Algorithm 1. Here, loss func-
tion L(·) is

f(x, t) = max{maxi�=tlog[M(x)]i − log[M(x)]t,−κ} (2)

where κ ≥ 0, log0 is defined as −∞ and κ is a constant used to control
the distance between target category log[M(x)]t and most similar category
maxi�=t[F (x)]i.

3.2 ADAM-Based Perturbation Update Rules

For non-linear models, the direction of one-step iteration may not be completely
accurate, while multi-step iteration can gradually adjust to find a better direc-
tion. There are different strategies for multi-step iteration. In white-box attack
such as PGD [6], the most direct iterative method is adopted while in black-box
attack, due to the uncertainty of gradient estimation, more complex strategies

76 H. Zhai et al.

Algorithm 1. NES Gradient Estimation Algorithm
Input: ModelM, image(x,y), loss function L(·)
Output: Gradient ∇M(y|x) with respect to input (x, y)
Parameters: Standard deviation of Gaussian distribution σ, number of samples n,
input dimension N

1. Initialize gradient g ← 0n

2. for i ← 1 to n do
3. Randomly sample from Gaussian distribution ui ← N (0N , IN·N)
4. g ← g + L(M(y|x + σ · ui)) · ui

5. g ← g − L(M(y|x − σ · ui)) · ui

6. end for
7. return 1

2nσ
g

are usually used to reduce the impact of gradient estimation. For instance, ZOO
[1] adopts stochastic coordinate descent, which makes it update coordinates by
small batches for each iteration, instead of updating the coordinates of the whole
space. The reason for this is that the query-efficiency of the finite difference
method is quite low and if the conventional stochastic gradient descent method
is used, one complete iterative attack will reach millions of queries, which is an
extraordinary attack cost.

Our method uses NES based gradient estimation, so the query number for
one-step attack of the whole space is not high. The low estimation accuracy
of NES makes it need more iteration steps than other strategies (such as finite
difference method) to reflect its advantages, and more iteration steps mean more
optimization space. Zeroth order stochastic coordinate descent with Coordinate-
wise ADAM [22] is proposed in ZOO and our optimization update strategy draws
on their success, proposing a non coordinate descent version of ADAM-based
iterative approximate update rules shown in Algorithm 2.

Algorithm 2. ADAM-based Iterative Approximate Update Rules
Input: Input image x, step size α, timestep T, M , v
Output: Adversarial example x̂
Parameters: ADAM hyper-parameters: β1 = 0.9, β2 = 0.999, ε = 10−8

1. M ← 0, v ← 0, T ← 0
2. while not converged do
3. Estimate ĝ using algorithm 1
4. Ti ← Ti + 1
5. M ← β1M + (1 − β1)ĝ, v ← β2 + (1 − β2)ĝ

2

6. M̂ = M/(1 − βT
1), v̂ = v/(1 − βT

2)

7. δ∗ = −α M̂√
v̂+ε

8. Update x ← x + δ∗

9. end while

Towards High Transferability on Neural Network 77

3.3 Meta Attack Algorithm

To further reduce the query consumption of black-box attack, we use meta learn-
ing framework to train the meta attacker. By learning a large number of prior
gradient information of the model in advance, the meta attacker learns to infer
the gradient of the target model only through a few queries. After getting such
a meta attacker, we replace the original gradient estimator with a meta attacker
to directly output the gradient. The following will describe the training process
and implementation details of the meta attacker.

The acquisition of prior information needs to collect a series of classification
models M1, ...,Mn to generate the corresponding input and output gradient
information. After inputting image x into each pre-trained classification model,
we calculate the loss l1, ..., ln for each model. By performing a one-step back
propagation to the image x, the gradient information about the input can be
obtained. Finally, we collect n sets of data to train meta attacker X = {xi},G =
{gi}, i = 1, ..., n.

Due to the inherent different attributes of classification tasks, the training
process of meta attacker samples each task Ti. In each iteration, we extract K
samples from the task Ti, calculate the feedback loss Li, and then update the
model parameters θ to θ′ by using gradient descent method θ′

i = θ−α∇θLi(Aθ).
Eventually, we use the meta model update strategy of Reptile to summarize the
parameters of all tasks and update them to the model parameters:

θ = θ + ε
1
n

n∑

i=1

(θ′
i − θ) (3)

In addition, we use the average square error loss in the internal round update:

Li(Aθ) = ||Aθ(X∫) − Gs
i ||22. (4)

Here, (X∫ ,G∫
〉) is the K samples used in the internal update. Usually K is very

small, so the goal of the above update strategy is to find a good initial point
of meta attacker, and then quickly adapt to the new data distribution through
only a few steps of fine-tuning. Therefore, the feature can be naturally applied
to black-box attacks to estimate the gradient information of the target model.
Algorithm 3 shows more details of Reptile-based meta attacker training process.

To estimate the gradient information efficiently, we introduce a periodic inter-
val update strategy to realize the gradient learning and mapping of the meta
model, as shown in Algorithm 4. Specifically, we use the meta attacker above to
generate gradient information after carrying out the adaptive process to match
the target model. Suppose the input image is perturbed to xt in the t-th itera-
tion, if (t+1) mod m =0, the finite difference estimation or NES estimation is
performed ,and then we fine tune the gradient gt after getting it. In the remaining
iterations, we directly use the fine-tuned meta attacker to output the gradient
gt = Aθ(x).

Our method can greatly reduce the query number, because every M-time
interval in the attack process will actually perform a gradient estimation opera-
tion that consumes queries, and the total number of queries will be reduced by

78 H. Zhai et al.

Algorithm 3. Reptile-based Meta Attacker Training Algorithm
Input: Input images X , corresponding gradients G as task Ti

Output: Meta model Aθ

Parameters: α, ε, K

1. Randomly initialize θ
2. while not converged do
3. for all Ti do
4. Sample K sample pairs (X , G) from T
5. Calculate the loss Li(Aθ) = ||Aθ(X∫) − Gs

i ||22
6. Update θ′

i = θ − α∇θLi(Aθ)
7. end for
8. Update θ ← θ + ε 1

n

∑n
i=1(θ

′
i − θ)

9. end while

m times. When we directly output the gradient in the meta attacker, there is no
need for additional query consumption. Here, the larger the update interval m,
it means fewer queries, but the effect of the attacker will also decline.

Algorithm 4. Reptile-based Meta Attacking Algorithm
Input: Test image x0 and its label t, meta attacker Aθ, target model Mtar

Output: Adversarial example x̂0

Parameters: Iteration interval m

1. for t=0,1,2,... do
2. if (t+1) mod m = 0 then
3. Perform NES gradient estimation to generate gt

4. Fine-tune the meta attacker with L = ||Aθ(xt) − gt||22
5. else
6. Generate gt from meta attacker
7. end if
8. Update xt = xt + βgt;
9. if Mtar(xt) �= t then

10. return xt;
11. else
12. xt+1 = xt

13. end if
14. end for

3.4 META-NES-ADAM Attack

The final attack approach is called META-NES-ADAM attack, which is com-
posed of the above algorithms and forms a high-transferability black-box attack
system, as shown in the Fig. 1. The whole attack process is divided into two

Towards High Transferability on Neural Network 79

parts: offline and online. Offline part needs to train classification models to pre-
process gradient extraction, and then carry out meta learning based on Reptile
to form an offline model. When running online, for each sample, the offline model
are called and updated intermittently to achieve the purpose of quickly adapt-
ing to the target model. For the target model, we also integrate a very efficient
ADAM-NES gradient estimation strategy, so that the whole attack process can
run online highly efficiently.

Fig. 1. The overall workflow is divided into three steps. The first step is gradient
extraction. Based on the C&W loss from the logit layer, the input and corresponding
gradients are extracted from the trained substitute models. The second step is Reptile-
based meta learning. The third step is ADAM-NES attack. Here, NES is used as
gradient estimator, ADAM is used to update and iterate, and the periodic optimization
strategy is introduced to update meta attack model.

This paper uses a lot of advanced deep learning technologies, and they have
been adopted by many researchers in their solutions, such as MetaAttack [21],
which is similar to our attack process. The same point is that we all introduce
meta learning strategy into the black-box attack, and achieve very good results.
However, there are many differences between two attack methods, which are also
our advantages:

1. Gradient Estimation Strategy. Instead of using the finite difference
method as the final gradient estimation strategy, we introduce NES, which
can improve the query efficiency. It is worth mentioning that in MetaAttack,
in order to reduce the query number, the author sorts all the gradients and
selects top-q coordinates for finite difference estimation. This step requires
a certain amount of computing resources, and adopting the top-q method
will reduce the accuracy of finite difference, while our method does not need
these complex operations and the whole gradient estimation process can be
completed highly efficiently.

2. Perturbation Update Strategy. Instead of using the simple superposition
in FGSM, we employ ADAM-based iterative approximate update rules, which
makes our perturbation iteration more accurate.

80 H. Zhai et al.

4 Experiments

4.1 Settings and Evaluation Metrics

In this paper, experiments are carried out on two datasets: MNIST and
CIFAR10. On MNIST, models A and B are designed and well trained. The
specific architectures of two models are shown in Table 1. In training, we set
the batch size to 100, and each pixel is normalized to [0,1]. Model A has two
convolutional layers and one fully connected layer, while model B has three con-
volutional layers. The accuracy of the test sets of the two models reaches 99.2%.
On CIFAR10, we also set the batch size to 100, and each pixel is normalized
to [0,1]. The two target models we used are ResNet-18[23] and WideResNet-28-
10[24], and the accuracy is 93.1% and 93.7%. The performance of the model
is shown in Table 2. The meta attack model architecture used in this paper is
shown in Table 3.

For MNIST and CIFAR10, our search range of perturbation is limited to
[0,0.4] and [0,0.03]. In the parameter selection of the finite difference method
(FD), we set δ = 0.01 by default. For all iterative attacks (including white-
box attacks), we use the same step size α = 0.01 on MNIST and α = 1.0 on
CIFAR10, and run 40 iterations on MNIST and 10 iterations on CIFAR10. For
attack algorithms using NES, we set the number of iterations to 160 on MNIST
and 20 on CIFAR10, and the number of samples n to 25 on MNIST and 200 on
CIFAR10. All the standard deviations are 0.001. For attack algorithms optimized
by meta learning, on MNIST, we set the attack interval to 8 and the number
of iterations to 160 and the number of samples n to 200. On CIFAR10, we set
the attack interval to 4 and the number of iterations to 80 and the number of
samples n to 200 to keep the attack intensity close.

Table 1. Model architectures on MNIST. Conv is convolutional layer and FC is fully
connected layer.

A B

Conv (64,5,5) + ReLU Dropout (0.2)

Conv (64,5,5) + ReLU Conv (64,8,8)+ReLU

Dropout (0.25) Conv (128,6,6)+ReLU

FC (128) + ReLU Conv (128,5,5)+ReLU

Dropout (0.5) Dropout (0.5)

FC + Softmax FC + Softmax

We will use ASR, Avg. L2 and Avg. Queries as the evaluation metrics in the
experiments.

1. Attack Success Rate, ASR. ASR is the main evaluation metric, which
measures the success ratio of achieving the attack target: for untargeted

Towards High Transferability on Neural Network 81

Table 2. Performance of target models

Dataset Classifier Top-1 Acc. (%)

MNIST ModelA 99.2

MNIST ModelB 99.2

CIFAR10 ResNet18 93.1

CIFAR10 ResNet-28-10 93.7

Table 3. Meta attack model architectures, Conv is convolutional layer and DeConv is
deconvolutional layer.

MNIST CIFAR10

Conv (16,3,3,1) + ReLU + BN Conv (32,3,3,1) + ReLU + BN

Conv (32,4,4,2) + ReLU + BN Conv (64,4,4,2) + ReLU + BN

Conv (64,4,4,2) + ReLU + BN Conv (128,4,4,2) + ReLU + BN

Conv (64,4,4,2) + ReLU + BN Conv (256,4,4,2) + ReLU + BN

DeConv (64,4,4,2) + ReLU + BN DeConv (256,4,4,2) + ReLU + BN

DeConv (32,3,3,2) + ReLU + BN DeConv (128,4,4,2) + ReLU + BN

DeConv (16,4,4,2) + ReLU + BN DeConv (64,4,4,2) + ReLU + BN

DeConv (8,4,4,2) + ReLU + BN DeConv (32,3,3,1) + ReLU + BN

attack, the model classification error is considered as success; For targeted
attack, the model needs to be classified to the specified category before it
can be considered as successful. It should be noted that the actual model
is not completely correct, so we do not attack the samples without correct
classification to evaluate the effectiveness of algorithms more accurately.

2. Avg. L2. To evaluate the perturbation, we use the average L2 distortion
distance between the original image and the adversarial example as the eval-
uation metric: |x̂−x| = 1

N

∑
i=1 N ||x̂i −xi||2. When different attacks achieve

similar attack success rate, the lower the Avg. L2 is, the better the attack
effect is, because lower Avg. L2 means that it is harder to be perceived.

3. Avg. Queries. For the black-box attack, query number represents the aver-
age times the black-box attack needs to visit the model. The metric has strong
practical significance, because in the real world system, visitors are usually
not allowed to visit indefinitely. Under the premise of the same success rate,
the attack algorithm with lower query consumption has stronger robustness
and generalization ability.

4.2 Comparison

This section mainly compares the attack method proposed in this paper with
the classic white-box attack and black-box attack methods. The results show
that our attack has the similar attack success rate and L2 distance with other
attacks, but it greatly reduces the query number.

82 H. Zhai et al.

Comparison of Untargeted Attacks. For untargeted attack, the attacker
only needs to distort the classification result of target model to any other cat-
egory to succeed. The results of various untargeted attacks on MNIST and
CIFAR10 are shown in Table 4 and 5.

Table 4. Results of different types of untarget attacks on MNIST

Attacks Black Model-A Model-B

ASR Avg. L2 Avg.#Q ASR Avg. L2 Avg. #Q

One-step attack

FGSM × 92.7% 6.2 N.A. 91.4% 6.9 N.A

FD � 94.1% 5.9 1568 93.7% 6.9 1568

PCA-FD � 90.5% 6.0 200 93.2% 6.5 200

RG-FD � 60.4% 5.9 196 83.5% 7.3 196

Iterative attack

PGD∞ × 100.0% 2.3 N.A. 100.0% 1.3 N.A

IFD � 100.0% 2.3 62720 100.0% 1.3 62720

PCA-IFD � 100.0% 2.8 8000 100.0% 1.5 8000

RG-IFD � 90.3% 2.6 7840 98.9% 3.1 7840

NES � 99.8 % 2.4 8000 100.0% 1.5 8000

ADAM-NES � 100.0% 2.6 8000 99.9% 1.9 8000

META-ADAM-NES � 100.0% 3.8 1450 100.0% 2.9 946

We can observe that the performance of FD exceeds the white-box attack in
most cases, which shows that it is an effective scheme to use the finite difference
method to estimate the gradient and then carry out black-box attack. The first
four rows and the middle four rows of data in the table represent one-step attack
and iterative attack results of this algorithm. It shows that whether white-box
or black-box attack is in iterative mode, the success rate of two different models
on MNIST and CIFAR10 is greatly improved, which proves the effectiveness
of iterative attack. In addition, we note that the L2 distance do not increase
with iterations: On MNIST, the perturbation of iterative attack is half or more
less than that of one-step attack. The same phenomenon can be observed in
the results of CIFAR10. The results show that the structure of the deep neural
network is most likely nonlinear, because when the attack mode changes from
one-step to multi-step and the structure is a linear classifier, the gradient of the
loss to the input is fixed and the direction of perturbation never changes; But
for the nonlinear model, the direction of one step is not necessarily accurate, and
the multi-step iteration can find a better direction through gradual adjustment.
From the query number, the query efficiency of FD is extremely low, so we
use RG (Random Grouping) and PCA to optimize it. For RG, the number of
groups is set to 8. The results show that RG-FD can effectively reduce the
query number of FD, and it is related to the number of groups: for one-step and
iterative attacks, the query number is reduced to one eighth of the original on

Towards High Transferability on Neural Network 83

Table 5. Results of different types of untarget attacks on CIFAR10

Attacks Black ResNet18 ResNet-28-10

ASR Avg. L2 Avg.#Q ASR Avg. L2 Avg. #Q

One-step attack

FGSM × 89.1% 1.6 N.A. 94.7% 1.6 N.A

FD � 92.0% 1.6 6144 93.5% 1.6 6144

PCA-FD � 69.2% 1.6 800 74.3% 1.6 800

RG-FD � 63.8% 1.6 800 69.4% 1.6 800

Iterative attack

PGD∞ × 100.0% 0.3 N.A. 100.0% 0.3 N.A

IFD � 100.0% 0.9 61440 100.0% 1.0 61440

PCA-IFD � 99.0% 0.6 8000 100.0% 0.4 8000

RG-IFD � 99.8% 0.4 7680 100.0% 0.4 7680

NES � 99.7% 0.7 8000 99.8% 0.7 8000

ADAM-NES � 100.0% 1.2 8000 100.0% 1.2 8000

META-ADAM-NES � 100.0% 1.2 960 99.8% 1.2 960

both MNIST and CIFAR10. However, on MNIST, the success rate of one-step
attack decreases by 33.7% when attacking model A and 10.2% when attacking
model B. Similar results can be observed on CIFAR10. ASR is obviously the
first factor to be considered in the attack, so we think that RG-FD does not
have practical significance. In contrast, the effect of PCA-FD is better, and its
success rate does not have much impact when the query number is similar to
RG-FD.

Finally, according to the last three rows of data in the table, we can draw the
following conclusions. The gradient estimation method using NES can achieve
relatively high attack success rate with low query cost. The success rates of the
two models on CIFAR10 are 99.7% and 99.8%, which are only 0.3% and 0.2%
lower than those of FD, but the query number of NES are only one eighth of FD.
The NES optimized by ADAM update rules can further improve ASR to 100%.
Although negative effects are produced in some models, ADAM can actually
improve NES as a whole. In particular, the meta attack model can greatly reduce
the query number. META-NES-ADAM reduces the query number to 1450 and
946 on MNIST, which is 18.1% and 11.8% of the original. It performs better on
CIFAR10, with only 12% of the original query number when attacking both two
models. It can be seen that the introduction of meta learning strategy greatly
improves the query efficiency of black-box attack, and does not sacrifice too
much attack success rate.

Comparison of Targeted Attacks. In the scenario with high requirements,
attackers are often required to specify the classification results of target model

84 H. Zhai et al.

to a certain category, which is called targeted attack. The results of various
targeted attacks on MNIST and CIFAR10 are shown in Tables 6 and 7.

We can clearly observe that the overall success rate of one-step targeted
attack is low and less than 50%, so it is not suitable for black-box attack.
Although iterative attack improves the success rate, it also greatly increases the
query number. For example, the success rate of IFD on MNIST is 66.0% higher
than that of FD, but at the same time, the query number becomes 40 times of
the original. RG-IFD and PCA-IFD reduce the query number to some extent,
but sacrifice too much success rate, so they can not be adopted in practice.

Similar to untargeted attack, we can also say that the gradient estimation
method using NES can achieve relatively high attack success rate with low query
cost in target attack and ADAM-NES can further improve ASR in most cases.
Besides, on CIFAR10, The success rate of META-ADAM-NES is 97.4%, 15.6%
higher than that of ADAM-NES and it reduces the query number by 72.0% on
ResNet18. Although on ResNet28-10 the success rate is 92.8% and decreases
by 2.3%, the query number is reduced by 63.6%. The same conclusion can be
obtained on MNIST.

Table 6. Results of different types of target attacks on MNIST

Attacks Black Model-A Model-B

ASR Avg. L2 Avg.#Q ASR Avg. L2 Avg. #Q

One-step attack

FGSM × 30.5% 6.2 N.A. 24.4% 7.3 N.A

FD � 30.3% 6.3 1568 24.0% 7.2 1568

PCA-FD � 25.4% 6.0 200 22.0% 6.5 200

RG-FD � 13.5% 6.0 196 11.9% 7.5 196

Iterative attack

PGD∞ × 96.6% 3.1 N.A. 99.0% 1.9 N.A

IFD � 96.3% 3.1 62720 99.5% 1.9 62720

PCA-IFD � 88.1% 3.8 8000 96.8% 2.2 8000

RG-IFD � 55.3% 2.5 7840 89.0% 2.3 7840

NES � 82.0 % 3.2 8000 97.6% 2.2 8000

ADAM-NES � 86.2% 3.1 8000 96.6% 2.3 8000

META-ADAM-NES � 94.7% 4.7 2960 99.1% 4.0 1960

4.3 Effects of Attack Methods under Different Parameters

This section compares the attack effects of different attack methods under differ-
ent intensity. The results are shown in Fig. 2 and 3 where X-axis represents the
step size and Y-axis represents the attack success rate. The two figures show the
attack success rate of different attack methods using different step sizes when

Towards High Transferability on Neural Network 85

Table 7. Results of different types of target attacks on CIFAR10

Attacks Black ResNet18 ResNet-28-10

ASR Avg. L2 Avg.#Q ASR Avg. L2 Avg. #Q

One-step attack

FGSM × 33.6% 1.6 N.A. 41.2% 1.6 N.A

FD � 34.5% 1.6 6144 42.2% 1.6 6144

PCA-FD � 21.3% 1.6 800 23.1% 1.6 800

RG-FD � 17.3% 1.6 800 20.6% 1.6 800

Iterative attack

PGD∞ × 99.5% 0.5 N.A. 100.0% 0.5 N.A

IFD � 100.0% 0.6 61440 100.0% 0.6 61440

PCA-IFD � 75.0% 0.9 8000 74.3% 1.0 8000

RG-IFD � 88.0% 0.6 7680 89.0% 0.6 7680

NES � 81.8 % 1.1 8000 95.1% 0.7 8000

ADAM-NES � 91.9% 1.1 8000 93.3% 1.1 8000

META-ADAM-NES � 97.4% 1.3 2244 92.8% 1.4 2914

attacking model A on MNIST and ResNet18 on CIFAR10. Here, we mainly
use the following attacks to compare: white-box attack: iterative FGS; Black
box: PCA-based FD, NES, ADAM-NES and META-ADAM-NES. Because of
the weak one-step attack, we do not adopt any one-step mode for the sake of
fairness of comparison; At the same time, due to the original finite difference
method has high query number, it has no practical significance. This paper uses
PCA-based FD with the close of query number to compare, which is because the
PCA optimization method is more successful than RG in ASR and the query
number is optimized to some extent; The remaining three methods are the com-
parison of the improvement schemes proposed by us. The practical effect of each
module proposed in this paper can be proved from the experimental results.

Fig. 2. Attack results on Model-A with
L∞-norm

Fig. 3. Attack results on ResNet-18 with
L∞-norm

86 H. Zhai et al.

From the experimental results, we can draw the following conclusions:

1. PCA-based FD relies on datasets, which can be observed from the results
of MNIST and CIFAR10. It can achieve better effect on MNIST, but worse
on CIFAR10.One of the possible reasons is that the distribution of MNIST
is relatively simple while the pixel range of images on CIFAR10 is large.
Therefore, PCA can not learn the overall data distribution as quickly as
MNIST, leading to PCA can not provide an effective direction for black box
attacks. However, a series of NES-based black-box attack methods proposed in
this paper do not depend on the strength of datasets, and can better transfer
between different datasets, which is one of the advantages of our methods.

2. ADAM-NES can effectively enhance the attack strength of NES. It can be
observed from the two figures that the success rate of ADAM-NES can achieve
stable improvement under various attack intensities, and this conclusion is
applicable to different datasets and different models. This is because ADAM
update rules make full use of the first-order historical information of the gra-
dient. Compared with the original attack method which simply superimposes
historical information, the gradient direction of ADAM is more accurate. At
the same time, due to the introduction of the first-order momentum, the
gradient direction in the iterative attack process is more stable. If there is
fluctuation between iterations, the effective attack strength will be offset,
and ADAM update rules can better alleviate the problem caused by this
phenomenon.

3. The meta learning based attack method has little influence on ASR. Accord-
ing to the introduction of this paper, the role of meta learning is to greatly
reduce the query number of black-box attack and improve the attack effi-
ciency. The improvement design of ASR is limited, but we can still observe
that when the perturbation intensity increases gradually, the success rate of
META-ADAM-NES gradually approaches that of ADAM-NES. It should be
noted that META-ADAM-NES on MNIST even exceeds the original algo-
rithm under some perturbations, which shows the effectiveness of meta learn-
ing. The attack interval of meta model on MNIST is 8, and that on CIFAR10
is 4, which means that META-ADAM-NES reduces the perturbation by at
least 8 times and 4 times on MNIST and CIFAR10.

5 Conclusion

This paper proposes META-NES-ADAM attack to generate adversarial exam-
ples against deep neural networks, which combines ADAM update rules and
NES, and then introduces the meta learning, obtaining a high-transferability
and efficient-estimation black-box attack method. We compare this approach
with other classic one-step and iterative black-box attack algorithms, finding
that it reduce query number by a wide margin while sacrificing a little attack
success rate. Besides, We also discuss the benefits of NES, and the reasons for
introducing ADAM and meta learning.

Towards High Transferability on Neural Network 87

Acknowledgments. This work is supported by the National Key Research and Devel-
opment Program of China (No.2020YFB1807500).

References

1. Chen, P.Y., Zhang, H., Sharma, Y., et al.: Zoo: Zeroth order optimization based
black-box attacks to deep neural networks without training substitute models. In:
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp.
15–26 (2017)

2. Tu, C.C., Ting, P., Chen, P.Y., et al.: AutoZOOM: autoencoder-based zeroth order
optimization method for attacking black-box neural networks. AAAI 33, 742–749
(2019)

3. Cheng, S., Dong, Y., Pang, T., et al.: Improving black-box adversarial attacks with
a transfer-based prior. In: Advances in Neural Information Processing Systems, pp.
10934–10944 (2019)

4. Ilyas, A., Engstrom, L., Athalye, A., et al.: Black-box adversarial attacks with
limited queries and information. ArXiv preprint arXiv:1804.08598 (2018)

5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

6. Madry, A., Makelov, A,, Schmidt, L., et al.: Towards deep learning models resistant
to adversarial attacks. In: ICLR (2018)

7. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference On
Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

8. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium On Security And Privacy (sp), pp. 39–57 (2017)

9. Dong, Y., Liao, F., Pang, T., et al.: Boosting adversarial attacks with momen-
tum. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9185–9193 (2018)

10. Dong, Y., Pang, T., Su, H., et al.: Evading defenses to transferable adversarial
examples by translation-invariant attacks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4312–4321 (2019)

11. Lin, J., Song, C., He, K., et al.: Nesterov accelerated gradient and scale invariance
for adversarial attacks. In: ICLR (2020)

12. Papernot, N., Mcdaniel, P., Goodfellow, I., et al.: Practical black-box attacks
against machine learning. In: Computer And Communications Security, pp. 506–
519 (2017)

13. Spall, J.C.: Introduction to stochastic search and optimization: estimation, simu-
lation, and control. John Wiley & Sons (2005)

14. Bhagoji, A.N., He, W., Li, B., Song, D.: Practical black-box attacks on deep neural
networks using efficient query mechanisms. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 158–174. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01258-8 10

15. Salimans, T., Ho, J., Chen, X., et al.: Evolution strategies as a scalable alternative
to reinforcement learning. ArXiv preprint arXiv:1703.03864 (2017)

16. Huang, Z., Zhang, T.: Black-box adversarial attack with transferable model-based
embedding. In: ICLR (2020)

17. Inn, C., Abbeel, P., Levine, S.: Model-Agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017)

http://arxiv.org/abs/1804.08598
https://doi.org/10.1007/978-3-030-01258-8_10
http://arxiv.org/abs/1703.03864

88 H. Zhai et al.

18. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
ArXiv preprint arXiv:1803.02999 (2018)

19. Zügner, D., Günnemann, S.: Adversarial attacks on graph neural networks via
meta learning. ArXiv preprint arXiv:1902.08412(2019)

20. Edmunds, R., Golmant, N., Ramasesh, V., et al.: Transferability of adversarial
attacks in model-agnostic meta-learning. In: Deep Learning and Security Workshop
(DLSW) (2017)

21. Du, J., Zhang, H., Zhou, J.T., et al.: Query-efficient meta attack to deep neural
networks. In: ICLR (2020)

22. Kingma, D.P., Ba, J.A.: A method for stochastic optimization. ArXiv preprint
arXiv:1412.6980 (2014)

23. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference On Computer Vision and Pattern Recogni-
tion, pp. 770–778 (2016)

24. Zagoruyko, S., Komodakis, N.: Wide residual networks. ArXiv preprint
arXiv:1605.07146 (2016)

http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1902.08412(2019
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1605.07146

Coreference Resolution for Cybersecurity
Entity: Towards Explicit, Comprehensive

Cybersecurity Knowledge Graph
with Low Redundancy

Zhengyu Liu1, Haochen Su1, Nannan Wang1, and Cheng Huang1,2(B)

1 School of Cyber Science and Engineering, Sichuan University, Chengdu, China
opcodesec@gmail.com

2 Anhui Province Key Laboratory of Cyberspace Security Situation Awareness

and Evaluation, Hefei, China

Abstract. Cybersecurity Knowledge Graph (CKG) has become an
important structure to address the current cybersecurity crises and chal-
lenges, due to its powerful ability to model, mine, and leverage mas-
sive security intelligence data. To construct a comprehensive and explicit
CKG with low redundancy, coreference resolution (CR) plays a crucial
role as the core step in knowledge fusion. Although the research on coref-
erence resolution techniques in Natural Language Processing (NLP) field
has made notable achievements, there is still a great gap in the cyber-
security field. Therefore, the paper first investigates the effectiveness of
the existing CR models on cybersecurity corpus and presents Cyber-
Coref, an end-to-end coreference resolution model for cybersecurity enti-
ties. We propose an entity type prediction network that not only helps
to improve mention representations and provide type consistency checks,
but also enables the model to distinguish the coreference among differ-
ent entity types and thus run the coreference resolution more granular.
To overcome the problem of implicit contextual modeling adopted by
the existing CR models, we innovative propose an explicit contextual
modeling method for the coreference resolution task based on semantic
text matching. Finally, we improve the span representation by introduc-
ing lexical and syntactic features. The experimental results demonstrate
that CyberCoref improves the F1 values on the cybersecurity corpus by
6.9% compared to existing CR models.

Keywords: Coreference resolution · Security intelligence · Semantic
text matching · Entity type

1 Introduction

With the development of artificial intelligence technology, its application in
the cybersecurity domain is now striding forward from perception intelligence
to cognition intelligence. Sufficient and well-formed data helps to realize the

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 89–108, 2023.

https://doi.org/10.1007/978-3-031-25538-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_6

90 Z. Liu et al.

“perception” stage, however the key to achieving the leap to the next stage is
to refine and fuse multi-source, multi-dimensional, and heterogeneous data into
knowledge, making it easier for further reasoning.

The huge amount of cybersecurity intelligence data including threat intelli-
gence, vulnerability intelligence, and asset intelligence, provide solid data founda-
tion for the development of intelligent security. Among them, threat intelligence
portrays key information such as threat source, attack purpose, attack tech-
niques and tactics, etc. Vulnerability intelligence includes information related to
existing disclosed vulnerabilities such as impact system and software, its ver-
sion, patch information, associated attack events, etc. Asset intelligence includes
information related to internal assets such as accounts, servers, system software,
defense mechanisms, etc. How to model, integrate, and update the security intel-
ligence knowledge base to support further reasoning determines the effectiveness
of intelligence data in actual cybersecurity battlefields and becomes the core
problem that related works are trying to solve.

Knowledge Graph, as its powerful ability to correlate and fuse multi-source
heterogeneous data, as well as to support precise semantic retrieval and intel-
ligent inference analysis, has become the optimal solution for current secu-
rity intelligence carriers. Existing research on Cybersecurity Knowledge Graph
(CKG) construction mainly focuses on information extraction, including steps
such as entity recognition [1–7], relationship extraction [8,9], and event extrac-
tion [10]. However, there is still a gap in the study of knowledge fusion, including
entity disambiguation and coreference resolution steps.

Coreference resolution is the process of linking different nouns, pronouns,
noun phrases, and other expressions in a text that refer to the same entity.
Those various expressions of entities are defined as mentions, which increase
the flow and richness of the text, but also make it more obscure to understand.
It is necessary to address the reference phenomena that commonly occur in
unstructured security intelligence to extract complete and valuable knowledge.
As shown in Fig. 1, coreference resolution will further improve and enrich the
description of cybersecurity entities at different levels and perspectives, making
the extracted entities and relationships more specific, clear, and comprehensive.
In addition, it links the general and vague expression of entities to those more
specific, reducing the data redundancy of the CKG and thus improving its overall
quality.

Although there are extensive studies on coreference resolution in the NLP
field, the challenges when running coreference resolution on articles involving
cybersecurity domain specific entities shouldn’t be overlooked. To be more spe-
cific, by comparing the cybersecurity corpus which we constructed in this work
with the general corpus dataset Ontonotes 5.0 [11], we found that: (1) cyber-
security entities are longer in length and contain more noun phrases as well as
verb-object structured phrases. (2) references in cybersecurity documents have a
longer distance on average. (3) cybersecurity corpus has a smaller lexicon, which
results in the phenomenon of the same or looked-like spans belonging to different
coreference clusters is more frequent. (4) There are more domain-specific words,
abbreviations, and aliases in the cybersecurity corpus. In terms of approach, the

Coreference Resolution for Cybersecurity Entity 91

Fig. 1. Motivating example of coreference resolution on cybersecurity entities

existing state-of-the-art coreference resolution models heavily rely on BERT or
its variants which are pre-trained on the large-scale general corpus and do not
present expected performance when applied to domain-specific corpus [12–14].
Therefore, considering the above challenges, we need to review and evaluate the
effectiveness of existing models on cybersecurity corpus and then further pro-
pose the best coreference resolution model for cybersecurity entities, targeting
the characteristics of cybersecurity corpus.

Overall, our work’s main contributions can be summarized as follows:

– We present CyberCoref, a document-level end-to-end coreference resolution
model for cybersecurity entities, that can identify and cluster the referring
cybersecurity entities within unstructured security intelligence reports in dif-
ferent kinds of grammatical forms including pronouns, noun phrases, verb-
object structures, security domain-specific structures, and etc.

– The paper proposes a type prediction network to introduce entity-type infor-
mation which enables the model to improve mention representation and pro-
vide type consistency check between mention pairs. In addition, the entity-
type information enables the model to distinguish the coreference relationship
of different entity types and thus perform the coreference resolution task more
granular.

– To overcome the problem of implicit contextual modeling adopted by the
existing coreference models, we innovative propose an explicit contextual
modeling method for coreference resolution task based on semantic text
matching. It uses convolutional neural networks to extract the interaction
information between utterances so as to emphasize the semantic relevance of
the mentions’ corresponding sentences. Besides, to resolve mentions with long
expressions and complex syntactic structures, CyberCoref uses an additive

92 Z. Liu et al.

attention mechanism to incorporate lexical and syntactic features for head-
word finding in span representations and help the model learn more general
linguistic patterns.

– To validate the effectiveness of the CyberCoref, we collected and labeled
a total of 536 documents including vulnerability disclosures, APT reports,
and security-related news. The proposed dataset contains 43271 cybersecu-
rity entities, 48745 coreference links, and 6657 coreference clusters.

The rest of this paper is organized as follows: Sect. 2 presents the related work.
Section 3 presents the baseline model and the details of the three key improve-
ments proposed in this paper. Section 4 shows the dataset construction, exper-
imental setup, the comparison results of our approach and existing coreference
models on cybersecurity corpus, and the ablation study. Section 5 provides a
qualitative analysis of the proposed CyberCoref to demonstrate our model’s
strengths and limitations. The last section concludes this paper and proposes
future work.

2 Related Work

In this section, we first review the recent landmark works on neural network-
based coreference resolutions in the NLP field, and then analyze the research on
coreference resolution in the cybersecurity domain.

Coreference Resolution. In recent years, adopting the idea of representation
learning, the neural network-based coreference resolution models have replaced
the traditional machine learning models on manual feature extraction, achiev-
ing better results in datasets such as GAP [15] and OntoNotes [11] used in the
Conll-2012 shared task. Wiseman et al. 2015 [16] proposed the idea of using
neural networks to learn a better feature representation for mention extraction
and coreference resolution on the basis of the manually extracted features. Then,
to bring in coreference cluster features, Wiseman et al. 2016 [17] used recurrent
neural networks to learn the global representation of entity clusters. Similarly,
Clark and Manning 2016 [13] used pooling operations to generate feature rep-
resentations of referring cluster pairs based on mention pair features. The great
milestone work of Lee et al. in 2017 [18] completely discarded hand-extracted fea-
tures and instead used word embedding models as well as deep neural networks
to generate feature representations based on the idea of representation learning.
The proposed mention-ranking architecture, the objective function, and the rep-
resentation of mentions and mention pairs in this work were all accepted, followed
by numerous subsequent works on coreference resolution [19–22]. In 2018, Lee et
al. [19] accomplished two important improvements to their previous model: the
introduction of higher-order inference and the coarse-to-fine pruning algorithm.
The former takes the idea of the entity-level coreference resolution framework
and imports global information about the coreference cluster to the mention rep-
resentation. The latter improves the accuracy of candidate antecedent filtering
with bearable computational complexity and memory space occupation.

Coreference Resolution for Cybersecurity Entity 93

As the large-scale pre-trained model BERT swept various NLP tasks as the
best model in 2018, Joshi et al. 2019 [20] used BERT instead of the original word
embedding and BiLSTM-based context extraction methods to generate span
representation with a substantial improvement in performance on the baseline
dataset. Due to the importance of span representation in the coreference resolu-
tion task, Joshi [21] released SpanBERT in the same year which is more suitable
for span boundary sensitive tasks, and achieves better results compared to the
original BERT model. In addition, the corefBERT from Ye et al. 2020 [22], which
uses coreference resolution as the self-training task of the BERT model, also has
excellent performance.

The word-level coreference resolution model was proposed by Kirstain et al.
in 2021 [23]. Dobrovolskii [24] inherited the idea from Kirstain et al. which is to
accomplish the task from the word level rather than the span level, achieving
similar results to the span-based coreference resolution model on the baseline
datasets. The word-level model has the advantages of less search space in the
coreference resolution step and avoidance of incorrect pruning in the mention
detection step. However, using word embeddings directly instead of span repre-
sentations will lead to missing certain information, especially when dealing with
long and complex mentions. To evaluate the effectiveness of the word-level model
in the cybersecurity domain, we compared their model in Sect. 4.

Coreference Resolution in the Field of Security. Although topics such
as information extraction and knowledge graph construction [1–10,25,26] have
been widely studied within the cybersecurity domain in recent years, research
on coreference resolution in the cybersecurity domain is still relatively scarce.
Hu et al. [27] modeled the coreference resolution task jointly with the relation
extraction, treating the coreference relation as one of the inter-entity relation
types. Zhang et al. [28] first extracts mentions from a given document by using
a sequence labeling neural network, and then applies a random forest algorithm
with custom rules to complete the resolution of extracted mentions. However,
it should be noted that their works consider the coreference resolution as a
cascading task of entity recognition that may suffer from error propagation.
And also, their approaches regarding mention detection as a sequence labeling
task are not able to cope with the nested entities natively, which would result in
low recall rates.

3 Methodology

In this work, we used the model proposed in Joshi et al. 2019 [20] as our baseline
model, which has achieved outstanding results on the OntoNotes 5.0 general
corpus. The model adopts the higher-order inference as well as the coarse-to-
fine pruning algorithm proposed by Lee et al. [18] and continues the classic
task modeling, learning objectives, score architecture, and span representation
proposed by Lee et al. 2017 [13]. Subsection 3.1 will focus on an overview of our
baseline model.

94 Z. Liu et al.

As discussed in Sect. 1, running coreference references on the cybersecurity
corpus is going to face more challenges than the general corpus. So, in order to
better adapt to the characteristics of cybersecurity entities, we make the follow-
ing improvements (Fig. 2) to the baseline model. First, to avoid the over-reliance
on the similarity of words, lexical and syntactic features are introduced in the
span representation to help the model learn more general language rules and
improve its generalization ability, as detailed in Sect. 3.2. Secondly, inspired by
the fact that human beings would significantly narrow down the search space by
sifting out the mentions in the irrelevant sentences when finding the most appro-
priate antecedent, this work proposes an explicit contextual modeling network
based on semantic text matching, as detailed in Subsect. 3.3. Finally, considering
that different entity types do not share the same degree of reference matching,
this work proposes an entity-type prediction network to keep the model aware
of entity types in both mention detection and coreference resolution steps, as
detailed in Subsect. 3.4.

Fig. 2. Overview of CyberCoref architecture.

3.1 Baseline

The modeling for the coreference resolution task is shown below. Given a doc-
ument D containing T words, it corresponds to N = T (T + 1)/2 spans. For
all spans i (1 ≤ i ≤ N), each of them could find an antecedent yi ∈ Y (i) =
{ε, 1, 2, . . . , i − 1}. If the span i corresponds to a dummy antecedent ε, it means
that the span is not a mention, or the mention does not have a corresponding
antecedent.

After encoding text segments by the BERT model, we can get the embedding
of each token in the span i. Based on that, we can get the representation of the

Coreference Resolution for Cybersecurity Entity 95

span i, i.e. gi, including embeddings of its start and end positions, respectively,
headword representation generated by an attention mechanism, and the span
width feature. Through the mention score function sm(·), we will get the score
used to determine whether the span is a mention or not.

sm(i) = FFNNm(gi) (1)

For the spans i and j as the extracted mention and its candidate antecedent,
respectively, we follow the coarse-to-fine pruning algorithm [18], using a simpli-
fied version of the coreference scoring function sc(·) and a more precise corefer-
ence scoring function sa(·) to determine whether there is a coreference relation-
ship between them. For coreference scoring, the representation of the mention
pairs contains gi, gj , gi ◦ gj and other features including representation of the
distance between them.

sc(i, j) = g�
i Wcgj (2)

sa(i, j) = FFNNa([gi, gj , gi ◦ gj , φa]) (3)

where Wc is a learned weight matrix, · denotes the dot product, ◦ denotes
element-wise multiplication, and FFNN denotes a feed-forward neural network
that computes a nonlinear mapping from input to output vectors.

When it comes to specific inference, a three-step pruning will be performed
to ensure computational efficiency. To start with, mentions will be filtered from
all spans by using the unary function sm(·). Then, for each extracted mention,
we select top K mentions as its candidate antecedents based on the score sm(i)+
sm(j)+sc(i, j), and finally use the function sa(i, j) to achieve refined coreference
scoring.

3.2 Combining Lexical and Syntactic Features

Suggested by the work [18] that generating the headword representation from
word embedding vectors would still be error prone. Therefore, to more correctly
represent those headwords in span representation, we use an additive attention
mechanism based on lexical and syntactic dependency features instead of the
original attention mechanism which only based on words themselves.

Given a span i with a length l, the corresponding word embedding, part-of-
speech embedding and syntactic dependencies embedding are Si ∈ R

l×dword , Pi ∈
R

l×dpos and Ri ∈ R
l×ddeprel , respectively. The additive attention scoring function

a and attention weights α based on lexical and syntactic dependency features are
shown below. Where the lexical embedding matrix and word embedding matrix
will be separately used as the key K and the value V of attention, and the
syntactic role embedding matrix will be used as the query Q.

at = W�
v tanh(wppt + wrrt) (4)

αi
t =

exp(at)
∑END(i)

k=START (i) exp(ak)
(5)

96 Z. Liu et al.

where wp ∈ R
h×dpos and wr ∈ R

h×ddeprel are the learnable weight matrices
and αi,t is the attention weight of the token corresponding to the position t
in span i. Therefore, obtained by the attention mechanism, the final headword
representation of span i, i.e. ŝi, which incorporates part-of-speech information
and syntactic dependencies, is shown below.

ŝi =
END(i)∑

t=START (i)

αi
t · si

t (6)

In addition, mean pooling of embedding of part-of-speech and syntactic features
of the span are taken separately, and we concatenate them with the embedding of
type information (detailed in Subsect. 3.4) and length of span to get the feature
vector φm. In summary, the representation of the span i is shown below.

φm(i) = [Ftype(i), Fwidth(i), Fpos(i), Fdeprel(i)] (7)

gi = [si
START (i), s

i
END(i), ŝi, φm(i)] (8)

3.3 Explicit Contextual Modeling

The baseline model uses only implicit contextual modeling, i.e., it relies on the
contextual semantic word embeddings generated by the pre-trained model to
reflect the relevance of encoded segments. However, we note that humans will
first screen out candidate antecedents from completely irrelevant or conflict-
ing statements and keep a small set of mentions that appear in closely related
sentences based on context relevance. This intuitive idea is consistent with
the fact that cybersecurity documents often repeatedly present descriptions of
events, exploits, vulnerabilities, and attackers from different perspectives and
degrees. Therefore, the relevance of context can become a very important fac-
tor in the task of coreference resolution. We aim to learn from semantic text
matching models to explicitly model a closer context of mentions and their can-
didate antecedents, to determine whether their contexts have the same discussion
objects or convey similar meanings.

Due to the powerful semantic modeling capability of the BERT model,
the word embedding vector contains sufficient information for determining the
semantic similarity of sentence pairs. Therefore, a simple and effective way is
used in this paper to extract the local similarity features from the token-level
matching matrix which can reflect the correlation between utterances. The main
network structure refers to the MatchPyramid proposed by the work of Pang et
al. [29], which uses a hierarchical CNN network to extract local information at
a different level and introduces a dynamic pooling mechanism to handle pairs of
sentences with different lengths.

For the extracted mention i and the candidate antecedent j, we can get the
corresponding sentence Si and Sj with the length n and m, respectively. The
sentence representation Si = {si

1, s
i
2, . . . , s

i
n} and Sj = {sj

1, s
j
2, . . . , s

j
m}, as well

Coreference Resolution for Cybersecurity Entity 97

as the initial matching matrix M , can be obtained based on the embedding of
each token. Calculation of each position of the initial matching matrix is shown
as follows, where Sim(·) represents the word similarity score function, which can
be dot product or cosine similarity. Finally, the MatchPyramid will be applied
to extract features from the matching matrix and is followed by a feed forward
network to get the fixed length Fsent−pair feature which represents the contextual
relevance.

Mtk = Sim(si
t, s

j
k) (9)

Fsent−pair = FFNNcontext(MatchPyramid(M)) (10)

3.4 Entity Type Information

In the process of mention detection, for the span i and the embedding Xi of
the sentence where i is located encoded by the BERT model, we can get its
corresponding embedding vector {xi

START (i), ..., x
i
END(i)}. Similarly, we use the

idea of mention representation to predict the corresponding type of each span.
The span representation hi used for type prediction consists of the embedding
of the start and end token, the headword representation fused by the attention
mechanism, and the feature to encode the span width. We use the embedding
Xi that represents a closer context (i.e., the sentence embedding) instead of
the segment embedding Si to make the network more convenient for the pre-
training on the type prediction subtask, which helps the network learn to classify
the types of span.

at = FFNNα(Xi) (11)

αi
t =

exp(at)
∑END(i)

k=START (i) exp(ak)
(12)

x̂i =
END(i)∑

t=START (i)

αi
t · xi

t (13)

hi = [xi
START (i), x

i
END(i), x̂i, Fwidth(i)] (14)

Next, we use a feed forward neural network to score the likelihoods of differ-
ent types. For the type given the highest possibility, we also get its embedding
etype(i) ∈ R

dtype .
ti = FFNNtype(hi) (15)

etype(i) = Embeddingtype(argmax(ti)) (16)

Ftype = [ti, etype(i)] (17)

During the coreference resolution, to provide an additional check of mention-pair
type consistency, we add their type embeddings as well as the cosine similarity
of their type likelihood scores to the mention-pair representation. Finally, φa is
calculated as shown below:

φa(i, j) = [Fdistance, Fsent−pair, etype(i), etype(j), cos(ti, tj)] (18)

98 Z. Liu et al.

To help the network generate the correct entity types based on the span and
the given context, we pre-trained it with the entity type prediction subtask. The
training samples are obtained from the mention detection steps of the baseline
model, including the mentions and their corresponding sentences. The correct
mentions are labeled with their corresponding entity types, while the wrongly
extracted mentions are labeled as None. After sufficient training on this multi-
classification subtask, the entity type prediction network can better distinguish
between true and false mentions with similar boundaries and assign the correct
entity type.

4 Evaluation

In this section, we will design a series of experiments to demonstrate the effec-
tiveness and superiority of our proposed model CyberCoref especially towards
the cybersecurity entity coreference resolution. Firstly, we will provide a com-
prehensive introduction to our dataset. Then, we clarify the experiment setup
and show the results of CyberCoref and other representative coreference models
in the NLP field on our dataset. Finally, we present a thorough ablation study
on the proposed networks of CyberCoref.

4.1 Dataset

The experimental dataset is derived from publicly available security intelligence,
including vulnerability disclosures1, APT reports2, and security-related news
[10]. Our work refers to the ontology construction of UCO [30] and the threat
intelligence sharing framework STIX2.1 3 and redefines 29 cybersecurity entity
types. And then we manually annotated 43,271 cybersecurity entities and 48,745
intra-document coreference links, which construct 6,657 coreference clusters, in
536 security-related articles. The specific entity definitions and annotation guide-
lines are detailed in our open source repository4.

Regarding the data processing, we first extract plain text from rich text
documents (e.g. pdf or html), and remove all embedded images, tables, and
inserted code segments. Then we perform a simple data cleaning by replacing all
non-ascii encoded characters with spaces and rewrite the protected forms from
clicks by mistake of IP addresses, email addresses, and web addresses. Finally,
we segment the long articles to ensure the best performance of the model.

The annotation of the dataset is conducted on the Brat platform [31]. The
dataset annotation processes are as follows: firstly, we annotated the entities
according to the defined entity types. Then, we annotate the coreference rela-
tions between the annotated entities, at the same time, proofread our previous
annotation. The whole annotation work was done by two graduate students and
one senior undergraduate student, which all major in cybersecurity.
1 https://github.com/pburkart/Vulnerability-Research-Blogs.
2 https://github.com/CyberMonitor/APT CyberCriminal Campaign Collections.
3 https://oasis-open.github.io/cti-documentation/stix/intro.
4 https://github.com/jackfromeast/CyberCoref.

https://github.com/pburkart/Vulnerability-Research-Blogs
https://github.com/CyberMonitor/APT_CyberCriminal_Campaign_Collections
https://oasis-open.github.io/cti-documentation/stix/intro
https://github.com/jackfromeast/CyberCoref

Coreference Resolution for Cybersecurity Entity 99

4.2 Evaluation Setup

The CyberCoref model is implemented with reference to the Bert-based c2f-
coref model proposed by Joshi et al. 2019 [20], which is now open-sourced to the
Github repository.

Model Architecture. We take the SpanBERT for word embedding, which is
a pre-trained model from Hugging Face5 at the based size with an embedding
dimension of 768. We use the CoreNLP6 for both part-of-speech and syntactic
features extraction, and they all have an embedding dimension of 64. The embed-
ding dimension of both entity type and context relevance features is 64 as well,
and the distance and width features are binned into the following buckets [1, 2, 3,
4, 5–7, 8–15, 16–31, 32–63, 64–127, 128–255, 256–511, 512–1023, 1024+] and then
embedded as 16-dimensional size vectors. The number of MatchPyramid layers
is 2, the convolution kernel sizes are 5 × 5 and 3 × 3, the pooling layer sizes are
10×10 and 5×5, and the numbers of feature maps are 8 and 16, respectively. The
hidden layer sizes of the feedforward neural networks FFNNm and FFNNa for
mention and coreference scoring are both 1024, the hidden layer sizes of FFNNα

and FFNNtype in the entity type prediction network are 512 and 1024, respec-
tively, and in the context relevance representation network FFNNcontext, the
hidden layer size is 128. We adopt LeakyReLU [32]as the activation function,
and the dropout rate is set to 0.3.

Inference. The pruning threshold λ is set to 0.3, the maximum span length
is 20. For each extracted mention or word, the number K = 50 of candidate
antecedents are going to be selected. Referring to the experimental results in the
work of Joshi et al. [20], the maximum segment length is set to 384 for word
embedding. We use the higher-order inference algorithm based on antecedent
distribution proposed by Lee et al. 2018 [19], and the number of iteration rounds
is set to 2.

Learning. The optimizer for the models is AdamW, with a learning rate of
1e-5 for the pre-training weights of the BERT model and 3e-4 for the rest of the
network structures. Such a learning rate setting allows the optimization of the
models as a whole to be adjusted to the optimal position simultaneously. The
training batch size for all models is 1, i.e., one article at a time. The models are
all trained for up to 60 epochs. The training and validation sets are randomly
divided in a 4:1 ratio. In addition, to avoid any degree of data leakage, training
samples for the entity type prediction subtask are all from the training set.

5 https://huggingface.co/.
6 https://stanfordnlp.github.io/CoreNLP/.

https://huggingface.co/
https://stanfordnlp.github.io/CoreNLP/

100 Z. Liu et al.

Compared Models. For the replicated models used for comparison, the model
architecture hyperparameters are set with reference to their original papers, and
the inference parameters and training parameters are the same as above, except
for the following notes. For the e2e-coref model proposed by Lee et al. 2017 [18],
the optimizer is Adam with a learning rate of 3e-4. The word-level coreference
resolution model wl-coref [24] also uses based size SpanBERT to complete word
embedding, and the maximum segment length is set to 512. The remaining
BERT-based span-level models [20–22] are all set to a maximum segment length
of 384, and all use based size pre-trained models.

4.3 Coreference Results

Table 1 and Table 2 demonstrate the performance of CyberCoref and compared
coreference resolution models on our cybersecurity corpus. The evaluation met-
rics are the MUC, B-Cubed, and CEAFφ3 which were used in the conll-2012
coreference resolution shared task [11], and the LEA [33] evaluation metrics
proposed by Moosavi et al. in 2016. Since these models heavily rely on span
representation, they have high requirements for word embeddings. Models [20–
24] using large-scale pre-trained dynamic word embeddings significantly perform
better than using the embedding method combined GloVe, Turian, and Char-
CNN [18]. The word-level model shows limited ability to distinguish long and
complex spans, displaying lower scores compared to span-based models. In gen-
eral, due to the vast differences between datasets, models that perform well
on general corpora, like OntoNotes 5.0 and GAP, do not achieve the expected
results on our dataset which is far more challenging. In contrast, the proposed
CyberCoref achieves better results in the following four evaluation metrics and
becomes the best coreference resolution model for cybersecurity entities.

Table 1. Results on the validation set of our cybersecurity corpus. The final column
(Avg. F1) is the main evaluation metric, computed by averaging the F1 of MUC,
B-cubed, and CEAFφ3

MUC B − cubed CEAFφ3

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1

Lee et al. 2017 [18] 9.8 58.8 16.7 2.0 81.6 4.9 4.0 18.2 6.7 9.4

Joshi et al.2019a [20] 62.2 27.6 36.2 80.7 63.7 69.4 65.5 29.2 38.6 48.1

Joshi et al.2019b [21] 56.4 38.9 43.6 74.2 72.0 71.7 59.8 39.0 45.0 53.4

Ye et al. 2020 [22] 59.2 35.9 42.4 80.3 68.1 72.3 61.5 37.7 44.7 53.1

Kirstain et al. 2021 [24] 24.5 23.3 22.8 61.3 62.4 61.0 31.2 28.6 28.8 37.5

Proposed Model 63.8 47.9 52.6 79.0 76.5 76.6 66.5 47.1 53.3 60.9

In terms of mention detection, the span-based model pursues a high recall rate
so that as many mentions as possible are selected in a fixed number of extracted
spans. While the selected non-mention spans and singletons will be screened in

Coreference Resolution for Cybersecurity Entity 101

the following coreference resolution step later. As shown in Table 3, our proposed
model achieves the best result for the mention detection by increasing in both
recall and precision rates.

Table 2. Results on the validation set of our cybersecurity corpus with the LEA metric.

LEA

Prec. Rec. F1

Lee et al. 2017 [18] 0.3 49.3 0.6

Joshi et al. 2019a [20] 56.0 19.6 26.2

Joshi et al. 2019b [21] 47.1 30.6 33.4

Ye et al. 2020 [22] 52.6 26.7 32.2

Kirstain et al. 2021 [24] 17.7 17.4 16.1

Proposed model 54.7 39.0 42.0

Table 3. Results of the mention detection step.

Prec. Rec. F1

Lee et al. 2017 [18] 15.6 65.9 25.2

Joshi et al. 2019a [20] 27.1 87.9 41.4

Joshi et al. 2019b [21] 26.8 87.8 41.1

Ye et al. 2020 [22] 27.1 88 41.4

Kirstain et al. 2021 [24] – – –

Proposed model 28.3 92.1 43.3

4.4 Ablations

Lexical and Syntactic Features. The span representation plays a crucial
role as the basis for the solution of both the mention detection and coreference
resolution task. Four different ways of encoding part-of-speech and syntactic
features are used as comparisons in this experiment. Due to the different token
lengths of spans and each token corresponds to a separate part-of-speech and
syntactic dependency label, this problem can be viewed as a variable-length
category feature sequence encoding problem. The first and most straightforward
idea is to embed the two features separately using the EmbeddingBags, and
then average or sum the corresponding lexical and syntactic feature embeddings
before concatenating them together. In the third approach, a Long short-term
memory (LSTM) network is used for feature extraction of variable-length feature
sequences, where the hidden state of the last non-padded time step is taken as
the feature embedding. The last approach is our proposed additive attention
mechanism, which is introduced in Sect. 3.

102 Z. Liu et al.

Table 4. Ablation study of the proposed architectures in CyberCore, where MD and
CR stand for the mention detection and coreference resolution, respectively.

MD CR

Rec. Prec. Conll-2012

Avg. F1

LEA F1

Baseline 87.8 26.8 53.4 33.4

Lexical & syntactic

features

+EmbeddingBags-mean 86.5 26.4 45.6 29.4

+EmbeddingBags-sum 76.5 23.3 42.1 21.1

+LSTM 85.6 26.5 41.6 29.8

+AttitiveAttention 88.3 27.2 56.0 36.0

Context modeling +BiGRU 87.4 27.0 53.1 33.4

+BiLSTM 87.3 26.9 46.0 19.8

+Cos-MaxPooling 87.8 26.4 46.3 20.3

+Cos-MatchPyramid [29] 87.7 26.5 53.6 34.0

+Cos-Dot-MatchPyramid [29] 87.7 26.8 55.6 36.8

Entity type

prediction

+Golden types 95.5 29.4 70.9 59.2

+standalone-TPM 90.5 27.4 56.2 36.2

+E2E-TPM with pre-trained weights 92.0 28.4 59.9 40.2

The experimental result shows that the straightforward introduction of part-
of-speech and syntactic features does not help the selection of mentions, while
using the additive attention mechanism to introduce lexical and syntactic fea-
tures for headword finding can better identify the most appropriate headword
within a span and help its representation, thus improving the effectiveness of
mention extraction and coreference resolution tasks in terms of precision rate.

Context Relevance Modeling. We come up with five explicit context mod-
eling approaches to compare with the baseline model of Joshi et al. 2019b [21].
The first two approaches are based on recurrent neural networks, which encode
the concatenated sentences where the mention and its candidate mentions are
located in and take the hidden state at the last time step as the contextual feature
of the two sentences. The last three approaches use matching matrices generated
by cosine similarity or dot product function, which can better demonstrate the
correlation between tokens than recurrent neural networks. The experimental
results show that using MatchPyramid to extract features from the Cos and Dot
matching matrices can demonstrate the relevance of sentences more precisely and
provides valuable information for the coreference resolution of selected mentions.

Entity Type Prediction. The performance of different networks on the entity
type prediction subtask is shown in Table 5. The previous works [34,35] demon-
strated the noteworthy improvement of adding special tags (e.g., 〈tag〉 and
〈/tag〉) before and after the target span on span-related tasks such as entity
typing and relationship extraction. Therefore, we investigate the effect of adding
the boundary tags and compare the two proposed ways of span representation,
i.e. concatenating the corresponding embedding of pre-and-post tags or perform-
ing average pooling for spans. The experimental result shows that tags can help

Coreference Resolution for Cybersecurity Entity 103

the model better perceive the boundaries of span and grasp the semantics of con-
tent within the span tags, thus the concatenation of simple tag embedding can
also lead to a good enough representation of spans. However, since the embed-
ding of tags has not been pre-trained by BERT, its upper limit is inferior to the
span representation proposed in this work, which consider the span boundary
and overall content.

We then compare two ways of incorporating pre-trained entity type predic-
tion network to CyberCoref: as a stand-alone model without participating in
the parameter update of the overall model training to ensure the accuracy on
the type prediction subtask; as part of the end-to-end model participating in the
parameter update, sharing the weights of the BERT model which are pre-trained
on the subtask of entity type prediction with the overall model. In addition, the
performance of using exactly the right entity types (golden types) is also shown
in Table 4. The result shows that the introduction of the entity type prediction
network with pre-trained weights to initialize the end-to-end model works best.

Table 5. Performance of different networks on the entity type prediction subtask.

Type Prediction

Prec. Rec. Micro-F1 Weighted-F1

Tagged [34] +tag [34] 81.9 76.8 76.8 77.9

+mean [35] 80.4 76.7 76.7 77.1

+proposed network 81.9 76.8 76.8 77.9

Original +mean 79.8 75.8 75.9 76.3

+proposed network 83.4 78.3 78.3 79.4

5 Analysis

Strengths. After manually analyzing the errors on a set of validation samples,
we found that for the more common and less error-prone coreferences, such as
coreferences of pronouns or noun phrases in the same sentence or adjacent sen-
tences, our model can determine them accurately based on the training with a
large number of similar patterns and the guidance of entity types. The intro-
duction of part-of-speech and syntactic features is helpful for the representation
of longer mentions in the form of verb-object or other more complex structures.
For example, in (Subject)-Verb-Object sentence pattern shown in Table 6, for
Attack-Pattern, which are common in cybersecurity corpora and are usually
used to describe the attack process or represent the attack features, CyberCoref
can identify these mentions and complete the coreference resolution among them
correctly. Furthermore, in APT or other cyber attack reports, we find that differ-
ent parts of the article have obvious distinctions in discussion objects, as Multi-
discussion Objects in the same passage shown in Table 6. The explicit sentence-
based contextual modeling proposed in this work better reflects the relevance

104 Z. Liu et al.

of sentences than the original segment-based implicit contextual semantic mod-
eling. In this case, although the mention “new ransomware” appears twice, the
key signals in the sentence such as “In other ransomware news” and the words
interaction between their contexts help the model cluster them to different coref-
erence groups rather than the same one.

Weaknesses. However, the coreference in the cybersecurity corpus is more com-
plex than expected, and there are many challenging error-prone scenarios that
make our model CyberCoref not always reliable. Many same or similar words
that are commonly used in cybersecurity topics may refer to different entities,
such as “vulnerability”, “issue”, “company”, “attack”, etc. This is similar to that
of pronouns but the former is more difficult to handle, as these across coreference
clusters high-frequency words are usually not constrained by distance but depend
only on semantic expression. For example, as in the cases in Same or Look-alike
Strings, CyberCoref is highly susceptible to the similarity of the words them-
selves, resulting in false positive resolutions, thus causing greater degradation
in the evaluation metrics. In addition, the presence of many comparisons and
citation descriptions in the cybersecurity corpus, some paragraphs will have the
phenomenon of discussing multiple entities of the same type, making coreference
resolution further difficult.

6 Conclusion and Future Work

In conclusion, we explore the effectiveness of existing coreference resolution mod-
els on cybersecurity corpus. To address the limitations of their performance, we
propose CyberCoref, a document-level end-to-end coreference resolution model
for cybersecurity entities. Based on the three improvements proposed in this
work, including entity type prediction networks, explicit contextual modeling,
and the introduction of lexical and syntactic features, CyberCoref improves the
average F1 value of the four evaluation metrics by 6.9% on the dataset con-
structed in this work. However, when it comes to more complex coreference
expressions, CyberCoref still has much room for improvement. In our future
work, we will focus on solving the challenging coreference cases mentioned in
Sect. 5.

Acknowledgment. This research is funded by the National Natural Science Foun-
dation of China (No.61902265), National Key Research and Development Program
of China (No.2021YFB3100500), Open Fund of Anhui Province Key Laboratory of
Cyberspace Security Situation Awareness and Evaluation (No. CSSAE-2021-001).

Coreference Resolution for Cybersecurity Entity 105

A Challenging Coreference Cases

Table 6. Challenging coreference cases in our cybersecurity corpus. For better illustra-
tion, we only mark up the typical coreferences that reflects the displayed coreference
types shown in the left side. Manual labels and results given by CyberCoref are shown
in the right side.

Challenging
types

Examples Results

Same or
Look-alike
Strings

This is only the latest exploit to hit Adobe Flash - earlier in June, a
zero-day Flash vulnerability(1) was is being exploited in the
wild in targeted attacks against Windows users in the Middle East,
according to researchers. Adobe dealt with another zero-day
Flash vulnerability(2) back in February, which was exploited by
North Korean hackers

Golden: [(1)], [(2)]
CyberCoref: [(1), (2)]

Impacted is Adobe Flash Player Desktop Runtime, Adobe Flash
Player(1) for Google Chrome; Adobe Flash Player(2) for
Microsoft Edge and Internet Explorer 11; all for versions 31.0.0.153
and earlier

Golden:[(1)], [(2)]
CyberCoref:[(1), (2)]

(Subject)-
Verb-Object
pattern

The only problem is that detecting either the hacked bank or the
hacked ATM is almost impossible as most of the malicious behavior
takes place via self-deleting malware and malicious PowerShell
scripts executing in memory, without leaving any artifacts on
disk(1). Once the bank server/computer or the AMT is rebooted,
most of the clues are wiped from memory(2)

Golden: [(1), (2)]
CyberCoref: [(1), (2)]

Microsoft Windows users beware of an unpatched memory corruption
bug which could be exploited to cause denial of service (DoS)
attacks(1) as well as other exploits
If a user connects to a malicious SMB server, a vulnerable Windows
client system may crash and display a blue screen of death
(BSOD) in mrxsmb20.sys(2), the advisory said

Golden: [(1), (2)]
CyberCoref: [(1), (2)]

Multi-
discussion
Objects in the
same
paragraph

Israeli mobile forensics firm(1) Cellebrite(2) has announced
that it(3) has suffered a data breach following an unauthorized
access to an external web server. The confirmation comes a few
hours after Motherboard(4) released general information about
900 GB of data that they(5) obtained and has supposedly been
stolen from the firm(6). The cache includes alleged usernames and
passwords for logging into Cellebrite databases connected to the
company(7)’s my.cellebrite domain, the publication noted

Golden: [(1), (2), (3), (6),
(7)], [(4), (5)]
CyberCoref: [(1), (2),
(3), (7)], [(4), (5), (6)]

This vulnerability(1) has been assigned the CVE-2018-17456
ID(2) and is similar to a previous CVE-2017-1000117(3) option
injection vulnerability(4). Like the previous vulnerability(5),
a malicious repository can create a .gitmodules file that contains an
URL that starts with a dash

Golden: [(1), (2)], [(3),
(4), (5)]
CyberCoref: [(1), (2)],
[(3), (4), (5)]

Multi-
discussion
Objects in the
same passage

One tried-and-true technique continues to be hiding malware inside
fake versions of popular files, then distributing those fake versions via
app stores. To wit, last week researchers at the security firm ESET
spotted new ransomware(1) - Filecoder.E(2) - circulating via Bit-
Torrent, disguised as a”patcher” that purports to allow Mac users to
crack such applications as Adobe Premiere Pro CC and Microsoft
Office 2016
. . .
In other ransomware news, new ransomware(3) known as Trump
Locker(4) - not to be confused with Trumpcryption - turns out to
be a lightly repackaged version of VenusLocker ransomware,
according to Lawrence Abrams of the security analysis site Bleeping
Computer, as well as the researchers known as MalwareHunter Team

Golden: [(1), (2)], [(3),
(4)]
CyberCoref: [(1), (2)],
[(3), (4)]

106 Z. Liu et al.

References

1. Jones, C.L., Bridges, R.A., Huffer, K.M., Goodall, J.R.: Towards a relation extrac-
tion framework for cyber-security concepts. In: Proceedings of the 10th Annual
Cyber and Information Security Research Conference, pp. 1–4 (2015)

2. Mittal, S., Das, P.K., Mulwad, V., Joshi, A., Finin, T.: Cybertwitter: using
twitter to generate alerts for cybersecurity threats and vulnerabilities. In: 2016
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM), pp. 860–867. IEEE (2016)

3. Liao, X., Yuan, K., Wang, X., Li, Z., Xing, L., Beyah, R.: Acing the ioc game:
toward automatic discovery and analysis of open-source cyber threat intelligence.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 755–766 (2016)

4. Zhu, Z., Dumitras, T.: Chainsmith: automatically learning the semantics of mali-
cious campaigns by mining threat intelligence reports. In: 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 458–472. IEEE (2018)

5. Ghazi, Y., Anwar, Z., Mumtaz, R., Saleem, S., Tahir, A.: A supervised machine
learning based approach for automatically extracting high-level threat intelligence
from unstructured sources. In: 2018 International Conference on Frontiers of Infor-
mation Technology (FIT), pp. 129–134. IEEE (2018)

6. Zhao, J., Yan, Q., Li, J., Shao, M., He, Z., Li, B.: Timiner: automatically extract-
ing and analyzing categorized cyber threat intelligence from social data. Comput.
Secur. 95, 101867 (2020)

7. Husari, G., Niu, X., Chu, B., Al-Shaer, E.: Using entropy and mutual information
to extract threat actions from cyber threat intelligence. In: 2018 IEEE International
Conference on Intelligence and Security Informatics (ISI), pp. 1–6. IEEE (2018)

8. Guo, Y., et al.: CyberRel: joint entity and relation extraction for cybersecurity
concepts. In: Gao, D., Li, Q., Guan, X., Liao, X. (eds.) ICICS 2021. LNCS, vol.
12918, pp. 447–463. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86890-1 25

9. Pingle, A., Piplai, A., Mittal, S., Joshi, A., Holt, J., Zak, R.: Relext: relation
extraction using deep learning approaches for cybersecurity knowledge graph
improvement. In: Proceedings of the 2019 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, pp. 879–886 (2019)

10. Satyapanich, T., Ferraro, F., Finin, T.: Casie: extracting cybersecurity event infor-
mation from text. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, pp. 8749–8757 (2020)

11. Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., Zhang, Y.: Conll-2012 shared
task: modeling multilingual unrestricted coreference in ontonotes. In: Joint Con-
ference on EMNLP and CoNLL-Shared Task, pp. 1–40 (2012)

12. Brack, A., Müller, D.U., Hoppe, A., Ewerth, R.: Coreference resolution in research
papers from multiple domains. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego,
R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12656, pp. 79–97.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72113-8 6

13. Clark, K., Manning, C.D.: Improving coreference resolution by learning entity-level
distributed representations. arXiv preprint arXiv:1606.01323 (2016)

14. Timmapathini, H., et al.: Probing the spanbert architecture to interpret scientific
domain adaptation challenges for coreference resolution. In: SDU@ AAAI (2021)

15. Webster, K., Recasens, M., Axelrod, V., Baldridge, J.: Mind the gap: a balanced
corpus of gendered ambiguous pronouns. Trans. Assoc. Comput. Linguist. 6, 605–
617 (2018)

https://doi.org/10.1007/978-3-030-86890-1_25
https://doi.org/10.1007/978-3-030-86890-1_25
https://doi.org/10.1007/978-3-030-72113-8_6
http://arxiv.org/abs/1606.01323

Coreference Resolution for Cybersecurity Entity 107

16. Wiseman, S.J., Rush, A.M., Shieber, S.M., Weston, J.: Learning anaphoricity and
antecedent ranking features for coreference resolution. In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing, vol. 1: Long Papers.
Association for Computational Linguistics (2015)

17. Wiseman, S., Rush, A.M., Shieber, S.M.: Learning global features for coreference
resolution. arXiv preprint arXiv:1604.03035 (2016)

18. Lee, K., He, L., Lewis, M., Zettlemoyer, L.: End-to-end neural coreference resolu-
tion. arXiv preprint arXiv:1707.07045 (2017)

19. Lee, K., He, L., Zettlemoyer, L.: Higher-order coreference resolution with coarse-
to-fine inference. arXiv preprint arXiv:1804.05392 (2018)

20. Joshi, M., Levy, O., Weld, D.S., Zettlemoyer, L.: Bert for coreference resolution:
Baselines and analysis. arXiv preprint arXiv:1908.09091 (2019)

21. Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: Spanbert:
improving pre-training by representing and predicting spans. Trans. Assoc. Com-
put. Linguist. 8, 64–77 (2020)

22. Ye, D., et al.: Coreferential reasoning learning for language representation. arXiv
preprint arXiv:2004.06870 (2020)

23. Kirstain, Y., Ram, O., Levy, O.: Coreference resolution without span representa-
tions. arXiv preprint arXiv:2101.00434 (2021)

24. Dobrovolskii, V.: Word-level coreference resolution. arXiv preprint
arXiv:2109.04127 (2021)

25. Liu, K., Wang, F., Ding, Z., Liang, S., Yu, Z., Zhou, Y.: A review of knowl-
edge graph application scenarios in cyber security. arXiv preprint arXiv:2204.04769
(2022)

26. Fang, Y., Zhang, Y., Huang, C.: Cybereyes: cybersecurity entity recognition model
based on graph convolutional network. Comput. J. 64(8), 1215–1225 (2021)

27. Hu, Y., Guo, Y., Liu, J., Zhang, H.: A hybrid method of coreference resolution in
information security. Comput. Mater. Continua 64(2), 1297–1315 (2020)

28. Wang, X., Xiong, M., Luo, Y., Li, N., Jiang, Z., Xiong, Z.: Joint learning for
document-level threat intelligence relation extraction and coreference resolution
based on gcn. In: 2020 IEEE 19th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom), pp. 584–591. IEEE
(2020)

29. Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., Cheng, X.: Text matching as image
recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30 (2016)

30. Syed, Z., Padia, A., Finin, T., Mathews, L., Joshi, A.: UCO: a unified cybersecurity
ontology. In: Workshops at the Thirtieth AAAI Conference on Artificial Intelligence
(2016)

31. Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., Tsujii, J.: Brat:
a web-based tool for nlp-assisted text annotation. In: Proceedings of the Demon-
strations at the 13th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 102–107 (2012)

32. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations
in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

http://arxiv.org/abs/1604.03035
http://arxiv.org/abs/1707.07045
http://arxiv.org/abs/1804.05392
http://arxiv.org/abs/1908.09091
http://arxiv.org/abs/2004.06870
http://arxiv.org/abs/2101.00434
http://arxiv.org/abs/2109.04127
http://arxiv.org/abs/2204.04769
http://arxiv.org/abs/1505.00853

108 Z. Liu et al.

33. Moosavi, N.S., Strube, M.: Which coreference evaluation metric do you trust? a
proposal for a link-based entity aware metric. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, vol. 1: Long Papers),
pp. 632–642 (2016)

34. Khosla, S., Rose, C.: Using type information to improve entity coreference resolu-
tion. arXiv preprint arXiv:2010.05738 (2020)

35. Soares, L.B., FitzGerald, N., Ling, J., Kwiatkowski, T.: Matching the blanks: dis-
tributional similarity for relation learning. arXiv preprint arXiv:1906.03158 (2019)

http://arxiv.org/abs/2010.05738
http://arxiv.org/abs/1906.03158

Applied Cryptography

Another Lattice Attack Against ECDSA
with the wNAF to Recover More Bits

per Signature

Ziqiang Ma1, Shuaigang Li2, Jingqiang Lin3(B), Quanwei Cai2, Shuqin Fan4,
Fan Zhang5,6, and Bo Luo7

1 School of Information Engineering, Ningxia University, Yinchuan, China
maziqiang@nxu.edu.cn

2 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

lishuaigang@iie.ac.cn
3 School of Cyber Security, University of Science and Technology of China,

Hefei, China
linjq@ustc.edu.cn

4 State Key Laboratory of Cryptology, Beijing, China
fansq@sklc.org

5 School of Cyber Science and Technology, College of Computer Science
and Technology, Zhejiang University, Hangzhou 310027, China

fanzhang@zju.edu.cn
6 Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province,

Hangzhou 310027, China
7 Department of Electrical Engineering and Computer Science, University of Kansas,

Lawrence, USA

bluo@ku.edu

Abstract. In the resource-constrained environment such as the Inter-
net of Things, the windowed Non-Adjacent-Form (wNAF) representation
is usually used to improve the calculation speed of the scalar multipli-
cation of ECDSA. This paper presents a practical cache side channel
attack on ECDSA implementations which use wNAF representation.
Compared with existing works, our method exploits more information
from the cache side channels, which is then efficiently used to construct

This work was supported in part by the Open Subject of the State Key Laboratory of
Information Security, Institute of Information Engineering, Chinese Academy of Sci-
ences under Grant 2020-MS-08; in part by the Ningxia Natural Science Foundation
of China under Grant 2021AAC03078; in part by the Key RD plan of Ningxia Hui
Autonomous Region, China under Grant 2021BEB04047; in part by the National Key
RD Plan of China under Grant 2020YFB1005803; in part by National Natural Science
Foundation of China under Grant 62072398, by National Key Laboratory of Science
and Technology on Information System Security, by State Key Laboratory of Mathe-
matical Engineering and Advanced Computing, and by Key Laboratory of Cyberspace
Situation Awareness of Henan Province.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 111–129, 2023.

https://doi.org/10.1007/978-3-031-25538-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_7&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_7

112 Z. Ma et al.

lattice attacks in the ECDSA private key recovery. First, we additionally
monitor the invert function which is related to the sign of the wNAF
digits, and obtain a Double-Add-Invert chain through the Flush+Flush
cache side channel. Then, we develop effective methods extracting 154.2
bits information of the ephemeral key per signature for 256-bit ECDSA
from this chain, much more than the best known result which extracts
105.8 bits per signature. Finally, to efficiently use the extracted informa-
tion, we convert the problem of recovering the private key to the Hid-
den Number Problem (HNP) and the Extended Hidden Number Prob-
lem (EHNP) respectively, which are solved by lattice reduction algo-
rithms. We applied the attack on ECDSA with the secp256k1 curve in
OpenSSL 1.1.0h. The experimental results show that only 3 signatures
are enough to recover the private key. To the best of our knowledge,
this work exploits the signs of the wNAF representation, along with the
Double-Add chain against ECDSA, to recover the private key with the
least number of signatures.

Keywords: ECDSA · windowed Non-Adjacent-Form · Lattice attack ·
Hidden number problem · Extended hidden number problem · Cache
side channel

1 Introduction

The ECDSA [5] digital signature scheme based on the elliptic-curve crypto-
graphy (ECC), is widely used in lots of popular applications, such as OpenPGP
[14], smartcard [27], TLS [30] and Bitcoin [21]. The scalar multiplication is the
core operation of ECDSA and its speed determines the total efficiency of ECDSA.
Exploiting the windowed Non-Adjacent Form (wNAF) [22,29] of the ephemeral
key (the scalar) is a commonly used method to accelerate the scalar multipli-
cation [1,2], especially in resource-constrained environments such as IoT. While
this method needs a pre-computed table, which costs many memory resources.
Several works [11,18,34] have been put forward to improve the efficiency of
wNAF. One of the most effective ways is to exploit the invert function to con-
vert the negative digits into positive digits during the calculation, which can
save half of the pre-computed storage space [20].

However, side channel attacks can extract information on the ephemeral key
with the wNAF representation. As long as some bits of the ephemeral key are
leaked, the ECDSA private key can be fully recovered [24]. With the cache side
channel attacks [10,17,33], practical attacks [4,6,9,26,32] are proposed to attack
ECDSA. These works [6,9,26,32] observe the execution of ECDSA through cache
side channels, and observe the ordered sequence of points addition and dou-
bling during the ECDSA signing. Then, they extract and exploit the different
information of the ephemeral key from this chain, and translate the problem of
recovering the ECDSA private key to the Hidden Number Problem (HNP) or
the Extended Hidden Number Problem (EHNP), which is then solved by lat-
tice reduction algorithms. However, They infer the information of the ephemeral

Another Lattice Attack Against ECDSA 113

key’s wNAF representation only from the Double-Add chain, so that for one
signature the number of bits extracted hits the ceiling. The method proposed
by Fan [9] is believed to infer almost all the available bits from the Double-Add
chain, which performs remarkably better than other attacks [6,26,32]. Although
another attack proposed by Allan [4] additionally monitored the invert func-
tion of the scalar multiplication implementation, they exploited the analytical
method of Van de Pol [26] and obtained 71.4 bits per signature. Naturally, more
bits are obtained from the side channels, and fewer signatures are required for
recovering the ECDSA private key. For example, existing methods [4,6,9,26,32]
require 6, 4, 200, 13, and 85 signatures, respectively, to recover the private key.

In this paper, we propose a more efficient attack against the wNAF implemen-
tation with the invert function of ECDSA, which obtains on average 154.2 bits
per signature for 256-bit ECDSA and requires only 3 signatures to recover the
ECDSA private key. First, we monitor the invert function of the implementation
of the scalar multiplication, along with points addition and doubling functions
using the cache side channel, and then construct a Double-Add-Invert chain
instead of the Double-Add chain [6,9,26,32]. The invert function is invoked only
when the sign of the current non-zero digit of the ephemeral key’s wNAF repre-
sentation is opposite to the previous one in the scalar multiplication. Through
this information, we can extract the signs of the non-zero digits. Then, taking
full advantage of information obtained through the Double-Add-Invert chain,
we construct the HNP and EHNP instances respectively, to recover the ECDSA
private key. We apply our attacks to the secp256k1 curve in OpenSSL 1.1.0h.
The Flush+Flush [10] attack is used to monitor the functions of double, add and
invert, and construct the Double-Add-Invert chain. From this chain, we success-
fully determine whether each digit of the ephemeral key’s wNAF representation
is zero or not, and also the signs of the non-zero digits. We extract on aver-
age 154.2 bits from one signature through the perfect Double-Add-Invert chain
for 256-bit ECDSA. With the HNP problem, we need about 248 signatures to
recover the private key with a success probability of 1.5% (in Sect. 4). While
using the EHNP problem, 3 signatures are enough with a success probability no
less than 69.9% (in Sect. 5).

Our contributions are summarized as follows:

– We present an efficient cache side channel attack to recover the private key
of ECDSA with the invertible wNAF representation. First, we construct
a Double-Add-Invert chain by additionally monitoring the invert function.
Then, we propose two new lattice attacks to exploit the positions and signs
of all non-zero digits in the ephemeral key’s wNAF representation obtained
through the Double-Add-Invert chain.

– We apply our methods to attack the secp256k1 curve in OpenSSL 1.1.0h.
Through the cache side channel, 154.2 bits are obtained per signature on
average. The experiments show that only 3 signatures are enough to recover
the private key with a success probability no less than 69.9%.

The rest of this paper is organized as follows. Section 2 introduces the pre-
liminaries. Section 3 shows how to improve the cache side channel to get more

114 Z. Ma et al.

information. Sections 4 and 5 construct the lattice attacks with HNP and EHNP,
respectively. Section 6 compares our attacks with existing works. And, Sect. 7
draws the conclusion.

2 Preliminaries

In this section, we first present the related concepts about the ECDSA and
the wNAF. Then, we describe the attack method of the cache side channels.
Also, the hidden number problem and the extended hidden number problem are
introduced to utilize the data obtained from cache side channels.

2.1 The Elliptic Curve Digital Signature Algorithm

ECDSA [5,15] is based on the intractability of the elliptic curve discrete loga-
rithm problem in finite field. We define a prime p, and set E as the elliptic curve
on the finite field Fp. G is the generator of the group with order q, which is a
fixed point on the curve. We set an integer α as the private key of ECDSA that
should satisfy 0 < α < q. The point Q = αG is the corresponding public key.
Also the information about the elliptic curve is public. Given a message m, the
ECDSA signature is generated as follows:

1. Generate a random number k, 0 < k < q, as the ephemeral key.
2. Compute (x, y) = kG, and then set r = x mod q; return to 1 if r equals 0.
3. calculate s = k−1(h(m) + r · α) mod q, h is a hash function; return to 1 if s

equals 0.

Thus, the computed ECDSA signature of m is (r, s).

2.2 The Scalar Multiplication Using wNAF Representation

Scalar multiplication kG is caculated in the second step of ECDSA signature
generation. Several algorithms (e.g. Montgomery Ladder) can be used to imple-
ment the scalar multiplication. Among them, the window Non-Adjacent Form
(wNAF) algorithm [29] is most commonly used due to its speed. In wNAF, the
ephemeral key k is expressed as k =

∑
2iki. That means k is represented as

a sequence of digits ki. Each digit is either zero or an odd number satisfying
−2w < ki < 2w. w is the window size. In this representation, any non-zero digit
is required to follow at least w zero digits.

For the scalar multiplication using the wNAF algorithm, during the ini-
tialization phase, it need to choose a window size w. Then the points
{±G,±3G, ...,±(2w − 1)G} are precomputed and stored. The multiplication kG
is calculated as described in Algorithm 1, after k is under the wNAF represen-
tation.

In Algorithm 1, the if-then block (Line 4) uses ki to determine whether run-
ning into the branch. This is a vulnerability to cache attacks. An attacker can
apply the cache attacks by using a spy process to monitor add and double func-
tion and get a Double-Add chain to determine whether ki is zero or not.

Another Lattice Attack Against ECDSA 115

Algorithm 1. Implementation of kG with wNAF
Input: Scalar k in wNAF: k0, k1, ..., kl−1, precomputed points {±G,±3G, ...,±(2w −

1)G}
Output: kG
1: Q ← G
2: for i from l − 1 to 0 do
3: Q ← 2 · Q
4: if ki �= 0 then
5: Q ← Q + kiG
6: end if
7: end for
8: return Q

2.3 The Scalar Multiplication with Invert Function

Here, we adopt OpenSSL 1.1.0h as the example to describe the implementation of
the wNAF with the invert function (called the invertible wNAF representation).
The core computation of the function is shown in Algorithm 2.

In this function, if the digit is non-zero, it runs into the if-then block in
Line 6, and then determines whether an invert function is needed. The invert
function is to compute the inverse of a point (the internal value of kG here). If
the sign of the non-zero digit ki is opposite to the previous non-zero digit, the
invert operation (EC_POINT_invert()) is performed (Line 13), which makes it
only need to precompute and store the points {G, 3G, ..., (2w − 1)G}, and saves
half of the storage space.

From Algorithm 2, it can be found that two conditional branches are vul-
nerable. First is the double-addtion branch which is already used to determine
whether each digit of k is zero or not in the attack. Second is the invert branch,
which is related to the signs of the non-zero digits. Combining with the sequence
of the double and addition operations, the information of the sign can be inferred.

2.4 Cache Side Channel Attacks

The cache side channel attack was firstly proposed in 2002 [25]. It exploited
the fact that accessing data from caches is much faster than from memory. An
attacker can use these time variations of cache hits or misses to infer the oper-
ations executed by the victim process and then extract the secret information.
In this section, we introduce the Flush+Flush [10] attack as the example which
is used in our work.

The spy and the victim processes have shared momeory, which is the basis of
the Flush+Flush [10] attack. Then the attacker can apply a spy process to detect
the state of the specific memory lines in the caches of the victim process. The
execution time of the clflush instruction is measured in Flush+Flush attack to
infer if the specific cache is padding or not. If the cache is padding, the execution
time of clflush is longer, and if the cache is empty, the execution time is shorter.
The Flush+Flush attack obtaining information involves three steps:

116 Z. Ma et al.

Algorithm 2. The Implementation of the Scalar Multiplication in OpenSSL
Input: Scalar k in wNAF {k0, k1, ..., kl−1}, precomputed points {G, 3G, ..., (2w−1)G}
Output: kG
1: r ← 0, is neg ← 0, r is inverted ← 0
2: for i from l − 1 to 0 do
3: if r �= 0 then
4: EC POINT dbl(r) // double
5: end if
6: if ki �= 0 then
7: is neg ← (ki < 0)
8: if is neg then
9: ki ← −ki

10: end if
11: if is neg �= r is inverted then
12: if r �= 0 then
13: EC POINT invert(r) // invert
14: end if
15: r is inverted ←!r is inverted
16: end if
17: if r = 0 then
18: r ← EC POINT copy(kiG)
19: else
20: r ← EC POINT add(r, kiG) // add
21: end if
22: end if
23: end for
24: return r

– Flush: The attacker flushes out the specific target memory lines from the
caches by the clflush instruction.

– Idle: In this step, the attacker waits the victim running for a little time slot.
– Flush: The attacker executes the clflush instruction again and measures the

instruction execution time. The shorter time means that the victim does not
access the target memory lines. Otherwise, it means that the victim accesses
the target memory lines.

Therefore, the attacker infers the victim’s memory activities by the execution
time, and further inferences the secret information.

2.5 The (Extended) Hidden Number Problem and Lattice Attack

The attacker cannot obtain all the private key information from the cache side
channel attack against the wNAF algorithm. So the lattice attack is always
needed to infer the complete private key. The attacker can use the partial infor-
mation obtained to construct the (Extended) Hidden Number Problem and solve
it through the lattice reduction algorithm to recover the private key.

Another Lattice Attack Against ECDSA 117

The Hidden Number Problem (HNP) is presented to recover the secret key of
Diffie-Hellman key exchange [7], DSA [13] and ECDSA [24], when some consec-
utive bits of the ephemeral key are known. We have a positive l, a prime number
q, and randomly chose t1, t2, ..., td in Fq. The number pairs (ti, ui) are known,
and satifsy

vi = |αti − ui|q ≤ q/2l+1, 1 ≤ i ≤ d.

The α ∈ Fq is the unknown number which is called the hidden number. Thus the
HNP is to recover the unknown α. In this expression, | · |q denotes the reduction
modulo q into the range [−q/2, ..., q/2).

The Extended Hidden Number Problem (EHNP) introduced in [12] also can
be used to recover the private key [9] of ECDSA. We have a prime number N
and u congruences

βix +
li∑

j=1

ai,jki,j ≡ ci mod N, 1 ≤ i ≤ u .

In these congruences, 0 < x < N, βi, ai,j , ci, li and εi,j are all known. ki,j and
x are unknown and they satisfy 0 ≤ ki,j ≤ 2εi,j . The EHNP is to recover the
unknown x satisfying the congruences above.

For the ECDSA algorithm, attackers take advantage of the signature equa-
tion s = k−1(h(m) + r · α) mod q. Based on the partial information related to
the ephemeral key obtained by the attackers through the cache side channels,
they transform this equation to satisfy the form of HNP or EHNP. Then the pri-
vate key as the hidden number can be calculated and recovered by solving the
SVP/CVP problem in lattice converted from HNP or EHNP using the lattice
reduction algorithm such as LLL [16] or BKZ [28].

3 Improving Cache Side Channel Attack on Invertible
wNAF Representation

This section proposes how to get more bits of the ephemeral key with the wNAF
representation through the cache side channel. First, we analyze the invert func-
tion implemented in the wNAF representation in ECDSA and show how to use
the Double-Add-Invert chain obtained from the cache side channel to extract
the information about the ephemeral key. Then we implement the Flush+Flush
attack against the secp256k1 curve in OpenSSL 1.1.0h to obtain the cache side
channel information.

3.1 Attacking Invertible wNAF Through the Cache Side Channel

As shown in Algorithm 2, each digit of k performs a double function. If the digit is
not zero and the sign of the digit is opposite to the prior one, the invert function
is called. Finally, the addition function is called to add the internal value of kG
with a precomputed point indexed by the absolute value of the digit.

118 Z. Ma et al.

We use the vulnerability that the invert function is called conditionally to
improve the attack to obtain more valid data. We use a spy process to monitor
the double, add and invert functions during computing the scalar multiplication.
The time is divided into slots, and in each slot, the spy determines whether the
three functions are performed or not by monitoring the cache hits/misses. Then
we obtain a Double-Add-Invert chain. According to the Double and Add in this
chain, we determine whether each digit of k is zero or not, as done in previous
works. Then, based on the Invert in this chain, we infer the sign of each non-zero
digit.

When we use the Double-Add-Invert chain to extract the digits of k, the
Double represents the double function is called, and the Add represents both
double and add are called. The Invert represents the invert function is called.
Therefore, the appearance of Double means that ki is zero and the Add means
that ki is not zero. We use the Invert to determine the sign of ki. The sign of ki is
related to the previous non-zero digit. First, the Invert comes out together with
Add. If the Invert appears, it represents that the sign of ki is opposite to the
previous non-zero digit. While, if the Invert does not appear when Add comes
out, it represents that the sign of this digit is the same as the previous non-zero
one. In the wNAF representation, the most significant digit is always positive.
Thus, we can determine the sign of all non-zero digits. In this way, we obtain
both the positions and signs of all non-zero digits.

3.2 The Implementation of Flush+Flush Attack

We use the Flush+Flush technique instead of the Flush+Reload to monitor
the functions. First, the cost of Flush is about 160 cycles [10] less than the
cost of Reload. Second, the measurement stage and flush stage are merged into
one stage, because in the measurement stage the execution of clflush also
plays the role of flushing the cache. Thus, the precision is much higher than the
Flush+Reload. Moreover, compared with Allan’s method [4] , using Flush+Flush
does not additionally degrade the performance of the system, nor does it increase
the risk of being detected by the victim.

We launched the Flush+Flush attack on an Acer Veriton T830 running
Ubuntu 16.04. The machine has an Intel Core i7-6700 processor with four execu-
tion cores and an 8 MB LLC. The attacking target is the ECDSA implemented in
OpenSSL 1.1.0h, which uses wNAF representation in the scalar multiplication.
We attack the 256-bit curve secp256k1 for the experiments.

Threshold. We monitor the time to execute the clflush instruction. For each
address of the monitored functions, we record the time of flushing the cache 1000
times, and take the time larger than 99 percent of samples plus 6 cycles as the
threshold for this address. The thresholds are recalculated every time before the
attack is mounted.

Another Lattice Attack Against ECDSA 119

Time Slot. For the attack, time slots are set approximately 2000 cycles. In
each slot, the spy process flushes the memory lines of the add, double and invert
functions (EC_POINT_dbl(), EC_POINT_add() and EC_POINT_invert()) out of
the caches.

Experimental Results. Figure 1 shows a fragment of outputs by the spy pro-
cess when performing the ECDSA with the secp256k1 curve. In this figure, �,
♦ and � represent “double”, “add” and “invert” respectively. From this frag-
ment, three operations are clearly distinguished, so we can easily obtain the
Double-Add-Invert chain.

160

165

170

175

180

185

190

195

200

205

0 50 100 150 200 250

Add Double Invert

Fig. 1. A fragment of the output of the Flush+Flush attack.

4 Recover the ECDSA Private Key with HNP

After we obtain the information from the cache side channel, the most intuitive
idea is that first recovering some consecutive bits of the ephemeral key k from the
Double-Add-Invert chain and then constructing the HNP or EHNP with these
bits. So we first recover the consecutive bits at the position of every non-zero
digits of k. Then we construct the HNP problem using these bits and solve it
by the approximate CVP/SVP Problem with the lattice reduction algorithm to
recover the ECDSA private key.

4.1 Recovering Consecutive Bits

First, we denote the wNAF representation of k as k =
∑

ki2i, and the binary
representation as k =

∑
bi2i. When we know the information about whether ki

is zero and the sign of the non-zero ki, we can simply determine some bits of k.
For example, if we obtain the sign of the least non-zero kj , we can infer that bj

is one and bi is zero for 0 ≤ i < j. But for arbitrary non-zero digits, it can not
directly determine whether the bit corresponding to the position of the digit is
zero or one.

Set m and m + n as the positions of two consecutive non-zero digits of the
wNAF representation, and w be the window size. That is, km, km+n �= 0 and

120 Z. Ma et al.

km+i = 0 for all 0 < i < n. We analyse the transformation method between the
binary and wNAF representation, getting the following result:

bm+n =

{
0, km < 0
1, km > 0

, bm+i =

{
0, km > 0
1, km < 0

, w ≤ i ≤ n − 1 (1)

And if m is the position of the least non-zero digit of k,

bi =

{
1, i = m

0, 0 ≤ i < m
. (2)

In this way, at the position of every non-zero digit we can obtain n − w + 1
consecutive bits of k except at the position of the least non-zero digit being
m + 1. For the wNAF representation, the average number of non-zero digits of
k is approximately (�log2 q� + 1)/(w + 2). While the average distance between
consecutive non-zero digits is w + 2, i.e. on average n = w + 2, meaning that
we can obtain 3 consecutive bits on average at every non-zero digit (except the
least one). Thus, on average we can obtain approximately 3(�log2 q�+1)/(w+2)
bits of the ephemeral key k in total. Meanwhile, the minimal value of n is w +1,
so the minimal length of the consecutive bits is 2. This illustrates that all the
sequences of consecutive bits obtained (except the least) are no less than 2 bits.

For the secp256k1 curve implemented in OpenSSL, �log2 q�+1 = 257, w = 3.
So the total number of bits per signature we obtain is 3(�log2 q� + 1)/(w + 2) =
154.2. In theory, two signatures would be enough to recover the 256-bit private
key as 2 × 154.2 = 308.4 > 256.

4.2 Constructing the Lattice Attack with HNP

In this section, we transform the problem of recovering the private key to the
HNP instance, and further convert it to the CVP/SVP instance in a lattice.
Our method is based on the analysis from [23]. And we make the following
improvements to it. First, the length of the consecutive bits used to construct
the lattice is variable while the prior work fixes the length, which may lose some
information. Second, in our method the position of consecutive bits is arbitrary
in the ephemeral key and does not need to be fixed, while the prior work needs
all the consecutive bits at the same position. Finally, from one signature we
obtain multiple sequences of consecutive bits, and all of them can be used for
constructing the lattice as long as the length of the sequence is satisfied, while
the prior work only generates one sequence of consecutive bits for one signature.

To construct an HNP instance using arbitrary consecutive bits, we use the
standard analysis from [23]. Assuming that we have the l consecutive bits of k
with the value of a, starting at some known position j. So k is represented as
k = 2ja + 2l+jb + c for 0 ≤ a ≤ 2l − 1, 0 ≤ b ≤ q/2l+j and 0 ≤ c < 2j . We
determine the following values

{
t = �rλs−1	q

u = �(2ja − s−1h(m))λ	q

, (3)

Another Lattice Attack Against ECDSA 121

where �·	q denotes the reduction modulo q into range [0, ..., q). where (r, s) is
the ECDSA signature, λ satisfies that |λ|q < q2−j−l/2 and |λ2j+l|q ≤ q/2j+l/2,
and �·	q denotes the reduction modulo q into range [0, ..., q).

It satisfies that
|αt − u|q < q/2(l/2−1). (4)

This way, an HNP instance is constructed.
In practice, OpenSSL uses k + q as the ephemeral key. So the Eq. 3 remains

the same, but the Inequality 4 turns into

|αt − u|q < q/2(l/2−log2 3). (5)

Note that, the Eq. 5 represents that the l/2 − log2 3 − 1 most significant
bits of �αt	q is u, based on the definition of the HNP. So it should satisfy that
l/2 − log2 3 − 1 ≥ 1, i.e. l > 7. That means the length of the consecutive bits
used to construct the HNP instance should be larger than 7, although we could
use all the sequences of the consecutive bits of the ephemeral key in theory.

Next we turn the HNP instance into the lattice problem. We use d triples
(ti, ui, li) to construct a d + 1 dimensional lattice L(B) spanned by the rows of
the following matrix:

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2l1+1q 0 · · · 0 0

0 2l2+1q
. . .

...
...

...
. 0

...
0 · · · 0 2ld+1q 0

2l1+1t1 · · · · · · 2ld+1td 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let the vector x = (2l1+1αt1 mod q, ..., 2ld+1αtd mod q, α), and the vector u =
(2l1+1u1, ..., 2ld+1ud, 0). It can be proved that the vector x is one of the closest
vectors to u. Inputing B and u, and solving the approximate CVP problem, the
vector x is revealed. hence the private key α is recovered.

The approximate CVP problem can be transformed to an approximate SVP
instance. d triples (ti, ui, li) can construct a lattice L(B′) with the dimension
d + 2 spanned by the rows of the following matrix

B′ =
(

B 0
u q

)

.

Similarly, the vector x′ = (2l1+1(αt1 − u1) mod q, ..., 2ld+1(αtd − ud) mod
q, α,−q) belonging to the lattice L(B′) is a very short vector. But this lattice
also contains another vector (−t1, ...,−td, q, 0) · B = (0, ..., 0, q, 0), which also
is a very short vector in the lattice. Therefore we expect the two shortest vec-
tors in a reduced basis of the lattice contain x′ with a suitably lattice reduction
algorithm. Then we acquire the secret key α.

122 Z. Ma et al.

Table 1. The success probability of solving SVP with different parameters.

Dimension Block size

l ≥ 9 l ≥ 10 l ≥ 11

10 20 10 20 10 20

50 0 0 0 0 0 0

60 0 0 0 0 3.0 7.5

70 0 0 0.5 1.0 29.5 30.5

80 1.0 1.5 4.0 8.5 49.0 65.0

100 0.5 4.0 21.0 33.5 70.5 83.5

120 2.0 4.5 21.5 35.0 77.5 92.0

140 3.0 8.0 29.0 46.0 88.5 99.0

160 2.5 13.0 27.5 49.0 94.0 99.5

180 3.5 11.5 37.0 57.0 97.0 100.0

200 9.5 26.0 46.0 66.0 99.0 100.0

220 15.0 29.0 51.0 72.5 100.0 100.0

4.3 Lattice Attack on Secp256k1

We apply the lattice attack to the curve secp256k1 and assume the Flush+Flush
attack is perfect, which means we correctly obtain the Double-Add-Invert chain
and recover all the information about the digits of the ephemeral key it contains.

In the experiments, we use the BKZ algorithm implemented in fplll [31] to
solve the SVP problem converted from the HNP problem. We denote the success
probability as the amount of successfully recovering the private key divided by
the total number of the lattice attacks. We want to find the optimal strategy for
our attack in terms of the following parameters:

– the minimal value of l (length of the consecutive bits of k)
– the block size of BKZ
– the lattice dimension

Table 1 shows the success probability for different dimensions and block sizes
of solving the SVP instance. In each case, we run 200 experiments and com-
pute the success probability. Although in Sect. 4.2 the HNP problem introduced
requires that l should be larger than 7. But in our experiments, when l = 8, the
private key can not be successfully recovered. We can successfully recover the
private key of a 256-bit ECDSA only need 60 sequences of consecutive bits with
a success probability of 7.5%. These 60 sequences come from up to 60 signatures.
That means we just need about 60 signatures satisfied the length requirement
to successfully recover the ECDSA private key.

We analysed 10000 signatures. 32.33% signatures contain the sequence of
consecutive bits that l ≥ 9, 17.44% signatures contain the sequence that l ≥
10 and 9.08% signatures contain the sequence that l ≥ 11. So, obtaining 60

Another Lattice Attack Against ECDSA 123

satisfying signatures (l ≥ 11) needs 661 signatures totally. However, when using
80 signatures that satisfy l ≥ 9, the total number of signatures needed is the
least, just 248.

5 Recover the ECDSA Private Key with EHNP

We can see that the restriction on the length of the bits has a great influence
on the number of signatures we need to observe. Although we have exploited
the sign information of the wNAF representation, the result is not as expected,
worse than Allan’s attack [4], which only needs 6 signatures. So, in this section,
we directly exploiting the wNAF representation to construct EHNP problem
with the known information from the Double-Add-Invert chain to recover the
ECDSA private key. The final result shows this method only needs 3 signatures,
better than existing results.

5.1 Extracting More Information

Suppose in the obtained Double-Add-Invert Chain, the numbers of A is l, whose
positions are λi(1 ≤ i ≤ l), separately. So we can easily have

k =
l∑

i=1

k
′
i2

λi , k
′
i ∈ {−7,−5,−3,−1, 1, 3, 5, 7}. (6)

On the other hand, from the Invert chain, we can easily know that the k
′
i is

a positive integer or a negative integer. Suppose k
′
i = (−1)hik∗

i , where (−1)hi

is the sign of k
′
i which is known, k∗

i ∈ {1, 3, 5, 7}. Write k∗
i = 2ki + 1 , where

ki ∈ {0, 1, 2, 3}. Then we have

k =
l∑

i=1

(−1)hik∗
i 2λi =

l∑

i=1

(−1)hi(2ki + 1)2λi = k̄ +
l∑

i=1

(−1)hiki2λi+1 (7)

where k̄ =
l∑

i=1

(−1)hi2λi , hi, λi are known and the only unknowns are ki ∈
{0, 1, 2, 3}.

For the secp256k1 curve implemented in OpenSSL, from Eq.(7), there are
approximately 51.4*2= 102.8 bits being unknown, which means the number of
the known bits is about 257 − 102.8 = 154.2 on average. It is about 1.5 times of
the number of bits in [9]. In theory, we just need two signatures to recover the
256-bit private key, because the least integer m is 2 such that m · 154.2 > 256.

5.2 Find the Target Vector with New Lattice

Similar to [9], we translate to the EHNP problem to recover ECDSA private key.
Then we further construct a lattice and solve the approximate SVP using lattice
reduction algorithm.

124 Z. Ma et al.

Reduction to EHNP Problem. Transforming the expression of the signature
and we can have the equation

αr − sk + H(m) = 0 mod q. (8)

Substitue (8) with Eq. (7), we get Eq. (9)

αr −
l∑

i=1

((−1)hi2λi+1s)ki − (sk̄ − H(m)) + hq = 0. (9)

where α, ki(1 ≤ i ≤ l) and h ∈ Z is unknown.
If we have u signatures (ri, si) of different messages mi(1 ≤ i ≤ u) with the

same private key α. From (9) we can easily have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αr1 −
l1∑

j=1

((−1)h1,j 2λ1,j+1s1)k1,j − (s1k̄1 − H(m1)) + h
′
1q = 0

...

αri −
li∑

j=1

((−1)hi,j 2λi,j+1si)ki,j − (sik̄i − H(mi)) + h
′
iq = 0

...

αru −
lu∑

j=1

((−1)hu,j 2λu,j+1su)ku,j − (suk̄u − H(mu)) + h
′
uq = 0

(10)

the number of non-zero digits is li. (−1)hi,j ki,j is the j-th non-zero digit in the

i-th signature, λi,j is its position, k̄i =
li∑

j=1

(−1)hi,j 2λi,j mod q and α, h
′
i, ki,j are

unknown elements in the equations.

Given Eq. (10), find 0 < α < q and 0 ≤ ki,j ≤ 2w−1 − 1. We denote this
problem DSA-EHNP.

Constructing the Target Vector. Next we will translate the DSA-EHNP
problem to the problem of finding the short vector of a related lattice, which
uses the same way of [9].

Notice that we have ki,j ∈ {0, 1, · · · , 2w−1 −1}. For 1 ≤ i ≤ u and 1 ≤ j ≤ li,
denote ci,j = (−1)hi,j+12λi,j+1si mod q, βi = H(mi) − sik̄i mod q. The lattice
L is spanned by the following matrix B in Eq. (11).

It is easy to check there exists

w = (h
′
1, · · · , h

′
μ, α, k1,1, · · · , k1,l1 , · · · , ku,1, · · · , ku,lu ,−1)B

= (0, · · · , 0, α
q δ − δ

2 ,
k1,1
4 δ − δ

2 , · · · ,
k1,l1
4 δ − δ

2 , · · · ,
ku,1
4 δ − δ

2 , · · · ,
ku,lu

4 δ − δ
2 ,− δ

2) ∈ L(B),

and the Euclid norm of the vector w satisfies ‖w‖ ≤ δ
2

√
n − u, where n is the

dimension of the lattice, i.e., n =
u∑

i=1

li + u + 2.

Another Lattice Attack Against ECDSA 125

Table 2. The success probability for solving the EHNP problem. (merge: elimination
and merging, MSD: recovering the MSDs, SMSD: enumeration of the MSD.)

Number of
signatures

Optimization methods Success probability (%) Time (s)

3 n merge n MSD n SMSD 69.9 341

n merge MSD n SMSD 87.5 242

n merge MSD SMSD 89.1 273

4 merge n MSD n SMSD 99.8 497

merge MSD n SMSD 100 300

merge MSD SMSD 100 320

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

. . .
q

r1 ··· ru
δ
q

c1,1
δ
4

...
. . .

c1,l1
δ
4

.
cμ,1

δ
4

...
. . .

cμ,lμ
δ
4

β1 ··· βu
δ
2

δ
2 ··· δ

2 ··· δ
2 ··· δ

2
δ
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(11)

The determinant of lattice L(B) is ‖L‖ = 1
2qu−1 · δn−u(14)n−u−2. The target

vector w may not be the shortest vector, however, if we choose a appropriate
value of δ, the target vector w which will be a pretty short vector which can be
found by lattice reduction algorithm ([3,8,16,28]), thus, the secret key α can be
recovered.

5.3 Attacking the Secp256k1

We apply this lattice attack to the curve secp256k1 and also assume that the
Flush+Flush attack is perfect. In the experiments, we use the BKZ with block
size 30 to solve the SVP problem converted from the EHNP problem.

Fan [9] proposed three optimization methods: elimination and merging, recov-
ering the MSDs, and enumeration of the MSD. In our experiments, we measure
the success probability of the lattice attack with these optimization methods.

Table 2 shows the success probability for different number of signatures and
optimization selections. We can successfully recover the private key of a 256-
bit ECDSA only need 3 signatures for at least 69.9%. We also tried to use 2
signatures to recover the ECDSA private key, but it can not succeed. Although
we already reach the best result, the same as in [19], theoretically we only need 2
signatures to recover the private key. That means we can still make improvements
on it to reach the theoretical optimal number.

126 Z. Ma et al.

Table 3. Comparison with previous attack methods

Methods Exploited
information

HNP or
EHNP

of bits # of signatures

Benger et al. [6] LSB HNP 2 200

Van de Pol et al. [26] Half positions of
non-zero digits

HNP 47.6 13

Wang et al. [32] Positions of two
non-zero digits and
the length of the
wNAF
representation of k

HNP ≥2.99 85

Allan et al. [4] Half positions and
signs of non-zero
digits

HNP 71.4 6

Fan et al. [9] All positions of
non-zero digits

EHNP 105.8 4

Micheli et al. [19] All positions of
non-zero digits

EHNP 105.8 3

Ours All positions and
signs of non-zero
digits

HNP 154.2 248

EHNP 154.2 3

6 Comparison with Other Lattice Attacks

In this section, we compared our method with the previous attacks. Generally,
through cache side channels attackers obtain the Double-Add or Double-Add-
Invert chain and extract partial information about k. Then, the private key
recovery from incomplete information of k is transformed into a problem that
can be solved by lattice reduction, such as the HNP or EHNP problem. Finally,
through being converted to the CVP/SVP problem in the lattice, the ECDSA
private key is recovered.

With the HNP problem, several works have been proposed. They all used
the Flush+Reload attack to obtain the Double-Add chain. Then they used the
different information extracted from the Double-Add chain, especially the least
significant bits (LSBs) of the ephemeral key [6], half of the consecutive non-zero
digit [26], and the positions of two non-zero digits and the length of the wNAF
representation [32]. These methods extracted restricted bits from the Double-
Add chain, so that they need many signatures to recover the private key.

Besides, Allan et al. [4] first used the Flush+Reload attack to monitor the
invert function and used a performance degradation attack to increase the attack
accuracy. Then they exploited Van de Pol’s method to construct the HNP prob-
lem with the extra information to recover the ECDSA private key. This method

Another Lattice Attack Against ECDSA 127

can extract 71.4 bits per signature on average for the secp256k1 curve and recover
the private with 6 signatures.

While with the EHNP problem, Fan et al. [9] extracted all positions of digits
from the Flush+Reload attack and took advantage of them to construct an
EHNP instance. They managed to obtain on average 105.8 bits per signature
for the secp256k1 curve. With some optimization only 4 signatures are needed
to recover the private key with the probability being 8%. Subsequently, Micheli
et al. [19] improved Fan’s work and optimized the lattice to recover the ECDSA
private by only 3 signatures.

We compare these attacks with ours in detail in four aspects as shown in
Table 3. Our method exploits both the signs and the positions of the non-zero
digits of the ephemeral key k achieved from the Flush+Flush attack. It extracts
the largest amount of information, on average 156.2 bits per signature for the
secp256k1 curve. We use both the HNP and EHNP problems to recover the
ECDSA private key. Although the using HNP problem needs 248 signatures,
using EHNP problem the number of signatures needed to recover the private
key is only 3 with the success probability being not less than 69.9%.

7 Conclusion

In this paper, we demonstrate a practical attack on the ECDSA algorithm
implemented with the scalar multiplication using the wNAF representation. We
improve the cache side channel attack by using the Flush+Flush technique and
adding an extra monitor to the invert function. Through them, we get the extra
information, i.e., the signs of all non-zero digits of the ephemeral key. Then, we
construct the HNP and EHNP instances respectively, to utilize the extracted
information for the ECDSA private key recovery.

This work obtains the information about the signs of the non-zero digits of the
ephemeral key without using performance degradation and uses the least number
of signatures to recover the ECDSA private key. We applied the Flush+Flush
attack to the secp256k1 curve in OpenSSL 1.1.0h to verify the availability of
monitoring the invert function. from the Double-Add-Invert chain we extract
on average 154.2 bits of information per signature. If the obtained Double-Add-
Invert chain is perfect, 3 signatures are enough to recover the ECDSA private
key by using the EHNP problem with a success probability no less than 69.9%.
This result reaches the best one as ever known with higher success probability.

References

1. Cryptlib Encryption Toolkit. https://www.cs.auckland.ac.nz/pgut001/cryptlib/
(2020)

2. The Legion of the Bouncy Castle (2020). http://www.bouncycastle.org/
3. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,

Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

https://www.cs.auckland.ac.nz/pgut001/cryptlib/
http://www.bouncycastle.org/
https://doi.org/10.1007/978-3-030-17656-3_25

128 Z. Ma et al.

4. Allan, T., Brumley, B.B., Falkner, K., van de Pol, J., Yarom, Y.: Amplifying side
channels through performance degradation. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications (ACSAC), pp. 422–435 (2016)

5. American National Standards Institute: ANSI X9.62-2005, Public Key Crypto-
graphy for the Financial Services Industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA) (2005)

6. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “ooh aah... just a little bit” : a
small amount of side channel can go a long way. In: 16th International Workshop
on Cryptographic Hardware and Embedded Systems (CHES), pp. 75–92 (2014)

7. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in diffie-hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68697-5 11

8. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

9. Fan, S., Wang, W., Cheng, Q.: Attacking OpenSSL implementation of ECDSA
with a few signatures. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pp. 1505–1515 (2016)

10. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+ Flush: a fast and stealthy
cache attack. In: 13th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 279–299 (2016)

11. Hai, H., Ning, N., Lin, X., Zhiwei, L., Bin, Y., Shilei, Z.: An improved wnaf scalar-
multiplication algorithm with low computational complexity by using prime pre-
computation. IEEE Access 9, 31546–31552 (2021)

12. Hlaváč, M., Rosa, T.: Extended hidden number problem and its cryptanalytic
applications. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
114–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-
7 9

13. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Cryptogr. 23(3), 283–290 (2001)

14. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: OpenPGP Message
Format (RFC 4880) (2007)

15. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

16. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982)

17. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE Symposium on Security and Privacy, S&P 2015,
pp. 605–622 (2015)

18. Liu, S., Qi, G., Wang, X.A.: Fast and secure elliptic curve scalar multiplication algo-
rithm based on a kind of deformed fibonacci-type series. In: 2015 10th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp.
398–402 (2015)

19. De Micheli, G., Piau, R., Pierrot, C.: A tale of three signatures: practical attack
of ECDSA with wNAF. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020.
LNCS, vol. 12174, pp. 361–381. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51938-4 18

20. Möller, B.: Algorithms for multi-exponentiation. In: International Workshop on
Selected Areas in Cryptography, pp. 165–180 (2001)

https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1007/978-3-030-51938-4_18
https://doi.org/10.1007/978-3-030-51938-4_18

Another Lattice Attack Against ECDSA 129

21. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

22. Nguyen, P.Q.: The dark side of the hidden number problem: lattice attacks on
DSA. In: Cryptography and Computational Number Theory, pp. 321–330 (2001)

23. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm
with partially known nonces. J. Cryptol. 15(3), 151–176 (2002)

24. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signa-
ture algorithm with partially known nonces. Des. Codes Cryptogr. 30(2), 201–217
(2003)

25. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. IACR
Cryptol. ePrint Arch. 2002, 169 (2002)

26. van de Pol, J., Smart, N.P., Yarom, Y.: Just a little bit more. In: The Cryptogra-
phers’ Track at the RSA Conference (CT-RSA), pp. 3–21 (2015)

27. Rankl, W.: Smart card applications: design models for using and programming
smart cards (2007)

28. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66(1), 181–199 (1994)

29. Solinas, J.A.: Efficient arithmetic on koblitz curves. Des. Codes Cryptogr. 19(2),
195–249 (2000)

30. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2
(RFC 5246) (2008)

31. The FPLLL development team: fplll, a lattice reduction library (2016). https://
github.com/fplll/fplll

32. Wang, W., Fan, S.: Attacking OpenSSL ECDSA with a small amount of side-
channel information. Sci. China Inf. Sci. 61(3), 032105:1–032105:14 (2017)

33. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache
side-channel attack. In: Proceedings of the 23rd USENIX Conference on Security
Symposium, pp. 719–732 (2014)

34. Zhao, S.l., Yang, X.Q., Liu, Z.W., Yu, B., Huang, H.: An improved wnaf scalar-
multiplication algorithm with low computational complexity. Acta Electonica
Sinica, 1–7 (2022)

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/fplll/fplll
https://github.com/fplll/fplll

MAG-PUF: Magnetic Physical
Unclonable Functions for Device

Authentication in the IoT

Omar Adel Ibrahim1(B), Savio Sciancalepore2,3, and Roberto Di Pietro1

1 College of Science and Engineering (CSE), Information and Computing Technology
(ICT) Division, Hamad Bin Khalifa University (HBKU), Doha, Qatar

{oaibrahim,rdipietro}@hbku.edu.qa
2 Department of Mathematics and Computer Science, Eindhoven University

of Technology (TU/e), Eindhoven, The Netherlands
s.sciancalepore@tue.nl

3 Eindhoven Artificial Intelligence Systems Institute (EAISI),
Eindhoven, The Netherlands

Abstract. Authenticating Internet of Things (IoT) devices is still
a challenge, especially in deployments involving low-cost constrained
nodes. The cited class of IoT devices hardly support dynamic re-keying
solutions, hence being vulnerable to several attacks. To provide a viable
general-purpose solution, in this paper we propose MAG-PUF, a novel
lightweight authentication scheme based on the usage of unintentional
magnetic emissions generated by IoT devices as Physical Unclonable
Functions (PUFs). Specifically, through MAG-PUF, we collect uninten-
tional magnetic emissions produced by the IoT devices at run-time while
executing pre-defined reference functions, and we verify the match of
such emissions with the profiles collected at enrolment time, providing
device authentication. MAG-PUF enjoys unique flexibility, allowing the
selection of an unlimited number and types of reference functions. We
extensively assessed the performance of MAG-PUF through experiments
on 25 Arduino devices and a set of exemplary reference functions. We
obtained an authentication accuracy above 99%, hence proving the feasi-
bility of using code-driven magnetic emissions as a lightweight, efficient,
and robust PUF for IoT devices.

Keywords: Magnetic emissions · PUF · Authentication · IoT

1 Introduction

Internet of Things (IoT) devices are nowadays increasingly deployed in homes,
offices, medical, electricity, and transportation domains, to name a few [41], with
an installed base of a few billions, and counting [42]. Unfortunately, as acknowl-
edged by several reports [39], security issues are still one of the most critical

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 130–149, 2023.

https://doi.org/10.1007/978-3-031-25538-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_8&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_8

MAG-PUF: Magnetic Physical Unclonable Functions 131

concerns, preventing the unleashing of the full potential behind the IoT. On the
one hand, IoT devices often find applications in natively-insecure environments,
being the ideal target of various attacks. On the other hand, such devices are
usually so constrained in their processing, memory, and energy resources that
they cannot support Public Key Infrastructure (PKI) at all, and sometimes even
the usage of symmetric key cryptography techniques might significantly affect
their lifetime and usability [34]. Moreover, when symmetric cryptography oper-
ations are supported, several devices use hard-coded cryptography materials.
However, due to the simple design of the devices and the unattended nature
of many IoT deployments, attackers can capture the devices and easily recover
such keys, fully compromising them [7].

To address the above-described issues, Physical Unclonable Functions (PUFs)
have been proposed as a viable and effective alternative [28] to authenticate
devices. In a nutshell, PUFs leverage the finding that, despite Integrated Cir-
cuits (ICs) are assembled in a precise fabrication process, unintentional varia-
tions always occur at the sub-micrometer level, causing any two ICs to be never
exactly identical. PUFs take into account such unique properties of any spe-
cific device, allowing to generate lightweight chip-dependent unique signatures,
that are almost impossible to reproduce either synthetically or by using other
devices [46]. Thus, when applied appropriately in the IoT domain, PUFs can
efficiently and effectively bypass the need for both complex cryptography oper-
ations and hard-coded secrets, allowing system administrators to authenticate
IoT devices at low-cost [40].

Despite the above introduced advantages, PUFs are still hardly usable in the
IoT context. Indeed, many of the schemes proposed in the literature leverage
unique properties of specific memory modules and low-layer circuits, difficult to
generalize and to use in low-cost general-purpose IoT devices. Other solutions,
such as the ones based on RF emissions, usually do not scale well for large
deployments, providing limited security guarantees (see Sect. 5 for more details).

Contribution. In this paper, we design MAG-PUF, a novel and lightweight
scheme exploiting the unique randomness of unintentional magnetic emissions
produced by IoT devices when computing a function to generate Physical
Unclonable Functions. Specifically, deploying MAG-PUF, the IoT system owner
can select a theoretically-unlimited number of reference functions to be used
for authentication purposes. The profile of the unintentional magnetic emissions
radiated by the devices when executing the reference functions is first acquired
at enrolment time, and then checked for consistency at run-time. To this aim,
as a novel building block in the PUF area, MAG-PUF features Machine Learn-
ing (ML)-based classification tools, used to model the magnetic emissions and
check for the match of a specific acquisition with the expected profile. Our exten-
sive experimental performance assessment, performed considering 25 Arduino
IoT devices and a set of exemplary reference functions, reported a remarkable
classification accuracy of above 99%, as well as PUF-related metrics very close to
the optimal ones (Intra-PUF Distance of 0.02 and Inter-PUF Distance of 0.51).

132 O. A. Ibrahim et al.

Overall, thanks to the customized usage of near-field magnetic emissions and
the integration of ML tools, MAG-PUF emerges as a novel, lightweight, and
secure primitive for authenticating constrained IoT devices, natively offering
scalability and robustness features for safety-critical IoT deployments.

Roadmap. This paper is organized as follows: Sect. 2 describes the scenario;
Sect. 3 describes MAG-PUF in details; Sect. 4 reports an extensive performance
assessment and highlights further research directions; Sect. 5 reviews related
work; and, finally, Sect. 6 concludes the paper and outlines future work.

2 Scenario, Use-Cases, and Requirements

In this section, we introduce our considered scenarios, assumptions and the con-
sidered requirements.

2.1 Scenario and Assumptions

We consider a generic IoT network, i.e., a ubiquitous ecosystem where devices
communicate and exchange information without the need for human interven-
tion [3]. Our solution is also built on some realistic assumptions. First, we assume
that the IoT devices are resource-constrained in terms of memory and energy.
As a result, they cannot use a PKI, because of the overwhelming computational
cost. Also, we consider a network where the IoT devices do not have specific tools
or capabilities, such as ML-based functionalities or Software-defined radio (SDR)
capabilities. Conversely, the devices rely on external equipment to collect and
process their unintentional magnetic emissions (either the PUF Manager or the
verifier, see below). The IoT devices in the network can be connected with each
other or directly with a central network manager using either a wired or wireless
interface, depending on the specific deployment, setup, and security require-
ments.

From the security perspective, we aim to provide physical-layer authenti-
cation of the IoT devices. Indeed, not featuring PKI-based solutions, the IoT
devices should be able to prove their identity leveraging features (e.g., non-
idealities) available at the physical-layer. In our work, we aim to reach the
aforementioned objective by establishing a PUF-based challenge-response pairs
(CRP) database (in a form of a trained ML model), utilizing random reference
functions and their unintentional magnetic emissions to authenticate the devices.

2.2 Adversary Model

We consider a powerful adversary, namely, A, characterized by both passive and
active capabilities. We assume A has access to a much more powerful equipment
than the deployed IoT devices, not characterized by any energy or processing lim-
itations. Also, A could use advanced wireless reception tools, such as directional
antennas, to boost its reception capabilities. We also consider an omnipresent

MAG-PUF: Magnetic Physical Unclonable Functions 133

adversary, present in the field before, during, and after the deployment of the
IoT devices. Overall, A aims to authenticate itself as a legitimate node in the
deployed IoT network, in place of a target IoT device. To this aim, we assume
A can mimic other devices’ messages, initiate a session, eavesdrop packets, and
replay captured messages. In this context, the objective of (MAG-PUF) is to
thwart such an adversary by providing physical-layer authentication of the IoT
devices in the network.

2.3 Requirements

PUF-based solutions conceived to provide authentication of the IoT devices has
to fulfill several requirements, outlined below [24].

– Constructibility : A PUF class P is said to be constructible if it is possible to
produce a random puf instance by invoking a specific Create function: puf
← P.Create.

– Evaluability : A PUF class P is said to be evaluable if it is constructible and
it is possible to evaluate a response y for any random PUF instance puf ∈ P

and any random challenge x ∈ X: y ← puf(x).Eval.
– Reproducibility : A PUF class P is said to be reproducible if it is evaluable,

and the probability of the Intra-PUF Distance being small is high. The Intra-
PUF Distance is defined as the difference between two separate evaluations
(responses) of the same challenge produced by the same device, preferably
averaging values close to 0.

– Uniqueness: A PUF class P is said to exhibit uniqueness if it is evaluable,
and the probability of the Inter-PUF Distance being large is high. The Inter-
PUF Distance is defined as the difference between two separate evaluations
(responses) of the same challenge produced by different devices, preferably
averaging values close to 0.5.

– Identifiability : A PUF class P is said to be identifiable if it is reproducible
and unique, and the probability that Inter-PUF Distance being greater than
the Intra-PUF Distance is high.

In Sect. 4.2, we will prove the conformity of MAG-PUF with all the cited
requirements.

3 Proposed Framework

In this section, we provide the details of MAG-PUF, our solution to provide
authentication of energy-constrained IoT devices via magnetic-based PUFs.

3.1 MAG-PUF in a Nutshell

Figure 1 provides an overview of our proposed solution. Overall, MAG-PUF
allows a verifier (e.g., the local system administrator or another system/device on

134 O. A. Ibrahim et al.

Fig. 1. Overview of MAG-PUF.

its behalf) to authenticate a prover (an IoT device), through the analysis of the
profile of the unintentional magnetic emissions generated by the prover during
the execution of a reference function, i.e., a sequence of operations appropriately
selected by the verifier.

In brief, MAG-PUF consists of two phases, i.e., the enrolment Phase and the
Authentication Phase. The former is executed upon manufacture, by: (i) supply-
ing several reference functions to the prover; (ii) extracting the corresponding
unintentional magnetic emissions generated by the device; and, (iii) creating the
corresponding reference models, via ML algorithms. At run-time, when the sys-
tem administrator or any other entity (namely, the verifier) requires authentica-
tion of the IoT device(s), it randomly chooses one or more of the available refer-
ence functions, it captures the corresponding unintentional magnetic emissions,
and it checks if the corresponding real-time profile of the unintentional magnetic
emissions matches the one available for the prover, via ML-based classification
tools. If there is a match, the prover IoT device is authenticated successfully;
otherwise, authentication fails.

3.2 Actors

Overall, MAG-PUF involves the following three entities.

– Prover. It is an IoT device, to be deployed in a specific scenario. We do not
make any assumption for this device, besides the integration of communica-
tion capabilities to interact with other systems (PUF Manager) or devices
(verifier).

– PUF Manager. It is a local entity, managed by a specific system administrator.
Its role is manifold: (i) deciding on a set of reference functions; (ii) running
them on the prover before the deployment; (iii) acquiring the corresponding

MAG-PUF: Magnetic Physical Unclonable Functions 135

unintentional magnetic emissions; (iv) generating their profile, via ML-based
tools; (v) storing such profiles on a dedicated server; and, finally, (vi) making
them available to the verifier. Thus, we assume it is equipped with the tools
necessary to acquire magnetic emissions, such as magnetic antennas, and
signal analysis tools (e.g., SDR).

– Verifier. It is a remote system or device, interested in authenticating the
prover. To this aim, it interacts both with the prover, to acquire its run-time
unintentional magnetic emissions, and with the PUF Manager, to download
the profile of the unintended magnetic emissions of the prover and the specific
reference function submitted to the prover. Similar to the PUF Manager,
the verifier also features tools to acquire magnetic emissions and run signal
analysis.

3.3 Modules

MAG-PUF relies on four modules, described below.

– Emissions Extraction Module. This module, installed on the PUF man-
ager and the verifier, is responsible for recording the unintentional magnetic
emissions generated from specific IoT devices when executing particular ref-
erence functions. The collected raw data of magnetic emissions include: (i)
timestamp, in msec; (ii) acquisition frequency, in Hz; and, (iii) value of the
Received Signal Strength (RSS), in dBm. The collected data are provided as
input to the Features Extraction Module.

– Features Extraction Module. This module, installed on the PUF Man-
ager and on the verifier, is responsible for extracting the relevant features
from the data collected by the Emissions Extraction Module. It operates
in three stages, i.e., Data Normalization, Regions Definitions, and Features
Computation.

• Data Normalization. We first normalize the magnetic emissions power
spectral density readings recorded in dBm to the range [0 . . . 1]. Specifi-
cally, assuming that xi is a sample of the readings, and XMIN and XMAX

are the minimum and the maximum value of the readings, the normalized
sample x̂i is calculated as: x̂i = xi−XMIN

(XMAX−XMIN) . This step is important to
allow for cross-comparison between different recordings, by eliminating
small differences in the measured power levels due to minor misalignment
of the measurement setup.

• Regions Definition. In the collected data, each sample of magnetic
emissions power level in dBm is associated with a specific timestamp and
frequency. In this step, we divide each trace of magnetic emissions into a
specific number of regions, with each region comprising the power level
readings collected at a specific range of time and frequency. More details
on the specific number and organization of regions are provided in Sect. 4.

• Features Computation. In this step, we compute the following five
statistical features on each region defined in the previous step: (i) mean;
(ii) standard deviation; (iii) variance; (iv) skewness; and, (v) kurtosis.

136 O. A. Ibrahim et al.

The output of this phase is a matrix of features that is passed either to the
Training Module (PUF Manager) or to the Classification Module (verifier).

– Training Module. This module, installed on the PUF Manager, is respon-
sible for using the features matrix produced by the Features Extraction Mod-
ule to train a ML model. The aim of the model is to discriminate uniquely
the devices and the responses of the device to different reference functions.
The trained ML model is made available online on request to the verifier,
to be used in the authentication stage to authenticate different devices. In
this work, we use a one-class Support Vector Machine (SVM) algorithm with
cubic kernel to train the ML model, so as to uniquely identify each device
and reference function. Indeed, for each class considered, the SVM algorithm
creates a standalone profile mapping the acquired emissions [33].

– Classification Module. This module, installed on the verifier, is responsible
for testing the profile of the recorded magnetic emissions from the IoT device
against the trained ML model made available by the PUF Manager. For each
test sample, the one-class SVM provides an evaluation score, indicating the
likelihood that the particular sample belongs to a specific class in the trained
ML model [33]. The closest the score is to the value 0, the more likely the
sample is consistent with the tested model.

3.4 Phases of MAG-PUF

MAG-PUF includes two main phases, namely, the Enrolment Phase and the
Authentication Phase, detailed below.

(a) Sequence diagram of the Enrolment
phase of

(b) Sequence diagram of the different steps
of the Authentication phase of

Fig. 2. Sequence diagrams of MAG-PUF.

MAG-PUF: Magnetic Physical Unclonable Functions 137

Enrolment Phase. Figure 2a shows the sequence diagram of the Enrolment
Phase. Upon manufacture and before deployment, the PUF Manager chooses at
random several reference functions, and submits them to the prover, requesting
their execution. Note that a reference function can be either a single specific
operation or a combination of several operations. Moreover, due to the specific
application, each system administrator can freely choose the reference functions
most suitable for MAG-PUF. For instance, the system administrator can choose
the primitives (or combinations thereof) providing the most unique profile of
unintentional magnetic emissions for the IoT device.

At the same time, using the Emissions Extraction Module, the PUF Manager
acquires the unintentional magnetic emissions generated by the prover while
executing the specified reference function(s). For each tested reference function,
using the Features Extraction Module, the PUF Manager extracts some features
of the recorded signal, builds an SVM model using the Training Module, and
uploads the model to an online database.

Authentication Phase. The Authentication phase steps are detailed in
Fig. 2b. Upon any authentication exchange, the verifier extracts at random one
(or more) of the reference functions whose profiles are available from the PUF
Manager, and instructs the prover to execute such function(s). At execution
time, the verifier records the unintentional magnetic emissions emitted from the
prover thanks to the Emission Extraction Module and analyzes them, thanks
to the Features Extraction Module, to extract the relevant features. Then, using
the Classification Module, the verifier checks if the model of the features just
extracted and computed match the available profile. If the profile acquired at
run-time matches the one downloaded from the PUF Manager, the prover is
authenticated. Otherwise, authentication fails.

4 Experimental Performance Assessment

In this section, we provide the results of our experimental assessment, carried
out to evaluate the performance of MAG-PUF. Specifically, Sect. 4.1 introduces
the experimental testbed, in Sect. 4.2 we report the results of our analysis, in
Sect. 4.3 we report some performance metrics for PUF robustness, and finally,
Sect. 4.4 summarizes our investigation.

4.1 Experimental Setup

In our experimental campaign, we used the following equipment.

– Arduino Uno Boards. We tested the performance of MAG-PUF with a set
of 25 identical Arduino UNO IoT boards [45]. Each board is equipped with
an 8-bit microcontroller ATmega328P, featuring a 16 MHz ceramic resonator,
2 KB of internal SRAM, and a 32KB of Flash memory.

138 O. A. Ibrahim et al.

– Aaronia PBS2 EMC Probe set. To collect the unintentional magnetic
emissions response when running different reference functions, we used the
Aaronia PBS2 EMC Probe Kit [1]. This equipment enables simple measure-
ments in the frequency range from DC (1 Hz) to 9 GHz, as well as the mon-
itoring of magnetic emissions. We used the PBS-H3 25 mm magnetic (H3)
field antenna as a probe. The antenna is covered with an insulating layer that
provides a safe measurement environment for the Arduino’s oscillators and
mains lines. The UBBV2 40dB EMC RF pre-amplifier is connected to the
probe, providing for a clear distinction between the relevant signal and the
background noise. The probe is connected via a low-impedance cable to a
spectrum analyzer, used to collect and store the magnetic emissions.

– Rohde & Schwarz FSW8 Spectrum Analyzer. We used the Rohde &
Schwarz FSW8 Spectrum Analyzer to record the unintentional magnetic emis-
sions captured by the probe over a large frequency span, up to 80 MHz.
This equipment converts raw I-Q samples into spectral power density mea-
surements. Specifically, it performs a Fast Fourier Transform (FFT) on the
collected data and, for each time frame, it generates a tuple containing the
timestamp (in ms), the frequency (in Hz), and the power level (in dBm).

– Matlab R2021a. Matlab R2021a has been used to extract features from the
collected magnetic emissions data of different reference functions run by the
Arduino IoT devices. Matlab was also used to train and test the ML model
for the classifications of samples, using the one-class SVM model with a cubic
kernel as the classification algorithm.

All the experiments described below have been conducted in regular labo-
ratory conditions, without any effort to reduce the environmental noise. Our
measurement setup is shown in Fig. 3.

Fig. 3. Measurements setup

MAG-PUF: Magnetic Physical Unclonable Functions 139

We placed the Arduino board on a Bench Vise, to hold it in a fixed position
and allow for uniform recording conditions. We also placed the magnetic antenna
directly above the IoT boards, to clearly capture the magnetic emission from the
micro-controller and surrounding chips. The position of the magnetic antenna
can be precisely controlled by a mechanical arm to ensure consistent positioning
on the Arduino device in each sample collection. Alternatively, a special opening
in the cover case of Arduino device can be made to exactly fit the magnetic
antenna, ensuring precise placement with every measurement. Finally, we saved
the collected emissions from each reference function run on the Arduino on the
Spectrum analyzer.

4.2 Experimental Results

In the following, we provide several experimental results.

Spectral Power Density of Sample Reference Functions. We first evalu-
ated the profile of unintended magnetic emissions generated by an Arduino IoT
device when running different reference functions. To this aim, we defined the
following operations: (A1) empty loop; (A2) first encrypt, later decrypt a 128
bit long message, using AES128, Block Cipher Mode (CBC); (A3) comparison of
the similarity between two 11-bytes long strings; and, (A4) reading of input data
from a DHT11 temperature and humidity sensor. We use the above-listed ref-
erence functions as examples to test our proposed MAG-PUF solution, as they
are supported by almost any IoT device. Note that the usage of AES does not
contradict our initial hypothesis on the constraints affecting IoT devices. Indeed,
even if IoT devices could support symmetric encryption algorithms, they often
cannot feature effective re-keying algorithms, being those often based on public-
key cryptography. We also recall that each system administrator can choose the
reference functions she finds most suitable for MAG-PUF, e.g., choosing the ones
that provide the most unique profile of unintentional magnetic emissions for the
device.

Figure 4 shows the spectral power density of the unintentional magnetic emis-
sions of the full 80 MHz bandwidth acquired by the spectrum analyzer, with
reference to the functions defined above, separated by dashed black lines. Each
function lasts for around 120 ms. Because of the normalization phase executed
during the Features Extraction module, all the RSS of samples of unintentional
magnetic emissions recorded in dBm are normalized to a value between 0 and 1.
Specifically, the blue color corresponds to values in the range [0–0.25], the cyan
maps values in the range [0.25–0.5], the yellow indicates values in the range
[0.5–0.75], while the red color is related to values in the range [0.75–1].

First, we can notice the clear color differences in the spectral power density
between (A1) and (A3) compared with (A2) and (A4). Indeed, (A2) and (A4)
are computationally-intensive operations, which require more processing power
than (A1) and (A3). Furthermore, we can also see the similarity between the
unintentional magnetic emissions of (A1) and (A3). Indeed, the string compari-
son operation (A3) is lightweight, it does not involve any complex mathematical

140 O. A. Ibrahim et al.

Fig. 4. Unintentional magnetic emissions recorded for around 120 ms of each of the
four reference functions, using 80 MHz bandwidth, separated by black lines. (Color
figure online)

operations, and it does not consume much more processing power than (A1),
leading to similar spectral power profiles. We recall that the system admin-
istrator can select the best reference functions for its objective, i.e., the ones
with distinct unintentional magnetic emissions, excluding others achieving worst
performances in the field, so as to guaranteeing reliable IoT devices authentica-
tion. Overall, the results above demonstrate the fulfilment of the Constructibility
requirement introduced in Sect. 2.3, as the PUF can be constructed by invoking
the specific function, as well as the PUF Evaluability, being x the function run
by the prover and y the unique profile of the emissions generated for each PUF.

Classification Results. For the verifier to authenticate the prover, we uti-
lize the MATLAB provided one-class cubic SVM ML model. We consider the
functions above described, each run separately inside a For loop on each of the
25 IoT boards. We collected the related magnetic emanations for around 6, 000
slot-frames, each lasting 12 ms long. We divided each trace into 10 frames seg-
ments, getting 600 samples for each trace of the magnetic emanations recorded
on a given IoT board when running a specific function. With the described
procedure, the duration of a single instance of a function is 8 ms, i.e., each seg-
ment (120 ms) comprises the magnetic emanations of around 15 iterations of a
given function. We collected each trace twice across four different days, to ensure
robustness against temporary phenomena in the surrounding environment. This
procedure resulted in 600 · 2 = 1, 200 samples of each function running on each
individual IoT board. We divided those 1, 200 samples into 80% (960 samples)
for training of the ML model, and the remaining 20% (240 samples) for testing
the trained model. Overall, we have 25 IoT boards, with 960 samples for each

MAG-PUF: Magnetic Physical Unclonable Functions 141

reference function, returning 24, 000 samples of each reference function for train-
ing, and 25 boards with 240 samples of each reference function, returning 6, 000
samples of each reference function running on the 25 IoT boards for testing.

As a result of many experiments and tests, we considered a 20 MHz acquisi-
tion bandwidth and a fixed observation window of 10 frames (120 ms) for each
of the collected traces of magnetic emissions, to allow a fair cross-comparison
between different traces. Each time window is further divided into a number
of time and frequency regions. Then, we computed the following five statistical
features over each of them: mean, standard deviation, variance, skewness, and
kurtosis. Overall, we considered 95 features, computed as follows. First, we com-
puted the five (5) statistical features over the whole observation window of 10
frames (120 ms), generating 5 features. Then, we further divided the observation
window of 120 ms into two time regions, each 60 ms long, and we computed the
same 5 statistical features for each of them, resulting in 10 additional features.
Then, we further divided each of the time regions generated in the previous step
into eight (8) frequency regions, each with a bandwidth of 2.5 MHz. For each of
the 2 ·8 frequency regions, we computed the same aforementioned five statistical
features, resulting in 2 · 8 · 5 = 80 features. By summing the three stages, we
have a total of 5 + 10 + 80 = 95 features.

For each IoT board, we report the data coming from the authentic IoT
device as green squares (240 samples per class), while the black dots (5, 760
samples) represent the non-authentic ones. In the vast majority of experiments,
the authentic IoT devices reported values very close to 0, while the other IoT
devices executing even the same function reported lower scores. Given that the
model of each IoT device is trained and validated on its own, we selected a
threshold value for each one, and we decided to accept it as authentic if the
evaluation score is higher than the selected threshold.

(a) Classification results of (A1) on 25 IoT
devices, using 20 MHz bandwidth.

(b) Classification results of (A2) on 25 IoT
devices, using 20 MHz bandwidth.

Fig. 5. Classification results for reference functions (A1) and (A2).

Figures 5a, 5b, 6a, and 6b show the similarity scores generated by the cubic
SVM model, produced by the considered IoT boards’ classes, each considering

142 O. A. Ibrahim et al.

(a) Classification results of (A3) on 25 IoT
devices, using 20 MHz bandwidth.

(b) Classification results of (A4) on 25 IoT
devices, using 20 MHz bandwidth.

Fig. 6. Classification results for reference functions (A3) and (A4).

specific reference functions, using 20 MHz out of the total 80 MHz acquired
bandwidth, over the 95 features previously-described. The average accuracy of
each function across the IoT boards is 99.3%, 99.4%, 99.7%, and 99.6%, respec-
tively. Such remarkable performances definitely prove also the uniqueness and
reproducibility of MAG-PUF (see Sect. 2.3).

4.3 PUF Robustness Evaluation

In this section, we discuss the feasibility of using magnetic emissions as PUFs,
through the Intra-PUF Distance (as a measure for the PUF Reliability) and
Inter-PUF Distance (as a measure of the PUF Uniqueness).

We recall, from Sect. 2.3, that the Intra-PUF Distance provides insights into
the reliability of a PUF, while the Inter-PUF Distance represents the uniqueness
of the PUF. We cannot use the standard Intra-PUF and Inter-PUF Hamming
distances to evaluate MAG-PUF since, differently from traditional PUFs dis-
cussed in Sect. 5, MAG-PUF does not produce a digital response. Conversely,
MAG-PUF utilizes the differences of magnetic profiles produced as a response
when similar reference functions are run on IoT boards. Indeed, from the MAG-
PUF classification accuracy detailed in Sect. 4.2, we can confirm the reliabil-
ity and uniqueness of our solution. In addition, Fig. 7a reports the Intra-PUF
and Inter-PUF distances as the normalized average of the variance of the most
prominent 20 statistical features used for ML classification. We computed the
Inter-PUF Distance as the average variance of 600 groups, each group consist-
ing of 25 magnetic samples taken from specific IoT device when executing a
specific function, e.g., (A1) in Fig. 7a (other functions produced similar results,
and are omitted for the sake of space). Each sample contains the top 20 features
extracted at 20 MHz bandwidth. The Intra-PUF Distance, instead, is computed
as the average variance of the features of 600 samples of each IoT device. Note
that the most prominent normalized average variance for the Intra-PUF Dis-
tance (same device) is in the range [0–0.0005], while it is in the range [0.8–1] for

MAG-PUF: Magnetic Physical Unclonable Functions 143

0 0.2 0.4 0.6 0.8 1
Normalized average variance of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
cc

ur
re

nc
e

P
ro

ba
bi

lit
y

Intra-PUF
Inter-PUF

(a) Average variance of the most promi-
nent 20 features extracted at 20 MHz
bandwidth from each IoT board.

0 0.2 0.4 0.6 0.8 1
Normalized average variance of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
cc

ur
re

nc
e

P
ro

ba
bi

lit
y

Intra-PUF
Inter-PUF

(b) Average variance of the 95 features ex-
tracted at 20 MHz bandwidth from each
IoT board.

Fig. 7. Average variance of the features extracted from the 25 IoT boards.

the Inter-PUF Distance (different devices). The ideal values of the Inter-PUF
Distance and Intra-PUF Distance discussed in the literature are ≈ 0.5 and 0,
respectively [26]. In our case, the geometric mean of the normalized average vari-
ance of the 95 features used in MAG-PUF, reported in Fig. 7b, is approx. 0.51
for the Inter-PUF Distance and 0.02 for the Intra-PUF Distance, almost coinci-
dental with the optimal values. Such results prove the reliability and uniqueness
of MAG-PUF, and the suitability of the usage of magnetic emissions as PUFs.

4.4 Discussion and Limitations

Impact of the Environmental Noise. As mentioned in Sect. 4.1, we used a
near field magnetic antenna to collect the emissions of the IoT devices. Such a
setup allows for transparently mitigating the effect of surrounding environmental
noises, as the antenna only captures a small near field around its location, i.e.,
on top of the electronic chips of the device. In addition, since any PUFs are
susceptible to noise, the authentication can be done using a set threshold of
multiple CRP to check against the CRP database. This threshold of CRP can
be proportional to the amount of noise in the environment and to the total
number of PUF devices that need to be distinguished [20].

PUF Replay and Reuse Attacks. The main attack applicable on PUFs is
the replay and reuse attack, where the adversary has a temporary access to
the PUF during the authentication exchange. This allows the opportunity for
modeling the responses and launching a replay attack. Conversely to the RF-
PUF proposed in [8], our solution enjoys the possible usage of a potentially
unlimited number of reference functions. As such, MAG-PUF can abide to a
one-time use protocol [30], so as to prevent PUF reuse and modeling attacks. In
one-time use protocols, each nonce (in our case, reference function) is used only
once, thus not being re-usable in case of replay and reuse.

144 O. A. Ibrahim et al.

Scaling up CRPs Pairs. Using MAG-PUF, several methods can be adopted to
scale up CRPs pairs. One is to use different reference functions. As depicted in
Fig. 4, each reference function has a unique profile of unintentional magnetic
emissions, depending on the utilization of the micro-controller resources. To
accommodate a large number of IoT devices, different reference functions can
be used for specific sets of provers. Moreover, different reference function combi-
nations and different acquisition bandwidths can also be used to scale up CRP
pairs.

ML Modeling Attacks. MAG-PUF can also be the target of ML-based
attacks, aiming at modeling the magnetic emission responses to reference func-
tions through repeated eavesdropping of the exchanged authentication CRPs.
On the one hand, MAG-PUF utilizes supervised ML to identify the magnetic
emissions radiated when executing specific reference functions. On the other
hand, as discussed in [8], the attacker would have to resort to unsupervised ML
approaches to classify the eavesdropped CRPs streams. Thus, the modeling time
is proportional to the number of CRPs possessed by attacker, and the accuracy
of the model depends on the ratio of the CRPs possessed to the total length
of the CRP database [11]. As discussed above, MAG-PUF can be scaled to use
theoretically unlimited number of reference functions, and thus, CRPs pairs,
making the task of such attacker harder.

Table 1. Qualitative comparison of MAG-PUF against competing solutions.

Ref. Type Strong
PUF

No RF
interface

Near-field
emissions

Hardware-
agnostic

[8] RF ✓ ✗ ✗ ✓

[15] RF ✓ ✗ ✓ ✗

[10] RF ✓ ✗ ✓ ✗

[31,44] Delay ✓ ✓ N/A ✗

[4,27,47] Delay ✗ ✓ N/A ✗

[2,6] Memory ✓ ✓ N/A ✗

[23] Memory ✗ ✓ N/A ✗

[9,13,14,17] Memory ✗ ✓ N/A ✗

[25] Memory ✗ ✓ N/A ✗

[43] Memory ✗ ✓ N/A ✗

MAG-PUF Magnetic ✓ ✓ ✓ ✓

5 Related Work and Comparison

MAG-PUF enforces authentication using unintentional magnetic emissions radi-
ated by IoT devices when executing specific functions, such as PUFs. A prelim-
inary discussion of this idea appears in [18]. Thus, both EM-based code finger-
printing and PUF techniques are closely related to our work.

MAG-PUF: Magnetic Physical Unclonable Functions 145

EM-based Code Fingerprinting. Code fingerprinting techniques leverag-
ing Electro-Magnetic (EM) emissions have been used for several purposes. For
instance, Sehatbakhsh et al. [38] introduced an EM physical side-channel vulner-
ability caused by the regular use of power management units in computers. Using
such a side-channel, an attacker can create a covert channel to extract sensitive
information. Similarly, Sangodoyin et al. [32] leveraged EM signals leaked from
IoT devices to infer on programs activities and extract information. Sehatbakhsh
et al. [36] presented EMMA, i.e., an attestation method based on EM emanations
emitted from the prover when executing specific code. Both the above schemes
are used to attest the functions execute by the device, but not to authenticate
it. Another contribution is IDEA [21,22], i.e., a framework exploiting EM ema-
nations to detect anomalous activities on embedded devices and Cyber-Physical
Systems (CPS). Additional contributions for EM-based detection of Malware
and deviations in program execution are presented in [5,16,29,35,37]. Moreover,
Ibrahim et al. [19] used unintentional magnetic emissions to fingerprint USB
flash drives. Their approach fingerprints the boot of the USB device, thus being
not applicable for run-time authentication. Overall, the cited works prove the
feasibility of using EM emanations to fingerprint specific devices’ functions, but
were never applied for run-time authentication.

Physical Unclonable Functions. From their introduction in [12], several
PUFs have been proposed.

Delay-based PUFs use delays in the ICs of the devices for authentication. To
name a few, Suh et al. [44] used them for authentication and secret key genera-
tion, while the authors in [31,48] designed multiplexer-based arbiter PUFs.

Radio-frequency (RF)-based PUFs exploit non-idealities in the transmitted
RF signals for authentication. For instance, Deejan et al. [10] introduced RF-
based Certificates of Authenticity (COA) to identify counterfeits, Chatterjee et
al. [8] used deep neural networks to identify wireless transmitters, while Guajardo
et al. [15] leveraged the peaks in the frequency response of IC to identify them.

Memory-based PUFs authenticate devices based on unique randomness of
memory elements. To name a few, the authors in [2,6] used the randomness in
the Resistive Random Access Memory (ReRAM), while the authors in [9,13,17],
and [14] focused on the power-up of the static random access memory (SRAM).
Other elements used are flip-flops [25] and latches [43].

Table 1 summarizes the PUF contributions above discussed, along relevant
features. A novel element characterizing MAG-PUF is the independence from
specific hardware. In addition, the magnetic emanations used by MAG-PUF can
be captured mainly from the near-field of the prover, requiring the attacker to be
in close proximity. Conversely, RF-based PUFs emissions can be eavesdropped
from long distances, widening the attack scenario. MAG-PUF provides also a
Strong PUF, easily allowing for the extraction of a large number of challenge-
response pairs, and it does not require the presence of any RF interface in the
device, as in the case of RF PUFs. Finally, MAG-PUF can utilize a theoretically

146 O. A. Ibrahim et al.

unlimited number of reference functions; conversely, RF-PUFs use wireless mes-
sages, leveraging mostly identical digital data-streams.

6 Conclusions

In this paper, we proposed MAG-PUF, a novel and lightweight physical-layer
authentication solution for resource-constrained IoT devices. MAG-PUF authen-
ticates IoT devices using the uniqueness of the unintentional magnetic emissions
radiated by the devices when executing specific functions. Our conceptual frame-
work is supported by an extensive experimental campaign. Using 25 Arduino IoT
boards and a set of exemplary reference functions, we revealed an outstanding
classification accuracy (over 99%), high flexibility, robustness, and very limited
overhead. At the same time, our investigation shows the robustness of using mag-
netic emissions for PUFs, with relevant metrics very close to the ideal values.

Overall, MAG-PUF emerges as an ideal solution to authenticate constrained
IoT devices, especially where field devices cannot afford complex cryptography
operations. Future work will consider the extraction of emissions on the IoT
devices, with the integration of very-low bandwidth embedded magnetic sensors.

Acknowledgements. This publication was partially supported by award GSRA6-
1-0528-19046, from the QNRF-Qatar National Research Fund, a member of Qatar
Foundation. The information and views set out in this publication are those of the
authors and do not necessarily reflect the official opinion of the QNRF. This publication
was also partially supported by the INTERSECT project, Grant No. NWA.1162.18.301,
funded by Netherlands Organization for Scientific Research (NWO) and the NATO
Science for Peace and Security Programme - MYP G5828 project “SeaSec: DronNets
for Maritime Border and Port Security”.

References

1. Aaronia: PBS2 EMC Probe (2021). https://tinyurl.com/2syhszbw, Accessed 31
July 2022

2. Afghah, F., Cambou, B., Abedini, M., Zeadally, S.: A reram physically unclonable
function (reram puf)-based approach to enhance authentication security in software
defined wireless networks. Int. J. Wirel. Inf. Netw. 25(2), 117–129 (2018)

3. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet
of things: a survey on enabling technologies, protocols, and applications. IEEE
Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

4. Bossuet, L., Ngo, X.T., Cherif, Z., Fischer, V.: A puf based on a transient effect
ring oscillator and insensitive to locking phenomenon. IEEE Trans. Emerg. Topics
Comput. 2(1), 30–36 (2013)

5. Callan, R., Behrang, F., Zajic, A., Prvulovic, M., Orso, A.: Zero-overhead profil-
ing via em emanations. In: Proceedings of the 25th International Symposium on
Software Testing and Analysis, pp. 401–412 (2016)

6. Cambou, B., Orlowski, M.: Puf designed with resistive ram and ternary states. In:
Proceedings of the 11th Annual Cyber and Information Security Research Confer-
ence, pp. 1–8 (2016)

https://tinyurl.com/2syhszbw

MAG-PUF: Magnetic Physical Unclonable Functions 147

7. Camurati, G. et al.: Screaming channels: when electromagnetic side channels meet
radio transceivers. In: ACM CCS, pp. 163–177 (2018)

8. Chatterjee, B., Das, D., Maity, S., Sen, S.: Rf-puf: enhancing IoT security through
authentication of wireless nodes using in-situ machine learning. IEEE Internet
Things J. 6(1), 388–398 (2018)

9. Claes, M., van der Leest, V., Braeken, A.: Comparison of SRAM and FF PUF in
65 nm technology. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161, pp. 47–64.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29615-4 5

10. DeJean, G., Kirovski, D.: RF-DNA: radio-frequency certificates of authenticity.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 346–363.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 24

11. Delvaux, J., Verbauwhede, I.: Side channel modeling attacks on 65 nm arbiter
PUFs exploiting CMOS device noise. In: 2013 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 137–142. IEEE (2013)

12. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security, pp. 148–160 (2002)

13. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74735-2 5

14. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Physical unclonable functions
and public-key crypto for fpga ip protection. In: 2007 International Conference on
Field Programmable Logic and Applications, pp. 189–195. IEEE (2007)

15. Guajardo, J.: Anti-counterfeiting, key distribution, and key storage in an ambient
world via physical unclonable functions. Inf. Syst. Front. 11(1), 19–41 (2009)

16. Han, Y., Etigowni, S., Liu, H., Zonouz, S., Petropulu, A.: Watch me, but don’t
touch me! contactless control flow monitoring via electromagnetic emanations. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1095–1108 (2017)

17. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up sram state as an identifying
fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–
1210 (2008)

18. Ibrahim, O.A., Sciancalepore, S., Di Pietro, R.: Mag-puf - authenticating iot
devices via magnetic physical unclonable functions. In: Proceedings of the 15th
ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec
2022, pp. 290–291. ACM, New York (2022)

19. Ibrahim, O.A., Sciancalepore, S., Oligeri, G., Pietro, R.D.: Magneto: fingerprint-
ing usb flash drives via unintentional magnetic emissions. ACM Trans. Embedded
Comput. Syst. (TECS) 20(1), 1–26 (2020)

20. Islam, M.N., Kundu, S.: Enabling ic traceability via blockchain pegged to embed-
ded puf. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 24(3), 1–23 (2019)

21. Khan, H.A., Sehatbakhsh, N., Nguyen, L.N., Prvulovic, M., Zajić, A.: Malware
detection in embedded systems using neural network model for electromagnetic
side-channel signals. J. Hardware Syst. Secur. 3(4), 305–318 (2019)

22. Khan, H.A., et al.: Idea: intrusion detection through electromagnetic-signal analy-
sis for critical embedded and cyber-physical systems. IEEE Trans. Depend. Secure
Comput. (2019)

23. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly puf
protecting ip on every fpga. In: 2008 IEEE International Workshop on Hardware-
Oriented Security and Trust, pp. 67–70. IEEE (2008)

https://doi.org/10.1007/978-3-642-29615-4_5
https://doi.org/10.1007/978-3-540-74735-2_24
https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/978-3-540-74735-2_5

148 O. A. Ibrahim et al.

24. Maes, R.: Physically Unclonable Functions: Constructions, Properties and Appli-
cations. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41395-7

25. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic pufs from flip-flops on reconfigurable
devices. In: 3rd Benelux Workshop on Information and System Security (WISSec
2008), vol. 17, p. 2008 (2008)

26. Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characterization
of ro-puf. In: 2010 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 94–99. IEEE (2010)

27. Maiti, A., Schaumont, P.: Improved ring oscillator puf: an fpga-friendly secure
primitive. J. Cryptol. 24(2), 375–397 (2011)

28. McGrath, T., et al.: A PUF taxonomy. Appl. Phys. Rev. 6(1), 011303 (2019)
29. Nazari, A., Sehatbakhsh, N., Alam, M., Zajic, A., Prvulovic, M.: Eddie: em-based

detection of deviations in program execution. In: Proceedings of the 44th Annual
International Symposium on Computer Architecture, pp. 333–346 (2017)

30. Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure
computation with (malicious) physically uncloneable functions. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 702–718. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 41

31. Sahoo, D.P., Mukhopadhyay, D., Chakraborty, R.S., Nguyen, P.H.: A multiplexer-
based arbiter puf composition with enhanced reliability and security. IEEE Trans.
Comput. 67(3), 403–417 (2017)

32. Sangodoyin, S., et al.: Remote monitoring and propagation modeling of em side-
channel signals for iot device security. In: 2020 14th European Conference on
Antennas and Propagation (EuCAP), pp. 1–5. IEEE (2020)

33. Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with Kernels: Support Vec-
tor Machines, Regularization, Optimization, and Beyond. MIT press, Cambridge
(2002)

34. Sciancalepore, S., Oligeri, G., Piro, G., Boggia, G., Di Pietro, R.: EXCHANge:
securing IoT via channel anonymity. Comput. Commun. 134, 14–29 (2019)

35. Sehatbakhsh, N., Alam, M., Nazari, A., Zajic, A., Prvulovic, M.: Syndrome: spec-
tral analysis for anomaly detection on medical iot and embedded devices. In: 2018
IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
pp. 1–8. IEEE (2018)

36. Sehatbakhsh, N., Nazari, A., Khan, H., Zajic, A., Prvulovic, M.: Emma: Hard-
ware/software attestation framework for embedded systems using electromagnetic
signals. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 983–995 (2019)

37. Sehatbakhsh, N., Nazari, A., Zajic, A., Prvulovic, M.: Spectral profiling:
observer-effect-free profiling by monitoring em emanations. In: 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–11.
IEEE (2016)

38. Sehatbakhsh, N., Yilmaz, B.B., Zajic, A., Prvulovic, M.: A new side-channel vul-
nerability on modern computers by exploiting electromagnetic emanations from
the power management unit. In: 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 123–138. IEEE (2020)

39. Semiconductor Eng.: IoT Device Security Makes Slow Progress (2019). https://
semiengineering.com/iot-device-security-makes-slow-progress/, Accessed 31 July
2022

40. Shamsoshoara, A., Korenda, A., Afghah, F., Zeadally, S.: A survey on physical
unclonable function (PUF)-based security solutions for Internet of Things. Com-
put. Netw. 183, 107593 (2020)

https://doi.org/10.1007/978-3-642-41395-7
https://doi.org/10.1007/978-3-642-38348-9_41
https://semiengineering.com/iot-device-security-makes-slow-progress/
https://semiengineering.com/iot-device-security-makes-slow-progress/

MAG-PUF: Magnetic Physical Unclonable Functions 149

41. Siow, E., et al.: Analytics for the Internet of Things: a survey. ACM Comput. Surv.
(CSUR) 51(4), 1–36 (2018)

42. Statista: Internet of Things (IoT) and non-IoT active device connections world-
wide from 2010 to 2025 (2020). https://www.statista.com/statistics/1101442/iot-
number-of-connected-devices-worldwide/, Accessed 31 July 2022

43. Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pj/bit chip identification circuit using
process variations. IEEE J. Solid-State Circ. 43(1), 69–77 (2008)

44. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and
secret key generation. In: 2007 44th ACM/IEEE Design Automation Conference,
pp. 9–14. IEEE (2007)

45. Treedix: Arduino UNO (2021). https://tinyurl.com/TreedixArduinoUNO,
Accessed 31 July 2022

46. Tuyls, P., Škoric, B., Kevenaar, T.: Security With Noisy Data: On Private Bio-
metrics, Secure Key Storage and Anti-Counterfeiting. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-1-84628-984-2

47. Yin, C.E., Qu, G.: Temperature-aware cooperative ring oscillator puf. In: 2009
IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 36–
42. IEEE (2009)

48. Zalivaka, S.S., Ivaniuk, A.A., Chang, C.H.: Reliable and modeling attack resis-
tant authentication of arbiter puf in fpga implementation with trinary quadruple
response. IEEE Trans. Inf. Forensics Secur. 14(4), 1109–1123 (2018)

https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://tinyurl.com/TreedixArduinoUNO
https://doi.org/10.1007/978-1-84628-984-2

A Cross-layer Plausibly Deniable
Encryption System for Mobile Devices

Niusen Chen1, Bo Chen1(B), and Weisong Shi2

1 Department of Computer Science, Michigan Technological University,
Michigan, USA
bchen@mtu.edu

2 Department of Computer Science, Wayne State University, Michigan, USA

Abstract. Mobile computing devices have been used to store and pro-
cess sensitive or even mission critical data. To protect sensitive data
in mobile devices, encryption is usually incorporated into major mobile
operating systems. However, traditional encryption can not defend
against coercive attacks in which victims are forced to disclose the key
used to decrypt the sensitive data. To combat the coercive attackers,
plausibly deniable encryption (PDE) has been introduced which can
allow the victims to deny the existence of the sensitive data. However,
the existing PDE systems designed for mobile devices are either insecure
(i.e., suffering from deniability compromises) or impractical (i.e., unable
to be compatible with the storage architecture of mainstream mobile
devices, not lightweight, or not user-oriented).

In this work, we design CrossPDE, the first cross-layer mobile PDE
system which is secure, being compatible with the storage architecture of
mainstream mobile devices, lightweight as well as user-oriented. Our key
idea is to intercept major layers of a mobile storage system, including the
file system layer (preventing loss of hidden sensitive data and enabling
users to use the hidden mode), the block layer (taking care of expensive
encryption and decryption), and the flash translation layer (eliminating
traces caused by the hidden sensitive data). Experimental evaluation on
our real-world prototype shows that CrossPDE can ensure deniability
with a modest decrease in throughput.

Keywords: PDE · Mobile devices · Coercive attacks ·
Confidentiality · Cross-layer · Flash memory

1 Introduction

With the increased use of mobile computing devices, a large amount of sensitive
data are collected, stored, and managed in them. To protect sensitive data, full
disk encryption (FDE) has been integrated into major mobile operating systems
including Android and iOS. FDE transparently encrypts/decrypts all the user
data at the block layer and, without having access to the secret key, an adversary
will not be able to learn the sensitive data even if the adversary can steal the

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 150–169, 2023.

https://doi.org/10.1007/978-3-031-25538-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_9&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_9

A Cross-layer Plausibly Deniable Encryption System for Mobile Devices 151

entire disk. FDE however, cannot defend against a coercive attacker who can
capture the device owner and coerce the owner for the secret key. For example,
a human right worker may be forced to disclose the encrypted data stored in
his/her smartphone when crossing the border of a country in conflict. To defend
against the coercive attacker, plausibly deniable encryption (PDE) was proposed.
Its main idea is, the sensitive data are encrypted in such a way that, only if the
true secret key is used for decryption, the original sensitive data will be revealed,
but if a decoy key is used, the decryption will result in some non-sensitive data;
therefore, when a device owner is coerced, the owner can simply disclose the
decoy key, protecting the true key as well as the hidden sensitive data.

To implement PDE in a mobile device, currently there are three options:
1) deploying the PDE at the block layer of a mobile device [8,9,17,22,31,37]
(Category I), and 2) integrating the PDE with a flash-specific file system
YAFFS [11,30] (Category II), and 3) integrating the PDE with the flash transla-
tion layer [10,12,23,25] (Category III). The mobile PDE systems in the Category
I are insecure due to the potential deniability compromises when the adversary
can have access to the internal flash memory and extract traces of hidden sensi-
tive data which are invisible to the block layer [14,23]. The mobile PDE systems
in the Category II are strongly coupling with YAFFS which is rarely used in
today’s mobile computing devices; instead, a vast majority of the existing mobile
computing devices (including the ever-growing IoT devices) use flash memory
cards via flash translation layer (FTL) and, the Category-II PDE systems are
incompatible with this mainstream flash storage architecture. The mobile PDE
systems in the Category III integrate the entire PDE (i.e., with expensive opera-
tions like disk encryption [10,23,25], WOM codes [12] or dummy writes [10,25])
into the FTL, turning it a “heavyweight” software component. However, the
FTL was originally designed for handling unique nature of NAND flash, which
is usually run by low-end internal hardware [18] of a flash-based block device
(e.g., a microSD card), and the heavyweight FTL may significantly decrease the
I/O throughput of the PDE system. In addition, the Category-III mobile PDE
systems are located at the lower FTL layer which stays far away from users
staying at the application layer, and hence may be difficult to be managed by
users (i.e., not user-oriented).

The limitations observed from the existing mobile PDE systems motivate
us to re-consider the PDE system design in a holistic manner. Our resulted
design, CrossPDE, is the first mobile PDE system which simultaneously satisfies
four properties: (P1) resistance against the coercive attackers, i.e., the design is
secure even if the adversary can have access to the internal flash memory; and
(P2) being compatible with the architecture of mainstream mobile computing
devices; and (P3) keeping the FTL lightweight ; and (P4) being user-oriented.
Our key idea is to decouple the PDE functionality, and to separate them among
different storage layers (i.e., the file system layer, the block device layer, and
the FTL layer) of a mobile device. The outcome is the first cross-layer PDE
system design for mobile devices. To be resistant against the coercive attackers
(P1), we distill the minimal functionality necessary for eliminating deniability
compromises on the flash memory, and place it to the FTL layer. In this way,

152 N. Chen et al.

the FTL remains thin and the extra overhead imposed on the less powerful [18]
internal hardware of the flash-based block device will be minimized (P3). Note
that the expensive PDE functionality including disk encryption/decryption as
well volume management are conducted at the block layer which will be run
by the more powerful hardware of the host computing device. In addition, the
file system layer provides an immediate interface for the user to manage the
PDE functionality at the lower layers (P4). Last, such a design is immediately
compatible with mainstream mobile computing devices using flash memory cards
via FTL (P2).

However, after decoupling the PDE functionality and moving them across
multiple storage layers, we face a few new challenges:

1) To avoid deniability compromises, the FTL should be informed if the user is
working in a hidden mode which manages hidden sensitive data. However, the
user is typically located at the application layer, and how can he/she securely
convey such information to the low-layer FTL? This issue becomes more
challenging due to the deployment of disk encryption at the block layer, since
everything going through the block layer will be encrypted transparently. To
resolve this challenge, we have reserved a few logical block addresses which
are accessible to the FTL, and used the file system as a bridge to issue I/Os
on the reserved block addresses with secret patterns, so that the messages
from the application layer can be conveyed stealthily to the FTL.

2) The loss of hidden sensitive data is a general issue for all PDE systems and,
in our setting, this issue turns even more challenging, due to the separation
of PDE functionality across multiple layers. Resolving this challenge requires
coordinating the file system layer, the block layer and the FTL layer. By
hiding an encrypted hidden volume at the end of an encrypted public volume,
and deploying in the public volume a file system which has a low probability
of writing the end of disk by nature, we can significantly mitigate loss of
hidden sensitive data, without touching the lower FTL layer.

3) Eliminating all potential deniability compromises in the flash memory is chal-
lenging. We have identified two new deniability compromises in the flash
memory and carefully mitigated all the known compromises discovered to
date.

Contributions. We summarize our contributions as follows:

– We have discovered new PDE compromises in the underlying flash memory
of mobile devices which have not been identified in the literature. We have
also provided novel mitigation strategies.

– We have designed the first cross-layer PDE system that meets all following
requirements: 1) being secure, and 2) being compatible with the mainstream
storage architecture of mobile devices, and 3) imposing small burden on the
underlying flash device and, 4) providing interface for users to manage the
system.

– We have implemented CrossPDE by modifying and integrating a few open-
source projects. In addition, we have ported our prototype to a real-world
testbed for mobile devices to assess its performance.

A Cross-layer Plausibly Deniable Encryption System for Mobile Devices 153

2 Background and Related Work

2.1 Background Knowledge

Flash Memory. NAND flash has dominated storage media of today’s mobile
devices due to its high I/O speed and low noise. The NAND flash is usually
divided into blocks (a few hundreds of KBs in size), and each block is divided into
pages (a few KBs in size). Each flash page has a small out-of-band (OOB) area,
which can store extra information like error correction code. Compared to regular
hard disk drives (HDD), NAND flash exhibits some unique characteristics: 1)
The unit of I/O is a page, but the unit of erasure is a block. 2) A flash block
can not be re-programmed before it is erased. Therefore, flash memory typically
performs out-of-place instead of in-place updates. 3) A flash block can only be
programmed/erased for a limited number of times.

Flash Translation Layer (FTL). To use flash memory, the most popular
approach today is to emulate it as a block device via flash translation layer
(FTL). In this way, traditional block-based file systems (e.g. FAT32, EXT4)
can be directly deployed. The FTL stays between the file system and the raw
NAND flash, and implements four core functions: address translation, garbage
collection, wear leveling, and bad block management.

Flash memory performs out-of-place updates, i.e., for an overwrite operation
performed by the OS, the FTL will place the new data to a empty page, and
invalidate the page storing the old data. From the OS’s view, the logical block
address (LBA) of the data remains the same. However, the physical block address
(PBA) of the data has been changed. Therefore, the FTL needs to keep track
of mappings between LBAs and PBAs for address translation. In addition, since
the overwrite operations will invalidate flash pages storing the old data, garbage
collection is needed to reclaim those blocks with a large number of invalid pages.
Each flash block can be only programmed/erased for a limited number of times.
Therefore, we need a mechanism which can distribute programmings/erasures
(P/Es) evenly across the entire flash to prolong its service life. Wear leveling is
such a mechanism which can even out P/Es among flash blocks by relocating
frequently updated data to blocks with less P/Es. Flash memory is vulnerable to
wear and, over time, a flash block may turn “bad” making it unable to reliably
store data. Bad block management can manage those bad blocks.

Full Disk Encryption (FDE). FDE encrypts/decrypts the entire disk trans-
parently to users. FDE includes both software-based and hardware-based disk
encryption. The software-based FDE is usually deployed at the block layer, so
that any data written to or read from the disk can be transparently encrypted or
decrypted. Popular implementations include TrueCrypt [2], BitLocker [27], etc.

Plausibly Deniable Encryption (PDE). To implement PDE, we can use
a steganographic file system, which hides sensitive data in either regular files
or randomness arbitrarily filled. We can also use the hidden volume technique.
The entire disk is filled with random data initially. Two volumes, a public and a

154 N. Chen et al.

hidden volume, are deployed on the disk. The public volume is used to store non-
sensitive data, and the hidden volume is used to stored sensitive data. The public
volume is encrypted via FDE using a decoy key and placed across the entire disk.
The hidden volume is encrypted via FDE using a truly secret key (i.e., true key),
and placed to the end of the disk starting from a secret offset. In view of the
public volume, the space filling with the randomness is just the empty space and
can be used to store public data. Therefore, the public data may overwrite the
hidden data, causing data loss. Upon being coerced, the device owner can simply
disclose the decoy key; the adversary uses the decoy key to decrypt the public
volume, but is unaware of existence of the hidden volume.

2.2 Related Work

Upper-Layer PDE Systems. Steganographic file systems [4,5,21,26,29] hide
sensitive data among either regular files or random data, and maintain addi-
tional redundancies of hidden data across the disk to avoid their loss. Image
steganography has also been leveraged to construct PDE systems [13]. Ver-
aCrypt [3]/TrueCrypt [2] introduces a hidden volume technique, which hides sen-
sitive data in a dedicated volume that is stored hidden at a secret offset towards
the end of the disk. Mobiflage [31,32] extends the hidden volume technique for
Android OS. Other follow-up works enhance the mobile PDE systems supporting
various features, e.g., multi-level deniability [22,37], file system friendliness [8],
dynamic mounting of hidden volumes [17,22]. Major limitations of the afore-
mentioned PDE systems are, they are purely deployed at upper layers, and do
not consider deniability compromises in the underlying flash memory.

Lower-Layer PDE Systems. DEFY [30] and INFUSE [11] both integrated
a PDE design into flash file system YAFFS, which unfortunately is rarely used
nowadays. DEFTL [23] and PEARL [12] have moved the PDE to the FTL, but
all of them suffer from some common drawbacks: 1) They impose a significant
burden on the flash memory firmware (managed by low-end internal hardware of
the flash device), rendering them impractical for broad deployment. Especially,
DEFTL performs the expensive disk encryption and decryption purely in the
FTL. PEARL achieves PDE by encoding (i.e., WOM codes) both the public
and the hidden data together in the FTL and, since both public and hidden
data are “entangled”, I/Os on either one would be expensive. 2) They do not
consider upper layers and the user is difficult to manage the PDE staying in the
FTL. Liao et al. [25] proposed a TrustZone-enhanced mobile PDE system which
isolates sensitive data in the memory to avoid memory leaks. However, they still
heavily rely on the FTL to isolate the sensitive data in the external storage.

3 Model and Assumptions

System Model. We consider a mobile computing device (Fig. 1) which is
equipped with a flash-based block device, e.g., an MMC/eMMC card, an
SD/miniSD/microSD card, or a UFS card. We do not consider powerful flash

A Cross-layer Plausibly Deniable Encryption System for Mobile Devices 155

Fig. 1. The architecture of a mainstream mobile device.

devices like SSDs, which are typically used in the more powerful personal com-
puters. Each flash device is equipped with its internal processor and RAM, and
manages the raw NAND flash via the FTL. It usually exposes a block-based
access interface, so that conventional block-based file systems like EXT4, FAT32,
NTFS can be seamlessly deployed on top of it.

Adversarial Model. We consider a computationally-bounded adversary, which
can capture a victim user and his/her mobile device. The adversary can access
the external storage of the device, and coerce the user for keys to decrypt any
encrypted sensitive data. The adversary does not trust the user and may try all
means to identify the existence of PDE. For example, the adversary may enter the
public mode and use it as a regular user to check any traces of hidden data; the
adversary may check the file system in the public mode for anything abnormal
in the file hash; moreover, the adversary may perform forensic analysis [24] on
the disk. For analysis purposes, we assume the adversary can acquire a copy of
the raw flash memory image via state-of-the-art laboratory techniques [6].

Assumptions. We rely on a few common assumptions which are also required in
prior mobile PDE systems [8,23,31]: 1) The adversary is assumed to be rational
and will stop coercing the victim once convinced that the decryption key is
disclosed [31]. 2) The adversary cannot capture a victim user when he/she is right
working in the hidden mode; otherwise, the hidden data are disclosed trivially. 3)
We assume the bootloader and the OS are not infected by the malware controlled
by the adversary; otherwise, the malware can monitor the system and trivially
know the existence of PDE. In addition, the user will not use untrusted apps
controlled by the adversary while working in the hidden mode, in case that
sensitive information about the hidden mode will be leaked to those apps. 4)
We assume the adversary will not perform reverse engineering over the code
of the device after capturing it. To prevent the adversary from capturing the
victim device multiple times and correlating the disk images captured each time
to compromise PDE, we assume each time after the user is caught and released,
he/she will take various actions including but not limited to: disconnecting the
device from the network, scanning the device via antivirus tools, copying out the
data, conducting a factory reset, etc.

156 N. Chen et al.

4 CrossPDE: A Cross-layer Mobile PDE System

4.1 Design Rationale

Typically, we can rely on either the steganographic file systemor the hidden volume
technique to build a mobile PDE system. We choose the hidden volume technique
(Sect. 2.1) which is more I/O efficient and fits the mobile devices better: First, the
steganographic file system requires maintaining multiple redundant copies of hid-
den data across the disk to mitigate data loss, leading to significant storage over-
head. On the contrary, the hidden volume technique does not require maintaining
redundant sensitive data by smartly hiding them at the end of the disk. Second,
the steganographic file system incurs significant overhead when writing the hid-
den data due to writing the redundant copies. On the contrary, the hidden volume
technique can efficiently write the hidden data as no redundant writes are needed.
Using the hidden volume technique, there are two modes. A public mode and a hid-
den mode, will be introduced which allow the user to manage the public and the
hidden volume, respectively. Upon booting, if the user provides the decoy key, the
OS will mount the public volume and the system will enter the public mode; oth-
erwise if the user provides the true key, the OS will mount the hidden volume and
the system will enter the hidden mode.

This simple adoption of the hidden volume technique is insufficient as the
adversary can compromise PDE by having access to the underlying flash mem-
ory. Unlike prior works [12,23] which integrate the entire PDE with the flash
translation layer to avoid the aforementioned compromise, we instead divide the
PDE functionality and to separate them into multiple layers: the flash translation
layer will manage flash blocks associating with the hidden mode to eliminate any
deniability compromises; the block layer will manage both volumes and perform
disk encryption/decryption; the file system layer will manage the file system
deployed on each volume, and act as a bridge for the user to manage the hidden
mode in lower layers of the storage system. An overview of our design is shown
in Fig. 2, with three key ideas elaborated below:

Fig. 2. An overview of our design.

A Cross-layer Plausibly Deniable Encryption System for Mobile Devices 157

Idea 1: Mitigating Loss of Hidden Sensitive Data. Loss of hidden data is
a general problem for any PDE systems [4], as sensitive data are hidden among
public data and, to ensure plausible deniability, the public mode should not be
aware of the existence of the hidden data, and may overwrite them unintention-
ally. To avoid data loss at the block layer, we embed the hidden volume at the
end of the disk, with three extra considerations: 1) The public volume and the
hidden volume should be managed by a separate file system, i.e., a public file
system for the public volume, and a hidden file system for the hidden volume.
2) To prevent the public file system from writing the end of the disk, we choose
exFAT as the public file system, a mobile file system which writes data sequen-
tially from the beginning of the disk, and has a low probability of overwriting
the sensitive data stored hidden at the end of the disk. 3) The user is suggested
to pay attention to the disk space used by the public data, because the public
data are allowed to use the entire space of the disk (Sect. 2.1) and, if the disk is
filled, the hidden data will be overwritten unavoidably.

A unique hardware feature of mobile devices is the use of flash memory, which
is encapsulated inside the flash-based block device. Therefore, preventing data
loss merely at the block layer may not be sufficient. We need to ensure that there
is no data loss at the flash translation layer (FTL) as well. We argue that by
embedding a hidden volume at the end of the disk and deploying exFAT as the
public file system, we will not suffer from loss of hidden sensitive data at the
FTL because: The entire disk (i.e., the block layer) is initially filled with random
data, and from the view of the FTL, those random data are written by upper
layers and hence are all valid. The sensitive data written to the hidden volume
are stored stealthily among random data and, the flash blocks storing them will
not turn invalid if they are not overwritten by the public file system deployed
at the block layer. Our deployed public file system exFAT has a low probability
of writing the end of the disk, and hence has a low probability of overwriting
the hidden volume stored stealthily at the end of the disk. Therefore, the flash
blocks storing hidden sensitive data will not be turned invalid and hence will
not be reclaimed by garbage collection of the FTL.

Idea 2: Thoroughly Eliminating Deniability Compromises in the Flash
Translation Layer. Merely deploying a hidden volume at the block layer will
suffer from deniability compromises as the underlying flash translation layer
(FTL) will not be aware of the existence of the hidden volume at the block layer
and hence will not hide those traces created by the hidden data [23]. Prior works

Fig. 3. Newly discovered deniability compromises in the flash memory.

158 N. Chen et al.

have identified a few such compromises [14,23]. We have discovered two new
compromises which have not been identified before (see Fig. 3):

New Deniability compromise #1: Initially, the hidden volume technique fills
the entire disk with randomness which establishes an initial mapping1 between
the block layer and the flash memory blocks. At the block layer, the public file
system writes at the beginning of the disk; therefore in the flash memory, the
public data will occupy those blocks at the beginning of the flash memory. In
addition, the hidden file system writes data at the end of the disk; therefore in
the flash memory, the hidden data will occupy those blocks at the end of the
flash memory. Without PDE, as the public file system writes data sequentially
from the beginning of the disk, only the blocks at the beginning of the flash
memory may be invalidated and moved to the free block pool. However, with
PDE, the user may enter the hidden mode to delete/overwrite hidden data, and
the blocks located at the end of the flash memory may be invalided and move
to the free block pool. Such a difference may lead to compromise of PDE.

NewDeniability Compromise#2: The hidden volume is part of the public volume.
Therefore, a flash page used by the hidden volume data may be also used by the
public volume data. The effect is, a flash page which stores hidden data may be
mapped to two different LBAs, one for the public volume and the other for the
hidden volume. Note that the FTL typically maintains a mapping table keeping
track of mappings between LBAs and PBAs; to allow restoring this table upon
sudden failures (e.g., power loss), the OOB area of each flash page will also keep
its corresponding LBA. Therefore, when writing a flash page in the hidden mode,
the OOB area of the page will keep track of its corresponding LBA of the hidden
volume. This will be detected by the adversary, leading to compromise of PDE.

To mitigate the compromise #1, our strategy is: when working in the hidden
mode, the FTL will not move flash blocks to the free block pool. Especially,
the FTL in the hidden mode will work differently with the modified functions
(i.e., the block allocation, garbage collection, wear leveling function specified for
the hidden mode) and new data structures (i.e., the mapping table specified
for the hidden mode). To mitigate the compromise #2, our strategy is: when
writing a flash page in the hidden mode, the FTL will always commit the flash
page’s corresponding LBA of the public mode (rather than that of the hidden
mode) to its OOB. The downside is that the OOB of the flash pages in the
hidden mode cannot be used to restore the mapping table maintained in this
mode upon sudden failures. This downside can be alleviated by embedding the
corresponding LBA of the hidden mode to the content of each flash page.

Besides our newly discovered compromises, there is one compromise identi-
fied by [14], without a mitigation strategy being provided [14]. The compromise
comes from a special type of flash block which is completely filled with un-
decryptable randomness, with a few pages in arbitrary locations of the block

1 Data stored at the beginning of the block layer are mapped to those blocks at the
beginning of the flash memory, as the system usually fills randomness sequentially
from the beginning of the disk, and the FTL uses a log-structured writing strategy.

A Cross-layer Plausibly Deniable Encryption System for Mobile Devices 159

invalidated. This type of flash block is generated when the user modifies some
of hidden sensitive data. To mitigate this compromise, we introduce an inde-
pendent data structure to keep track of pages invalidated by the hidden data,
and this data structure is only visible to the hidden mode. In other words, a
page invalidated by the hidden data still appears as valid in the public mode.
Finally, to ensure all the deniability compromises can be eliminated, we also
handle those old compromises identified in [23] via strategies introduced in their
work, including: 1) the hidden data will not share flash blocks with public data;
2) and if the hidden data cannot fill a flash block upon quitting the hidden mode,
the remaining space of this block will be filled with randomness.

Idea 3: Secure Cross-Layer Communication. Our design is cross-layer and,
therefore, components of the hidden mode will stay at different layers and need
to communicate with each other securely. Especially, when entering the hidden
mode, the user should securely inform the FTL that he/she is now in the hidden
mode and the FTL should actively eliminate special traces in the flash memory
caused by hidden data; when quitting the hidden mode, the user should inform
the FTL as well. A strawman solution is that, the user crafts a special string
and writes it to the disk via the regular “write” system call. The FTL will
monitor any write requests issued by the block layer and, once it detects this
special string, it will know that the user has conveyed a request. This solution is
problematic because: The hidden volume is encrypted by FDE at the block layer
and, all data written to the hidden volume will be encrypted before passing to
the FTL; therefore, to search this special string, the FTL may need to decrypt
all the data being received, which is expensive.

Our solution is, in the hidden mode, the user issues a request to the hidden file
system and, upon receiving such a request, the hidden file system will pass it to
the FTL. To allow the hidden mode to communicate with the hidden file system
without affecting existing system calls, we create a unique file in the hidden file
system, and the hidden mode can issue I/Os on this file via the regular system
calls; the hidden file system can monitor I/Os on this special file to communicate
with the hidden mode. To allow the hidden file system to send a request to the
FTL without affecting the existing I/O interface of the block device, we reserve
a few special LBAs, and the hidden file system will issue I/Os on the reserved
LBAs via the regular block I/O interface; the FTL can monitor I/Os on the
reserved LBAs to communicate with the hidden file system. To prevent this
“hidden interface” of the FTL from being abused, authentication needs to be
incorporated. Specifically, this “hidden interface” can only be activated if I/Os
with a secret pattern are performed on the reserved LBAs and only the hidden
file system knows this secret pattern.

4.2 Design Details

Following the rationale, we have designed CrossPDE, the first cross-layer mobile
PDE system. CrossPDE separates PDE functionality into major layers of a mobile
storage system: the flash translation layer (L0), the block layer (L1), and the file
system layer (L2). Design details of each layer are elaborated below:

160 N. Chen et al.

L0 : Flash Translation Layer. CrossPDE modifies a few major functions in the
FTL to support PDE. The bad block management function does not cause deni-
ability compromises and therefore, we do not need to modify it.

Block Allocation. In the public mode, the FTL uses the log-structured writing,
which typically writes public data to blocks from the beginning of the entire flash.
In the hidden mode, the block allocation should be carefully performed to avoid
deniability compromises. There are a few rules: 1) When writing hidden data,
the FTL should not use empty pages from those blocks occupied by the public
data. 2) When writing hidden data, the FTL should use those blocks located
at the end of the flash (they are typically mapped to the areas located at the
end of the block layer which are very unlikely overwritten by the public mode).
Especially, the FTL in the hidden mode will allocate blocks in a reverse direction
starting from the end of the flash, excluding the free blocks reserved initially.
When allocating a block2, the FTL will read all the LBAs from the OOBs of this
block (also copy out the valid data if there are any, which need to be written back
after block erasure), and immediately erase this block. The hidden data will be
written sequentially to empty pages of this block. Note that when writing a page
in the hidden mode, we will reuse the LBA of the public mode, and commit it to
the corresponding OOB to avoid deniability compromises (Sect. 4.1). The empty
pages of the block will be used until they are exhausted in the hidden mode. If
the user quits the hidden mode and there are still unused empty pages in a block,
the empty pages should be filled with randomness. A special case is an overwrite
on the existing hidden data, in which the corresponding flash pages should be
first invalidated. For deniability, the FTL should maintain an independent data
structure (i.e., page validity table) keeping track of which pages are invalidated
in the hidden mode. The page validity table is only used by the hidden mode
and remains invisible to the public mode.

Garbage Collection. The garbage collection is performed periodically during
the idle time. In the public mode, the garbage collection runs as follows: The
FTL finds a dirty block which has the largest number of invalid pages, copies
all valid data in this block to a free block, and places the dirty block to the
free block pool. In the hidden mode, however, the garbage collection should be
performed differently, since its dirty blocks should not be placed to the free block
pool (Sect. 4.1). Especially, among those flash blocks storing hidden data, the
FTL will find a dirty block which has the largest number of invalid pages; it will
then handle the dirty block as follows: 1) It reads all the LBAs from the OOBs of
the dirty block, and copies out all the valid data from this block; 2) It erases the
dirty block; 3) It writes the valid data back to the block, sequentially from the
first page; the remaining empty pages should be filled with randomness. When
writing each page, the original LBA should be committed to its OOB.

2 Those blocks which are 1) reserved for the hidden mode, and 2) entirely or partially
filled with actual randomness, can be allocated.

A Cross-layer Plausibly Deniable Encryption System for Mobile Devices 161

Wear Leveling. In the public mode, the wear leveling runs as follows: Upon a
certain wear leveling threshold is reached, the FTL: 1) selects a block (X) which
is currently in use with the smallest erasure count; and 2) selects another block
(Y) from free block pool with the largest erasure count; and 3) erases block Y
and copies all data from block X to block Y; and 4) updates the mapping table.
The rationale is that the data stored in block X is cold and should be relocated to
block Y, which has the largest erasure count. In the hidden mode, wear leveling
needs to be implemented differently as the blocks for the hidden mode cannot
be placed to the free block pool (Sect. 4.1). When a certain threshold is reached,
the FTL selects a block (X) with the largest erasure count and a block (Y) with
the smallest erasure count among blocks for the hidden mode; it then exchanges
the data between block X and block Y (under the help of RAM or a free block,
but the free block should be cleaned after it). Note that: 1) The hidden mode
should maintain its own table for keeping track of erasure counts for its reserved
blocks, and this erasure count table is invisible to the public mode. 2) The wear
leveling in the public mode usually will not use blocks reserved for the hidden
mode, as it only swaps blocks storing public data with those in the free block
pool, but the blocks storing hidden data will never enter the free block pool.

Other Operations. The FTL monitors I/Os issued by the upper layer on some
reserved LBAs. If such I/Os have been detected, the FTL will determine the
request type based on the I/O patterns. The most important requests are “start”
and “quit” request. For the “start” request, the FTL knows that the hidden
mode is activated, and starts to use the data structures (e.g., the mapping table,
the page validity table, the erasure count table) and functions (block allocation,
garbage collection, wear leveling) specifically for the hidden mode. For the “quit”
request, the FTL knows that the hidden mode terminates. It will identify the
block occupied by the hidden data but has not been completely filled, and fill
the empty pages with randomness.

L1 : BlockLayer. The public/hidden volume is deployed on the block layer. Both
volumes are encrypted by full disk encryption (run by the processor and memory
of host computing device) via the decoy and the true key, respectively. The public
volume will be managed by the public mode via the public file system and, any
data written by the user in the public mode will be passed down by the public
file system, and encrypted transparently with the decoy key at the block layer
before being passed to the FTL. Similarly, the hidden volume will be managed
by the hidden mode via the hidden file system and, any data written by the
user in the hidden mode will be passed down by the hidden file system, and
encrypted transparently with the true key at the block layer. Reading data from
both volumes will be performed in a reverse manner.

L2 : File SystemLayer. In the public mode, we deploy exFAT, a block-based
mobile file system which writes data sequentially from the beginning of disk.
In the hidden mode, we can deploy any block-based file system on the hidden
volume. This hidden file system acts as a “bridge” between the user working in

162 N. Chen et al.

the hidden mode and the lower storage layers. To enable this bridge, we modify
the hidden file system as follows: We maintain a “special file”, which is created
when the user enters the hidden mode for the first time. Note that the name for
this special file should be unique and different from other files in the system, and
a large enough random number can be used for this file name. The hidden file
system will monitor I/Os on this special file and, once an I/O request is issued
by the user on the file, it will determine the request type and issue I/Os (for dif-
ferent user requests, the hidden file system will use different secret I/O patterns)
to the reserved LBAs. Note that we can easily convert the sector addresses on
the block layer to the LBAs, e.g., if the sector size is 512 bytes, and the page
size is 2KB, each sector address is translated to the LBA by dividing 4.

4.3 User Steps

To process non-sensitive data, the user should boot into the public mode via the
decoy key. The user should use this mode regularly to ensure a better plausibil-
ity [31]. To process sensitive data, the user should boot into the hidden mode via
the true key. Upon entering the hidden mode, the user can issue a “start” request
to the “special file” maintained by the hidden file system, and the hidden file
system will then issue a “start” request downwards; similarly, upon quitting the
hidden mode, the user can issue a “quit” request to the “special file”, and the
hidden file system will then issue a “quit” request downwards. To prevent traces
of hidden sensitive data from remaining in the memory, the user is suggested to
power-off the device upon quitting the hidden mode.

5 Analysis and Discussion

Security Analysis of CrossPDE. We first show that by running the public
mode, the adversary is not able to identify the existence of PDE. Using the
decoy key coerced from the victim, the adversary can boot into the public mode,
and can have access to all data files, configuration files, system logs, file system
metadata, etc. However, all the aforementioned data belong to the public mode
and, none of the data belonging to the hidden mode can be found as both modes
are strictly isolated. In addition, the adversary may perform forensic analysis
over the memory (e.g., extracting the memory content using memdump) in the
public mode. This would not help, as CrossPDE requires the user to shut down
the device when quitting the hidden mode and the traces should have been
eliminated from the memory. The adversary may also analyze the raw data on
the disk (the block layer), but will not be able to identify the existence of the
hidden volume which is stored stealthily among the randomness.

We also show that by analyzing the raw data on the flash memory, the
adversary is not able to identify the existence of PDE. By modifying the major
functionality (e.g., block allocation, garbage collection, wear leveling) of the FTL,
CrossPDE successfully eliminates all the traces caused by the hidden mode, so
that a flash block storing hidden sensitive data cannot be differentiated from a

A Cross-layer Plausibly Deniable Encryption System for Mobile Devices 163

flash block storing random data. Therefore, by analyzing the raw data on the
flash memory, the adversary can only identify 3 types of flash blocks: 1) a flash
block filled with public non-sensitive data; and 2) a flash block stores public data
at the beginning and the remaining pages are empty; and 3) a flash block filled
with (valid) random data. This is no different from a flash storage medium which
is initially filled with randomness and has an FDE (via decoy key) deployed on
the entire disk. In addition, the adversary is not able to identify the existence of
PDE in the free block pool as well as the OOB areas of flash pages.

Mitigating Multi-snapshot Adversaries. CrossPDE can defend against a
multi-snapshot adversary which can access the victim device multiple times,
assuming that the victim is alert and will reset the device each time after being
captured and released. To reset the device, the victim will 1) back up the data,
and 2) conduct a full reset to clear both the memory and the external storage
(via secure deletion [20]), and 3) re-fill new randomness and re-write the public
and the hidden data back to the device, encrypted with a new decoy and true
key, respectively. Such a reset operation allows the victim to plausibly deny the
changes over the empty space of the disk.

Denying the Existence of a Partition Filled with Random Data.
CrossPDE requires filling the entire disk with randomness initially. A plausi-
ble explanation can be, the user has securely erased the content in the partition
using a tool which erases data by overwriting it with random data [28].

Mitigating Timing Attacks. Yu et al. [37] discovered a booting-time attack,
which may happen when authenticating a given key (decoy or true key) for
entering the corresponding mode. The reason is: given the decoy key, the public
mode can be entered fast, as the bootloader will always try to boot the public
volume first; however, given a wrong key, the bootloader will return slowly, as
it first tries to boot the public volume and then the hidden volume, and finally
returns with an error prompt which takes more time. To obfuscate this time
difference, we can add extra time delay when booting with the decoy key [37].

Protecting the PDE Code. CrossPDE relies on an assumption that the adver-
sary will not conduct reverse-engineering attacks over the code. To relax this
assumption, a potential solution is to leverage the obfuscation technique [36] to
obfuscate the code, concealing its purpose of PDE. This will be further investi-
gated in our future work.

Pre-boot Authentication. To enter either the public or the hidden mode, the
user needs to provide the corresponding key for authentication (i.e., the pre-boot
authentication). We can derive the decoy/true key from the corresponding pass-
word [31], and choose strong passwords following certain security guidelines [33].

164 N. Chen et al.

The password-based pre-boot authentication however, will essentially reduce the
security provided by CrossPDE, as a memorable password implies that the adver-
sary would be easier to guess it. Another option is to use NFC cards [7] to store
keys so that the user does not need to memorize them.

6 Implementation and Evaluation

6.1 Implementation

We have implemented CrossPDE by integrating and modifying a few open-source
software projects: OpenNFM [15] for the flash translation layer, VeraCrypt [3]
for the block layer, and exFAT [16] for the file system layer. OpenNFM was
used as the FTL. VeraCrypt was used to manage (e.g., create, encrypt, etc.)
both the public and the hidden volume at the block layer. It also took care
of initialization and pre-boot authentication. The exFAT was deployed as the
file system for both the public and the hidden volume and, especially for the
hidden volume, we deployed a modified exFAT, such that the hidden mode can
communicate with the FTL using exFAT as a bridge (this implies that VeraCrypt
and OpenNFM should be modified accordingly).

Modifications to OpenNFM. For the hidden mode, we implemented the new
block allocation, garbage collection, and wear leveling, but reused the existing
bad block management. We also modified the FTL Read function, so that once
the reserved LBAs are read, the FTL knows that there is a request from the user
in the hidden mode. We implemented different read patterns to differentiate the
starting and the quitting request.

Modifications to VeraCrypt. Each time when mounting a volume, we first
check whether it is the public volume or the hidden volume. If it is the public
volume, it will be mounted as usual. Otherwise, we will perform an I/O on a
special file (we will create this special file when entering the hidden volume
for the first time). In addition, when unmounting the hidden volume, we will
perform another I/O on this special file.

Modifications to exFAT. We modified the function exfat get block() in
super.c so that exFAT can monitor I/Os on the special file and, once it detects
an I/O on this file, it will issue I/Os on some reserved disk sector addresses which
will be translated deterministically to some reserved LBAs in the flash memory.
In our case, the disk sector address can be translated to a corresponding LBA by
dividing 4, considering a disk sector is 512 bytes in size and a flash page is 2KB
in size. Note that exFAT is not in the kernel (V4.4.194) of Firefly AIO 3399J
originally, but we made exFAT as a kernel module when re-compiling the kernel.

A Cross-layer Plausibly Deniable Encryption System for Mobile Devices 165

6.2 Evaluation

Experimental Setup. We ported our developed prototype to a self-built
mobile device testbed [14], which consists of a flash-based block device and a
host computing device. The flash-based block device was built using a USB
header development prototype board LPC-H3131 [1] (ARM9 32-bit ARM926EJ-
S, 180Mhz, 32MB RAM, and 512MB NAND flash) and our modified OpenNFM
as the FTL [34,35]. The host computing device was an embedded develop-
ment board, Firefly AIO-3399J (Six-Core ARM 64-bit processor, 4GB RAM,
and Linux kernel 4.4.194). Our modified exFAT and modified VeraCrypt were
deployed to the Firefly AIO-3399J. The LPC-H3131 connects to the USB 2.0
interface of Firefly AIO-3399J via a USB A to Mini Cable. Using the VeraCrypt,
we created both the public and the hidden volume, and the original exFAT was
deployed on the public volume, and the modified exFAT was deployed on the
hidden volume. For comparison, we created a baseline by deploying the original
VeraCrypt on top of the same testbed, in which the original exFAT was used in
both the public and the hidden volume, and the original OpenNFM was used
as the FTL. We believe that VeraCrypt is representative, as other block-based
mobile PDE systems [8,17,22,31,37] all implement a similar technique. For sim-
plicity, we call the baseline “VeraCrypt”, which is vulnerable to deniability com-
promises in the flash memory. The I/O throughput of CrossPDE and VeraCrypt
were both measured using benchmark tool fio [19]. We also compared CrossPDE
with the represented FTL-based PDE systems DEFTL [23] and PEARL [12].

We compare the I/O throughput of CrossPDE with VeraCrypt in Table 1.
We can observe that: 1) For the public mode, CrossPDE exhibits similar I/O
throughput with VeraCrypt, because we do not change the read/write operations
in the public mode. 2) For the hidden mode, the read throughput of CrossPDE
is similar to that of VeraCrypt, but the write throughput is reduced 50%–60%.
This is because: The read operations of the hidden mode are similar to those
of the public mode; however, the write operations in the hidden mode require
extra steps including reading the LBAs, erasing the block, etc.

To justify the benefits of moving the disk encryption/decryption from
the FTL to the block layer, we also evaluated the I/O throughput with-
out disk encryption, i.e., “no encryption” (as implemented by the original
OpenNFM [15]), as well as the I/O throughput when deploying disk encryp-
tion/decryption in the FTL [23]. Both results are shown in Table 2. From Table 1
and 2, we can observe that: compared to “no encryption”, the throughput of
CrossPDE decreases 3%–12% in the public mode, and 4%–64% in the hidden
mode; but“encryption in the FTL” decreases the throughput more than 10× in
both modes. This confirms that CrossPDE makes the FTL much more lightweight
compared to those which perform disk encryption/decryption in the FTL.

To assess the benefits of CrossPDE in keeping the FTL lightweight, we have
compared the I/O throughput among CrossPDE, DEFTL [23] and PEARL [12].
The comparison is shown in Table 3, in which we estimated the throughput
decrease of each aforementioned PDE system compared to a normal system
without a PDE deployed, based on our own experimental results as well as the

166 N. Chen et al.

Table 1. Throughput comparison between VeraCrypt and CrossPDE. SR - sequential
read; RR - random read; SW - sequential write; RW - random write

Patterns VeraCrypt (KB/s) CrossPDE (KB/s)

Public mode Hidden mode Public mode Hidden mode

SR 2508 2473 2460 2424

RR 2174 2030 2086 2000

SW 2599 2372 2535 948

RW 1897 1842 1910 839

Table 2. Throughput of “no encryption” and “encryption in FTL”

Patterns No encryption (OpenNFM)(KB/s) Encryption in FTL (KB/s)

SR 2538 172

RR 2206 170

SW 2639 168

RW 2176 165

Table 3. Estimation of throughput decrease in different FTL-based PDE schemes,
compared to a regular system without a PDE deployed.

PEARL [12] DEFTL [23] CrossPDE

Public Read 41% 92%–93% 3.1%–5.4%

Public Write 48% 92.4%–93.6% 3.9%–12.2%

Hidden Read 80% 92%–93% 4.5%–9.3%

Hidden Write 90.4% 92.4%–93.6% 61%–64%

experimental results from PEARL. We can observe that: 1) For the public read,
the public write and the hidden read, CrossPDE decreases slightly in through-
put, but PEARL (41%–80% decreases) and DEFTL (more than 90% decreases)
significantly decrease in throughput. 2) For the hidden write, CrossPDE has a
modest decrease in throughput (61%–64%), but PEARL and DEFTL both sig-
nificantly decrease in throughput (more than 90%). The comparison can justify
that CrossPDE performs much better in I/O throughput by decoupling the PDE
functionality and separating them across multiple layers of the mobile system.
This is because: unlike DEFTL and PEARL, the expensive operations of PDE in
CrossPDE are separated from the FTL and moved to the block layer and hence
processed by the more powerful host computing device.

A Cross-layer Plausibly Deniable Encryption System for Mobile Devices 167

7 Conclusion

In this work, we propose CrossPDE, a cross-layer PDE system for mobile com-
puting devices which has integrated the PDE functionality into major layers of
a mobile storage system. Experimental evaluation on our developed real-world
prototype shows that CrossPDE can ensure deniability with a modest decrease
in performance compared to the insecure block-layer PDE systems.

Acknowledgments.. This work was supported by US National Science Foundation
under grant number 1928349-CNS, 1928331-CNS, 1938130-CNS, and 2043022-DGE.

References

1. Lpc-h3131. https://www.olimex.com/Products/ARM/NXP/LPC-H3131/
2. Truecrypt. http://truecrypt.sourceforge.net/
3. Veracrypt. https://www.veracrypt.fr/code/VeraCrypt/
4. Anderson, R., Needham, R., Shamir, A.: The steganographic file system. In: Auc-

smith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 73–82. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-49380-8 6

5. Barker, A., Sample, S., Gupta, Y., McTaggart, A., Miller, E.L., Long, D.D.E.:
Artifice: a deniable steganographic file system. In: 9th {USENIX} Workshop on
Free and Open Communications on the Internet ({FOCI} 19) (2019)

6. Breeuwsma, M., De Jongh, M., Klaver, C., Van Der Knijff, R., Roeloffs, M.: Foren-
sic data recovery from flash memory. Small Scale Dig. Dev. Forensics J. 1(1), 1–17
(2007)

7. Chang, B., et al.: User-friendly deniable storage for mobile devices. Comput. Secur.
72, 163–174 (2018)

8. Chang, B., Wang, Z., Chen, B., Zhang, F.: Mobipluto: file system friendly deniable
storage for mobile devices. In: Proceedings of the 31st Annual Computer Security
Applications Conference, pp. 381–390 (2015)

9. Chang, B., et al.: Mobiceal: towards secure and practical plausibly deniable encryp-
tion on mobile devices. In: 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 454–465. IEEE (2018)

10. Chen, B.: Towards designing a secure plausibly deniable system for mobile
devices against multi-snapshot adversaries-a preliminary design. arXiv preprint
arXiv:2002.02379 (2020)

11. Chen, C., Chakraborti, A., Sion, R.: Infuse: invisible plausibly-deniable file system
for nand flash. Proc. Priv. Enhan. Technol. 4, 239–254 (2020)

12. Chen, C., Chakraborti, A., Sion, R.: Pearl: plausibly deniable flash translation
layer using wom coding. In: The 30th Usenix Security Symposium (2021)

13. Chen, N., Chen, B., Shi, W.: MobiWear: a plausibly deniable encryption system
for wearable mobile devices. In: Chen, B., Huang, X. (eds.) AC3 2021. LNICST,
vol. 386, pp. 138–154. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
80851-8 10

14. Chen, N., Chen, B., Shi, W.: The block-based mobile pde systems are not secure -
experimental attacks. In: EAI International Conference on Applied Cryptography
in Computer and Communications. Springer, Heidelberg (2022). https://doi.org/
10.1007/978-3-031-17081-2 9

https://www.olimex.com/Products/ARM/NXP/LPC-H3131/
http://truecrypt.sourceforge.net/
https://www.veracrypt.fr/code/VeraCrypt/
https://doi.org/10.1007/3-540-49380-8_6
http://arxiv.org/abs/2002.02379
https://doi.org/10.1007/978-3-030-80851-8_10
https://doi.org/10.1007/978-3-030-80851-8_10
https://doi.org/10.1007/978-3-031-17081-2_9
https://doi.org/10.1007/978-3-031-17081-2_9

168 N. Chen et al.

15. Google Code. Opennfm (2011). https://code.google.com/p/opennfm/
16. exfat file system specification. https://docs.microsoft.com/en-us/windows/win32/

fileio/exfat-specification
17. Feng, W., et al.: Mobigyges: a mobile hidden volume for preventing data loss,

improving storage utilization, and avoiding device reboot. Fut. Gener. Comput.
Syst. 109, 158–171 (2020)

18. Typical hardware of flash storage devices. https://snp.cs.mtu.edu/techdoc/flash-
devices.html

19. Freecode. fio (2014). http://freecode.com/projects/fio
20. Gutmann, P.: Secure deletion of data from magnetic and solid-state memory. In:

Proceedings of the Sixth USENIX Security Symposium, San Jose, CA, vol. 14, pp.
77–89 (1996)

21. Han, J., Pan, M., Gao, D., Pang, H.: A multi-user steganographic file system on
untrusted shared storage. In: Proceedings of the 26th Annual Computer Security
Applications Conference, pp. 317–326 (2010)

22. Hong, S., Liu, C., Ren, B., Huang, Y., Chen, J.: Personal privacy protection frame-
work based on hidden technology for smartphones. IEEE Access 5, 6515–6526
(2017)

23. Jia, S., Xia, L., Chen, B., Liu, P.: Deftl: implementing plausibly deniable encryp-
tion in flash translation layer. In: Proceedings of the 24th ACM Conference on
Computer and Communications Security. ACM (2017)

24. Johnson, N.F., Jajodia, S.: Steganalysis: the investigation of hidden information.
In: 1998 IEEE Information Technology Conference, Information Environment for
the Future (Cat. No. 98EX228), pp. 113–116. IEEE (1998)

25. Liao, J., Chen, B., Shi, W.: Trustzone enhanced plausibly deniable encryption
system for mobile devices. In: 2021 IEEE/ACM Symposium on Edge Computing
(SEC), pp. 441–447. IEEE (2021)

26. McDonald, A.D., Kuhn, M.G.: StegFS: a steganographic file system for linux. In:
Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 463–477. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719724 32

27. Microsof. Bitlocker (2013). https://technet.microsoft.com/en-us/library/
hh831713.aspx

28. Plausible deniability. https://www.veracrypt.fr/en/Plausible%20Deniability.html
29. Pang, H., Tan, K.-L., Zhou, X.: Stegfs: a steganographic file system. In: Proceedings

19th International Conference on Data Engineering (Cat. No. 03CH37405), pp.
657–667. IEEE (2003)

30. Peters, T.M., Gondree, M.A., Peterson, Z.N.J.: Defy: a deniable, encrypted file
system for log-structured storage (2015)

31. Skillen, A., Mannan, M.: On implementing deniable storage encryption for mobile
devices. In: 20th Annual Network and Distributed System Security Symposium,
NDSS 2013, San Diego, California, USA, 24–27 February 2013 (2013)

32. Skillen, A., Mannan, M.: Mobiflage: deniable storage encryption for mobile devices.
IEEE Trans. Depend. Secure Comput. 11(3), 224–237 (2014)

33. How to create a strong password (and remember it). https://www.howtogeek.com/
195430/how-to-create-a-strong-password-and-remember-it/

34. Tankasala, D., Chen, N., Chen, B.: A step-by-step guideline for creating a testbed
for flash memory research via lpc-h3131 and opennfm. Technical report, Depart-
ment of Computer Science, Michigan Tech (2020)

35. Tankasala, D., Chen, N., Chen, B.: Creating a testbed for flash memory research via
lpc-h3131 and opennfm - linux version. Technical report, Department of Computer
Science, Michigan Tech (2022)

https://code.google.com/p/opennfm/
https://docs.microsoft.com/en-us/windows/win32/fileio/exfat-specification
https://docs.microsoft.com/en-us/windows/win32/fileio/exfat-specification
https://snp.cs.mtu.edu/techdoc/flash-devices.html
https://snp.cs.mtu.edu/techdoc/flash-devices.html
http://freecode.com/projects/fio
https://doi.org/10.1007/10719724_32
https://technet.microsoft.com/en-us/library/hh831713.aspx
https://technet.microsoft.com/en-us/library/hh831713.aspx
https://www.veracrypt.fr/en/Plausible%20Deniability.html
https://www.howtogeek.com/195430/how-to-create-a-strong-password-and-remember-it/
https://www.howtogeek.com/195430/how-to-create-a-strong-password-and-remember-it/

A Cross-layer Plausibly Deniable Encryption System for Mobile Devices 169

36. Wroblewski, G.: General method of program code obfuscation (2002)
37. Yu, X., Chen, B., Wang, Z., Chang, B., Zhu, W.T., Jing, J.: MobiHydra: pragmatic

and multi-level plausibly deniable encryption storage for mobile devices. In: Chow,
S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp.
555–567. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13257-0 36

https://doi.org/10.1007/978-3-319-13257-0_36

Binary Analysis

Language and Platform Independent
Attribution of Heterogeneous Code

Farzaneh Abazari1, Enrico Branca1, Evgeniya Novikova2,
and Natalia Stakhanova1(B)

1 University of Saskatchewan, Saskatoon, Canada
{faa851,enb733,natalia}@usask.ca

2 Saint Petersburg Electrotechnical University, Saint Petersburg, Russia

Abstract. Code authorship attribution aims to identify the author of
source or binary code according to the author’s unique coding style
characteristics. Recently, researchers have attempted to develop cross-
platform and language-oblivious attribution approaches. Most of these
attempts were limited to small sets of two-three languages or few plat-
forms. However, rapid development of cross-platform malware and gen-
eral language, platform and architecture diversity raises concerns about
the suitability of these techniques. In this paper, we propose a unified
approach that supports attribution of code irrespective of its format. Our
approach leverages an image-based code abstraction that preserves the
developer’s coding style and lends itself to spatial analysis that reflects
hidden patterns. We validate our approach on a set of Android appli-
cations achieving accuracy 82.8%–100% with source and byte code. We
further explore the robustness of our approach in attributing develop-
ers’ code written in 27 programming languages, compiled on 14 instruc-
tion set architectures types and 18 intermediate compiled versions. Our
results on the GitHub dataset show that in the worst case scenario the
proposed approach can discriminate authors of code in heterogeneous
format with at least 68% accuracy.

Keywords: Source code and Binary attribution · Authorship
attribution

1 Introduction

Code authorship attribution aims to identify a developer of a given code based
on unique characteristics that reflect a developer’s coding style. The underlying
premise of the attribution techniques is the existence of inherent distinctive cod-
ing style, unique to an author and easily distinguishable from others. This style
is reflected through variables, data structures, control flow logic, use of APIs,
libraries, employed development tools, and other characteristics. A quantified
representation of this coding style can be viewed as a developer’s fingerprint.
This coding style is unique to an author and invariant across all software pro-
grams written by this author.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 173–191, 2023.

https://doi.org/10.1007/978-3-031-25538-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_10&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_10

174 F. Abazari et al.

One of the main difficulties in code stylometry is compiling a fingerprint
that provides efficient and accurate characterization of a coding style, remains
consistent across programming languages, and survives compilation stages. This
is particularly critical in security applications of code authorship attribution -
software forensics [42], malware analysis [10,16,20,28], code plagiarism and theft
detection [26,37] - where attribution analysis of any available code is often an
essential task. Yet, the traditional attribution methods focus exclusively on the
attribution of source code files expecting a homogeneous set of files written in
traditional languages (typically, Java, C or Python), or attribution of binary files
compiled in the same architecture. This is rarely possible in practice. Develop-
ers routinely use multiple languages for various tasks. For example, analyzing
GitHub repositories Mayer and Bauer found that developers may use from 1 to
36 languages in their projects [32].

Beyond diversity of programming languages, there are other reasons that
present significant challenges to attribution process in practice. Since source
code is not always available, attribution is expected to be performed on a mixed
set of binary files and code samples at various stages of compilation. Yet, the
majority of the existing approaches almost exclusively focus on attribution of
either source or binary code.

With rapidly evolving market of IoT devices, instruction set architectures
(ISAs)-oblivious attribution becomes essential. Binary files might be generated
on different ISAs which leads to significant differences in their instruction set
even when the files are compiled from the same source code base.

Different compilers and variable compiler configurations (e.g., optimization
levels) might also bring considerable changes to the resulting file structure. These
reasons make it difficult or even infeasible for traditional attribution methods
to attribute mixed code in a form of binary, source code, and code at different
stages of compilation across architectures and compiling configurations.

To address these problems, we propose an attribution approach that supports
attribution of code irrespective of its format. One of the main difficulties that
the existing attribution techniques face in this context is the inherit dependence
of feature engineering on the underlying nature of the code.

To address this challenge, we treat code as a binary stream, an abstraction
independent of the actual code structure, and convert it to a format-oblivious
gray-scale image. This approach preserves structural similarities of code seg-
ments and lends itself well to spatial analysis.

Spatial analysis is widely applied in many fields for exploratory analysis. It
utilizes statistical techniques to reveal non-obvious patterns by analyzing spatial
relationships of pixels. We thus analyze spatial properties of the images generated
from author’s code samples to derive patterns that describe a developer’s style.
In essence, our approach is based on the assumption that individual coding style
is unique and preserved across programming languages and architectures.

We validate our approach on a set of 348 programs from 50 Android devel-
opers. Our approach can successfully attribute app’s source code and byte code
to its author with 82.8%–100% accuracy. We designed a set of experiments with

Language and Platform Independent Attribution of Heterogeneous Code 175

source code in 27 languages, binaries in 14 ISAs and 18 compilers’ versions. On
GitHub data, our approach was able to accurately attribute source code with
71.5%, compiled binaries with 72.7% and intermediate stage of compiled files
with 73.8% accuracy.

One of the practical applications of code attribution lies in malware analysis
field where analysts are often challenged to attribute malware samples to its
source. Since modern malware is typically obfuscated, any author attribution
approach needs to be obfuscation-resistant. We show that our approach can
achieve 72.5% attribution accuracy even in a presence of complex control-flow
obfuscation transformations.

Finally, we compare the performance of our attribution approach to three
techniques developed binary [21] and source [14,44] code attribution. The code
and datasets used in this study are publicly available:1.

The following is a summary of our contributions:

– Code format - oblivious attribution: Unlike traditional attribution methods
that focus exclusively on the attribution of homogeneous set of files written
in traditional languages, we propose an accurate attribution approach for a
mix of code in a form of binary and source code, code at different stages of
compilation across architectures and compiling configurations. Our approach
does not require a prior knowledge of programming language, ISA, or file
format specifics.

– Style-preserving abstraction: We present an effective abstraction scheme opti-
mized for detecting developer’s coding characteristics in any code format.

– Obfuscation-resilient attribution: Our presented approach is resilient to the
advanced data and control-flow obfuscation transformations applied by the
off-the-shelf Tigress obfuscator.

2 Related Work

A comprehensive overview of the code attribution techniques is provided by
Kalgutkar et al. [27]. The earliest studies in the field were primarily limited
to an analysis of a single language, and as a result, experimented with pro-
gramming language-dependent features [18]. More recently, researchers began
analyzing features that represented the underlying semantics of the program
behavior and moved to explore language-agnostic attribution [2,3,41]. Very few
of the studies included experiments with more than one language (typically,
Java, C and/or Python) [2,3,12,44]. The majority of these studies leveraged
Abstract Syntax Trees(ASTs) to capture language-independent syntactical fea-
tures [12,14,41,44]. AST can be helpful in representing source code. However,
its construction and parsing is language-dependent and time-consuming, while
the amount of generated features is unscalable for analysis. To resolve this,
some employed control flow (CFG) and data flow analysis for source code attri-
bution [42,44]. Although these approaches are programming language-agnostic,

1 https://cyberlab.usask.ca/anycodeattribution.html.

https://cyberlab.usask.ca/anycodeattribution.html

176 F. Abazari et al.

Table 1. Related work

References Code type Cross-lang. characteristics Cross-platform features Obf. Malware

Src. Bin. Languages #of Lang per
author

Compilers ISA

Abuhamad et al. [2] � 4 (C, C++, Java, Python) 2 �
Abuhamad et al. [3] � 3 (C++, Java, Python) 1

Kurtukova et al. [31] � 13 �
Alsulami et al. [12] � 2 (C++, Python) 1

Ullah et al. [42] � 3 (C++, C#, Python)

Ullah et al. [41] � 3 (C++, C#, Java)

Zafar et al. [44] � 3 (C++, Python, Java) 3 �
Caliskan et al. [14] � 3 (C, C++, Python) �
Frantzeskou et al. [19] � 2 (C, C++) 1

Alrabaee et al. [7] � 5 with different
optimization levels: gcc,
g++, CLANG, ICC, MS
VS 2010, 2012

3 (x86,
ARM,
MIPS)

� �

Alrabaee et al. [6] � 5 with different
optimization levels: gcc,
g++, CLANG, ICC, MS
VS 2010, 2012

1 (x86) �

Alrabaee et al. [11] � 4 with different
optimization levels: gcc,
g++, CLANG, ICC, MS
VS 2010

�

Hendrikse [24] � 3 with different
optimization levels: gcc,
ICC, MS VS

�

Haddadpajuh et al. [21] � �
Our approach � � 27 (listed in Table 4) 1–8 (src code) 3 with different

optimization levels (gcc,
ICC, MS VS)

14 � �

Empty table cell corresponds to the case when the data about given approach feature
is not explicitly discussed or mentioned in the research paper, or not applicable to the
approach.

their performance is dependent on the availability of parsers, and hence similarly
support limited number of languages.

Strictly speaking, only a few studies in the field offer verifiable language
agnostic approaches [2,44]. In these cases, authors with several programming
languages are considered in both design and experimentation. The rest of the
research studies either explicitly mention the use of homogeneous code per author
or simply remain silent about this aspect.

As code authorship attribution evolved and found its application in secu-
rity domain, it faced one of the main research challenges, i.e., unavailability of
source code. So, several approaches have been presented in literature to attribute
binaries [9,15,33,39]. Recently researchers become interested in the impact of
different compilers, optimization levels and obfuscation techniques on the accu-
racy of authorship attribution. Most notable study was conducted by Alrabaee
et al. [10]. Their study showed that attribution of a binary code is challenging,
i.e., solely relying on instruction level features results in significant accuracy
degradation, while utilizing only features extracted from CFG is sensitive to
obfuscation. This result is consistent with the findings of other studies [9,15,39].

Several recent studies focused on adding an intermediate representation (IR),
e.g., LLVM-IR, of disassembled binary code as an architecture-agnostic represen-
tation to unify files for feature extraction [6,7,11,23]. Alrabaee et al. [6,7] showed
that relying on attributes extracted from lifted binaries to LLVM-IR in combina-

Language and Platform Independent Attribution of Heterogeneous Code 177

tion with deep learning supports multi-platform binary authorship identification
and scales well to a significant number of authors. Several researchers [21,38]
focused on problem of APT malware attribution and attribution of Android
apks [20,25,28,29].

Table 1 presents an overview of attribution approaches that could be con-
sidered either language or platform independent. As opposed to the existing
attribution approaches that focus on either source or binary code, we focus on
language, platform, and architecture oblivious solution. We propose a simple yet
effective method for attributing code, regardless of its format, without any prior
knowledge of code specifics.

Fig. 1. The flow of the proposed approach

3 Approach

One of the main challenges that source or binary code attribution faces is engi-
neering of features that are resistant to compilation process and persistent across
programming languages and platforms.

In our work, we represent code regardless of its type as a set of consecutive
bytes. This consequently allows us to generate a gray-scale image and leverage
spatial analysis for deeper textural analysis of the image. Through this analysis,
we can capture changes in adjacent bytes and derive characteristic byte pat-
terns. As the last step, the characteristic patterns across all author’s works are
explored to derive a uniform representation of an author’s coding style. Figure 1
summarizes the flow of our attribution approach.

3.1 Representation

Visualization of binary files have been used in many areas of security, e.g., for
detection of obfuscation tools [25], malware detection and classification [13,34].
We leverage visualization of code as an intermediate representation to abstract
the underlying format and platform specifics. The flow of the representation is
shown in Fig. 2. Given that any code can be represented as a set of bytes, we
read input in a raw binary format.

178 F. Abazari et al.

The input code either in human readable or machine readable format is
converted into a gray-scale image following the approach introduced by Nataraj
et al. [35]. The raw byte stream (or the corresponding ASCII values in case
of source code) is transferred into a 2D matrix with a fixed width d, which is
calculated based on the size of the original code file.

The resulting 2D matrix is treated as a 2D array of 1 byte vectors. Depending
on the byte’s value, each vector is then converted to a decimal value in range of
[0, 255] that further determines the gray-scale value of the pixel (0 for black and
255 for white). This approach preserves all patterns that exist in the original
format of the input file.

The resulting images vary in size which allows us to use width and height
as features in attribution analysis. These images also contain noisy and rare
patterns that are irrelevant for attribution. In order to filter this noise and
highlight the significant patterns, the generated image, i.e., the corresponding 2D
array of bytes, is tokenized using the sliding window approach to produce n-byte
consecutive grams. The sliding window iterates through the 2D matrix viewed
as one consecutive sequence to extract n-grams regardless of their position in a
matrix. Hence, n-grams may consist of bytes that reside at the end and the start
of the row in the 2D matrix.

Filtering is based on n-gram frequency within the corresponding image and
significance according to information gain (IG) value. For each file, we select
the top most frequent n-grams, which results in a set of (sometime overlapping)
n-grams across all samples per author. We further use Information Gain (IG) to
measure each n-grams’ importance for attributing samples to each author. Hence,
in this process the distinctiveness of each n-gram for an author is assessed. For
further analysis, we retained n-grams with IG ≥ 0.01. All occurrences of these
selected n-grams are retained in their original order. The remaining n-grams
are ’squeezed out’ of the image, hence preserving the original order of frequent
n-grams which is important for the following spatial analysis.

3.2 Spatial Analysis

Since image is a numerical representation of byte values, image texture repre-
sents the spatial organization of the gray-levels of the pixels in a code sample.
Although many numeric texture analysis approaches were introduced in the past
decade, statistical method is seen as the one of the most powerful image analysis
techniques [22].

The deeper insight into relationships between individual pixels can be derived
through second-order statistics that look at correlations between pixels. We
employ two well known approaches to statistical analysis of image texture,
namely, analysis based on the gray-level co-occurrence matrix (GLCM) intro-
duced by Haralick et al. [22] and Local Binary Patterns (LBP) [36].

GLCM. GLCM characterizes image by analyzing frequency of neighbouring
pixels at selected distances and orientations over the entire image. Let i and j

Language and Platform Independent Attribution of Heterogeneous Code 179

Fig. 2. The flow of the representation step.

Fig. 3. An example of Haralick features’ calculation.

be gray-scale values, the entry of GLCM is the probability that a pixel with value
i will be found adjacent to a pixel of value j in the image separated by vector
distance d which can be further expressed in terms of absolute distant d and
the direction defined by the angle θ [22]. In this work, we set d = 1, 2, 3, 4; and
θ = 0o. In other words, the neighbouring pixels located at various distances are
analyzed at an angle 0o to form four different GLCMs. Each of the GLCMs serves
as a basis for calculation of Haralick features [22] that describe texture features of
GLCM. We derive five features to reflect specific patterns of an image (Table 2).
Since we employ four directions d, each image is represented by 4 × 5 = 20
Haralick features which we refer to as a Haralick vector. Figure 3 shows the
process of GLCM calculation with the corresponding Haralick features. After
the GLCM matrix is calculated for d=[1..4], we calculate pi,j for each GLCM
cell by calculating probability of combination of pair (i,j) (e.g. dividing the cell’s
value to the summation of all elements in GLCM).

Table 2. The Haralick features derived from GLCM

Name Description Formula

Energy Shows randomness of the spatial distribution
√∑255

i,j=0 P 2
i,j

Contrast Measures gray level variations between the reference

pixel and its neighbour

∑255
i,j=0 Pi,j(i − j)2

Dissimilarity Shows average of differences in pixel values
∑255

i,j=0 Pi,j |i − j|
Correlation Measures the linear dependency of gray level values

∑255
i,j=0 Pi,j

(i−μi)(j−μj)
σiσj

Homogeneity Indicates dominant values
∑255

i,j=0
Pi,j

1+(i−j)2

180 F. Abazari et al.

Local Binary Pattern (LBP). Unlike Haralick features that are based on
GLCM Matrix and therefore represent global patterns, LBP conveys local pat-
terns that are extracted directly from the image [43]. To do this, LBP measures
a local representation of image texture by comparing each pixel with its sur-
rounding neighbouring pixels located within a distance d of the reference point
to test whether the surrounding points are greater or less than the central pixel
value.

Figure 4 shows the process of converting patterns represented by neighbour-
ing pixels to a binary value. Those neighbours with value less than referenced
pixels are denoted as 1 and others as 0. The resulting values are stored in an
8-bit binary array (or a corresponding decimal number), which is referred to as
LBP value. This number reflects the texture (i.e., pattern) of the image around
the referenced point. To assess the distribution of different LBP values across
the image, we compute the frequency of each LBP value (i.e., each pattern) and
assign it to the corresponding bin. Following the widely accepted practice in
LBP analysis, we divide the range (0 to 255) into 25 equally distributed bins,
each representing a set of LBP patterns.

Finally, the resulting histogram tabulates the number of times each LBP pat-
tern occurs. The frequency of the bins is treated as LBP feature vector (Fig. 4).
These features have highly discriminative nature that help the classifier to pre-
dict the author with higher accuracy [4,5].

Fig. 4. An example of LBP value calculation for each pixel

3.3 Attribution

The attribution of code is based on the derived 47 features that include Haralick
and LBP vectors, and image height and width.

Previous studies in source code authorship attribution employed various clas-
sification algorithms for attribution analysis [27]. Among them, Random Forest
(RF) was one of the most common classifiers [1] that performs well in comparison
with many standard methods.

We employ RF algorithm with 100 trees (“n estimators” = 100) from a sam-
ple drawn with replacement from the training set with “entropy” criteria and
maximum number of features is set to “sqrt”. We set “min samples split” to 2
and “min samples leaf” to 1.

Language and Platform Independent Attribution of Heterogeneous Code 181

Table 3. The employed datasets’ statistics

Filtered dataset # of lang. or
formats per
author

of
authors

of
files

Range of
samples per
author

Range LOC or
size

Avg. LOC
or size

Range char.
per line

Avg char.
per line

Android validation
set (Java src code)

1 50 7,594 5–856 3–4,253 172.1 1–1,464 36.1

Android validation
set (.dex binary
code)

1 50 413 5–25 12.4–
11,640.7(KB)

3158.9 – –

GCJ (src code) 2–5 3,000 63,682 10–157 1–3,039 80.1 1–95,567 23.45

GitHub (src code) 2–8 475 114,461 11–5,005 2–164,684 327 1–4,723,481 46.5

GitHub (binary
code)

1–3 378 13,577 5–641 0.1–
89,309(KB)

675(KB) – –

4 Data Corpus

The critical aspect of this work is the analysis of our approach in the presence of
heterogeneous code formats. We thus ventured to collect mixed code in a form of
binary, source code, and code at different stages of compilation across different
architectures and compiling configurations.

All datasets were prepared to ensure presence of at least 5 samples for each
format of file per author2. Moreover, for GitHub and GoogleCodeJam sets, the
authors were selected to contain more than one type of file’s format in the
dataset, i.e., each author has files of at least 2 format and thus has at least 10
unique samples. The details of our collected datasets are given in Table 3.

Validation Dataset. In recent years, there has been an increasing interest for
attributing Android APKs based on analysis of dex files [20], strings [28] and
even specific features of the app such as permissions [45]. For our validation, we
attribute APKs to their authors based on bytecode contained in dex files and
original Java source files. We collected a set of 348 Android projects written
by 50 authors from the open source Android application market F-Droid3. To
ensure that our set does not include authors that use different alias for differ-
ent repositories, we verified the authors’ identities through the official GitHub,
Gitlab, SourceForge, BitBucket platforms. Our collected set has authors with
varying number of APKs ranging from 5 to 22, dex code ranging from 5 to 25
and Java source code from 5 to 856.

GitHub Repository. GitHub, an open-source software development platform.
The programs in GitHub are typically more complex, include variety of pro-
gramming languages, third-party libraries, several encodings and binaries focus

2 In the rest of this work, by file’s format we mean source code in a programming
language, file’s compiled version on some platform or architecture, or a file at different
stages of compilation with various compiling configurations.

3 https://www.f-droid.org/.

https://www.f-droid.org/

182 F. Abazari et al.

on solving diverse tasks (e.g., from game development to middleware). Perform-
ing authorship attribution on data retrieved from GitHub is more challenging
due to presence of library and shared code. Due to these facts most of the pre-
vious works evaluated their approach on GoogleCodeJam dataset [2,3,42] and
confirmed that the result of their paper would be different in the real-world
dataset such as GitHub [44].

We collected programs from January until October 2020 by using the GitHub
action logs. We consider repositories with at least one commit log, those that
contain at least two different languages. Although it is difficult to guarantee sole
authorship of any code posted online, we took reasonable precautions by filtering
repositories marked as forks, as these are typically copies of other authors’ repos-
itories and do not constitute original work. An additional check for multiple-
author repositories was performed by examining the commit logs. Repositories
with logs containing more than one unique name and email address combination
(potentially indicating an involvement of several authors) were also excluded.
We download the latest master file. After removing duplicated files and filtering
authors with less than 5 samples, 475 authors are remained with at least two
languages (source code data) and 378 authors with multiple binary file formats
(Table 3). For this analysis, we collected source and binary code of programs
written in 25 programming languages, compiled for 14 architectures and in 18
intermediate stages of compilation from 3602 master files in GitHub. The dis-
tribution of files between languages and binary types are given in Table 4 and
Table 5, respectively.

GoogleCodeJam dataset (GCJ). Since the majority of the existing stud-
ies employ data extracted from GoogleCodeJam programming competition4, an
annual international coding competition hosted by Google, for our analysis we
also assembled a dataset containing code from the 2008 to 2018 competitions
with authors that have code written in more than one language. We randomly
selected 3000 authors with source code files written in 15 programming languages
(2–5 different languages per author). The distribution of files across languages
is provided in Table 4.

5 Experiments

We perform several experiments to validate our approach and examine its attri-
bution effectiveness for various types of code. To estimate accuracy of attribution
analysis, we used stratified 4-fold cross-validation that ensures that all develop-
ers are present in all folds. Note that strategy randomly partitions all author’s
code samples regardless of language, platform, or format, hence, different folds
are likely to represent different subsets of languages. To evaluate our results, we
employ a commonly used metric in attribution studies indicating the attribution
accuracy or the accuracy in short. We use weighted-average accuracy defined as

4 https://code.google.com/codejam/.

https://code.google.com/codejam/

Language and Platform Independent Attribution of Heterogeneous Code 183

Table 4. GitHub and GCJ source code
datasets

Programming lan-

guage paradigm

Language #
o
f
s
a
m

p
le

s
G

it
H

u
b

#
o
f
s
a
m

p
le

s
G

C
J

A
rr

a
y

S
c
ri

p
ti

n
g

C
o
m

p
il
e
d

C
o
n
c
u
rr

e
n
t

C
u
rl

y
-b

ra
c
k
e
t

E
x
te

n
si

o
n

Im
p
e
ra

ti
v
e

In
te

ra
c
ti

v
e

m
o
d
e

F
u
n
c
ti

o
n
a
l
Im

p
u
re

Python 12072 14663 � � � � �
C 947 4668 � � �
C++ 2500 20584 � � � �
C# 65497 4494 � � � � � �
Ruby 1454 1617 � � � �
Golang 285 757 � � �
Java 40880 14062 � � � � � �
Javascript 30072 612 � � � � � �
LUA 186 96 � � � �
Kotlin 875 0 � � � �
PHP 3943 769 � � � � �
Perl 533 724 � � � � � �
CSS 8228 0

S 57 0 �
Tcl 17 0 � � � � �
Cmake 247 0

Dart 364 0 � � �
Objective-c 25 0 �
Powershell 52 0 � � � � �
Verilog 123 0

Swift 37 91 � � � � �
Coffee 44 59

TypeScript 848 0 �
Groovy 278 0 � � � � �
Gradle 349 0

Pascal 0 389 �
Lisp 0 97 �
Total 114,461 63,682

Table 5. GitHub dataset (binary
and intermediate code)

Compiled binary files:

File Type Architecture # of samples

ELF ARM 32-bit 468

386 32-bit 174

MIPS 32-bit 4

AVR 32-bit 14

68HC12 32-bit 4

PPC 32-bit 1

×86 64-bit 503

AARCH64 64-bit 64

MIPS 64-bit 2

PE32 I386 32-bit 1131

ARMNT 32-bit 2

AMD64 32+ -bit 630

ARM64 32+ -bit 1

IA64 32+ -bit 1

Files at intermediate stages of compilation:

Compiler Version # of samples

Python 3.6 1178

3.5 311

2.7 240

3.4 168

2.6 3

Java 1.2 12

1.3 11

1.5 640

1.6 457

1.7 439

1.8 5281

1.9 645

1.10 59

1.11 297

1.12 71

1.13 199

1.14 102

1.15 22

a percentage of code samples correctly attributed to the corresponding authors
over the total number of samples, where accuracy of each class is weighted by
the number of samples from that class. All experiments were performed on an
Intel server equipped with 384 GB of RAM and 32 CPU cores.

Selection of Parameters. Although n-grams are commonly applied in author
attribution domain, their effect on the accuracy is often uncertain and depends
on nature of the code. Since our approach leverages the top most frequent n-

184 F. Abazari et al.

Fig. 5. The experimental analysis.

grams for analysis, we investigate the optimal quantity of n-grams and the best
values of n on a subset of GCJ dataset with 50 authors and 841 source code
samples. Previous studies (e.g., [30]) explored the values of n ranging between 2
and 10 concluding that 4-grams generally produce the best results. We therefore
also explore this range of n-grams. As Fig. 5a shows, the attribution accuracy
for varying number of n-grams and the top m most frequent n-grams is simi-
lar. This result is beneficial as voluminous feature vectors generated during the
analysis may make analysis prohibitively expensive and sometimes infeasible.
Hence, reducing the number of n-grams while retaining similar accuracy is ben-
eficial in many resource-constraint environments. Although the results show low
variability across different n and m values, the top 50 4-grams produce the best
accuracy (93.1%). We choose these values to tokenize our input.

Validation Results. For this experiment, we leverage our validation dataset
that contains APKs related files at two granularity levels: original Java source
code and byte code derived from dex files. Figure 5b shows that the accuracy
for all levels varies between 100% and 82.8%. The most consistent attribution
is achieved with source code (92.8% for 5 authors and 89.6% for 50 authors).
This is consistent with our expectations (and the previous studies) that source
code inherently preserves the developer’s coding style and serves as a reliable
characteristic. The best accuracy (100%) was obtained with dex files for 5–10
authors, which however dropped to 82.8% for 50 authors.

Feature Set Analysis. In our analysis, we rely on a set of 47 features that
include, in addition to Haralick and LBP features, image width and height. To
understand their role in the final attribution, we explore the importance of each
of these features on a subset of GCJ dataset with 50 authors. The majority of
features (42 features) have information gain > 0.01, i.e., their contribution to the
result is meaningful. The image width and height along with Haralick features
appeared to be among the top performing features.

5.1 Authorship Attribution of Source Code

To examine the performance of our approach on multi-language source code
dataset, we design a set of experiments to analyze the effect of the dataset size

Language and Platform Independent Attribution of Heterogeneous Code 185

Fig. 6. Attribution accuracy of source code

and number of languages on the accuracy of attribution. We randomly select
subsets of authors from GitHub and GCJ datasets to explore behaviour of our
approach on smaller sets.

Figure 6a shows that our approach can obtain attribution accuracy of more
than 70% in most cases. As been noted by several studies, experiments with
GitHub data in almost all cases give lower accuracy than with GCJ programs [1,
12,17]. For authorship attribution, the use of GCJ data has been extensively
criticized mostly owing to its artificial setup [15,17,33]. The researchers argued
the existing competition setup gives little flexibility to participants resulting in
somewhat artificial and constrained program code.

The variability of languages further impact the results. The GitHub dataset
has more languages (25) than GCJ set (15). For example, with 5 authors that
have 2 different languages each in GCJ and 5 languages in GitHub set, our app-
roach obtains perfect accuracy (100%) with GCJ and only 90.4% with GitHub.

Yet, with the increase in number of authors and number of languages, the
performance of our approach on GCJ deteriorates. The total set of GitHub
authors (475 authors) with 25 languages is attributed with 71.5% accuracy, while
GCJ set with 3000 authors and 15 languages shows 71.8%. It should be also
noted that the difference in performance remains somewhat consistent between
two sets (around 20%).

5.2 Authorship Attribution of Binary Files

Most of the previous works focused on analysis of files compiled for a single
ISA [6,8], e.g., ×86, that makes their binary authorship attribution solution
ineffective for analyzing modern malware which can be designed for various ISA.
The performance of our approach in attributing binaries extracted from GitHub
repository is shown in Fig. 7.

As the results show, the attribution is reasonably better on compiled binaries
(ELF and PE) than binaries at intermediate stages of compilation (Java class
and compiled Python). Table 5 shows the distribution of GitHub binaries in 14
compiled and 18 intermediate compiled binaries. The accuracy dips from 82.7%
(5 authors) to 66.2% (200 authors) for Java class files. The results on Python

186 F. Abazari et al.

compiled files are higher for smaller sets (96.5% for 10 authors) and lower for
larger sets (72.9% for 50 authors). Overall, PE files have the highest accuracy
(84.6%) on 50 authors.

Fig. 7. Accuracy attribution of GitHub
binary dataset

Table 6. Authorship attribution of
GitHub dataset

Group Number of

authors

Accuracy

Compiled 142 72.7%

Inter.stage compiled 248 73.8 %

All binaries 378 68.3%

Binary and Source 761 68%

To investigate how the combination of datasets impacts the overall perfor-
mance of authorship attribution, we combine GitHub files from two sets (source
and binary) in 4 groups: 1) Intermediate stage compiled, 2) Compiled, 3) All
binary code, and 4) Source and binary code.

The results of attribution on these four groups are shown in Table 6. The
number of authors in the mixed set is less than the total number in individual
sets due to overlap of authors in different groups. We are able to obtain the
highest accuracy on a set of files at intermediate stages of compilation (73.8%
accuracy). The least accuracy is achieved on the set of combined binary and
source code (68% for 761 authors). Note that this set represents source code
samples written in 25 different languages. This experiment clearly illustrates
that the design of our approach allows to accurately attribute any file to a
corresponding author in the worst case with at least 68% accuracy.

5.3 Authorship Attribution of Obfuscated Source Code

In this experiment, we investigate the impact of obfuscation techniques on attri-
bution of source code. In our experiments, we use Tigress [40], an obfuscator
tool designed for the C language. For this experiment, we randomly selected a
subset of GCJ dataset, consisting of 50 authors with 7 samples per author on
average (361 samples written in C), and obfuscate the whole set using several
types of obfuscations (Table 7). The main reason behind using GCJ as opposed
to GitHub is a lack of C samples within our GitHub set. Only GCJ set had
enough C samples to perform experiments with 50 authors.

As expected, the accuracy of attributing obfuscated code is lower than orig-
inal accuracy. However, for control obfuscation the performance drops only by
8.5% compared to the original source code (72.5% vs 81%). Note that includ-
ing virtualization transformation (Advanced control obfuscation) only slightly

Language and Platform Independent Attribution of Heterogeneous Code 187

Table 7. Accuracy attribution of obfuscated source code (C language)

Dataset Obfuscation methods Accuracy

Zafar et al. [44] Our approach

Original src code – 65.7 % 81%

Data obf. Literals encoding, Encode arithmetic 58.9% 70%

Control obf. Opaque Predicates, Control flow

Flattening, Insertion of random

functions

57.5 % 72.5%

Advanced control obf. Virtualization, Opaque Predicates,

Control flow Flattening, Insertion of

random functions

57.5% 70.5%

decreases our approach’s accuracy (by 1.5%). Virtualization generates arbitrar-
ily complex virtual instruction sets (i.e., customized ISA), which are then inter-
preted on-the-fly during program execution. The results also show that our app-
roach is more obfuscation resilient than the recent language and obfuscation
oblivious method proposed by Zafar et al. [44]. While the authors reported higher
accuracy in the presence of obfuscation (on average ranging from 83% to 95%
for C++ samples), their analysis only included trivial layout transformations
(e.g., symbol name replacement, removal of spaces, comments, etc.). While our
evaluation with advanced control obfuscation showed superior resiliency of our
approach.

5.4 Comparison with the Existing Approaches

To better assess the proposed approach, we compare the performance of our
attribution approach with three techniques: MVFCC, binary code attribution
approach developed by Haddadpajouh et al. [21] and the state-of-the-art source
code, language oblivious attribution methods proposed by Zafar et al. [44] and
Caliskan et al. [14]5

For fair comparison, we obtained an original dataset employed in Haddad-
pajouh et al.’s [21] study that consists of 5 APT malware groups with a total of
1463 samples. To compare with Caliskan et al.’s and Zafar et al.’s approaches, we
selected subsets of the GCJ dataset with Java and C++ source code to ensure
at least 7 code samples per author.

The comparison results given in Table 8 show that our proposed approach
achieves higher accuracy in most cases, while providing more flexible and broader
framework for attribution of code in various formats without prior knowledge. In
case of MVFCC, we were able to attribute samples of APT malware groups with
accuracy of 96.3%, which is comparable with the results reported in the original
study (95.2%). Our approach performs better in terms of accuracy and efficiency
than the Caliskan et al.’s approach [14]. Relying on AST n-grams, Caliskan et
al.’s approach results in more than 35,000 features for 100 authors present in

5 The authors of the other cross-platform and languages-oblivious studies [7,8,12]
could not provide us with their code for comparison.

188 F. Abazari et al.

Table 8. Comparison of the attribution approaches

Java source code dataset Accuracy

Caliskan et al. [14] Zafar et al. [44] Our approach

GCJ (5 authors) 89% 100% 98.7%

GCJ (10 authors) 83.3% 100% 97.2%

GCJ (20 authors) 85.7% 86.3% 95%

GCJ (40 authors) 81.4% 81.3% 93%

GCJ (50 authors) 80.3% 80.8% 92%

GCJ (100 authors) 75.2% 77.5% 90%

C++ source code dataset Caliskan et al. [14] Zafar et al. [44] Our approach

GCJ (5 authors) 98.6% 86.6% 100%

GCJ (10 authors) 96.4% 93.9% 94.2%

GCJ (20 authors) 90.9% 82.8% 92.9%

GCJ (40 authors) 92.3% 73.4% 90.3%

GCJ (50 authors) 88.1% 73.4% 90.1%

GCJ (100 authors) 85.2% 69.1% 86.6%

Mixed source code dataset (50

authors)

Zafar et al. [44] Our approach

Scripting languages 76% 86.3%

Compiled languages 85.6% 91.3%

Concurrent languages 88.1% 84.1%

Curly-Bracket languages 77.9% 89.6%

Extension languages 55.6% 82.5%

Functional Impure languages 75.3% 86.1%

Imperative languages 77.1% 88.3%

Interactive languages 77.3% 87.6%

Binary dataset MVFCC [21] Our approach

APT malware set [21] 95.2% 96.3%

our set, in comparison, our approach generates only 47 features which as a result
leads to faster attribution.

Zafar et al. approach on the other hand showed a slightly higher accuracy for
Java source code compared to our approach for a small number of authors (100%
for attributing 5 and 10 authors vs 98.7% and 97% with our approach). Yet, its
accuracy dropped significantly for larger sets of 20 and more authors (77.5% for
100 authors). With the C++ dataset and a set with mixed languages, our app-
roach in most cases showed better performance. With the limited applicability
of Zafar et al. approach (source code only), our framework is better equipped to
provide a more versatile and accurate attribution in practice.

6 Conclusion

In the field of security, code attribution finds its application in many contexts,
e.g., software forensics, malware analysis, code plagiarism and intellectual prop-
erty theft detection. The uncertainty of field requires the presence of suitable

Language and Platform Independent Attribution of Heterogeneous Code 189

techniques capable of attributing any given code. The existing authorship attri-
bution approaches fail to provide necessary support. This work offers a uni-
fied approach for accurate code attribution. We adopt a coding style preserving
abstraction scheme which enables us to accurately attribute code to its corre-
sponding author without any knowledge of code format.

This paper’s findings have important implications for developing a hetero-
geneous system that can relate any form of user output to the corresponding
author.

References

1. Abazari, F., Branca, E., Ridley, N., Stakhanova, N., Dallapreda, M.: Dataset char-
acteristics for reliable code authorship attribution. IEEE Trans. Depend. Secure
Comput. (2021)

2. Abuhamad, M., AbuHmed, T., Mohaisen, A., Nyang, D.: Large-scale and language-
oblivious code authorship identification. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 101–114 (2018)

3. Abuhamad, M., Rhim, J.S., AbuHmed, T., Ullah, S., Kang, S., Nyang, D.: Code
authorship identification using convolutional neural networks. Future Gener. Com-
put. Syst. 95, 104–115 (2019)

4. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns:
application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12),
2037–2041 (2006)

5. Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image descrip-
tion with local binary pattern histogram fourier features. In: Salberg, A.-B., Hard-
eberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02230-2 7

6. Alrabaee, S., Debbabi, M., Wang, L.: On the feasibility of binary authorship char-
acterization. Digital Invest. 28, S3–S11 (2019)

7. Alrabaee, S., Debbabi, M., Wang, L.: Cpa: accurate cross-platform binary author-
ship characterization using lda. IEEE Trans. Inf. Forensics Secur. 15, 3051–3066
(2020)

8. Alrabaee, S., Karbab, E.M.B., Wang, L., Debbabi, M.: BinEye: towards efficient
binary authorship characterization using deep learning. In: Sako, K., Schneider, S.,
Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 47–67. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29962-0 3

9. Alrabaee, S., Saleem, N., Preda, S., Wang, L., Debbabi, M.: Oba2: an onion app-
roach to binary code authorship attribution. Digital Invest. 11, S94–S103 (2014)

10. Alrabaee, S., Shirani, P., Debbabi, M., Wang, L.: On the feasibility of malware
authorship attribution. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi,
N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 256–272. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-51966-1 17

11. Alrabaee, S., Shirani, P., Wang, L., Debbabi, M., Hanna, A.: On leveraging coding
habits for effective binary authorship attribution. In: Lopez, J., Zhou, J., Soriano,
M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 26–47. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99073-6 2

12. Alsulami, B., Dauber, E., Harang, R., Mancoridis, S., Greenstadt, R.: Source code
authorship attribution using long short-term memory based networks. In: Foley,
S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp.
65–82. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 6

https://doi.org/10.1007/978-3-642-02230-2_7
https://doi.org/10.1007/978-3-030-29962-0_3
https://doi.org/10.1007/978-3-319-51966-1_17
https://doi.org/10.1007/978-3-319-99073-6_2
https://doi.org/10.1007/978-3-319-66402-6_6

190 F. Abazari et al.

13. Azab, A., Khasawneh, M.: Msic: malware spectrogram image classification. IEEE
Access 8, 102007–102021 (2020)

14. Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A., Voss, C., Yamaguchi,
F., Greenstadt, R.: De-anonymizing programmers via code stylometry. In: 24th
{USENIX} Security Symposium ({USENIX} Security 2015), pp. 255–270 (2015)

15. Caliskan-Islam, A., et al.: When coding style survives compilation: de-anonymizing
programmers from executable binaries. In: The Network and Distributed System
Security Symposium (NDSS 2018) (2018)

16. Chouchane, R., Stakhanova, N., Walenstein, A., Lakhotia, A.: Detecting machine-
morphed malware variants via engine attribution. J. Comput. Virol. Hack. Tech.
9(3), 137–157 (2013). https://doi.org/10.1007/s11416-013-0183-6

17. Dauber, E., Caliskan-Islam, A., Harang, R., Greenstadt, R.: Git blame who?:
stylistic authorship attribution of small, incomplete source code fragments. arXiv
preprint arXiv:1701.05681 (2017)

18. Ding, H., Samadzadeh, M.H.: Extraction of java program fingerprints for software
authorship identification. J. Syst. Softw. 72(1), 49–57 (2004)

19. Frantzeskou, G., Stamatatos, E., Gritzalis, S., Chaski, C., Howald, B.: Identifying
authorship by byte-level n-grams: the source code author profile (scap) method.
Int. J. Digit. Evid. 6 (2007)

20. Gonzalez, H., Stakhanova, N., Ghorbani, A.A.: Authorship attribution of android
apps. In: Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, CODASPY 2018, pp. 277–286. Association for Computing
Machinery, New York (2018)

21. Haddadpajouh, H., Azmoodeh, A., Dehghantanha, A., Parizi, R.M.: Mvfcc: a
multi-view fuzzy consensus clustering model for malware threat attribution. IEEE
Access 8, 139188–139198 (2020)

22. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classifi-
cation. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973)

23. Heitman, C., Arce, I.: Barf: a multiplatform open source binary analysis and reverse
engineering framework. In: XX Congreso Argentino de Ciencias de la Computación
(Buenos Aires 2014) (2014)

24. Hendrikse, S.: The Effect of Code Obfuscation on Authorship Attribution of Binary
Computer Files. Ph.D. thesis, Nova Southeastern University (2017)

25. Jain, A., Gonzalez, H., Stakhanova, N.: Enriching reverse engineering through
visual exploration of android binaries. In: Proceedings of the 5th Program Pro-
tection and Reverse Engineering Workshop, pp. 1–9 (2015)

26. Ji, J.H., Woo, G., Cho, H.G.: A plagiarism detection technique for java program
using bytecode analysis. In: Third International Conference on Convergence and
Hybrid Information Technology, 2008, ICCIT 2008, vol. 1, pp. 1092–1098. IEEE
(2008)

27. Kalgutkar, V., Kaur, R., Gonzalez, H., Stakhanova, N., Matyukhina, A.: Code
authorship attribution: methods and challenges. ACM Comput. Surv. 52(1) (2019)

28. Kalgutkar, V., Stakhanova, N., Cook, P., Matyukhina, A.: Android authorship
attribution through string analysis. In: Proceedings of the 13th International Con-
ference on Availability, Reliability and Security. ARES 2018. Association for Com-
puting Machinery, New York (2018)

29. Kaur, R., Ning, Y., Gonzalez, H., Stakhanova, N.: Unmasking Android obfuscation
tools using spatial analysis. In: 2018 16th Annual Conference on Privacy, Security
and Trust (PST), pp. 1–10. IEEE (2018)

https://doi.org/10.1007/s11416-013-0183-6
http://arxiv.org/abs/1701.05681

Language and Platform Independent Attribution of Heterogeneous Code 191

30. Kothari, J., Shevertalov, M., Stehle, E., Mancoridis, S.: A probabilistic approach
to source code authorship identification. In: Fourth International Conference on
Information Technology, 2007, ITNG 2007, pp. 243–248. IEEE (2007)

31. Kurtukova, A., Romanov, A., Shelupanov, A.: Source code authorship identifica-
tion using deep neural networks. Symmetry 12(12), 2044 (2020)

32. Mayer, P., Bauer, A.: An empirical analysis of the utilization of multiple program-
ming languages in open source projects. In: Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering, EASE 2015.
Association for Computing Machinery, New York (2015)

33. Meng, X., Miller, B.P.: Binary code multi-author identification in multi-toolchain
scenarios (2018)

34. Nataraj, L.: A signal processing approach to malware analysis. University of Cali-
fornia, Santa Barbara (2015)

35. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware images: visu-
alization and automatic classification. In: Proceedings of the 8th International
Symposium on Visualization for Cyber Security, pp. 1–7 (2011)

36. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Trans. Pattern
Anal. Mach. Intell. 24(7), 971–987 (2002)

37. Prechelt, L., Malpohl, G., Philippsen, M.: Finding plagiarisms among a set of
programs with jplag. J. UCS 8(11), 1016 (2002)

38. Rosenberg, I., Sicard, G., David, E.O.: DeepAPT: nation-state APT attribution
using end-to-end deep neural networks. In: Lintas, A., Rovetta, S., Verschure,
P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 91–99. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68612-7 11

39. Rosenblum, N., Zhu, X., Miller, B.P.: Who wrote this code? identifying the authors
of program binaries. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol.
6879, pp. 172–189. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23822-2 10

40. Taylor, C., Colberg, C.: A tool for teaching reverse engineering. In: 2016 USENIX
Workshop on Advances in Security Education (ASE 16). Austin, TX (2016)

41. Ullah, F., Jabbar, S., Al-Turjman, F.: Programmers’ de-anonymization using a
hybrid approach of abstract syntax tree and deep learning. Technol. Forecast.
Social Change 159, 120186 (2020)

42. Ullah, F., Wang, J., Jabbar, S., Al-Turjman, F., Alazab, M.: Source code authorship
attribution using hybrid approach of program dependence graph and deep learning
model. IEEE Access 7, 141987–141999 (2019)

43. Wang, L., He, D.C.: Texture classification using texture spectrum. Pattern Recogn.
23(8), 905–910 (1990)

44. Zafar, S., Sarwar, M.U., Salem, S., Malik, M.Z.: Language and obfuscation oblivi-
ous source code authorship attribution. IEEE Access 8, 197581–797596 (2020)

45. Zhang, L., Thing, V.L., Cheng, Y.: A scalable and extensible framework for android
malware detection and family attribution. Comput. Secur. 80, 120–133 (2019)

https://doi.org/10.1007/978-3-319-68612-7_11
https://doi.org/10.1007/978-3-642-23822-2_10
https://doi.org/10.1007/978-3-642-23822-2_10

Multi-relational Instruction Association
Graph for Cross-Architecture Binary

Similarity Comparison

Qige Song1,2, Yongzheng Zhang3, and Shuhao Li1(B)

1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China

{songqige,lishuhao}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 China Assets Cybersecurity Technology CO., Ltd., Beijing, China

zhangyz@cacts.cn

Abstract. Cross-architecture binary similarity comparison is essential in
many security applications. Recently, researchers have proposed learning-
based approaches to improve comparison performance. They adopted a
paradigm of instruction pre-training, individual binary encoding, and
distance-based similarity comparison. However, instruction embeddings
pre-trained on external code corpus are not universal in diverse real-
world applications. And separately encoding cross-architecture binaries
will accumulate the semantic gap of instruction sets, limiting the compar-
ison accuracy. This paper proposes a novel cross-architecture binary sim-
ilarity comparison approach with multi-relational instruction association
graph.Weassociatemono-architecture instruction tokenswith context rel-
evance and cross-architecture tokens with potential semantic correlations
from different perspectives. Then we exploit the relational graph convolu-
tional network (R-GCN) to perform type-specific graph information prop-
agation. Our approach can bridge the gap in the cross-architecture instruc-
tion representation spaces while avoiding the external pre-training work-
load. We conduct extensive experiments on basic block-level and function-
level datasets to prove the superiority of our approach. Furthermore, eval-
uations on a large-scale real-world IoT malware reuse function collection
show that our approach is valuable for identifying malware propagated on
IoT devices of various architectures.

Keywords: Cross-architecture binary similarity comparison · IoT
malware defense · instruction association graph · Relational graph
convolutional network

1 Introduction

Cross-architecture binary similarity comparison task aims at measuring the func-
tional semantic similarity of binary snippets compiled from different CPU archi-
tectures. It is of great significance in many systems security applications, such

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 192–211, 2023.

https://doi.org/10.1007/978-3-031-25538-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_11&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_11

Multi-relational Instruction Association Graph for Binary Comparison 193

as vulnerability detection, patch analysis, and malware detection. In this paper,
we explore its application in malware defense of the Internet of Things (IoT)
environments. IoT devices have been widely used in various real-life scenarios
in recent years. However, the security protection of many IoT devices is not yet
perfect, leaving hidden dangers such as weak authentication services and secu-
rity vulnerabilities, which have attracted the attention of malware developers.
Many attackers use malware as a weapon to invade vulnerable devices to build
large-scale IoT botnets and operate them to launch Distributed Denial of Service
(DDoS) attacks, causing severe damage [1,5,16].

Due to the diversity of underlying hardware architectures of IoT devices, mal-
ware developers often reuse source code to generate malware binaries of multiple
architectures, thereby infecting more devices and expanding the scale of attacks.
Cozzi et al. [6] conducted empirical analysis on over 93k IoT malware emerged
between 2015 and 2018, and results have shown that the samples involve more
than a dozen kinds of architectures, with ARM and MIPS in the majority. They
also found the prevalence of code reuse across malware samples of different fam-
ilies and architectures. Wang et al. [44] deployed IoT honeypots in real-world
network environments and captured a large number of wild IoT malware samples.
After code-level analysis, they confirmed that many samples with the same code
origin are reused and propagated on IoT devices of different architectures. There-
fore, an effective cross-architecture binary code similarity comparison approach
can help discover reused IoT malware fragments under different architectures,
providing solutions for defending against IoT attacks.

Traditional binary similarity comparison approaches are categorized into two
main technical routes, static analysis-based approaches and dynamic analysis-
based approaches. The former compares the syntactic or statistical features of
disassembly instruction sequences [17,21,34], or design hash algorithms to calcu-
late the similarity of binary fragments [11,37,47]. However, since different archi-
tectures have separate instruction sets, the mnemonics, registers, and memory
access strategies are different, making it difficult to achieve decent performance.
Dynamic-based approaches compare the runtime state information [20] or the
input-output pairs of binary code fragments to measure their semantic similarity
[7,32]. But it is challenging to perform scalable analysis on large-scale binary col-
lections. Meanwhile, supporting diverse architectures and compilation settings
will lead to extra workload for dynamic analysis environment configuration.

Considering the above disadvantages, researchers have recently shifted their
focus to learning-based approaches. They generally adopted the following work-
ing paradigm: (i) Generate the initial representations of disassembly instructions
by manually-designed features or external pre-training mechanism. (ii) Exploit
deep neural encoders to individually extract vectorized representations of each
binary snippet. (iii) Calculate the similarity score based on the distance met-
rics. Specifically, Gemini [46] extracted statistical vectors of basic blocks within
the control-flow-graph of binary function pairs, then encoded the overall graph
with the structure2vec network and measured their cosine similarity. INNEREYE
[50] used word2vec to learn the assembly instructions embeddings (numerical vec-

194 Q. Song et al.

tors) on external code corpus, then deployed RNN encoders to separately generate
sequential features of instruction sequences, and evaluated the similarity of cross-
architecture binary snippets based on the Manhattan distance. SAFE [31] set up
similar instruction representation and sequence encoding modules, with additional
self-attention layers to automatically assign high weights to important instruc-
tions, improving the semantic similarity matching performance. Although showing
promising results, these approaches have two main dilemmas:

– First, these approaches individually encode binaries of different architectures
and then perform similarity comparisons on their vectorized representations.
However, the semantic representation spaces of the cross-architecture instruc-
tion sets have a clear gap. The separate binary characteristics encoding mech-
anism will accumulate this gap, resulting in inaccurate comparison results.
This phenomenon will be more pronounced for larger binary snippets.

– Second, although state-of-the-arts have proved that pre-trained instruction
representations perform better than statistical features [40,48,50], it relies on
high-quality, large-scale external code corpora. Considering real-world bina-
ries are generated under diverse architectures and compilation settings, espe-
cially for IoT environments, collecting a comprehensive corpus for instruction
pre-training generally takes considerable time and effort.

In this paper, we design a novel cross-architecture binary similarity com-
parison approach with multi-relational instruction association graph, which can
effectively alleviate these two deficiencies. For a pair of binary snippets, we first
associate mono-architecture opcode and operand token pairs with the opera-
tional relationship or co-occurrence-based relevance. Then we associate the cross-
architecture token pairs with multi-perspective potential semantic correlations,
including prefix-match, value-match, type-match and heuristic position align-
ment dependencies. The mono-architecture associations can effectively enhance
the functional semantic representation of instructions without external instruc-
tion pre-training. The cross-architecture associations can effectively bridge the
gap in the semantic feature spaces of instructions under different architectures,
and significantly improve the cross-architecture binary similarity matching per-
formance. We apply the relational graph convolutional network (R-GCN) to
propagate information on the constructed multi-relational instruction associa-
tion graph. R-GCN groups different types of relations and uses a separate neigh-
bor message-passing mechanism, which can effectively aggregate multi-type asso-
ciations and iteratively refine the semantic representations of instruction tokens.

Our major contributions can be summarized as follows:

– We creatively design a novel cross-architecture similarity binary comparison
approach with multi-relational instruction association graph. It can associate
the semantic dependencies of instructions from different perspectives, bridge
the gap in the representation spaces of cross-architecture instructions, and
significantly improve binary comparison performance.

– We implement our solution as an end-to-end cross-architecture binary similar-
ity comparison system and conduct extensive evaluations at two granularities,

Multi-relational Instruction Association Graph for Binary Comparison 195

Fig. 1. The workflow of our proposed multi-relational instruction association graph-
based cross-architecture binary similarity comparison approach. M1 is the abbreviation
of Module 1.

basic block-level and function-level. Results show that our approach signif-
icantly outperforms the existing learning-based approaches (AUC = 0.9924
for basic block-level and Precision@1 = 0.9216 for function-level).

– We further evaluate our approach on a large-scale cross-architecture reuse
function dataset (460,386 pairs) constructed from IoT malware in real-world
environments. Promising results prove that our method is valuable for defend-
ing against malware spread on IoT devices of different architectures.

2 Overview

2.1 Problem Statement

In this section, we give a formal definition of the cross-architecture binary code
similarity comparison problem. The input is a pair of binary code snippets com-
piled on two different CPU architectures, and the output is a semantic similarity
score. We set the output value in the range of 0 to 1, where 1 represents that
the input binary snippets are compiled from the exact same source code, and 0
means that their source code implements completely different functions.

2.2 System Workflow

Our approach is implemented as an end-to-end cross-architecture binary code
similarity comparison system. Figure 1 shows the overall system workflow,
including four major modules:

196 Q. Song et al.

Fig. 2. Detailed instruction vectorization process.

– Instruction representation module (Module 1): We disassemble and prepro-
cess the input binary snippets, obtaining the initial instruction token repre-
sentations with token-level and character-level (char-level) features.

– Instruction sequence encoding module (Module 2): We use Bi-LSTM as the
backbone encoder to extract the sequential representations of disassembly
instruction token sequences.

– Graph-based instruction association module (Module 3): We construct the
corresponding instruction association graph of the input pair of binary snip-
pets, then generate the refined token representations by relational graph con-
volutional network.

– Binary similarity comparison module (Module 4): We fuse the final represen-
tation vectors of the binary snippets and generate the similarity comparison
score by Multilayer Perceptron (MLP) network.

3 Instruction Vectorization Module

The input pair of binary snippets Sa and Sb are originally discrete byte streams,
and we first extract their corresponding disassembly instruction sequences. Each
instruction contains an opcode and a set of operands. The opcode specifies the
operation performed by the instruction, and the operands represents the oper-
ation object, like registers and immediate literals. We tokenize raw disassembly
instruction sequences and treat each independent opcode or operand as a token
unit for vectorization. The input pair can be represented as token sequence Ta

= (ta1 , ta2 , ..., tla), and Tb = (tb1 , tb2 , ..., tlb). la and lb are the length of the
sequences. To improve generality, we preprocess the original token sequence,
replacing the numerical constants with 0 while preserving the negative signs.

Figure 2 shows the working process of our instruction token vectorization
module. We create a token lookup dictionary for the processed opcode and
operand units. The initial representation of each token is a sparse one-hot vec-
tor based on its index within the dictionary, and then we set a trainable token
embedding layer to learn the discrete dense vector e(token)ai of token tai

.

Multi-relational Instruction Association Graph for Binary Comparison 197

We further extract the char-level features to enrich the instruction token
representations with lexical information. We extract the corresponding character
(char) sequences of the tokens and generate a char lookup dictionary. Then each
token can be represented as a sequence of one-hot vectors of the chars. Similar to
the token embedding process, we set up an embedding layer to obtain the dense
vector of each char. After that, we deploy a one-dimensional-Convolutional (1D-
Conv) layer to extract the local-spatial features of the char sequences. It will
slide fixed-size 1D-Conv filters over the char vector sequence of the instruction
token and generate corresponding feature maps. Then we process the feature
maps by a max-pooling layer to generate the final char-level representations. In
specific, for token tai

with char one-hot sequence (cai1 , cai2 , ..., caiM
) of length

M , its char-level vectorized representation is generated as follows:

e(char)ai
= max-pooling (1D-Conv (cai1 , cai2 , ..., caiM

)) (1)

The final vectorization result eai
of the instruction token tai

is the concatena-
tion of token embedding features and character-level features. Note that our ini-
tial instruction vectorization process is implemented entirely through learnable
parameters without relying on any external pre-trained instruction embeddings.

eai
= Concat

(
e(token)ai

; e(char)ai

)
(2)

4 Instruction Sequence Encoding Module

From the instruction vectorization module, we obtain the instruction token vec-
tor sequences Ea = (ea1 , ea2 , ..., ela) and Eb = (eb1 , eb2 , ..., elb) of binary snip-
pets Sa and Sb. Our next goal is to encode the functional semantics of the overall
binary sequences and generate their meaningful representations. The recurrent
neural network (RNN) has a strong sequential context modeling ability and has
been widely used in text sequence characterization. We apply it into our binary
instruction sequence encoding process. To prevent the gradient vanishing and
exploding problems that are prone to occur when encoding long sequences, we
apply the LSTM variant instead of the vanilla RNN. We deploy the bidirectional
LSTM (Bi-LSTM), with two LSTMs separately encoding forward and backward
information. The hidden state hai

of token tai
is generated as follows:

−→
hai

=
−−−−→
LSTM (ta1 , ta2 , . . . , tai

) ,
←−
hai

=
←−−−−
LSTM (tla , tla−1, . . . , tai

) (3)

hai
= Concat

(−→
hai

;
←−
hai

)
(4)

After the encoding layers, the binary snippets are represented as the
sequences of token hidden vectors, Ha = (ha1 , ha2 , ..., hla), Hb = (hb1 , hb2 ,
..., hlb). We keep all tokens’ hidden states without any aggregation or pooling
operation. They will be used for subsequent instruction association and instruc-
tion representation refinement process.

198 Q. Song et al.

5 Graph-Based Instruction Association Module

5.1 Multi-relational Instruction Association Graph

In this section, we give a specific description of our designed instruction asso-
ciation graph schema. Our goal is to model dependencies of instructions from
multiple perspectives and refine the quality of instruction token representations.
For the instruction token sequence Ta and Tb processed from the input binary
snippets, we regard each token as a node and establish the corresponding instruc-
tion association graph G = (T , E ,R). T is the node set, E denotes the edge set,
and R is the type set of the edges. Note that we construct an independent
instruction association graph for each binary pair to be compared, so the graph
structure will change dynamically for different input pairs.

We design the following six types of edges to represent the semantic rela-
tionships between instruction token nodes, including edges of mono-architecture
token pairs and edges of cross-architecture token pairs.

Mono-architecture Association Edges

– Mono-architecture opcode-operate-operand edge (e0) : We associate
the opcode with each operand within the same disassembly instruction, indi-
cating the operational relationship.

– Mono-architecture operands co-occurrence edge (e1) : We associate
each operand pair within a disassembly instruction, displaying their co-
occurrence-based relevance.

In specific, for the instruction “MOV ∼ R0, R4”, we associate token “MOV ”
with tokens “R0” and “R4” by edges of type e0, indicating that opcode “MOV ”
operates on registers “R0” and “R4”. Meanwhile, tokens “R0” and “R4” are
associated with the e1 edge, denoting that they co-occurred within the same
disassembly instruction. These two types of edges will establish context-based
dependencies of the mono-architecture token sequence, improving the semantic
representations of opcodes and operands without resorting to external instruc-
tion pre-training.

Cross-Architecture Association Edges

– Cross-architecture opcodes prefix-match edge (e2) : We connect two
cross-architecture opcodes with the same n prefix characters. Although dif-
ferent architectures have separate instruction sets, some opcodes that per-
form similar operations have similar char-level lexical characteristics. Such
as “SUB”, “SUBSD”, “SUBPD”, “SUBSS” of the x86 architectures, and
“SUB”, “SUBS” of the ARM architecture will perform similar operations,
and they all contain the “SUB” prefix. This type of edge is meaningful for
identifying instruction sequences implementing similar functions.

Multi-relational Instruction Association Graph for Binary Comparison 199

– Cross-architecture operands value-match edge (e3) : We associate two
cross-architecture operands with the same value after preprocessed. It will
establish dependencies between numeric constants, identical symbols, and
identical string literals of different architectures, assisting the semantic com-
parison process of disassembled code fragments.

– Cross-architecture operands type-match edge (e4) : For a similar pur-
pose to e3, we associate cross-architecture operands with the same fine-
grained category. We consider three fine-grained operand types: registers,
immediate literals, and memory address pointers.

– Cross-architecture heuristic position alignment edge (e5) : We define
heuristic rules to establish positional associations between the token pairs
of cross-architecture instruction sequences. Specifically, tokens tai

and tbj of
sequences Ta and Tb will be associated if they meet the following conditions:

|ai × la
lb

− bj | < ι (5)

ai and bj are the position indices of the tokens in the respective sequences.
la and lb are the lengths of the sequences. ι is a pre-defined threshold.

The e5 edge is inspired by Redmon et al. [40]. We set the edge weights of the
instruction association graph as their statistical frequencies, e0 is unidirectional,
and e1 to e5 are undirected edges. The same endpoint token nodes may be
associated with multiple different types of edges, and our strategy of utilizing
multi-type of dependencies will be illustrated in the next subsection.

5.2 Relational Graph Convolutional Network

After building the instruction association graph, we expect to refine the seman-
tic representation of instruction tokens with the multi-relational graph schema.
Graph neural network (GNN) [42] has strong graph structures representation
abilities, and it has achieved promising performance in diverse tasks such as node
classification and link prediction. The classic GNN is a message-passing frame-
work with two core operations, neighbor node information aggregation and node
representation update. It iteratively aggregates neighbor node information and
updates the vectorized representations of nodes with local subgraph features.

Specifically, for a token node tv of set T with the corresponding neighbor
set N (tv), the neighbor node information aggregation and node representation
update process of a GNN layer are performed as:

htv = F (xtv , AGG ({htu : tu ∈ N (tv)})) (6)

xtv is the initial representation of tv, and htv denotes the updated representation
calculated by the aggregated neighbor node features and the fusion function F .

Our instruction association graph connects instruction token pairs with
semantically distinct edges. To better exploit the multi-type dependencies, we
choose the relational graph convolutional network (R-GCN) [43], a GNN vari-
ant that can efficiently handle multi-relational graph data. R-GCN extends the

200 Q. Song et al.

Fig. 3. Refine instruction representation with instruction association graph and R-
GCN layers.

classic GNN framework with type-specific parameters to model the relations
of different types separately. For token node tv, the lth R-GCN layer maps its
neighbor node-set N er

(tv)
associated with edge type er to a unified vector space

through relation-specific transformation matrix W l
er , and aggregates the trans-

formed vectors in the normalized summation way. The node’s characteristics of
the previous layer hl

tv is preserved by a separate feature transformation matrix
W l

0. The overall lth layer node representation refinement process is as follows:

hl+1
tv = σ

⎛
⎝ ∑

er∈R

∑
tu∈N er

tv

1
|N er

tv |W
l
erh

l
tu + W l

0h
l
tv

⎞
⎠ (7)

A Single R-GCN layer can only aggregate first-order neighbor information.
We stack multiple R-GCN layers to propagate multi-hop neighbor messages,
learning the substructure of different scales within the instruction association
graph. For token tai

, its corresponding input node attributes of the first R-GCN
layer are the hidden states hai

generated by the previous token vectorization
layers and the Bi-LSTM encoder, which contains the tokens’ lexical semantics
and the sequential information of the mono-architecture binary sequence. The
final R-GCN layer will output its refined representation rai

, and Ba and Bb will
be represented as Ra = (ra1 , ra2 , ..., rla) and Rb = (rb1 , rb2 , ..., rlb).

Figure 3 is the technical explanation of the overall graph-based instruction
association module. The left side is an instruction association graph schema cor-
responding to an input pair of disassembly instruction sequences. We reserve one
example edge for each type. On the right is the node representation refinement
process performed by R-GCN layers.

Multi-relational Instruction Association Graph for Binary Comparison 201

6 Binary Similarity Comparison Module

The graph-based instruction association module will generate refined instruction
token representation sequences Ra and Rb. We send the sequences to another Bi-
LSTM layer to strengthen the sequential context information, and then employ
a max-pooling layer to generate the final binary snippet representations Fa, Fb.
The process can be simplified as follows:

Fa = max-pooling (Bi-LSTM (ra1 , ra2 , ..., rla)) (8)

We set up a fusion function to aggregate the final vector Fa and Fb, and
then feed the result into a one-layer MLP classifier with the softmax function
to predict the similarity score of Sa and Sb. The fusion function is based on [4],
including the concatenation, element-wise difference, and element-wise product
of Fa and Fb, as follows:

F(a,b) = Concat (Fa;Fb;Fa − Fb;Fa � Fb) (9)

This fusion way ensures that the MLP classifier can identify the boundary of
the two representation vectors, and calculate the similarity between Fa and Fb

more accurately. The overall neural model is optimized by minimizing the cross-
entropy loss between the predicted scores and the ground truth pair labels.

7 Evaluation

7.1 Preliminary

Dataset. We evaluate our approach on three datasets with two granularities:

(i) Dataset1 is a collection of basic block pairs provided by INNEREYE [49]
with annotated ground truth, compiled from coreutils-8.29, findutils-
4.6.0, diffutils-3.6, binutils-2.30, and OpenSSL-1.1.1-pre1 packages by
the clang-6.0.0 compiler and O2 optimization, into x86 and ARM archi-
tectures.

(ii) We build the function-level Dataset2 from the same packages of Dataset1
by two compilers, clang-6.0.0 and GCC-5.4.0, also with O2 optimization.

(iii) We construct Dataset3 with seven families of IoT malware samples cap-
tured by honeypots deployed in real-world network environments. We select
samples spread on ARM and MIPS architectures, which are widely used
in IoT devices, and build a large-scale cross-architecture malware reuse
function matching dataset.

We annotate the ground truth of Dataset2 and Dataset3 with binary name
and function name as the unique ID to identify functions compiled from the same
source code. When building Dataset3, we filtered out functions of stripped bina-
ries whose names could not be correctly identified by the disassembler. Table 1
shows the information of our datasets. The last two columns represent the aver-
age number of edges of the instruction-association graphs, and the average num-
ber of disassembly instructions contained in each binary snippet.

202 Q. Song et al.

Table 1. Statistical information of evaluation datasets

Dataset Architectures Granularity # Pairs Average #
Edges

Average #
Instructions

Dataset1 x86-ARM Basic-Block 11,2019 239.50 7.09

Dataset2 x86-ARM Function 74,841 1142.31 28.38

Dataset3 ARM-MIPS Function 460,386 737.21 33.49

Evaluation Metrics. We consider two groups of metrics in evaluation:

(i) For basic block-level evaluation, we follow the prior art [40,50] and use
AUC-ROC (Area under ROC curve) as the evaluation metric.

(ii) For function-level evaluation, we set up the function search task as the
prior art [28,31,48]. It will compare a query binary function with multiple
candidate functions and rank the corresponding similarity scores. In our
experiments, we set one positive candidate similar to the query function,
together with Nneg dissimilar candidates. We adopt two commonly used
evaluation metrics, precision@1 and MRR (Mean Reciprocal Rank). For
each query function, the precision@1 value indicates whether the score of the
positive candidate function is ranked first, and the MRR value is calculated
as the reciprocal of the positive candidate’s ranking position.

Implementation Details. We implement the proposed method with the
PyTorch framework, PyTorch Geometric library [14], and radare2 disassembler
[38]. The parameters are optimized by Adam with a learning rate of 1e-3. The
dimension of the instruction token embedding layer is set to 128, and the char
embedding dimension is 32. The size of char 1-D convolutional filters is 2, and
the number is 64. We set up one Bi-LSTM layer and two R-GCN layers with
the hidden dimension of 256. The n value of the Cross-architecture opcode prefix-
match edge (e2) is set to 3, and the ι threshold of the Cross-architecture heuristic
position alignment edge (e5) in the Eq. 5 is set to 2. Under this setting, our sys-
tem can achieve the best results on the development sets. For Dataset2 and
Dataset3, the number of negative candidates Nneg for each query function is 20.

7.2 Basic Block-Level Experiments

Comparisons with the Prior Art. In this section, we evaluate our approach
at the basic block-level dataset and compare it with two manually designed base-
lines and three state-of-the-art cross-architecture binary similarity comparison
approaches. The implementations of the comparison methods are as follows:

– String edit distance: We use python-Levenshtein [25] to compute edit-
distance-based similarity scores of the cross-architecture basic block pairs.

– Char n-gram: We extract the char n-gram sets of the assembly instruction
sequences and calculate their Jaccard similarity score. 4-gram performs best
in our evaluation.

Multi-relational Instruction Association Graph for Binary Comparison 203

– Gemini [46] features + SVM: Xu et al. extracted the statistical features to
represent a basic block, such as the number of instructions, calls, and numeric
constant. Following Zuo et al. [50], we concatenate the features of two blocks
and use SVM with RBF kernel to predict their similarity.

– INNEREYE [50]: Zuo et al. used word2vec to pre-train assembly instruction
embeddings on external code corpus. Then encode the cross-architecture
instruction sequences by two individual LSTM networks and generate the
similarity score based on the distance metric.

– Redmon et al. [40] proposed an instruction pre-training method based on joint
objectives. They establish position-based alignments of cross-architecture
instruction pairs, and set the mono-architecture and cross-architecture objec-
tives to training instruction embeddings.

Table 2. Basic block-level cross-architecture binary similarity comparison results on
Dataset1.

Approaches ROC-AUC

String edit distance 0.8087

Char n-gram 0.7746

Gemini features + SVM [46] 0.8647

INNEREYE [50] 0.9764

Redmond et al. [40] 0.9069

(- Mono-arch edges) 0.9917

(- Cross-archs edges) 0.9885

(- Type-specific aggregation) 0.9825

Our approach 0.9924

We use the instruction embedding files of INNEREYE [49] and Redmond et al.
[39] to make fair comparison. The AUC-ROC on Dataset1 are shown in the upper
part of Table 2. From the results, we can mainly draw the following conclusions:

– The performance of edit distance, char n-gram, and Gemini + SVM is not
ideal, which shows the syntax or statistical-features based comparison can
not handle the significant differences of cross-architecture instruction sets.

– INNEREYE and our approach outperform other methods by large margins,
which proves that exploiting deep neural networks to automatically extract
the features of disassembly instruction sequences is a very effective solution.

– Our approach can achieve the best performance. The improvement is mainly
because our graph-based instruction association module can effectively bridge
the gap in the representation spaces of cross-architecture instructions. Fur-
thermore, we do not rely on external pre-training to generate initial instruc-
tion embeddings, avoiding the additional workload and time consumption.

204 Q. Song et al.

Ablation Studies. We design three ablation variants of our approach to eval-
uate the core components of our graph-based instruction association module:
(i) Remove the mono-architecture association edges (e0 and e1). (ii) Remove
the cross-architecture association edges (e2 ∼ e5). (iii) Remove the type-specific
neighbor message aggregation mechanism of R-GCN layers and use the clas-
sic graph convolutional network [22]. The lower part of Table 2 presents the
results of the ablation experiments. It proves that the mono-architecture and
cross-architecture associations all contribute to performance improvement. And
separately aggregating neighbor messages from different types of dependencies
can more effectively refine the instruction representation and improve the cross-
architecture similarity comparison performance.

7.3 Function-Level Experiments

In this section, we evaluate our approach at the function-level Dataset2 and com-
pare it with two existing approachs. We set up the binary function search task
on Dataset2. The first work we make comparison with is INNEREYE, which per-
forms best in the basic block-level experiments. The second is another function-
level binary similarity comparison approach, SAFE [31]. It also used word2vec to
implement instruction pre-training, and deployed the Bi-GRU network to encode
disassembly instruction sequences. Then it added the self-attention mechanism
to generate instruction representation weights. Instructions that are more impor-
tant for binary semantic comparison results will be assigned higher weights.

Since the pre-trained instruction vocabulary provided by INNEREYE are pre-
trained on the code corpus compiled by clang, while Dataset2 also involves
the GCC compiler, 42.12% of the instructions are out-of-vocabulary (OOV).
Meanwhile, the instruction embeddings provided by SAFE are also generated by
the external corpus inconsistent with the compilation environment of Dataset2.
Therefore, we use the trainable instruction embedding and concatenate the
char-level features similar to our approach for their instruction vectorization.
This phenomenon also illustrates the limitations of the external instruction pre-
training approach. Since it is difficult to accurately predict the binary compila-
tion settings in practical applications, serious instruction OOV issue is prone to
occur.

Table 3. Function-level cross-architecture binary similarity comparison results on
Dataset2.

Approach Precision@1 MRR

INNEREYE (42.12% OOV) 0.5014 0.6619

INNEREYE + Char-features 0.6386 0.7665

SAFE + Char-features 0.7097 0.7828

Our approach 0.9216 0.9550

Multi-relational Instruction Association Graph for Binary Comparison 205

Table 3 shows the comparison results on Dataset2. From the table, we can see
that our approach has significant performance advantages, with at least 21.19
points improvement of the precision@1 value and 17.22 points improvement of
the MRR value than the variants of INNEREYE and SAFE. Compared with the
results of basic block-level experiments, our function-level improvement is more
prominent. On the one hand, the reason is that the instruction sequences of
function-level binary snippets are longer and implement more complex semantic
functional modules, which increases the difficulty of cross-architecture binary
semantic comparison. As shown in Table 1, our instruction association graph
will establish more multi-type edges on Dataset2, and the effect of bridging the
semantic representation space of binary snippets of different architectures is more
significant. On the other hand, the function search task needs to compare the
query function with multiple candidates and rank the similarity scores, which is
more challenging than the pairwise comparison conducted at basic block-level.

7.4 Real-World IoT Malware Reuse Function Matching
Experiments

In this section, we use Dataset3 to evaluate the scalability and practicability
of our method in real-world applications. Dataset3 is constructed from malware
captured in the public network by IoT honeypots. We use radare2 to process
unstripped malware samples of ARM and MIPS architectures and construct a
large-scale dataset containing over 460k cross-architecture function pairs, char-
acterizing malicious behaviors from a more refined perspective. We also make
comparisons with INNEREYE and SAFE. Since their pre-trained instruction embed-
dings did not support MIPS architecture, we still compare with their variants
using trainable embeddings and char-level features for instruction vectorization.

Table 4. Cross-architecture binary similarity comparison results on Dataset3.

Approach Precision@1 MRR Offline
training-time
(seconds/epoch)

Online
prediction-time
(milliseconds/pair)

INNEREYE + Char-features 0.7780 0.8366 101 1.58

SAFE + Char-features 0.7840 0.8386 318 1.84

Our approach 0.9375 0.9597 823 3.72

Table 4 shows the performance of the three approaches on Dataset3, along
with their offline training time (seconds per epoch) and online prediction time
(milliseconds per function pair). The results show that our method significantly
outperforms the variants of INNEREYE and SAFE, with precision@1 and MRR val-
ues improving at least 16.97 and 12.11 points, respectively. Due to the instruction
association graph construction and the R-GCN-based multi-type dependencies
aggregation on the graph, the training time and prediction time of our method

206 Q. Song et al.

are increased. However, the online prediction speed is still acceptable as infer-
encing the similarity score of a binary function pair can be completed in 3.72 ms.
Meanwhile, we do not need additional time collecting external code corpus con-
sistent with the specific application’s compilation settings and pre-training dis-
assembly instruction embeddings. In conclusion, our method can be effectively
applied to large-scale real-world cross-architecture binary similarity comparison
collection and provides a valuable solution for defending against malware reused
and propagated on IoT devices of different architectures.

8 Related Work

8.1 Traditional Binary Similarity Comparison Approaches

Traditional binary similarity comparison approaches are mainly divided into
two categories, static analysis techniques comparing syntax or structural features
[2,19,21,24,29,36,37,41] and dynamic analysis techniques comparing behavioral
semantics [20,27,32,33,45]. For static analysis-based methods, Rendezvous [21]
extracted the instruction n-perms, control flow sub-graphs, and constants of
binary code to construct a code search engine. Qiao et al. [37] used the simhash
algorithm to generate basic block signatures, then exploited inverted index to
achieve fast reuse function detection. CoP [29] first checked block-level semantic
equivalence with theorem prover, and then performed the breadth-first search
on the inter-procedural control-flow-graph (I-CFG) to compute path-level binary
semantic similarity. These approaches are designed for mono-architecture binary
comparison without handling the differences in instruction sets of different archi-
tectures. For dynamic analysis-based methods, Ulf et al. [20] recorded the exe-
cution traces and output values of a binary pair when given same input, and
used matching features to identify programs with similar semantics but differ-
ent syntax characteristics. BinSim [32] performed enhanced dynamic slicing and
extracted the symbolic formulas of the code fragments to check the semantic
equivalence. Dynamic analysis will meet challenges when analyzing large binary
collections, and it requires additional efforts to configure execution environments
supporting diverse architectures and compilation settings.

To support cross-architecture comparison, some existing work converted the
instructions of different architectures into the intermediate representation (IR)
[3,12,18,35]. Specifically, Multi-MH [35] first converted binary code into platform-
independent VEX-IR, then used the input-output pairs of basic blocks to con-
struct their semantic signatures. XMATCH [12] conducted static analysis on IR
and extracted conditional formulas as semantic features, improving the binary
vulnerability search accuracy. These methods may be limited by the adaptabil-
ity and precision of IR extraction tools. Esh [7] decomposed binary procedures
into small fragments, named strands, then checked the semantically equivalence
of strand pairs and used statistical reasoning for procedure-level similarity com-
parison, but it also suffers the unscalable issue on the large-scale collections.

Multi-relational Instruction Association Graph for Binary Comparison 207

8.2 Learning-Based Binary Similarity Comparison Approaches

Recently, deep learning technology has achieved promising improvements in
intelligent program analysis. To improve the effectiveness and efficiency of
the binary similarity comparison task, researchers pay attention to learning-
based approaches [8–10,13,15,23,26,28,30,31,46,48,50]. α-diff exploited the
siamese-CNN network to achieve cross-version binary code similarity detection.
They adopted in-batch random negative sampling and contrastive loss to opti-
mize the model. Asm2Vec [8] used the PV-DM model to implement binary func-
tion vectorization, achieving accurate binary clone detection against changes
introduced by code obfuscation and optimization techniques.

For cross-architecture binary similarity comparison, Gemini [46] extracted
the attribute control flow graph (ACFG) of the binary functions. Then it used
the structure2vec network and cosine similarity to implement bug search for
IoT firmware images. VulSeeker [15] extends ACFG into labelled semantic flow
graph (LSFG) by adding additional data flow edges. INNEREYE [50] leveraged
wordvec to pre-train instruction embeddings on external code corpus, then imple-
mented binary comparison by LSTM encoders and Manhattan distance. SAFE
[31] added the self-attention mechanism to calculate the importance weights
of the instructions within the disassembled code sequence, improving the cross-
architecture binary similarity matching accuracy. The common dilemma of exist-
ing learning-based approaches is that the cross-architecture binary snippets are
encoded separately by neural layers and then compared based on the similarity
metrics. The significant difference between cross-architecture instruction sets will
lead to a considerable gap in their semantical representation spaces, which limits
the comparison performance. Our method utilizes the multi-relational instruc-
tion association graph and R-GCN layers to close the gap in the semantic spaces
of cross-architecture instructions, effectively alleviating the deficiency.

9 Conclusion

In this paper, we propose a novel cross-architecture binary similarity compari-
son approach. We design an instruction association graph schema to bridge the
gap in the semantic spaces of instruction sets from different architectures. It
consists of six types of dependencies, which respectively define the context rel-
evance of mono-architecture instruction tokens and multi-perspective semantic
associations of cross-architecture tokens. We leverage the R-GCN network to
propagate the multi-type dependencies within the graph and improve the cross-
architecture binary matching performance. We conduct extensive experiments
on datasets of different granularities. Results show that it outperforms existing
learning-based approaches on basic block-level and function-level comparisons.
Furthermore, our approach can achieve effective cross-architecture reuse func-
tion detection on a large-scale IoT malware dataset collected from the real-world
network environment, which is meaningful for identifying malware spread on IoT
devices of various architectures and defending against IoT attacks.

208 Q. Song et al.

References

1. Antonakakis, M., et al.: Understanding the mirai botnet. In: 26th USENIX Security
Symposium (USENIX Security 17), pp. 1093–1110 (2017)

2. Cesare, S., Xiang, Y., Zhou, W.: Control flow-based malware variantdetection.
IEEE Trans. Dependable Secure Comput. 11(4), 307–317 (2013)

3. Chandramohan, M., Xue, Y., Xu, Z., Liu, Y., Cho, C.Y., Tan, H.B.K.: BinGo:
cross-architecture cross-OS binary search. In: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
678–689 (2016)

4. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning
of universal sentence representations from natural language inference data. In:
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2017, Copenhagen, Denmark, 9–11 September 2017 (2017)

5. Costin, A., Zaddach, J.: IoT malware: comprehensive survey, analysis framework
and case studies. BlackHat USA 1(1), 1–9 (2018)

6. Cozzi, E., Vervier, P.A., Dell’Amico, M., Shen, Y., Bilge, L., Balzarotti, D.: The
tangled genealogy of IoT malware. In: Annual Computer Security Applications
Conference, pp. 1–16 (2020)

7. David, Y., Partush, N., Yahav, E.: Statistical similarity of binaries. ACM SIG-
PLAN Not. 51(6), 266–280 (2016)

8. Ding, S.H., Fung, B.C., Charland, P.: Asm2Vec: boosting static representation
robustness for binary clone search against code obfuscation and compiler opti-
mization. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 472–489.
IEEE (2019)

9. Duan, Y., Li, X., Wang, J., Yin, H.: DeepBinDiff: learning program-wide code
representations for binary diffing. In: Proceedings of the 27th Annual Network and
Distributed System Security Symposium (NDSS 2020) (2020)

10. Eschweiler, S., Yakdan, K., Gerhards-Padilla, E.: discovRE: efficient cross-
architecture identification of bugs in binary code. In: NDSS (2016)

11. Farhadi, M.R., Fung, B.C., Charland, P., Debbabi, M.: BinClone: detecting code
clones in malware. In: 2014 Eighth International Conference on Software Security
and Reliability (SERE), pp. 78–87. IEEE (2014)

12. Feng, Q., Wang, M., Zhang, M., Zhou, R., Henderson, A., Yin, H.: Extracting
conditional formulas for cross-platform bug search. In: Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security, pp. 346–
359 (2017)

13. Feng, Q., Zhou, R., Xu, C., Cheng, Y., Testa, B., Yin, H.: Scalable graph-based bug
search for firmware images. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 480–491 (2016)

14. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

15. Gao, J., Yang, X., Fu, Y., Jiang, Y., Sun, J.: VulSeeker: a semantic learning based
vulnerability seeker for cross-platform binary. In: 2018 33rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pp. 896–899. IEEE
(2018)

16. Herwig, S., Harvey, K., Hughey, G., Roberts, R., Levin, D.: Measurement and
analysis of Hajime, a peer-to-peer IoT botnet. In: Network and Distributed Systems
Security (NDSS) Symposium (2019)

Multi-relational Instruction Association Graph for Binary Comparison 209

17. Hu, X., Shin, K.G., Bhatkar, S., Griffin, K.: MutantX-S: scalable malware clus-
tering based on static features. In: 2013 USENIX Annual Technical Conference
(USENIX ATC 2013), pp. 187–198 (2013)

18. Hu, Y., Zhang, Y., Li, J., Gu, D.: Cross-architecture binary semantics understand-
ing via similar code comparison. In: 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 57–67. IEEE
(2016)

19. Huang, H., Youssef, A.M., Debbabi, M.: BinSequence: fast, accurate and scalable
binary code reuse detection. In: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pp. 155–166 (2017)

20. Kargén, U., Shahmehri, N.: Towards robust instruction-level trace alignment of
binary code. In: 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 342–352. IEEE (2017)

21. Khoo, W.M., Mycroft, A., Anderson, R.: Rendezvous: a search engine for binary
code. In: 2013 10th Working Conference on Mining Software Repositories (MSR),
pp. 329–338. IEEE (2013)

22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks (2016)

23. Lageman, N., Kilmer, E.D., Walls, R.J., McDaniel, P.D.: BinDNN: resilient func-
tion matching using deep learning. In: Deng, R., Weng, J., Ren, K., Yegneswaran,
V. (eds.) SecureComm 2016. LNICST, vol. 198, pp. 517–537. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59608-2 29

24. Lee, Y.R., Kang, B., Im, E.G.: Function matching-based binary-level software sim-
ilarity calculation. In: Research in Adaptive and Convergent Systems, RACS 2013,
Montreal, QC, Canada, 1–4 October 2013, pp. 322–327. ACM (2013)

25. python Levenshtein. https://pypi.org/project/python-Levenshtein/
26. Liang, H., Xie, Z., Chen, Y., Ning, H., Wang, J.: FIT: inspect vulnerabilities

in cross-architecture firmware by deep learning and bipartite matching. Comput.
Secur. 99, 102032 (2020)

27. Lindorfer, M., Di Federico, A., Maggi, F., Comparetti, P.M., Zanero, S.: Lines of
malicious code: Insights into the malicious software industry. In: Proceedings of
the 28th Annual Computer Security Applications Conference, pp. 349–358 (2012)

28. Liu, B., et al.: αdiff: cross-version binary code similarity detection with DNN.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pp. 667–678 (2018)

29. Luo, L., Ming, J., Wu, D., Liu, P., Zhu, S.: Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software plagiarism detec-
tion. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 389–400 (2014)

30. Massarelli, L., Di Luna, G.A., Petroni, F., Querzoni, L., Baldoni, R.: Investigating
graph embedding neural networks with unsupervised features extraction for binary
analysis. In: Proceedings of the 2nd Workshop on Binary Analysis Research (BAR)
(2019)

31. Massarelli, L., Di Luna, G.A., Petroni, F., Baldoni, R., Querzoni, L.: SAFE: self-
attentive function embeddings for binary similarity. In: Perdisci, R., Maurice, C.,
Giacinto, G., Almgren, M. (eds.) DIMVA 2019. LNCS, vol. 11543, pp. 309–329.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22038-9 15

32. Ming, J., Xu, D., Jiang, Y., Wu, D.: BinSim: trace-based semantic binary diffing
via system call sliced segment equivalence checking. In: 26th USENIX Security
Symposium (USENIX Security 2017), pp. 253–270 (2017)

https://doi.org/10.1007/978-3-319-59608-2_29
https://pypi.org/project/python-Levenshtein/
https://doi.org/10.1007/978-3-030-22038-9_15

210 Q. Song et al.

33. Ming, J., Xu, D., Wu, D.: Memoized semantics-based binary diffing with appli-
cation to malware lineage inference. In: Federrath, H., Gollmann, D. (eds.) SEC
2015. IAICT, vol. 455, pp. 416–430. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18467-8 28

34. Ng, B.H., Prakash, A.: Expose: discovering potential binary code re-use. In: 2013
IEEE 37th Annual Computer Software and Applications Conference, pp. 492–501.
IEEE (2013)

35. Pewny, J., Garmany, B., Gawlik, R., Rossow, C., Holz, T.: Cross-architecture bug
search in binary executables. In: 2015 IEEE Symposium on Security and Privacy,
pp. 709–724. IEEE (2015)

36. Pewny, J., Schuster, F., Bernhard, L., Holz, T., Rossow, C.: Leveraging semantic
signatures for bug search in binary programs. In: Proceedings of the 30th Annual
Computer Security Applications Conference, pp. 406–415 (2014)

37. Qiao, Y., Yun, X., Zhang, Y.: Fast reused function retrieval method based on
simhash and inverted index. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 937–
944. IEEE (2016)

38. radare2. https://www.radare.org/n/radare2.html
39. Redmond, K., Luo, L., Zeng, Q.: https://github.com/nlp-code-analysis/cross-arch-

instr-model/
40. Redmond, K., Luo, L., Zeng, Q.: A cross-architecture instruction embedding

model for natural language processing-inspired binary code analysis. arXiv preprint
arXiv:1812.09652 (2018)

41. Ruttenberg, B., et al.: Identifying shared software components to support malware
forensics. In: Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550, pp. 21–40. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08509-8 2

42. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

43. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

44. Wang, B., Dou, Y., Sang, Y., Zhang, Y., Huang, J.: IoTCMal: towards a hybrid IoT
honeypot for capturing and analyzing malware. In: ICC 2020–2020 IEEE Interna-
tional Conference on Communications (ICC), pp. 1–7. IEEE (2020)

45. Wang, S., Wu, D.: In-memory fuzzing for binary code similarity analysis. In: 2017
32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 319–330. IEEE (2017)

46. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural network-based graph
embedding for cross-platform binary code similarity detection. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 363–376 (2017)

47. Xu, Z., Chen, B., Chandramohan, M., Liu, Y., Song, F.: Spain: security patch
analysis for binaries towards understanding the pain and pills. In: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), pp. 462–472. IEEE
(2017)

https://doi.org/10.1007/978-3-319-18467-8_28
https://doi.org/10.1007/978-3-319-18467-8_28
https://www.radare.org/n/radare2.html
https://github.com/nlp-code-analysis/cross-arch-instr-model/
https://github.com/nlp-code-analysis/cross-arch-instr-model/
http://arxiv.org/abs/1812.09652
https://doi.org/10.1007/978-3-319-08509-8_2
https://doi.org/10.1007/978-3-319-93417-4_38

Multi-relational Instruction Association Graph for Binary Comparison 211

48. Yu, Z., Cao, R., Tang, Q., Nie, S., Huang, J., Wu, S.: Order matters: semantic-
aware neural networks for binary code similarity detection. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp. 1145–1152 (2020)

49. Zuo, F., Li, X., Young, P., Luo, L., Zeng, Q., Zhang, Z.: https://nmt4binaries.
github.io/

50. Zuo, F., Li, X., Young, P., Luo, L., Zeng, Q., Zhang, Z.: Neural machine translation
inspired binary code similarity comparison beyond function pairs. In: 26th Annual
Network and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, 24–27 February 2019 (2018)

https://nmt4binaries.github.io/
https://nmt4binaries.github.io/

Cost-Effective Malware Classification
Based on Deep Active Learning

Qian Qiang1,2,3(B), Yige Chen1,2, Yang Hu4, Tianning Zang1,2, Mian Cheng3,
Quanbo Pan1,2, Yu Ding1,2, and Zisen Qi1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{qiangqian,chenyige,zangtianning,panquanbo,dingyu,qizisen}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 China National Computer Network Emergency Response Technical
Team/Coordination Center, Beijing, China

chengmian@cert.org.cn
4 Haier (Beijing) IC Design Co., Ltd., Beijing, China

huy@haier-ic.com

Abstract. Malware has now grown up to be one of the most impor-
tant threats to internet security. As the number of malware families
has increased rapidly, a malware classification model needs to classify
the samples for further analysis. Recent success in deep learning-based
malware classification, however heavily relies on the large number of
labeled training samples, which may require considerable human effort.
In this paper, we propose a novel malware classification framework for
the cost issue, which is capable of building a competitive classifier via
a limited amount of labeled training instances in an incremental learn-
ing manner. A cost-effective sample selection strategy is leveraged to
focus expert efforts on labeling samples that are most informative for
the classifier. We first convert the malware byte sequences into fixed-
size gray-scale images through data visualization. Afterward, based on
the strategy designed and oriented towards informative malware acqui-
sition, we select samples through Convolutional Neural Network (Con-
vNet) to query experts for annotation according to the estimated gradi-
ents towards the last linear layer. The updated labeled dataset is then
fed into the network for further fine-tuning progressively. To evaluate
the capability of our method for acquiring informative malware from
a pool of unknown samples, we conduct a series of experiments on a
benchmark dataset named BIG 2015. Compared to random selection
and other existing high-performance strategies, the proposed system can
achieve a promising performance rise cost-effectively with less labeling
effort wasted. The effectiveness of sample selection towards different fam-
ilies is also analyzed and further proves the efficiency of labeling cost.
Moreover, the initialization methods and the pre-defined number of sam-
ples queried are studied for practical implementation.

Supported by National Key Research and Development Project (2020YFB1820102).

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 212–227, 2023.

https://doi.org/10.1007/978-3-031-25538-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_12&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_12

Cost-Effective Malware Classification Based on Deep Active Learning 213

Keywords: Deep active learning · Malware classification ·
Cost-effective

1 Introduction

Currently, the volume of global threats against business endpoints has increased
by more than 10% year-over-year. This emphasizes the importance of develop-
ing efficient approaches to analyze as well as classify malicious samples. Malware
classification as a fundamental task has been a huge burden for analysts due to
its fast-emerging speed, and deep learning (DL) methods have shown impressive
performance on related tasks [1]. However, labeling samples, which is crucial
for DL, is often a cost-sensitive task since it involves human experts. How to
select the most informative samples that can improve the predictive capability
of classifiers is an essential question that DL-based methods should focus on.
A promising solution is active-learning, noted as AL, a learning protocol where
samples can be selected for experts’ annotation in a sequential, feedback-driven
fashion. The selected samples sent to experts for labeling are defined as query
samples by the algorithm. It has a great practical significance to develop a frame-
work combining DL and AL, which can jointly learn features and classifiers from
informative samples effectively.

In particular, we propose an AL-based malware classification framework
using a ConvNet called cost-effective malware classification (CEMC). Different
from the existing malware-related works that utilize machine learning methods,
our CEMC leverages AL based on ConvNet. The contributions of our paper can
be summarized below:

– We develop a cost-effective malware classification framework based on Con-
vNet with an AL strategy integrated, which is capable of informative sample
selection according to the estimated gradients towards the last linear layer.

– The performance of CEMC is evaluated on a dataset named BIG 2015 in
terms of accuracy, precision, recall, and F1-score. The experimental results
demonstrate that CEMC outperforms random selection and other active
learning strategies in terms of performance and stability.

– The effectiveness of CEMC is analyzed from the family perspective, which
further proves that the proposed framework achieves the main goal to select
the most informative samples while neglecting the less important ones for
relatively higher performance. The impact of initialization and the number
of query samples, termed query number is explored as well. Some interesting
conclusions are drawn for future implementation.

The rest of this paper is organized as follows. Related works are illustrated in
Sect. 2. In Sect. 3, the proposed framework is described. The experiments are
elaborated in detail in Sect. 4. Finally, the conclusion of the whole paper and the
future work are stated in Sect. 5.

214 Q. Qiang et al.

2 Related Works

Traditionally, malware analysis methods can be divided into two main categories
including static approaches and dynamic approaches. In static approaches, mal-
ware is checked by analyzing its executable binaries or codes without executing [2].
In contrast, dynamic approaches trace the malware process and record the behav-
ior features, such as system calls, registry change, or traffic flows, in a controlled
environment such as a virtual environment, simulator, and sandbox [3].

As the above hand-crafted malware analysis approaches need a lot of effort
to extract features, researchers have introduced deep learning methods into mal-
ware classification tasks to improve efficiency. With the help of deep learning
technology, features can be learned automatically and malware classification
models can be built without expert knowledge.

Nataraj et al. were the first to start the research based upon digit gray-scale
images converted from malware binaries [4]. Since then, classifiers trained on
image-based malware data have shown to be very promising in massive research.
Coull et al. [5] confirmed the effectiveness of ConvNet for malware classification
and tried to find the parts which contribute most to the classification task.
Yakura et al. [6] applied ConvNet with attention mechanism to images converted
from binary data and generated attention maps for further analysis.

Although DL-based approaches can efficiently obtain ideal classification
results, they need large amounts of labeled samples for training. Aiming at improv-
ing the existing models by incrementally selecting and annotating the most infor-
mative unlabeled samples, active learning (AL) has been well studied in the past
few decades. In the AL methods, the model is first initialized with a relatively small
set of labeled training samples. Then it is continuously boosted by selecting and
pushing some of the most informative samples, which are called query samples,
to experts for annotation. The informativeness of a sample is often measured by
either the uncertainty of the model about this sample, the expected model change
after training on this sample, or how representative the samples are about other
unlabeled samples [7]. The key of AL is the design of query strategies and the most
common strategies belong to the category called “uncertainty” which considers the
most valuable sample is the one with the highest uncertainty.

Inspired by the success of AL, there are researches introduced AL to various
kinds of malware tasks since then. The scholars from Microsoft Research Center
designed a system called ALADIN which used active learning combined with
rare class discovery and uncertainty identification to statistically train a network
traffic classifier based on Logistic Regression (LR) [8]. Min Zhao et al. proposed a
malware detection framework named RobotDroid using Support Vector Machine
(SVM) and an active learning algorithm for smartphones [9]. Nir Nissim et al.
designed “Exploitation” based on the SVM classification algorithm using the
radial basis function kernel and acquired most probably malicious samples [10].
Bahman Rashidi et al. presented an malicious Android application detection
framework based on SVM with 206 features and active learning technologies
[11]. Chin-Wei Chen et al. proposed an approach that combines SVM and active
learning by learning (ALBL) techniques for malware family classification [12]
using statistical features.

Cost-Effective Malware Classification Based on Deep Active Learning 215

As we can see, all the related works used AL strategies based on machine
learning models, and most of them are SVM-based frameworks. The strate-
gies designed for machine learning models can not be directly borrowed by DL
with guaranteened performance improvement. What’s more, compared to DL,
machine learning methods are relatively “shallower” and can not handle features
with high dimensions and feature engineering is a prerequisite for these methods.

To cope with this issue, it becomes a necessity to study the classification
framework combining DL and AL.

3 Cost-Effective Malware Classification

3.1 Framework Overview

Suppose there is a training dataset of m malware families initially with no labels
denoted by D. The randomly selected malware set for network initialization is
identified as DL

0 . The target of CEMC is to select the most informative query
samples for expert labeling and expand the labeled training set DL

i progressively,
where i ∈ {0, 1, ..., T}, while the unlabeled pool shrinks accordingly.

Motivated by the insights from a significant amount of previous ConvNet-
based malware classification research as well as the recently proposed active
learning techniques, i.e., CEAL [13], BADGE [14], we address the above-
mentioned issues by AL-based ConvNet.

During the i-th round, our proposed CEMC scrutinizes the samples from the
unlabeled data set DU

i and selects the top q most informative samples, where
q represents the query number per round. These samples with newly acquired
labels from malware experts are then merged into the labeled dataset DL

i as the
training set for the next (i + 1)-th round.

Figure 1 illustrates the framework of CEMC, and the details of implementa-
tion will be discussed in the following.

Fig. 1. The overview of the proposed cost-effective malware classification system

216 Q. Qiang et al.

3.2 Malware Visualization

This part is considered as the data preprocessing module as well. Inspired by
Nataraj et al. [4], gray-scale images of different malware samples appear visually
similar from a given family and distinct from those belonging to different families.
Based on the observation, the binaries of malware are processed line by line and
the corresponding pixels are placed one after another in a row, with a width of
224. The size of the output images is fixed to 224 × 224 which is a routine size
for image-related tasks. All the characters except bytes are ignored including
newline characters and line labels. The redundant bytes are discarded and if the
bytes cannot fill the entire image, black pixels are padded in the end. After this
data preprocessing module, raw malware binaries can be converted into gray-
scale images which are suitable for ConvNet to handle for feature extraction.

3.3 Model Initialization

The model can be initialized by DL
0 directly, and this kind of initialization is

termed INIT DIRECT. Additionally, since the raw malware samples have been
transformed into gray-scale images, some research has testified transfer learn-
ing methods for malware-related tasks that borrowed knowledge from models
pre-trained with the dataset of the computer vision area, noted as CV [1,15,16].
Consequently, we can also take advantage of transfer learning ahead of direct ini-
tialization and this two-stage initialization method is denoted by INIT TRANS
in the discussion below. For INIT TRANS, DL

0 is also necessary obviously.

3.4 Model Training and Evaluation

After initialized, the model is fed with unlabeled samples remaining in D referred
to as DU

0 . Query sample set Xinfo are selected for experts to annotation and the
labeled traning set DL

0 is updated as well as unlabeled pool DU
0 :

DL
0 ∪ Xinfo → DL

1

DU
0 \Xinfo → DU

1

For the next round, the model is fine-tuned with DL
1 for pre-defined e epochs.

After several rounds, the model is gradually fine-tuned for classification tasks.
The trained model is evaluated on the testing samples based on four merits,
including accuracy, precision, recall, and F1-score.

The strategy to select Xinfo from the unlabeled data pool is essential for
the quality of fine-tuned models, which should be designed according to the
characteristics of ConvNet and malware.

3.5 Informative Sample Selection

As mentioned before, the labeling cost to train a high-performance DL-based
model is troublesome in practice. AL methods designed to select query samples

Cost-Effective Malware Classification Based on Deep Active Learning 217

based on DL-based models can help to deal with this cost issue. The selection
should be carried out according to the appearance of the unlabeled samples out
of the neural networks, which is the estimation of the real impact with the true
labels attached afterward.

Batch Active learning by Diverse Gradient Embeddings (BADGE), which
is designed as a practical, general-purpose, label-efficient AL method for deep
neural networks has been proposed to offer a solution for the above demand
[14]. BADGE creates diverse batches of informative examples. The uncertainty
is measured by the gradient magnitude concerning parameters in the final linear
layer. Meanwhile, to capture the diversity, a batch of samples is collected whose
gradients span a diverse set of directions.

Consider a neural network f(.,W, V), where W = (W1, ...,Wm) ∈ R
K×m

are the weights of the last linear layer, and V consists of weights of all previous
layers. For most of the classifiers, the last nonlinearity is a softmax layer, denoted
by φ(.). Given a malware sample x with label y, the corresponding outputs of
the network is P = f(x,W, V) = φ(W · Z(x, V)), where Z maps x to the output
of the network’s penultimate layer.

Define gj as the gradient of the cross-entropy loss lCE of x to Wj , according
to the definition of cross-entropy loss, gj can be concluded as:

gj =
∂lCE

Wj
= Z(x, V)j(Pj − I(y = j)) (1)

Note that each component of the gradient is a scaling of the corresponding
one of Z(x, V), which is the output of the penultimate layer of the network with
x as the input. Suppose ŷ = argmaxi∈mpi, the norm and direction of gŷ can be
used to estimate the influence brought by sample x on the current model.

To fulfill the demand for diversity at the same time, k-means++ algorithm
is adopted. The algorithm for CEMC is described in Algorithm 1.

Algorithm 1. CEMC: Cost-effective Malware Classification
Require:

Unlabeled pool of samples DU
0 , initialization training set DL

0 , initialized network f
with INIT TRANS or INIT DIRECT, number of rounds T , query number q and
number of epochs e for each round

1: for i = 0, 1, ..., T do
2: Train f for e epochs on DL

i

3: for each sample x from DU
i do

4: Compute its hypothetical label ŷ = f(x)
5: Compute the gradient gx based on Equa. 1
6: end for
7: Generate Xinfo with q samples using k-MEANS++ algorithm on gx : x ∈ DU

i

8: Label samples in Xinfo by experts
9: DU

i+1 = DU
i \Xinfo

10: DL
i+1 = DL

i ∪ Xinfo

11: end for

218 Q. Qiang et al.

4 Experiments

4.1 Malware Dataset and Experimental Setup

In this section, we evaluate the performance of CEMC on the benchmark dataset
provided by Microsoft Malware Classification Challenge in 2015 which is also
referred to as BIG 2015. The dataset has 10868 malware samples in the training
set and 10873 in the test set both from 9 families. This is a highly unbalanced
dataset in which the largest family called Kelihos ver3 has 2942 samples and the
smallest Simba family has only 42 as shown in Table 1.

Table 1. Family description of BIG 2015 traning set

Family name Count Family name Count

Ramnit 1541 Tracur 751

Lollipop 2478 Kelihos ver1 398

Kelihos ver3 2942 Obfuscator.ACY 1228

Vundo 475 Gatak 1013

Simba 42

For the effectiveness of CEMC does not rely on the ConvNet architectures,
we use AlexNet [17] as the structure of CEMC.

Following the settings in most DL methods, we randomly select 90% samples
of each family to form the unlabeled sample pool, and the rest 10% as the test
set in our experiments. It should be noted that after the split, the number of
samples from Simba for test is only 4, which will lead to severe fluctuations in
performance. To smooth the performance toward this family, the test samples
of Simba are increased to 14 on purpose, and the training samples are decreased
accordingly. We randomly select 200 samples with labels from the unlabeled pool
to initialize the network and the rest are for the incremental learning process.

After several trials, the learning rate of all layers is set to 0.005, and the model
is fine-tuned for 50 epochs per round. The fine-tuning is carried out for 30 rounds
with 50 query samples selected for each round at first and the performance with
different query numbers is also checked to measure the impact induced by query
numbers. If not specified, 5-fold strategy is applied and the execution results are
averaged as the final result to get rid of the influence of randomness.

To provide persuasive results, we compare CEMC to several baseline strate-
gies borrowed directly from ML-based AL methods which are embedded into
ConvNet as well, including:

Random Sampling (RS). This is not an active learning method yet, it is actually
the “lower bound” of the selection methods.

Cost-Effective Malware Classification Based on Deep Active Learning 219

LeastConfidence Sampling (LS). An uncertainty-based active learning algorithm
that selects top q samples with the smallest predicted class probability, as
maxi∈mpi, just as Wang et al. [18].

Entropy Sampling (ES). An uncertainty-based strategy that selects the top
q samples according to the entropy of the predictive probability distribution,
defined as H(P) =

∑m
i=1 pi ln 1/pi [13] .

KMeans Sampling (KS). This strategy clusters the output of the last linear layer
z = Z(x, V) for each unlabeled sample x via K-Means into q clusters and selects
the samples nearest to the center of each cluster [7]. KS is a diversity-based
strategy the same as the strategy used in this paper.

The above methods share the same ConvNet architecture with CEMC on
identical training sets and test sets. The only difference lies in the sample selec-
tion criteria which is the target of evaluation.

4.2 Oevrall Performance Comparison

For this comparison, the averaged performance measures are recorded with 50
query samples after INIT TRANS initialization. The measures of performance
after 15/30 rounds of all strategies are listed in Table 2.

Table 2. Performance after 15- and 30-round fine-tuning of CEMC and baseline strate-
gies

Rounds Strategy Accuracy Precision Recall F1-score

15 RS 90.10± 0.00% 86.38± 0.04% 83.39± 0.05% 84.31± 0.04%

KS 88.71± 0.02% 86.74± 0.10% 80.44± 0.01% 81.21± 0.02%

ES 92.70± 0.00% 91.30± 0.06% 87.59± 0.03% 88.86± 0.03%

LS 92.61± 0.07% 90.11± 0.17% 86.42± 0.16% 87.73± 0.16%

CEMC 94.60± 0.00% 93.63± 0.08% 89.98± 0.01% 91.17± 0.02%

30 RS 92.08± 0.00% 89.05± 0.04% 85.53± 0.04% 86.56± 0.05%

KS 90.67± 0.01% 87.86± 0.16% 83.43± 0.01% 84.06± 0.03%

ES 95.99± 0.00% 96.30± 0.00% 91.25± 0.00% 93.05± 0.00%

LS 96.30± 0.00% 95.61± 0.03% 92.94± 0.00% 93.98± 0.00%

CEMC 96.34± 0.00% 96.36± 0.00% 92.36± 0.00% 93.90± 0.00%

It can be seen that the performance improvement of CEMC compared to the
second-best strategy ES is about +2% for all measures after 15 rounds. But after
30 rounds, ES and LS show comparable performance to our CEMC.

For more detail, the performance of CEMC through 30 rounds compared to
the other strategies is depicted as learning curves in Fig. 2.

The performance of these 5 methods can be separated into 2 groups in a clear
margin. The first group consists of our CEMC, LS and ES, whose performance

220 Q. Qiang et al.

Fig. 2. Performance comparison through 30 rounds with 50 query samples and
INIT TRANS initialization

outperforms KS and RS in the other group. Moreover, the gap between these two
groups has no trend to narrow down along with the increase of labeled samples
for more rounds. This gives an assumption that the sample selection strategy is
deterministic that once fixed, the upper bound of classification performance is
set.

It can also be observed that not until the first 1 or 2 rounds, does CEMC
stand out in terms of performance and stability. The closest competitors seem
to be LS and ES. LS performs even better in terms of recall and F1-score after
about 22 rounds but the difference is so small that can be negligible.

At the end of fine-tuning, the performance of CEMC, LS and ES gradually
approach together, which implies the advantage obtained through careful sample
selection is compensated by the growing number of labeled samples.

From the above results and analysis, it is clear that our proposed framework
CEMC performs consistently better than other methods through fair compar-
isons and that improvement is the main goal of this study. Additionally, this
also indicates that CEMC can effectively select the informative query samples
for outstanding performance.

4.3 Family Perspective Performance

In this section, we compare CEMC versus other strategies based on the perfor-
mance and selection process concerning all families.

First, Fig. 3 presents the confusion matrix of CEMC after 15-round fine-
tuning based on one of the 5-fold datasets.

Cost-Effective Malware Classification Based on Deep Active Learning 221

Fig. 3. Confusion matrix of CEMC after 15-round fine-tuning

Meanwhile, Fig. 4 illustrates the confusion matrix of baseline strategies with
identical settings for comparison.

As can be seen, our method obtains the highest accuracy for 7 out of 9
families, while ES and KS both perform best for 3 out of 9. This stable and
outstanding performance indicates the effectiveness of CEMC.

However, when it comes to the selection process, the situation is complex and
varied for different families. They can be separated into 3 categories, denoted as
SAME, MORE, and LESS, based on the number of query samples selected by
CEMC compared to RS:

SAME (Lollipop, Obfuscator.ACY, Gatak and Vundo). CEMC selects almost
the same number of samples from these 4 families as RS and other strategies as
shown in Fig. 5. The performance of CEMC is better or at least almost the same
compared to other strategies concerning these four families.

LESS (Kelihos ver3 and Kelihos ver1). CEMC selects much less samples from
these 2 families than RS as shown in Fig. 6.

All the AL-based strategies perform perfectly with above 95% accuracy on
these 2 families, while RS only recognizes 87% of the samples correctly from
Kelihos ver1 in the test set. This gives a signal that there are samples more
informative than others in Kelihos ver1. The model can yield better performance
once trained with these samples selected and labeled. And this task is completed
by CEMC with the least labeling cost. For Kelihos ver3, the excellent accuracy
obtained by all strategies implies high similarity among samples from this family.
Acquiring samples in common is a waste of manual analysis resources and CEMC
performs especially outstanding as well as its closest competitors (ES and LS)
that they barely query experts for labeling samples from Kelihos ver3.

222 Q. Qiang et al.

Fig. 4. Confusion matrix of baseline strategies after 15-round fine-tuning

MORE (Ramnit, Tracur and Simba). CEMC selects more samples from these
families than RS as in Fig. 7. The situation needs to be analyzed individually
due to the complexity of situations in this category.

Ramnit has the third most samples among all the families in the unlabeled
pool, but the best accuracy achieved by CEMC and ES is only 88% as shown in
Fig. 3 and Fig. 4. This phenomenon implies that more informative samples are
needed from Ramnit for a better recognition rate. Our CEMC, LS and ES are
intended to fulfill this demand and continuously select almost the same amount

Cost-Effective Malware Classification Based on Deep Active Learning 223

Fig. 5. Number of labeled samples per family in SAME category through 30 rounds

Fig. 6. Number of labeled samples per family in LESS category through 30 rounds

of samples through the training process. In contrast, KS selects less informative
samples and RS performs the worst.

For Tracur, CEMC outperforms RS and LS, and shows comparable accuracy
to KS and ES. LS does not perform well as expected and the accuracy for Tracur
is only 76% which is worse than RS.

We leave Simba which has the least samples and worst performance to the
last for the interesting result related to this family. There are only 25 samples
from Simba in the unlabeled pool after initialization. CEMC succeeds to dig all
of these 25 samples out of 9575 candidates, which is like looking for a needle in
a haystack. ES and LS managed to select 22 samples, while RS and KS failed
to find the informative samples belonging to Simba with crashed performance
towards this specific family.

224 Q. Qiang et al.

Fig. 7. Number of labeled samples per family in MORE category through 30 rounds

We can draw a conclusion based on the above analysis that CEMC yields the
best capability of informative sample selection for all families without exception.
And this is the main goal of this study.

4.4 Query Number Study

The impact of query numbers as 50/100/200/400 is explored in this section and
Fig. 8 shows the corresponding performance of CEMC.

The y-axis represents the number of selected samples instead of rounds.
As can be seen, most of the time, a smaller query number shows an advantage

over a larger one. It seems that identifying and acquiring more samples does
not benefit the classifier consequently. This phenomenon may be due to the
assumption that there exists an optimal set of informative samples and the
advantage brought by this set can be disrupted by the samples out of it.

However, it cannot simply state that fewer query samples means better per-
formance. Instead, in order to receive a maximal contribution from the sug-
gested framework, the query number should be carefully tracked and defined.
Additionally, it should be noticed that with more labeled training samples, the
performance difference is tended to disappear.

4.5 Initialization Analysis

In this section, we want to discover the impact of initialization methods. As
mentioned before, there are two kinds of initialization to induce the initial
model, INIT DIRECT and INIT TRANS. Figure 9 presents the performance of
INIT DIRECT in CEMC versus baseline strategies.

Cost-Effective Malware Classification Based on Deep Active Learning 225

Fig. 8. Performance of CEMC with different query numbers with INIT TRANS ini-
tialization

Fig. 9. Performance of INIT DIRECT comparison through 30 rounds with 50 query
samples

The performance of CEMC with INIT DIRECT shows an advantage after
almost 10 rounds, which means a longer start-up window and more query samples
compared to INIT TRANS. Additionally, the advantage of CEMC is no longer
as obvious as INIT TRANS, although still can be observed after start-up.

226 Q. Qiang et al.

This phenomenon illustrates the importance of high-performance initializa-
tion, and this conclusion is reasonable due to the theoretical considerations of
all AL-based methods below. AL algorithms select the most informative samples
based on the assumption that the prediction can estimate the real contribution
introduced by the specific sample with a true label. If the classifier is not accurate
enough to provide knowledge consistent with that assumption, the estimation
will fail to reflect the real impact from samples and we may miss the real infor-
mative ones. Without transfer learning, the model is just initialized using a few
labeled samples (200 samples in our paper), and the performance turns out to
be very poor (lower than 40%), which will fail to estimate the real impact of
most samples.

5 Conclusion

In this paper, we propose a malware classification framework named CEMC,
which employs a well-designed, ConvNet-oriented AL strategy. This strategy can
progressively select the most informative samples according to the estimated
gradients towards the last linear layer. These samples are sent to experts for
labeling and integrated into the training set afterward for model fine-tuning.

Comprehensive experiments are conducted to analyze the performance of
CEMC versus other strategies on the benchmark dataset BIG 2015. CEMC shows
a competitive advantage in the deep learning-based malware classification task
and the effectiveness of selecting the most informative samples across all families
is justified from the family perspective performance. Moreover, the contribution
and impact of initialization and query numbers are discussed thoroughly, based
on which some useful advice is given for future implementation.

However, the related works are not enough discussed yet, such as the best size
of the informative sample set is not studied in this paper. In future work, we shall
optimize the strategy utilized in CEMC and discover more effective strategies for
further performance improvement with ConvNet as the classification algorithm.
Additionally, there is no research that combines AL and RNN-based networks
so far. This is also a subject for future exploration.

References

1. Vasan, D., Alazab, M., Wassan, S., Safaei, B., Zheng, Q.: Image-based malware
classification using ensemble of CNN architectures (IMCEC). Comput. Secur.
92(March), 101748 (2020)

2. Gibert, D., Mateu, C., Planes, J., Vicens, R.: Classification of malware by using
structural entropy on convolutional neural networks. In: Proceedings of the 30th
Innovative Applications of Artificial Intelligence Conference, IAAI 2018, pp. 7759–
7764 (2018)

3. Huang, Y.-T., Chen, Y.-Y., Yang, C.-C., Sun, Y., Hsiao, S.-W., Chen, M.C.: Tag-
ging malware intentions by using attention-based sequence-to-sequence neural net-
work. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp.
660–668. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21548-4 38

https://doi.org/10.1007/978-3-030-21548-4_38

Cost-Effective Malware Classification Based on Deep Active Learning 227

4. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware images: visual-
ization and automatic classification. In: ACM International Conference Proceeding
Series (2011)

5. Coull, S.E., Gardner, C.: Activation analysis of a byte-based deep neural network
for malware classification. In: Proceedings - 2019 IEEE Symposium on Security
and Privacy Workshops, SPW 2019, pp. 21–27 (2019). https://doi.org/10.1109/
SPW.2019.00017

6. Yakura, H., Shinozaki, S., Nishimura, R., Oyama, Y., Sakuma, J.: Malware analysis
of imaged binary samples by convolutional neural network with attention mecha-
nism. In: CODASPY 2018 - Proceedings of the 8th ACM Conference on Data and
Application Security and Privacy 2018-January (3), pp. 127–134 (2018). https://
doi.org/10.1145/3176258.3176335

7. Zhdanov, F.: Diverse mini-batch active learning (2019). http://arxiv.org/abs/1901.
05954

8. Stokes, J.W., Platt, J.C., Kravis, J.: ALADIN: Active Learning of Anomalies to
Detect Intrusion. Microsoft (2008)

9. Zhao, M., Zhang, T., Ge, F., Yuan, Z.: RobotDroid: a lightweight malware detection
framework on smartphones. J. Networks 7(4), 715–722 (2012)

10. Nissim, N., Moskovitch, R., Rokach, L., Elovici, Y.: Novel active learning methods
for enhanced PC malware detection in windows OS. Expert Syst. Appl. 41(13),
5843–5857 (2014)

11. Rashidi, B., Fung, C., Bertino, E.: Android malicious application detection using
support vector machine and active learning. In: 2017 13th International Conference
on Network and Service Management, CNSM 2017, 1–9 January 2018 (2017)

12. Chen, C.W., Su, C.H., Lee, K.W., Bair, P.H.: Malware family classification using
active learning by learning. In: International Conference on Advanced Communi-
cation Technology, ICACT 2020, pp. 590–595 (2020)

13. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Colloids and surfaces a: physico-
chemical and engineering aspects 12(d), 1–13 (2016)

14. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep Batch
Active Learning by Diverse, Uncertain Gradient Lower Bounds (2019)

15. Lo, W.W., Yang, X., Wang, Y.: An xception convolutional neural network for mal-
ware classification with transfer learning. In: 2019 10th IFIP International Confer-
ence on New Technologies, Mobility and Security, NTMS 2019 - Proceedings and
Workshop, pp. 1–5 (2019). https://doi.org/10.1109/NTMS.2019.8763852

16. Bhodia, N., Prajapati, P., Di Troia, F., Stamp, M.: Transfer learning for image-
based malware classification. In: ICISSP 2019 - Proceedings of the 5th International
Conference on Information Systems Security and Privacy, pp. 719–726 (2019)

17. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convo-
lutional neural networks. In: Neural Information Processing Systems vol. 25 (2012).
https://doi.org/10.1145/3065386

18. Wang, D., Shang, Y.: A new active labeling method for deep learning, pp. 112–119
(2014). https://doi.org/10.1109/IJCNN.2014.6889457

https://doi.org/10.1109/SPW.2019.00017
https://doi.org/10.1109/SPW.2019.00017
https://doi.org/10.1145/3176258.3176335
https://doi.org/10.1145/3176258.3176335
http://arxiv.org/abs/1901.05954
http://arxiv.org/abs/1901.05954
https://doi.org/10.1109/NTMS.2019.8763852
https://doi.org/10.1145/3065386
https://doi.org/10.1109/IJCNN.2014.6889457

Blockchain

CTDRB: Controllable Timed Data Release Using
Blockchains

Jingzhe Wang(B) and Balaji Palanisamy

University of Pittsburgh, Pittsburgh, PA, USA
{jiw148,bpalan}@pitt.edu

Abstract. The notion of Timed Data Release (TDR) supports time-based sensi-
tive data protection in such a way that sensitive data can be accessed only after a
prescribed amount of time has passed. With recent advancements in blockchain
techniques, practical solutions to support decentralized TDR using blockchains
(BTDR) is gaining importance. Briefly, such designs entrust blockchain decen-
tralized networks to serve as a decentralized time agent to protect the data and
release the data at a prescribed release time. However, as a variant of outsourced
data management service, BTDR inherently incurs the tension between data con-
fidentiality protection as well as data control. Unfortunately, the off-the-shelf arts
only strive to protect the data without rigorous support for the control of data.

In this paper, we design a controllable framework for BTDR calledCTDRB. At
a high level, CTDRB realizes data access control as well as data lifetime control
while protecting data confidentiality. The novel technical contributions ofCTDRB
are three-fold: first, we adopt a temporal CP-ABE cryptographic scheme, serving
as a basis, to enable the data access control; second, on top of such a design, we
enable data lifetime control by carefully designing a time token control service
on Ethereum. We then design two representative data lifetime control primitives,
namely Data Revocation and Data Release Time Modification. The former refers
to revoking the data before its prescribed release time while the latter modifies
the release of data at a time ahead of its prescribed release time; third but not
the least, we perform security analysis of CTDRB and implement it using the
Ethereum blockchain. Our results show that CTDRB incurs only a moderate on-
chain gas consumption and demonstrates high efficiency.

Keywords: Timed data release · Blockchain · Smart contract

1 Introduction

Timed data release (TDR) is a time-based data protection primitive that aims at pro-
tecting sensitive data by making it accessible only after a prescribed amount of time
has passed. Several real-world applications require TDR. For example, in secure voting
mechanisms, votes are not permitted to be accessed until the close of the polling pro-
cess. With recent advancements in blockchain techniques, practical solutions to sup-
port decentralized TDR using blockchains (BTDR) is gaining importance [4,10,16–
18,20–22,24,32,33]. Briefly, such designs entrust blockchain decentralized networks
to serve as a decentralized time agent to protect the data and release the data at a

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
Published by Springer Nature Switzerland AG 2023. All Rights Reserved
F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 231–249, 2023.
https://doi.org/10.1007/978-3-031-25538-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_13&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_13

232 J. Wang and B. Palanisamy

prescribed release time. Given the open nature of blockchain decentralized networks, in
which a large number of mutually distrusted nodes exist, protecting data confidentiality
against adversarial actions in such environments before the release time is inherently
challenging. Various off-the-shelf arts have developed effective designs for data protec-
tion. Specifically, both strong cryptographic constructions [20–22] as well as practical
realizations in the Ethereum blockchain [10,16–18,24,32,33] have been designed.

As a variant of outsourced data management service, however, BTDR inherently
meets the tension between data confidentiality protection as well as data control. One
can imagine a scenario when a data sender wants to reduce the data access scope after
the release time in such a way that the data is only accessible to a selected list of recipi-
ents who are eligible to access it instead of making the data public. As another scenario,
after the data is released, the data sender may become aware of some incorrect informa-
tion in the data. Under this scenario, the sender would like to revoke the data before the
prescribed release time. Thus, supporting BTDR to serve a broad range of real-world
applications to perform dynamic data control is of significant importance. Current tech-
niques, however, invariably fail to meet such necessity and supporting dynamic data
control in BTDR while protecting data confidentiality is still largely open.

In this paper, we take the first step towards designing a controllable framework
for BTDR, coined as CTDRB. At a high level, CTDRB realizes data access control
as well as data lifetime control while protecting data confidentiality. Specifically, in
CTDRB, we investigate the controllable primitive from the two aspects namely data
access control and data lifetime control. The former refers to limiting the access scope
of the data. The latter is an attractive feature supported by our framework, in which a
data sender can flexibly tweak the data publishing time. Our work starts with enabling
data access control. Specifically, we adopt TAFC [14], a cryptographic construction that
employs ciphertext-policy attribute-based encryption (CP-ABE) [12] with timed release
encryption [27], to enable data access control in CTDRB. Briefly, TAFC encrypts the
data with an access structure (access policy) that embeds a time trapdoor, corresponding
to a prescribed release time. Later, at the release time, a trusted authority generates and
publishes a time token. Anyone holding satisfying attributes as well as the time token
is able to decrypt the data.

While adopting TAFC realizes the data access control, such a construction fails
to meet our need for providing data lifetime control. It is attributed to the following
challenges: first, TAFC only provides theoretical constructions of basic encryption and
decryption operations. Directly adopting such constructions limits the data sender’s
ability to perform lifetime control over the data such as revoking the data before the
release time; second, TAFC heavily relies on a trusted central time agent to publish a
time token. In CTDRB, however, it is impractical that such a trusted time agent exists in
a fully decentralized blockchain network. To address this challenge, we design a novel
time token control service on the Ethereum blockchain to support data lifetime con-
trol. Concretely, our design adopts a hierarchical key management scheme. The time
token is encrypted using a public key and stored at a decentralized storage platform.
The protection of the corresponding private key is delegated to a group of Ethereum
network nodes, namely trustees, who jointly protect such a private key and release it
when the release time arrives. With the help of such a design, a sender can manually

CTDRB: Controllable Timed Data Release Using Blockchains 233

tweak the release time of the private key to impact the release time of the time token,
which then realizes the data lifetime control. However, due to the inherent risk in BTDR
design [17], trivially provisioning such a service inevitably exposes to the following two
threats: drop attack and release-ahead attack. Drop attack may render the private key
unavailable, which impacts the availability of the time token control service. Release-
ahead poses a risk of pre-maturely releasing the data, in which adversaries may collude
with the trustees as well as the recipients to illegally get access to the data at a time
earlier than the prescribed one by getting the time token as well as a satisfying attribute
set. Thus, to mitigate the aforementioned threats, we design the service with the follow-
ing two countermeasures: (1) to lessen the impact of the drop attack, we adopt Shamir’s
(t, n) threshold secret share scheme [28] to split the private key into multiple shares,
in which at least t shares of the private key can make it recoverable, (2) to set barriers
for the adversaries seeking to prematurely release the data, we keep the identities of
the trustees as well as the recipients private, which increases the efforts requires from
the adversaries to launch such an attack. Grounded on the proposed time token delivery
service, we then materialize two representative data lifetime control primitives, namely
data revocation and data release time modification. Data revocation refers to revok-
ing the data before its prescribed release time while data lifetime control modifies the
release of data at a time ahead of its prescribed one. These primitives are practically
supported by our carefully designed interactive protocol.

We provide rigorous security analysis by quantitatively measuring the attack
resilience of our proposed framework. We also implement proof-of-concept smart con-
tracts programmed in Solidity [7] and test it on the Rinkeby network to evaluate corre-
sponding gas consumption. By performing case studies, we demonstrate that our pro-
posed data revocation and data release time modification primitive only incur moderate
gas cost under various service conditions.

Contributions. Concretely, we make the following key contributions in this paper:

– We propose a controllable framework for blockchain-based timed data release to
realize both data access control as well as data lifetime control while protecting the
confidentiality of the data.

– We first adopt TAFC, a variant of CP-ABE scheme, to provide data access control.
Atop such a scheme, we propose a novel time token control service on the Ethereum
blockchain to enable data lifetime control. Two representative data lifetime control
primitives namely data revocation and data release time modification are developed.

– We rigorously analyze the security guarantee of our framework.
– We implement our prototype in Ethereum and perform extensive case studies.

Organization. The rest of the paper is organized as follows. In Sect. 2, we provide
preliminaries adopted in this paper. A high-level description of CTDRB as well as cor-
responding security assumptions are given in Sect. 3. In Sect. 4, we construct CTDRB
with technical details. We analyze our proposedCTDRB in Sect. 5. In Sect. 6, we discuss
the proof-of-concept implementations in smart contracts. Related work is discussed in
Sect. 7. We conclude this paper in Sect. 8.

234 J. Wang and B. Palanisamy

2 Preliminaries

In this section, we first introduce some background about Ethereum blockchains in
Sect. 2.1. Then, in Sect. 2.2, we introduce the major cryptographic primitives adopted
in our work.

2.1 A Primer on the Ethereum Blockchain

Ethereum [2] is a pioneering platform that integrates the abstraction of smart contracts
[29] with blockchains. Informally, an Ethereum smart contract is composed of a piece
of computer code executed and stored on the Ethereum blockchain. Such code contrac-
tually enforces predefined policies among users (accounts) in Ethereum. The cryptocur-
rency associated with Ethereum is called Ether.

The two types of accounts, namely Externally Owned Account (EOA) and Contract
Owned Account (CA), perform activities in the Ethereum account network. An EOA,
controlled by some users on Internet, is associated with a unique public-private key pair
as well as a balance of Ether. A CA, without a private key, is responsible for storing the
smart contract code and maintaining a balance of ether. All interactions between EOAs
and CAs rely on the concept of transaction. A transaction is initialized and signed with
a private key of EOA.

The low-level peer-to-peer network maintained by Ethereumworkers (miner nodes)
provide a decentralized context for the submission and execution of transactions. The
Gas mechanism in Ethereum drives the flow of transactions from an incentive per-
spective. The Gas is measured by Ether. For example, to submit a new transaction,
a user needs to pay some gas for Ethereum workers to execute the transaction. The
powerful consensus algorithm, Proof-of-Work (PoW), guarantees the confirmation and
correctness of transactions, which brings Ethereum with the attractive characteristics of
tamper-resistance and immutability.

2.2 Cryptographic Primitives

In our work, we use the following cryptographic primitives.

Cryptographic Hash Function: We denote hash(·) to indicate a cryptographic
hash function guaranteeing a collision resistant property. Specifically, in CTDRB, we
adopt the Keccak256 implementation supported by the Ethereum blockchain, where
hash(·) := Keccak256(·).
Cryptographic Digital Signature: Our work heavily relies on the cryptographic digital
signature primitive to realize verifications. Specifically, we denote Sig(·) as the ECDSA
signature scheme adopted in the Ethereum blockchain.

TAFC-Time and Attribute Factors Combined Access Control: TAFC [14] is a cryp-
tographic scheme that integrates timed-release encryption (TRE) [27] with cipertext-
policy attribute-based encryption (CP-ABE) [12] to realize timed-control primitives in
CP-ABE. We next briefly introduce the adopted TAFC, which consists of the following
algorithms:

CTDRB: Controllable Timed Data Release Using Blockchains 235

Fig. 1. TAFC sketch

TAFC.Setup→(pk,mk): The Setup algo-
rithm takes an implicit security parameter. It
outputs a public parameter pk and a master
key mk.

TAFC.KeyGen(mk,A)→skA: On input
of a master key mk and an attribute set A, the
Key Generation algorithm outputs a secret
key skA corresponding to A.

TAFC.Encryption(pk,D, T)→CD: The Encryption algorithm takes as input a
public key pk, a data plaintext D, and a specified access structure T . It generates a
ciphertext CD.

TAFC.TokenGen(mk, t)→TKt: On input of a master key mk and a time point t, the
Time Token Generation algorithm generates a time token TKt.

TAFC.TrapdoorExp(TK,CD)→CD′: The Trapdoor Exposure algorithm takes as
input a time token TK and a ciphertext CD. It generates a modified ciphertext CD′.

TAFC.Decryption(CD′, skA)→D: The Decryption algorithm takes as input a mod-
ified ciphertext CD′ and a secret key skA corresponding to an attribute set A. It outputs
a plaintext D.

As an example, in Fig. 1, assume that we expect that the data D can be accessible at
the release time Tr. We embed a time trapdoor TSTr

corresponding to Tr into the access
structure T and encrypt D by adopting TAFC.Encryption to get a ciphertext CD. A
user, say user 1, holding the attribute setA1 : {A1, A2, A3} can adopt TAFC.KeyGen
to get his/her own secret key, namely skA1 . At Tr, a time token TKTr

, corresponding to
Tr, is generated and released by TAFC.TokenGen. Then, user 1 can expose TSTr

in
T by adopting TAFC.TrapdoorExp, which gives a modified ciphertext CD′. After
the exposure of TSTr

, user 1 can decrypt CD′ using his/her own secret key. Such a
scheme guarantees that the user holding both TKr and skA1 can successfully decrypt
the ciphertext.

Shamir’s (t, n) Threshold Secret Share Scheme: Shamir’s secret share scheme [28]
splits an original secret into n different shares such that any t shares are capable of
reconstructing the original secret. We use sss(t, n) to denote such a scheme.

3 CTDRB: In a Nutshell

In this section, we first introduce the overview of the CTDRB framework and discuss
the security assumptions in CTDRB.

3.1 Framework Overview

We formally discuss the lifecycle of CTDRB. We begin by describing the role of each
entity and we provide the formal definition of the data control primitives. We then
present a high-level workflow formed among such components.

236 J. Wang and B. Palanisamy

3.1.1 Key Components
At a high-level perspective, our proposed CTDRB consists of the following four key
entities, namely Data Sender, Data Recipient, Time Token Control Service, and Decen-
tralized Storage Service. We present the design as follows: (1) Data Sender: A data
sender, denoted as S, is in possession of data D and needs a timed-release service. In
CTDRB, S files a Ethereum smart contract, denoted as SC, to support an incoming ser-
vice. S then takes charge of strategically provisioning an incoming timed data release
service to enable data access control as well as data lifetime control. (2) Time Token
Control Service: The time token control service (T2CS) aims at providing data lifetime
control support by designing a hierarchical key management scheme with the help of
the Ethereum blockchain. Such a design is contractually enforced by SC. Specifically,
the sender S generates a time token TKTr

related to a release time Tr. S then adopts a
public key encryption approach to encrypt the TKTr

with the public key. S then splits
the corresponding private key into multiple secret shares by adopting Shamir’s thresh-
old secret share scheme. A group of trustees, denoted as TE will be recruited from the
SC to jointly protect the shares before Tr and release the shares at Tr. At Tr, when
getting the shares and reconstructing the private key, the encrypted time token can be
decrypted. The data lifetime control is realized by temporally adjusting the secret share
of the private key. (3) Data Recipient: Recipients receive the data at the release time
from the timed data release service. Each recipient holds his/her own attributes as well
as a published time token to decrypt the data. Without loss of generality, such recipients
are formally captured by R = {R1, ..., Rm}. (4) Decentralized Storage Service: In
our framework, we use IPFS [11] to provide a decentralized storage service. In particu-
lar, IPFS takes charge of storing the encrypted data and related information in T2CS.

3.1.2 Data Control Primitives
Keeping the key entities of CTDRB in mind, we formally introduce two types of con-
trollable data primitives supported by our framework, namely data access control and
data lifetime control. Formal descriptions are given as follows: (1) data access control:
the data access control aims at limiting the access scope of the data in a timed release
service. After getting the time token, only the recipients holding satisfying attribute set
can decrypt the encrypted data. (2) data lifetime control: we design two representative
data lifetime control primitives, namely data revocation and data release time modi-
fication. The data revocation primitive refers to revoking the data, by the data sender
S, at a time, namely T ′, before Tr. The completeness of such a primitive renders the
data inaccessible to anyone except for S; the data release time modification primitive is
also issued by the sender S, which allows the encrypted data to be accessible at a time
before Tr.

CTDRB: Controllable Timed Data Release Using Blockchains 237

Fig. 2. CTDRB overview

3.1.3 Workflow Overview
To systematically support such primitives, the proposed approach tightly couples the
four entities by carefully designing a suite of protocols, consisting of Service Initializa-
tion Protocol, T2CS Setup Protocol, and T2CS Enforcement Protocol. We first sketch
the proposed protocols at a high-level here and we present detailed constructions in
Sect. 4. As shown in Fig. 2, CTDRB starts with the service initialization protocol. In
this protocol, the sender S aims at initializing the basic service information (step 1)
and enabling the data access control by distributing attribute secret key to the recipi-
ents (step 2). After the initialization protocol, CTDRB moves to the T2CS phase, which
enables the data lifetime control. Specifically, T2CS consists of two protocols, T2CS
setup protocol and T2CS enforcement protocol. In the T2CS setup protocol, S encrypts
the data D with the specified access structure T to generate the ciphertext CD (step 3)
and generates a time token TKTr

related to the release time Tr (step 4) and encrypts
TKTr

to get the ciphertext CTKTr
with the public key cpk (step 5). The correspond-

ing private key csk is then split to multiple shares by adopting sss(t, n) (step 6). S
then distributes the shares to a set of trustees (step 7). At the end of this protocol, S
uploads CD and CTKTr

to IPFS (step 8). After the setup, the T2CS enforcement pro-
tocol starts. It includes two suites of protocols to support the data revocation primitive
and the data release time modification primitive, which are issued upon S’s request. If
no data lifetime control is needed, after the release time Tr, any recipients, say R1, first
retrieves the secret shares from the Ethereum network and recovers the csk (step 9). Ri

then decrypts the encrypted time token CTKTr
to get TKTr

. Followed by exposing the
time trapdoor (step 11), Ri can adopt his/her attribute key, sk1, to get the original data
D (step 12).

238 J. Wang and B. Palanisamy

3.2 Adversarial Model and Assumptions

From an adversarial model standpoint, we make the following assumptions: (1) we
assume that the data sender S is always honest when engaging in a timed release service,
(2) by agreeing with TAFC [14], we assume that the set of recipients are prone to launch
collusion attacks among R to access an unauthorized data. Moreover, given the T2CS
design, the recipients, if they know who are the trustees, are also able to collude with
the trustees to pre-maturelly release the time token, which renders an illegal pre-mature
release of the data, (3) the trustees in T2CS are modeled as rational adversaries who are
driven by self-interest and only choose to violate timed-release service protocol when
doing so let him/her earn a higher profit [17], (4) we assume that IPFS may act in a
honest-but-curious manner and always provides a reliable storage service during the
lifecycle of a timed release service.

4 CTDRB: A Holistic View

In this section, we illustrate our controllable framework by formally describing its con-
crete constructions.

4.1 Service Initialization Protocol

CTDRB starts with the Service Initialization Protocol, namely Πinit. Πinit aims
at initializing the service parameters (Phase-1) and distributing the attribute secret
key (Phase-2) to enable data access control. Πinit includes the following assumptions:
(1) we assume that S and R know each other apriori and are in possession of the public
key of each other; also, they adopt the symmetric key encryption approach in [17] to
realize private communications. (3) only step-3 is an on-chain operation, and it is pub-
licly known. We adopt the boxed convention to indicate on-chain operations in the rest
of this paper. The details of Πinit are shown below:

Protocol: Service Initialization Πinit

Phase 1: Service Parameter Initialization
Sender S:
1. (pk, mk)←TAFC.Setup
2. prepares D, specifies an expected release time Tr , and prepares an universal set of
attribute U .
3 . deploys a smart contract SC on Ethereum and publish Tr , U in SC.

Phase 2: Attribute Secret Key Distribution:
Sender S:
4. sends a request, reqi, to each recipient Ri through a secure off-chain channel. reqi :=
{′init′, U , Tr, Addr(SC), Sigprivks(hash(′init′, U , Tr, Addr(SC))}
Recipient Ri ∈ R:
5. upon getting reqi, verifies the service information Tr , U .
6. prepares an attribute set Ai further adopted to perform decryption in TAFC.
7. issues a response, respi, to S for his/her secret key, skAi . Concretely, we have respi :=
{′request secret key′, Ai, SigprivkRi

(hash(′request secret key′, Ai))}
Sender S:

CTDRB: Controllable Timed Data Release Using Blockchains 239

8. upon receiving respi, generates the data decryption key skAi←TAFC.KeyGen(mk,
Ai)
9. issues a new message, namely disti to Ri to distribute the generated skAi , where
disti := {′secret key′, skAi , SigprivkS (hash(′secret key′, skAi))

4.2 T2CS Setup Protocol

After the provisioning in Πinit, CTDRB moves to the T2CS Setup protocol, namely
Πsetup. The objectives of Πsetup are two-fold: (1) in Phase-1, S individually encrypts
D and generates a time token, (2) in Phase-2, S interactively communicates with the
trustees to provision T2CS to enable the data lifetime control. Several key designs are
mentioned as follows: (1) In step-6, we assume that there are already N trustees reg-
istered in SC, where N > n. Specifically, we provide an interface in SC to let anyone
who wants to participate in T2CS by submitting his/her EOA address, public key, and
a security deposit d to SC at any time point, (2) As mentioned in Sect. 3.2, CTDRB
is under the risk of the collusion between the trustees as well as the recipients. As a
countermeasure, we henceforth privately keep the recruitment evidence of the selected
trustees, which keeps the recipients and the trustees double-blind. Moreover, to further
help sender to retrieve the shares, in step-10, S generates a cryptographic nonce for
each selected trustee tej , namely rnj , to build a map to index the hash of each share
without revealing the real identity of each selected trustee in SC. The details of Πsetup

are illustrated below. After the execution ofΠsetup, the time travel ofD normally starts.

Protocol: T2CS Setup Πsetup

Phase 1: Data Encryption and Time Token Generation
Sender S:
1. specifies an access structure T for D and gets CD ← TAFC.Encryption(pk, D, T)
2. generates a time token TKTr for Tr ,where TKTr←TAFC.TokenGen(mk, Tr)
Phase 2: T2CS Provisioning
Sender S:
3. generates a pair of keys to encrypt TKTr , namely time token control key pair, involving
a control public key cpk, and a control private key csk.
4. S encrypts TKTr with cpk to get CTKTr .
5. S splits csk into a list of shares by parameterizing sss(t, n) with a pre-determined t and
n. We denote SS = {scsk1, ..., scskn} to represent list of shares of csk.
6. S randomly selects n trustees from SC to form a set of trustees, denoted as TE =
{te1, ..., ten}, to further jointly take charge of protecting SS until Tr .
7. S issues a request rec reqj to tej through an off-chain channel, specifically rec reqj :=
{′recruit′, Tr, Addr(SC), SigprivkS (

′recruit′, hash(Tr, Addr(SC))}.
Each Selected Trustee: tej ∈ TE:
8. first performs verification when receiving rec reqj , then in case of agreeing with partic-
ipation, tej sends S a response as follows:
rec resj := {′agree′, Sigprivktej

(hash(′agree′, Tr, Addr(SC))}.
Sender S:
9. Upon getting rec resj from tej , S first generates a cryptographic nonce for tej , denoted
as rnj .
10. hashes scskj to get hash(scskj) and constructs a tuple Mj to index rnj through
the address of tej , where Mj := {Addr(tej), rnj}; also, S constructs another tuple,
MHj := {rnj , hash(scskj)} to index the share hash through rnj .

240 J. Wang and B. Palanisamy

11. distributes scskj to tej by sending a share distribution message: dist sharej :=
{′share′, scskj , SigprivkS (hash(′share′, scskj))}.
12. After receiving all responses from TE, S ends the protocol as follows:
12.a uploads CD as well as CTKTr to IPFS, which gives S two pointers, namely pt(CD)
and pr(CTKTr) respectively.
12.b builds two maps, one is M,the other is MH. Specifically, M :=

⋃n
j=1 Mj , and

MH :=
⋃n

j=1 MHj

12.c keeps M private and publishes MH, pt(CD), as well as pt(CTKTr) on SC.
12.d updates the state in SC

4.3 T2CS Enforcement Protocol

The T2CS Enforcement Protocol forms a key part of CTDRB. It aims at systematically
supporting the data revocation as well as the data release time modification primitive.
Concretely, the expected data control primitives will be realized in terms of controlling
the publishing lifecycle of the time token TKTr

. Naturally, it is equivalent to manually
controlling the lifecycle of the csk in terms of temporally adjusting the publishing of
the secret shares of csk. Thus, in this protocol, we temporally control the shares held by
the set of trustees. The T2CS enforcement protocol consists of four sub-protocols: (1)
Secret Share Proof-of-Availability, (2) Data Revocation, (3) Data Release Time Modi-
fication and (4) Service Audit, which are detailed as follows:

(1) Secret Share Proof-of-Availability (Πpoa): Πpoa aims at checking the availability
of the secret shares SS of csk before performing the data lifetime control primitives,
which is shown as follows:

Protocol: Secret Share Proof-of-Availability Πpoa

At a time point T ′, where T ′ < Tr

Phase 1 Challenging the Availability of the Secret Share
Sender S:
1. locally indexes M to check the set of responsible trustees.
2. sends a challenge request, avail challengej for each tej in M one by one, specifically
avail challengej := {′check share′, SigprivkS (hash(′check share′))}
Phase 2 Availability Proof Generation:
Challenged Trustee tej:
3. After verifying avail challengej , tej attaches scskj to a response message to S,
denoted as avail respj := {′share′, scskj , Sigprivktej

(hash(′share′, scskj))}.
Phase 3 Sender Verification:
Sender S:
4. After getting scskj , S hashes scskj in terms of adopting h′ ← hash(scskj) to get h′.
5. S checks h′ with the original one in MH in SC.
5.a If they match, S continues to challenge next trustee;

5.b otherwise, S publishes the misbehavior on SC
6. S ends the availability check as follows:
6.a Case 1: S is confirmed that at least t shares are available, which successfully ends

Πpoa. Πpoa outputs TRUE, and S updates the state in SC

CTDRB: Controllable Timed Data Release Using Blockchains 241

6.b Case 2: S is confirmed that the available shares cannot recover csk. Πpoa outputs
FALSE. This aborts the current timed data release service.

With the help of Πpoa, next, we show the detailed design of the data revocation and the
data release time modification primitive.

(2) Data Revocation (Πrvk): S performs the data revocation primitive by executing
Πrvk. Specifically, inspired by [13], Πrvk incorporates Πpoa with our proposed Verifi-
able Proof-of-Deletion (VPoD) mechanism to realize the data revocation primitive. The
proposed VPoD aims at deleting the shares of csk held by the set of trustees. This oper-
ation then makes the decryption of CTKTr

impossible. In case TKTr
is not available

by decrypting CTKTr
at Tr, even the recipients that hold satisfying attributes, cannot

decrypt CD. The details of Πrvk are shown as follows:

Protocol: Data Revocation Πrvk

At a time point T ′, where T ′ < Tr , the following steps capture the data revocation primi-
tive:
Phase 1: Check Availability
Sender S:
1. updates the state of SC to RV K P (revocation pending)
2. interacts with each tej in TE to check availability in terms of adopting Πpoa. If Πpoa

gives TRUE, S moves to step 3; otherwise, S aborts the current service.
Phase 2: Verifiable Proof-of-Deletion
3. S sends each tej a deletion request one by one, denoted as del reqj , where del reqj :=
{′share deletion′, SigprivkS (hash(′share deletion′))}
Each Trustee tej who have passed Πpoa :
4. Upon receiving del reqj , tej deletes the share scskj .
5. After the deletion, tej generates a deletion response with an evidence, denoted as
del respj , where del respj := {′deleted′, Sigprivktej

(hash(′deleted′, scskj))}
Sender S:
6. After getting the corresponding del respj , S validates it and publishes it on-chain in

SC. Specifically, S only needs to guarantee that (n − t + 1) shares are deleted.
7. Once S already gets (n − t + 1) share deletion evidences, S ensures that the csk is
unrecoverable. S then transfers the state from RV K P to RV K E and ends the service.

In Πrvk, the design of step-5 and step-6 enables verifiable capability. Specifically, since
S publishes the recruitment relationship as well as the evidence in step-6, anyone dis-
covering the deleted share can perform verification. We will introduce the detailed ver-
ification design, namely Cheating Misbehavior in VPoD, in the service audit protocol.

(3) Data Release Time Modification (Πmod): We next discuss the realization of the
data release time modification primitive. Specifically, after checking the availability,
we modify the release time by informing each tei to release the share of csk at T ′

r, a
new release time before Tr. The detailed protocol Πmod is illustrated as follows:

Protocol: Data Release Time Modification Πmod

At a time point T ′, Sender S would like to modify the originally prescribed release time
Tr to T ′

r , where T ′ < T ′
r < Tr . S performs the following steps:

242 J. Wang and B. Palanisamy

1. S updates the prescribed time Tr in SC to T ′
r and the state of SC to a new state

MOD P (modification pending).
2. S notifies the recipients R the modification.
3. S interacts with each tej in TE to check availability by adopting Πpoa. If Πpoa gives
TRUE, S moves to step 4; otherwise, S aborts the current service.
Each Trustee tej:
4. S sends a release time modification proposal, denoted as mod reqj to each tej , where
mod reqj := {′modification′, T ′

r, SigprivkS (hash(′modification′, T ′
r))}.

5. After validating mod reqj , tej constructs an agreement, denoted as mod respj :=
{′agree′, Sigprivktej

(hash(′agree′, scskj , T
′
r)) and sends to S.

Sender S:
6. S updates the state of SC to MOD A (modification approved)
When the time hits T ′

r , Each Trustee tej:

7. tej publishes his/her share scskj with a signature Sigprivktej
(hash(scskj)) on SC.

After T ′
r , Each Recipient Ri ∈ R:

8. Retrieves all the submitted shares in terms of interacting with SC.
9. Reconstructs csk from the secret sharing scheme.
10. Verifies csk with the original one in SC in terms of checking hash. In case verification
successes, Ri then gets pt(CTKTr) as well as pt(CD) from SC to retrieve IPFS and
decrypt CTKTr with csk to get TKTr .
11. By holding TKTr , Ri adopts TAFC.TrapdoorExp(TKTr , CD) to expose the time
trapdoor, which gives Ri a modified ciphertext of CD, namely CD′

12. Ri adopts TAFC.Decryption(CD′, skAi) to get D at T ′
r .

(4) Service Audit (Πaud): Since our controllable primitives highly depend on the
decentralized T2CS design, guaranteeing the completeness of the execution of the
primitives is quite important. In this part, we provide the Service Audit Protocol, which
captures the corresponding misbehavior as well as makes the execution of the control-
lable primitives transparent. We outline the detailed design below.

Protocol: Service Audit Πaud

Cheating Misbehavior in VPoD: Any trustee or recipient who discovers scskj after T ′

can adopt the following steps to submit a misbehavior report:
1. Anyone jointly holding the state of SC is RV K E, a discovered share scskj , the
public key of the corresponding trustee pubktej , as well as the evidence submitted by tej ,
Sigprivktej

(hash(′deleted′, scskj)), can locally verify and report them with SC, then the
reporter can get rewards.
Missing Share Report in Πmod: Any recipients failing to get the original secret recovered
can adopt the following steps to submit a missing share report:
2. In case Ri fails to verify the reconstructed Ri, Ri submits a request to S.
3. S then publishes the recruitment relationship.
4. Ri verifies the shares one by one by checking the original hash of shares published by
S.
5. Ri reports the misbehavior trustees and aborts the current service ahead of time.

5 Security Analysis

In this section, we analyze the security of CTDRB from the following aspects:

CTDRB: Controllable Timed Data Release Using Blockchains 243

Collusion Attacks Among the Recipients: As we mention in Sect. 3.2, after getting
the published time token, the set of recipients may perform collusion misbehavior in
such a way that the colluding recipients pool their secret keys together to forge a new
secret key associated with a satisfying attribute set to decrypt the data. Due to the
construction in TAFC.KeyGen, each user’s skAi

corresponding to the attribute set
Ai is associated with a secure random number. Such a number will be adopted in the
TAFC.Decryption phase. In case an adversary tries to combine different secret keys
coming from different sets of attributes to forge a new secret key, the forged one will
render a different random number. Even though the collusion behavior may acquire
a satisfying attribute set, the wrong random number will lead to a failed decryption.
Therefore, by seamless adopting TAFC, CTDRB is resistant to the collusion attacks
among the recipients.

Data Confidentiality: In CTDRB, we prevent the time token release-ahead attack by
anonymizing the recruitment relationship of the selected trustees. Though such a coun-
termeasure sets a barrier to the adversary, is it important to quantitatively measure the
protection effectiveness of the scheme. We provide the details of our analysis, we high-
light the key settings first. We assume that there are totally N registered trustees in the
smart contract SC. The secret share scheme sss(t, n), determined by the sender, has
two fixed parameters, t and n. We also have the ordered relationship t ≤ n < N . With
our rational adversarial setting of the trustees, we assume that the deposit of each trustee
is denoted as d. By following the common attack strategy in [18], we consider the attack
approach, namely bribery attack [18]. Such an attack is launched by the adversary by
deploying a bribery contract to tempt each trustee to disclose his/her share.

Resilience to Bribery Attack: We analyze the resilience in terms of capturing the suc-
cess probability of such an attack. Given a determined secret share scheme sss(t, n), the
notion of authorized sets refers to the set of parties that are able to reconstruct the orig-
inal secret. In sss(t, n), any set of trustees consisting of at least t members is an autho-
rized set. Without loss of generality, in TE, we capture the collection, namely T Et,
of all the subsets of TE consisting of at least t trustees, as follows:T Et = {TE′ ⊂
{te1, te2, ..., ten} : |TE′| ≥ t}. We also denote n(TE′) as the number of the sub-
sets of TE that consists of at least t trustees. Hence, n(T Et) =

∑n
i=t

(
n
i

)
≤ 2n. In

our scheme, T Et is the target collection which the adversary aims for. Bribing any
one set involved in T Et can render the bribery attack successful. However, due to our
anonymization design, from the list in SC consisting of all registered trustees, the adver-
sary cannot distinguish which trustees are selected. We assume that there are totally N
registered trustees. Thus, the number of the subset of N registered trustees is 2N . The
attack success probability is then defined as a function in N , where p(N) = n(T Et)

2N
.

Since f(N) = 2−N is negligible and n(T Et) is a constant, p(N) is also negligible.
Therefore, our anonymization design renders the success probability of the bribery
attack very small and negligible.

6 Evaluations

We discuss the details of our implementation and evaluation in this section. We start
by describing the key implementations adopted in our framework in Sect. 6.1. We first

244 J. Wang and B. Palanisamy

provide detailed smart contract implementations with gas cost in Sect. 6.2.1. Then, in
Sect. 6.2.2, we discuss the extensive case studies we performed.

6.1 Implementations and Environment

We implement the cryptographic constructions of TAFC in Charm [8], a cryptographic
library implemented in Python [5]. For the secret sharing operation, we adopt the
shamir’s secret sharing implemented in Charm. We adopt the Keccak256 hash imple-
mentation inWeb3.py [6]. For the digital signature, we use the ECDSA implementation
supported byWeb3.py.

We use Brownie [1] to provide an interactive environment to work with Ethereum.
Specifically, in Brownie, we implement the design of SC in Solidity [7], a smart contract
oriented programming language supported by Ethereum. We create multiple accounts
in Brownie acting as the sender S, the set of recipients R, as well as the set of trustees
TE. For IPFS, we employ Infura [3] to use the service.

6.2 Evaluations

6.2.1 Smart Contract Implementation

Table 1. Key functions & gas cost

Protocol Step Function Gas cost

Service Initialization Πinit.3 deployment 665964

Πinit.3 newService 132024

T2CS Setup Πsetup.12.c setOriHash 106864

Πsetup.12.c submitCDPointer 42707

Πsetup.12.c submitCTKPointer 42706

T2CS Enforcement Πmod.1 modifyReleaseTime 28149

Πrvk.6 submitDeletionEvidence 63117

Πmod.7 submitShare 41757

Πmod.7 submitShareSignature 24781

Πpoa.5.b reportUnavailableShare 41021

Service Audit Πaud.1 cheatingDeletionReport 43594

Πaud.3 publishRelationship 63684

Πaud.5 missingShareReport 42860

Others - trusteeRegistration 78121

- reward 41213

- stateTransition 21042

In Table 1, we show our implemented functions with corresponding gas cost in
the smart contract. Gas cost is a key metric to economically measure the cost-
effectiveness of a deployed smart contract. By analyzing the table, we observe that

CTDRB: Controllable Timed Data Release Using Blockchains 245

there are three functions, deployment (665964), newService (132024), as well as
setOriHash (106864), incurring a relatively higher gas cost in comparison with the
others. Since such functions will only be invoked once for each timed data release ser-
vice, their gas cost is a one-time cost.

Next, we highlight the key functions associated with the data revocation primitive
as well as the data modification primitive: Data Revocation: The function invocations
of the data revocation primitive consist of the following scenarios: (1) If no unavail-
able share and no cheating proof-of-deletion behavior exists, the revocation primitive
involves submitDeletionEvidence and stateTransition; (2) In case of the exis-
tence of unavailable shares as well as cheating proof-of-deletion behaviors, the revoca-
tion primitive totally involves submitDeletionEvidence, stateTransition, as well
as reportUnavailableShare. Data Release Time Modification: The function invo-
cations of the data release time modification primitive consist of the following sce-
narios: (1) If no unavailable share and no missing share, the modification primitive
involves modifyReleaseT ime, submitShare, as well as submitShareSignature;
In case of the existence of unavailable shares as well as missing shares, the primi-
tive totally involves modifyReleaseT ime, submitShare, submitShareSignature,
publishRelationship, as well as missingShareReport.

6.2.2 Case Study
We perform case studies to investigate gas consumption for our data revocation as well
as data release time modification primitives.

Case 1-No Misbehavior: In this case study, we assume that all the trustees honestly
follow the T2CS service. The objective of this study is to study the gas consumption of
the two primitives when selecting different number of trustees. We set the threshold t
of sss(t, n) as t = 8 in this case study. In Fig. 3a, we observe that the gas cost incurred
by the two control primitives linearly increases with the growing number of selected
trustees. Such an observation follows our design, since in the data revocation protocol
Πrvk- step 6, the sender S must guarantee that (n − t + 1) trustees have performed
proof-of-deletion and publish them on-chain; also, for the data modification protocol
Πmod-step-7, we require all the selected trustees to submit his/her share.

Fig. 3. Case study results

246 J. Wang and B. Palanisamy

Case 2-Cheating Proof-of-Deletion Existence: In this case study, we study the impact
of number of cheating trustees on the gas consumption of the data revocation primitive.
We assume that all trustees have passed the proof-of-availability check. Also, we adopt
sss(8, 15) as the secret sharing scheme in this case. Figure 3b gives us the gas eval-
uation results. Specifically, we observe that the gas cost incurred by the data revoca-
tion primitive linearly grows with the increasing number of cheating trustees. Such an
observation empirically validates our design in Πaud step-1, since the cheating behav-
ior will trigger the auditing protocol when performing a data revocation primitive, in
which anyone captures such a misbehavior prefers to report with SC to earn rewards.
The rising number of cheating trustees renders an increasing number of invocations of
cheatingDeletionReport, which inevitably incurs more gas cost.

Case 3-Missing Share Existence: In this case study, we study the impact of number
of missing shares on the gas cost when performing a data release time primitive. We
assume that all the selected trustees have passed the proof-of-availability check. Also,
we adopt sss (8, 15) as the secret sharing scheme in this case. Figure 3c shows the
evaluation results. The results show two interesting observations, which are described
as follows: first, when the number of missing shares is less than the threshold t, say
2, 4, and 6, the gas cost of the data release time modification primitive does not grow
with the increasing number of missing shares. Here also, this observation follows our
design as the recipient can recover the csk from the remaining shares, which will not
trigger the auditing protocol; second, when we miss 8 shares, the gas cost dramatically
increases. This empirical result validates our design inΠaud step-3 and step-5. Since the
remaining shares cannot recover csk, Πaud will be triggered. The sender S will publish
the relationship on SC in terms of issuing transactions, which causes more gas cost.
Moreover, when we miss 10 shares, the gas cost remains the same. This observation is
attributed to the number of the invocations of publishRelationship that only relies on
the total number of selected trustees.

7 Related Work

7.1 Timed Data Release Using Blockchains

With the recent advancements in blockchain techniques, we are witnessing a rising
research trend in timed data release using blockchains. Specifically, one line of work
aims at enriching theoretic foundations in terms of constructing elegant cryptographic
solutions for timed release of time. The techniques outlined in [20–22] incorporate wit-
ness encryption with cryptographic puzzles constructed from blockchains to securely
enclose the timed-release data. The other line of work strives to decentralize timed data
release using real-world blockchains such as Ethereum. Based on adversarial contexts,
this line of work can be categorized into the following two categories. The first cate-
gory seeks to protect data under a rational adversary setting. Specifically, Li et al. [17]
adopted a game theory model to contractually enforce the Ethereum blockchain net-
works to behave honestly in a timed data release service. As a concurrent work, Ning et
al. [24] proposed a provable cryptographic construction to guarantee the protection of
the data with the help of Shamir’s threshold secret share scheme and smart contracts.

CTDRB: Controllable Timed Data Release Using Blockchains 247

By considering a potential attack launched by a data sender, the techniques developed
by Bacis et al. [10] incorporated secure multiparty computation with the Ethereum
smart contracts to jointly perform data protection. Recently, SilentDelivery [18] sug-
gested a novel design to realize anonymity and scalability in blockchain-based timed
data release. Recent work also has investigated a mixed adversarial environment, where
both fully malicious adversaries as well as fully rational adversaries exist. Specifically,
Wang et al. [32,33] proposed a reputation-aware timed data release protocol on top of
Ethereum to achieve high attack resilience in a mixed adversarial environment. All the
current techniques, however, only focus on the issue of data protection. In contrast, our
proposed work in this paper augments the existing blockchain-based timed data release
techniques with practically controllable primitives.

7.2 Temporal-Aware Data Control in Public Outsourced Environments

There have been several efforts on supporting temporal data controls in outsourced envi-
ronments. The first line of work focuses on realizing data lifetime control in untrusted
storage environment, namely assured file deletion. Such a notion starts from the design
[26] proposed by Perlman, which theoretically constructs a system that manually speci-
fies the expiry time of a file and permanently deletes it after the expiry time with the help
of public key infrastructure [25]. FADE [30], proposed by Tang et al., further general-
izes the primitive in [26] as policy-based file assured deletion in real-world storage plat-
forms. Specifically, such a design specifies policy to regulate file lifetime and assured
file deletion request. The work presented in [31] enrich this design with access control
by using CP-ABE [12]. Our work differs from this line of work along the following two
aspects: (i) unlike prior work that focused on the assured deletion primitive, the pro-
posed work focuses on the timed data release scheme and (ii) while prior work on data
lifetime control primitive assumed a centralized key management service, we note that
it is impractical in a decentralized blockchain environment. Therefore, directly adopt-
ing such prior techniques to perform data lifetime control in our blockchain-based timed
data release framework is infeasible. (2) The second line of work enhances cloud-based
applications with temporal-aware access control primitives. Specifically, Zhu et al. [36]
developed temporal access control by adopting cryptographic integer comparisons and
proxy re-encryption encryption scheme. LoTAC [9] enables location and time-based
access control on cloud-stored data with the help of ElGamal encryption and tag-based
encryption, which specifically grants access to data by considering the location as well
as time information of a user. Adopting CP-ABE [12] to realize temporal-aware access
control is proposed in [14,15,19,23,34,35], where time is treated as an attribute in CP-
ABE. This line of work, however, only focused on enabling data access control with
temporal-related constraints. Such techniques fail to meet our joint objective of data
lifetime control and data access control.

8 Conclusion

In this paper, we propose CTDRB, a controllable timed data release framework using
blockchains, which offers both data access control as well as data lifetime control while

248 J. Wang and B. Palanisamy

protecting the confidentiality of the data. With the help of TAFC, a variant ciphertext-
policy attribute-based encryption construction, we realize the data access control in
CTDRB. We implement data lifetime control by designing a time token control ser-
vice on Ethereum. On top of such a design, two representative data lifetime control
primitives namely, data revocation and data release time modification are carefully
designed. Our security analysis demonstrates the attack resilience of CTDRB. We pro-
totype CTDRB by implementing smart contracts on Ethereum and perform gas cost
evaluations. By performing case studies under various service conditions, we demon-
strate that our data lifetime control primitives incur only a modest gas cost.

Acknowledgement. This material is based upon work supported by the National Science Foun-
dation under Grant #2020071. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

1. Brownie. https://eth-brownie.readthedocs.io/en/stable/
2. Ethereum. https://ethereum.org/en/
3. Infura. https://infura.io/
4. Kimono: trustless secret sharing using time-locks on ethereum. https://github.com/

hillstreetlabs/kimono
5. Python. https://www.python.org/
6. A python interface for interacting with the ethereum blockchain and ecosystem. https://

github.com/ethereum/web3.py
7. Solidity. https://docs.soliditylang.org/en/v0.8.10/
8. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems. J. Crypto-

graphic Eng. 3(2), 111–128 (2013)
9. Androulaki, E., Soriente, C., Malisa, L., Capkun, S.: Enforcing location and time-based

access control on cloud-stored data. In: 2014 IEEE 34th International Conference on Dis-
tributed Computing Systems, pp. 637–648. IEEE (2014)

10. Bacis, E., Facchinetti, D., Guarnieri, M., Rosa, M., Rossi, M., Paraboschi, S.: I told you
tomorrow: practical time-locked secrets using smart contracts. In: The 16th International
Conference on Availability, Reliability and Security, ARES 2021, New York, NY, USA.
Association for Computing Machinery (2021)

11. Benet, J.: IPFs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561 (2014)

12. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007
IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334. IEEE (2007)

13. Hao, F., Clarke, D., Zorzo, A.F.: Deleting secret data with public verifiability. IEEE Trans.
Dependable Secure Comput. 13(6), 617–629 (2016)

14. Hong, J., et al.: TAFC: time and attribute factors combined access control for time-sensitive
data in public cloud. IEEE Trans. Serv. Comput. 13(1), 158–171 (2017)

15. Huang, Q., Yang, Y., Fu, J.: Secure data group sharing and dissemination with attribute and
time conditions in public cloud. IEEE Trans. Serv. Comput. 14, 1013–1025 (2018)

16. Jiang, P., Qiu, B., Zhu, L.: Toward reliable and confidential release for smart contract via
id-based TRE. IEEE Internet Things J. 9(13), 11422–11433 (2022)

https://eth-brownie.readthedocs.io/en/stable/
https://ethereum.org/en/
https://infura.io/
https://github.com/hillstreetlabs/kimono
https://github.com/hillstreetlabs/kimono
https://www.python.org/
https://github.com/ethereum/web3.py
https://github.com/ethereum/web3.py
https://docs.soliditylang.org/en/v0.8.10/
http://arxiv.org/abs/1407.3561

CTDRB: Controllable Timed Data Release Using Blockchains 249

17. Li, C., Palanisamy, B.: Decentralized release of self-emerging data using smart contracts. In:
2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS), pp. 213–220. IEEE
(2018)

18. Li, C., Palanisamy, B.: SilentDelivery: practical timed-delivery of private information using
smart contracts. IEEE Trans. Serv. Comput. (to appear)

19. Li, Y., Dong, Z., Sha, K., Jiang, C., Wan, J., Wang, Y.: TMO: time domain outsourcing
attribute-based encryption scheme for data acquisition in edge computing. IEEE Access 7,
40240–40257 (2019)

20. Liu, J., Garcia, F., Ryan, M.: Time-release protocol from bitcoin and witness encryption for
sat. Korean Circulation J. 40(10), 530–535 (2015)

21. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption. Des. Codes
Crypt. 86(11), 2549–2586 (2018)

22. Liu, J., Kakvi, S.A., Warinschi, B.: Extractable witness encryption and timed-release encryp-
tion from bitcoin. IACR Cryptology ePrint Archive, 2015:482 (2015)

23. Liu, Z., Jiang, Z.L., Wang, X., Yiu, S.-M., Zhang, R., Wu, Y.: A temporal and spatial
constrained attribute-based access control scheme for cloud storage. In: 2018 17th IEEE
International Conference on Trust, Security And Privacy In Computing and Communica-
tions/12th IEEE International Conference on Big Data Science and Engineering (Trust-
Com/BigDataSE), pp. 614–623. IEEE (2018)

24. Ning, J., Dang, H., Hou, R., Chang, E.-C.: Keeping time-release secrets through smart con-
tracts. IACR Cryptology ePrint Archive, p. 1166 (2018)

25. Perlman, R.: The ephemerizer: Making data disappear (2005)
26. Perlman, R.: File system design with assured delete. In: Third IEEE International Security

in Storage Workshop (SISW 2005), p. 6. IEEE (2005)
27. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto (1996)
28. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
29. Szabo, N.: Formalizing and securing relationships on public networks. First Monday (1997)
30. Tang, Y., Lee, P.P.C., Lui, J.C.S., Perlman, R.: FADE: secure overlay cloud storage with file

assured deletion. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010. LNICST, vol. 50, pp.
380–397. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16161-2 22

31. Tang, Y., Lee, P.P.C., Lui, J.C.S., Perlman, R.: Secure overlay cloud storage with access
control and assured deletion. IEEE Trans. Dependable Secure Comput. 9(6), 903–916 (2012)

32. Wang, J., Palanisamy, B.: Attack-resilient blockchain-based decentralized timed data release.
In: 36th Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy
(DBSec2022) (2022, to appear)

33. Wang, J., Palanisamy, B.: Protecting blockchain-based decentralized timed release of data
from malicious adversaries. In: 2022 IEEE International Conference on Blockchain and
Cryptocurrency (2022)

34. Xia, Q., et al.: TSLS: time sensitive, lightweight and secure access control for information
centric networking. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp.
1–6. IEEE (2019)

35. Yang, K., Liu, Z., Jia, X., Shen, X.S.: Time-domain attribute-based access control for cloud-
based video content sharing: a cryptographic approach. IEEE Trans. Multimedia 18(5), 940–
950 (2016)

36. Zhu, Y., Hu, H., Ahn, G.-J., Huang, D., Wang, S.: Towards temporal access control in cloud
computing. In: 2012 Proceedings IEEE INFOCOM, pp. 2576–2580. IEEE (2012)

https://doi.org/10.1007/978-3-642-16161-2_22

FairBlock: Preventing Blockchain
Front-Running with Minimal Overheads

Peyman Momeni1(B), Sergey Gorbunov1,2, and Bohan Zhang1

1 University of Waterloo, Waterloo, Canada
{pmomeni,sgorbunov,bohan.zhang}@uwaterloo.ca

2 Axelar Network, Waterloo, Canada

Abstract. While blockchain systems are quickly gaining popularity,
front-running remains a major obstacle to fair exchange. In this paper,
we show how to apply identity-based encryption (IBE) to prevent front-
running with minimal bandwidth overheads. In our approach, to decrypt
a block of N transactions, the number of messages sent across the net-
work only grows linearly with the size of decrypting committees, S. That
is, to decrypt a set of N transactions sequenced at a specific block, a
committee only needs to exchange S decryption shares (independent of
N). In comparison, previous solutions are based on threshold decryption
schemes, where each transaction in a block must be decrypted separately
by the committee, resulting in bandwidth overhead of N × S. Along the
way, we present a model for fair block processing and build a prototype
implementation. We show that on a sample of 1000 messages with 1000
validators our system saves 42.53 MB of bandwidth which is 99.6% less
compared with the standard threshold decryption paradigm.

Keywords: Blockchain · Front-running · DeFi · Identity-based
encryption · Smart contract · Security

1 Introduction

Maximal (or Miner) Extractable Value (MEV) is one of the central problems that
prevent fairness [39,70] and trust in decentralized exchanges and other decentral-
ized applications (dApps) [5,24,29,52,71]. MEV allows a block proposer to influ-
ence the order of transactions to extract some “value” for themselves before they
are executed by the application. By rearranging the order, the block proposer may
inject extra transactions to extract profit. For example, if the block proposer sees
a transaction Txorg that tries to buy an asset from a decentralized exchange, it
may include another transaction Txf (or a sequence of transactions) in the block
that first buys the asset and then sells it to the sender in Txorg for a higher fee.

MEV is defined as the revenue other than transaction fees and block rewards
which can be extracted by reordering, censoring, and adding transactions in
blocks [5,24,29,52,71]. MEV is present on any blockchain infrastructure that
includes a party that is responsible for transaction ordering such as miners in

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 250–271, 2023.

https://doi.org/10.1007/978-3-031-25538-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_14&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_14

FairBlock: Preventing Blockchain Front-Running with Minimal Overheads 251

Ethereum [67], validators in Cosmos [22], or sequencers in Layer 2 solutions such
as roll-ups [42,46]. Most of the extracted MEV happens in the form of a front-
running attack whereby a party other than the block proposer itself closely
observes the submitted transactions to the public mempool and exploits this
information to detect profitable opportunities such as arbitrages, liquidations,
and mispriced non-fungible tokens (NFT). After detecting them, the adversary
makes sure that their profitable transaction will be executed in a high order by
offering a high transaction fee to the block proposer or any party that is respon-
sible for ordering. They do so by submitting it either in the public mempool
or a private backchannel. Lower-bound estimates show that sophisticated bots
and their affiliated miners are making up to 5M USD in 24 h with the total
amount of over 607M USD million from 2020 to date just in the Ethereum net-
work [42,50,67]. These attacks lead to serious problems such as high gas fees,
network congestion, and even consensus instability [24].

Threshold decryption schemes are one of the most promising and well-known
methods to prevent front-running [17,32]. The idea was proposed in 1994 [51],
and recently explored by blockchain projects such as Sikka, F3, and Anoma [2,
32,58,69]. In this approach, every transaction sent to the blockchain is first
encrypted by the user using a global public key. A committee of decryptors (e.g.
validators or set of users) holds shares of the corresponding private key. After
a block of encrypted transactions is finalized and sequenced by the consensus
layer, they collectively decrypt each transaction in a block to see its cleartext
values. Subsequently, the transactions must be executed in the order in which
they were finalized prior to the decryption. It is easy to see that this mechanism
solves many forms of front-running attacks: the validators must finalize a block
of encrypted transactions and fix their order, they cannot see the information in
them, and hence it is much harder for them to influence the outcome.

While this approach may be used to solve the problem, it introduces signifi-
cant bandwidth overheads on the network. To be more specific, due to the high
cost of distributed key generation process, decryption should happen without
revealing private key shares. Consequently, for each encrypted transaction in a
block, every committee member must propagate a separate decryption share, and
a designated individual can aggregate decryption shares to reveal the transaction.
For a N -transactions block and S-members committee, this results in decryp-
tion complexity of N × S broadcast messages. As an example, for N = 1000
transactions of size 64 bytes, S = 1000 of validators with a two-thirds honest
majority, this adds an extra 42.7 MB of traffic on the network. This increases
the bandwidth required to process transactions non-linearly resulting in signifi-
cant scalability constraints. We refer the reader to Sect. 2 for limitations of other
front-running prevention mechanisms.

1.1 Our Contributions

In this work, we construct a front-running protection protocol with minimal
bandwidth overheads – linear in the number of users or validators called keep-
ers. Our construction, called FairBlock, is based on well-studied cryptographic

252 P. Momeni et al.

assumptions. In particular, the scheme is based on identity-based encryption
where one can exploit the linearity and secret sharing of the IBE private
keys [9,19,56]. In FairBlock, a committee composed of keepers that run a dis-
tributed key generation (DKG) [33,48] protocol to generate a shared master key
msk associated with a system-wide master public key mpk for an IBE scheme.
Next, we associate each block identifier h with an IBE “identity”. Consequently,
clients can commit to their transactions by encrypting their information with
mpk and identity for a future block h (or a range of blocks). Validators run the
consensus and sequence all encrypted transactions in a block. Finally, to decrypt
the block with minimal overheads, each keeper k (a) computes a share bk

h of the
private key bh (named block key) for the IBE identity corresponding to block
h, and (b) broadcasts it over the blockchain. After sufficiently many keepers
propagated their shares bk

h, anyone can perform the key extraction process to
obtain the private key bh that allows decryption of all transactions encrypted
under identity h with no further communication. In FairBlock, another set con-
sists of users or validators named “relayers” (which can overlap with keepers) is
responsible for key extraction and decryption. The original sender of the trans-
action can also reveal the plaintext transaction without block key extraction and
decryption to avoid paying fees.

FairBlock is a general solution that can be applied to all smart contract
blockchains. The scheme is practical and can be applied in real systems as IBE
constructions that support the linearity properties that we leverage are efficient.
FairBlock does not have basic commit-reveal challenges, which can facilitate
denial of service attacks, whereby a client commits to a transaction and reveal
it later only if subsequent transactions make it profitable [17,29].

Compared to the solutions [18,27,40,65] that leverage time-lock puzzles [7],
we do not introduce significant delays or high computational complexity in
decryption. Moreover, our work does not rely on secure enclaves [68] to realize a
private pool [60]. Unlike the standard threshold decryption approach, FairBlock
bandwidth overhead is minimal as the number of messages in this system grows
linearly with the number of keepers.

1.2 Paper Organization

The remainder of the paper is organized as follows. In Sect. 2, we describe related
works and their limitations. In Sect. 3, we review the cryptographic building
blocks of FairBlock and define blockchain front-running. In Sect. 4, we present
our security model, followed by describing FairBlock protocol and details of our
architecture. Section 5 describes our prototype implementation and evaluation.
We also indicate future research directions and challenges in Sect. 6, before con-
cluding in Sect. 7.

2 Related Works

Several academic works and projects have attempted to either limit or pre-
vent front-running. For instance, Flashbots [24] has mitigated front-running and

FairBlock: Preventing Blockchain Front-Running with Minimal Overheads 253

bidding war consequences such as high gas fees and network congestion with
a private channel for front-runners to make bids directly to miners through
relayers. However, relayers and white-listed miners in this approach have full
access to the transaction content in clear which makes it prone to front-running
and censorship. LibSubmarine [12] conceals the transaction among other similar
transactions by locking the amount of the transaction to a generated address that
is indistinguishable from an address that has not been used on Ethereum previ-
ously. However, the security of this solution is not based on strong cryptographic
assumptions, and also the contents of the transactions are still in plaintext and
prone to front-running.

DEXes and AMMs [1,61], as the main target of front-running [5,42] have
tried to limit front-running consequences such as transactions failure and gas
waste using slippage. This approach has interestingly led to near-guaranteed
sandwich attacks by taking a deal and selling it again to the buyer with a higher
price to the maximum extent that slippage allows. CowSwap [23] protects DEX
users from sandwich attacks by matching simultaneous users off-chain, whenever
a user is buying an asset and another is selling the same asset. Currently, this
approach is limited as it cannot prevent general front-running on transactions
in the public mempool.

Recent projects including Secret Network [44] and Fairy [60] leverage secure
enclaves namely Intel SGX [68] to build private mempools at the cost of poten-
tial latency, storage limits, and security risks due to several successful recent
attacks on secure enclaves [53,64]. The basic commit-reveal approach relies on
clients to reveal their transactions after the finalization of the commitment phase
which leads to connectivity issues, and denial-of-service attacks (selective reveal-
ing based on the market output). As a way to address basic commit-reveal
issues, time-lock encryption [18,27,40,49] relies on the secure implementation
of verifiable delay functions (VDF) [7] and time-lock puzzles at the expense of
long delays between transaction inclusion and execution e.g. 3 or 7 min delay in
VeedDo implementation by Starkware [65].

Shutter Network [57] leverages threshold decryption and distributed key gen-
eration as their tools to prevent front-running by generating a private key for
each epoch but additional research is needed to validate their cryptographic
protocols. Projects such as Ferveo [32], Sikka [58], Helix [2], and F3 [69] employ
threshold decryption with high communication overhead as decryption of every
single message requires all members of the decryption committee to send their
partial decryption shares.

3 Background

3.1 Cryptographic Preliminaries

Identity-Based Encryption. An identity-based encryption (IBE) [9,19,56]
allows to establish a global master key in the system that can be used to
derive identity-specific public keys (and associated private keys). For instance, it
enables a sender, Alice, to encrypt a message for receiver Bob using his identifier

254 P. Momeni et al.

information such as email address, phone number, and IP address. The receiver
Bob, having obtained a private key associated with his identity information from
Trusted Third Party (TTP), can decrypt the ciphertext. An IBE scheme consists
of a tuple of algorithms: Setup, Extract, Encrypt, and Decrypt satisfying the
following semantics:

– Setup(1λ): On input corresponding to the security parameter λ, the setup
algorithm outputs a master key msk and its associated master public key
mpk which is publicly known.

– Encrypt(mpk, ID,m): On input of the master public key mpk, an identity
ID and a message m, the encryption algorithm outputs a ciphertext C.

– Extract(ID,msk): On input of the master key msk and identity ID, the
extraction algorithm returns a private key dID for user with identity ID.

– Decrypt(dID, C): On input of the private key dID and ciphertext C, the
decryption algorithm recovers the plaintext message m.

We build FairBlock using an IBE that is semantically secure under the BDH
assumption in a random-oracle model [9]. In particular, we use the Boneh-
Franklin IBE [9]. Our construction will use an IBE in a non-black box way
and exploit two common properties. Other IBE schemes [8,41] may also be used
assuming they satisfy these two properties:

1. Support efficient distributed key generation (DKG) protocols.
2. Support linear homomorphic operations over the private keys for identities.

That is, given a share of a master key, one should be able to compute a
share of the corresponding private key for any identity ID, such that given a
collection of shares, anyone can extract the private key for ID.

The central TTP in the described IBE algorithms is a single point of failure
and contradictory to the distributed nature of blockchains. As suggested in [9],
Shamir’s secret sharing (SSS) [55] technique can replace the TTP by distributing
the shares of msk among a group of keepers with an honest majority. In this
work, we show how to employ a distributed key generation [48] to eliminate the
trusted dealer in SSS to achieve complete decentralization.

Cryptographic Commitment. In order to ensure that transactions cannot
be modified, censored, or added after decryption by relayers, our protocol should
verify that decrypted transactions are in fact the ones that have been encrypted.
To realize this, we have leveraged a basic non-interactive hash-based commit-
ment [11,37,43] with computational binding and hiding properties in the random
oracle model based on a collision-resistant hash function Hc. The hiding prop-
erty is vital for our commitment scheme, as an adversary should not acquire any

FairBlock: Preventing Blockchain Front-Running with Minimal Overheads 255

information about the transaction. We also need binding, so a relayer cannot sub-
mit a different transaction with the correct commitment to censor the original
transaction. The simple and efficient hash-based cryptographic commitment in
this work can be replaced with more advanced commitment schemes [36,37,47]
with stronger security guarantees.

3.2 Blockchain Front-Running

In this paper, we define blockchain front-running as follows:

Definition 1. Blockchain front-running is a family of strategies in which a
malicious party directly or indirectly manipulates the order of transactions in
a blockchain architecture such that a transaction tx2 which is broadcasted in
time t2 executes before the transaction of victim tx1 which is broadcasted in time
t1 where t1 < t2.

In practice, front-runners may be the parties who are responsible for sequenc-
ing transactions themselves including miners, validators, roll-up providers, or
relayers. Alternatively, front-runners may indirectly influence the order of trans-
action by offering high tips (gas price) to block proposers, performing attacks in
the network layer such as DDOS attacks, or utilizing high-speed networks sim-
ilar to high-frequency traders in traditional financial markets. Typically, front-
runners such as sophisticated bots actively listen to pending transactions in the
public mempool or in the peer-to-peer network to exploit the revealed (but not
executed) information of transactions to make profits by broadcasting a trans-
action and front-running the victim’s transaction to capture the opportunity.
This form of front-running attacks significantly increases the cost of transaction
fees for normal users, unfairly steal many profitable opportunities, and makes
the user experience much more complex and slow by failing the victim’s transac-
tion. Front-running and MEV-related transactions can also result in significant
network congestion. For instance, Bank for International Settlements [3] has
reported that up to one out of thirty transactions in Ethereum blocks from 2020
to 2022 were included for MEV extraction purposes. Moreover, several works in
the literature [24,29,46] have also discussed the potential threat of front-running
attacks to the consensus mechanism of blockchain networks due to the high prof-
itability of these opportunities which incentivize some players such as miners to
sabotage the whole network. We refer the reader to Appendix A for a summary
on the nature of front-running attacks.

4 FairBlock

In this section, we formalize the security model in Sect. 4.1, present FairBlock’s
architecture in Sect. 4.2, and finally prove the correctness and security of the
protocol in Sects. 4.3 and 4.4.

256 P. Momeni et al.

4.1 Model

Players. In this protocol, we define three types of players:

– Users: Parties who wish to communicate with a target smart contract with-
out being front-runned. Users submit a transaction containing their encrypted
message e.g. trading information to our system.

– Keepers: Parties that are responsible for generating a distributed secret key
and submitting their shares for each block key. Keepers set can be composed
of any parties in the network including users, consensus validators, decentral-
ized oracle networks (DON) [17], or decentralized autonomous organizations
(DAO) [25].

– Relayers: Parties that are responsible for aggregating block key shares, com-
puting block keys, and decrypting committed transactions. Relayers set can
be composed of users, keepers, consensus validators, decentralized oracle net-
works (DON) [17], or decentralized autonomous organizations (DAO) [25]. In
practice, keepers can also play the relayers’ role; however, we have defined
an independent set to highlight the fact that they can be a very large group
competing to decrypt transactions. Also, even just a single honest party e.g.
the next block proposer would suffice.

Setup. In our protocol, a set of n keepers P = {P1, P2, ..., Pn} generate a shared
master key msk and a system-wide public key mpk. Users pick a desired block
identifier h as the ID of the block (or range of blocks) in which their encrypted
transaction should be executed without being front-runned.

Assume that the associated groups of a symmetric bilinear pairing, G1 and
GT have order q, that is, the pairing is ê: G1 × G1 → GT . Two cryptographic
hash functions H1 and H2 are also used. H1 maps block identifier h ∈ {0, 1}∗ to
G1, and H2 maps GT to transaction information tx of bitlength l1. Additionally,
a collision-resistant hash function Hc is used for the cryptographic commitment.
Also assume that a generator g ∈ G1 is available to all entities.

Threat Model. We assume that the adversary is computationally bounded and
our cryptographic schemes including IBE, DKG, and Commitments are secure.
In this work, we work with an honest majority assumption on the keepers. That
is, an adversary controls at most t keepers, whereas a collaboration of t + 1
keepers is required to extract the block key and also the presence of at least
one honest relayer is necessary to perform decryption. Assuming that keepers
are running Pedersen’s DKG [48] protocol, the adversary must control at most
t ≤ n−1

2 keepers. In the case of consensus-level implementation, the underlying
BFT-style [13] consensus algorithm may enforce a two-thirds honest majority
assumption. In this case, the adversary must control at most t ≤ n−1

3 keepers’
shares as consensus validators also play keepers’ roles. A party controlled by the
adversary may deviate arbitrarily from the specified protocol. We consider an
adaptive adversary, in the sense that it can decide which parties to corrupt at
any point during the protocol execution.

FairBlock: Preventing Blockchain Front-Running with Minimal Overheads 257

Correctness. Our construction should also satisfy correctness. We define this
property as follows: Given a sequence of encrypted transactions submitted by
the users, every player should be able to learn the cleartext transactions and
their correct execution order after the block key reconstruction phase.

Security Model. We now describe a security model that captures the notion
of fairness. In essence, it states that no adversary that controls less than the
corruption threshold of parties can influence the order or censor transactions in
the system. We follow the formal notion of fairness in recent works [17,39,70]
and aim to provide fairness by satisfying both order-fairness and secure causality
preservation [15,28]. Order-fairness requires that if a large fraction of nodes γ
receive T1 before T2, then T1 should not be executed after T2. We refer the
reader to [17,39,70] for further formal discussion and technical detail of order-
fairness. Also, the security conditions of secure causality-preservation [15,28]
require formally that no information about a transaction becomes known before
the finalization of its order in the block. Until that time, the system must not
reveal any information to an adversary in a cryptographically strong sense. In
Sect. 4.4, we show how FairBlock satisfies both secure causality-preservation and
order-fairness.

4.2 Protocol

In this section, we show how to apply FairBlock to any dApp by adding special-
purpose smart contracts to the system. However, one can similarly apply Fair-
Block at the consensus level, where keepers and relayers are replaced by the
validators that maintain the shared master key and contribute to the decryption
on chain [32,58]. We will further discuss consensus-level Implementation.

Smart Contracts. To implement FairBlock using smart contracts as the com-
munication layer, we introduce five smart contracts:

1. Participate(dep, val): This contract keeps track of keeper and relayers sets. It
may also lock security deposits dep and the value of an encrypted transaction
val so it can be transferred to the target contract.

2. DKG(mDKG): During the distributed key generation protocol, keepers submit
their broadcast messages mDKG and read others’ from this contract. At the
end of the protocol, it may also store the system-wide public key mpk and
other public system parameters, so users can read it and encrypt transactions.

3. Commit(enc(tx),Hc(tx)): This contract stores received encrypted transactions
enc(tx) and cryptographic commitments H(tx). The main purpose of this
contract is to preserve the order of received transactions.

4. IBE(bkh): This contract receives block key shares bk
h from each keeper k, so the

relayer can aggregate them to construct the block key.

What follows is a brief description of FairBlock’s architecture in six phases:

258 P. Momeni et al.

Phase 0: Enrollment. Keepers and relayers enroll in participating in the pro-
tocol by calling a function in Participate and sending an amount of deposit as an
entry fee. Clients may also lock the value of their transaction in Participate, so
the value could be automatically transferred to the target contract in the last
phase.

Phase 1: Distributed Key Generation. Keepers generate a shared pub-
lic key, and an associated shared master key split across all of them using a
DKG protocol [48]. DKG protocols are generally slow as they typically require
time quadratic in n [38,48,62]; however, it only runs once in the setup phase
and afterward very infrequently anytime the keepers set changes. Keepers set is
expected to be stable as they are collecting rewards for their honest co-operation
and being penalized for malicious behavior. The following is a brief description
of Pedersen’s DKG protocol [48]:

1. Sharing: Each keeper Pi randomly picks a secret si ∈ Z
∗
q . Next, Pi sets ai0 =

si and chooses a random polynomial fi(z) over Z
∗
q of degree t as follows:

fi(z) = ai0 + ai1z + · · · + aitz
t. (1)

Pi broadcasts Feldman [31] commitments Aik = gaik for k ∈ [0, t] using DKG.
Pi computes the share sij = fi(j) mod q for j in [1, n] and sends sij through
secure private channels to Pj .

2. Share Verification: Each keeper Pj verifies each received share sij sent by Pi.

To do so, Pj checks Feldman’s VSS [31] validity condition: gsij
?=

∏t
k=0 Ajk

ik .
3. Dispute: If t or more keepers complain against a keeper Pf by broadcasting

the complaint on DKG, Pf will be considered faulty and disqualified. Sub-
sequently, Pf can make a complaint and claim its honesty by revealing the
share sfv for each complaining user Pv. If any of the revealed shares fails the
check again, Pf is disqualified.

4. Public Key: Assuming that T is the set of qualified (not disqualified in the
previous phase) keepers, the system-wide public key mpk is computed as
follows:

mpk =
∏

i∈T

Ai0 =
∏

i∈T

gsi . (2)

5. Master Key Shares: Each keeper k ∈ T compute its master key share
wk =

∑
i∈T sik.

Although there is no need to reconstruct the msk through our protocol, it is
defined as sum of qualified keepers’ secrets: msk =

∑
i∈T si. Note that secret

sf for a disqualified keeper Pf is set to zero.

Phase 2: Encryption and Commitment. Clients encrypt their message m
using public key mpk for block identifier h. To encrypt transaction information
tx ∈ {0, 1}l1 , a client computes Qh = H1(h) followed by selecting a random

FairBlock: Preventing Blockchain Front-Running with Minimal Overheads 259

integer r ∈ Z
∗
q , and a random string x ∈ {0, 1}l2 . Afterward, it sets m = tx‖x

and R = gr [9]. Having them, U is calculated as follows:

U = m ⊕ H2(ê(Qh,mpk)r). (3)

Finally, it submits a encrypted message C = (R,U) alongside a commitment
Hc(m) to Commit.

Phase 3: Broadcasting Block Key Shares. At least t + 1 out of n keepers
compute their block key shares bk

h [9] and propagate it using IBE. Keeper k
computes its share for block h as bk

h = H1(h)wk .

Phase 4: Decryption. Relayers compute the block key bh after receiving at
least t + 1 valid shares from IBE. Next, they use bh to decrypt each of the
encrypted messages for the block h. Relayers are incentivized to decrypt correctly
as fast as possible by rewards for each correct decryption. Each Relayer can
extract block key bh after the following steps:

1. Share Verification: Relayer verifies received shares bk
h from each keeper k by

checking the following condition [9]:

ê(
t∏

i=0

V ki

i ,H1(h)) ?= ê(g, bk
h), (4)

where Vis are public verification values for keepers i ∈ [0, t] in the DKG
protocol defined as Vi =

∏
k∈T Aki.

2. Block Key Extraction: After verifying the shares, the block key for block h is
extracted as follows:

bh =
t+1∏

k=1

(bk
h)Lk , (5)

where Lks are proper Lagrange coefficients for point 0 defined as Lk =∏t+1
r=1
r �=k

r
r−k . The derived key bh is indeed the IBE key for identity h that would

have been extracted by the TTP. See Sect. 4.3 for correctness discussion.
3. Decryption: Let C = (R,U) be the ciphertext for block identifier h. A Relayer

decrypts C using the private key bh as:

m = U ⊕ H2(ê(bh, R)). (6)

In the event that relayers are unable to include the decrypted transactions in the
blockchain before or at the block specified in the commitments, an application-
specific policy determines if the submitted encrypted transactions should fail or
be decrypted in a later block. However, we expect that this case is very rare with
a proper incentivization mechanism.

260 P. Momeni et al.

Phase 5: Execution. Given a list of decrypted messages m1, ...,mn, Process
extracts x and tx for each of the messages. Next, it checks the validity of each
transaction tx e.g. user’s balance in Participate which should be more than the
transaction value. Finally, it verifies that a) none of the committed transac-
tions is censored, b) all of them have been decrypted correctly, and c) their
received order follows the specified ordering policy. This verification can be sim-
ply done by recomputing the cryptographic commitment for each of decrypted
messages, and then reading previously submitted cryptographic commitments
Hc(m) from Commit for each of them. The verification can be done in a single
step by computing the hash of all commitments as Hc(m1, · · ·,mn) and compar-
ing them. Finally, it executes the batch by calling the target contract for each
of the decrypted transactions.

Consensus-Level Implementation. An alternative to using smart contracts
as the communication layer is implementing FairBlock in the consensus layer [2,
58]. In this case, there will be no need to maintain sets of keepers and relayers,
as the normal validators who are responsible for mining the blocks will also
perform these tasks. To be more specific, validators receive private key shares in
proportion to their stake and submit their block key shares as an extension to
messages in the voting round in a BFT-style consensus algorithm [13]. Next, the
next block proposer computes the block key by aggregating submitted shares,
decrypting, and including the plaintext transaction in the next block.

Alternatively, validators can submit their block key shares as a message in the
blockchain, and any other user can compute the block key and submit decrypted
transactions as a message to collect rewards. Hash of submitted decryptions
should be compared to the commitments which are previously sent alongside
the encrypted transactions to verify the correctness of the block key extraction
and decryption process. The original sender of the encrypted message is able to
submit its plaintext transaction immediately without block key extraction and
decryption in order to avoid system fees. In the event that the original sender
is no longer online or refuses to reveal in time, other parties will compete to
decrypt the transactions as soon as possible to collect rewards.

4.3 Correctness

Correctness follows by the linearity of secret sharing and IBE extraction algo-
rithm. In particular, it is easy to see that shares of the private key can be
reconstructed to obtain the IBE key. We refer the reader to Appendix B for
correctness proof.

4.4 Security

Secure Causality Preservation. Assuming the honest majority of keepers
described in Sect. 4.1, and at least one honest relayer, we show that our system
satisfies causality-preservation based on the security of DKG and IBE schemes.

FairBlock: Preventing Blockchain Front-Running with Minimal Overheads 261

Fig. 1. Architecture of FairBlock

In particular, at the end of phase 1, the adversary cannot learn any information
of the msk given t ≤ n−1

2 shares of the msk. Furthermore, given block keys bh

for block identifiers h ∈ Sh, the adversary cannot learn about the block key of
other block identifiers h∗ /∈ Sh by the properties of IBE.

We prove security of FairBlock by defining a security game G between a poly-
nomially bounded adversary A controlling at most t keepers and a challenger.
The adversary’s goal is to front-run a client, defined as being able to distinguish
between two challenge encrypted messages containing transaction information.
We define the security game as follows:

– The challenger runs DKG and IBE Setup(1λ) algorithm.
– The adversary receives shares of msk, (w1, ..., wk) for k ≤ t.
– The adversary computes Encrypt(mpk, h,m) for arbitrary message m and

any block identifier h ∈ Sh.
– The adversary receives q ≤ n shares for the block key bh.
– The adversary chooses two distinct message m0, m1, and a block identifier

h∗ /∈ Sh and sends them to the challenger.
– The challenger selects random bit b and sends C∗ = Encrypt(mpk, h∗,mb) to

the adversary alongside up to t− k shares of the block key skh∗ . The number
of received shares in this phase cannot be more than t − k, as the adversary
can exploit its shares of msk and extract additional k shares for skh∗ . In case
of receiving more than t − k shares of the challenge block key, the adversary
can trivially extract the challenge block key by combining more than t shares
of skh∗ shares.

– The adversary can still query the oracle to get q ≤ n shares of the block key
bh for any h �= h∗, and finally outputs a guess for b.

Let W be the event that an adversary succeeds in the game G by correctly
guessing b in polynomial time, and ε be a negligible function of the security

262 P. Momeni et al.

parameter λ which is fed to the scheme in the setup phase. We say that the
protocol is secure against front-running if:

AdvG(A) = | Pr[W] − 0.5 |≤ ε (7)

To show that our scheme is secure according to the definition above, let
us assume that there exists an adversary A which can win the game with a
non-negligible probability. We can show that in turn this adversary A should
either break the security of our distributed IBE scheme or the underlying DKG
protocol. In the former case, an adversary B can obtain a private key dID for
arbitrary identity ID alongside the two challenge ciphertexts from the challenger
in the security game of standard IBE. Next, it runs a secret sharing algorithm on
dID to generate shares with the same distribution of block key shares and submits
the generated shares, two challenge ciphertexts, and ID to A. Consequently, A
outputs b which can be sent to the challenger by B to break the security of
standard IBE with a non-negligible probability. To break the DKG security in
latter, A should have the ability to distinguish between the distribution of master
key shares and master public key tuple (w1, ..., wk,mpk) as the output of a
simulator Sim and (w1, ..., wk,mpk

′
) as the output of the real DKG protocol [33,

48]. Consequently, as we have not modified the DKG protocol in FairBlock, an
adversary C can simply use A as an oracle to break the security of the original
DKG protocol.

Order-Fairness. FairBlock achieves order-fairness by executing transactions
in the order that their commitments have been received and written to Commit
or alternatively distributed public ledger (in the case of consensus-level imple-
mentation) without duplication. No party including miners in the decryption and
execution phase can influence the fixed order of executed transactions. Moreover,
no party including miners can insert transactions before the decrypted batch or
directly submit transactions to the target contract to frontrun or out-race Fair-
Block transactions as the target contract only accepts messages received through
FairBlock.

To achieve order-fairness, we follow the literature on “fairness” [17,39,70]
which favors the transactions that are received earlier. This property has been a
subject of debate in the blockchain community lately [17,24,58]. In some appli-
cations e.g. auctions or networks, it is vital to preserve the order of received
transactions for the correctness of the auction or incentivize parties to act with
the lowest possible latency e.g. arbitragers in AMMs. The other side of this
trade-off is that this property may be exploited to perform blind front-running
in some applications e.g. initial coin offerings (ICO) or attacks based on meta-
data. To the extent of our knowledge, blind front-running and attacks based
on metadata are negligible in current applications. However, FairBlock can be
easily modified to prevent this type of attack by shuffling the ordering of trans-
actions. The source of shuffling can be the hash of the concatenation of random
strings x of all messages which cannot be pre-determined or influenced. Kelkar
et al. [39] propose executing all the received transactions in parallel which is

FairBlock: Preventing Blockchain Front-Running with Minimal Overheads 263

implemented in Chainlink fair sequencing service (FSS) [17] and also compat-
ible with FairBlock’s encryption mechanism. We have further discussed other
solutions to combat metadata-based attacks by anonymizing the transaction’s
sender in Sect. 6.

5 Implementation

5.1 Implementation Details

We have built prototype implementations of FairBlock for both consensus-level
and smart contracts approaches. Smart contracts are implemented in Solidity
and consensus-level blockchain is built based on Cosmos SDK [22] in Go. For
consensus-level implementation, validators can submit their block key shares as
a message in the FairBlock blockchain, and other parties can compute the block
key and submit decrypted transactions as a message to collect rewards. How-
ever, a more efficient implementation would be submitting block key shares as
an extension to messages in the voting round in a BFT-style consensus algo-
rithm [13]. This implementation can be realized in FairBlock blockchain after
release of ABCI++ [21] which allows validators in a Cosmos-based blockchain
to extend their votes in the consensus voting phase with their shares of block
key [32,58].

Our implementation of the distributed IBE is built on top of Vuvuzela cryp-
tography library [66] in Go and assembly. For simplicity, we have described
FairBlock using symmetric pairings with the same source groups. However, we
have implemented our protocol using type 3 pairings (BLS12-381) with different
source groups for better efficiency as the Boneh-Franklin BasicIdent IBE [9] can
also be described with type 3 pairings [10]. For the DKG part, we have used
Pedersen’s scheme [48], as it is efficient, fast, and can be explained simply in this
paper. However, this DKG scheme can be replaced with implementations and
schemes such as [33–35,38,54,62] to achieve better properties. Both implementa-
tions can be readily employed for auctions, gaming, and various other DeFi use
cases. Moreover, other PoS blockchain networks including [4,20,30,59] can also
prevent front-running in their network by including FairBlock in their consen-
sus mechanism. Source code of FairBlock including distributed IBE and smart
contracts is available on GitHub1. Source code of FairBlock implementation in
the consensus layer is also available on GitHub2.

5.2 Performance Evaluation

To measure performance of our Distributed IBE implementation, we use a 2nd
Gen Intel Xeon 2.50 GHz server with 1 core and 2 GB of RAM. In order to
determine an average performance, we ran the experiments 100 times for each
keepers set size. We test the implementation for systems of up to 500 keepers and
1 https://github.com/pememoni/FairBlock-SC.
2 https://github.com/pememoni/FairBlock.

https://github.com/pememoni/FairBlock-SC
https://github.com/pememoni/FairBlock

264 P. Momeni et al.

present average execution times in Table 1 along with 95% two-sided confidence
intervals. Our results show the feasibility of our basic implementation using basic
hardware resources for even the fastest proof-of-stake (PoS) and proof-of-work
(PoW) public blockchains. For instance, average block key extraction time (com-
posed of block key shares aggregation, verification, and block key computation)
for 100 keepers is 147.39 ms which is significantly less than the block finaliza-
tion time of PoW blockchains such as Ethereum (12–14 s), and current fastest
PoS blockchain namely Avalanche [4] (1–3 s). We have also measured encryp-
tion and decryption execution time of random 256 byte messages for 1000 runs.
On average, decryption takes 1.54 ms and encryption takes 5.27 ms which are
neglectable compared to block key extraction time and can be easily parallelized
with the same execution time. For larger message sizes, our work employs hybrid
encryption [26]. Using hybrid encryption, identity-based encryption is used to
encrypt a key and an efficient symmetric encryption scheme such as AES-GCM
or ChaCha20 [16] is used to encrypt the actual transaction with the key.

Table 1. Mean values of encryption, block key extraction, and decryption execution
time for various keepers set sizes.

Keepers Block key extraction (ms) Decryption (ms) Encryption (ms)

5 8.07 ± 0.05 1.57 ± 0.04 5.29 ± 0.03

10 16.97 ± 0.06 1.54 ± 0.04 5.24 ± 0.02

20 29.5 ± 0.10 1.50 ± 0.02 5.21 ± 0.01

50 72.91 ± 0.18 1.52 ± 0.04 5.22 ± 0.02

100 147.39 ± 0.29 1.60 ± 0.07 5.28 ± 0.04

200 294.90 ± 0.63 1.53 ± 0.04 5.30 ± 0.02

500 771.72 ± 1.38 1.59 ± 0.03 5.35 ± 0.03

We have compared the bandwidth overhead of FairBlock and the threshold
decryption approach in two realistic scenarios. In scenario I, there are 1000
keepers and 1000 encrypted transactions that should be decrypted every 24 h.
In scenario II, there are 100 keepers and 100 transactions to be decrypted in
10 s. Using IBE, we need at least two-thirds of keepers to send their shares (of
size 256 byte in our implementation) for the block key extraction. In threshold
decryption, at least two-thirds of keepers should compute partial decryptions
(of size 64 byte in our implementation) for each of the committed transactions.
Table 2 shows the result of our experiment. In scenario I, the total message size
of IBE approach is only 0.4% of the threshold decryption approach. Similarly,
the total message size of IBE approach is approximately 25 times less than the
other approach in scenario II.

FairBlock: Preventing Blockchain Front-Running with Minimal Overheads 265

Table 2. Comparison of bandwidth overhead in identity-based encryption and thresh-
old decryption (assuming two-thirds honest majority)

System size Bandwidth overhead

Transactions Keepers Identity-based encryption Threshold decryption

1000 1000 170.8 KB 42.7 MB

100 100 17.2 KB 326.4 KB

6 Challenges and Future Work

One of the main challenges that arises in all privacy-preserving implementations
is to protect leakage of information through transaction metadata. In particular,
although the data field will not leak any information about the encrypted trans-
action itself, signature of the transaction can leak the sender’s identity. In theory,
an adversary with just the knowledge of the transaction’s sender can perform
front-running. For example, traders can be front-runned just based on their reg-
ular trading times of specific assets. Preventing such attacks requires mitigations
that avoid leakage of metadata as well. As an alternative to using complex ring
signatures [45], a client can avoid this risk and hide the real sender of the trans-
action by asking another party to send its transaction; or alternatively, replace
the sender’s signature with a PoW puzzle. Other privacy-enhancing technolo-
gies such as [6,14,63] can also be applied to prevent front-running based on the
sender’s public key or other forms of metadata namely IP addresses.

7 Conclusions

This paper designs and implements FairBlock, the first front-running prevention
mechanism based on distributed IBE. Our work does not have many limitations
of previous front-running mechanisms. Specifically, FairBlock significantly out-
performs the most well-known approach based on threshold decryption in band-
width overhead. We have implemented and evaluated our prototype using both
smart contracts and consensus-layer as the communications layer. The source
code of our implementation is also open-sourced.

A Front-Running Strategies

In this appendix, we discuss two families of the most common front-running
strategies with the goal of familiarizing the reader with the MEV space and
nature of the front-running attacks.

Sandwiching Attack. Sandwich attacks are the most notorious form of front-
running attacks. Predatory parties observe profitable pending transactions in the

266 P. Momeni et al.

public mempool or exploit their privileged access to plaintext orders in central-
ized exchanges or relayer services. At its core, they manipulate the transaction
ordering in a block and ensure that their front-running transaction tx1 executes
before the victim’s transaction txorg and their back-running transaction tx2 exe-
cutes immediately after the victim’s transaction. The profitability of this strategy
is based on the assumption that demand for assets results in a higher price. In
simple terms, when the attacker observes a pending buy order, it can buy the
same asset before the original trade, and immediately sell after execution of the
original trade to enjoy price increases thanks to a) its back-running transaction
and b) the victim’s transaction. For a concrete example, assume the scenario
that Alice broadcasts txorg to trade 100 USDC for DAI with a standard 0.3%
transaction fee and 1% slippage tolerance in a decentralized exchange (DEX)
that has 1000 DAI and 1000 USDC reserve. Following the standard automatic
market maker (AMM) model [1] in DEXes, Alice is expecting to receive 90.66
DAI in return. However, Bob observes this trade in the mempool and front-runs
Alice by submitting t1 to trade 5.23 USDC for 5.19 DAI which increases the price
of DAI to the maximum limit that Alice can tolerate due to 1% slippage. Con-
sequently, Alice’s trade torg returns 1% less DAI (89.75 DAI) and even further
increases DAI price. Finally, Bob pockets 1.05 USDC (ignoring gas fees) in profit
by submitting t2 and trading its 5.19 DAI for 6.28 USDC. To realize this strategy
Bob should manipulate the ordering by offering gas prices (price for computing
each unit of computation) to block proposers such that t1 and t2 sandwich torg.
Block proposers normally sort transactions with respect to gas price; and for a
successful attack, Bob has the challenge to strategically offer a gas price that
overbids competitors and still be profitable which makes this strategy complex
for Bob. However, Flashbots [24] allows front-runners to sandwich users with
much less risk as they can offer a bundle of transactions containing t1, t2, torg,
and a bid directly to the block proposer without submitting it to the mempool.
Then the block proposer chooses the most profitable bundles and executes them
in their profitable order. Consequently, Bob can almost guarantee his profit by
only paying for the bid and fees only if the block proposer executes t1, t2, torg

in the specified order.

Generalized Front-Running. Blockchain networks such as Ethereum [67]
and Avalanche [4] are modelled as a distributed state machine and their global
state changes from block to block with respect to a pre-defined set of rules. This
means that any party can observe a pending transaction txorg and simulate its
resulting state change. Consequently, generalized front-runners can simulate all
pending transactions and determine the profitability of them by checking the
balances of the transactions’ senders. In case of a net increase in the original
sender’s balance, the generalized front-runner copies the same transaction fields
and signs it with its private key. Next, it simulates the copied transaction locally
to check that the transaction is indeed profitable e.g. not a trap smart contract.
Finally, the generalized front-runner submits transaction tx1 to front-run txorg

and capture the profit. This strategy enables parties that have access to the

FairBlock: Preventing Blockchain Front-Running with Minimal Overheads 267

mempool to extract profits by mimicking a pending transaction (even blindly)
and outbidding competitors and the original sender. While the generalized front-
runner may be able to simulate all pending transactions in order to find the most
profitable ones, due to the high number of pending transactions and cost of
simulating, the front-runner can also filter specific target addresses and markets
which is expected to have more profitable opportunities including NFT markets,
DEX and CEX liquidity pools, yield aggregators, or well-known traders.

B Correctness and Consistency

B.1 Consistency of IBE Encryption and Decryption

Let C = (R,U) be encryption of message m for block identifier h using the
public key mpk. In encryption, m is bitwise XORed with the hash of ê(Qh,mpk)r.
Subsequently in decryption, U is bitwise XORed with the hash of ê(bh, R). These
two masks are equal since:

ê(Qh,mpk)r = ê(Qh, g)r.msk = ê((Qh)msk, gr) = ê(bh, R) (8)

B.2 Correctness Proof for Distributed Private Key Extraction

The following proof shows that bh is indeed the IBE key that a trusted third
party extracts for the identity h by raising the hash of the identity H1(h) to its
private key msk:

bh =
t∏

k=1

(bk
h)Lk =

t∏

k=1

(H1(h)wk)Lk =
t∏

k=1

H1(h)wkLk = H1(h)
∑t

k=1 wkLk (9)

And by Lagrange interpolation formula we have:

H1(h)
∑t

k=1 wkLk = H1(h)msk (10)

References

1. Adams, H., Zinsmeister, N., Salem, M., Keefer, R., Robinson, D.: Uniswap v3 core.
Technical report, Uniswap (2021)

2. Asayag, A., et al.: A fair consensus protocol for transaction ordering. In: 2018 IEEE
26th International Conference on Network Protocols (ICNP), pp. 55–65 (2018).
https://doi.org/10.1109/ICNP.2018.00016

3. Auer, R., Frost, J., Vidal Pastor, J.M.: Miners as intermediaries: extractable value
and market manipulation in crypto and DeFi. https://www.bis.org/publ/bisbull58.
htm. Accessed 07 July 2022

4. Avalanche whitepaper. https://www.avalabs.org/whitepapers. Accessed 12 Mar
2021

https://doi.org/10.1109/ICNP.2018.00016
https://www.bis.org/publ/bisbull58.htm
https://www.bis.org/publ/bisbull58.htm
https://www.avalabs.org/whitepapers

268 P. Momeni et al.

5. Bartoletti, M., Chiang, J.H.Y., Lluch-Lafuente, A.: Maximizing extractable value
from automated market makers. arXiv preprint arXiv:2106.01870 (2021)

6. Bojja Venkatakrishnan, S., Fanti, G., Viswanath, P.: Dandelion: redesigning the
bitcoin network for anonymity. Proc. ACM Meas. Anal. Comput. Syst. 1(1) (2017).
https://doi.org/10.1145/3084459

7. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

8. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

9. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

10. Boyen, X.: A tapestry of identity-based encryption: practical frameworks com-
pared. Int. J. Appl. Crypt. 1(1), 3–21 (2008)

11. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

12. Breidenbach, L., Daian, P., Tramèr, F., Juels, A.: Enter the hydra: towards
principled bug bounties and exploit-resistant smart contracts. Cryptology ePrint
Archive, Report 2017/1090 (2017)

13. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv
preprint arXiv:1807.04938 (2018)

14. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy in a smart
contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp.
423–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 23

15. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–
541. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 31

16. ChaCha20 and Poly1305 for IETF protocols. https://www.rfc-editor.org/rfc/
rfc7539.txt. Accessed 04 Mar 2022

17. Chainlink 2.0 and the future of decentralized oracle networks — chainlink (2021).
https://chain.link/whitepaper

18. Cline, D., Dryja, T., Narula, N.: Clockwork: an exchange protocol for proofs of
non front-running (2020)

19. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

20. Cosmos: The internet of blockchains. https://cosmos.network/. Accessed 18 Mar
2022

21. Abci++. https://github.com/tendermint/spec/blob/master/rfc/004-abci++.md.
Accessed 04 Mar 2022

22. Cosmos sdk - cosmos network. https://v1.cosmos.network/sdk. Accessed 26 Mar
2022

23. CoW Swap - meta DEX aggregator. https://cowswap.exchange/. 12 Mar 2021
24. Daian, P., et al.: Flash boys 2.0: frontrunning, transaction reordering, and consen-

sus instability in decentralized exchanges. arXiv preprint arXiv:1904.05234 (2019)
25. Dao — aragon. https://aragon.org/dao. Accessed 04 Jan 2022

http://arxiv.org/abs/2106.01870
https://doi.org/10.1145/3084459
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/3-540-44647-8_13
http://arxiv.org/abs/1807.04938
https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1007/3-540-44647-8_31
https://www.rfc-editor.org/rfc/rfc7539.txt
https://www.rfc-editor.org/rfc/rfc7539.txt
https://chain.link/whitepaper
https://doi.org/10.1007/3-540-45325-3_32
https://cosmos.network/
https://github.com/tendermint/spec/blob/master/rfc/004-abci++.md
https://v1.cosmos.network/sdk
https://cowswap.exchange/
http://arxiv.org/abs/1904.05234
https://aragon.org/dao

FairBlock: Preventing Blockchain Front-Running with Minimal Overheads 269

26. Dixit, P., Gupta, A.K., Trivedi, M.C., Yadav, V.K.: Traditional and hybrid encryp-
tion techniques: a survey. In: Perez, G.M., Mishra, K.K., Tiwari, S., Trivedi, M.C.
(eds.) Networking Communication and Data Knowledge Engineering. LNDECT,
vol. 4, pp. 239–248. Springer, Singapore (2018). https://doi.org/10.1007/978-981-
10-4600-1 22

27. Doweck, Y., Eyal, I.: Multi-party timed commitments (2020)
28. Duan, S., Reiter, M.K., Zhang, H.: Secure causal atomic broadcast, revisited. In:

2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 61–72 (2017). https://doi.org/10.1109/DSN.2017.64

29. Eskandari, S., Moosavi, S., Clark, J.: SoK: transparent dishonesty: front-running
attacks on blockchain. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M.
(eds.) FC 2019. LNCS, vol. 11599, pp. 170–189. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-43725-1 13

30. Ethereum upgrades. https://ethereum.org/en/upgrades/. Accessed 18 Mar 2022
31. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:

28th Annual Symposium on Foundations of Computer Science (SFCS 1987), pp.
427–438 (1987). https://doi.org/10.1109/SFCS.1987.4

32. Ferveo. https://anoma.network/blog/ferveo-a-distributed-key-generation-scheme-
for-front-running-protection/. Accessed 12 Mar 2021

33. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)

34. Groth, J.: Non-interactive distributed key generation and key resharing. Cryptol-
ogy ePrint Archive, Report 2021/339 (2021)

35. Gurkan, K., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.:
Aggregatable distributed key generation. In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, vol. 12696, pp. 147–176. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5 6

36. Halevi, S.: Efficient commitment schemes with bounded sender and unbounded
receiver. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 84–96.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 7

37. Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from
collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
201–215. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 16

38. Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryp-
tography. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
436–453. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-
4 27

39. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine consen-
sus. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
451–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 16

40. Khalil, R., Gervais, A., Felley, G.: TEX - a securely scalable trustless exchange.
IACR Cryptology ePrint Archive, p. 265 (2019)

41. Libert, B., Quisquater, J.-J.: Identity based encryption without redundancy. In:
Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
285–300. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 20

42. Mev-Explore. https://explore.flashbots.net/. Accessed 12 Mar 2021
43. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158

(1991). https://doi.org/10.1007/BF00196774
44. Secret Network: Secret markets: front running prevention for automated mar-

ket makers. https://scrt.network/blog/secret-markets-front-running-prevention.
Accessed 22 June 2022

https://doi.org/10.1007/978-981-10-4600-1_22
https://doi.org/10.1007/978-981-10-4600-1_22
https://doi.org/10.1109/DSN.2017.64
https://doi.org/10.1007/978-3-030-43725-1_13
https://doi.org/10.1007/978-3-030-43725-1_13
https://ethereum.org/en/upgrades/
https://doi.org/10.1109/SFCS.1987.4
https://anoma.network/blog/ferveo-a-distributed-key-generation-scheme-for-front-running-protection/
https://anoma.network/blog/ferveo-a-distributed-key-generation-scheme-for-front-running-protection/
https://doi.org/10.1007/978-3-030-77870-5_6
https://doi.org/10.1007/3-540-44750-4_7
https://doi.org/10.1007/3-540-68697-5_16
https://doi.org/10.1007/978-3-642-15317-4_27
https://doi.org/10.1007/978-3-642-15317-4_27
https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.1007/11496137_20
https://explore.flashbots.net/
https://doi.org/10.1007/BF00196774
https://scrt.network/blog/secret-markets-front-running-prevention

270 P. Momeni et al.

45. Noether, S.: Ring signature confidential transactions for monero. IACR Cryptology
ePrint Archive, p. 1098 (2015)

46. Obadia, A., Salles, A., Sankar, L., Chitra, T., Chellani, V., Daian, P.: Unity is
strength: a formalization of cross-domain maximal extractable value (2021)

47. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

48. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-46416-6 47

49. Protocol, V.: Blockchain derivatives. https://vega.xyz/. Accessed 22 June 2022
50. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: how dark

is the forest? (2021)
51. Reiter, M.K., Birman, K.P.: How to securely replicate services. ACM Trans. Pro-

gramm. Lang. Syst. (TOPLAS) 16(3), 986–1009 (1994)
52. Robinson, D., Konstantopoulos, G.: Ethereum is a dark forest - paradigm. https://

www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest/. Accessed 3 Dec 2021
53. van Schaik, S., Kwong, A., Genkin, D., Yarom, Y.: SGAxe: how SGX fails in

practice (2020)
54. Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: EthDKG: distributed key

generation with ethereum smart contracts. Cryptology ePrint Archive, Report
2019/985 (2019)

55. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://
doi.org/10.1145/359168.359176

56. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

57. Shutter Network. https://shutter.ghost.io/. Accessed 3 Dec 2021
58. Sikka. https://sikka.tech/projects/. Accessed 3 Dec 2021
59. Solana. https://solana.com/. Accessed 18 Mar 2022
60. Stathakopoulou, C., Rüsch, S., Brandenburger, M., Vukolic, M.: Adding fairness

to order: Preventing front-running attacks in BFT protocols using tees (2021)
61. Sushiswap. https://sushi.com/. Accessed 3 Dec 2021
62. Tomescu, A., et al.: Towards scalable threshold cryptosystems. In: 2020 IEEE

Symposium on Security and Privacy (SP), pp. 877–893. IEEE (2020)
63. Tornado Cash. https://tornado.cash/. Accessed 5 Dec 2021
64. Van Bulck, J., et al.: Foreshadow: extracting the keys to the Intel SGX king-

dom with transient out-of-order execution. In: 27th USENIX Security Symposium
(USENIX Security 18), pp. 991–1008 (2018)

65. Veedo. https://github.com/starkware-libs/veedo. Accessed 30 Mar 2022
66. vuvuzela cryptography libraries. https://github.com/vuvuzela/crypto. Accessed 3

Apr 2022
67. Wood, G.: Ethereum: a secure decentralized generalized transaction ledger (2014)
68. Xing, B.C., Shanahan, M., Leslie-Hurd, R.: Intel software guard extensions (Intel

SGX) software support for dynamic memory allocation inside an enclave. In: Pro-
ceedings of the Hardware and Architectural Support for Security and Privacy 2016.
Association for Computing Machinery, New York (2016). https://doi.org/10.1145/
2948618.2954330

69. Zhang, H., Merino, L.H., Estrada-Galinanes, V., Ford, B.: F3B: a low-latency
commit-and-reveal architecture to mitigate blockchain front-running. arXiv
preprint arXiv:2205.08529 (2022)

https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46416-6_47
https://vega.xyz/
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest/
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest/
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-39568-7_5
https://shutter.ghost.io/
https://sikka.tech/projects/
https://solana.com/
https://sushi.com/
https://tornado.cash/
https://github.com/starkware-libs/veedo
https://github.com/vuvuzela/crypto
https://doi.org/10.1145/2948618.2954330
https://doi.org/10.1145/2948618.2954330
http://arxiv.org/abs/2205.08529

FairBlock: Preventing Blockchain Front-Running with Minimal Overheads 271

70. Zhang, Y., Setty, S., Chen, Q., Zhou, L., Alvisi, L.: Byzantine ordered consensus
without byzantine oligarchy. In: 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pp. 633–649. USENIX Association, Novem-
ber 2020

71. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading
on decentralized on-chain exchanges. In: 2021 IEEE Symposium on Security and
Privacy (SP), pp. 428–445 (2021)

Blockchain-Based Ciphertext
Policy-Hiding Access Control Scheme

Ruizhong Du1,2 and Tianhe Zhang1(B)

1 School of Cyber Security and Computer, Hebei University, Baoding 071002, China
ztian73817@gmail.com

2 Hebei Provincial Key Laboratory of High Credibility Information System,

Baoding 071000, China

Abstract. Ciphertext policy attribute encryption(CP-ABE) can real-
ize one-to-many fine-grained access control, which can effectively solve
the security problem of shared data. However, most existing CP-ABE
protocols exhibit a single point of failure and access policy privacy dis-
closure problems. To resolve these issues, a blockchain-based ciphertext
policy-hiding access control scheme is proposed. First, we propose a vec-
tor generation algorithm using vector compression techniques that can
improve the efficiency of our scheme. Then, the privacy policy is pro-
tected by combining CP-ABE and inner product encryption. We then
solve the user attribute revocation problem and single point of failure in
the cloud-based access control models using ethereum. Finally, security
analysis, the theoretical results, and experimental results show that the
proposed solution is secure and efficient.

Keywords: Fine-grained access control · Blockchain · Policy-hiding ·
Inner product encryption

1 Introduction

As an emerging data interaction mode, cloud computing has dramatically trans-
formed people’s way of life, more individual and organizational users store their
data online and share them remotely. People can access and obtain data as they
wish. However, data stored in the cloud may contain private and confidential
information. Thus, an attack or lack of monitoring may cause major accidents,
such as data tampering or privacy leakage [4]. Data encryption is considered to
be an effective method to achieve data security.

CP-ABE [5] can achieve fine-grained access control of user outsourced data
and has higher flexibility and practicability, which has attracted extensive atten-
tion in industry. In CP-ABE, the ciphertext is related to the access policy, and
the decryption key is related to the user’s attributes. The trusted authority gen-
erates encryption-related parameters for the data owner to encrypt and sends
the decryption key to the user. If the user attributes match the access policy,
the user can decrypt the ciphertext to obtain the plaintext.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 272–289, 2023.

https://doi.org/10.1007/978-3-031-25538-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_15&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_15

Blockchain-Based Ciphertext Policy-Hiding Access Control Scheme 273

In many current CP-ABE schemes, the data owner typically uploads
encrypted data to a cloud server. The reliability of data access control thus
depends to a large extent on the cloud server [6,25], and there may be a single
point of failure. The blockchain can solve this problem well and improve the
trustworthiness of the entire system. However, due to blockchain transparency,
deploying access policies directly on the blockchain may reveal users’ private
data. For example, in a distributed access control system, Alice stores her elec-
tronic medical record access control policy in a blockchain. If the policy states
that it can only be accessed by a cardiologist, Based on this access policy, an
attacker can then infer that Alice may have a heart attack without obtaining her
medical records. That is, an attacker could infer Alice’s condition by knowing
the contents of the access policy without accessing the contents of the medical
records. Therefore, preventing malicious users from obtaining private informa-
tion from access policies is a critical issue [21].

Currently, existing policy-hiding CP-ABE schemes have two forms: full
policy-hiding [23] and partial policy-hiding [26]. In CP-ABE schemes with full
policy-hiding, the entire attribute (name and value) is protected. Generally,
full policy-hiding can be implemented by converting the access policy and user
attributes into two vectors. Only when the result of multiplying the transformed
two vectors is zero, the attribute set can satisfy the corresponding access policy.
In this way, sensitive information is hidden by representing the access policy as a
vector. Partial policy-hiding cannot protect all attributes, only attribute values,
but not attribute names. Although full policy-hiding is not as efficient as partial
policy-hiding, it can provide better privacy protection. For privacy-sensitive sys-
tems, any leakage of sensitive information can seriously threaten the data owner.
Therefore, it is necessary to protect the personal information of data owners by
implementing full policy hiding.

To resolve these issues, this study proposes a blockchain-based ciphertext
policy-hiding scheme that achieves distributed fine-grained access control and
protects the privacy of access policy. The main research contents of this study
are as follows:

– We propose an efficient vector generation algorithm using vector compres-
sion techniques. Using ABE and inner product operation, we design a CP-
ABE scheme with full policy hiding that can avoid leaking privacy-sensitive
attribute information. Also, the proposed scheme performs constant bilinear
pairing operations during decryption.

– We use the interplanetary file system to store encrypted information and store
the ciphertext hash address using smart contracts. The storage overhead of
the blockchain is reduced while achieving distributed and trustworthy access
control. Revocation contract protects the private key from abuse.

– The security is demonstrated based on its application to difficult problems,
and the performance is analyzed and explained via simulations, which verify
the effectiveness of the scheme.

274 R. Du and T. Zhang

2 Related Works

2.1 Blockchain-Based Access Control Scheme

Saini et al. [20] built a distributed access system to achieve the goal of being
patient-centric and accessible to medical records, which stored encrypted data
on cloud servers, reducing the storage overhead of blockchain, but its scheme has
scalability and performance problems. Zhang et al. [30] combine ethereum and
traditional access control schemes and proposes a scheme to realize distributed
access control through smart contract interaction. Their framework includes a
policy management contract, two attribute management contracts, and an access
contract for executing access control. Due to the openness and transparency of
the blockchain, this scheme has the risk of attribute leakage. Ding et al. [9]
proposed a scheme for the Internet of Things and used blockchain technology to
simplify the access control process. The attributes of IoT devices are uploaded
to the blockchain through transactions, and data access is allowed when the
attributes meet the conditions of the access policy. Wang et al. [22] proposed a
fine-grained access control framework based on blockchain. However, this scheme
has the problems of access policy privacy leakage and poor scalability. Gao et al.
[11] proposed an attribute hiding scheme based on blockchain and inner product
encryption. The performance of this scheme degrades with increasing attributes
in the system. Also, the scheme is constructed based on composite order bilinear
groups (COBG), and the computational cost is relatively high.

Thus, these solutions primarily concentrates on enhancing the reliability and
automation of the system, and there are some problems in terms of efficiency,
scalability and user privacy.

2.2 Traditional Encryption Scheme

Phuong et al. [18] proposed an algorithm that uses Viete’s formula and inner
product encryption to achieve full policy hiding, but this scheme is less efficient.
Subsequently, a series of policy hiding schemes [7,14] based on this algorithm
appeared, despite some performance issues. Gan et al. [10] proposed a partial
policy hiding scheme based on prime order bilinear groups, and added a decryp-
tion test algorithm in the system, which reduced the decryption overhead within
a certain range, but the efficiency of the scheme was still low. Lai et al. [15]
proposed a scheme to protect policy privacy, which only supports partial policy
hiding. In addition, the decryption efficiency is low because the larger the access
policy, the more the number of bilinear pairings. Based on [15], Zhang et al. [29]
built a novel privacy protection scheme. Although this scheme can protect users’
attribute privacy, its decryption overhead is still large. Liu et al. [17] built a mul-
tiauthorization outsourced scheme to solve the problem of complex decryption
and key leakage, which achieves full policy hiding and has traceability. However,
this scheme exhibits both attribute and user revocations. Hao et al. [12] pro-
posed an efficient full policy-hiding scheme using Bloom filters, but their scheme
cannot defend against attribute guessing attacks [31]. Zhang et al. [28] designed

Blockchain-Based Ciphertext Policy-Hiding Access Control Scheme 275

a scheme to resist attribute guessing attacks based on the linear secret sharing
scheme, but its decryption algorithm is inefficient, and resource consumption on
IoT devices is large. Hu et al. [13] constructed a highly efficient policy hiding
scheme to protect privacy, but their study only supports partial policy hiding
and cannot perform attribute revocation. Xiong et al. [24] achieved partial pol-
icy hiding using the linear secret sharing scheme. However, its scheme has many
exponentiation operations and pairing processes during the execution of the sys-
tem, which results in low efficiency. There are also some policy hiding schemes
based on COBG [16,19,27], whose efficiency is low.

Thus, traditional encryption schemes have many disadvantages, such as inef-
ficiency, privacy leakage and attribute revocation. So we propose a blockchain-
based ciphertext policy-hiding access control scheme to avoid these problems.
While protecting user privacy, this scheme overcomes the problems of attribute
revocation and inefficiency.

3 Preliminaries

3.1 Bilinear Operation

We let G1, G2 and GT be three cyclic groups of prime order p, where G1 �= G2,
and there are no efficiently computable homomorphisms between G1 and G2. e:
G1 × G2 → GT is considered to be an asymmetric bilinear operation if

– For all g ∈ G1, h ∈ G2, and a, b ∈ Z
∗
p, e

(
ga, hb

)
= e(g, h)ab.

– e(g, h) �= 1.
– e(g, h) for all g ∈ G1 and h ∈ G2 can be calculated efficiently.

3.2 Complexity Assumption

Asymmetric Decisional Bilinear Diffie-Hellman Problem (DBDH).
There are the following two distributions, where g ∈ G1, h ∈ G2, a, b, c ∈ Z

∗
p

and T ∈ GT are all randomly generated.

−PA :=
(
g, ga, gc, h, ha, hb, e(g, h)abc

) ∈ G
3
1 × G

3
2 × GT

−RA :=
(
g, ga, gc, h, ha, hb, T

) ∈ G
3
1 × G

3
2 × GT

AdvDBDH
A is the advantage of algorithm A to distinguish the following two

distributions. Specifically as follows:

AdvDBDH
A = |Pr[A(D) = 1] − Pr[A(R) = 1]|,

D and R are selected from PA and RA, respectively.
An algorithm B has advantage AdvDBDH

A = ε in solving the DBDH problem
if:

| Pr
[B (

g, ga, gc, h, ha, hb, e(g, h)abc
)

= 0
]

− Pr
[B (

g, ga, gc, h, ha, hb, T
)

= 0
] |≥ ε

276 R. Du and T. Zhang

where the probability is above the random choice of generators g ∈ G1 and
h ∈ G2, exponents a, b, c ∈ Z

∗
p, T ∈ GT and the random bits used by B.

Definition 1. If for any PPT algorithms A, the function AdvDBDH
A (λ) is a

negligible function of λ, we consider the DBDH to hold for G, where G is a
bilinear group generator.

To justify the security of the access policy, another assumption needs to be
introduced.

P-Asymmetric Decisional Bilinear Diffie-Hellman Problem (P-
DBDH)

The following two distributions are similar to those in the DBDH assump-
tion, with the difference that T ∈ G1 instead of T ∈ GT .

−DN :=
(
g, ga, gab, gc, h, ha, hb, gabc

) ∈ G
4
1 × G

3
2 × G1

−DR :=
(
g, ga, gab, gc, h, ha, hb, T

) ∈ G
4
1 × G

3
2 × G1

AdvP−DBDH
A is the advantage of algorithm A to distinguish the following

two distributions. Specifically as follows:

AdvP−DBDH
A = |Pr[A(N) = 1] − Pr[A(P) = 1]|

N and P are selected from DN and DR, respectively.
An algorithm B has advantage AdvP−DBDH

A = εP in solving the P −DBDH
problem if:

| Pr
[B (

g, ga, gab, gc, h, ha, hb, gabc
)

= 0
]

− Pr
[B (

g, ga, gab, gc, h, ha, hb, T
)

= 0
] |≥ εP

where the probability is above the random choice of generators g ∈ G1 and
h ∈ G2, exponents a, b, c ∈ Z

∗
p, T ∈ G1 and the random bits used by B.

Definition 2. If for any PPT algorithms A, the function AdvP−DBDH
A (λ) is a

negligible function of λ, we consider the P − DBDH to hold for G, where G is
a bilinear group generator.

3.3 Access Structure

We let U = {U1, U2, · · · , UL} be attributes, Uk ∈ {“+”,“−”}; let P =
{P1, P2, · · · , PL} be an access policy, Pk ∈ {“+”, “−”, “*”}, where k ∈
{1, 2, · · · , L}. The wildcard “∗′′ means that both “+′′ and “−” are accepted.
For example:

We assume that U = {U1 = AI,U2 = CE,U3 = Faulty, U4 = Student},
where “AI” and “CE” represent artificial intelligence and communications engi-
neering, respectively. Anna is an AI faculty member, and Bell is a CE student.
P1 can be matched by all CE faculties without being in the AI, and P2 can be
matched by all AI faculty members and students, excluding those in the CE.
User attributes and access policies are shown in Table 1.

Blockchain-Based Ciphertext Policy-Hiding Access Control Scheme 277

Table 1. User attributes and access policies

Attribute A1 A2 A3 A4

Description AI CE Faculty Student

Anna + − + −
Bell − + − +

P1 − + + −
p2 + − ∗ ∗

3.4 Viete’s Formulas

There are two vectors p = (p1, p2, · · · pl) and u = (u1, u2, · · · ul). Vector p contains
positive signs, negative signs and wildcards, and vector u only contains positive
signs and negative signs. The set of positions I = {i1, . . . , in} ⊆ {1, 2, · · · l}
represents the positions of the wildcards in the vector p.

If there is a one-to-one correspondence between the attributes of the user
and the attributes contained in the access policy, then ((pi = ui) ∨ (pi = ∗)),
i ∈ [1, l], converted into mathematical form as shown in (1):

l∑

i=1,i∈I

pi
∏

kw∈I

(i − kw) =
L∑

i=1

ui

∏

kw∈I

(i − kw) (1)

We let
∏

kw∈I (i − kw) =
∑n

j=1 aji
j . So Eq. 2 can be obtained as follows:

l∑

i=1,i∈I

pi
∏

kw∈I

(i − kw) =
n∑

j=0

aj

L∑

i=1

uii
j (2)

Then we choose a random number Bi to hide the information in Eq. (2) and
put pi, ui as the exponents of Bi. Thus, we can obtain the following formula:

L∏

i=1,i/∈I

B
pi

∏(i−k)
k=I

i =
n∏

j=0

(
l∏

i=1

Buii
j

i

)aj

(3)

According to Viete’s formulas, the coefficients aj in Eq. (2) can be represented
by kw:

an−j = (−1)j
∑

1≤i1≤i2≤...<ij≤n

kiki2 · · · kij , 0 ≤ j ≤ n = |I| (4)

For example, if we have I = {3, 4}, then we can get (x − 3)(x− 4), and
a2 = 1, a1 = −(3 + 4) = −7, a0 = 3 ∗ 4 = 12.

4 System Overview

4.1 System Model

The system model built in this study is illustrated in Fig. 1. The model includes
five entities: the data owner (DO), data user (DU), consensus nodes (CN),

278 R. Du and T. Zhang

Fig. 1. System model

blockchain (BC) and interplanetary file system (IPFS). We suppose that com-
munication between any two of the five entities is secure In this system, the
access control workflow can be divided into a preparation phase (0a-0e) and an
execution phase (1–3). The preparation phase primarily involves the distribution
of keys, the deployment of contracts and the upload of ciphertext information.
The execution phase mainly judges the access request.
Preparation Phase: First, the DU registers, and CN generate relevant param-
eters and deploy the revocation contract. DO encrypts the message M on the
basis of the public key and access policy and stores the ciphertext on IPFS. After
that, DO deploys the authorization contract and stores the ciphertext related
information on the blockchain through transactions.
Execution Phase: First, the DU generates access information according to
their own needs and send them to DO. After verifying the identity of the DU,
the DO sends the ciphertext-related information to the DU. Du decrypts the
ciphertext after performing the integrity check on the ciphertext.
DO: A DO specifies with which attributes users can access their own data and
encrypt the data, after which the encrypted data are uploaded to the IPFS, and
its hash address is kept on Ethereum through the authorization contract.
DU: A DU generates access information according to their own needs and send
them to DO, obtains the ciphertext address after passing the verification of the
authorization contract, and then decrypts the ciphertext.
CN: We displace the trusted authority in the traditional encryption system with
a set of pre-defined trusted consensus nodes, which are responsible for generating
system parameters and deploying revocation contracts.

Blockchain-Based Ciphertext Policy-Hiding Access Control Scheme 279

BC: A BC includes the authorization contract and the revocation contract. The
revocation contract is responsible for revoking retired or resigned users, and the
authorization contract is responsible for the release of ciphertext information
and the judgment of access requests.
IPFS: A IPFS is a distributed system that stores ciphertexts and returns hashed
addresses.

4.2 Security Model

We now define selective IND-CPA security for CP-ABE with hidden access pol-
icy. The solution in this paper needs to implement IND-CPA security and access
policy security. This paper proves IND-CPA security by using DBDH assump-
tion, and proves the security of access policy by P − DBDH assumption. We
define the following security game Γw for our scheme.

– Initialization. Adversary A outputs two challenge vectors p0 and p1 to chal-
lenger B.

– Setup. B runs the Setup (λ, n) algorithm and gives a public key PK to A.
– Phase 1: A may adaptively make a polynomial number of queries to create

a secret key for the attribute u subject to the restrictions that 〈p0, u〉 �= 0
and 〈p1, u〉 �= 0.B generates a secret key and inform A of it.

– Challenge: A outputs challenge messages M0, and M1. B chooses a random
bit w. A given CT ← Encrypt (PP,Mw, pw).

– Phase 2: Same as Phase 1.
– Guess: A outputs a bit w′ ∈ {0, 1} for B and wins the game if w′ = w. Thus,

we define the advantage A as:

AdvAIND−sPH−CPA(λ) =
∣
∣
∣
∣Pr [w′ = w] − 1

2

∣
∣
∣
∣

We say that the scheme is selective IND-CPA secure and policy-hiding if
AdvAIND−sPH−CPA(λ) is negligible.

4.3 Attribute Vector and Policy Vector Generation Algorithms

A policy vector and attribute vector generation algorithm is proposed in [18], but
the algorithm must generate three vectors: (one policy vector and two attribute
vectors), markedly increasing the computational cost of this scheme. Based on
[18], We propose an algorithm using vector fusion technology, which only needs
to generate an attribute vector and a policy vector, and the algorithm is also
applicable to other wildcard-based access structures. Since our vector generation
algorithm generates fewer vectors, fewer policy matches are performed during the
system execution phase, so it is more efficient. Specifically, this algorithm can
be described as follows:

280 R. Du and T. Zhang

Algorithm 1. Vector Generation Algorithm
Input: An attribute set U = {U1, U2, · · · , UL} and a policy set P =

{P1, P2, · · · , PL}.
Output: A policy vector and an attribute vector.
(1): Positive, negative and wildcard symbols in an access structure are first

separated into three position sets J, K and I;
(2): while kw ∈ I do
(3): Expand

∏
kw∈I (i − kw) =

∑n
j=0 aji

j to derive coefficients aj

(4): for kw ∈ I and i ∈ J do
(5): Compute

∏
J = +

∑
i∈J

∏
kw∈I (i − kw)

(6): for kw ∈ I and i ∈ K do
(7): Compute

∏
K = +

∑
i∈K

∏
kw∈I (i − kw)

(8): Compute Π = ΠJ + ΠK

(9): end for
(10): Positive and negative symbols in a user attribute set are also separated

into two position sets J ′ and K ′;
(11): for i = 1 to l and i ∈ J ′ do
(12): Compute uj = +

∑
i∈J ′ ij

(13): for i = 1 to l and i ∈ K ′ do
(14): Compute u′

j = +
∑

i∈K′ ij ;
(15): Compute u = uj + u′

j

(16): Return policy vector −→p = (a0, a1, · · · , an, 0n+1, · · · , 0l,Π), att-ribute
vector −→u = (u0, u1, · · · , ul,−1)

For instance, as shown in Table 1, p2 = (+,−, ∗, ∗) for the set of wildcard
positions I = {3, 4}, the set of positive positions J = {1} and the set of negative
positions K = {2}. Based on Viete’s formulas, we can obtain:

a2 = 1; a1 = −7, a0 = 12

Therefore, the policy vector can be obtained as shown in Table 2.

Table 2. Policy vector

0 1 2 3

p2 12 −7 1 (1 − 3)(1 − 4) + (2 − 3)(2 − 4)

Andy’s attribute set uAndy = (+,−,+,−). The set of positive positions J ′ =
{1, 3} and the set of negative positions K ′ = {2, 4}. Therefore, the attribute
vector can be obtained as shown in Table 3.

Then, we can calculate p2 ·uAndy = 12×4−7×10+1×30−8 = 0. Therefore,
Andy’s attributes satisfy the access policy p2.

4.4 Smart Contract Design

In our system, smart contracts mainly include authorization contracts and revo-
cation contracts, as follows:

Blockchain-Based Ciphertext Policy-Hiding Access Control Scheme 281

Table 3. Attribute vector

0 1 2

+ 10 + 30 11 + 31 12 + 32

− 20 + 40 21 + 41 22 + 42

uAndy 4 10 30

(1) Revocation Contract: This contract is deployed by CN and is responsible
for managing users who have left or retired in the system. It mainly includes the
following functions:

updateAssert(): This function is responsible for updating the revocation list,
and putting resigned or retired users into the revocation list.

getAssert(): This function returns true or false to determine whether the user
has been revoked.

(2) Authorization Contract: This contract is deployed by DO and is responsi-
ble for storing ciphertext-related information. When DU sends an access request,
it calls the revocation contract to check the identity of DU, so as to determine
whether to send ciphertext-related information. It mainly includes the following
functions:

initStorage(): This function is responsible for storing ciphertext related infor-
mation.

judge(): In the access control phase, this function calls the getAssert() func-
tion in the revocation contract, and decides whether to send the ciphertext
information according to the result.

4.5 Our Construction

Our solution consists of the following six procedures:
Setup(λ, n): The algorithm generates relevant parameters for the system and
is executed by the CN. Given a security parameter λ and n attributes, CN pick
random values (z, a0, a1, . . . , an) ∈ (

Z
∗
p

)n+2 and set them as follows:

g1 = ga1 , . . . , gn = gan , g0 = gz, h1 = ha1 , . . . , hn = han , h0 = ha0

The MSK and the PP are given by:

MSK = (h, h0, h1, · · · , hn) ,

PP = (g, g0, g1, · · · , gn, e (g, h0))

KeyGen(PP, MSK, u): The algorithm generates decryption key for DU and is
done by CN, which randomly chooses R ∈ Z

∗
p, and based on public parameters,

master key and attribute vector u. The CN then generate sku = (sk1, sk2, u) as:

sk1 = h0

n∏

i=1

huiR
i , sk2 = hR

282 R. Du and T. Zhang

Encrypt(PP, p, M): The algorithm is performed by the DO. Relying on PP and
access policy p, the DO selects a random s ∈ Z

∗
p and generates the encrypted

message CT = (c0, c1, c2,1, · · · , c2,n) as below:

c0 = M · e (g, h0)
s
, c1 = gs, c2,i = gpis

0 gsi for 1 ≤ i ≤ n.

On-blockchain: This algorithm is also performed by the DO, which stores
ciphertext-related information on the blockchain through the authorization con-
tract:

Tx = (idT , storeAddress, sign)

where idT is the identifier; and storeAddress is the hash address of the cipher-
text. Because IPFS is based on content addressing, it is also the ciphertext
integrity check code. After obtaining the ciphertext, the user can use it to per-
form an integrity check first and then decrypt it. sign is the digital signature.
DU can judge whether the encrypted data is what they want based on the digital
signature.
Decrypt(sku , CT): This algorithm is implemented by the DU, which obtains
ciphertext-related information after passing the verification of the authoriza-
tion contract. The DU first verifies the digital signature of the DO; obtains the
ciphertext and verifies its integrity; and finally recovers message M if the user
attributes meet the attributes specified by the data owner. We can obtain the
plaintext information M by the following calculation:

M = e (c1, sk1)
−1 · e

(
n∏

i=1

(c2,i)
ui , sk2

)

· c0 = M · e(g, h)zsR〈p,u〉

If 〈p, u〉 = 0, then we get M .
Revocation: We now assume that the DU1 no longer has attribute u1. Because
DU1 has asked for and obtained sku1 , it is able to obtain message M encrypted
under access policy p1.

To solve this problem, CN map user addresses to true and false through the
mapping type in Solidity. Specifically, as follows:

mapping(address => bool) public identify

if DU1 has the attribute u1.

identify[userAddress] => true

otherwise:
identify[userAddress] => false

When the DU1 accesses the message, the authorization contract can deter-
mine whether to send ciphertext information through the key value correspond-
ing to the user’s address.

Blockchain-Based Ciphertext Policy-Hiding Access Control Scheme 283

5 Security Proof

5.1 Security Analysis of Blockchain Operations

Trustability: Many current schemes introduce a central entity to generate rele-
vant parameters in the system, but when this central entity fails, the entire sys-
tem will be paralyzed. We ensure the trust of access control by storing ciphertext
addresses on the blockchain. During the access authorization stage, each DU is
verified by the authorization contract, achieving trusted authorization with less
human intervention.
Privacy: Most of the existing methods directly store the access policy on the
blockchain, from which attackers can easily obtain DO information. To pro-
tect privacy, it is quite important to protect the access structure. The pro-
posed scheme can hide access policies through vector representations. Data are
encrypted and stored on an IPFS, and its hash address is kept on Ethereum,
which ensures that malicious users cannot obtain sensitive data and also
decreases the cost of saving data in Ethereum.
Integrity: We store the ciphertext hash address on the blockchain through
smart contracts, which improves system scalability. However, after the DO saves
the ciphertext address on Ethereum, it is still possible to change the ciphertext
content. In order to ensure that DU can obtain the latest information, we save
the ciphertext hash value on the blockchain through a smart contract for users
to check the integrity of the ciphertext content. Also, storing the ciphertext hash
address on the blockchain avoids a situation where the DO refuses to provide
their personal data, ensuring that any unrevoked user will have access to the.
Traceability: Because our scheme is based on blockchain, any authorization
information will be recorded as an immutable access transaction, making the
proposed scheme traceable.

5.2 Security Analysis of Scheme

Theorem 1. If the DBDH assumption and the P − DBDH assumption hold,
then any PPT attacker cannot selectively get plaintext information and access
policy information.

The detailed security proof of Theorem 1 is omitted to conserve space. Please
contact the author to obtain it.

6 Comparisons and Performance Analysis

6.1 Implementation Details

In order to verify the practical feasibility of the proposed method, we finished the
proposed scheme in JAVA using the JPBC Library 2.0.0 [8]. Experiments were
implemented on a computer with 8 GB RAM and an Intel i5-9400 2.90 GHz CPU.
We used Type-A pairing, which is constructed by elliptic curve y2 = x3 + x. We

284 R. Du and T. Zhang

utilised Remix-Solidity IDE [2] to edit and compile the authorization contract
and the revocation contract, and then used Ropsten [3] as the test network. After
we have written the smart contract on the Remix-Solidity IDE, we will deploy
the smart contract on the Ropsten test network through Metamask [1], Ropsten
and Ethereum have the same consensus mechanism.

6.2 Comparison of Functional Characteristics

In this part, we compare our scheme with the proposed existing methods, which
are shown in Table 4. We primarily compare the access revocation, type of hiding
and other performance features. Comparative results illustrate that our scheme
has certain advantages in different properties. As shown in Table 4, the scheme
in this paper and the method in reference [7,11,14] achieve full policy hiding,
whereas other schemes [10,13,15,24,28,29] only achieve partial policy hiding.
Also, in these schemes that achieve full policy hiding, only the proposed scheme
and the scheme [11] are based on blockchain. However, scheme [11] is constructed
based on COBG, and in the plaintext recovery stage, the more attributes of the
user, the lower the decryption efficiency. Additionally, only the scheme in this
paper and the method in reference [7,14] are wildcard constructions. Among
these wildcard-based schemes, only our method is implemented using asymmetric
pairing and supports access revocation.

Table 4. Properties comparison

Scheme Type of hiding Asymmetric pairing Wildcard Blockchain Access revocation

[15] Partially hidden � × × ×
[29] Partially hidden � × × ×
[24] Partially hidden × × × ×
[13] Partially hidden × × × �
[11] Fully hidden × × � ×
[14] Fully hidden × � × ×
[7] Fully hidden × � × ×
[10] Partially hidden × × × ×
[28] Partially hidden × × × �

Our scheme Fully hidden � � � �

6.3 Deployment Cost and Operating Cost

Some energy must be expended to deploy smart contracts on Ethereum and
run some functions in the smart contract. Ethereum uses a unit called “gas” to
describe how much energy it takes to perform an operation, such as deploying
a smart contract or run some functions. The more complex the task, the more
gas it consumes.

Blockchain-Based Ciphertext Policy-Hiding Access Control Scheme 285

Table 5 shows the gas paid for some operations. We can see that deploying
the contract costs relatively more, while executing some ABIs cost relatively
little. Please note that since the Ropsten test network is used in the scheme,
the gas values obtained are only experimental values and cannot represent the
real situation. In a real system, we can reduce gas values by using a consensus
mechanism with high consensus efficiency.

Table 5. Gas cost for some operations

Blockchain operation Gas

Deploy the authorization contract 286352

Deploy the revocation contract 288549

Access revocation 29394

Upload ciphertext information 25984

Table 6. Notations for comparison

Notation Description

|Gi| Length of element in G1, G2 and GT

|Zp| Length of element in Zp

Ei Exponentiation in G1, G2 and GT

P Pairing computation

l The number of rows of the LSSS

s The number of attributes of DU

c The number of the attribute categories

ω The number of wildcards

W All minimal rowsets

k The size of W

6.4 Theoretical Results

We now consider comparing the storage and computational costs of some of the
studies in Table 4 that are more relevant to the content of this paper with the
solution in this paper. Table 7 is the storage cost, and Table 8 is the computation
cost. Related notations are described in Table 6. We compare the PK, CT and
SK sizes of these schemes in Table 7. Table 7 shows that the PK length in [28]
is the shortest; compared to [7], the proposed protocol achieves a shorter PK.
The storage costs of [7] and the proposed method depend on the number of
wildcards in the policy made by DO, which typically requires a shorter storage
overhead than [10,13,28]. Obviously, the storage overhead of the three aspects of
the scheme in this paper is smaller than [7]. Therefore, the storage cost required
by the proposed scheme is minimal.

286 R. Du and T. Zhang

In Table 8, encryption time, secret key generation time and decryption time
in schemes [10,13,28] are all related to the number of user attributes. The more
attributes, the greater the computational overhead. The computational costs of
[7] and the scheme of this paper are only related to the number of wildcards.
In real systems, the number of wildcards will generally be significantly less than
the number of user attributes, especially in attribute-sensitive systems. During
decryption, pairing operations in these schemes increase with the number of
attributes or wildcards, resulting in a long decryption time and a large compu-
tational cost for the decryption algorithms. The number of pairing calculations
for the scheme in this paper is certain in the decryption phase and is thus more
efficient. As a result, compared with other schemes in the table, the scheme in
this paper has the highest efficiency.

Table 7. Storage cost

Scheme Size of PK Size of CT Size of SK

[13] 7|G1| + |GT | (5l + 2)|G1| + 2|GT | (4s + 2)|G1|
[10] 5|G1| + |GT | (s + 2)|G1| (15l + 10)|G1| + 2|GT |
[28] 4|G1| + |GT | (c + 3)|G1| (4l + 2)|G1| + 2|GT |
[7] (ω + 5) |G1| + |GT | (ω + 4)|G1| + |GT | (ω + 4)|G1|

Ours (ω + 2) |G1| + |GT | (ω + 1)|G1| + |GT | 2|G1| + ω|Zp|

Table 8. Computational cost

Scheme Computation cost of Enc Computation cost of SK Computation cost of Dec

[13] (8l + 3)E1 + 2ET (7c + 3)E1 2kET + (3k + 1)P

[10] (30s + 15)E1 + 2ET (2s + 3)E1 10sE1 + sET + (10s + 15)P

[28] (6l + 2)E1 + 2ET (c + 3)E1 (k + l)ET + 2(k + l + 1)P

[7] (ω + 5) E1 + ET (ω + 4)E1 (ω + 4)P

Ours (2ω + 1) E1 + ET (ω + 1)E1 ωE1 + 2P

6.5 Experimental Results

Because the proposed scheme uses blockchain, its efficiency is restricted by
the blockchain. In the proposed scheme, we store the ciphertext address on
Ethereum to reduce the cost of storing the entire ciphertext on the blockchain
and to improve system scalability. The efficiency of computing on the blockchain
depends on the consensus algorithm it uses. The blockchain with high consensus
algorithm efficiency will execute faster. Thus, we primarily focus on the efficiency
of encryption algorithms and decryption algorithms, only comparing the met-
rics of our scheme with those of the schemes proposed in [7,10,28]. To facilitate

Blockchain-Based Ciphertext Policy-Hiding Access Control Scheme 287

display on the coordinate graph, we use attributes to describe the abscissa and
evaluate the worst-case efficiency of the proposed scheme. Comparative results
are shown in Figs. 2 and 3. The experimental data is the average of 20 runs on
the computer.

In the encryption stage, the comparison result of the calculation cost between
our study and other schemes is shown in Fig. 2. Obviously, the encryption time
of the proposed scheme and other schemes is related to the number of attributes.
The more attributes, the longer the encryption time. In terms of encryption effi-
ciency, the encryption efficiency of the proposed scheme is much higher than that
of scheme [10,28] and slightly lower than that of scheme [7], but the encryption
time cost of our study and scheme [7] is not much different, and the growth rate
of encryption time is basically the same.

It can be seen from the Fig. 3 that although the decryption time of each
scheme increases with the increase of the number of user attributes, compared
with the schemes in [7,10,28], the proposed scheme has a lower growth rate and
the efficiency of this scheme is also the highest. Especially when the number of
attributes in the system is large, the user decryption experience in the proposed
scheme is the best. Due to the large computational cost of pairing operation,
and the pairing operation in this paper is fixed, the scheme in this paper has
high efficiency in the decryption stage.

Fig. 2. Ciphertext generation stage Fig. 3. Decryption phase

7 Conclusions

In this study, we built a blockchain-based ciphertext policy hiding access control
scheme, which achieves distributed and reliable access control, and ensures user
privacy and security. In addition, we use the revocation function by maintaining
a revocation list through smart contracts, which protects users’ private keys from
abuse. Theoretical analysis and procedural data show that the our study is safe
and effective. Because the efficiencies of operations using blockchain primarily
depend on the consensus algorithm, we plan to consider using Ethereum 2.0 to
implement the proposed scheme in future work to improve system throughput.

288 R. Du and T. Zhang

References

1. Metamask (2022). https://metamask.io
2. Remix ide for Ethereum smart contract programming (2022). https://remix.

ethereum.org
3. Ropsten Testnet Explorer (2022). https://ropsten.etherscan.io
4. Bertrand, Y., Boudaoud, K., Riveill, M.: What do you think about your company’s

leaks? A survey on end-users perception toward data leakage mechanisms. Front.
Big Data, 38 (2020). https://doi.org/10.3389/fdata.2020.568257

5. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334.
IEEE (2007)

6. Butun, I., Österberg, P.: A review of distributed access control for blockchain
systems towards securing the internet of things. IEEE Access 9, 5428–5441 (2020)

7. Chen, Y., et al.: Efficient attribute-based data sharing scheme with hidden access
structures. Comput. J. 62(12), 1748–1760 (2019)

8. De Caro, A., Iovino, V.: jPBC: Java pairing based cryptography. In: 2011 IEEE
Symposium on Computers and Communications (ISCC), pp. 850–855. IEEE (2011)

9. Ding, S., Cao, J., Li, C., Fan, K., Li, H.: A novel attribute-based access control
scheme using blockchain for IoT. IEEE Access 7, 38431–38441 (2019)

10. Gan, T., Liao, Y., Liang, Y., Zhou, Z., Zhang, G.: Partial policy hiding attribute-
based encryption in vehicular fog computing (2021)

11. Gao, S., Piao, G., Zhu, J., Ma, X., Ma, J.: TrustAccess: a trustworthy secure
ciphertext-policy and attribute hiding access control scheme based on blockchain.
IEEE Trans. Veh. Technol. 69(6), 5784–5798 (2020)

12. Hao, J., Huang, C., Ni, J., Rong, H., Xian, M., Shen, X.S.: Fine-grained data access
control with attribute-hiding policy for cloud-based IoT. Comput. Netw. 153, 1–10
(2019)

13. Hu, G., Zhang, L., Mu, Y., Gao, X.: An expressive “test-decrypt-verify” attribute-
based encryption scheme with hidden policy for smart medical cloud. IEEE Syst.
J. 15(1), 365–376 (2020)

14. Jin, C., Feng, X., Shen, Q.: Fully secure hidden ciphertext policy attribute-based
encryption with short ciphertext size. In: Proceedings of the 6th International
Conference on Communication and Network Security, pp. 91–98 (2016)

15. Lai, J., Deng, R.H., Li, Y.: Expressive CP-ABE with partially hidden access struc-
tures. In: Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security, pp. 18–19 (2012)

16. Li, Q., Zhang, Y., Zhang, T., Huang, H., He, Y., Xiong, J.: HTAC: fine-grained
policy-hiding and traceable access control in mHealth. IEEE Access 8, 123430–
123439 (2020)

17. Liu, S., Yu, J., Hu, C., Li, M.: Traceable multiauthority attribute-based encryption
with outsourced decryption and hidden policy for CIoT. Wirel. Commun. Mob.
Comput. 2021, 16 (2021)

18. Phuong, T.V.X., Yang, G., Susilo, W.: Hidden ciphertext policy attribute-based
encryption under standard assumptions. IEEE Trans. Inf. Forensics Secur. 11(1),
35–45 (2015)

19. Rana, S., Mishra, D.: Efficient and secure attribute based access control architec-
ture for smart healthcare. J. Med. Syst. 44(5), 1–11 (2020)

20. Saini, A., Zhu, Q., Singh, N., Xiang, Y., Gao, L., Zhang, Y.: A smart-contract-
based access control framework for cloud smart healthcare system. IEEE Internet
Things J. 8(7), 5914–5925 (2020)

https://metamask.io
https://remix.ethereum.org
https://remix.ethereum.org
https://ropsten.etherscan.io
https://doi.org/10.3389/fdata.2020.568257

Blockchain-Based Ciphertext Policy-Hiding Access Control Scheme 289

21. Shafeeq, S., Alam, M., Khan, A.: Privacy aware decentralized access control system.
Futur. Gener. Comput. Syst. 101, 420–433 (2019)

22. Wang, S., Zhang, Y., Zhang, Y.: A blockchain-based framework for data sharing
with fine-grained access control in decentralized storage systems. IEEE Access 6,
38437–38450 (2018)

23. Xiong, H., Yang, M., Yao, T., Chen, J., Kumari, S.: Efficient unbounded fully
attribute hiding inner product encryption in cloud-aided WBANs. IEEE Syst. J.
16, 5424–5432 (2021)

24. Xiong, H., Zhao, Y., Peng, L., Zhang, H., Yeh, K.H.: Partially policy-hidden
attribute-based broadcast encryption with secure delegation in edge computing.
Futur. Gener. Comput. Syst. 97, 453–461 (2019)

25. Xu, G., Li, H., Dai, Y., Yang, K., Lin, X.: Enabling efficient and geometric range
query with access control over encrypted spatial data. IEEE Trans. Inf. Forensics
Secur. 14(4), 870–885 (2018)

26. Yan, X., He, G., Yu, J., Tang, Y., Zhao, M.: Offline/online outsourced attribute-
based encryption with partial policy hidden for the internet of things. J. Sens.
2020 (2020)

27. Zeng, P., Zhang, Z., Lu, R., Choo, K.K.R.: Efficient policy-hiding and large universe
attribute-based encryption with public traceability for internet of medical things.
IEEE Internet Things J. 8(13), 10963–10972 (2021)

28. Zhang, W., Zhang, Z., Xiong, H., Qin, Z.: PHAS-HEKR-CP-ABE: partially policy-
hidden CP-ABE with highly efficient key revocation in cloud data sharing system.
J. Ambient Intell. Human. Comput. 13, 1–15 (2021)

29. Zhang, Y., Zheng, D., Deng, R.H.: Security and privacy in smart health: efficient
policy-hiding attribute-based access control. IEEE Internet Things J. 5(3), 2130–
2145 (2018)

30. Zhang, Y., Yutaka, M., Sasabe, M., Kasahara, S.: Attribute-based access control
for smart cities: a smart-contract-driven framework. IEEE Internet Things J. 8(8),
6372–6384 (2020)

31. Zhang, Z., Zhang, W., Qin, Z.: A partially hidden policy CP-ABE scheme against
attribute values guessing attacks with online privacy-protective decryption testing
in IoT assisted cloud computing. Futur. Gener. Comput. Syst. 123, 181–195 (2021)

Granting Access Privileges Using OpenID
Connect in Permissioned Distributed

Ledgers

Shohei Kakei1(B) , Yoshiaki Shiraishi2 , and Shoichi Saito1

1 Nagoya Institute of Technology, Nagoya, Aichi, Japan
kakei.shohei@nitech.ac.jp

2 Kobe University, Kobe, Hyogo, Japan

Abstract. Permissioned distributed ledger technology (DLT), in which
only authenticated entities participate, assumes trust among the partici-
pants and implicit consent for data manipulation. In light of international
regulations such as the GDPR, it is necessary to clarify the access privi-
leges of user data, even for systems that assume the trust of the partici-
pants. In this paper, we propose an access privilege granting method for
service providers that need to access user data in permissioned DLT sys-
tems. The proposed method separates the access privilege for user data
in the distributed ledger from the execution privilege for smart contracts.
By requesting a user to grant the access privilege, the participants can
manipulate user data using smart contracts. The access privilege is rep-
resented by a token issued by OpenID Connect (OIDC). Smart contracts
can directly verify the token without the participant’s interference. In this
way, all the participants in the DLT network can reach a consensus that
data manipulation is based on the user’s consent. We implemented the
prototype system with Keycloak, an OIDC-compliant identity provider,
and Hyperledger Fabric, a permissioned DLT, and then evaluated its per-
formance. Finally, the overhead of access control is 0.21%, from which we
conclude that the load on the system is very small.

Keywords: Distributed ledger technology · Smart contract · Access
control · OpenID Connect · Hyperledger Fabric

1 Introduction

Distributed Ledger Technology (DLT) is known as a technology that can elim-
inate the cost of siloed business processes. In particular, a permissioned DLT
system, which is built using multiple known nodes, fits the business use cases
requiring the collaboration of multiple organizations because the permissioned
DLT system can restrict the organizations that can join a DLT network [7]. In
terms of the managed data handled by a DLT system, they can be classified into
two main types: user data, such as healthcare [6,26], education [8] or energy [9],
and non-user data, such as logistics [4] or the vehicular ad hoc networks [17].

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 290–308, 2023.

https://doi.org/10.1007/978-3-031-25538-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_16&domain=pdf
http://orcid.org/0000-0003-3137-4956
http://orcid.org/0000-0002-8970-9408
http://orcid.org/0000-0003-3103-9656
https://doi.org/10.1007/978-3-031-25538-0_16

Granting Access Privileges Using OpenID Connect 291

A smart contract (SC), which is used as an interface to manipulate data in a
distributed ledger, enables secure and flexible data manipulation based on con-
sensus among the organizations. In a permissioned DLT system, the execution of
an SC is implicitly agreed upon because of the assumption of trust among par-
ticipating organizations. In order to guarantee users the right to restrict access
to user data and the right to data portability as required by regulations such as
the General Data Protection Regulation (GDPR) [23], it is necessary to clarify
access privileges to data in a distributed ledger.

Employing the classic method of sharing credentials such as passwords
and passcodes for delegating access to resources often leads to unauthorized
access and misuse of the provided credentials. Sudarsan et al. [21] classify
the delegation-based authorization models into three types: (i) identity delega-
tion at the authentication level, (ii) delegation by access control/authorization
server, and (iii) power-of-attorney (PoA) based authorization, and discuss their
strength and weakness. According to the authors, delegation by access con-
trol/authorization server and PoA-based authorization are similar in allowing
authorization on the user’s behalf. On the contrary, the difference is that dele-
gation by access control/authorization server is performed via an authorization
server, while PoA [20] is performed by the user’s direct signature. In PoA-based
authorization, since the user directly uses the private key, there is less dependence
on third parties, but it is often hard to use private keys flexibly according to
the environment. On the other hand, delegation by access control/authorization
server requires trust in the authorization server but allows delegation from var-
ious devices through authentication via a web browser. Furthermore, security
can be improved by multi-factor authentication [13].

In this paper, we propose an access privilege granting method for service
providers to access user data in a permissioned DLT system. The proposed
method separates the access privilege for user data in the distributed ledger
from the execution privilege for SCs. A data owner gives consent for the service
provider to access data, and the service provider manipulates the data under the
consent. In other words, data owners need to eliminate unauthorized interven-
tion by service providers and ensure that their consent is correctly transmitted
to the DLT system. Our approach uses JSON Web Token (JWT) mechanism to
transmit a claim as the user’s consent. The JWT has a digital signature proving
its claim and is often employed in distributed architectures such as microservices
[5,10,19]. In our approach, the JWT provides the user’s consent to the service
provider, and the service provider uses the JWT to prove access privileges to
the DLT system. By doing this, a data owner does not have to implicitly trust
the service providers for data manipulation and can explicitly allow the service
providers to manipulate data.

The main contributions of the paper are summarized as follows:

– We advocate separating data access privileges from SC execution privileges
and propose an access control method based on user consent in permissioned
DLTs.

292 S. Kakei et al.

– We designed the proposed method using JWT. In this method, JWT securely
informs the SC about what a user is consenting to. For example, the user can
consent to read or write data.

– We implement a prototype system for the proposed method with Hyperledger
Fabric and evaluate the processing overhead of the proposed access control.

– We present limitations from the perspective of misuse of the privileges through
security analysis and discuss the challenges in applying the proposed method
to permissionless DLTs.

The rest of the paper is organized as follows. Section 2 presents background of
the proposed method. Section 3 shows the access control model of the proposed
method and provides the security requirements in access control using JWT. The
proposed method is presented in Sect. 4, and is shown to satisfy the security
requirements in Sect. 5. We present a prototype implementation and evaluate
the performance in Sect. 6. Section 7 discusses the proposed method, and Sect. 8
concludes this paper.

2 Background and Related Works

2.1 OpenID Connect

OpenID Connect (OIDC) [18] is a mechanism that extends the OAuth 2.0 autho-
rization protocol with the ability to issue ID tokens containing user information
for user authentication. In OIDC, an ID Provider (IdP) issues an authorization
code to an end-user (EU), and the EU passes the authorization code to a Relying
Party (RP). The RP authenticates the EU by exchanging the authorization code
for an ID token and verifying it. By porting RP’s authentication function to the
IdP, the EU does not need to authenticate individual RPs.

IdPs can issue an ID Token as a JSON Web Token (JWT) [14] consisting of
a header part, a payload part, and a signature part. The header part typically
consists of the type of the token and the signature algorithm being used. The
payload part contains arbitrary attribute information called claims (e.g., issuer,
subject, and expiration date). The signature part contains the signature of the
IdP on the data in the header and payload parts.

In this way, a JWT can carry user information whose authenticity is guaran-
teed by an IdP. JWTs are suitable for carrying user authentication in distributed
architectures because they can be verified locally and directly through the public
key [19]. Karim et al. [15] raised a concern regarding rich user authentication in
resource-constrained IoT environments. They proposed an authentication model
based on OIDC for the IoT manufacturer platform, which will enable users to
maintain IoT devices. Their model offloads the user authentication process to an
IoT gateway. The gateway performs rule-based user authentication with JWTs.
Xu et al. [24] raised a concern regarding account management in edge comput-
ing. They proposed a microservice security agent platform that enables edge
computing clients to access the edge computing service with JWT.

Granting Access Privileges Using OpenID Connect 293

2.2 Distributed Ledger Technology

Distributed ledger technology (DLT) is a technology that synchronizes tamper-
resistant distributed ledgers using a consensus algorithm [1,2]. The distributed
ledger is managed by multiple nodes that construct the DLT network and is
divided into two components: a data store (DS), which stores data, such as
an user, application, and system data, and a smart contract (SC), which is an
interface for manipulating data in a DS. Only agreed-upon data are stored in
the DS through the mutual confirmation of the execution results of the SC by
multiple nodes.

DLT systems can be classified into “permissionless” and “permissioned” sys-
tems based on the participation of nodes [16]. Permissionless DLT systems, con-
sisting of a DLT network with an unspecified number of nodes, are fault-tolerant
because they do not require a central administrator as a single point of trust.
However, even in the case of faults in SCs, a permissionless DLT system can-
not be temporarily suspended. Thus, it is hard to patch vulnerable SCs [11,27].
This allows damage to spread easily. On the other hand, permissioned DLT sys-
tems comprise a consortium consisting of only specific organizations. Thus, a
permissioned DLT system can be suspended for maintenance and to prevent
further damage at the consortium’s discretion, but trust in the consortium is
vital. Ethereum and Bitcoin are known as permissionless DLT systems, and
Hyperledger Fabric and Corda are known as permissioned DLT systems.

Researchers indicate that DLT is improving the GDPR compliance for user
data sharing. Antwi et al. [6] identified key requirements of healthcare appli-
cations and created testing scenarios using Hyperledger Fabric to investigate
the potential for the GDPR compliance with healthcare applications. Delgado-
von-Eitzen et al. [8] proposed a GDPR-compliant academic certification system
based on Hyperledger Fabric. Systems oriented toward GDPR compliance tend
to employ permissioned DLT because it can restrict participants from manipu-
lating data depending on user attributes. In addition to user data, there are also
studies that share information about organizational data, such as cyber attacks
[12]. Truong et al. [22] proposed a design concept with technical mechanisms
for a blockchain-based GDPR-compliant personal data management platform.
The platform manages the data with a database and ports the mechanisms (e.g.,
authentication and authorization, access control, and logging) to a blockchain
network.

3 Access Control and Security Requirements
for Distributed Ledgers

3.1 Access Control for Distributed Ledgers

Models of DLT-based services can be broadly classified into two types: one in
which the DLT system operates at the front end, as shown in Fig. 1-(a), and the
other in which the DLT system operates at the back end, as shown in Fig. 1-
(b). The former model type is suitable for a permissionless DLT system that

294 S. Kakei et al.

Fig. 1. Comparison of DLT service models and proposed DLT service model.

does not require a central administrator since the service user can execute SCs
directly. There are two drawbacks of the permissionless DLT: one is the difficulty
of implementing complex processing such as business logic or rich user interfaces
due to its non-stoppable nature and the limitation of SCs. The other is that it
forces all users to manage their private keys at their own risk. In contrast to
the former model, in the latter model, core functions and complex processing
can be separated into the DLT system and the web server, respectively. Thus,
this model type is ideal for commercial services. The latter model is suitable
for a permissioned DLT system that can restrict the entities executing SCs.
The service user entrusts SC execution to the service provider (SP). The SP
authenticates the service user, manipulates user data using SCs, and provides
services using SC processing results. This model can achieve a rich DLT-based
service and reduce the private key management cost for the service user, although
the need for implicit trust in the SP arises.

When constructing a system using DLT, it is required to consider the char-
acteristics of both. The systems oriented toward GDPR compliance described in
Sect. 2.2 can be classified into the model shown in Fig. 1-(a). In this model, it is
inevitable that usability will be sacrificed, although data manipulation is guar-
anteed to originate from the service user unless the private key is compromised.

Granting Access Privileges Using OpenID Connect 295

For usability improvement, a new DLT service model is needed to resolve the
problem with the model shown in Fig. 1-(b). In light of the above, this paper
proposes the new DLT service model shown in Fig. 1-(c), which reduces the need
for implicit trust in the SP.

Figure 1-(c) shows a new DLT service model that explicitly manages the
access privilege for user data. In Fig. 1-(b), implicit trust arises because the
SP controls data access as a single trust point. The proposed method moves
the access control point from the SP to the DLT system, and the service user
grants the access privilege to the SP. The SP has the SC execution privilege and
executes SCs using the SC execution privilege and the access privilege.

In Fig. 1-(b), it is difficult to verify the legitimacy of manipulating data of
users who are not in a service provision relationship because the SP is allowed
to execute SCs that include the access privilege of user data. For example, when
the service user provides user data with the DLT system, the service user expects
that only the SP in use can access their data. However, it is difficult to guarantee
such expectations in an environment where the access privilege is assigned to
multiple organizations, including competitors. On the other hand, in the pro-
posed model, the SP cannot access user data unless the service user grants the
access privilege to the SP. When access to user data is required, the SP requests
the service user to grant the access privilege. The access control point embed-
ded in the SC determines whether data access is allowed or not based on the
access privilege. The data manipulation is explicitly performed because multiple
participants of the DLT network verify the access privilege.

3.2 Security Requirements for Access Control with JWT

In the model focusing on, the service user grants the SC the access privilege via
the SP. For access privileges to be correctly conveyed from the user to the SC,
the SC must be prevented from being interfered with and each node executing
the SC must be able to correctly verify access privileges. In distributed architec-
tures such as microservices, there are some mechanisms to directly authenticate
user-related information asynchronously with the authentication server using the
statelessness of JWT [5,10,19]. Therefore, the proposed model uses JWT, which
can express a variety of claims, as access privileges.

The entity managing an access privilege can issue a JWT that includes the
information necessary to verify access privileges as claims, and thereby the SC
can know the access privilege of the service user simply by verifying the JWT.
However, if the SP misuses the JWT, the access privileges will be violated. In
order to mitigate the risk of misusing a JWT, the following requirements are
required.

– Req. 1: The SC must only accept a JWT issued to legitimate a service user
to use the legitimate service.

– Req. 2: The SC cannot use a JWT that has been used before.
– Req. 3: The SC cannot use a JWT that has been issued in the past.

296 S. Kakei et al.

Req. 1 is a requirement to prevent the use of access privileges of others or
issued for other services. Req. 2 and Req. 3 are requirements to guarantee that
the SP’s use of access privileges originates from the SU’s consent. If the SP could
reuse a JWT, it would not be possible to guarantee that the execution of the
SC originates from the SU. For the same reason, the act of retaining an unused
JWT for later use by the SP must also be prevented.

4 Proposed Method

This paper proposes an access control method for user data in a distributed
ledger. The proposed method guarantees that a service user accesses the user
data based on user consent. An access token, which is a JWT in OIDC, represents
a user’s consent and is used as a temporary access privilege for the user data.
A service user grants a service provider the access privilege by the access token.
SC verifies the access token so that the user’s consent is agreed upon among the
participants of the DLT network.

4.1 Structure of the Proposed Method

The proposed method contains the following six components. The relationships
with each component are shown in Fig. 2.

– ID Provider (IdP): The IdP is a component that issues ID tokens and
access tokens in JWT format under the OIDC protocol. The IdP manages user
accounts of SUs and issues authorization codes in response to SU requests.
The authorization codes are exchanged by SPs to obtain ID tokens and access
tokens. The IdP issues these tokens in the authorization code flow.

– Service User (SU): The SU is a service user of SPs and owns the rights
to the SU’s data in the DS. By granting the access privilege to the SP, the
SU agrees to allow the SP to access the SU’s data. In the proposed method,
the access privilege is represented by the access token. The SU is the EU in
OIDC.

– Service Provider (SP): The SP is a component that joins the DLT network
according to the permission of the DLSP and provides services to the SU using
SCs. Joining the DLT network gives the SP the privilege to execute the SCs.
The SP trusts the IdP and authenticates the SU with the ID token issued
from the IdP when providing services. If access to SU’s data is required when
providing services, the SP requests the access token from the SU and executes
SCs with the access token.

– Smart Contract (SC): The SC is a part of a distributed ledger and is a set
of code scripts that can process data in the DS. The SC can restrict the data
manipulation by its code, and all SPs agree to the processing written in the
SC. The processing of verifying access tokens is embedded in the SC, and the
SC determines whether or not SU’s data can be read or written according to
access tokens.

Granting Access Privileges Using OpenID Connect 297

Fig. 2. Relationships with components of the proposed method.

– Data Store (DS): The DS is a part of a distributed ledger and can store any
data. The DS is comprised of multiple instances of ledgers, which are main-
tained by each SP. In the proposed method, the DS stores application data
(e.g., user data and configuration data) and system data (e.g., the identities
of entities, the status of the access privileges, and public key certificates). The
SU owns the rights to the SU’s data, although the DS is managed under the
DLT network.

– Distributed Ledger Service Provider (DLSP): The DLSP is a con-
sortium of multiple organizations responsible for operating and managing a
permissioned DLT network. Moreover, the DLSP is responsible for the DS’s
design, the SC’s implementation, the management of participating SPs in the
DLT network, and operates the IdP. The DLSP has to define access privileges
according to a service design and implements the verification logic of a JWT
in the SC.

4.2 Definition of Access Token and ID Token

The proposed method uses two types of JWTs signed by IdP: access tokens
and ID tokens. The seven types of claims contained in a JWT that are used to
construct the proposed method are listed below.

298 S. Kakei et al.

– iss (Issuer): The iss claim represents the issuing entity of the JWT. It is an
identifier that represents the IdP in the proposed method. An IdP identifier
is assigned to the IdP in advance by the DLSP.

– aud (Audience): The aud claim represents an RP to which the JWT is
issued. It is an identifier that represents the SC in the proposed method. The
SC identifier is configured to the IdP and SC in advance by the DLSP.

– sub (Subject): The sub claim represents the requesting entity of the JWT.
It is an identifier that represents SUs in the proposed method. The IdP assigns
a unique identifier to each SU when the IdP performs a user registration.

– azp (Authorized Party): The azp claim represents the target of JWT
issuance. It is an identifier that represents SPs in the proposed method. It is
determined when SPs are registered with the IdP.

– iat (Issued At) and exp (Expiration Time): These claims represent the
validity period of the JWT. The iat claim is the date and time the JWT was
issued, and the exp claim is the expiration date of the JWT. Both claims
represent the validity period of access privileges in the proposed method.

– scope: The scope claim represents the range of access to data requested by
RP. It represents the access privileges required by an SP in the proposed
method. The available access privileges are configured in advance to the IdP
by the DLSP.

4.3 Processing Flow

This section describes the four phases of the proposed method: setup phase, SP
registration phase, SU registration phase, and service provision phase. In the
setup phase, the DLSP launches the distributed ledger service by constructing
the DS, the SC, and the IdP. In the SP Registration Phase, the DLSP qualifies
an SP to participate in the DLT network and registers the SP as the RP with
the IdP. In the SU registration phase, the DLSP registers an SU as a user of the
distributed ledger service for the IdP. Finally, in the service provision phase, the
SP provides services to the SU using SP’s SC execution privilege and SU’s DS
access privilege. It is important to note that the DLSP has prepared the IdP,
the SC, and the DS. The DLSP implements the SC to store these information
types in the DS and stores the iss, aud claims, and IdP’s public key pkIdP in the
DS. Moreover, the DLSP has defined scopes and has set the scopes to the IdP.

Setup Phase. Figure 3 shows the processing flow of this phase. The DLSP
generates the iss and aud claims and pkIdP and calls the SC to register these
information types (Step 1-1). The SC writes these information types in the DS
(Step 1-2). After this phase is performed for the first time, it is repeated each
time the registration information is updated, such as following maintenance of
the DLT network.

Granting Access Privileges Using OpenID Connect 299

SPSU IdP DSSCDLSP

1-1: Register informa�on for verifying access privileges
(iss, aud, pkIdP)

1-2: Write iss, aud, and pkIdP

Fig. 3. Processing of the setup phase.

SPSU IdP DSSCDLSP
2-1: Apply for par�cipa�on with the SP’s iden�fier IDSP

2-3: Register the SP as the RP with IDSP

2-5: Send SSP

2-8: Send CertSP
and SSP

2-4: Generate secret SSP for the SP

2-6: Create a public key cer�ficate CertSP for the SP

2-2: Check eligibility

2-7: Ini�alize a dedicated space for the SP with IDSP

Fig. 4. SP registration phase.

SP Registration Phase. Figure 4 shows the processing flow of this phase. An
SP applies to the DLSP for participation with its identifier IDSP (Step 2-1). When
receiving the application, the DLSP checks whether the SP meets the criteria for
participation in the DLT network (Step 2-2), and if it does, the DLSP registers
the SP with the IdP as the RP with IDSP (Step 2-3). The IdP generates a secret
SSP for the SP after confirming that IDSP is not already registered and issues SSP
to the DLSP (Steps 2-4, 2-5). The DLSP creates a public key certificate CertSP,
a qualification to participate in the DLT network, and initializes a dedicated
space in the DS for the SP (Steps 2-6, 2-7). Finally, the DLSP issues CertSP and
SSP to the SP (Step 2-8).

The criteria for participating in the DLT network are beyond the scope of
this paper. However, the DLSP can set its criteria, such as verifying the legal
existence of the organization. The public key certificate and the secret generated
in this phase are used to execute an SC and request access privileges in the service
provision phase.

SU Registration Phase. Figure 5 shows the processing flow of this phase.
When receiving a user registration from an SU, the DLSP determines whether
or not the SU meets the criteria for using the distributed ledger (Steps 3-1,
3-2). If it does, the DLSP creates an account for the SU in the IdP (Step 3-
3), and the IdP issues an SU’s identifier IDSU (Steps 3-4, 3-5). Next, the DLSP
creates the SU’s account on the DS using the SC (Step 3-6), and the SC initializes
settings, including the status of the access privilege (Step 3-7). Finally, the DLSP

300 S. Kakei et al.

SPSU IdP DSSCDLSP
3-1: Apply for user registra�on

3-9: Register SU’s creden�al

3-8: Allow register the account
with the IdP (Send IDSU)

3-3: Create SU’s account

3-4: Generate SU’s iden�fier IDSU
3-5: Send IDSU

3-6: Create SU’s account with IDSU

3-7: Ini�alize user se�ngs with IDSU

3-2: Check eligibility

Fig. 5. SU registration phase.

allows the SU to register an account with the IdP (Step 3-7), and the SU sets
authentication information in its IdP account (Step 3-8).

The criteria for using the distributed ledger are beyond the scope of this
paper. However, the DLSP can set its criteria, such as confirming possession of
a valid email address [3]. The details will be described at the service provision
phase, but the date and time information of access tokens is stored to detect
misuse. Then, in Step 3-7, the SC initializes that date and time information.

Service Provision Phase. Figure 6 shows the processing flow of this phase.
When receiving a service request from an SU (Step 4-1), the SP decides on an
SC to be executed (Step 4-2) and requests the necessary privileges to the SU
using OIDC (Step 4-3). The SU, the SP, and the IdP execute the authorization
code flow; the SU gives the SP an authorization code, and the SP obtains an
ID token and an access token through the exchange of the authorization code.
After the exchange of the tokens, the SP authenticates the SU using the sub
claim of the ID token (Step 4-4) and executes the SC with arguments and the
access token (Step 4-5).

The SC consists of the three processing: initiating the data manipulation
(Step 4-6), executing the processing with DS read/write (Step 4-7), and finalizing
the data manipulation (Step 4-8). In Step 4-6, the SC checks the validity of access
privileges by checking the access token. The validation of the access privileges is
performed as follows. Let ATt denote the access token at time t, and iatt denote
the iat claim contained in ATt. First, the integrity of ATt is verified to confirm
that a legitimate IdP signs ATt.

Step V1: The SC verifies the signature part of the ATt using the pkIdP registered
in the DS.

Granting Access Privileges Using OpenID Connect 301

SPSU IdP DSSCDLSP

4-6: Ini�ate the data
manipula�on

4-5: Execute the SC with arguments and the access token)

4-10: Provide services

4-1: Request services

4-9: Send results

4-3: Execute the authoriza�on code flow
between the SU, the SP, and the IdP

4-7: Execute the processing
with DS read/write

4-2: Decide an SC to be executed and the necessary privileges

4-4: Authen�cate the SU by the ID token

4-8: Finalize the data
manipula�on

Fig. 6. Service provision phase.

Next, it is verified that the ATt is not reused.

Step V2: The SC compares iatt with iatt-1 stored in the DS and verifies
whether iatt is greater than iatt-1, which means that ATt is the
newer access token than the last used access token.

Next, it is verified that the legitimate IdP issues ATt to the legitimate SC, and
the legitimate SP uses ATt.

Step V3: The SC checks the executor of the SC with CertSP and confirms that
it is the same entity listed in the azp claim of ATt.

Step V4: The SC compares the aud claim registered in the DS with the aud
claim in ATt to confirm that the recipient of ATt is the SC itself.

Step V5: The SC compares the iss claim registered in the DS with the iss claim
in ATt to confirm that the issuer of ATt is the legitimate IdP.

Finally, it is checked that ATt contains the necessary privileges for data manip-
ulation.

Step V6: The SC verifies that the sub claim and the owner of the data to be
manipulated match.

Step V7: Using the scope claims, the SC verifies that the access privileges meet
the privileges required by the processing.

If any verification fails, the processing is aborted, and an error is returned to the
SP. Next, in Step 4-7, the SC executes the processing for the DLT service and

302 S. Kakei et al.

reads/writes the SU’s data. After the processing, the SC overwrites iatt-1 with
iatt (Step 4-8). Finally, the SC returns the results of the processing (Step 4-9),
and the SP provides services using the results (Step 4-10).

5 Evaluating the Security Requirements of the Proposed
Method

We evaluated that the processing flow designed in Sect. 4.3 satisfies the three
security requirements defined in Sect. 3.2.

Evaluation of Req. 1. Req. 1 is the requirement to ensure that an SP and
an SU are not impersonated. There are two possible methods of impersonation:
rewriting the information in the azp claim and the sub claim or theft of a JWT
containing the information to be impersonated.

Rewriting the claim information can be detected by the integrity verification
of a JWT in Step V1. Since the IdP guarantees the claim information, it is secure
as long as the signing key used by the IdP to sign the claim is not compromised.

There are two cases of theft of a JWT: theft from another service domain and
theft within the same service domain. The former can be detected by comparing
the azp claim with an executor of the SC in Step V3 since the executor is iden-
tified by CertSP. Such attacks can be prevented if the signing key corresponding
to the CertSP is not compromised. In the latter case, the subject of CertSP and
the azp claim are equal; thus, there is a risk that an SP impersonates an SU.
However, the risk can be reduced by Req. 2 and Req. 3, which restrict misuse of
an access token.

Evaluation of Req. 2. Req. 2 is required to prevent an SP from reusing a
previously used access token. During the service provision phase, the date and
time information of the iat claim stored in a DS is updated at each time of SC
execution. As a result, the reuse of an access token can be detected by Step V2.

One way to prevent the reuse of an access token can be using the jti claim that
uniquely identifies a JWT. Since the IdP sets a different string in the jti claim
for each JWT, an SP can detect the reuse of the access token if the SP saves the
jti claim used once in the distributed ledger. However, the jti claims of the used
tokens must be stored in the distributed ledger until the access tokens expire.
Hence, the proposed method uses iat claims, which are ordered information.

Evaluation of Req. 3. Req. 3 is required to prevent an SP from retaining
an unused access token for later use. In the proposed method, the date and
time information of the iat claim saved in a DS is updated at each time of SC
execution. As a result, even if the SP tries to use the unused access token later, it
can be detected by Step V2 since the token retained will be invalid when an SU
uses the new access token. To reduce the risk of unauthorized retention by SPs,
the validity period of the access token should be kept to the minimum necessary

Granting Access Privileges Using OpenID Connect 303

that does not affect service provision. Specifically, the access token must be valid
from Step 4-3 to Step 4-6.

6 Performance Evaluation

In the proposed method, the setup phase and the two registration phases are
executed in advance, but the service provision phase is executed each time an
SU requests a service. Therefore, latency for the service provision phase is a sig-
nificant part of the overhead of the proposed method. In addition, the proposed
method requires additional storage to manage the status of the access privilege.
For this reason, we evaluate the processing time overhead and data size overhead
during the service provision phase.

6.1 Experimental Setup

For this experiment, we implemented a data storage service with a permissioned
DLT system as an experimental system and embedded the proposed access con-
trol mechanism into the experimental system. The experimental system has one
scope Change and an SU can access its data with an access token that contains
an SU’s identity and the LIST scope. The scope regarding data registration is
not defined because the SU’s data are registered in the DS in advance for the
experiment.

Our experiments were conducted on a machine running Linux kernel 4.15.0
on an Intel Core i9-9940X with 32 GB of main memory, Hyperledger Fabric
v2.3.3 as a permissioned DLT system, and Keycloak v15.0.2 as an IdP system.

6.2 Experimental Result

All entities are deployed on a single experimental machine. The SU and the SP
are implemented as the test script, while the two Docker containers in Hyper-
ledger Fabric run the SC and the DS. We executed the test script for 1000 rounds
with the processes from Step 4-1 to Step 4-10 as one round. The authorization
code flow is a process that is generally executed in services that use OIDC; thus,
we measured two kinds of processing times: Step 4-5 to Step 4-9 and Step 4-6 to
Step 4-8, excluding Step 4-7. The former represents the service latency caused
by Hyperledger Fabric, while the latter represents the pure overhead of the pro-
posed method. In addition, because Hyperledger Fabric keeps records of DLT
operations as a series of blocks, we measured the size of that block at the end of
each round. We retrieved blocks using the “peer channel fetch” command.

Figure 7 shows trends in processing time in the experiment. The mean and
variance of the processing times are 2282.7±6.9 ms for requesting the chaincode
and 4.8±0.7 ms for the access control. The SC processing time is stable, with an
overhead of only 0.21%. Figure 8 shows trends in data growth in the experiment.
Both data sizes tend to increase monotonically. The mean and variance of data
growth in each round are 7.884±0.002 KB when the proposed method is applied,

304 S. Kakei et al.

Fig. 7. Trends in processing time during the service provision phase. The blue line
shows the small variation in the time that users are kept waiting by the smart contract.
The red line indicates that the overhead is very small. (Color figure online)

and 6.118± 0.002 KB when the proposed method is not applied. The additional
data size per processing in the proposed method is 1.766±0.002 KB. Comparing
the result without access control, the proposed method has an overhead 22.40%.

7 Discussion

7.1 Overhead of the Proposed Method

As shown in the experimental results, the overhead of the processing time is
0.21%, and the overhead of the data size is 22.40%. The result indicates that
the proposed method has a negligible impact on the DLT service in terms of the
overhead of the processing time. On the other hand, the result indicates that
the proposed method requires a certain cost in data storage, but the cost can be
estimated from the frequency of SC execution.

In contrast to the cost of the access control, the proposed method requires
the cost to execute SCs in an invoke method. In Hyperledger Fabric, the invoke
method executes a consensus algorithm, and it is known as a more time-
consuming process than the query method that does not require executing the
consensus algorithm. We found that the proposed method is well-suited for DLT
services that change the state of user data as executed by the invoke method.
In contrast, for DLT services that only read user data as executed by the query
method, the proposed method bears the additional costs of executing the con-
sensus algorithm.

7.2 Limitation of the Proposed Method

As shown in Step V2, the updated date and time of the iat claim causes all
access tokens prior to that date and time to be determined as past. However,

Granting Access Privileges Using OpenID Connect 305

Fig. 8. Trends in data growth during the service provision phase. The graph shows
that the data size increases monotonically with the number of SC executions with (red
line) and without (blue line) the proposed method. (Color figure online)

the SP can obtain the latest unused access token by returning an error to the
SU before the SP performs Step 4-5. Here, the SP can use the access token until
it expires or the same SU requests the service. In order to detect such fraud, it is
considered necessary to devise an auditing method that compares logs of IdPs,
SCs, and SPs.

The work in [25] points out that processing with system clock should be done
with caution because Hyperledger Fabric has non-deterministic risk. Our method
uses system clock to verify the validity period of the access token. However, there
is no problem except when executing a SC at the time of expiration since it is
only used to compare access token expiration dates.

7.3 Access Privileges in Permissionless DLT and Importance
of Separating Access Privileges in Permissioned DLT

When a permissionless DLT system is deployed as the front end, an SU operates
the Web UI provided by an SP and executes an SC using its secret key. In other
words, the SP does not execute the SC on behalf of the SU but supports the
execution of the SC by the SU. Since the SC is executed mainly by the SU,
access privileges are explicit, but the SU is responsible for managing its private
key.

In Ethereum, a permissionless DLT system, private keys are associated with
accounts, so a private key breach is equivalent to losing all assets associated with
the account. On the other hand, in the proposed method, the SU does not need
to manage private keys since it only needs to manage the credentials of IdP. In
IdP authentication, not only password authentication but also FIDO authen-
tication can be used, which is expected to improve user convenience. The IdP
credentials are used to control granting access privileges to SPs, and credential

306 S. Kakei et al.

breach is equivalent to losing that control. However, since the DLSP manages
the access privileges itself, the DLSP can regain control by reconfiguring the
authentication information of the SU. By separating the access privileges to the
data in the distributed ledger from the execution privileges of SC, the proposed
method can reduce the burden of managing confidential information required
by permissionless DLT systems while achieving a clear operation of the access
privilege.

8 Conclusion

In this paper, we propose a method that separates an access privilege for user
data in a distributed ledger from a privilege to execute smart contracts and
controls access to the data with the user’s consent. In the proposed method, the
access privilege is represented by an access token in the form of JWT in OpenID
Connect, and security requirements for its secure operation are defined. We
implemented the experimental system of the proposed method using Hyperledger
Fabric and Keycloak and evaluated the performance of the proposed method.

Future works include designing and developing the proposed method to sup-
port any smart contract application and devising a method to audit the proposed
method to reduce the risk of fraud in a service provider.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Num-
ber JP22K17881. This research results were partly obtained from the commissioned
research under a contract of “Research and development on IoT malware removal/make
it non-functional technologies for effective use of the radio spectrum” among “Research
and Development for Expansion of Radio Wave Resources (JPJ000254)”, which was
supported by the Ministry of Internal Affairs and Communications, Japan.

References

1. Blockchain and distributed ledger technologies – Vocabulary. ISO 22739:2020
(2020)

2. Blockchain and distributed ledger technologies – Taxonomy and Ontology. ISO/TS
23258:2021 (2021)

3. How to prove and verify someone’s identity (2022). https://www.gov.uk/
government/publications/identity-proofing-and-verification-of-an-individual/
how-to-prove-and-verify-someones-identity. Accessed 26 June 2022

4. IBM food trust: a new era in the world’s food supply (2022). https://www.ibm.
com/in-en/blockchain/solutions/food-trust. Accessed 26 June 2022

5. de Almeida, M.G., Canedo, E.D.: Authentication and authorization in microser-
vices architecture: a systematic literature review. Appl. Sci. 12(6) (2022). https://
doi.org/10.3390/app12063023, https://www.mdpi.com/2076-3417/12/6/3023

6. Antwi, M., Adnane, A., Ahmad, F., Hussain, R., Habib UR Rehman, M., Ker-
rache, C.A.: The case of HyperLedger fabric as a blockchain solution for healthcare
applications. Blockchain Res. Appl. 2(1), 100012 (2021). https://doi.org/10.1016/
j.bcra.2021.100012

https://www.gov.uk/government/publications/identity-proofing-and-verification-of-an-individual/how-to-prove-and-verify-someones-identity
https://www.gov.uk/government/publications/identity-proofing-and-verification-of-an-individual/how-to-prove-and-verify-someones-identity
https://www.gov.uk/government/publications/identity-proofing-and-verification-of-an-individual/how-to-prove-and-verify-someones-identity
https://www.ibm.com/in-en/blockchain/solutions/food-trust
https://www.ibm.com/in-en/blockchain/solutions/food-trust
https://doi.org/10.3390/app12063023
https://doi.org/10.3390/app12063023
https://www.mdpi.com/2076-3417/12/6/3023
https://doi.org/10.1016/j.bcra.2021.100012
https://doi.org/10.1016/j.bcra.2021.100012

Granting Access Privileges Using OpenID Connect 307

7. Bedin, A.R.C., Capretz, M., Mir, S.: Blockchain for collaborative businesses. Mob.
Netw. Appl. 26(1), 277–284 (2020). https://doi.org/10.1007/s11036-020-01649-6

8. Delgado-von Eitzen, C., Anido-Rifón, L., Fernández-Iglesias, M.J.: Application of
blockchain in education: GDPR-compliant and scalable certification and verifica-
tion of academic information. Appl. Sci. 11(10) (2021). https://doi.org/10.3390/
app11104537

9. Guan, Z., Lu, X., Wang, N., Wu, J., Du, X., Guizani, M.: Towards secure and effi-
cient energy trading in IIoT-enabled energy internet: a blockchain approach. Future
Gener. Comput. Syst. 110, 686–695 (2020). https://doi.org/10.1016/j.future.2019.
09.027, https://www.sciencedirect.com/science/article/pii/S0167739X19315018

10. He, X., Yang, X.: Authentication and authorization of end user in microservice
architecture. In: Journal of Physics: Conference Series, vol. 910, p. 012060. IOP
Publishing (2017)

11. Huang, Y., Bian, Y., Li, R., Zhao, J.L., Shi, P.: Smart contract security: a software
lifecycle perspective. IEEE Access 7, 150184–150202 (2019). https://doi.org/10.
1109/ACCESS.2019.2946988

12. Huff, P., Li, Q.: A distributed ledger for non-attributable cyber threat intelli-
gence exchange. In: Garcia-Alfaro, J., Li, S., Poovendran, R., Debar, H., Yung, M.
(eds.) SecureComm 2021. LNICST, vol. 398, pp. 164–184. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90019-9 9

13. Ibrokhimov, S., Hui, K.L., Abdulhakim Al-Absi, A., lee, H.J., Sain, M.: Multi-
factor authentication in cyber physical system: a state of art survey. In: 2019 21st
International Conference on Advanced Communication Technology (ICACT), pp.
279–284 (2019). https://doi.org/10.23919/ICACT.2019.8701960

14. Jones, M., Bradley, J., Sakimura, N.: JSON web token (JWT). RFC 7519 (2015).
https://doi.org/10.17487/RFC7519

15. Karim, A., Adnan, M.A.: An OpenID based authentication service mechanisms for
internet of things. In: 2019 IEEE 4th International Conference on Computer and
Communication Systems (ICCCS), pp. 687–692 (2019). https://doi.org/10.1109/
CCOMS.2019.8821761

16. Kuhn, R., Yaga, D., Voas, J.: Rethinking distributed ledger technology. Computer
52(2), 68–72 (2019). https://doi.org/10.1109/MC.2019.2898162

17. Lu, Z., Liu, W., Wang, Q., Qu, G., Liu, Z.: A privacy-preserving trust model based
on blockchain for VANETs. IEEE Access 6, 45655–45664 (2018). https://doi.org/
10.1109/ACCESS.2018.2864189

18. Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., Mortimore, C.: OpenID
Connect Core 1.0 (2014). https://openid.net/specs/openid-connect-core-1 0.html

19. ShuLin, Y., JiePing, H.: Research on unified authentication and authorization in
microservice architecture. In: 2020 IEEE 20th International Conference on Com-
munication Technology (ICCT), pp. 1169–1173 (2020). https://doi.org/10.1109/
ICCT50939.2020.9295931

20. Sudarsan, S.V., Schelén, O., Bodin, U.: A model for signatories in cyber-physical
systems. In: 2020 25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), vol. 1, pp. 15–21 (2020). https://doi.org/10.
1109/ETFA46521.2020.9212081

21. Sudarsan, S.V., Schelén, O., Bodin, U.: Survey on delegated and self-contained
authorization techniques in CPS and IoT. IEEE Access 9, 98169–98184 (2021).
https://doi.org/10.1109/ACCESS.2021.3093327

22. Truong, N.B., Sun, K., Lee, G.M., Guo, Y.: GDPR-compliant personal data man-
agement: a blockchain-based solution. IEEE Trans. Inf. Forensics Secur. 15, 1746–
1761 (2020). https://doi.org/10.1109/TIFS.2019.2948287

https://doi.org/10.1007/s11036-020-01649-6
https://doi.org/10.3390/app11104537
https://doi.org/10.3390/app11104537
https://doi.org/10.1016/j.future.2019.09.027
https://doi.org/10.1016/j.future.2019.09.027
https://www.sciencedirect.com/science/article/pii/S0167739X19315018
https://doi.org/10.1109/ACCESS.2019.2946988
https://doi.org/10.1109/ACCESS.2019.2946988
https://doi.org/10.1007/978-3-030-90019-9_9
https://doi.org/10.23919/ICACT.2019.8701960
https://doi.org/10.17487/RFC7519
https://doi.org/10.1109/CCOMS.2019.8821761
https://doi.org/10.1109/CCOMS.2019.8821761
https://doi.org/10.1109/MC.2019.2898162
https://doi.org/10.1109/ACCESS.2018.2864189
https://doi.org/10.1109/ACCESS.2018.2864189
https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.1109/ICCT50939.2020.9295931
https://doi.org/10.1109/ICCT50939.2020.9295931
https://doi.org/10.1109/ETFA46521.2020.9212081
https://doi.org/10.1109/ETFA46521.2020.9212081
https://doi.org/10.1109/ACCESS.2021.3093327
https://doi.org/10.1109/TIFS.2019.2948287

308 S. Kakei et al.

23. Voigt, P., Von dem Bussche, A.: The EU general data protection regulation.
GDPR), A Practical Guide (2017)

24. Xu, R., Jin, W., Kim, D.: Microservice security agent based on API gateway in
edge computing. Sensors 19(22) (2019). https://doi.org/10.3390/s19224905

25. Yamashita, K., Nomura, Y., Zhou, E., Pi, B., Jun, S.: Potential risks of hyperledger
fabric smart contracts. In: 2019 IEEE International Workshop on Blockchain Ori-
ented Software Engineering (IWBOSE), pp. 1–10 (2019). https://doi.org/10.1109/
IWBOSE.2019.8666486

26. Zhang, A., Lin, X.: Towards secure and privacy-preserving data sharing in e-health
systems via consortium blockchain. J. Med. Syst. 42(8), 1–18 (2018). https://doi.
org/10.1007/s10916-018-0995-5

27. Zhou, H., Milani Fard, A., Makanju, A.: The state of Ethereum smart contracts
security: vulnerabilities, countermeasures, and tool support. J. Cybersecur. Privacy
2(2), 358–378 (2022). https://doi.org/10.3390/jcp2020019

https://doi.org/10.3390/s19224905
https://doi.org/10.1109/IWBOSE.2019.8666486
https://doi.org/10.1109/IWBOSE.2019.8666486
https://doi.org/10.1007/s10916-018-0995-5
https://doi.org/10.1007/s10916-018-0995-5
https://doi.org/10.3390/jcp2020019

Decentralized and Efficient Blockchain
Rewriting with Bi-level Validity

Verification

Kemin Zhang1, Li Yang1(B), Lu Zhou1, and Jianfeng Ma2

1 School of Computer Science and Technology, Xidian University, Xi’an, China
yangli@xidian.edu.cn

2 School of Cyber Engineering, Xidian University, Xi’an, China

Abstract. Numerous studies have established that the immutability, a
crucial property of blockchains, need to be delicately broken under cer-
tain circumstance as the content in blockchains could be compelled to
redact for personal or legal reasons. Existing schemes ordinarily leverage
policy-based chameleon hash (PCH) to perform fine-grained rewriting on
blockchains, where modifiers with attributes satisfying the access policy
can be authorized to modify the content in the blockchain. However,
these schemes rely on a single trusted authority for managing rewriting
permissions, which could be affected by a potential single point of fail-
ure. Meanwhile, heavy computations in such schemes might affect the
performance in practical use.

To address these limitations, we propose a decentralized and effi-
cient blockchain rewriting scheme with bi-level validity verification. With
the integration of the multi-authorities attribute-based encryption, our
scheme supports the modifier to obtain rewriting secret keys from vari-
ous authorities for performing rewriting at transaction level. Moreover,
computationally intensive operations in our scheme can be performed in
stages and partially outsourced to the proxy server. As an assurance of
security, our scheme provides bi-level validity verification for the rewrit-
ing secret key and the content on blockchain. Moreover, we present formal
security analysis and conduct comparison experiments to illustrate the
advantages in both functionality and performance.

Keywords: Blockchain rewriting · Attribute-based encryption ·
Chameleon hash · Outsource computing

1 Introduction

The concept of the blockchain was originally introduced by Satoshi Nakamoto to
function as a distributed public ledger of the cryptocurrency Bitcoin [23]. It has
raised a widespread concern in the community and has found wide applications
in many fields such as supply chain [11], Internet-of-Things (IoT) [25] and health-
care services [8]. A blockchain is a continuously expanding list of records made

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 309–328, 2023.

https://doi.org/10.1007/978-3-031-25538-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_17&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_17

310 K. Zhang et al.

up of cryptographically connected blocks, which is resistant to modifications
since the transaction data in any fixed block cannot be modified retroactively
without editing all subsequent blocks.

However, as a crucial property of the blockchain, the immutability could
be a limiting factor for practical promoting in certain circumstance. From the
perspective of privacy protection, the immutability is inherently incompatible
with certain regulations that emphasize protecting user privacy and avoiding
sensitive content, for instance, General Data Protection Regulation (GDPR) [30],
since any data (e.g. transaction values) in such immutable blockchains cannot be
erased. Moreover, the illicit content in blockchains such as pornography, violent
narratives or viruses uploaded by malicious users could cause lasting and negative
impact. Therefore, an urgent demand for schemes of redacting incorrect or even
illicit contents in the blockchain is desirable in practical scenarios.

Earlier studies intended to perform block-level rewriting on blockchains, pre-
dominately by replacing the traditional hash function with a trapdoor-based
chameleon hash [16]. Subsequently, for providing transaction-level redaction, sev-
eral studies aimed to implement fine-grained and controlled blockchain rewriting
by employing attribute-based encryption (ABE) [9,14,28,33]. In these schemes,
a predetermined access policy is embedded into a transaction and the modifier
possessing a trapdoor could find hash collisions to modify the transaction if her
attributes satisfy the embedded access policy.

Nevertheless, the aforementioned fine-grained blockchain rewriting schemes
are still flawed to some extent. Specifically, these schemes either rely on a trusted
authority for key distribution, which could be affected by a potential single point
of failure, or necessitate heavy computation which might affect the performance
in practical use. The requirement for a single trusted authority could be incom-
patible with the decentralized designing of the blockchain. Users with resource-
constrained devices could not efficiently perform complex computations such
as bilinear pairing operations in the hash or decryption phase. Moreover, the
validity of the rewriting secret key received by the modifier and the transaction
content cannot be verified.

To address these limitations, we propose a scheme of decentralized and effi-
cient blockchain rewriting with bi-level validity verification. In our scheme, the
transaction owner appends signatured transactions with the embedded access
policy to the blockchain. Subsequently, the modifier obtains rewriting secret
keys from multiple authorities and concurrently performs validity verification.
As a consequence, the distribution of the rewriting secret key is decentralized
which accordingly eliminates the risk of a potential single point of failure. Finally,
the modifier requests partial decryption from the proxy server and further com-
pletes the decryption to rewrite and sign the transaction in the blockchain. Note
that the computation of both hash and decryption are separated into two stages
in our scheme. For this reason, the computational burden on the user side is
significantly reduced, which is beneficial for practical implementation.

To the best of our knowledge, this scheme is the first to simultaneously
address the aforementioned limitations, and the contributions of the work are
summarized in the following four aspects:

Decentralized and Efficient Blockchain Rewriting 311

• We introduce a framework of decentralized blockchain rewriting scheme that
allows for transaction-level rewriting, based on multi-authority ABE. The
modifier can perform transactions rewriting only if her attributes satisfy the
access policy predetermined by the transaction owner, where the privilege to
the modifier for rewriting is granted jointly by multiple authorities.

• We adopt offline/online hashing and outsourced computing in our scheme for
reducing the computational burden on the user side. Specifically, the hash
algorithm is separated into offline/online phases, and the decryption to be
executed by the modifier is split into two phases for performing outsourced
partial decryption.

• We provide a mechanism of bi-level validity verification, in order for the modi-
fier to verify the validity of rewriting secret keys received from various attribute
authorities, as well for any entity to verify the content in the blockchain.

• We build an instantiation of our scheme on firm theoretical grounds. All impor-
tant properties of our scheme are formalized in Sect. 3, and the security of
the proposed scheme is demonstrated via formal security analysis in Sect. 4.3.
Besides, the experimental results of the comparison with previous schemes
demonstrate that our scheme is advantageous in both functionality and per-
formance.

1.1 Related Work

Attribute-based Encryption. Sahai and Waters [26] first introduced the
concept of a public-key encryption scheme, namely attribute-based encryption
(ABE), in which ciphertexts and secret keys are dependent upon attributes. Sub-
sequently, Goyal et al. [12] developed a cryptosystem named key-policy attribute-
based encryption (KP-ABE), in order to perform fine-grained sharing of encrypted
data. In this scheme, ciphertexts are labeled with attributes and can be decrypted
by private keys with respect to access structures. Bethencourt et al. [3] presented
a system named ciphertext-policy attribute-based encryption (CP-ABE) to per-
form access control on the encrypted data. Guo et al. [13] introduced identity-
based offline/online encryption (IBOOE), which separates identity-based encryp-
tion into online and offline phases for improving the computing efficiency. After-
wards, extensive research on KP-ABE or CP-ABE were proposed for better effi-
ciency or security [7,15,17–19,21,31,32]. For instance, in [15], the vast majority
of the work on encryption or secret key generation in ABE is performed offline to
reduce the cost in practice. In [18], Lewko and Waters proposed a multi-authority
ABE system which allows any party to become an authority, and thus avoids the
performance bottleneck incurred by relying on a central authority.

Blockchain Rewriting. Blockchain rewriting has raised widespread concern
in the community since the pioneering work [2]. In this work, chameleon hash
(CH) function are deployed instead of the original SHA256 hash function for
rewriting block contents in blockchains. Chameleon hash is collision resistant if
the trapdoor is unknown, conversely, a modifier who is aware of the trapdoor can
find collisions and perform rewriting operations while keeping the hash value.

312 K. Zhang et al.

Subsequently, Puddu et al. [24] proposed a mutable blockchain, named μchain,
which provides mechanisms for removing record data from the blockchain and
their modifications. Thyagarajan et al. [27] introduced a publicly verifiable layer
Reparo to fix incorrect contracts and remove illicit contents from the blockchain.
Deuber et al. [10] proposed an efficient redactable blockchain for permissionless
setting based on consensus-based voting. It dispenses with sophisticated cryp-
tographic techniques or trust assumptions. However, the block-level rewriting
operation is coarse-grained, i.e. the whole block have to be replaced even only
one transaction in a block is required to be modified.

To bridge this gap, a line of studies have been proposed to achieve the goal
of fine-grained and controlled rewriting based on ABE scheme. For instance,
Derler et al. [9] presented policy-based chameleon hashes (PCH) that integrate
CP-ABE with chameleon hash with ephemeral trapdoor (CHET) [5] to per-
form fine-grained modifications on blockchains. Any modifier own the attributes
which satisfy the access policy can find hash collisions and further rewrite the
blockchain at transaction-level. In [28], the scheme of policy-based chameleon
hash with black-box accountability (PCHBA) was proposed to identify responsible
transaction modifiers in case of dispute while achieving the goal of fine-grained
rewriting on blockchain. Subsequently, the authors further generalized their work
to a permissionless setting [29], which leverages dynamic proactive secret shar-
ing (DPSS) [22] to remove the trusted authority and utilize KP-ABE for fine-
grained access control. In [33], a multi-authority policy-based chameleon hash
(MAPCH) was proposed by combing CHET and multi-authority CP-ABE, for
reducing the workload of a single authority. In [14], a new rewritable blockchain
scheme, named OO-RB-AOC, was proposed to reduce computational overhead
and improve the security by performing an auditable outsourced computation
mechanism for some time-consuming operations.

2 Preliminaries

2.1 Bilinear Mapping

G1 and G2 are two cyclic groups of prime order p. Then a bilinear map e :
G1 × G1 → G2 meets the following properties:

• Bilinearity: ∀x, y ∈ Zp, ∀α, β ∈ G1, then e(αx, βy) = e(α, β)xy.
• Non-degeneracy: ∃α ∈ G1, such that e(α, α) �= 1G2 , where 1G2 is the identity

element of G2.
• Computability: ∀α, β ∈ G1, the value of e(α, β) can be computed efficiently.

2.2 Multi-authority Ciphertext-Policy Attribute-Based Encryption
(CP-ABE)

Multi-authority CP-ABE allows any entity to become an authority, and multi-
ple authorities are responsible for managing the attribute sets of users. In this
paper, we adopt the multi-authority CP-ABE scheme proposed in [20]. It exe-
cutes hash function on users’ global identifier gid [7] to integrate private keys of

Decentralized and Efficient Blockchain Rewriting 313

each user received form various authorities. This scheme simultaneously achieves
the goals of autonomous key generation and collusion resistance. Specifically,
multi-authority CP-ABE algorithm consists of the following five algorithms:

• Global Setup(λ) → GP : Taking the security parameter λ as the input, it
outputs global parameter GP for the system.

• Authority Setup(GP) → pkAA, skAA: Each authority runs the algorithm with
GP to generate its own public and secret key pair (pkAA, skAA).

• KeyGen(gid,GP, i, skAA) → SKi,gid: Taking an authority identity gid, global
parameter GP , an attribute i, and the secret key skAA as the input, the
algorithm outputs SKi,gid for the attribute-identity pair.

• Encrypt(GP, {pkAA},A,m) → CT : The algorithm takes the global parameter
GP , the set of public keys for related authorities {pkAA}, access policy matrix
A = (A, ρ), and a message m as the input, and outputs a ciphertext CT .

• Decrypt(CT,GP, {SKi,gid}) → m: It takes the ciphertext CT , the global
parameter GP , and a set of keys {SKi,gid} as the input. If the collection of
attribute i satisfies the access policy embedded in the ciphertext, the algo-
rithm outputs the message m; otherwise the decryption cannot succeed.

2.3 Chameleon Hash (CH)

An arbitrary collision can be found in the domain of the function by using a
trapdoor presented in chameleon hash functions [16]. On the message space M,
the chameleon hash employs the following four algorithms:

• KeyGen: The chameleon key pair (pk, sk) is computed by the security param-
eter λ in this algorithm.

• Hash: This algorithm calculates a chameleon hash h and a randomness r
using chameleon secret key pk and a message m.

• Verify : The verify algorithm takes the chameleon public key pk, chameleon
hash h, randomness r and message m as the input, and then outputs a bit
b ∈ {0, 1}.

• Adapt : The chameleon private key sk, chameleon hash h, randomness r, orig-
inal and new message (m,m′) are taken as the input, then a new randomness
value r′ which could be used to recover the trapdoor is computed.

2.4 Bnoeh-Lynn-Shacham (BLS) Signature

We leverage BLS signature [4] to aggregate multiple signatures into a single sig-
nature without the interactions between each authority, in order for the modifier
to verify the validity of the rewriting secret key. Specifically, the BLS signature
algorithm consists of three algorithms listed below:

• Ken: This algorithm computes the public key c and the secret key a.
• Sign: It takes a and the message m as the input, and outputs the signature

σ.
• Ver : This algorithm takes m, c and σ as the input, and outputs a value

d ∈ {0, 1} which indicates the correctness of signatures.

314 K. Zhang et al.

Blockchain

Proxy Server

Block 1
Prev_Hash Timestamp

Tx_Root Nonce

Hash 01
Sign & append

transactions

Transaction Owner

...

Requset for rewriting secret key

Return key and signature

Block 2 ...

Transaction Modifier

Outsource partial decryption

Return computation result

Hash 23

... Hash 2 Hash 3

Tx 2 Tx 3

Rewrite & sign
transaction

Attribute
Authorities

......

... ...

...

Fig. 1. System model

3 Models and Definitions

3.1 System Model

Our proposed system consists of four entities (shown in Fig. 1), namely Trans-
action Owner (TO), Attritube Authority (AA), Transaction Modifier (TM) and
Proxy Server (PS). The interactions and functions of each entity are listed below:

Transaction Owner (TO): TO appends hashed transactions with signature
to the blockchain. In our scheme, TO’s devices are considered to be trusted and
reliable yet could be resource-constrained (for instance, mobile phone).

Attribute Authority (AA): AAs are responsible for managing the attributes
of users as well as generating and distributing the rewriting secret key associated
with the TM’s attribute set. There is no requirement for any global coordination
amongst the authorities. Moreover, AA further signs the rewriting secret key in
order for the TM to verify the validity.

Transaction Modifier (TM): The rewriting operation in blockchain is per-
formed by the TM. Concretely, TM provides global identifier gid to collect rewrit-
ing secret keys corresponding to her attribute set from AAs, and subsequently
verifies the validity of keys by performing signature aggregation. Afterwards, TM
requests partial decryption from PS and completes the rest of the computation.
TM could find hash collision to perform transaction rewriting once its attributes
satisfy the access policy predetermined by TO.

Decentralized and Efficient Blockchain Rewriting 315

Proxy Server (PS): PS performs partial decryption using transformation keys
received from TM, and subsequently sends the result to the TM. As a conse-
quence, the decryption load on TM’s devices is reduced significantly.

3.2 Definition

Our proposed scheme is based on multi-authority ciphertext-policy attribute-
based encryption (CP-ABE) and chameleon hash (CH) for decentralized rewrit-
ing on blockchain. It is comprised of the following five phases:

Setup: Arbitrary AA runs the Global Setup algorithm to generate the global
parameter. The Auth Setup and Modi Setup algorithms are used to generate the
key pairs of all AAs and TM respectively;

KeyGen: Each AA runs Rew KeyGen algorithm to generate and sign the rewrit-
ing secret keys associated with the attribute set of TM. Subsequently, TM runs
Trans KeyGen algorithm to generate and send the transformation keys to PS
for outsourcing decryption;

Hash: TO firstly runs Offline Hash algorithm to generate the intermediate
ciphertext, which can be viewed as pre-computations for computing the final
ciphertext. Afterwards, TO runs Online Hash algorithm to generate chameleon
hash, and subsequently signs the transaction for identification;

Verify: TM and any entity can respectively run Aggre Verify and Hash Verify
algorithm, in order to verify the validity of the rewriting secret key and the
transaction content;

Adapt: PS runs Part Decrypt algorithm to execute partial decryption using
transformation keys. TM subsequently runs Full Adapt algorithm to find hash
collision for rewriting, and signs the modified transaction for identification.

More precisely, the proposed scheme consists of the following algorithms:

• Global Setup(λ) → GP . Any AA could run the algorithm to compute global
parameter GP using security parameter λ.

• Auth Setup(GP) → (pkAA, skAA, pksig, sksig). In accordance with GP , each
AA computes public key pkAA, the secret key skAA and the key pair
(pksig, sksig) for the signature.

• Modi Setup(GP) → (spk, ssk). TM runs this algorithm to obtain a key pair
(spk, ssk) for signature using GP .

• Rew KeyGen(GP, gid, i, skAA, sksig)→(SKi,gid, σi,gid). An authority owning
the attribute i inputs global parameter GP , global identity gid, attribute i
and secret keys (skAA, sksig), and computes rewriting secret key SKi,gid and
signature σi,gid for an attribute-identity pair (i, gid).

• Trans KeyGen(GP,SKi,gid) → TKi,gid. Given the global parameter GP , TM
transforms the SKi,gid into a transformation key TKi,gid which will be sent
to a PS for partial decryption.

316 K. Zhang et al.

• Offline Hash(GP) → (IC, IS). TO computes intermediate ciphertext IC and
intermediate state IS using GP . The offline hash phase could accelerate the
construction of the final ciphertext since it can be seen as the pre-computation
of the online hash phase (detailed in Sect. 4.1). For reducing computational
consumption, TO could execute the algorithm in the charging or idle time of
the device.

• Online Hash(GP, {pkAA}, IC, IS,A,m) → (h, r, σuser). Given GP , a set of
public keys {pkAA} from multiple authorities, intermediate ciphertext IC,
intermediate state IS, access policy A = (A, ρ) and message m, TO executes
the algorithm to compute a hash h, a randomness r and a signature σuser.

• Aggre Verify(gid, {σi,gid}, pksig) → 0 or 1. TM could verify the validity of
rewriting secret keys received from multiple authorities. Given gid of TM,
signatures set {σi,gid} from all authorities owning TM’s attribute set, and
authorities’ public key pksig for signature verification, the SKi,gid is checked
out to be valid if the algorithm returns 1, or else it returns 0.

• Hash Verify(m,h, r, σuser) → 0 or 1. Any entity could take m, (h, r) and
signature σuser to verify whether the hash h and signature σuser is valid. The
output is a bit b ∈ {0, 1}.

• Part Decrypt(GP,CT, {TKi,gid}) → CT ′. PS could use GP , ciphertext CT
and transformation key {TKi,gid} to compute partial decryption result CT ′.

• Full Adapt(h, r,m,m′, {TKi,gid}, σuser) → (r′, σ′
user). TM utilizes (h, r), m,

new message m′, {TKi,gid} and σuser to compute hash collision value r′ based
on partial decryption result, and then generates signature σ′

user of the modified
transaction.

3.3 Security Model

We first briefly describe the relevant security assumptions. TO is honest and will
correctly add transactions to the blockchain. TMs with trusted devices might
collude to collect credentials required for decryption. Authorities might be cor-
rupted. PS might attempt to gather extra information in the decryption stage,
while the correctness of the partial decryption is not affected. In this paper, we
consider the following security guarantees.

Replayable Chosen Ciphertext Attack (RCCA) Security. In this paper,
we adopt RCCA security [6] which allows the ciphertext to be modified, provided
that the fundamental message cannot be adjusted explicitly. To demonstrate
the security, we define the following security games between adversary A and
challenger C.

• Setup. The challenger C executes Global Setup algorithm and sends public
parameters to A.

• Key Query Phase I. C initializes an integer j = 0, an empty set D, and
an empty table T . A could adaptively and repeatedly execute any following
queries:

Decentralized and Efficient Blockchain Rewriting 317

– Create(S): C sets j = j + 1. For an attribute set S, C computes
rewriting secret key and transformation key (SK, TK) by Rew KeyGen
and Trans KeyGen algorithms, where SK = {SKi,gid}i∈S , TK =
{TKi,gid}i∈S . Then C stores entry (j, S, SK, TK) into table T and sends
TK to adversary A.

– Corrupt(τ): If the τth entry exists in T , C retrieves this entry
(τ, S, SK, TK) and stores S into D. Conversely, if the entry does not
exist, it returns ⊥.

– Decrypt(τ, CT): If T holds the τth entry, C queries entry (τ, S, SK, TK)
and executes Part Decrypt and Full Adapt algorithms, and subsequently
sends results to A; otherwise, it returns ⊥.

• Challenge. The adversary A sends to C two equal-length messages m0, m1.
Meanwhile, A presents a challenge access policy A

∗ = (A∗, ρ∗) such that all
attribute in D does not satisfy A

∗. Then C randomly sets a bit b ∈ {0, 1}
and executes Offline Hash and Online Hash algorithms on message mb to
compute a challenge ciphertext CT ∗

mb
, and subsequently sends CT ∗

mb
to A.

• Key Query Phase II. Repeating the phase I under following constraints:
1) A cannot acquire the key that meets with A

∗.
2) The message cannot be either m0 or m1 when A executes decryption

query.
• Guess. The adversary A outputs a guess b′ for b.

Definition 1. Our scheme satisfies RCCA security if a probabilistic polynomial-
time (PPT) adversary win the security game with a negligible advantage ε:

AdvRCCAA = |Pr[b′ = b] − 1/2| ≤ ε. (1)

Existential Unforgeability Under Chosen-Message Attacks (EUF-
CMA). In this section, we introduce the existential unforgeability of BLS sig-
nature. We follow the definition of EUF-CMA in [4], and illustrate the security
of the signature scheme against EUF-CMA by the following security game:

• Setup. C computes key pair (c, a) by key generation algorithm Ken, and then
sends the public key c to A.

• Query Phase. A queries for signature with respect to message m. C execute
Sign algorithm to acquire signature σ and sends it to A.

• Output. A outputs (m∗, σ∗). If Ver(c,m∗, σ∗) = 1, m∗ is absent from the
query phase, then A wins this security game.

Let S be the signing oracle which takes any public key c and message m as the
input, and outputs a signature σ satisfies Ver(c,m, σ). Given access to S, the
advantage of an adversary A is denoted as AdvEUF−CMA

A .

Definition 2. A makes at most qH and qS queries to the hash function and
signing oracle S, respectively, up to t time. If AdvEUF−CMA

A is negligible, then the
signature scheme is EUF-CMA secure.

318 K. Zhang et al.

Collision Resistance. A collisions for a chameleon hash can be found by an
adversary A if her secret key satisfies the policy embedded in that hash. The
interactions between A and challenger C are listed below:

• Setup. C executes Auth Setup to generate key pair and sends public key to
A, and subsequently initializes an empty table Q, an integer j = 0 and a
message space M.

• Query. A executes key generation and adaption queries, and then acquires
transformation key TK = {TKi,gid}∀i and collision (m∗, h∗, r∗, σ∗

user,m
′∗, r′∗,

σ′∗
user), where (σ∗

user, σ
′∗
user) is signature. The transformation key TK and col-

lision are recorded in Q.
• Challenge. A computes the hash collision. If the following equation holds:

Hash Verify(m∗, h∗, r∗, σ∗
user) = Hash Verify(m ′∗, h∗, r ′∗, σ′∗

user), it returns 1;
else returns 0.

The advantage of A is defined as follows:

AdvCRA = Pr[A → 1] (2)

Definition 3. If AdvCRA is negligible for any PPT adversaries A, our scheme is
collision resistance.

Indistinguishability. Generally, indistinguishability implies that the adversary
cannot distinguish whether the randomness of a chameleon hash is generated by
the Hash algorithm or the Adapt algorithm. We define the following security
game between an adversary A and a challenger C:

• Setup. C executes the Auth Setup algorithm and sends public key to A.
• Query Phase. C selects a bit b ∈ {0, 1} randomly. A executes HashOrAdapt

queries OHashOrAdapt(., ., ., ., ., .), which takes global parameter GP , public key
pkAA, messages m, m′, an access policy A and TK = {TKi,gid}∀i as the input.
C runs Offline Hash and Online Hash algorithms and obtains (hb, rb, σuserb),
and subsequently returns them to A.

• Guess. A outputs its guess b′.

The advantage of A in the security game is defined as:

AdvINDA = |Pr[b = b′] − 1/2| (3)

Definition 4. For all PPT adversaries A, our scheme satisfies indistinguisha-
bility if AdvINDA is negligible.

Decentralized and Efficient Blockchain Rewriting 319

4 Instantiation

4.1 Construction of Our Scheme

The Setup phase consists of the following algorithms:

• Global Setup(λ) → GP . AA generates global parameters GP = (G1,G2, p, e)
by this algorithm, where G1 and G2 are bilinear groups of prime order p,
e is a bilinear map G1 × G1 → G2. The generator g of G1 is chosen. In
addition, a hash function H1 : {0, 1}∗ → G1 is determined, which projects
global identities gid to elements of G1. H1 is regarded as a random oracle.

• Auth Setup(GP) → (pkAA, skAA, pksig, sksig). Each authority is assumed to
be responsible for one attribute in our scheme. Each AA owning attribute
i chooses three exponents αi, yi, xi ∈ Zp and computes its public key
pkAA = {e(g, g)αi , gyi}∀i and secret key skAA = {αi, yi}∀i. It keeps (pksig =
{gxi}∀i, sksig = {xi}∀i as the key pair for signature.

• Modi Setup(GP) → (spk, ssk). TM randomly selects zm ∈ Zp and computes
(spk = gzm , ssk = zm) as its key pair.

The KeyGen phase is comprised of the following two algorithms:

• Rew KeyGen(GP, gid, i, skAA, sksig) → (SKi,gid, σi,gid). For an authority
owning attribute i, it executes operations listed below:
1) Computing SKi,gid = gαiH1(gid)yi as the rewriting secret key for gid.
2) Generating BLS signature σi,gid = H1(gid)xi for gid, and sending SKi,gid

and σi,gid to TM.
• Trans KeyGen(GP,SKi,gid) → TKi,gid. TM selects a randomness z ∈ Zp and

computes transformation key TKi,gid = (SK
1/z
i,gid,H1(gid)1/z) for attribute i.

The Hash phase consists of the following two algorithms:

• Offline Hash(GP) → (IC, IS). For attribute j, TO randomly selects expo-
nents λ′

j , α
′
j , y

′
j , ω

′
j , rj ∈ Zp, then computes

C ′
1j = e(g, g)λ′

j · e(g, g)α′
jrj ; C ′

2j = grj ;C ′
3j = gy′

jrj gω′
j ;

CT1j = e(g, g)αjrj · e(g, g)−α′
jrj ; CT2j = gyjrj g−y′

jrj .

Finally, {C ′
1j , C

′
2j , C

′
3j}∀j is reported as intermediate ciphertext IC, and

{CT1j , CT2j}∀j is regarded as intermediate state IS.
• Online Hash(GP, {pkAA}, IC, IS,A,m) → (h, r, σuser). TO executes the fol-

lowing operations:
1) TO defines a hash function H2 : {0, 1}∗ → Zp, then selects a randomness

r ∈ Z
∗
p and a trapdoor T , and finally computes h′ = gm · pr

CH , where
pCH = gH2(T).

2) TO publishes ciphertext CT = (A, C0, C
′
0, IC, {C ′

4j , C
′
5j}∀j , IS). A is

an n × l access matrix A with ρ mapping its rows to attributes. Given
a security hash function H3, TO chooses a randomness R ∈ G2, and

320 K. Zhang et al.

computes s = H2(R, T), u = H3(R). Then TO selects randomly a vector
v ∈ Z

l
p where s is the first entry of v and a vector w ∈ Z

l
p where 0 is the

first entry of w. Let λj denotes Aj · v, ωj denotes Aj · w, and Aj is the
jth row of A. The ciphertext is computed as:

C0 = R · e(g, g)s; C ′
0 = T ⊕ u; C ′

4j = λj − λ′
j ; C ′

5j = ωj − ω′
j .

3) TO owns a signing key pair (spk′, ssk′), where spk′ = gz0 ∈ G1 and
ssk′ = z0 ∈ Zp. It computes signature σuser = H1(h′ ‖ r̄)ssk′

, where
r̄ = gT+ssk′

denotes signed content.
Finally, TO outputs (h, r, σuser) = ((h′, pCH , CT), r, σuser), i.e. the hash, ran-
domness and signature.

The Verify phase consists of the following two algorithms:

• Aggre Verify(gid, {σi,gid}, pksig) → 0 or 1. For reducing the cost of trial-
and-error, The validity of rewriting secret key should be verified. TM aggre-
gates the signatures {σi,gid} from multiple authorities owning her attributes
into one signature σgid =

∏
i σi,gid. Similarly, TM aggregates the signing

public keys into PKsig =
∏

i(g
xi). The algorithm returns 1 if e(σgid, g) =

e(H1(gid), PKsig), and returns 0 otherwise.
• Hash Verify(m,h, r, σuser) → 0 or 1. Any entity could verify the transaction

content on blockchain by checking whether all of the following satisfy: h′ =
gm · pr

CH , e(σuser, g) = e(H1(h′ ‖ r̄), spk′). It returns 1 if all of them hold,
and returns 0 otherwise.

The Adapt phase consists of the following two algorithms:

• Part Decrypt(GP,CT, {TKi,gid}) → CT ′. PS takes GP , ciphertext CT
encrypted under access matrix A = (A, ρ) and transformation key {TKi,gid}
as the input. For Aj (jth row of A), PS computes C1j = C ′

1j ·CT1j ·e(g, g)C′
4j ,

C2j = C ′
2j , C3j = C ′

3j · CT2j · gC′
5j , then chooses constant cj ∈ Zp such that

∑n
j=1 cjAj = (1, 0, ..., 0), and computes CT1, CT2 as:

CT1 =
∏

j

⎛

⎝e(H1(gid)
1
z , C3j)

e(TK
1
z

j,gid, C2j)

⎞

⎠

cj

=
∏

j

(
e(H1(gid), g)

ωj
z

e(g, g)
rjαj

z

)cj

,

CT2 =
∏

j

(C1j)cj =
∏

j

(
e(g, g)λj e(g, g)αjrj

)cj
.

The partial decryption result CT ′ = (C0, C
′
0, CT1, CT2).

• Full Adapt(h, r,m,m′, {TKi,gid}, σuser) → (r′, σ′
user). The modifier holding

transformation key {TKi,gid} executes the following operations to rewrite
message m to be m′:
1) Verify the transaction content as described above (Sect. 4.1).

Decentralized and Efficient Blockchain Rewriting 321

2) Decrypt trapdoor T . TM computes R = C0/(CT1·CT
1
z
2)z and u = H3(R).

Subsequently, TM computes T = C ′
0 ⊕ u and s = H2(R, T). If C0 =

R · e(g, g)s and CT1 · CT
1
z
2 = e(g, g)

s
z , the trapdoor T is decrypted suc-

cessfully; Otherwise, it outputs ⊥.
3) Compute hash collision r′ = (m − m′)/H2(T).
4) Generate new signature σ′

user = H1(h′ ‖ r̄′)ssk for rewritten transaction,
where r̄′ = gT+ssk.

Finally, TM completes the rewriting operation and returns (r′, σ′
user).

4.2 Correctness Analysis

In this section, we analyze whether the chameleon trapdoor T can be correctly
calculated when TM’s rewriting secret key is valid and attributes satisfy the
access policy. Firstly, in the Part Decrypt algorithm, we have:

C1j = C′
1j ·CT1j ·e(g, g)C′

4j =e(g, g)λ′
j e(g, g)α′

jrj e(g, g)αjrj e(g, g)−α′
jrj e(g, g)λj−λ′

j

= e(g, g)αjrj e(g, g)λj ;

C2j = C′
2j = grj ;C3j = C′

3j · CT2j · gC′
5j = gy′

jrj gω′
j gyjrj g−y′

jrj gωj−ω′
j = gyjrj gωj ;

CT1 =
∏

j

⎛

⎝ e(H1(gid), g)
ωj
z

e(g, g)
rjαj

z

⎞

⎠
cj

=
1

e(g, g)
∑ cjrjαj

z

;

CT2 =
∏

j

(C1j)
cj =

∏

j

(
e(g, g)αjrj e(g, g)λj

)cj
= e(g, g)se(g, g)

∑
αjrjcj .

Secondly, in the Full Adapt algorithm, the correct R can be calculated by sub-
stituting C0 = R · e(g, g)s into the following equation:

C0
(
CT1 · CT

1
z
2

)z =
R · e(g, g)s

(
e(g, g)

∑ cjrjαj
z

(
e(g, g)se(g, g)

∑
αjrjcj

) 1
z

)z =
R · e(g, g)s

(
e(g, g)

s
z

)z =R.

Finally, the trapdoor T could therefore be calculated as: T = C ′
0 ⊕ H3(R).

4.3 Security Proof

In this section, we provide the security proof of the proposed scheme. The proofs
of collision resistance and indistinguishability were established in [9], and the
security proof of EUF-CMA was shown in [4]. Therefore, only the proof of the
RCCA security is given here.

Theorem 1. If the construction of Lewko-Waters (LW) scheme [18] is selec-
tively CPA security, then in the random oracle model, our proposed scheme is
RCCA security regarding Definition 1.

Proof. Suppose there exist an adversary A that can attack our scheme with
advantage ε for any probabilistic polynomial-time (PPT). We subsequently build
a simulator B that could successfully compromise the selective CPA security of
LW scheme with advantage slightly less than ε.

322 K. Zhang et al.

• Init. B runs A. A selects a challenge A
∗ and sends it to B. B transmits this

to the challenger of LW. We denote the LW challenger as C.
• Setup. B computes the public parameters PK = (e(g, g)αi , gyi) for all

attributes i, and sends them to A.
• Phase I. Then B initializes an empty set D, integer j = 0, and empty tables

T1, T2, T3. Subsequently, B answers the following queries from A:
– Random Oracle Hash H2(R, T): If there exists an entry (R, T, s) in T1,

returns s; otherwise, select s ∈ Zp, store (R, T, s) in T1 and return s.
– Random Oracle Hash H3(R): If there exists an entry (R, u) in T2, returns

u. Otherwise, select u ∈ {0, 1}k, store (R, u) in T2 and return u.
– Create(S): B sets j = j + 1. If S does not satisfy A

∗, B executes the key
generation algorithm to get SK ′ = (PK, {SKi,gid}i∈S). Then it selects
z ∈ Zp and sets TK = (PK, {SK

1/z
i,gid}i∈S) and SK = (z, TK). Else,

if S satisfies A
∗, B selects a randomness d ∈ Zp and computes SK ′ by

executing Rew KeyGen algorithm to construct a fake transformation key.
Subsequently, B sets TK = SK ′, SK = (d, TK) where TK is distributed
appropriately for suitable selection of d. Finally, B stores (j, S, SK, TK)
in T3 and returns TK to A.

– Corrupt(i). If entry (i, S, SK, TK) exists, B can obtain it, set D = D ∪S
and return SK to A.

– Decrypt(i, CT). Suppose the ciphertext has been partially decrypted,
both A and B could perform key transformation algorithm since they
possesses transformation key TK. Let CT = (C0, C

′
0, CT1, CT2) related

to A
∗. (i, S, SK, TK) is acquired if it exists in T3, and ⊥ is returned if

not or S /∈ A
∗. In addition, if key i does not satisfy A

∗, the following
operations are performed:

1) Parse SK = (z, TK), and calculate R = C0/(CT1 · CT
1/z
2)z.

2) Obtain (R, Ti, si) from T1 if exists; otherwise return ⊥.
3) If ∃y �= x that satisfies (R, Ty, sy) and (R, Tx, sx) are presented in T1,

Ty = Tx and sy = sx, the simulation is terminated.
4) Otherwise, retrieve (R, u) from T2 if it exists. Else return ⊥.
5) Verify if C0 = R · e(g, g)si , C ′

0 = Ti ⊕u, CT1 ·CT
1/z
2 = e(g, g)si/z for each

i.
6) If attribute i exists and could pass the aforementioned checking, output

Ti, else ⊥.

If there exists i that satisfies A
∗, then perform operations listed below:

1) Parse SK = (d, TK), and calculate β = (CT1 · CT
1/d
2)d.

2) Check whether β = e(g, g)si for each entry (R, Ti, si) in T1.
3) If no such entry exists, B returns ⊥.
4) If the entry that meets the condition is not unique, B terminates the

operation.
5) Otherwise, let (R, T, s) to be the only entry satisfied. Then obtain (R, u)

from T2 if it exists, otherwise output ⊥.

Decentralized and Efficient Blockchain Rewriting 323

6) B verifies if C0 = R · e(g, g)s, C ′
0 = T ⊕ u, (CT1 · CT

1/d
2)d = e(g, g)s.

7) Output T if all conditions are met, else return ⊥.

• Challenge. A sets two messages (T ∗
0 , T ∗

1). B randomly selects messages
(R0, R1) ∈ G2

2, then calls C to get ciphertext CT = (C0, {C1j , C2j , C3j}∀j)
with A

∗. B randomly selects C ′
0 ∈ {0, 1}k and sends A the challenge cipher-

text CT ∗ = (C0, C
′
0, {C1j , C2j , C3j}∀j).

• Phase II. B performs the same answers operation as in Phase I except that
the decryption query is either T ∗

0 or T ∗
1 , then produces the test message.

• Guess. A should output a bit otherwise terminate the operation, while B
would ignores it in any cases. B examines if any entry in T1 and T2 contains
R0 or R1 as its first element. If neither randomness meets the condition, B
returns its guess in {0, 1}. If only Rb exists, B outputs b. If a correct guess is
proposed by A, it implies that A is aware of Rb with probability ε and Rb is
retrieved through H1 or H2 oracle with ε. Then, B could produce a correct
guess with the probability slightly larger than ε.

Therefore, if A could break our scheme with the given advantage ε, then with
the same advantage, B could break the LW scheme [18]. Hence, the Theorem 1.

5 Performance Analysis

In this section, we evaluate the performance of our proposed scheme from the
perspective of functionality comparison and computational burden.

Functionality Comparison. Table 1 provides the functionality comparison
among our proposed scheme and several related rewritable blockchain schemes
[9,10,14,28,33]. It is seen that our scheme is the only one that satisfies all of the
properties, i.e. decentralized rewriting, fine-grained access control, offline/online
hash, outsourced computation, and bi-level validity verification. Centralized
attribute authority is not required in our scheme, instead, multiple attribute
authorities share the responsibility for the distribution of the rewriting secret key.
The schemes in [9,14,28] cannot support decentralized rewriting. The scheme in
[14] makes use of multiple attribute authorities, nevertheless, it still requires

Table 1. Functionality comparison

References [10] [9] [28] [33] [14] Ours

Decentralized rewriting � × × � × �
Fine-grained access control × � � � � �
Offline/Online hash – × × × � �
Outsourced computation – × × × � �
Bi-level validity verification – × × × × �

“�”:Well-done; “×”:Not achieved; “–”:Considered but needs
further implements.

324 K. Zhang et al.

authorities to negotiate and share the same private key, implying that decen-
tralization is not implemented in essence. The scheme in [10] cannot implement
fine-grained access control. The scheme in [33] cannot perform offline/online
hash and outsourced computation, as a result, users with resource-constrained
devices may struggle to use in practice. Moreover, none of the above schemes
have implemented the bi-level verification in blockchain rewriting.

Computational Burden. We implement our scheme in Python 3.8 and the
Charm framework [1] on a workstation with Intel Xeon(R) E5-1620v4 CPU
3.50GHz and 128GB RAM. We adopt Type A curve from Pairing-Based Cryp-
tography library for pairing, which has base field size of 512 bits. Specifically,
we measure the running times of five major algorithms.

For comprehensive and fair comparison, we increase the attribute size from
10 to 100, and the corresponding access policy is set in the form of “(S1 and S2)
or (S3 and S4) or...”, where Si denotes an attribute. Each instance is run 100
times to estimate the average running time.

As illustrated in Fig. 2, the running times are basically invariant with the
numbers of attributes in Setup/Global Setup1 algorithms for each scheme, while
our scheme achieves better performance. We conclude the reason is that our
scheme dispenses with complex operations such as generating master keys dur-
ing the setup phase, due to the decentralized design. Figure 3 shows that the
running times of KeyGen/Rew KeyGen algorithms grow approximately linear
as attributes increasing in each scheme. The running time of our scheme is
acceptable, which is less than most other schemes and only slightly higher than
scheme in [9]. Figure 4 illustrates the running times of Hash/Online Hash algo-
rithms with the size of policies increasing. It is seen that the running time of
our scheme is always kept to the lowest, while is present as increasing functions
of policies for other schemes. It is due to the fact that the majority of com-
putations (e.g. computation of IC and IS) are executed offline, which reduces

Fig. 2. Running time of Setup/Global
Setup

Fig. 3. Running time of KeyGen/Rew
KeyGen

1 Algorithms separated by slashes represent functionally identical stages in various
schemes, albeit with different names.

Decentralized and Efficient Blockchain Rewriting 325

Fig. 4. Running time
of Hash/Online Hash

Fig. 5. Running time of
Verify/Hash Verify

Fig. 6. Running time of
Adapt/Full Adapt

the online computation cost. Likewise, as demonstrated in Fig. 5, our scheme
and [33] achieve better performance in Verify/Hash Verify algorithm. It takes
0.004 s to execute the algorithm with 100 attributes for our scheme, which is
0.011 s less than [28]. Moreover, our scheme achieves satisfactory running time
in Adapt/Full Adapt algorithm with increasing size of polices (shown in Fig 6).
For reducing the computation burden of users, the majority of the computa-
tions in Adapt phase are separated out and executed by the proxy sever (partial
decryption) in our scheme. As a result, with increasing size of policies, the run-
ning time of our scheme remains stably at the lowest, whereas of the schemes in
[9,28] grow appreciably.

6 Conclusion

In this paper, we proposed a scheme of decentralized and efficient blockchain
rewriting with bi-level validity verification. The scheme overcomes the limita-
tion of requiring a single trusted authority for the distribution of modification
permissions compared to previous schemes, and supports multiple authorities to
jointly manage and distribute the rewriting secret key. Meanwhile, the arrange-
ment that separating the hash computation and the decryption into two stages
can significantly reduce the computational burden on the user side, which is
more conducive to the application in practice. Furthermore, the scheme sup-
ports validity verification for the modifier to check the validity of rewriting secret
keys, as well for any entity to verify the content on blockchain. To the best of our
knowledge, our scheme is the first to simultaneously support properties of decen-
tralization, offline/online hash, outsourced computation and bi-level validity ver-
ification. Finally, extensive experimental results demonstrate that our scheme is
advantageous in both functionality and performance.

Acknowledgements. We thank the anonymous reviewers for the valuable comments
and suggestions. This work is supported by the National Natural Science Foundation
of China (No. 62072359, No. 62072352, No. 61902292).

326 K. Zhang et al.

References

1. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems.
J. Cryptographic Eng. 3(2), 111–128 (2013)

2. Ateniese, G., Magri, B., Venturi, D., Andrade, E.: Redactable blockchain-or-
rewriting history in bitcoin and friends. In: 2017 IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 111–126. IEEE (2017)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), 20–23 May
2007, Oakland, California, USA, pp. 321–334. IEEE Computer Society (2007)

4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryp-
tology 17(4), 297–319 (2004)

5. Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.:
Chameleon-hashes with ephemeral trapdoors. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10175, pp. 152–182. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54388-7 6

6. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

7. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-70936-7 28

8. De Aguiar, E.J., Faiçal, B.S., Krishnamachari, B., Ueyama, J.: A survey of
blockchain-based strategies for healthcare. ACM Comput. Surv. (CSUR) 53(2),
1–27 (2020)

9. Derler, D., Samelin, K., Slamanig, D., Striecks, C.: Fine-grained and controlled
rewriting in blockchains: chameleon-hashing gone attribute-based. In: 26th Annual
Network and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, 24–27 February 2019. The Internet Society (2019)

10. Deuber, D., Magri, B., Thyagarajan, S.A.K.: Redactable blockchain in the per-
missionless setting. In: 2019 IEEE Symposium on Security and Privacy (SP), pp.
124–138. IEEE (2019)

11. Dutta, P., Choi, T.M., Somani, S., Butala, R.: Blockchain technology in supply
chain operations: applications, challenges and research opportunities. Transp. Res.
Part E: Logist. Transp. Rev. 142, 102067 (2020)

12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006, Alexandria, VA,
USA, October 30 - November 3, 2006, pp. 89–98. ACM (2006)

13. Guo, F., Mu, Y., Chen, Z.: Identity-based online/Offline encryption. In: Tsudik, G.
(ed.) FC 2008. LNCS, vol. 5143, pp. 247–261. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85230-8 22

14. Guo, L., Wang, Q., Yau, W.-C.: Online/offline rewritable blockchain with auditable
outsourced computation. IEEE Trans. Cloud Comput., 1 (2021). https://doi.org/
10.1109/TCC.2021.3102031

15. Hohenberger, S., Waters, B.: Online/Offline attribute-based encryption. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54631-0 17

https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-540-85230-8_22
https://doi.org/10.1007/978-3-540-85230-8_22
https://doi.org/10.1109/TCC.2021.3102031
https://doi.org/10.1109/TCC.2021.3102031
https://doi.org/10.1007/978-3-642-54631-0_17

Decentralized and Efficient Blockchain Rewriting 327

16. Krawczyk, H., Rabin, T.: Chameleon signatures. In: Proceedings of the Network
and Distributed System Security Symposium, NDSS 2000, San Diego, California,
USA (2000)

17. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: attribute-based encryption and (Hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–
91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

18. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

19. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 12

20. Lewko, A.B., Waters, B.: Decentralizing attribute-based encryption. In: Proceed-
ings of Advances in Cryptology - EUROCRYPT 2011–30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tallinn,
Estonia, 15–19 May 2011, vol. 6632, pp. 568–588 (2011)

21. Li, J., Zhang, Y., Ning, J., Huang, X., Poh, G.S., Wang, D.: Attribute based
encryption with privacy protection and accountability for cloudiot. IEEE Trans.
Cloud Comput. 10, 762–773 (2020)

22. Maram, S.K.D., et al.: Churp: dynamic-committee proactive secret sharing. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 2369–2386 (2019)

23. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus.
Rev. 21260 (2008)

24. Puddu, I., Dmitrienko, A., Capkun, S.: µchain: How to forget without hard forks.
Cryptology ePrint Archive (2017)

25. Qi, S., Lu, Y., Zheng, Y., Li, Y., Chen, X.: Cpds: enabling compressed and private
data sharing for industrial internet of things over blockchain. IEEE Trans. Ind. Inf.
17(4), 2376–2387 (2020)

26. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

27. Thyagarajan, S.A.K., Bhat, A., Magri, B., Tschudi, D., Kate, A.: Reparo: publicly
verifiable layer to repair blockchains. In: Borisov, N., Diaz, C. (eds.) FC 2021.
LNCS, vol. 12675, pp. 37–56. Springer, Heidelberg (2021). https://doi.org/10.1007/
978-3-662-64331-0 2

28. Tian, Y., Li, N., Li, Y., Szalachowski, P., Zhou, J.: Policy-based chameleon hash for
blockchain rewriting with black-box accountability. In: Annual Computer Security
Applications Conference, pp. 813–828 (2020)

29. Tian, Y., Liu, B., Li, Y., Szalachowski, P., Zhou, J.: Accountable fine-grained
blockchain rewriting in the permissionless setting. arXiv preprint arXiv:2104.13543
(2021)

30. Voigt, P., von dem Bussche, A.: The EU General Data Protection Regulation
(GDPR), vol. 1. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-
7

31. Xie, M., Ruan, Y., Hong, H., Shao, J.: A CP-ABE scheme based on multi-authority
in hybrid clouds for mobile devices. Future Gener. Comput. Syst. 121, 114–122
(2021)

https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-662-64331-0_2
https://doi.org/10.1007/978-3-662-64331-0_2
http://arxiv.org/abs/2104.13543
https://doi.org/10.1007/978-3-319-57959-7
https://doi.org/10.1007/978-3-319-57959-7

328 K. Zhang et al.

32. Yu, Y., Guo, L., Liu, S., Zheng, J., Wang, H.: Privacy protection scheme based on
CP-ABE in crowdsourcing-IoT for smart ocean. IEEE Internet Things J. 7(10),
10061–10071 (2020)

33. Zhang, Z., Li, T., Wang, Z., Liu, J.: Redactable transactions in consortium
blockchain: controlled by multi-authority CP-ABE. In: Baek, J., Ruj, S. (eds.)
ACISP 2021. LNCS, vol. 13083, pp. 408–429. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-90567-5 21

https://doi.org/10.1007/978-3-030-90567-5_21
https://doi.org/10.1007/978-3-030-90567-5_21

Cryptography

TERSE: Tiny Encryptions and Really
Speedy Execution for Post-Quantum

Private Stream Aggregation

Jonathan Takeshita1, Zachariah Carmichael1, Ryan Karl2, and Taeho Jung1(B)

1 University of Notre Dame, Notre Dame, IN 46556, USA
{jtakeshi,zcarmich,tjung}@nd.edu

2 Carnegie Mellon University, Pittsbufgh, PA 15213, USA

Abstract. The massive scale and performance demands of privacy-
preserving data aggregation make integration of security and privacy dif-
ficult. Traditional tools in private computing are not well-suited to han-
dle these challenges, especially for more limited client devices. Efficient
primitives and protocols for secure and private data aggregation are a
promising approach for private data analytics with resource-constrained
devices. However, even such efficient primitives may be much slower than
computation with plain data (i.e., without security/privacy guarantees).

In this paper, we present TERSE, a new Private Stream Aggregation
(PSA) protocol for quantum-secure time-series additive data aggrega-
tion. Due to its simplicity, low latency, and low communication overhead,
TERSE is uniquely well-suited for real-world deployment. In our imple-
mentation, TERSE shows very low latency for both clients and servers,
achieving encryption latency on a smartphone of 0.0003 ms and aggre-
gation latency of 0.0067 ms for 1000 users. TERSE also shows signifi-
cant improvements in latency over other state-of-the-art quantum-secure
PSA, achieving improvements of 1796× to 12406× for encryption at the
client’s end and 848× to 5433× for aggregation and decryption at the
server’s end.

Keywords: Public key cryptosystems · Lattice-based cryptography ·
Private Stream Aggregation

1 Introduction

Motivation. In modern computing and data analytics, aggregating a sum on
data from many users is a frequently encountered problem. Ensuring security and
privacy of user data in such aggregations while maintaining enough performance
for practical deployment is a challenging issue, and is necessary to consider in
order to comply with regulations for user protection such as GDPR. Secure
and private data aggregation plays an important role in modern data analysis
[31,37,57,66,67], with applications in statistical computation, smart metering,
voting, advertising analytics, and federated learning. At the massive scale of

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 331–352, 2023.

https://doi.org/10.1007/978-3-031-25538-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_18&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_18

332 J. Takeshita et al.

the modern Internet, with billions of users and devices [1], there is a need for
high-performance implementations to perform high-scale aggregations. The huge
scale and unique characteristics of the modern era of computing world presents
new challenges that require novel solutions.

There exist general cryptographic tools for secure and private computation.
However, the generality and pitfalls of these tools make them unattractive or infea-
sible for real-world deployment. Homomorphic encryption [20,26,33] allows com-
putation over encrypted data, but its computational intensity and ciphertext size
are too high for use on resource-limited devices [64]. Secure multiparty computa-
tion [42] requires robust lines of communication for use in multiple rounds of com-
munication, which may not be available in all locales, such as those in developing
nations. Trusted Execution Environments such as Intel SGX [28] offer confiden-
tial computing, but face challenges at scale [53,72]. These challenges necessitate
the development of efficient custom-built protocols for secure data aggregation.

To facilitate efficient secure and private aggregation, the study of Private
Stream Aggregation (PSA) protocols has been undertaken and advanced in recent
years [15,22,29,32,39–41,43,44,60,63,69]. Research in this area has focused on
efficiency, though there is also work in fault tolerance and robustness. Many solu-
tions for secure and private data analytics and outsourced computing focus on
throughput on a large body of data [8,9,27,45,56,63]. In real-world deployments,
the latency of a single computation, as opposed to the throughput across many
epochs of time-series data, is of vital importance in real-time monitoring and
reporting. Previous advances in secure aggregation have faced issues such as lim-
ited plaintext space, a lack of quantum security for future protection against
quantum-capable attackers, high complexity and overhead due to the large cipher-
text expansion, or focusing on throughput at the expense of latency due to the
inherent computational intensity coming from the large ciphertext expansion.

Our Work. In this work, we present a more efficient PSA protocol with quan-
tum security, minimal latency and communication overhead. Our new protocol
TERSE: Tiny Encryptions and Really Speedy Execution for Post-Quantum
PSA is truly practical for latency-critical applications, satisfying the require-
ments of high performance without sacrificing guarantees of security and pri-
vacy. As online (input-dependent) computations are most critical for latency, we
consider this metric of latency of input-dependent operations as what users are
most interested in. For this reason, we focus on reducing the online costs of com-
putation and communication as much as possible. Our research goal is thus to
construct efficient RLWE-based PSA overcoming these issues. TERSE’ cipher-
texts are quantum secure via RLWE, and its trusted setup can be implemented
with quantum-secure TEE-based symmetric encryption [18,52] and quantum-
secure signature schemes for TEE [17].

Our construction is enabled by three insights: 1) giving adversary RLWE sam-
ples one coefficient at a time does not improve their advantage, 2) no input-
dependent ring polynomial multiplication is required for additive lattice-based
PSA, and 3) lattice-based PSA inputs that are ring polynomials can have input
encoded coefficientwise. Combining these, we construct a novel PSA protocol using
single coefficients of ring polynomials, resulting in much smaller ciphertexts and

TERSE: Tiny Encryptions and Really Speedy Execution 333

extremely efficient input-dependent encryption and aggregation. Our protocol
mitigates the practical disadvantages ofRLWE-based cryptography by performing
PSAwith ring polynomials one coefficient at a time, and byprecomputing intensive
computations in advance of having inputs ready. This novel construction addresses
the large ciphertext expansion that was inherent in previous lattice-based secure
aggregation schemes, significantly reducing the latency of each aggregation. We
show the real-world practicality of our novel construction with implementation
results of both users and aggregators.

Our Contributions

1. We present TERSE, the first RLWE-based PSA scheme that can provide
both low latency and high throughput, greatly reducing the size of a cipher-
text for a single input. These novel traits allow TERSE to achieve operation
latency measured in microseconds, making TERSE uniquely well-suited for
performance-critical deployments.

2. We discuss the extension of TERSE with both well-known and cutting-edge
extensions such as efficient ring polynomial arithmetic through RNS and
NTT, SGX-based fault tolerance, and differential privacy. These extensions
further support our goal of making private stream aggregation practically
feasible for real-world use.

3. We implement TERSE and show experimental results demonstrating its per-
formance and comparing it with plaintext aggregation. For n = 1000 users
and a plaintext space of |t| = 32 bits, TERSE encryption achieves a latency
of only 0.0003 ms, and aggregation and decryption run in 0.0067 ms. Our
experiments with increasing numbers of users shows that TERSE is practi-
cally scalable for real-world deployments.

2 Related Work

2.1 Pre-Quantum PSA

The work of Shi et al. [60] established the field of PSA, creating the basic
definitions and the first construction. The work of Shi et al. and Joye et al.
rely respectively on the Decisional Diffie-Hellman (DDH) and the Decisional
Composite Residuosity assumptions [38,60]. Other work based on the Discrete
Logarithm problem has been proposed [39,41]. PSA has also been constructed
for use in smart metering [58,62]. Chen et al. [24] presented a PSA scheme
with dynamic joins/leaves and input tampering detection, based upon the DDH
assumption. Wang et al. [70] created a scheme based on the Pallier cryptosystem
[55] with fault tolerance and dynamic joins/leaves. These protocols are not secure
against quantum-capable adversaries [61]; recent research has turned towards
post-quantum PSA.

2.2 Post-Quantum PSA

The LaPS protocol [15] presented a PSA protocol integrating quantum security,
improving upon previous bounds on the plaintext space, a generic and modular

334 J. Takeshita et al.

protocol with an instantiation, and the first implementation of a lattice-based
PSA scheme. However, LaPS has several issues: it is extremely and needlessly
complicated, and requires the black-box use of an FHE scheme (BGV [20] was
used in their instantiation), reducing its practicality. Further, its security with
the “encrypt-once” model is subject to a simple attack [69], though this can be
mitigated by requiring fresh public matrices at each timestamp.

The SLAP protocol [63] presented many improvements over LaPS. Instead
of using an FHE scheme as a black-box subprotocol, SLAP used custom-built
RLWE-based cryptographic constructions for PSA. Due to this, SLAP is much
simpler than LaPS and is much more lightweight, with computational improve-
ments over LaPS of 20× for aggregation and 65× for user-side encryption, and
ciphertexts that are up to 2730× smaller at larger parameters. SLAP showed
large improvements over LaPS in throughput for communication and computa-
tion, as well as in complexity. However, SLAP, like LaPS, is still subject to the
high degree of ciphertext expansion common to RLWE encryption, resulting in
higher latency and communication overhead. Both LaPS and SLAP operate in
the encrypt-once model, where an adversary only sees a single ciphertext for a
user at a given time. While this model is sufficient for most practical purposes,
stronger ones have been proposed [69].

Other quantum-secure schemes with even lower latency have also been pre-
sented that manage to have smaller ciphertexts by not using RLWE. The LaSS
scheme of Waldner et al. [69] uses secret sharing, and the scheme of Ernst et al.
[32] uses a “deterministic version of the LWE [Learning With Errors] problem”
known as Learning With Rounding (LWR) and key-homomorphic pseudoran-
dom functions. Both schemes achieve runtimes on the order of milliseconds and
have smaller input-dependent communication overhead. These schemes do have
some issues: LaSS’s per-user keys are linear in the number of users, i.e., the total
number of keys is quadratic in the total number of users, making practical deploy-
ment for memory-limited IoT devices infeasible for larger numbers of users. The
security of LWR, upon which [32] is dependent, is still in contention due to the
deterministic rounding used [30]. Multi-key fully homomorphic encryption can
also be applied to PSA, but is too general and burdensome to be appealing for
IoT deployments [6,54]. Bao et al. used AES with noninteractively generated
keys for PSA with message integrity [13].

2.3 PSA for IoT and Limited Devices

Lu et al. [51] constructed a PSA scheme using modified Pallier encryption and
message authentication codes to form IoT-friendly PSA with protection against
input tampering. Zhuo et al. [71] created a cloud-assisted protocol to compute
on users’ aggregated data, relying on the Diffie-Hellman and discrete logarithm
assumptions and the BGV homomorphic encryption scheme. He et al. [36] create
a scheme with the discrete logarithm and Diffie-hellman assumptions aimed at
smart grids, which is able to withstand many different types of internal attacks.
Li et al. [48] construct private dual-function aggregation by relying on the BGV
homomorphic encryption scheme [19]; their scheme’s practical performance is
difficult to infer, as they only give an asymptotic performance analysis.

TERSE: Tiny Encryptions and Really Speedy Execution 335

3 Background

3.1 Private Stream Aggregation

We consider the scenario where n users send inputs to a cloud server that is
tasked with summing all user inputs. We assume that channels of communication
are authenticated and nonmalleable; attackers impersonating users or modifying
their messages in transit are outside the scope of this work. We use an honest-
but-curious adversary model, where an adversary may view compromised parties’
data, but will otherwise faithfully execute the protocol. This attacker model
is commonly used for work in PSA [15,32,60,69]. PSA schemes are formally
described with the following three algorithms:

1. Setup(λ ∈ N, · · ·): Takes a security parameter λ ∈ N, along with other param-
eters such as the number of users and the plaintext space. Distribute secret
keys si to each user and an aggregation key s′ to the aggregator, and dis-
tribute publicly known parameters to all parties.

2. Enc(si, ts, xi,ts, ri,ts): Takes a user’s input xi,ts at a particular timestamp
ts, possibly along with differentially private noise ri,ts. User i will call this
function with their secret key si. Returns a ciphertext ci.

3. Agg(s′, ts, c0,ts, · · · , cn−1,ts): The aggregator will call this function at times-
tamp ts, using its aggregation key s′. It will aggregate the ciphertexts
c0,ts, · · · , cn−1,ts, and output yts =

∑n−1
i=0 xi,ts + ri,ts.

Intuitively, we want to require that any adversary against a PSA scheme
learns nothing more than they would when executing an idealized, black-box
protocol that allows the aggregator to learn the sum of users’ data. Inherent
in this definition is that an adversary compromising the aggregator and n − 1
users can inevitably learn information about the last user’s data. In general, col-
lusions of users and the aggregator have the ability to learn about information
from uncorrupted users. This is a common issue in privacy-preserving protocols;
preserving user privacy in the face of such attacks is a problem left to differential
privacy. The Setup functionality is assumed to be performed by a trusted party,
or collaboratively in a trusted format (e.g., using secure multiparty computa-
tion).

In the encrypt-once model, we assume that users will only produce a single
input per timestamp. This model is used in prior work [15,63], and is a reasonable
model of how real-world PSA deployments would function.

3.2 Definition of Security

Definition 1. A PSA scheme is aggregator oblivious in the encrypt-once model
if any probabilistic polynomial-time (PPT) adversary has no more than negligible
advantage with respect to a security parameter λ in the following security game:
Setup. The challenger runs the Setup algorithm, returning any public parameters
to the adversary.
Queries. The adversary may make up to poly(λ) of following types of queries
adaptively:

336 J. Takeshita et al.

– Encrypt: The adversary may specify (i, ts, xi,ts, ri,ts) and ask for the cipher-
text. The challenger returns the ciphertext ci,ts = Enc(si, ts, xi,ts, ri,ts) to the
adversary.

– Compromise: The adversary specifies a party i ∈ [0, n) ∪ {�}. If i = �, the
challenger returns the aggregator’s decryption key s′ to the adversary (i.e.,
the aggregator is compromised.). Otherwise, the challenger returns user i’s
secret key si, to the adversary (i.e., user i is compromised).

– Challenge: This query is only made once. The adversary specifies a set of
participants U and a time ts, such that neither ts nor any i ∈ U was pre-
viously argued to Compromise. For each user i ∈ U , the adversary chooses
a pair of inputs (user input, along with noise if applicable) (x0

i,ts, r
0
i,ts) and

(x1
i,ts, r

1
i,ts). The challenger then chooses a random bit b, and returns the

ciphertexts {ci,ts = Enc(si, ts, x
b
i,ts, r

b
i,ts)}i∈U to the adversary.

Guess. The adversary attempts to guess b.
The adversary wins if they can guess the bit b, and if the aggregator was

compromised, then
∑

x0
i,ts + r0i,ts =

∑
x1

i,ts + r1i,ts.

Aggregator obliviousness essentially states that nothing more leaks from the
protocol’s execution than what a collusion of parties can derive from their inputs
and output [60].

3.3 Ring Learning with Errors

Many modern cryptographic constructions draw their hardness assumptions
from the Ring Learning With Errors (RLWE) problem, due to its conjec-
tured difficulty for quantum adversaries and convenient mathematical struc-
ture. We briefly summarize RLWE here; the reader is referred to other work
for a more in-depth discussion of RLWE [33,52]. Consider the negacyclic ring
Rq = Zq[x]/(xN + 1) for a large number q and power-of-two N . We denote the
modular reduction of x modulo q as [x]q, which is applied coefficientwise to poly-
nomials. For a desired security level λ ∈ N, there exist standard choices for q
and N to guarantee at least λ bits of security in solving the RLWE problem for
these parameters [4,5]. We say that a distribution is B-bounded if the values
drawn from it have an infinity norm bounded above by B with all but negligible
probability.

The RLWE problem is as follows: let s be chosen randomly from Rq, and
consider random distributions χ, ζ on Rq. In practice, the distribution ζ is often
chosen to be 1-bounded [33], while χ is uniformly random on Rq. Summarized
succinctly, the RLWE problem states that terms of the form [Ai ·s+ei]q or [Ai ·
s+t ·ei]q are computationally indistinguishable from random when gcd(q, t) = 1,
Ai ← χ is publicly known, and ei ← ζ [16,20,59].

In RLWE-based cryptosystems, elements of Rq are large objects, using kilo-
bytes or even megabytes of memory [65]. RLWE-based cryptosystems thus super-
ficially seem impractical for secure aggregation with resource-limited devices.
Our key innovation is a novel strategy to allow using only small portions of

TERSE: Tiny Encryptions and Really Speedy Execution 337

these terms, keeping the guarantee of quantum security, while achieving the
functionality of additive aggregation.

3.4 The Random-Oracle Model

In cryptography, it is often convenient to assume the existence of a “random-
oracle” hash function. A random-oracle hash function operates as a black-box
functionality available to users, guaranteeing them random output for given
inputs with the caveat that identical inputs will yield identical outputs. While
the assumption of the existence of random-oracle hash functions was previously
contentious [21], there is little practical evidence of any security risks from using
random-oracle hashes [46].

4 Basic Construction

In this section, we review the previous state-of-the-art quantum-secure aggrega-
tion scheme, and show how to modify it for more efficient aggregation. We then
show it satisfies the security definition of aggregator obliviousness. Guaranteeing
user input privacy through the addition of differentially private noise is not our
novel contribution, and is left to Sect. 5.1.

4.1 Prior State-of-the-Art RLWE-Based PSA

The LaPS protocol [15] brought several new developments in PSA, including
post-quantum security, more generous plaintext spaces, and better efficiency.
Their efficiency gains were demonstrated with their implementation and more
thorough experimental results, as compared to previous work. However, LaPS
left much room for improvement; it is overly complex, affecting both usability
and practical performance. This was partially due to their use of FHE.

The SLAP scheme [63] improved upon these issues by eschewing the black-
box approach to additive homomorphism used by LaPS. Instead, SLAP used
purpose-built homomorphic lattice arithmetic in their scheme. This resulted in
more efficient operations and much smaller ciphertexts. SLAP also found that
noise-scaled message encoding is more efficient than message-scaled encoding; we
follow their example by using noise-scaled encoding in TERSE. SLAP focused
on practical throughput from message packing, but their latency was slightly
greater than that of other state-of-the-art post-quantum PSA [32,69]. However,
these schemes not using RLWE have disadvantages such as large key storage
requirements or doubts on security [30], which leads us to focus on optimizing
RLWE-based PSA.

SLAP and LaPS have some similarities. First, being related to RLWE or its
A-LWE variant, public values A dependent on a timestamp were (or should have
been) used. As is common to many PSA schemes [38,60], additively correlated
secret keys are used. While SLAP represented a great leap forward in the state
of the art, it still faced limitations in communication overhead. The ciphertexts

338 J. Takeshita et al.

of SLAP are ring polynomials in Rq, which may be as large as megabytes for
common parameter settings. This makes it less practical for highly constrained
users. SIMD batching still helps SLAP achieve high throughput, but the overall
ciphertext size cannot be reduced. This necessitates either filling the remaining
SIMD slots with junk data (greatly reducing throughput), or waiting for enough
data to fill a ring polynomial, which may be undesirable in time-sensitive aggre-
gations. These schemes consider security in the encrypt-once model, assuming
each user will only produce a single encryption at a given timestamp – a reason-
able security model for most applications.

Other work in quantum-secure PSA not using RLWE [32,69] is able to achieve
much smaller ciphertexts. However, these schemes have some disadvantages. The
security of the Learning With Rounding problem upon which [32] is based is
of concern [30]. Using secret-sharing for aggregation [69] is not practical for
large numbers of users, due to the quadratic growth in key storage needed. It is
thus desirable to construct RLWE-based secure stream aggregation with smaller
ciphertexts.

4.2 A More Performant Protocol: TERSE

We now show how to further break down lattice arithmetic for an even more
efficient protocol, with smaller ciphertexts. Our path forward hinges on a few key
ideas: first, with precomputation of user values, no expensive input-dependent
polynomial multiplication is required, and the computation of these terms can be
done ahead of time or prepared concurrently. (Phones and other limited devices
can do this while plugged in and idling, or in a separate process, or they may
outsource the precomputations to a synced computer.) This means that all input-
dependent polynomial arithmetic is only addition, scalar multiplication, and base
conversion, which can be done coefficient-wise. Second, transmitting elements of
Rq one coefficient at a time does not give adversaries any additional information
about users’ secret data. Third, SLAP can apply a simple coefficient-wise SIMD
batching to improve the throughput of their scheme. Packing the coefficients in
this manner means that coefficients can be packed into a polynomial or extracted
at any point in the addition-only computation, without affecting correctness.

Combining these insights gives us the core idea: we can perform aggregation
and decryption one polynomial coefficient at a time, which does not impact
security or correctness, and reduces the ciphertext size needed to send a single
element of Zt by a factor of N , which usually ranges from 210 to 216. We can
now describe TERSE, which applies the key ideas above. Essentially, we parse a
timestamp into two parts, with one part used to index coefficients of polynomials
in Rq. Then, we simply use coefficients at that index from the precomputed
product of the user’s secret key and the public hash.

Let λ ∈ N be the bits of guaranteed security, and let Aθ = h(θ) be a random-
oracle hash function mapping the high bits θ of timestamps ts = (θ, τ) to Rq.
We consider a small error distribution ζ and a uniformly random distribution
χ, drawing either polynomials or singleton values from Rq or Zq as appropriate.
Denote the i-th coefficient of a polynomial x as x[i]. Differential privacy is an

TERSE: Tiny Encryptions and Really Speedy Execution 339

orthogonal extension, as discussed in Sect. 5.1, so we do not go into detail on
the mechanisms of differentially private noise added through the terms ri,ts. We
describe TERSE as follows:

1. TERSE.Setup(λ, t, n): For a plaintext space of Zt and n users, choose the
ciphertext modulus q such that log2(3) + log2(n) + log2(t) < log2(q) and q, t
are coprime. Choose N to ensure at least λ bits of security for the RLWE
problem on Rq [4,5], and H(·) to be a random hash mapping timestamps to
Rq. Choose users’ secret keys s0 · · · sn−1 randomly from χ. Finally, choose
the additively correlated aggregator’s key s′ = −[

∑n−1
i=0 si]q. Users and the

aggregators parse timestamps into most significant and least significant bits
as ts = (θ, τ), with τ ∈ ZN , i.e., τ is represented using up to |N | bits.

2. TERSE.Enc(si ∈ Rq, ts = (θ, τ), xi,ts ∈ Zt, ri,ts ∈ Zt): Choose the user’s
RLWE error ei,ts ∈ Zt from ζ. Set pi,ts = (Aθ · si)[τ]. (Note that these steps
can and should be precomputed before the user’s time-series input xi,ts is
available.) The user’s ciphertext is ci,ts = [pi,ts + t · ei,ts + [xi,ts + ri,ts]t]q.

3. TERSE.Agg(s′ ∈ Rq, ts = (θ, τ), c0,ts · · · cn−1,ts): Precompute p′
ts = (Aθ ·

s′
i,ts)[τ]. The sum of users’ inputs xi,ts is yts = [[p′

ts +
∑n−1

i=0 ci,ts]q]t.

Correctness is easy to see. Note that p′
ts = −∑

pi,ts. Then [p′
ts +

∑n−1
i=0 ci,ts]q = [

∑n−1
i=0 t·ei,ts+[xi,ts+ri,ts]t]q. Reducing this modulo t removes the

noise terms, and we avoid noise overflow so long as the bounds in TERSE.Setup
are observed.

Note that the input-dependent portion of encryption in TERSE is extremely
simple, requiring only base conversion from base t to base q, followed by one mod-
ular addition in base q. Similarly, the online portion of aggregation of TERSE
only needs the additive aggregation of all user ciphertexts and p′

ts, followed by a
base conversion. This simplicity leads to highly efficient operations for both the
user and aggregator, as shown in Sect. 6.

Improving upon other work in RLWE-based PSA, TERSE achieves a rela-
tively small ciphertext expansion - for a single input in Zt, a ciphertext is an
element of Zq, so that the expansion factor is only q/t, and only |q| bits are
needed for ciphertexts – in practice, this is usually only 64 or 128 bits!

4.3 Proof of Security

Lemma 1. In attempting to solve the RLWE problem (in either of the Search or
Decision versions in Sect. 3.3), an adversary does not gain any advantage from
seeing elements of Rq one coefficient at a time.

Theorem 1. TERSE is an aggregator oblivious PSA scheme.

Proof. We follow previous work [3,15] and assume for simplicity that adver-
saries can choose the differentially private noise terms ri,ts during the Challenge
phase. We will construct a reduction from RLWE to TERSE by showing that
given an adversary A that can win the game of aggregator obliviousness (see

340 J. Takeshita et al.

Definition 1) in polynomial time, we can construct an adversary B able to dis-
tinguish RLWE terms from random in polynomial time, thus solving the Deci-
sional version of RLWE. For simplicity, we consider a real-or-random version of
the game of aggregator obliviousness, again following previous work [15,60,63].
As noted in Sect. 3.1, aggregator obliviouness does not protect against the case
where all but one party is compromised, so we suppose that A will not attempt
to make Compromise queries for n distinct parties.

First, consider a challenger C who tests the ability of B to attack RLWE.
B will compute and return TERSE parameters including Rq, t, n for a given
security level λ to A as a response to a Setup query from A. Rq is the ring for
which B will attempt to attack RLWE. B will then choose two distinct parties
j, k ∈ [0, n) ∪ {�}, and draw secret keys si ← χ for i /∈ {j, k} (exactly as in
TERSE.Setup). As noted in previous work [15,63], B’s choices j, k must be in
the set of at least two users A will not attempt to compromise, which occurs
with probability 1

n2 .
Next, B needs to prepare to match RLWE samples with the values it is able

to send to A. If A will make Encrypt queries for (up to) P = poly(λ) different
timestamps, B will simply ask for Q = �P+1

N � RLWE samples from C. From this,
B will receive a set of pairs S = {(aσ,bσ)}σ∈ZQ . Note that θ and σ are both
in ZQ. Then, B will select H(·) such that for each of the P values ts = (θ, τ),
H(ts) = aθ[τ], and distribute this function as part of TERSE.Setup.

When A makes an Encrypt query (i, xi,ts, ri,ts, ts) to B, if party i is not
compromised and the pair i, ts has not been used in a previous Encrypt query,
B will compute and return the TERSE encryption NoisyEnc(si, ts, xi,ts, ri,ts)
if i /∈ {j, k}. For the parties j, k, B will eventually set j’s secret key to be the
secret RLWE value, and will (implicitly) let user k’s secret key be the sum of all
other users’ keys. If i = j, with ts = (θ, τ), then B finds the tuple (aτ ,bτ), and
returns bθ[τ] + (xj,ts + rj,ts) to A. If i = k, B again finds the appropriate value
bθ[τ], and returns −bθ[τ] − (aθ · ∑

�/∈{j,k} s�)[τ] + (xk,ts + rk,ts) to A.
When A makes a Compromise query for a party i ∈ ([0, n) ∪ {�}) \ {j, k},

B simply returns si to A. We denote the set of never-compromised users as
K ⊆ [0, n)∪{�}. If i ∈ {j, k}, i.e., A tried to compromise a user that B assumed
would remain uncompromised, then B will simply abort.

When A makes a Challenge query, it will choose a set of uncompromised
users U ∈ K, and will send input-noise pairs {(xu,ts′ , ru,ts′)}u∈U , where ts′ =
(θ′, τ ′) was not previously used in any Encrypt query. At this point, up to Q− 1
timestamps have been used in Encrypt queries, leaving at least one unused value
remaining. Then, B will compute the values ci,ts = NoisyEnc(si, ts

′, xi,ts, ri,ts)
for i ∈ U \ {j, k}, cj,ts = bθ′ [τ ′] + (xj,ts + rj,ts), and ck,ts = −bθ′ [τ ′] − (aθ′ ·∑

�/∈{j,k} s�)[τ ′] + (xk,ts + rk,ts). Finally, B will return ci,ts for i ∈ [0, n) ∪ {�}
to A.

To make a decision on whether it was given real RLWE terms or random
values, B will use the decision of A. If A decides that it was given ciphertexts
that are simply messages padded with random values, then B will decide that
it was given random values. On the other hand, if A decides that it is in a real

TERSE: Tiny Encryptions and Really Speedy Execution 341

version of TERSE and had received TERSE ciphertexts, then B will decide that
it received RLWE values from C. Thus if A can achieve a greater-than-negligible
advantage (i.e., a success rate non-negligibly better than a random guess) against
the aggregator obliviousness of TERSE, then B can use this to gain a greater-
than-negligible advantage against RLWE. This completes the reduction from
RLWE to TERSE.

5 Extensions and Improvements

5.1 Differential Privacy

Previously, we have introduced TERSE and discussed its security in the context
of aggregator obliviousness, where the aim is to provide security against external
attackers and leak no additional information to an honest-but-curious aggregator
or user, or a collusion thereof. To construct a PSA protocol that is truly private,
users should also have some notion of input privacy against the honest-but-
curious aggregator. In particular, a user will want to avoid having the aggregator
learn anything about its input. To this end, PSA schemes utilize differential
privacy to obscure user inputs.

Differential privacy for PSA is well-known in the literature [15,32,60,63,69].
The exact mechanism of differential privacy (choosing values ri,ts, based upon
n, t, and the desired or acceptable accuracy and error) is an orthogonal issue
to our work. We thus follow previous work in noting that differential privacy
from adding noise to user inputs is preserved when executed in a PSA protocol
[68,69]. Thus, TERSE is easily able to encapsulate both security and privacy,
both of which are important concerns for users.

In practical use, it should be noted that implementing differential privacy
into PSA (or any computation) can affect the accuracy of the computation. In
RLWE-based PSA schemes with finite and possibly limited plaintext spaces,
needing to account for noisy user input can significantly affect the practical
parameter selection [15,63].

5.2 Network Faults or Disconnects

While previous work in quantum-secure PSA [15,32,63,69] has centered primar-
ily upon efficient PSA construction, practical PSA should take fault tolerance
into consideration. In several precursor works in PSA, user keys are correlated,
such that the absence of a single user’s input will result in failure of decryption
[15,60,63,69]. As noted by Karl et al. [43], there are two prominent strategies
of enhancing aggregation schemes with fault tolerance: recovering from faults
by having a trusted party substitute missing inputs [2,12,13,49], or by having
users provide redundant inputs as a precaution against future faults [14,24,25].
The Cryptonite protocol [43] uses trusted hardware, specifically Intel SGX, as a
trusted third party for fault tolerance.

Intel SGX is a Trusted Execution Environment that provides confidentiality
and integrity to a trusted portion of a program, which runs in an encrypted

342 J. Takeshita et al.

memory enclave that maintains integrity against even a malicious operating
system [28]. While SGX provides strong guarantees of security to computations,
it can be limited for computations at a very large scale, due to the practically
limited size of its memory enclave and the overhead of encryption when paging
memory in or out of the enclave [7,10,28,34,47].

Cryptonite used an aggregator-colocated SGX to read all user inputs and to
generate encryptions of zero from missing users, using pre-received users’ secret
keys held securely in trusted memory. The more efficient variant of Cryptonite
has the SGX only output encryptions of zero corresponding to missing users,
so that the aggregation with ciphertexts from all users can be more efficiently
performed in untrusted space. We note that for our model of honest-but-curious
adversaries, it is reasonable for the SGX to trust that the aggregator will faith-
fully relay the set of faulted users. Then, the SGX does not need to take in O(n)
ciphertexts, but only a list of missing users, yielding a much smaller buffer that
is passed to the enclave. Further, we can have the SGX return only a single
aggregated ciphertext from all missing users, greatly reducing the amount of
data that needs to be passed out of the enclave.

We include Cryptonite with these optimizations in our implementation (see
Sect. 6.1). While other methods of fault tolerance exist, we chose to study the
novel integration of SGX-based fault tolerance and post-quantum PSA due to
their non-interactive fault recovery without additional client work or interaction.
This is the first work investigating the implementation and use of SGX-based
fault tolerance and PSA featuring aggregation on order of microseconds.

There exists other work in PSA dealing with dynamic join/leave of users [22,
40]. Dynamic user groups are outside the scope of this work, which is concerned
with the basic primitive of efficient aggregation.

5.3 Optimizing Ring Arithmetic

In Rq = Zq[x]/(xN + 1), both N and q may be large - N commonly ranges from
210 to 216, and q may be hundreds of bits. These large operands are an obstacle
to efficient computation. Residue Number System (RNS) arithmetic can decom-
pose an element of Zq into a tuple of numbers modulo smaller coprimes, allowing
the use of multiple single-precision operations instead of expensive multiprecision
arithmetic [11,35]. The Number-Theoretic Transform (NTT) reduces the asymp-
totic complexity of polynomial multiplication from O(N2) to O(N · log(N)),
greatly improving the runtime of algorithms whose dominant operation is poly-
nomial multiplication [50]. We use these optimizations in implementing TERSE.
Due to the design of TERSE in minimizing input-dependent computation, both
users and the aggregator will perform all of their polynomial multiplication ahead
of time, so the benefits of NTT are seen in the runtime of precomputation.

TERSE: Tiny Encryptions and Really Speedy Execution 343

6 Experimental Evaluation

6.1 Implementation and Environment

We implemented client and server programs to test the performance of TERSE.
Both implementations use RNS and NTT as described in Sect. 5.3. Runtime
tests generally report averages of at least 50 iterations; for longer-running tests
at least 5 iterations were used. Both implementations were in C++.

We tested the client version of TERSE on a Google Pixel 4a with 6 GB
memory and a CPU running at up to 2.2 GHz. The client version assumes pre-
computation of users’ values pi,ts, but does not do so for the noise terms t · ei,ts.
As described earlier, this is a reasonable assumption to make - these larger
polynomial products can be outsourced to users’ synced laptops for smartphone
clients, or computed “out-of-band” in a separate process, because one polyno-
mial generates thousands of pi,ts terms, and the key retrieval and computation
of pi,ts only needs to occur once per N aggregations. Drawing error terms is a
fast operation, and can done as input becomes available.

Our server tests were run on a computer with an Intel Xeon CPU running at
3.7 GHz, with 128 GB of RAM. Our server code integrates a modified version of
the Cryptonite protocol for fault-tolerance, as described in Sect. 5.2. Our client
and server implementations are available at https://gitlab.com/jtakeshi/slap-iot-
cryptonite-client and https://gitlab.com/jtakeshi/slap-iot-cryptonomial-server,
respectively. Our profiling of precomputations (see Sect. 6.3) is included in the
client implementation repository.

Table 1. TERSE Parameter settings and precomputation times for 128-bit RLWE
security and 1000000 aggregations

Users Plaintext
space
(bits)

Minimum
ciphertext
space (bits)

Ciphertext
moduli

RLWE polynomial
modulus degree

Secret keys
generation
(ms)

Derivation of
Aθ (ms)

Multiplicative
precomputation
(ms)

100 32 41 1 2048 6.75889 28.0973 451.451

1000 32 44 1 2048 66.5254 28.049 450.521

10000 32 48 1 2048 666.651 28.1902 451.375

100000 32 51 1 2048 6650.29 28.0568 450.602

1000000 32 54 1 2048 66587.6 28.0712 450.984

10000000 32 58 2 4096 1715910 100.646 1128.82

100000000 32 61 2 4096 17164700 99.7437 1132.2

1000 1 13 1 1024 33.7708 22.1876 221.474

1000 2 14 1 1024 33.842 22.2518 222.798

1000 4 16 1 1024 33.7107 22.1595 221.613

1000 8 20 1 1024 33.7945 22.1702 221.553

1000 16 28 1 2048 66.5783 28.1416 450.641

1000 32 44 1 2048 66.5213 28.0544 450.474

1000 48 60 2 4096 171.914 99.7837 1128.89

https://gitlab.com/jtakeshi/slap-iot-cryptonite-client
https://gitlab.com/jtakeshi/slap-iot-cryptonite-client
https://gitlab.com/jtakeshi/slap-iot-cryptonomial-server

344 J. Takeshita et al.

6.2 Parameters and Communication

A plaintext space of up to 48 bits is practical for a wide variety of practical uses,
e.g., electronic voting for up to 247 participants, or averaging patient ages for 240

patients, or aggregating 65,536 users’ 32-bit inputs for use in machine learning or
data mining. Further, it allows us to keep TERSE ciphertexts small, and TERSE
plaintexts within a single computer word. In our implementations of TERSE,
we used standard RLWE parameters for 128-bit classical security [4,23]. For
|t| ≤ 64, only one or two RNS moduli represented in 64-bit words were required,
making TERSE’s communication overhead very lightweight. Parameter settings
for our experiments are shown in Table 1.

6.3 Results

Impact of Aggregation Scale. We first tested the impact of high scale and
increasing users on our protocol’s runtime. The aggregator’s server-side perfor-
mance is shown in Fig. 1. The server achieves aggregation latency of 0.0067 ms for
n = 1000 users, which is much more efficient than other state-of-the-art work in
post-quantum PSA (see Sect. 6.4). The results from our Android user-side imple-
mentation are shown in Figure 2a. One of the strengths of TERSE as compared
to aggregation schemes based upon secret sharing [69] is that users’ computation
(and memory to store keys) is not linearly dependent upon the number of other
participants, making TERSE much more practical for deployment to users with
limited devices such as smartphones or IoT devices. This is borne out by the
minimal changes in users’ encryption runtimes as the number of users increases.
Most notably, user-side encryption on an Android smartphone can take place in
less than 0.3 microseconds for 1 billion users!

Fig. 1. Experimental results for server performance with increasing users. (a) Without
faults (b) With faults

TERSE: Tiny Encryptions and Really Speedy Execution 345

Fig. 2. Experimental results for client performance. (a) Increasing users (b) Increasing
plaintext space

Impact of Input Size. We investigated the impact of an increasing plaintext
space upon runtime. As described in Sect. 6.2, we expect very little asymptotic
effect from larger plaintext spaces up to the 64 bits used in our implementation,
as only one or two ciphertext moduli are required in all cases. The server-side
results from increasing the plaintext space are shown in Fig. 3. In both cases, the

Fig. 3. Experimental results for server performance with increasing plaintext space.
(a) With faults (b) Without faults space

Fig. 4. Server performance for varying user faults

346 J. Takeshita et al.

runtime for the actual aggregation is very small, on order of 0.001 ms (or 1 ms!).
The runtime for reading inputs from file and fault recovery is much larger, and
more variable. Our Android implementation’s results are shown in Fig. 2b, and
again show that client encryption can run in less than a microsecond.

Impact of Fault Recovery. We evaluate Cryptonite-based fault tolerance [43]
as applied to TERSE with a few key differences. Instead of O(n) inputs being
passed into the SGX’s secure memory enclave, in our setting we only need to pass
in a list of the faulting users. This greatly reduces the paging overhead for calls
into the enclave. We also only return a single ciphertext, reducing the paging
overhead from returning to untrusted memory. Our experimental results for fault
tolerance with TERSE are shown in Fig. 4. As the proportion of faulting users
increases, the time to aggregate and read user input from file decreases slightly.
This is logical: with fewer user inputs, there is less work for these portions of the
computation (Table 2).

Table 2. Runtime in ms of TERSE vs. Reported results from other work (1000 users
and at least 16 bits plaintext space, unless noted)

Protocol Encryption
runtime

Aggregation
runtime

Notes

TERSE 0.0003 0.006

LaSS [69] 0.539 0.509 256-bit AES keys used. Encrypt-once model
times shown here, many-time security much
slower. Also does not consider differential
privacy. Experiments used a laptop

Ernst et al. [32] 0.913 0.875 Results from λ = 114 bits of security.
Reimplements LaSS [69], reporting about a
2× speedup from the original. Experiments
used a laptop

LaPS [15] 3.722 1.964 Results from λ = 80 bits of security.
Runtimes at 128 bits of security are an
order of magnitude greater. Experiments
used a laptop.

SLAP [63] 1.17 3.26 Ordinary latency reported, practical
throughput may be improved. Differentially
private noise included. Experiments used a
server

Lu et al. [51] 0.328 0.062 8-bit plaintext space, runtime slightly higher
with differential privacy. Experiments used
a laptop.

Zhuo et al. [71] ≈0.0001 6 Only N = 100 users, plaintext space not
specified. Experiments used a desktop

He et al. [36] 6.66 3433.4 Both figures only estimates, no
implementation. Results estimated from a
Pentium IV system

TERSE: Tiny Encryptions and Really Speedy Execution 347

Precomputation. While TERSE’s precomputations do not directly affect
online latency, it is informative to observe their performance. To concretely
observe the burden of precomputation, we tested the latency of the genera-
tion of secret keys (done by trusted setup), public hash derivation (done by both
client and server), and finding multiplicative terms Aθ ·si. Table 1 shows the run-
times of these operations when precomputing values for 1000000 aggregations.
As expected, runtime for secret key generation increases linearly with the num-
ber of users. Deriving the public values Aθ takes only hundreds of milliseconds at
the most, and the per-aggregation burden is low when considering amortization
for a million aggregations. Similarly, computing the terms Aθ · si for a million
aggregations takes only seconds at most. We note that the precomputations of
TERSE need occur only once every N aggregations, while other post-quantum
PSA need to calculate their public terms for every aggregation (while LaPS does
not explicitly require this, it is needed for security [69]).

6.4 Comparison with Other Work

Differences in hardware platform, programming languages, and input types can
make direct performance comparisons between different PSA protocols challeng-
ing. Still, we can make rough comparisons of protocol runtimes and communica-
tion overhead from reported experimental results. In Table 1, we report runtimes
of TERSE and other schemes, using a plaintext space of at least 16 bits and at
least 1000 users (unless otherwise noted). We note that these minimal bounds for
scheme parameters are quite small, and TERSE is likely to perform even better
relatively at scale; we chose smaller floors to show the best-possible runtime of
other schemes. Against the 4 quantum-secure PSA schemes LaSS, Ernst et al.,
LaPS, and SLAP, TERSE shows improvements in latency of 1796× to 12406×
for encryption and 848× to 5433× for aggregation.

7 Conclusion

In this paper, we presented TERSE, a quantum-secure PSA protocol uniquely
well-suited for minimal latency. TERSE features highly efficient operations, min-
imally expansive ciphertexts, and a very simple and highly extensible design.

Our experimental results show that TERSE achieves encryption latency of
0.0003 ms and aggregation latency of 0.0067 ms for 1000 users and a 16-bit
plaintext space, with improvements of two to three orders of magnitude as com-
pared to prior post-quantum PSA. The performance improvements of TERSE for
client-side operations are especially important, as the client-side implementation
of TERSE was tested on a smartphone as opposed to prior implementations of
PSA on laptops or desktops. These microsecond-latency operations for users and
aggregators make RLWE-based PSA truly practical for real-world deployments.

348 J. Takeshita et al.

Acknowledgement. This work was supported by Facebook as a winner of the Role
of Applied Cryptography in a Privacy-Focused Advertising Ecosystem Facebook RFP.
Any opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those of the sponsor.

References

1. Internet of Things (IoT) connected devices installed base worldwide from 2015 to
2025. https://rb.gy/cbrasa. Accessed 15 Oct 2021

2. Han, S., Zhao, S., Li, Q., Ju, C.-H., Zhou, W.: PPM-HDA: privacy-preserving and
multifunctional health data aggregation with fault tolerance. IEEE TIFS 11(9),
1940–1955 (2015). IEEE

3. Ács, G., Castelluccia, C.: I Have a DREAM! (DiffeRentially privatE smArt Meter-
ing). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol.
6958, pp. 118–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24178-9 9

4. Albrecht, M., et al.: Homomorphic encryption security standard. HomomorphicEn-
cryption.org, Toronto, Canada, Technical report (2018)

5. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes! In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 19

6. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic encryp-
tion in the plain model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12550, pp. 28–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64375-1 2

7. Arnautov, S., et al.: {SCONE}: Secure linux containers with intel {SGX}. In: 12th
USENIX OSDI, pp. 689–703 (2016)

8. Babuji, Y.N., Chard, K., Gerow, A., Duede, E.: Cloud kotta: enabling secure and
scalable data analytics in the cloud. In: 2016 IEEE International Conference on
Big Data (Big Data), pp. 302–310. IEEE (2016)

9. Bailey, S.F., et al.: Secure and robust cloud computing for high-throughput forensic
microsatellite sequence analysis and databasing. Forensic Sci. Int. Genet. 31, 40–47
(2017)

10. Bailleu, M., Thalheim, J., Bhatotia, P., Fetzer, C., Honda, M., Vaswani, K.:
{SPEICHER}: Securing lsm-based key-value stores using shielded execution. In:
17th USENIX FAST, pp. 173–190 (2019)

11. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A Full RNS variant of FV Like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23

12. Bao, H., Lu, R.: DDPFT: secure data aggregation scheme with differential privacy
and fault tolerance. In: 2015 IEEE ICC, pp. 7240–7245. IEEE (2015)

13. Bao, H., Lu, R.: A new differentially private data aggregation with fault tolerance
for smart grid communications. IoT-J 2(3), 248–258 (2015)

14. Bao, H., Lu, R.: A lightweight data aggregation scheme achieving privacy preser-
vation and data integrity with differential privacy and fault tolerance. Peer-to-Peer
Networking Appl. 10(1), 106–121 (2017)

https://rb.gy/cbrasa
https://doi.org/10.1007/978-3-642-24178-9_9
https://doi.org/10.1007/978-3-642-24178-9_9
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23

TERSE: Tiny Encryptions and Really Speedy Execution 349

15. Becker, D., Guajardo, J., Zimmermann, K.-H.: Revisiting private stream aggrega-
tion: lattice-based PSA. In: NDSS (2018)

16. Blanco-Chacón, I.: On the RLWE/PLWE equivalence for cyclotomic number fields,
pp. 1–19. Applicable Algebra in Engineering, Communication and Computing
(2020)

17. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum EPID signatures from sym-
metric primitives. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 251–
271. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 13

18. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Trans. Symmetric Cryptology 2019(2), 55–93 (2019)

19. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theor. (TOCT) 6(3),
1–36 (2014)

20. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

21. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM (JACM) 51(4), 557–594 (2004)

22. Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with
fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 15

23. Chen, H., Han, K., Huang, Z., Jalali, A., Laine, K.: Simple encrypted arithmetic
library v2. 3.0. Microsoft Research, December 2017

24. Chen, J., Ma, H., Zhao, D.: Private data aggregation with integrity assurance and
fault tolerance for mobile crowd-sensing. Wirel. Networks 23(1), 131–144 (2017)

25. Chen, L., Lu, R., Cao, Z.: PDAFT: a privacy-preserving data aggregation scheme
with fault tolerance for smart grid communications. Peer-to-Peer Networking Appl.
8(6), 1122–1132 (2015)

26. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

27. Conti, F., et al.: An IoT endpoint system-on-chip for secure and energy-efficient
near-sensor analytics. IEEE Trans. Circuits Syst. I: Regul. Papers 64(9), 2481–2494
(2017)

28. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptol. ePrint Arch.
2016(86), 1–118 (2016)

29. Danezis, G., Fournet, C., Kohlweiss, M., Zanella-Béguelin, S.: Smart meter aggre-
gation via secret-sharing. In: ACM SEDAy, pp. 75–80 (2013)

30. Ding, J., Gao, X., Takagi, T., Wang, Y.: One sample ring-LWE with rounding
and its application to key exchange. In: Deng, R.H., Gauthier-Umaña, V., Ochoa,
M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 323–343. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21568-2 16

31. Du, J., Jiang, C., Gelenbe, E., Xu, L., Li, J., Ren, Y.: Distributed data privacy
preservation in IoT applications. IEEE Wirel. Commun. 25(6), 68–76 (2018)

32. Ernst, J., Koch, A.: Private stream aggregation with labels in the standard model.
PETS 4, 117–138 (2021)

33. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012, 144 (2012)

https://doi.org/10.1007/978-3-030-12612-4_13
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-32946-3_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-21568-2_16

350 J. Takeshita et al.

34. Gjerdrum, A.T., Pettersen, R., Johansen, H.D., Johansen, D.: Performance of
trusted computing in cloud infrastructures with Intel SGX. In: CLOSER, pp. 668–
675 (2017)

35. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 5

36. He, D., Kumar, N., Lee, J.-H.: Privacy-preserving data aggregation scheme against
internal attackers in smart grids. Wireless Netw. 22(2), 491–502 (2016)

37. Jiang, M., Jung, T., Karl, R., Zhao, T.: Federated dynamic graph neural networks
with secure aggregation for video-based distributed surveillance. ACM Trans.
Intell. Syst. Technol. (TIST) 13(4), 1–23 (2022)

38. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-
series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 10

39. Jung, T., et al.: Privacy-preserving data aggregation without secure channel: mul-
tivariate polynomial evaluation. In: 2013 Proceedings IEEE INFOCOM, pp. 2634–
2642. IEEE (2013)

40. Jung, T., Han, J., Li, X.-Y.: PDA: semantically secure time-series data analytics
with dynamic user groups. TDSC 15(2), 260–274 (2016)

41. Jung, T., Li, X.-Y., Wan, M.: Collusion-tolerable privacy-preserving sum and prod-
uct calculation without secure channel. TDSC 12(1), 45–57 (2014)

42. Karl, R., Burchfield, T., Takeshita, J., Jung, T.: Non-interactive MPC with trusted
hardware secure against residual function attacks. In: Chen, S., Choo, K.-K.R., Fu,
X., Lou, W., Mohaisen, A. (eds.) SecureComm 2019. LNICST, vol. 305, pp. 425–
439. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37231-6 25

43. Karl, R., et al.: Cryptonite: a framework for flexible time-series secure aggregation
with online fault tolerance. Cryptology ePrint Archive, Report 2020/1561 (2020).
https://rb.gy/tdcsfs

44. Karl, R., Takeshita, J., Mohammed, A., Striegel, A., Jung, T.: Cryptonomial: a
framework for private time-series polynomial calculations. In: Garcia-Alfaro, J.,
Li, S., Poovendran, R., Debar, H., Yung, M. (eds.) SecureComm 2021. LNICST,
vol. 398, pp. 332–351. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
90019-9 17

45. Karl, R., Takeshita, J., Mohammed, A., Striegel, A., Jung, T.: Cryptogram: fast
private calculations of histograms over multiple users’ inputs. In: 2021 17th Inter-
national Conference on Distributed Computing in Sensor Systems (DCOSS), pp.
25–34. IEEE (2021)

46. Koblitz, N., Menezes, A.J.: The random oracle model: a twenty-year retrospective.
Des. Codes Crypt. 77(2), 587–610 (2015)

47. Kunkel, R., Quoc, D.L., Gregor, F., Arnautov, S., Bhatotia, P., Fetzer, C.:
Tensorscone: a secure tensorflow framework using Intel SGX. arXiv preprint
arXiv:1902.04413 (2019)

48. Li, C., Lu, R., Li, H., Chen, L., Chen, J.: PDA: a privacy-preserving dual-functional
aggregation scheme for smart grid communications. Secur. Commun. Netw. 8(15),
2494–2506 (2015)

49. Li, Q., Cao, G.: Efficient privacy-preserving stream aggregation in mobile sensing
with low aggregation error. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013.
LNCS, vol. 7981, pp. 60–81. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39077-7 4

https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-642-39884-1_10
https://doi.org/10.1007/978-3-030-37231-6_25
https://rb.gy/tdcsfs
https://doi.org/10.1007/978-3-030-90019-9_17
https://doi.org/10.1007/978-3-030-90019-9_17
http://arxiv.org/abs/1902.04413
https://doi.org/10.1007/978-3-642-39077-7_4
https://doi.org/10.1007/978-3-642-39077-7_4

TERSE: Tiny Encryptions and Really Speedy Execution 351

50. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0 8

51. Lu, R., Heung, K., Lashkari, A.H., Ghorbani, A.A.: A lightweight privacy-
preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access
5, 3302–3312 (2017)

52. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM (JACM) 60(6), 1–35 (2013)

53. Mofrad, S., Zhang, F., Lu, S., Shi, W.: A comparison study of intel SGX and AMD
memory encryption technology. In: HASP, pp. 1–8 (2018)

54. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

55. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

56. Park, H., Zhai, S., Lu, L., Lin, F.X.: {StreamBox-TZ}: secure stream analytics
at the edge with {TrustZone}. In: 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pp. 537–554 (2019)

57. Pu, Y., et al.: Two secure privacy-preserving data aggregation schemes for IoT.
Wirel. Commun. Mobile Comput. 2019 (2019)

58. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series
with transformation and encryption. In: SIGMOD/PODS, pp. 735–746 (2010)

59. Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE problems.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
146–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 6

60. Shi, E., Chan, T.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation
of time-series data. NDSS 2, 1–17 (2011)

61. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS, pp. 124–134. IEEE (1994)

62. Sui, Z., de Meer, H.: An efficient signcryption protocol for hop-by-hop data aggre-
gations in smart grids. IEEE J. Sel. Areas Commun. 38(1), 132–140 (2019)

63. Takeshita, J., et al.: SLAP: simple lattice-based private stream aggregation proto-
col. IACR Cryptol. ePrint Arch. 2020, 1611 (2020)

64. Takeshita, J., Karl, R., Mohammed, A., Striegel, A., Jung, T.: Provably secure
contact tracing with conditional private set intersection. In: Garcia-Alfaro, J.,
Li, S., Poovendran, R., Debar, H., Yung, M. (eds.) SecureComm 2021. LNICST,
vol. 398, pp. 352–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
90019-9 18

65. Takeshita, J., Reis, D., Gong, T., Niemier, M., Hu, X.S., Jung, T.: Algorithmic
acceleration of B/FV-like somewhat homomorphic encryption for compute-enabled
RAM. In: Dunkelman, O., Jacobson Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS,
vol. 12804, pp. 66–89. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81652-0 3

66. Tang, W., Ren, J., Deng, K., Zhang, Y.: Secure data aggregation of lightweight
e-healthcare IoT devices with fair incentives. IoT-J 6(5), 8714–8726 (2019)

67. Tonyali, S., Akkaya, K., Saputro, N., Uluagac, A.S., Nojoumian, M.: Privacy-
preserving protocols for secure and reliable data aggregation in IoT-enabled smart
metering systems. FGCS 78, 547–557 (2018)

https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-030-90019-9_18
https://doi.org/10.1007/978-3-030-90019-9_18
https://doi.org/10.1007/978-3-030-81652-0_3
https://doi.org/10.1007/978-3-030-81652-0_3

352 J. Takeshita et al.

68. Valovich, F., Aldà, F.: Computational differential privacy from lattice-based cryp-
tography. In: Kaczorowski, J., Pieprzyk, J., Pomyka�la, J. (eds.) NuTMiC 2017.
LNCS, vol. 10737, pp. 121–141. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76620-1 8

69. Waldner, H., Marc, T., Stopar, M., Abdalla, M.: Private stream aggregation from
labeled secret sharing schemes. IACR Cryptol. ePrint Arch. 2021, 81 (2021)

70. Wang, X., Liu, Y., Choo, K.-K.R.: Fault-tolerant multisubset aggregation scheme
for smart grid. IEEE Trans. Ind. Inf. 17(6), 4065–4072 (2020)

71. Zhuo, G., Jia, Q., Guo, L., Li, M., Li, P.: Privacy-preserving verifiable data aggre-
gation and analysis for cloud-assisted mobile crowdsourcing. In: INFOCOM, pp.
1–9. IEEE (2016)

72. Takeshita, J., McKechney, C., Pajak, J., Papadimitriou, A., Karl, R., Jung, T.:
GPS: integration of graphene, PALISADE, and SGX for large-scale aggregations
of distributed data. Cryptol. ePrint Arch. (2021)

https://doi.org/10.1007/978-3-319-76620-1_8
https://doi.org/10.1007/978-3-319-76620-1_8

Symmetrical Disguise: Realizing
Homomorphic Encryption Services

from Symmetric Primitives

Alexandros Bakas(B), Eugene Frimpong, and Antonis Michalas

Tampere University, Tampere, Finland
{alexandros.bakas,eugene.frimpong,antonios.michalas}@tuni.fi

Abstract. Homomorphic Encryption (HE) is a modern cryptographic
technique that allows direct computations on encrypted data. While rel-
atively new to the mainstream debate, HE has been a solid topic in
research for decades. However, and despite the technological advances
of the past years, HE’s inefficiencies render it impractical for deploy-
ment in realistic scenarios. Hence research in the field is still in its initial
phase. To overcome certain challenges and bring HE closer to a real-
ization phase, researchers recently introduced the promising concept of
Hybrid Homomorphic Encryption (HHE) – a primitive that combines
symmetric cryptography with HE. Using HHE, users perform local data
encryptions using a symmetric encryption scheme and then outsource
them to the cloud. Upon reception, the cloud can transform the symmet-
rically encrypted data to homomorphic ciphertexts without decrypting
them. Such an approach can be seen as an opportunity to build new,
privacy-respecting cloud services, as the most expensive operations of
HE can be moved to the cloud.

In this work, we undertake the task of designing a secure crypto-
graphic protocol based on HHE. In particular, we show how HHE can be
used as the main building block of a protocol that allows an analyst to
collect data from multiple sources and compute specific functions over
them, in a privacy-preserving way. To the best of our knowledge, this is
the first work that aims at demonstrating how HHE can be utilized in
realistic scenarios, through the design of a secure protocol.

Keywords: Homomorphic Encryption · Hybrid Homomorphic
Encryption · Multi-client · Storage protection

1 Introduction

Cloud computing has become an integral part of our lives. It has not only
impacted our daily functions but also how businesses and organizations manage

This work was partially funded from the Technology Innovation Institute (TII), Abu
Dhabi, United Arab Emirates, for the project ARROWSMITH: Living (Securely) on
the edge.
This work was partially funded by the Harpocrates project, Horizon Europe.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 353–370, 2023.

https://doi.org/10.1007/978-3-031-25538-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_19&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_19

354 A. Bakas et al.

their data and customers. The wide use of cloud-services has, as expected, raised
a plethora of challenging security and privacy problems. One of the main security
concerns related to cloud computing has to do with so-called internal attacks.
This is, a corrupted cloud service provider (CSP) exploiting customer data for
its own benefit, e.g. sharing customer data with third parties. To alleviate these
concerns CSPs have introduced support for data encryption. However, the prob-
lem of creating real privacy-respecting cloud services is not as easy as applying
encryption on the stored data. For this reason, the research community has
started looking into solutions that are not based on traditional encryption and
can successfully protect user data from internal attacks without jeopardizing
the main benefits of cloud computing. One of the most common solutions is
Structured Encryption (SE) [30], where data is encrypted locally with a key
that is unknown to the CSP. Hence, the CSP, which does not have access to the
encryption key cannot learn anything about the content of user data. Further-
more, whenever a user wishes to access her files, she can search directly over
the encrypted data for specific keywords. While this approach solves part of the
problem, (i.e. users do not have to download and decrypt the whole database),
ciphertexts remain “useless” in the sense that one can not operate on them as
if as they were plaintexts. With a view to addressing this issue, a number of
approaches to make ciphertexts “more useful” and operate on encrypted data
have been developed. The most promising solutions is Homomorphic Encryption
(HE) [37] and Functional Encryption [28] – two modern encryption techniques
that allow authorized entities (i.e. users, the cloud or third parties) to perform
computations on the encrypted data without accessing their contents.

Homomorphic Encryption. Often dubbed as “the holy grail of cryptography”.
In an HE scheme a user first generates a public/private key pair (pk, sk) and
an evaluation key evk1. Then, given two ciphertexts c1, c2 encrypting messages
x1 and x2 respectively and the evaluation key evk, it is possible to compute
f(c1, c2), where f is a function associated either with addition or multiplication.
Moreover, what is fascinating about HE, is that in computing f(c1, c2) there
are no leaks about the underlying plaintexts x1 and x2 while decrypting the
result in only feasible by possessing the secret key sk. Naturally, this opens up
tremendous possibilities as, for the first time ever, it becomes possible to not only
outsource data, applications and services but also computations to the cloud, in a
privacy-preserving manner. However, despite its advantages, HE is unfortunately
characterized by its inefficiency. Homomorphically encrypting big loads of data
requires powerful machines and is time-consuming. As a result, to this day HE
is a topic of interest mainly among members of the academic community. To
address these inefficiencies however, researchers recently turned their attention
to Hybrid Homomorphic Encryption (HHE) [22].

Hybrid Homomorphic Encryption. In an HHE scheme, a user encrypts data
locally using a symmetric key K of a symmetric-key encryption scheme SKE.
Subsequently, K is encrypted under HE’s public key pk and is outsourced to the

1 Sometimes, in literature, the evaluation key is part of the public key.

Symmetrical Disguise 355

cloud along with the ciphertexts and the evaluation key evk. Upon reception, the
CSP can transform the symmetrically encrypted data to homomorphic cipher-
texts and hence operate on them. This promising approach significantly reduces
computation costs on the client side by moving the most expensive computations
on the cloud, where powerful machines are used traditionally for the processing
and storage of the data. In this work, while we do not design a novel HHE
scheme, we design a detailed protocol that aims at showing the applicability and
functionality of HHE in real-world scenarios.

Contributions: While multiple different HHE schemes have been proposed over
the past few years, to the best of our knowledge, none of these describe in detail
how HHE can be used as the main building block of a secure protocol. We believe
this is an important step forward that can bridge the gap between theoretical
cryptographic concepts and security engineering and can pave the way for the
implementation of a vast amount of privacy-respecting cloud services. The core
contributions of this work can be summarized as follows:

C1. We design a protocol that utilizes the concept of HHE and allows multiple
users to securely store and process their data in the cloud.

C2. We provide an efficient and novel way of using HE to securely store and
analyze data stored in a remote location. More precisely, our scheme can
run in any device that can run a typical symmetric encryption algorithm.

C3. We prove the security of our protocol in the presence of a malicious adver-
sary modelled after the Dolev-Yao adversarial model [24].

C4. Our theoretical evaluation, is coupled with extensive experimental results
that prove our protocol’s efficiency and applicability.

2 Related Work

– Homomorphic Encryption : While HE has attracted a lot of attention in
the recent years, it was first mentioned by Rivest et al. in 1978 [37]. How-
ever, the first HE constructions allowed only for one specific operation on
encrypted data. The operation could either be addition, using the Paillier
cryptosystem [36], or multiplication, under RSA [38]. It was not until 2009
and the work of Gentry that the first fully homomorphic encryption (FHE)
scheme was developed [26]. This was a major breakthrough in the field of cryp-
tography as, in theory, by using a FHE scheme one can perform any operation
directly on encrypted data. While fascinating, this work was unfortunately
characterized by its inefficiency. However, it produced a series of publications
in the field [14,15,18,19,25]. These works addressed the impracticalities of
Gentry’s work and lead to novel and more efficient schemes.

– Hybrid Homomorphic Encryption : HHE was first introduced as a con-
cept in [35], but the first formal definition was presented very recently in [23].
The first approaches for the design of HHE schemes, relied on existing
and well-established symmetric ciphers, like AES [17,21,27]. However, AES

356 A. Bakas et al.

was not a good suitor for building HHE schemes, mainly due to its large
multiplicative depth. Thus, research on the field of HHE took a new turn
where the main focus has been shifted to the design of symmetric ciphers
with different optimization criteria, depending on the use-case each work
addresses [5,16,20,22,23,29,32]

– Different Approaches: Another emerging cryptographic primitive that
can be used to outsource computations in a privacy-preserving is Func-
tional Encryption (FE). In FE, each decryption key skf is connected to a
function f . Unlike traditional public-key cryptography, the use of skf on
a ciphertext Enc(x) does not recover x but a function f(x). In this way,
the actual value x remains private. A more recent work [28] has introduced
the general and promising notion of multi-input FE (MIFE). Here, when
ciphertexts Enc(x1), . . . ,Enc(xn) are provided, skf can be used to recover
f(x1, . . . , xn). To this day, most works in FE revolve around designing
schemes for sums [8,11,13], inner products [1–3], as well as quadratic func-
tions [40]. Unfortunately, except a handful works that rely on Multi-Party
Computation (MPC) [11,12], most of FE schemes are highly centralized and
require the existence of a fully trusted central authority.

– Provable Secure Protocols for Cloud Security using HHE : Design-
ing provable secure protocols that utilize modern cryptography is not
novel. Indeed, multiple solutions have been proposed [6,7,33,34], based on
Attribute-Based Encryption (ABE) [4,39], as well as on Symmetric Search-
able Encryption (SSE) [9,10]. However, to the best of our knowledge, this is
the first work that aims at designing a provable secure protocol leveraging
the functionality of HHE.

3 Preliminaries

Notation. If Y is a set, we use y
$←− Y if y is chosen uniformly at random from Y.

Concatenation of two strings x, y is denoted by x‖y. A probabilistic polynomial
time (PPT) adversary ADV is a randomized algorithm for which there exists a
polynomial p(z) such that for all input z, the running time of ADV(z) is bounded
by p(|z|). A function negl(·) is called negligible if ∀ c ∈ N,∃ ε0 ∈ N such that
∀ ε ≥ ε0 : negl(ε) < ε−c.

Definition 1 (Homomorphic Encryption). A (public-key) homomorphic
encryption scheme is a quadruple of PPT algorithms HE = (HE.KeyGen,HE.Enc,
HE.Dec,HE.Eval) such that:

– Key Generation: The Key Generation algorithm (pk, evk, sk) ← He.Keygen
(1λ) takes as input a unary representation of the security parameter λ, and
outputs a public key pk, a public evaluation key evk and a secret decryption
key sk.

– Encryption: This algorithm c ← HE.Enc(pk,m) takes as input the public key
pk and a message m and outputs a ciphertext c.

Symmetrical Disguise 357

– Decryption: This algorithm m ← HE.Dec(sk, c), takes as input the secret
key sk and a ciphertext c, and outputs a plaintext m.

– Homomorphic Evaluation: This algorithm cf ← He.Eval(evk, f, c1, . . . , cn)
takes as input the evaluation key evk, a function f , and a set of n ciphertexts,
and outputs a ciphertext cf .

Correctness: An HE scheme is said to be correct if and only if:

Pr[HE.Decsk (HE.Evalevk (f, c)) (1)
�= f(m)|HE.Encpk (m) = c] ≤ negl(λ)

Before we proceed with the formal definition of HHE, we discuss its func-
tionality at a high-level. An HHE scheme is built on top of a traditional HE
scheme as well as a symmetric cipher SKE. The Key Generation algorithm of
HHE invokes the corresponding algorithms of both the HE and SKE and outputs
(pk, sk, evk) for the HE scheme, and K for the SKE scheme. As a next step, the
Encryption algorithm takes as input a message m, HE’s public key pk, and K.
The message m will be encrypted symmetrically using K, resulting to a cipher-
text c. Moreover, the symmetric key K will be homomorphically encrypted under
pk, resulting to another ciphertext cK. These two ciphertexts will then be given
as input, along with the decryption function of SKE, to HHE’s Decompression
algorithm. This algorithm homomorphically performs the symmetric decryption
circuit to transform the symmetric ciphertext c into a homomorphic ciphertext
c′, by invoking the evaluation algorithm of the HE scheme. Finally, the evaluation
and decryption algorithms of HHE, are identical to those of the HE scheme.

Definition 2 (Hybrid Homomorphic Encryption). Let HE be a Homomor-
phic Encryption scheme and SKE = (Gen,Enc,Dec) be a symmetric-key encryp-
tion scheme. Moreover, let M = (m1, . . . ,mn) be the message space and λ
the security parameter. An HHE scheme then consists of five PPT algorithms
such that HHE = (KeyGen,Enc,Decomp,Eval,Dec) and it is constructed as fol-
lows (Fig. 1):

HHE.KeyGen(1λ):
(pk, sk, evk) HE.KeyGen(1λ)
Return (pk, sk, evk)

HHE.Enc:
K SKE.Gen(1λ)
cK HE.Enc(pk,K)
c SKE.Enc(K,m)
Return (cK, c)

HHE.Decomp(evk, c, cK):
c HE.Eval(evk, SKE.Dec, cK, c)
Return c

HHE.Eval(evk, f, c1, . . . , cn):
Return HE.Eval(evk, f, c1, . . . , cn)

HHE.Dec(sk, c) :
Return HE.Dec(sk, c)

Fig. 1. Hybrid Homomorphic Encryption Scheme

358 A. Bakas et al.

The correctness of an HHE scheme follows directly from the correctness of
the underlying public-key HE scheme.

For the security of HHE we rely on the following theorem that was first
proved for the KEM/DEM paradigm in [31], and then later modified for HHE
in [23]:

Theorem 1. Let HE be an IND-CPA secure public-key homomorphic encryption
scheme. Moreover, let SKE be an IND-CPA secure symmetric-key encryption
scheme. Then the HHE scheme instantiated by HE and SKE is IND-CPA secure.

4 Architecture

For the needs of our construction, we assume the existence of the following three
entities:

– Cloud Service Provider (CSP): An honest-but-curious cloud service
provider that is primarily responsible for gathering symmetrically encrypted
data from multiple sources. The CSP undertakes the task of transforming the
symmetrically encrypted data to homomorphic ciphertexts and, upon request,
operate on them in a blind way.

– Analyst (A): The analyst is an entity that wishes to perform computations
on the data of various users. A is the only entity in our construction that can
perform the homomorphic decryption and thus, gain insights from user data.

– Users (U): Users encrypt their data locally using a symmetric-key encryption
scheme and outsource them to the CSP.

5 Symmetrical Disguise

Before we proceed with the formal construction of the scheme, we provide a
high-level overview.

5.1 High-Level Overview

An analyst A generates (pk, sk, evk) for the HHE scheme, outsources evk to the
CSP and publishes pk. As a next step, each user ui (ui ∈ U), can generate a
symmetric key locally, encrypt their data, and outsource them to the CSP along
with a homomorphic encryption of the symmetric key under A’s public key. Upon
reception, the CSP transforms the symmetric ciphertexts to homomorphic, and
stores them online in its database. A can request the evaluation of a function f
on the collection of the ciphertexts from the CSP. The CSP uses evk and outputs
an encrypted result which then sends back to A. Finally, A decrypts the result
using their secret key sk.

Symmetrical Disguise 359

5.2 Formal Construction

We are now ready to present SD that constitutes the core of this paper’s contri-
bution. For the realization of our construction we rely on the following building
blocks:

– An IND-CPA secure symmetric cipher SKE = (Gen,Enc,Dec).
– An IND-CPA secure homomorphic encryption scheme HE = (KeyGen,Enc,
Dec,Eval).

– A CCA2 secure public-key encryption scheme PKE = (Gen,Enc,Dec)
– An EUF-CMA secure signature scheme S = (sign, ver).
– A first and second pre-image resistant hash function H.

SD is built around three main protocols: Setup,Add,Query such that:

SD.Setup: Each entity from the described architecture generates a
signing/ver-ification key pair for an EUF-CMA secure signature scheme S and
publishes its verification key while keeping the signing key private. Apart from
that, the CSP, generates a public/private key pair (pk, sk) for a CCA2-secure
public-key encryption scheme PKE. Finally, the analyst A runs HHE.KeyGen to
generate the public, secret and evaluation keys for an IND-CPA secure homo-
morphic encryption scheme HE, and each user ui runs SKE.KeyGen to generate
a symmetric key Ki for an IND-CPA secure symmetric cipher SKE. Below we
provide a list of the generated keys:

– Signing/Verification keys for each entity.
– (pkCSP, skCSP): Public/private key pair of the CSP.
– (pkA, skA, evkA): Public/private/evaluation keys of A.
– Ki: Symmetric key for each user ui.

Once the keys are generated, A outsources its evaluation key evk to the CSP
via m1 = 〈t1,Enc(pkCSP, evk), σA(H(t1||evk)))〉, where t1 is a timestamp, σA is
a signature encrypted with A’s private key, and H is a hash function. Upon
reception, the CSP verifies the signature of A, using A’s verification key, and
the freshness of the message through the timestamp. If a verification fails, the
CSP aborts the protocol and outputs ⊥. Otherwise, the CSP stores evkA.

SD.Add: This protocol is initiated by any user ui ∈ U that wishes to
outsource some data x = (x1, . . . , xn) to the CSP. To do so, ui first runs
ci ← SKE.Enc(Ki, xi). As a next step, ui, homomorphically encrypts is sym-
metric key Ki under A’s public key, by running cKi

← HE.Enc(pkA,Ki). Finally,
the (c, cKi

) pair is outsourced to the CSP via the following message:

m2 = 〈t2, c = (ci, . . . , cn), cKiσui
(H(t2‖c‖cKi))〉.

Upon receiving m2, the CSP verifies the freshness and integrity of the message.
If the verifacation fails, CSP outputs ⊥. Otherwise, it transforms the symmetric
ciphertext ci to a homomorphic one, by running c′

i ← HHE.Decomp(ci, cKi
, evkA).

Finally, the CSP stores c′
i in its database.

360 A. Bakas et al.

SD.Query: The Query protocol is initiated by A whenever she wishes to
issue a query to the encrypted data for a function f . To do so, A sends
m3 = 〈t3,Enc(pkCSP, f), σA(H(t3‖f)〉) to the CSP. Upon reception, the CSP
verifies both the integrity and the freshness of the message. If the verification
fails, the CSP will abort the protocol and output the error symbol ⊥. Otherwise,
it runs HHE.Eval(f, evkA, c′

1, . . . , c
′
n) → cres to get an encrypted result cres. Due to

the homomorphic properties of the encryption scheme HE, the encrypted result
cres can be viewed as an encrypted version of f(x′

1, . . . , x
′
n), where each x′

i corre-
sponds to a ciphertext c′

i, and that can only be dercypted using A’s secret key sk.
Subsequently, the CSP forwards cres to A via m4 = 〈t4, cres, σCSP (H(t4‖cres))〉.
Upon reception, A verifies both the integrity and the freshness of the message.
If a verification fails, A aborts the protocol and outputs ⊥. Otherwise, they run
HHE.Dec(sk, cres) → res to retrieve the result res. Having acquired the result
in plaintext, A can use it to perform statistics or data analysis, in a privacy-
preserving manner, since she never got access to the actual plaintexts. Our pro-
tocol is illustrated in Fig. 2.

6 Threat Model

In this section, we define the threat model under which we prove the security
of SD. More specifically, we formalize the capabilities of the adversary ADV
through the following set of possible attacks:

Attack 1 (Analyst Substitution Attack). Let ADV be a malicious adver-
sary. ADV successfully performs an Analyst Substitution Attack if she manages
to convince the users that their data are processed for the needs of an analyst A,
while in reality they are processed for an analyst AADV .

Attack 2 (Ciphertext Substitution Attack). Let ADV be a malicious
adversary. ADV successfully launches a Ciphertext Substitution Attack if she
manages to replace the ciphertexts sent by users to the CSP in an indistinguish-
able way.

Attack 3 (Query Substitution Attack). Let ADV be a malicious adver-
sary. ADV successfully launches a Query Substitution Attack if she manages to
replace the query sent by A to the CSP, with another one of her choice, in an
indistinguishable way.

Attack 4 (Result Substitution Attack). Let ADV be a malicious adversary.
ADV successfully launches a Result Substitution Attack if she manages to replace
the result sent by the CSP to the analyst A, in an indistinguishable way.

In our threat model, we assume that the CSP cannot collude with the Analyst
A. This is a valid assumption as otherwise we would be required to prove security
in a setting where the decryption keys are publicly-available.

Symmetrical Disguise 361

Analyst A User ui CSP

Run HHE.KeyGen

Run SKE.KeyGen

Ki

(pkA, skA, evkA)
m1 = t1,Enc(pkCSP, evk), σA(H(t1 evk)))

Run HE.Enc(pkA,Ki)

cKi

m2 = t2, c = (ci, . . . , cn), cKiσui(H(t2 c cKi)) .

Run HHE.Decomp

c = (c1, . . . , cn)
m3 = t3,Enc(pkCSP, f), σA(H(t3 f))

Run HHE.Eval

cres

m4 = t4, cres, σCSP (H(t4 cres))

Run HHE.Dec

res

Fig. 2. Complete run of our protocol with one user ui. More users would behave exactly
like ui.

7 Security Analysis

We are now ready to prove the security of our construction assuming the threat
model defined in Sect. 6. In particular, we will prove the following theorem:

Theorem 2 (SD Security in the presence of Malicious Adversaries).
Let PKE be an INC-CPA secure public-key encryption scheme and S an EUF-
CMA secure signature scheme with security parameter λ. Moreover, let SKE be
an IND-CPA secure symmetric-key encryption scheme with security parameter
κ. Finally, let ADV be a malicious adversary. Then, SD is secure against the
threat model defined in Sect. 6.

Proof. To prove Theorem 2, we will start with a sequence of lemmas. Then, we
will combine our results to derive a proof for the main theorem.

362 A. Bakas et al.

Lemma 1 (Analyst Substitution Attack Soundness). Let PKE be an INC-
CPA secure public-key encryption scheme. Moreover, let S be an EUF-CMA
secure signature scheme and ADV a malicious adversary. In this case ADV
cannot successfully launch an Analyst Substitution Attack against SD.

Proof. ADV will successfully launch an Analyst Substitution Attack, by target-
ing either the SD.Setup or the SD.Add protocol. To this end, we distinguish the
following cases:

C1: Attacking SD.Setup: To perform an attack against SD.Setup, ADV needs
to swap the evaluation key of A, evkA, with an evaluation key evkAADV ,
for an analyst AADV such that A �= AADV . To this end, ADV targets the
m1 = 〈t1,Enc(pkCSP, evk), σA(H(t1‖evk)))〉 message sent from A to the CSP
and tries to swap evkA with evkAADV . Generating a valid EncpkCSP(evk

′
A) is

straightforward for ADV as pkCSP is publicly known. However, swapping
evkA for evk′

A in the σA(H(t1||evk)) term, is equivalent with forging A’s
signature, and given the EUF-CMA security of the signature scheme S,
this can only happen with negligible probability. More specifically, if λ is
the security parameter of S, then the advantage ε1 of ADV is successfully
tampering with m1 in an indistinguishable way is:

ε1 = negl(λ) (2)

C2: Attacking SD.Add: Another option for ADV is to target

m2 = 〈t2, c = (ci, . . . , cn), cKiσui
(H(t2‖c‖cKi))〉.

The motivation for this attack is to use user data for an analyst AADV

while the users believe that their data will be processed for an analyst A.
Recall that cKi is generated as cKi

← HE.EncpkA(Ki). Hence, for ADV to
successfully attack this protocol, they need to simultaneously satisfy the
following three conditions:

(a) Guess the symmetric key Ki;
(b) Encrypt it with the public key of another analyst AADV ;
(c) Tamper with m2 in an indistinguishable way.

However, assuming that the symmetric cipher SKE is IND-CPA secure,
the probability of correctly guessing the key (e.g. brute force attack) is
negligible in the security parameter κ of SKE. Hence, if the advantage of
ADV in guessing they key is ε2:

ε2 = negl(κ) (3)

Since condition (1) can never be fulfilled, except with negligible probability,
there is no need to separately examine conditions (2) and (3).

Hence, we conclude that in every case, ADV can successfully launch an Ana-
lyst Substitution Attack with only negligible probability.

Symmetrical Disguise 363

Lemma 2 (Ciphertext Substitution Attack Soundness). Let PKE be an
INC-CPA secure public-key encryption scheme. Moreover, let S be an EUF-CMA
secure signature scheme and ADV a malicious adversary. Then ADV cannot
successfully launch a Ciphertext Substitution Attack against SD.

In contrast with the previous attack that aimed at processing real user
data, this attack aims at substituting the actual ciphertexts (c1, . . . , cn) with
a sequence of data (c′

1, . . . , c
′
n) generated by ADV. By succeeding in this attack,

ADV can control the outcome of a query to the CSP and hence, manipulate the
analyst A.

Proof. Successfully performing a Ciphertext Substitution Attack, requires
attacking the SD.Add protocol. More precisely, when a user ui outsources their
data to the CSP via m2 = 〈t2, c = (ci, . . . , cn), cKiσui

(H(t2‖c‖cKi))〉, ADV needs
to substitute c = (ci, . . . , cn) with c′ = (c′

1, . . . , c
′
n). Apart from that ADV needs

to generate a cK′ term where K′ is the key used to encrypt c′. More precisely,
ADV needs to successfully:

1. Generate a symmetric key KADV ;
2. Use K′ to generate a sequence of ciphertexts c′ = (c′

1, . . . , c
′
n);

3. Encrypt KADV with pkA to get cKADV ;
4. Tamper with m2 in an indistinguishable way.

Conditions (1), (2) and (3) are trivial to achieve. Moreover, substituting c
with c′ and cKi

with cK in the first part of m2 is straightforward. However, these
terms are also included in the signature and hence, successfully substituting the
terms is equivalent to forging ui’s signature. Given the EUF-CMA security of
the signature scheme S, this can only happen with negligible probability in the
security parameter λ of S. As a result, the advantage ε2 in tampering with m2

in an indistinguishable way is:

ε3 = negl(λ) (4)

Lemma 3 (Query Substitution Attack Soundness). Let PKE be an INC-
CPA secure public-key encryption scheme. Moreover, let S be an EUF-CMA
secure signature scheme and ADV a malicious adversary. Then ADV cannot
successfully launch a Query Substitution Attack against SD.

Proof. For ADV to successfully perform a Query Substitution Attack, they
need to attack the SD.Query protocol. More precisely, when A sends m3 =
〈t3,Enc(pkCSP, f), σA(H(t3‖f)〉) tries to substitute the function f with another
function f ′ of their choice. Since f is encrypted with the public key of the CSP
pkCSP, ADV simply needs to encrypt f ′ under pkCSP as well. However, f is also
included in the signature part of m3 and hence, tampering with m3 requires forg-
ing AADVs signature. Given the EUF-CMA security of the signature scheme S
this can only happen with negligible probability in the security parameter λ of S.

364 A. Bakas et al.

As a result, ADV’s advantage ε4 is in tampering with m3 in an indistinguishable
way is:

ε4 = negl(λ) (5)

Lemma 4 (Result Substitution Attack Soundness). Let PKE be an INC-
CPA secure public-key encryption scheme. Moreover, let S be an EUF-CMA
secure signature scheme and ADV a malicious adversary. Then ADV cannot
successfully launch a Result Substitution Attack against SD.

Proof. The proof is identical to that of Lemma 3 with the main difference being
that ADV targets m4 instead of m3. Hence, following the exact same reasoning
as in the proof of Lemma 3, we conclude that the advantage ε5 of ADV is in
tampering with m4 in an indistinguishable way is:

ε4 = negl(λ) (6)

Having examined each possible attack separately, what remains to be done is
to prove that the overall advantage εtotal of ADV is negligible. Given the security
parameter λ and grouping up the results from Eqs. 2- 6 we get that:

εtotal = ε1 + ε2 + ε3 + ε4 + ε5 (7)
= 4 · negl(λ) + negl(κ)

However, it is a standard result in real analysis that the finite sum of negli-
gible functions is still negligible and hence:

εtotal = negl′(λ, κ), (8)

where negl′(λ, κ) is negligible function produced as a linear combination of
negl(λ) and negl(κ). ��

8 Evaluation

In this section, we evaluate the performance of the core algorithms of our proto-
col. Our primary testbed for these experiments was an Intel Core i7 laptop with
16 GB RAM running an Ubuntu 20.04 operating system. For these experiments,
we utilized the SEAL cryptographic library [41] for basic HE operations, PASTA
library [23] to implement the secure symmetric cipher, and OpenSSL2. PASTA
was chosen over more established Symmetric ciphers such as AES due to its
low multiplicative index. All HE operations in this section were based on the
BFV [14] scheme, with a polynomial modulus degree of 16384. We note that the
choice of polynomial modulus degree impacted the efficiency of the implemented
scheme and increased the size of the ciphertexts, however, this was necessary due
to the complex operations involved. Finally, to provide a comprehensive overview
of each algorithm’s performance, each experiment was conducted 50 times with
the average taken.
2 https://github.com/openssl/openssl.

https://github.com/openssl/openssl

Symmetrical Disguise 365

8.1 Performance of Core Protocols

In this phase of our evaluations, we focused on the performance of the SD.Setup,
SD.Add, and SD.Query protocols.

SD.Setup : When evaluating the SD.Setup protocol, we first measured the time
taken to generate an RSA public and private key pair (2048 bit long), which
we used for both Signing/Verification and Encryption/Decryption, and the time
taken to generate the HE keys for the Analyst (i.e., Public, Secret and Evaluation
keys). On an average, it took 34.6 ms to generate the RSA public and private
keypair, and 88.4 ms to generate the HE keys. Finally, we measured the time
taken by a user to construct m1 = 〈t1,Enc(pkCSP, evk), σA(H(t1‖evk)))〉, and the
time taken by the CSP to verify m1 and decrypt Enc(pkCSP, evk). Constructing
m1 took 1.478 ms, while verifying and decrypting m1 took 1.174 ms (Table 2).

SD.Add : For the SD.Add protocol, we evaluated the cost of homomorphically
encrypting the symmetric key (HE.Encpk), cost of symmetrically encrypting the
user’s data (SKE.Enc), and cost of transforming the symmetric ciphertext to
a homomorphic ciphertext (HHE.Decomp). Additionally, we measured the time
taken for a user to construct m2 = 〈t2, c = (ci, . . . , cn), cKiσui

(H(t2‖c‖cKi))〉,
and time taken for the CSP to verify m2. Each experiment was run with a
varying number of user data from 1 to 200. It is worth re-iterating that one
of the primary advantages of SD is that irrespective of the amount of data
being outsourced, HE.Encpk is executed once. The cost of executing HE.Encpk
once was 18 ms. When outsourcing one data value, it took 7 ms to execute the
SKE.Enc algorithm and 17.7 s to run the HHE.Decomp algorithm on average.
On the other hand, when outsourcing 200 data values, the SKE.Enc algorithm
took 1.22 s to execute, while the HHE.Decomp algorithm took 3824 s to execute
(Table 1). Constructing m2 took 1.057 ms, while verifying m2 took 0.101 ms
(Table 2).

SD.Query : Meanwhile for the SD.Query protocol, we focused on the cost of
executing the HHE.Eval and HHE.Dec algorithms. Once again, each experiment
was run with a varying number of user data from 1 to 200. Additionally, for
the HHE.Eval algorithm, we evaluated a simple squaring function. For a sin-
gle data value, it took 91 ms to execute the HHE.Eval algorithm, and 5 ms
to execute the HHE.Dec algorithm. While for 200 data values, the HHE.Eval
algorithm took on average 16.9 s to execute, with the HHE.Dec algorithm tak-
ing 1.07 s to execute (Table 1). Furthermore, the analyst takes 1.098 ms to con-
struct m3 = 〈t3,Enc(pkCSP, f), σA(H(t3‖f)〉), while the CSP takes 1.56 ms to
verify m3 and decrypt Enc(pkCSP, f). Finally, the CSP took 1.118 ms to construct
m4 = 〈t4, cres, σCSP (H(t4‖cres))〉 (Table 2).

From our evaluations, it is quite obvious that the HHE.Decomp algorithm is
the most computationally expensive function, which explains why it is executed
by the CSP. We provide a complete overview of SD protocol measurements when
outsourcing 200 data values in Table 2.

366 A. Bakas et al.

Table 1. Algorithm execution

Data Values SKE.Enc HHE.Decomp HHE.Eval HHE.Dec

1 7 ms 17765 ms 91 ms 5 ms

50 0.31 s 990.2 s 4.916 s 0.275 s

100 0.61 s 1920.8 s 8.418 s 0.54 s

150 0.93 s 2832.1 s 12.592 s 0.81 s

200 1.22 s 3823.8 s 16.902 s 1.07 s

8.2 Comparison with Plain BFV

To provide concrete evidence of the efficiency of SD, we compare the operations
at its user side with that of a plain BFV scheme. To be more precise, we measured
the performance of a plain BFV scheme where a user continuously encrypts each
data value homomorphically before the data is outsourced to the CSP. We used
the same encryption parameters as with SD. For these experiments, we compared
the total cost of executing the HE.Encpk and SKE.Enc algorithms of the SD.Add
protocol, and the cost of continuously using HE encryption in the plain BFV.

As with the previous experiments, we vary the amount of data from 1 to 200.
For a single data value, SD.Add takes 25 ms to execute, while the plain BFV
scheme takes 21 ms to perform one HE encryption. It is worth mentioning that for
a single data value, the plain BFV scheme is marginally faster than SD at the user
side. However, this is easily attributed to the fact that SD requires two operations
(a symmetric encryption operation plus an HE encryption operation) at the user
side, while the plain BFV scheme involves just the one HE encryption operation.
When the number of data values is increased to 200, the SD.Add algorithm
executes in 1.22 s, while the plain BFV scheme executes in 3.1 s. Figure 3 provides
an overview of all the results obtained from this phase of our experiments. From
these results, it is evident that SD considerably reduces the computational costs
of the user and transfers majority of the computational costs to the CSP.

Table 2. Protocol measurements in the case of 200 data values

Sub-Protocol Messages Analyst Functions User Functions CSP Functions Time (s)

SD.Setup m1

PKE Keygen
HHE.KeyGen

m1 construction
PKE Keygen

PKE Keygen
m1 verification

0.19

SD.Add m2 -

HHE.Enc
SKE.Enc

m2 construction

m2 verification
HHE.Decomp

3825

SD.Query m3,m4 m3 construction -

m3 verification
HHE.Eval

m4 construction

16.91

Symmetrical Disguise 367

0 50 100 150 200
0

1,000

2,000

3,000

4,000

Data

T
im

e
(m

s)

HHE
BFV

Fig. 3. Computation time on the user’s side

Science and Reproducible Research: To support open science and repro-
ducible research, and provide other researchers with the opportunity to use,
test, and hopefully extend our scheme, the source code used for the evaluations
is publicly available online3.

9 Conclusion

In this paper we presented SD; a secure cryptographic protocol based on Hybrid
Homomorphic Encryption. The security and applicability of our construction
have been demonstrated through a detailed security analysis and an extensive
experimental evaluation. It is our firm belief that in the years to come, cloud
storage services will rely less on traditional cryptographic primitives and more
on modern cryptographic techniques allowing flexible computations over the
encrypted data – such as HE. To this end, we believe it is vital to start designing
realistic architectures based on HE in an attempt to demonstrate the feasibility
and applicability of modern cryptography. We hope that our work will incentivize
other researchers to look into the same direction. Most importantly, though, we
hope it will help companies to create modern privacy-respecting cloud services.

3 https://github.com/iammrgenie/HHE-Protocol.

https://github.com/iammrgenie/HHE-Protocol

368 A. Bakas et al.

References

1. Abdalla, M.D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for
inner products: function-hiding realizations and constructions without pairings. In:
Advances in Cryptology - CRYPTO 2018 (2018)

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

3. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 21

4. Agrawal, S., Chase, M.: Fame: Fast attribute-based message encryption. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, pp. 665–682. Association for Computing Machinery, New York
(2017). https://doi.org/10.1145/3133956.3134014

5. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

6. Bakas, A., Dang, H.V., Michalas, A., Zalitko, A.: The cloud we share: access control
on symmetrically encrypted data in untrusted clouds. IEEE Access 8, 210462–
210477 (2020). https://doi.org/10.1109/ACCESS.2020.3038838

7. Bakas, A., Michalas, A.: Modern family: a revocable hybrid encryption scheme
based on attribute-based encryption, symmetric searchable encryption and SGX.
In: Chen, S., Choo, K.-K.R., Fu, X., Lou, W., Mohaisen, A. (eds.) SecureComm
2019. LNICST, vol. 305, pp. 472–486. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-37231-6 28

8. Bakas, A., Michalas, A.: Multi-input functional encryption: efficient applications
from symmetric primitives. In: 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), pp. 1105–
1112. IEEE (2020)

9. Bakas, A., Michalas, A.: Power range: Forward private multi-client symmetric
searchable encryption with range queries support. In: 2020 IEEE Symposium on
Computers and Communications (ISCC), pp. 1–7 (2020). https://doi.org/10.1109/
ISCC50000.2020.9219739

10. Bakas, A., Michalas, A.: Nowhere to leak: a multi-client forward and backward
private symmetric searchable encryption scheme. In: Barker, K., Ghazinour, K.
(eds.) DBSec 2021. LNCS, vol. 12840, pp. 84–95. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81242-3 5

11. Bakas, A., Michalas, A., Dimitriou, T.: Private lives matter: a differential private
functional encryption scheme. In: Proceedings of the Twelfth ACM Conference
on Data and Application Security and Privacy, CODASPY 2022, pp. 300–311.
Association for Computing Machinery, New York (2022). https://doi.org/10.1145/
3508398.3511514

12. Bakas, A., Michalas, A., Frimpong, E., Rabbaninejad, R.: Feel the quantum func-
tioning: instantiating generic multi-input functional encryption from learning with
errors (extended version)? Cryptology ePrint Archive, Paper 2022/629 (2022).
https://eprint.iacr.org/2022/629

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1145/3133956.3134014
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1109/ACCESS.2020.3038838
https://doi.org/10.1007/978-3-030-37231-6_28
https://doi.org/10.1007/978-3-030-37231-6_28
https://doi.org/10.1109/ISCC50000.2020.9219739
https://doi.org/10.1109/ISCC50000.2020.9219739
https://doi.org/10.1007/978-3-030-81242-3_5
https://doi.org/10.1007/978-3-030-81242-3_5
https://doi.org/10.1145/3508398.3511514
https://doi.org/10.1145/3508398.3511514
https://eprint.iacr.org/2022/629

Symmetrical Disguise 369

13. Bakas, A., Michalas, A., Ullah, A.: (F)unctional sifting: a privacy-preserving repu-
tation system through multi-input functional encryption. In: Asplund, M., Nadjm-
Tehrani, S. (eds.) NordSec 2020. LNCS, vol. 12556, pp. 111–126. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-70852-8 7

14. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

15. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Trans. Comput. Theor. (TOCT) 6(3), 1–36
(2014)

16. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. J. Cryptology 31(3), 885–916 (2018)

17. Cheon, J.H., et al.: Batch fully homomorphic encryption over the integers. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
315–335. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 20

18. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

19. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptology 33(1), 34–91 (2020)

20. Cid, C., Indrøy, J.P., Raddum, H.: Fasta - a stream cipher for fast fhe evaluation.
Cryptology ePrint Archive, Report 2021/1205 (2021). https://ia.cr/2021/1205

21. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
311–328. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-
0 18

22. Dobraunig, C., et al.: Rasta: a cipher with low ANDdepth and few ANDs per
bit. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp.
662–692. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 22

23. Dobraunig, C., Grassi, L., Helminger, L., Rechberger, C., Schofnegger, M., Walch,
R.: Pasta: A case for hybrid homomorphic encryption. IACR Cryptol. ePrint Arch.
2021, 731 (2021)

24. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theor.
29(2), 198–208 (1983). https://doi.org/10.1109/TIT.1983.1056650

25. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012, 144 (2012)

26. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178
(2009)

27. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

28. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

29. Hebborn, P., Leander, G.: Dasta-alternative linear layer for rasta. In: IACR Trans-
actions on Symmetric Cryptology, pp. 46–86 (2020)

https://doi.org/10.1007/978-3-030-70852-8_7
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://ia.cr/2021/1205
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-319-96884-1_22
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-55220-5_32

370 A. Bakas et al.

30. Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakage sup-
pression. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991,
pp. 339–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-
1 12

31. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2020)

32. Méaux, P., Carlet, C., Journault, A., Standaert, F.-X.: Improved filter permutators
for efficient FHE: better instances and implementations. In: Hao, F., Ruj, S., Sen
Gupta, S. (eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 68–91. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35423-7 4

33. Michalas, A., Bakas, A., Dang, H.V., Zalitko, A.: Abstract: access control in search-
able encryption with the use of attribute-based encryption and sgx. In: Proceedings
of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop,
CCSW 2019, p. 183. Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3338466.3358929

34. Michalas, A., Bakas, A., Dang, H.-V., Zaltiko, A.: MicroSCOPE: enabling access
control in searchable encryption with the use of attribute-based encryption and
SGX. In: Askarov, A., Hansen, R.R., Rafnsson, W. (eds.) NordSec 2019. LNCS,
vol. 11875, pp. 254–270. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-35055-0 16

35. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, pp. 113–124 (2011)

36. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

37. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

38. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

39. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

40. Sans, E.D., Gay, R., Pointcheval, D.: Reading in the dark: classifying encrypted dig-
its with functional encryption. IACR Cryptology ePrint Archive 2018, 206 (2018)

41. Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL, March 2022.
Microsoft Research, Redmond, WA

https://doi.org/10.1007/978-3-319-96884-1_12
https://doi.org/10.1007/978-3-319-96884-1_12
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1145/3338466.3358929
https://doi.org/10.1007/978-3-030-35055-0_16
https://doi.org/10.1007/978-3-030-35055-0_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://github.com/Microsoft/SEAL

Replicated Additive Secret Sharing
with the Optimized Number of Shares

Juanjuan Guo1,2, Mengjie Shuai1,2, Qiongxiao Wang1,2, Wenyuan Li1,2,
and Jingqiang Lin3(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100089, China
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100089, China
3 School of Cyber Security, University of Science and Technology of China,

Hefei 230027, Anhui, China

linjq@ustc.edu.cn

Abstract. Replicated additive secret sharing (RSS) schemes introduce
the threshold for additive secret sharing, and are known for computa-
tional efficiency and flexibility. While the traditional RSS schemes usually
have a huge storage overhead with each server holding multiple shares,
recent variations have tried reducing storage overhead but at the expense
of computational performance. In this work, we focus on optimizing the
number of shares to reduce storage overhead without introducing exces-
sive computational cost. First, we construct a 2-of-n RSS (i.e., any two
among n servers could reconstruct the secret value), which generates
secret shares incrementally so that the storage increases almost linearly
with n, and achieves the optimal number of shares as we proved. Then, we
extend 2-of-n RSS to a general t-of-n RSS. Moreover, the incrementally-
generate mechanism makes our scheme support a server to join dynam-
ically that refrain existing shares from being modified. Our empirical
study across 60 servers supports that our scheme largely reduces the
storage overhead while obtaining an efficient runtime. Storage efficiency
shows an improvement of up to two orders of magnitude and online run-
time is within microsecond scale in our experimental settings.

Keywords: Secret sharing · Replicated additive secret sharing ·
Secure multiparty computation · Data privacy

1 Introduction

Secret sharing (SS) [4,31] has been extensively studied since it is important
not only for sensitive data storage but also as a fundamental building block for

This work was partially supported by National Key R&D Program of China under
Grant No. 2020YFB1005800.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 371–389, 2023.

https://doi.org/10.1007/978-3-031-25538-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_20&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_20

372 J. Guo et al.

multiparty computation (MPC) [34]. The basic idea of SS is to (1) split the
secret value into shares, and (2) ensure that the value can be reconstructed only
with the predefined threshold number of shares. In sensitive data storage, the
shares are stored among a set of non-colluded servers, preventing the adversary
from reconstructing the secret value. Further, in secure multiparty computation,
these servers cooperatively process these shares to complete the computation
over the secret values without reconstructing them.

Two split mechanisms have been proposed for secret sharing. One is Shamir’s
secret sharing scheme [31], which splits the secret value by setting it as the con-
stant coefficient of a random polynomial. The other is additive secret sharing
scheme [18], which splits the secret value with a number of random values, ensur-
ing the summation of the shares equal to the secret value. Shamir’s secret sharing
scheme [31] requires heavy modular exponentiation (and multiplication) in data
split and complicated process of degree reduction for computing multiplication
of secret values, which results in rare adoption in the secure multiparty compu-
tation [5]. In contrast, the additive secret sharing scheme is more efficient, as
it only needs modular addition for data split, and a lightweight algorithm (i.e.,
Beaver triples [2,3]) has been proposed to multiply the secret values.

Therefore, additive secret sharing is widely adopted in secure multiparty com-
putation, e.g., privacy-preserving machine learning (PPML) [10,11,22,23,23–
26,29,30,32] and threshold signature [9]. In PPML, the secret values (e.g., med-
ical data, finance data) are split into shares, and processed (e.g., addition, multi-
plication, comparison) by integrating additive secret sharing with garbled circuit
[27], oblivious transfer [33], and/or homomorphic encryption [7,12], to complete
the training and/or inference in machine learning. In threshold signature [9,14–
16,21], the private key is split with additive secret sharing scheme among a
number of servers, and a threshold number of servers cooperatively process the
shares with the to-be-signed message, to generate a valid signature of the mes-
sage.

Replicated additive secret sharing (RSS) [18] is proposed to introduce the
threshold in additive secret sharing, by replicating shares in multiple servers,
i.e., one server maintains multiple shares of the secret value. For example, t-of-n
RSS only needs the shares from t servers among the whole n ones. ISN [18], the
first RSS, designs an access structure to ensure any t servers can obtain all the
shares. However, ISN needs a large storage (i.e., Ct

n, the number of t − sized
subset of n − sized set). CDI [13] and KCI [19] reduce the storage overhead,
by converting Shamir’s secret share into additive secret share. However, a large
computational overhead is introduced during the conversions of shares.

Various PPML schemes attempt to integrate RSS for improving the flexibil-
ity. However, the effect is still limited due to the heavy computation or storage
overhead of t-of-n RSS when t and n is large. For example, AFL [1,17] adopts
ISN and only supports 2-of-3 RSS, PPML schemes [10,24,26,29] only support
2-of-3 or 2-of-4 RSS.

In this paper, we propose a new RSS scheme for additive secret sharing
scheme, which reduces the storage significantly, without introducing excessive

Replicated Additive Secret Sharing with the Optimized Number of Shares 373

computational overhead. We first construct an optimal 2-of-n RSS to split the
value incrementally, i.e., first split the secret value in 2-of-2 setting, then 2-of-3
RSS until 2-of-n RSS, which makes the storage increase almost linear with n,
reduce the storage remarkably compared to ISN. Then, we extend 2-of-n RSS to
t-of-n RSS, with a 3-of-n RSS. Moreover, the proposed incrementally-generate
mechanism supports a new server to join dynamically that refrain existing shares
from being modified. We have implemented the propose RSS scheme, the evalu-
ation demonstrates the significant decrease of storage and modest computation
performance.

The main contributions are as follows.

• We design a new 2-of-n RSS scheme and prove the optimal storage overhead
theoretically.

• We extend the optimal 2-of-n RSS to a general t-of-n RSS, to support an
arbitrary threshold. The analysis demonstrate that our scheme needs much
less storage compared to ISN.

• Our scheme support the dynamical join of a new server in secret sharing,
which generates the share while the shares remain unchanged.

2 Preliminaries

Additive Secret Sharing. Additive secret sharing(ASS) is a technique that
splits the secret into shares that add up to the original secret. The additive secret
sharing algorithm chooses n strings (s1, ..., sn) uniformly at random subject to
the requirement that

∑n
i=1 si = s (this can be done by choosing s1,...,sn−1 ∈ Z2l

uniformly at random, and then setting sn = s − ∑n−1
i=1 si. The reconstruction

algorithm simply adds all the shares to reconstruct the secret. ASS guarantees
that each share does not reveal any information about the secret. Traditional
additive secret sharing is a full-threshold secret sharing that requires all parties
(servers) cooperate to reconstruct the secret, and no single point of failure is
allowed.

Replicated Additive Secret Sharing. Replicated additive secret sharing
(RSS) [13,18,19] has an access structure Γ . An access structure is defined by
qualified sets Q ∈ Γ , which are the sets of parties who are granted access, and
the remaining sets of the parties are called unqualified sets. In the context of
this work we only consider threshold structures in which any set of t−1 or fewer
parties is not authorized to learn information about private values (i.e., they
form unqualified sets), while any t or more parties are able to jointly reconstruct
the secret (and thus form qualified sets). RSS can be defined for any n>t ≥ 2.
To secret-share private s using RSS, we treat s as an element of a finite ring
Z2l and additively split it into shares sT such that s=

∑
T∈τ sT (in Z2l), where

τ consists of all maximal unqualified set of Γ (i.e., all sets of t − 1 parties in our
case). Then each party i ∈ [1, n] stores shares sT for all T ∈ τ subject to i �∈ T .

In t-of-n replicated additive secret sharing, the secret is shared among n
parties and the secret can be reconstructed when t parties cooperate.

374 J. Guo et al.

3 2-of-n Replicated Additive Secret Sharing

Replicated additive secret sharing (RSS) with a small threshold has become
popular over the last few years [15,24,26]. We design a 2-of-n RSS scheme,
which is proved to achieve the minimum number of shares in 2-of-n RSS.

The System Model. In our secret sharing scheme there is one dealer and n
parties (servers). The dealer generates shares of the secret and distributes them
to n parties, only when t parties cooperate will the secret be reconstructed.
In our 2-of-n RSS, t is 2. We denote n parties who receive shares after share
generation as (share holder) parties, and t parties who reconstruct the secret
corporately as reconstruct parties.

The Adversary Model. We assume that an adversary in our scheme can
be divided into two kinds. An eavesdropping adversary learns all the informa-
tion stored at the corrupted parties. A halting adversary may also disturb cor-
rupted parties to stop sending messages during the execution of the protocol.
Our scheme can tolerate up to t−1 eavesdropping parties and up to n−t halting
parties. We assume that the dealer is a trusted party.

3.1 2-of-n Replicated Share Generation

Our 2-of-n replicated additive secret sharing generates shares incrementally by
adding parties one by one in turn. In our 2-of-n RSS, multiple share sets will
be generated, and each share set contains two shares whose sum is equal to the
secret s. We denote share as sb

a, the subscript a indicates the order of share set
that this share belongs to, and the superscript b indicates the order of a share in
its share set. The value of b is 1 or 2, and the value of a is related to the number
of parties n. The party whose id is i is denoted as Pi.

P1 P2 P3 P4

S1
1 S1

2

S2
1

S1
1

S2
2S2

1

S1
2

S2
2

The shares in yellow are for 2-of-2 ASS
The shares in yellow and pink are for 2-of-3 RSS

The shares in yellow, pink and green are for 2-of-4 RSS

Fig. 1. 2-of-4 replicated share generation.

In our 2-of-n replicated share generation, the dealer generates shares begin-
ning with 2-of-2 additive secret sharing, then extends it to arbitrary 2-of-n repli-
cated share generation. We take 2-of-4 replicated share generation as an example,
which shows in Fig. 1.

1) In 2-of-2 additive secret sharing, the dealer samples two additive shares s11,
s21 in Z2l satisfying s11 + s21=s, and sends s11 to P1, s21 to P2.

Replicated Additive Secret Sharing with the Optimized Number of Shares 375

2) The 2-of-3 replicated share generation is based on 2-of-2 additive secret shar-
ing, the dealer sends P1’s share s11 to P3. Now P2 can reconstruct the secret s
with either P1 or P3, but P1 and P3 cannot reconstruct the secret s because
they hold the same share. Thus we consider P1 as the conflict party of P3,
or P1 and P3 are conflict parties. It is necessary for the dealer to generate
the second share set s12, s22, and send s12 to P1, s22 to P3. So P1 and P3 can
reconstruct the secret s using s12 and s22.

3) The 2-of-4 replicated share generation is based on 2-of-3 replicated share
generation. The dealer sends P2’s share s21 to P4, now P4 can reconstruct s
with either P1 or P3, but cannot reconstruct s with P2 because they hold the
same share of the first share set. It is necessary for the dealer to send s12 to
P2, s22 to P4 to enable P2, P4 reconstruct the secret.

In summary, P1, P2 hold {s11}, {s21} respectively in 2-of-2 additive secret
sharing; P1, P2, P3 hold {s11, s12}, {s21}, {s11, s22} respectively in 2-of-3 RSS; P1,
P2, P3, P4 hold {s11, s12}, {s21, s12}, {s11, s22}, {s21, s22} respectively in 2-of-4 RSS.

Similar to 2-of-4 RSS, We design a 2-of-n RSS incrementally through adding
parties one by one. Since our goal is to make parties possess the minimum
number of shares, and the dealer always distributes a new set of shares, each to
the new party and its conflict party, we choose one of the parties holding the
minimum number of shares as Pconflict, whose shares will be copied to the new
party by the dealer. According to our rules, we find the conflict id of Pi (i ≥ 3) is
conflict = (i−2(�log2i�−1)) in 2-of-n RSS. It can be seen that Pconflict holds the
minimum number of shares at present. For example, the conflict parties of P3,
P4 are P1, P2 respectively, and the conflict parties of P5, P6, P7, P8 are P1, P2,
P3, P4 respectively. The dealer will totally generate three share sets if n ranges
from 5 to 8, four share sets if n ranges from 9 to 16, ..., according to the rules, we
find that the dealer will generate �log2n� share sets when the number of parties
is n where �•� represents ceiling function in math.

Algorithm 1. Shr 2ofn: 2-of-n replicated share generation
Input: The number of parties n.
Output: Shares for all parties.

1: Generate �log2n� share sets (s11, s21), (s12, s22),...,(s
1
�log2n�, s2�log2n�).

2: Set an array rawshare1 to store the first share of share sets s11, s12, ...,s1�log2n�, and

set an array rawshare2 to store the second share of share sets s21, s22, ...,s2�log2n�.
3: Set an array vshare containing n sub-arrays, and each corresponds to a party.
4: Add rawshare1[1] to vshare[1], add rawshare2[1] to vshare[2].
5: for 3 ≤ i ≤ n do
6: Compute the conflict id of Pi as conflict = i − 2�log2i�−1.
7: Copy vshare[conflict] to vshare[i].
8: Add rawshare1[�log2i�] into vshare[conflict] and add rawshare2[�log2i�] into

vshare[i].
9: end for

10: Output vshare[i] to share holder Pi, where 1 ≤ i ≤ n.

376 J. Guo et al.

We describe 2-of-n replicated share generation Shr 2ofn executed by the
dealer in Algorithm 1. In order to reduce communication rounds, the dealer
sends shares in one round after generating all shares for n parties. Each party
receives shares that have been arranged in ascending order of share sets. Specifi-
cally, Pi holds at most �log2n� shares in vshare[i]. These shares, in turn, belong
to the first share set, the second share set, ..., the �log2n�th share set, so the
index of a share in vshare[i] represents the share sets to which it belongs.

Proposition 1. In 2-of-n RSS that splits the secret into multiple sets with each
set containing 2 shares, the number of shares of the party holding the most shares
in our scheme reaches the minimum.

Proof. Let Min(n) denotes the minimum number of shares of the party holding
the most shares, we prove by mathematical induction and contradiction that
Min(n) is �log2n� in 2-of-n RSS.

Base case: Show that the statement holds for the smallest n in 2-of-n secret
sharing: n = 2, Min(2) = �log22� = 1 is clearly true because the dealer has to
generate one share set in this case.

Inductive step: Show that for any k > 2, if Min(k) = �log2k� holds, then
Min(k + 1) = �log2(k + 1)� also holds. We consider two cases:

1) k satisfies �log2(k + 1)� = �log2k�. According to our share generation algo-
rithm, Pk+1 will get all shares of Pconflict, then the dealer distributes one
share of the �log2(k + 1)�th share sets to Pconflict, and distributes the other
share to Pk+1, now these two conflict parties hold �log2(k + 1)� shares.
Min(k) is �log2k�, it means that the rest parties except two conflict par-
ties still hold �log2k� shares. Because �log2(k + 1)� = �log2k�, all parties
hold �log2k� shares at most. As �log2k� is the minimum for k parties, it is
obviously for (k + 1) parties. Thus, Min(k + 1) = �log2(k + 1)� holds.

2) k satisfies �log2(k + 1)� = �log2k� + 1. We prove this by contradiction. We
first suppose that �log2k� shares are enough for k + 1 parties. In this case,
�log2k� = log2k. The secret can be reconstructed only if the shares held by
any two parties are not all the same. Each party holds log2k shares and log2k
share sets each contains 2 shares in our method, so at most 2log2k = k share
combinations can be generated according to combination theorem. When
the dealer distributes k combinations of shares to k + 1 parties, there will
definitely be two parties holding the same combination of shares, making
it impossible for them to reconstruct the secret, which violates our suppose.
Therefore, a new set of shares needs to be generated, Min(k+1) = �log2k�+
1 = �log2(k + 1)� holds.

3.2 2-of-n Replicated Secret Reconstruction

In our 2-of-n replicated additive secret sharing, each party holds at most �log2n�
secret shares. Before reconstructing the secret, two reconstruct parties exchange
their id id1, id2 that id2>id1. Each reconstruct party determines which share

Replicated Additive Secret Sharing with the Optimized Number of Shares 377

will be used to reconstruct the secret according to the id of the other party.
Finally, the secret can be reconstructed by adding the two selected shares.

Since our 2-of-n share generation is an incremental scheme, we design the
secret reconstruction algorithm following the inverse idea of share generation
described in Subsect. 3.1. The conflict id of the larger party Pid2 can be computed
as conflict = id2 − 2(�log2(id2)�−1).

1) If conflict = id1, it means that shares of Pid1 were copied to Pid2 during
share generation phase, so Pid1 and Pid2 can reconstruct the secret using
their first different share, which is �log2(id2)�th share they hold.

2) If conflict �= id1, according to our share generation algorithm, the dealer
copies the shares of Pconflict to Pid2 , so Pid2 can use these copied shares to
reconstruct the secret with any other party except Pconflict. Now that id1 �=
conflict, Pid2 will only use the shares copied from Pconflict to reconstruct
the secret. Therefore, Pid2 can be regarded as Pconflict in this case. Now the
secret reconstruction between Pid1 and Pid2 has transformed into the secret
reconstruction between Pid1 and Pconflict, so Pid2 rolls its id id2 back to
conflict. Then each reconstruct party finds the larger id between id1 and
conflict, and computes the conflict id of it.

Executing the above operations for two reconstruct ids in a loop which stops
until two ids are in conflict or the larger id is 2. If the larger id is 2, the smaller
id must be 1 so that two reconstruct parties choose the first share to reconstruct
the secret.

The algorithm Rec 2ofn executed by each reconstruct party to select the cor-
rect share is described in Algorithm 2, where recparty is an array containing
reconstruct id in ascending order, each reconstruct party Pi(i ∈ {id1, id2}) exe-
cutes the algorithm, and obtain the correct share that will be used to reconstruct
the secret.

Algorithm 2. Rec 2ofn: 2-of-n replicated secret reconstruction
Input: recparty.
Output: The share that used to reconstruct the secret.

1: while True do
2: if recparty[2] == 2 then
3: output vshare[i][1].
4: else
5: conflict=recparty[2]-2(�log2(recparty[2])�−1)

6: if conflict == recparty[1] then
7: output vshare[i][�log2(recparty[2])�]
8: else
9: Replace recparty[2] with conflict in recparty, and sort ids in recparty.

10: end if
11: end if
12: end while

378 J. Guo et al.

4 t-of-n Replicated Additive Secret Sharing

The threshold of RSS introduced in Sect. 3 is limited to 2, however, there are also
some scenarios that requires larger threshold [16,28]. We extend the threshold
to an arbitrary number, achieving t-of-n RSS.

4.1 t-of-n Replicated Share Generation

In t-of-n replicated share generation, the dealer generates secret shares in an
incremental way, similar to 2-of-n RSS. It starts from t-of-t additive secret shar-
ing, then to t-of-(t + 1) RSS, ... , t-of-n RSS.

t-of-t Additive Secret Sharing. The dealer begins with t-of-t additive secret
sharing, it generates shares s11, s

2
1, ..., s

t
1 in Z2l , satisfying s11+s21+...+st

1=s. Then
allocates s11 to P1, s21 to P2, ... , st

1 to Pt so that the t parties can reconstruct
the secret s.

t-of-(t+1) Replicated Share Generation. The dealer generates t-of-(t + 1)
RSS based on t-of-t additive secret sharing above.

The dealer allocates the share s11 of P1 to Pt+1, we consider P1 as the conflict
party of Pt+1, or P1, Pt+1 are conflict parties. Now t parties {P1, P2, ..., Pt} or
{P2, P3, ..., Pt+1} can reconstruct the secret s using s11, s21, ..., st

1. However, any
t parties including both P1 and Pt+1 cannot reconstruct the secret s because
they hold the same share s11 at present.

To solve this, the dealer will generate and allocate shares to enable any
t parties including both P1 and Pt+1 to reconstruct the secret s. The dealer
samples two shares s12, s22 in Z2l , then allocates s12 to P1 and allocates s22 to Pt+1.
Next, the dealer computes δ1 = s−s12−s22. The new secret δ1 needs to be shared
among the rest t−1 parties, achieving any t−2 parties from the rest parties can
reconstruct the new secret δ1, and further any t parties among {P1, P2, ..., Pt+1}
can reconstruct the secret s. In other words, when reconstructing the secret s,
P1, Pt+1 uses s12, s22 respectively, and the rest parties use their share which can
reconstruct δ1.

When we generate shares for (t − 2)-of-(t − 1) RSS of the new secret δ1, it
is a sub-problem of generating shares for t-of-(t + 1) RSS of the original secret
s. Thus, we design a recursive algorithm to solve sub-problem (t − 2)-of-(t − 1)
RSS, in which sub-problem (t − 4)-of-(t − 3) RSS will be called, ..., until the
recursion reaches its bound 2-of-3 or 3-of-4 determined by whether t is even or
odd respectively since t reduces by 2 in each recursion. The 2-of-n replicated
share generation algorithm has been given in Sect. 3. The 3-of-n replicated share
generation algorithm is similar to 2-of-n replicated share generation, which we
will give at the end of this section.

t-of-n Replicated Share Generation. Our scheme adds Pt+2 based on t-of-
(t + 1) share generation described above, then adds Pt+3, ..., Pn similarly to
achieve t-of-n RSS. When Pi (i ≥ t + 1) is added, the dealer copies the shares of
its conflict party Pi−t to Pi, then samples two shares s1∗ and s2∗ and sends each
of them to Pi−t, Pi respectively. Next, the dealer computes δ = s − s1∗ − s2∗, and

Replicated Additive Secret Sharing with the Optimized Number of Shares 379

generates shares for (t−2)-of-(i−2) RSS of the new secret δ, it is a sub-problem
of generating shares for t-of-i RSS of the original secret s. Thus, we design a
recursive algorithm to solve sub-problem (t − 2)-of-(i − 2) RSS, in which sub-
problem (t − 4)-of-(i − 4) RSS will be called, ..., until the recursion reaches its
bound that the threshold of secret sharing to be called is 2 or 3.

Algorithm 3. Fmaxlevel(t, n)
1: if t==2 then
2: return maxlevel = �log2n�
3: else if t==3 then
4: return maxlevel = n − 2
5: else if t==n then
6: return maxlevel = 1
7: else then
8: return maxlevel = Fmaxlevel(t, n − 1)+Fmaxlevel(t − 2, n − 2)
9: endif

In our t-of-n replicated additive secret sharing, the number of share sets
generated by the dealer can be calculated using t and n as described in Algorithm
3. The cases that t is 2 and t is 3 have proved before. When considering the nth
party Pn, the dealer allocates shares of Pn−t to Pn on the basis of t-of-(n − 1)
share generation, and executes (t − 2)-of-(n − 2) RSS for the other n − 2 parties
excluding Pn−t and Pn. Therefore, the total number of share sets of t-of-n secret
sharing is Fmaxlevel(t, n − 1) + Fmaxlevel(t − 2, n − 2).

P1 P2 P3 P4

4-of-4

4-of-5

4-of-6

P5 P6

S1
1 S1

2 S1
3 S1

4 S1
1 S1

2

S2
1 S2

2S2
3 S2

3 S2
3S2

4

S3
1 S3

2 S3
1

S4
3

S5
1

S4
1 S4

2S4
3S4

4 S4
4

S5
2S5

1 S5
2

The shares in yellow box are generated in recursion 2-of-3 RSS
The shares in pink box are generated in recursion 2-of-4 RSS

Fig. 2. 4-of-6 replicated share generation.

Figure 2 shows an example of 4-of-6 replicated share generation. We describe
our t-of-n share generation Shr tofn in Algorithm 4 and define the following
parameters:

– 2-tuple(sharelevel, sharevalue): It describes a share, sharelevel is the order
of the share set to which it belongs, and sharevalue is its value.

– vparty: an array containing ids of all parties (share holders).

380 J. Guo et al.

– vshare: a two-dimensional array that records the 2-tuples of n parties. After
the share generation algorithm ends, vshare[i] contains all 2-tuples of Pi.
vshare is initialized as an empty two-dimensional array, and because it will
be modified in every recursion, it is set as a global variable.

– maxlevel: an integer indicating maximum order of share sets that have been
generated so far, maxlevel is initialized to 1. It will be modified in every
recursion, so we set it as a global variable.

– genlevel: an integer indicating the sharelevel of share that is generated dur-
ing the present recursion, it is initialized to 1. As our share generation is
incremental, the sharelevel of new shares must not be the same as the shares
that have already been generated, thus genlevel is always set to maxlevel+1.

The algorithm Shr tofn takes threshold t, secret s, genlevel and vparty as
input. It has no output, because all shares that are generated will be added into
array vshare.

Algorithm 4. Shr tofn(t, s, genlevel, vparty)
Input: threshold t, secret s, genlevel, vparty.

1: if t==2 then
2: Shr 2ofn(s, genlevel, recurparty)
3: else if t=3 then
4: Shr 3ofn(s, genlevel, recurparty)
5: else
6: Sample shares s1, s2, ..., st

$←− Z2l such that
∑t

i=1 si=s.
7: Set sharelevel = genlevel, add 2-tuple(sharelevel, si) to vshare[vparty[i]]

where 1 ≤ i ≤ t.
8: for i = t + 1; i ≤ sizeof(vparty); i + + do
9: Traverse 2-tuples in vshare[vparty[i−t]] to find vshare[vparty[i−t]][ord] such

that vshare[vparty[i − t]][ord].sharelevel=genlevel.
10: Copy the shares from ordth to the last in vshare[vparty[i − t]] to

vshare[vparty[i]].
11: if genlevel>maxlevel then
12: maxlevel = genlevel.
13: end if
14: Sample s′

1, s
′
2 in

$←− Z2l , add 2-tuple(maxlevel+1, s′
1) into vshare[vparty[i−

t]], add 2-tuple(maxlevel + 1, s′
2) into vshare[vparty[i]].

15: Add vparty[m] into an empty array recurparty where 1 ≤ m<i and m! = i−t.

16: Shr tofn(t − 2, s − s′
1 − s′

2, maxlevel+1, recurparty)
17: end for
18: end if

The 3-of-n replicated share generation Shr 3ofn called in Shr tofn is also
incrementally generated, similar to 2-of-n share generation. The dealer begins
with 3-of-3 additive secret sharing, sends s11, s21, s31 to P1, P2, P3 respectively.
When adding Pi (i ≥ 4), the dealer generates a new set of shares s12, s

2
2, s

3
2, and

sends s12 to Pi−3, s22 to Pi, s32 to Pj where 1 ≤ j<i and j �= i−3. The dealer needs

Replicated Additive Secret Sharing with the Optimized Number of Shares 381

to generate n−2 sets of shares in total in our 3-of-n replicated share generation.
Considering the parameter compatibility when Shr 3ofn and Shr 2ofn are called
in Shr tofn, it is necessary to introduce parameters sharelevel, genlevel, vparty,
etc. based on 3-of-n and 2-of-n replicated share generation we described before.

4.2 t-of-n Replicated Secret Reconstruction

In t-of-n replicated additive secret sharing, each party holds multiple shares.
The t reconstruct parties exchange their ids, and each party selects a correct
share according to t reconstruct ids, then the secret can be reconstructed by
computing the sum of t shares that have been selected.

Our t-of-n secret reconstruction follows the reverse strategy of share gen-
eration. Now that share generation is in an incremental way, reconstruction
will start from maximum reconstruct id to minimum. After exchanging id with
other reconstruct parties, each party holds the ids of all reconstruct parties as
{id1, id2, ..., idt} in ascending order. The correct share selection starts from max-
imum id idt, and computes the conflict id of idt as conflict = idt − t.

1) If Pconflict is also a reconstruct party, it means that the dealer copied shares
of Pconflict to Pidt

during share generation. Therefore, Pconflict and Pidt

shall choose the first different share of them to reconstruct the secret. As
their first different share is generated on the basis of t-of-(idt − 1) RSS, the
sharelevel of which is Fmaxlevel(t, idt − 1) + 1. The rest parties execute the
secret reconstruction algorithm in a recursion, and with a threshold t − 2
after two conflict parties are removed.

2) If Pconflict is not a reconstruct party, shares of Pidt
that are generated after

the conflict with Pconflict will not be used. Instead, Pidt
will choose one

from shares that are copied from Pconflict. Therefore, Pidt
can be regarded

as Pconflict in this case, similar to 2-of-n secret reconstruction. Thus, Pidt

rolls its id back to conflict. Then reconstruct parties sort ids of refreshed
reconstruct parties in ascending order.

If no parties are in conflict, each reconstruct party chooses the first share in
the present recursion to reconstruct the secret.

P1 P2 P3 P4

4-of-4

4-of-5

4-of-6

P5 P6

S1
1 S1

2 S1
3 S1

4 S1
1 S1

2

S2
1 S2

2S2
3 S2

3 S2
3S2

4

S3
1 S3

2 S3
1

S4
3 S4

3S4
4 S4

4

S5
1 S5

2

S4
1 S4

2

S5
1 S5

2

Shares in pink circle are selected after the first conflict
Shares in green circle are selected after the second conflict

Fig. 3. 4-of-6 replicated secret reconstruction.

382 J. Guo et al.

Figure 3 shows an example of 4-of-6 replicated secret reconstruction that
the reconstruct parties are {P1, P2, P4, P6}, The conflict party of maximum
party P6 is P2, so they choose their first different share s14 and s24. The rest
reconstruct parties {P1, P4} call 2-of-4 secret reconstruction, where share holders
are {P1, P3, P4, P5}, as P2 and P4 are excluded. In recursion 2-of-4 called by 4-
of-6 secret reconstruction, the conflict party of maximum party P4 is P1, so they
choose their first different share s15 and s25. Because s15 + s25=s − s14 − s24 holds
during share generation, it is obviously that four shares selected can reconstruct
the secret s.

Algorithm 5. Rec tofn(vparty, recparty, reclevel, recid, vshare[recid])
Input: vparty, recparty, reclevel, recid, vshare[recid].
Output: The share that used to reconstruct the secret .

1: Set threshold t=sizeof(recparty)
2: if t==2 then
3: Rec 2ofn(vparty, recparty, reclevel, recid, vshare[recid])
4: else if t==3 then
5: Rec 3ofn(vparty, recparty, reclevel, recid, vshare[recid])
6: else
7: while True do
8: if recparty[t] == party[t] then
9: Output 2-tuple.sharevalue if 2-tuple.sharelevel = reclevel.

10: else
11: Generate an array ind containing t parameters indicating the indexes of t

reconstruct parties in vparty, compute conflict = vparty[ind[t] − t].
12: if conflict in recparty then
13: Set reclevel=Fmaxlevel(t, recparty[t] − 1)+1.
14: if recid == conflict or recid == recparty[t] then
15: Output 2-tuple.sharevalue if 2-tuple.sharelevel = reclevel.
16: else
17: Remove id recparty[t] and conflict from vparty and recparty.
18: Rec tofn(vparty, recparty, reclevel, recid, vshare[recid])
19: end if
20: else
21: Replace id recparty[t] with id conflict in recparty.
22: Sort ids of recparty in ascending order, and refresh ind.
23: If recid = recparty[t], set rectid = conflict.
24: end if
25: end if
26: end while
27: end if

More specifically, we describe our t-of-n secret reconstruction Rec tofn in
Algorithm 5, which is executed by each reconstruct party independently. We
define the following parameters:

– vparty: an array containing ids of all parties (share holders) in ascending
order.

Replicated Additive Secret Sharing with the Optimized Number of Shares 383

– recparty: an array containing reconstruct party ids in ascending order.
– ind: an array containing indexes of t reconstruct parties in vparty. Conflict

id of maximum reconstruct party recparty[t] is vparty[ind[t] − t].
– reclevel: an integer, when two reconstruct parties are in conflict, they will

choose shares whose sharelevel is equal to reclevel to reconstruct the secret.
Furthermore, suppose id1 is conflict with id2, they will choose their first
different share which is generated after t-of-(id2 − 1) RSS. Since maximum
sharelevel of t-of-(id2 − 1) RSS is Fmaxlevel(t, id2 − 1), reclevel is set to
Fmaxlevel(t, id2 − 1) + 1. reclevel is initialized to 1.

– recid: an id of reconstruct party who executes secret reconstruction algorithm.
Precid holds vshare[recid] as its own shares, which is the input of secret
reconstruction algorithm.

The 3-of-n replicated secret reconstruction Rec 3ofn called in Rec tofn follows
inverse intuition of Shr 3ofn, which is similar to 2-of-n RSS. Three reconstruct
ids are id1, id2, id3 where id1<id2<id3. Firstly reconstruct parties computing
conflict id of maximum party Pid3 as conflict = id3 − 3. If conflict is equal to
id1 or id2, reconstruct parties use the (id3 −2)th share to reconstruct the secret.
If conflict is not equal to id1 or id2, replace id3 with id conflict and rearrange
three reconstruct ids in ascending order, and find new maximum id of them.
Then execute the above operations for three reconstruct ids in a loop and stop
until any two of three reconstruct parties are in conflict or maximum id is 3,
then reconstruct parties choose the first share if maximum id is 3. Considering
the parameter compatibility when Rec 3ofn and Rec 2ofn are called in Rec tofn,
it is necessary to introduce parameters sharelevel, reclevel, vparty, etc. based
on 3-of-n and 2-of-n secret reconstruction we described before.

Security Analysis. Our t-of-n RSS is a semi-honest scheme, privacy will be
violated if less than t parties can reconstruct the secret. During share generation,
dealer generates multiple independent sets of shares, and each set contains t
shares whose sum is the secret s. Since each party only holds at most one share
in the same set in our scheme, less than t parties cannot reconstruct the secret,
thus privacy is guaranteed.

5 Related Work

Existing solutions have some inherent flaws, such as huge storage overhead, poor
computational overhead and fixed little threshold.

Storage Inefficient RSS. ISN [18] realizes t-of-n replicated additive secret
sharing with each party holding Ct−1

n−1 shares, which causes huge storage over-
head. CT12 [8] presents a scheme for the evolving 2-threshold access structure in
which the share size of party t is linear in t. KNY16 [20] designs a secret sharing
for the evolving 2-threshold access structure and an l-bit secret in which the
share size of party t is logt + (l + 1)loglogt + 4l + 1 bits. The storage overheads
of CT12 and KNY16 are unbalanced, and the share size held by the party with
a larger id is much larger than that of the party with a smaller id.

384 J. Guo et al.

Computational Inefficient RSS. CDI [13] and KCI [19] achieve threshold
additive secret sharing by converting Shamir secret share into additive secret
share. The share conversion process needs to calculate Lagrange interpolation,
which brings huge computational overhead. DKLs18 [15] and DKLs19 [16] are
two threshold schemes that convert Shamir secret shares of private key into
additive secret shares, and then combine additive secret sharing and oblivious
transfer to accomplish threshold signature.

RSS with a Fixed Threshold. AFL [1,17] follows the share generating method
of ISN to design a 2-of-3 MPC protocol, then TYAO [17] adapts AFL to a fully
malicious case. Besides, ABY3 [26] and Sharemind [6] are 2-of-3 MPC schemes
based on 2-of-3 replicated secret sharing. In these 2-of-3 MPC schemes based
on replicated additive secret sharing, each party holds 2 shares. There are also
some schemes [10,24,26,29] applied in PPML that only realize RSS with a fixed
small threshold t and a fixed number of parties n, such as 2-of-3 or 2-of-4 RSS.

From the perspective of extendibility, some existing replicated additive secret
sharing schemes [10,11,18,26,29] split the secret into one share set, and each
party holds multiple shares of the set. PrivPy [24] is sightly different from the
previous schemes, which splits the secret into multiple sets of shares, and each
party holds one share of each share set.

6 Evaluation

We evaluate the storage and computational overhead of our scheme. Our storage
efficiency is up to two orders of magnitude faster than the best prior work, and
the online runtime of the protocol is in the microsecond level. We test replicated
share generation (offline) executed by the dealer, and replicated secret recon-
struction (online) executed by reconstruct party. In order to measure perfor-
mance, we implement a prototype in C++. We run single-threaded simulations
on Ubuntu 18.04 with an Intel Xeon(R) Silver 4216 CPU 2.10 GHz, with 32 GB
of RAM.

6.1 Storage Cost

Table 1. Comparision of threshold and storage.

Algorithm Threshold Storage(bits)

ABY3 [26],etc 2-of-3 2l

PrivPy [24] 2-of-4 2l

ISN [18] t-of-n Ct−1
n−1 · l

Our Shr 2ofn 2-of-n �log2n� · l

Our Shr 3ofn 3-of-n (n − 2) · l

Our Shr tofn t-of-n ≤ Fmaxlevel(t, n) · (l + σ)

Replicated Additive Secret Sharing with the Optimized Number of Shares 385

We compare the storage overhead of our Shr 2ofn, Shr 3ofn, Shr tofn with exist-
ing schemes in Table 1, where the length of sharevalue, sharelevel is l, σ bits
respectively. The existing schemes [1,6,10,17,24,26,29] realize 2-of-3, 2-of-4 RSS
by having each party hold 2 shares. Our Shr 2ofn (Shr 3ofn) replicated share gen-
eration expands the number of parties to an arbitrary n by having each party
hold �log2n� shares ((n − 2) shares). Our scheme obtains the same storage cost
as existing schemes when n is 3 or 4.

In our replicated share generation Shr tofn, the number of shares held by
distinct parties is different. The maximum number of shares held by a party is
Fmaxlevel(t, n), which is described in Algorithm 3. Each party not only stores
the shares, but also stores their corresponding sharelevel. Therefore, the party
who holds the most shares needs to store Fmaxlevel(t, n) · (l + σ) bits. In order
to compare the storage overhead with ISN intuitively, we set l as 64 like most
schemes (i.e., ABY3, PrivPy), and set σ as 32, which is much larger than the
size of the maximum sharelevel in most cases (i.e., the length of sharelevel of
4-of-60 or 5-of-60 is only 10 or 12 respectively). We test the cases when t is 4
and n ranges from 10 to 50, and depict storage comparison in Fig. 4. The result
shows our storage efficiency is up to two orders of magnitude faster than ISN.
When we increase t, the storage gap between ISN and our Shr tofn will be larger.

10 20 30 40 50

0

0.5

1

·106

1,632 5,664 10,464 15,840 21,6005,376 62,016
2.34 · 105

5.85 · 105

1.18 · 106

Number of parties

St
or
ag

e(
bi
ts
)

ours ISN

Fig. 4. Storage comparison between our Shr tofn and ISN.

386 J. Guo et al.

6.2 Computational Cost

Table 2. Runtime of share generation executed by the dealer(ms).

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60

t = 2 0.03 0.04 0.06 0.07 0.08 0.09

t = 3 0.03 0.08 0.12 0.21 0.28 0.36

t = 4 0.06 0.21 0.46 0.82 1.17 1.63

t = 5 0.06 0.42 1.24 2.60 4.50 7.60

...

t = 9 0.02 4.31 77.19 694.21 3 × 103 16 × 103

t = 10 0.01 8.04 535.02 11 × 103 103 × 103 103 × 103

Runtime of replicated share generation is shown in Table 2. Only millisecond
generation time is required when t is 2 or 3, while runtime explodes when both
t and n are large, for example, runtime of 10-of-60 share generation is 10 min.
In fact, other schemes [13,18] also incur huge overhead when t and n are large.

10 20 30 40 50 60

0

100

200

300

Number of parties

R
un

ti
m
e(
us
)

t=2
t=4
t=6
t=8
t=10

(a) Secret reconstruction (t is even)

10 20 30 40 50 60

0

200

400

Number of parties

R
un

ti
m
e(
us
)

t=3
t=5
t=7
t=9
t=11

(b) Secret reconstruction (t is odd)

Fig. 5. Runtime of secret reconstruction executed by reconstruct party.

Runtime of replicated secret reconstruction is plotted in Fig. 5. We test run-
time of selecting the correct share, excluding exchanging ids among reconstruct
parties and adding shares to reconstruct the secret. Runtime of exchanging ids
depends on network performance and adding shares is fast so it can be ignored.
We test the runtime in two cases: Rec tofn will call Rec 2ofn if t is even, and call
Rec 3ofn if t is odd. Runtime of distinct reconstruct subsets are different, so we
test a large number of distinct subsets and finally take the average. It only takes
1 or 2 microsecond (us) for each party to select the correct share when t is 2 or
3, and only 400 us selection time is required in 10-of-60 secret reconstruction.

Replicated Additive Secret Sharing with the Optimized Number of Shares 387

7 Conclusion

In this paper, we first propose a 2-of-n RSS scheme including a share genera-
tion algorithm, which generates shares incrementally and a secret reconstruction
algorithm, which follows inverse intuition of share generation. Our 2-of-n scheme
is theoretically proved to achieve the optimal number of shares in 2-of-n RSS.
Then we design a more general t-of-n RSS based on our 2-of-n RSS, which sup-
ports an arbitrary threshold. It achieves a far better storage performance than
existing schemes by making each share capable of reconstructing the secret in
more subsets of parties. Since our RSS scheme generates shares in an incremental
way, it realizes a extendibility that existing shares should not be changed when
a new party joins in RSS. However, our RSS scheme can only compute addition
operations in MPC, not multiplication operations in MPC. In the future, we will
combine our RSS scheme with oblivious transfer to realize threshold multiplica-
tion operation in MPC, which can be directly applied in practical scenarios such
as privacy-preserving machine learning and threshold signature.

References

1. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 805–817 (2016)

2. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: Proceedings of the eighth annual ACM Sym-
posium on Principles of Distributed Computing, pp. 201–209 (1989)

3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

4. Blakley, G.R.: Safeguarding cryptographic keys. In: Managing Requirements
Knowledge, International Workshop on, pp. 313–313. IEEE Computer Society
(1979)

5. Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakley, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-39568-7 20

6. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Trans. Comput. Theor. (TOCT) 6(3), 1–36
(2014)

8. Cachin, C.: On-line secret sharing. In: Boyd, C. (ed.) Cryptography and Coding
1995. LNCS, vol. 1025, pp. 190–198. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60693-9 22

9. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-
efficient threshold EC-DSA. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020. LNCS, vol. 12111, pp. 266–296. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45388-6 10

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-39568-7_20
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/3-540-60693-9_22
https://doi.org/10.1007/3-540-60693-9_22
https://doi.org/10.1007/978-3-030-45388-6_10
https://doi.org/10.1007/978-3-030-45388-6_10

388 J. Guo et al.

10. Chaudhari, H., Choudhury, A., Patra, A., Suresh, A.: Astra: high throughput 3pc
over rings with application to secure prediction. In: Proceedings of the 2019 ACM
SIGSAC Conference on Cloud Computing Security Workshop, pp. 81–92 (2019)

11. Chaudhari, H., Rachuri, R., Suresh, A.: Trident: efficient 4pc framework for privacy
preserving machine learning. arXiv preprint arXiv:1912.02631 (2019)

12. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

13. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

14. Dalskov, A., Orlandi, C., Keller, M., Shrishak, K., Shulman, H.: Securing DNSSEC
keys via threshold ECDSA from generic MPC. In: Chen, L., Li, N., Liang, K.,
Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 654–673. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59013-0 32

15. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy
(SP), pp. 980–997. IEEE (2018)

16. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ECDSA from ECDSA
assumptions: the multiparty case. In: 2019 IEEE Symposium on Security and Pri-
vacy (SP), pp. 1051–1066. IEEE (2019)

17. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

18. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electr. Commun. Japan (Part III: Fundamental Electronic Science)
72(9), 56–64 (1989)

19. Kikuchi, R., Chida, K., Ikarashi, D., Ogata, W., Hamada, K., Takahashi, K.: Secret
sharing with share-conversion: Achieving small share-size and extendibility to mul-
tiparty computation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
98(1), 213–222 (2015)

20. Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 485–514. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 19

21. Kondi, Y., Magri, B., Orlandi, C., Shlomovits, O.: Refresh when you wake up:
proactive threshold wallets with offline devices. In: 2021 IEEE Symposium on Secu-
rity and Privacy (SP), pp. 608–625. IEEE (2021)

22. Koti, N., Pancholi, M., Patra, A., Suresh, A.: {SWIFT}: Super-fast and robust
{Privacy-Preserving} machine learning. In: 30th USENIX Security Symposium
(USENIX Security 21), pp. 2651–2668 (2021)

23. Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., Sharma, R.: Crypt-
flow: secure tensorflow inference. In: 2020 IEEE Symposium on Security and Pri-
vacy (SP), pp. 336–353. IEEE (2020)

24. Li, Y., Xu, W.: Privpy: general and scalable privacy-preserving data mining. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1299–1307 (2019)

http://arxiv.org/abs/1912.02631
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-030-59013-0_32
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-662-53644-5_19

Replicated Additive Secret Sharing with the Optimized Number of Shares 389

25. Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: Delphi: A cryp-
tographic inference service for neural networks. In: 29th USENIX Security Sym-
posium (USENIX Security 20), pp. 2505–2522 (2020)

26. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine learning.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 35–52 (2018)

27. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: the
garbled circuit approach. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pp. 591–602 (2015)

28. Ohara, K., Watanabe, Y., Iwamoto, M., Ohta, K.: Multi-party computation for
modular exponentiation based on replicated secret sharing. IEICE Trans. Fund.
Electron. Commun. Comput. Sci. 102(9), 1079–1090 (2019)

29. Patra, A., Suresh, A.: Blaze: blazing fast privacy-preserving machine learning.
arXiv preprint arXiv:2005.09042 (2020)

30. Poddar, R., Kalra, S., Yanai, A., Deng, R., Popa, R.A., Hellerstein, J.M.: Senate: a
{Maliciously-Secure}{MPC} platform for collaborative analytics. In: 30th USENIX
Security Symposium (USENIX Security 21), pp. 2129–2146 (2021)

31. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
32. Wagh, S., Gupta, D., Chandran, N.: Securenn: efficient and private neural network

training. Cryptology ePrint Archive (2018)
33. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for cor-

related OT with small communication. In: Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1607–1626 (2020)

34. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (sfcs 1986), pp. 162–167. IEEE (1986)

http://arxiv.org/abs/2005.09042

Generic 2-Party PFE with Constant
Rounds and Linear Active Security,

and Efficient Instantiation

Hanyu Jia1,2, Xiangxue Li1,3(B), Qiang Li4, Yue Bao5, and Xintian Hou5

1 School of Software Engineering, East China Normal University,
Shanghai 200062, China
xxli@cs.ecnu.edu.cn

2 Shanghai Key Laboratory of Privacy-Preserving Computation,
MatrixElements Technologies, Shanghai 201204, China

3 Shanghai Key Laboratory of Trustworthy Computing, Shanghai 200062, China
4 Institute of Cyber Science and Technology, Shanghai Jiaotong University,

Shanghai 200240, China
qiangl@sjtu.edu.cn

5 CATARC Software Testing (Tianjin) Co., Ltd., Tianjin 300300, China
{baoyue,houxintian}@catarc.ac.cn

Abstract. The paper considers generic construction of 2-party private
function evaluation (PFE) in the malicious adversary model. There is
hitherto only one concrete design of actively secure 2-party PFE proto-
col (Liu et al. at PKC 2022, and LWY hereafter) with constant rounds
and linear complexity. One interesting feature of LWY is its function
reusability (i.e., the same function is involved in multiple executions of
LWY) which makes its execution more efficiently from the second execu-
tion. Nevertheless, in its first execution (in particular for those settings
where only one invocation of the function is required), LWY is quite
involved and too inefficient to be of practical use. For these settings
(of non-reusable private functions), we initiate a generic construction
of 2-party PFE protocol with constant rounds and linear complexity in
the malicious adversary model based on Yao’s garbled circuit and singly
homomorphic encryption. When instantiated with ElGamal encryption
and Groth secret shuffle (J. Cryptology 2010), the generic construction
effectuates a novel concrete design of 2-party PFE, which has better
performance and reduces 51.2% communication bits and 52.4% compu-
tation costs, compared to LWY (in its first execution) at the same secu-
rity level. It even outperforms several 2-party PFE protocols (Katz and
Malka at AISACRYPT 2011, and Mohassel and Sadeghian at EURO-
CRYPT 2013) that are secure in the semi-honest adversary model from
the communication perspective. The proposed PFE and LWY thus make
optimal solutions available for non-reusable and reusable private func-
tions, respectively.

Keywords: Private function evaluation · Active security · Two-party
computation · Extended permutation

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
Published by Springer Nature Switzerland AG 2023. All Rights Reserved
F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 390–410, 2023.
https://doi.org/10.1007/978-3-031-25538-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_21&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_21

Generic 2-Party PFE with Constant Rounds and Linear Active Security 391

1 Introduction

Secure multi-party computation (MPC) protocols allow a group of participants
to perform a computation together without revealing the private input of any
party [13,57]. Since its introduction by Yao in the 1980 s,s, MPC has evolved
from a theoretical curiosity to an important tool for building large-scale privacy-
preserving applications [3,10,12,15,16,25,43,51].

SFE and PFE. There are two cases of MPC protocols, secure function evalu-
ation (SFE) and private function evaluation (PFE), depending on whether the
functions involved in the computation are public/private. In SFE, the func-
tion f(· · ·) (multi-variable) is not private knowledge of any participant, but an
open function that all the parties agree to compute. Suppose there are n parties
P1, · · · , Pn and Pi has private data xi. At the end of SFE, n parties are given
f(x1, · · · , xn), but any Pi’s private data xi is not disclosed to any other parties.
Many SFE protocols rely on translating f into a Boolean or arithmetic circuit
Cf . For example, Yao’s garbled circuit (GC) [37,58] and GESS [32] are applicable
to 2-party computation. Multi-party computation protocols include GMW [20],
BGW [7], and BMR [5], and computation rounds of GMW and BGW are linear
with the circuit depth, and BMR is constant-round. In PFE, the function f(· · ·)
is private knowledge of one of the parties, who cooperates with data owners
P1, · · · , Pn (holding private xi, respectively) to jointly compute f(x1, · · · , xn).
At the end of PFE, the final result would be obtained while the private knowl-
edge of each party is not disclosed. Existing PFE protocols are mainly based
on translating private function f into circuit Cf with u input wires, g gates,
and o output wires. Before executing PFE, function owner should open some
parameters to data owners [9,27,29,30,42,46,48], such as the values of u, g, o
and some auxiliary parameters, as long as these public parameters would not
help the adversaries learn the function f .

MPC Security Profile. MPC security is generally divided into a semi-honest
adversary model (for low security requirements, a.k.a. passive security model)
and a malicious adversary model (for high security requirements, a.k.a. active
security model) [13]. In the semi-honest adversary model, each corrupt party
follows the prescribed protocol steps, except that he is curious (honest but curi-
ous) and tries to infer as much as possible other parties’ private data from
the transcripts. Therein, corrupt parties might collude with each other in an
attempt to learn more knowledge. In the malicious adversary model, corrupt
parties can deviate from the protocol arbitrarily. Besides the ability in the semi-
honest adversary model, these corrupt parties can also take any action during
the protocol execution. An actively secure PFE can detect the behavior of cor-
rupt parties and eventually abort the protocol or kick out them to continue
the protocol. The paper concentrates on actively secure PFE. Actively secure
SFE [14,28,35,36,39,54] has been well studied, and relatively less attention is
paid to actively secure PFE [29,42,48] besides UC-based designs.

Generic PFE: UC-Based. Valiant proposes universal circuit (UC) to achieve
PFE. UC can be programmed (letting pc be control bits) to encode any circuit

392 H. Jia et al.

Cf that needs to be protected [55]. Then UC could be public and pc is private
to function owner. Now the problem of computing Cf (x) from private circuit
Cf (of function owner) and private data x (of data owner) is transformed into
computing UC(x, pc) via SFE protocols. That is, we gain a technical routine
of reducing PFE to SFE by securely computing publicly available universal cir-
cuits [1,26,31,34,40,41,55,60]. One may thereby attempt to optimize UC as the
smaller the size of the constructed UC, the smaller the consumption required in
SFE. The best asymptotic size of Valiant’s UC is 12g·logg (g is the number of
gates in Cf) by Liu et al. [41] and seems to reach theoretical optimum. UC-based
PFE designs (either passively or actively secure) would thereby comply with the
logarithmic factor in the complexity of O(g·logg).

Generic PFE: Beyond UC-Based. Katz and Malka [30] present a specific 2-
party PFE protocol (KM hereafter) with linear complexity O(g) from Yao’s GC
and singly homomorphic encryption (HE) in the semi-honest adversary model.
Later, Mohassel and Sadeghian show a general framework (MS hereafter) of PFE
in the semi-honest adversary model [46]. MS is divided into two subprotocols,
oblivious extended permutation (OEP) and private gate evaluation (PGE). OEP
hides the topology of the circuit and protects the relationship between individual
gates. PGE is a private computation of individual gates, and the computation of
the circuit Cf is completed after computing g gates one by one. OEP based on
oblivious switched network design [47] can build PFE protocols with complexity
O(g·logg), while OEP based on HE can build PFE protocols with complexity
O(g). Mohassel et al. [48] further describe a generic framework of PFE with
linear complexity in the malicious adversary model based on the framework
MS [46]. Technical tools used therein include one-time MAC for checking data
consistency and actively secure SFE for data distribution and reconstruction. In
addition, the zero-knowledge proof protocol ZKEP with O(g) complexity proves
to data owner that function owner performs correct extended permutation (EP,
see Definition 1). ZKEP is the first zero-knowledge protocol with linear complex-
ity proving correct EP operation, and it is a general framework but constructed
with redundant computations. Jia and Li [29] propose a more succinct double
shuffle protocol (ZKDS) to prove the correctness of EP operations, which is con-
structed more light-weight and retains the generic feature of ZKEP . In addition,
they also construct [29] a general-purpose PFE framework with O(g) complexity
based on ZKDS for better efficiency in the malicious adversary model.

DDH-Based Concrete PFE with Function Reusability. Bicer et al.
[9] propose a 2-party PFE protocol based on decisional Diffie-Hellman (DDH)
assumption with linear complexity and function reusability in the semi-honest
adversary model. Liu et al. [42] propose a specific zero-knowledge protocol for
proving correct EP operation and transforming the 2-party PFE [9] with pas-
sive security to that with active security (LWY hereafter). Function reusability
says that the same function could be invoked multiple times (for different data
each time) so that protocol executions become more efficient from the second
execution1. The more times of protocol being executed, the smaller of the aver-

1 The overhead required due to the EP operation on the function is no longer needed
from the second execution, which accounts for the major part of the total overhead.

Generic 2-Party PFE with Constant Rounds and Linear Active Security 393

age overhead will be. For detailed protocol design, we refer the readers to the
original paper [9,42].

Table 1. PFE protocols with linear complexity O(g).

PFE Security Parties Round Reusable

[30] Semi-honest Two Constant No

[46] Semi-honest Multi & Two Constant No

[9] Semi-honest Two Constant Yes

[48] Malicious Multi #Gates No

[42] Malicious Two Constant Yes

[29] Malicious Multi #Gates No

For ease of understanding, we list in Table 1 main PFE protocols with linear
complexity.

1.1 Motivations

Consider 2-party PFE with constant rounds, linear complexity, and active secu-
rity. Constructing actively secure PFE can be viewed as two divisions, one is to
construct a passively secure PFE and another is to construct an efficient prim-
itive proving to data owners that function owner correctly performs EP oper-
ation. The latter could be solved using the approach of zero-knowledge proto-
cols [29,42,48]. There is hitherto only one concrete design (i.e., LWY) of actively
secure 2-party PFE with constant rounds and linear complexity. One interest-
ing feature of LWY is its function reusability. Nevertheless, in its first execution
(in particular for those settings where only one invocation of the function is
required), LWY is quite involved and too inefficient to be of practical use.

We note that privacy-preserving machine learning is a good solution to pro-
tecting both private models and sensitive data [8,19,44,45,56]. In this regard,
the concrete PFE construction [42] with function reusability property could find
its position in privacy-preserving inference. For privacy-preserving training how-
ever, the model parameters are updated continuously during the training process
and now we confront intrinsically a series of non-reusable private functions. It
naturally raises the following question:

Can we pursue a generic 2-party PFE with constant rounds and linear active
security for non-reusable private functions, whose instantiations might achieve
less computation and communication consumption (compared to the first execu-
tion of LWY)?

In this paper, we present a positive answer to the question. Next we start
with some preparatory knowledge which inspire our constructions.

Two-Party PFE Protocol KM [30]. We briefly describe how KM works in
the semi-honest adversary model. KM is based on Yao’s GC and singly homo-
morphic encryption and we assume that the readers are familiar with GC. First,
function owner (P1) translates his private function f into a circuit Cf which

394 H. Jia et al.

has u input wires, g NAND gates and o output wires (see Fig. 1). Each of these
NAND gates is two fan-in and any fan-out. Let the u input wires of Cf and the
output wires of the g−o non-output gates be called outgoing wires, and the input
wires of the g gates be called incoming wires. Data owner (P2) holds private data
x ∈ {0, 1}u. P2 generates public-private key pair (pk, sk) for singly homomor-
phic encryption (e.g., ElGamal encryption) and sends pk to P1. In addition, P2

generates u + g pairs of random wire keys, (s0i , s1i) representing bits 0 and 1,
respectively. P2 encrypts the first u + g − o pairs wire keys with pk

[Encpk(s01), Encpk(s11)], · · · , [Encpk(s0u+g−o), Encpk(s1u+g−o)] (1)

and sends the ciphertexts to P1. In Eq. (1), the first u ciphertext pairs correspond
to the wire keys of u input wires of Cf and the last g − o ciphertext pairs
correspond to the wire keys of output wires of non-output gates. P1 knows the
topology of Cf and can extend u + g − o ciphertext pairs to 2g ciphertext pairs
by EP. These 2g pairs represent the wire keys of input wires of all gates. P1

chooses ai, bi, a
′
i, and b′

i, i ∈ {1, · · · , g}, uniformly at random from appropriate
domain, and encrypts them under pk. Then the 2g ciphertext pairs could be
re-randomized due to the homomorphic property. For each gate i ∈ {1, · · · , g} of
Cf , suppose that its left incoming wire is connected with some outgoing wire l (of
some preceding gate) and right incoming wire is connected with some outgoing
wire r (of some preceding gate). P1 computes

[Encpk(ai · s0l + bi), Encpk(ai · s1l + bi)]

[Encpk(a′
i · s0r + b′

i), Encpk(a′
i · s1r + b′

i)]
(2)

Finally, the re-randomized ciphertexts are returned to P2, who can decrypt them
to recover new wire keys representing input wires of each gate. The wire keys
for output wires of each gate are generated by himself, so P2 can create garbled
tables. At this point, P2 has the ability to perform GC protocol with P1. P1

knows the topology of Cf and the random values in the re-randomization, so
he has the ability to act as an evaluator and eventually gets the o wire keys
representing the output wires of Cf . P2 receives these o wire keys and obtains
the result of f(x).

The Design of ZKEP [48]. ZKEP is a generic zero-knowledge protocol to
prove that EP is correctly executed. It consists of three components, Dummy
Placement Phase, Replication Phase, and Permutation Phase. The number of
inputs (input size) in all three phases is 2g. The first component is the shuffle
operation, which takes as input 2g ElGamal ciphertexts, including u+g−o wire
keys on outgoing wires generated by P2 and g − u + o dummy values known to
both. P1 then performs shuffle and re-randomization, proving the correctness of
his operation by using ZKshuffle [17]. The second component is a copy operation
whose inputs are the outputs of the first component. P1 performs replication and
re-randomization and uses ZKrep [46] to prove the correctness of his operation.
The third component takes as inputs the outputs of the second component, per-
forms shuffle and re-randomization (not the same as the first one), and outputs

Generic 2-Party PFE with Constant Rounds and Linear Active Security 395

2g ElGamal ciphertexts of the wire keys of the incoming wires. P1 again proves
to P2 the correctness of his operation by ZKshuffle [17]. P2 believes that P1

performs the correct EP if all three components are verified correctly.

The Design of ZKDS [29]. ZKDS optimizes the ZKEP protocol and
consists of two succinct components, randomness-generating & outgoing-
wires-determining (RG&OWD) and randomness-reusing & incoming-wires-
determining (RR&IWD). In ZKDS , the inputs of RG&OWD are u+g−o ElGa-
mal ciphertexts of random wire keys provided by P2. P1 executes RG&OWD to
generate u+ g − o new ElGamal ciphertexts of wire keys of outgoing wires, and
proves that his execution is correct by ZKshuffle. P2 receives a set C of auxiliary
parameters (C does not disclose Cf) from P1 before the protocol. Each element
in C tells how many times each random wire key2 will be copied, and [29] proves
that this does not decrease security. Then P1 executes RR&IWD with the inputs
being the ciphertexts of 2g random wire keys (generated by copying the inputs
of RG&OWD according to C). Its outputs are 2g new ElGamal ciphertexts of
the wire keys of incoming wires. P1 uses ZKshuffle to prove the correctness
of his execution. Once these two components have been executed, P2 gets the
inputs and outputs of EP. Two ZKshuffle executions suffice for P1 to prove the
correctness of EP.

1.2 Contributions

LWY is well suited for scenarios where private functions might be reused multiple
times (for different private data). In its first execution (in particular for those
settings where only one invocation of the function is required) however, LWY is
quite involved and too inefficient to be of practical use. For these settings (non-
reusable private functions), we initiate the first generic construction of 2-party
PFE with constant rounds and linear complexity in the malicious adversary
model.

By learning the above, one might perceive that ZKEP (yet cumbersome)
could be directly plugged into passively secure KM to produce an actively secure
2-party PFE. This will not work for ZKDS due to its particular structure, how-
ever. We thus design a novel generic construction of 2-party PFE protocol that
can exactly support the succinct structure of ZKDS protocol. The resulting
actively secure 2-party PFE is with constant rounds and linear complexity, and
its instantiation has much less consumption of communication and computa-
tion. Any optimization of ZKshuffle [4,11,17,21–24,50] would lead to perfor-
mance improvement of ZKDS (and surely of our PFE protocol). As an instan-
tiation, we take the scheme in [22] as candidate ZKshuffle in our 2-party PFE
and ZKDS would thereby require approximately 9g · ||Zq||3 proof bits and 36g
exponentiations to prove the EP of Cf . Together with ElGamal encryption, our
instantiation of the proposed generic PFE construction has better performance
and reduces 51.2% communication costs and 52.4% computation costs, respec-
tively, compared to LWY (in its first execution) at the same security level. It
2 Note that these random wire keys do not represent outgoing wires, but rather a

shuffle and re-randomization with the outgoing wires.
3 Usually ||Zq|| = 160.

396 H. Jia et al.

even outperforms passively secure KM [30] and MS [46] from the communication
perspective.The proposed PFE and LWY thus make optimal solutions available
for non-reusable and reusable private functions, respectively.

We provide in Sect. 3 detailed description of our 2-party PFE and in Sect. 4
detailed performance comparison.

2 Preliminaries

We denote the security parameter by k. r ←R {0, 1}k means that r is a random
number chosen uniformly at random from {0, 1}k. We use both bold and italic
(lower-case or capital) letters to denote sets (e.g., D), and italic for values or
elements in a set (e.g., Di). For a set S , we denote the size of the set by |S |, and
we write S = {Si}|S |

i=1. We use ||G|| to denote the bit length of a group element
in the group G. We use s := s+r to denote reassigning a new value to element s.
We denote a mapping function by π, e.g., j = π(i) where i is the preimage and j
is the corresponding image. We use π1 and π2 to denote bijective functions and
π3 a surjective function.

We use a singly homomorphic encryption scheme (Gen,Enc,Dec), whose
plaintext space is G of prime order q. We then use n to denote the security param-
eter of the homomorphic encryption scheme, i.e., (pk, sk) ← Gen(1n) denotes
that a pair of public and private keys is generated. We want to encrypt the plain-
text m ∈ {0, 1}k and we can map m to a group element in G. For the convenience
of representation, we directly use c = Encpk(m) to denote encryption of plain-
text m into ciphertext c with the public key pk. We use m = Decsk(c) to denote
decryption of ciphertext c into plaintext m with private key sk. Singly homomor-
phic encryption suitable for our protocol includes Elliptic curve (EC) ElGamal
[18] and Paillier [52], etc. It is believed [27] that EC ElGamal encryption is more
efficient to implement some known 2-party PFE protocols from GC [30]. We use
EC ElGamal encryption as well, and for a detailed homomorphic addition step
we suggest to read [[27] Sect. 4.3].

We also need a symmetric encryption scheme (sEnc, sDec) whose plaintext
space and key space are both k -bits random numbers. Given a ciphertext c =
sEncsk(m) (sk is the secret key in the symmetric cipher), we have m = sDecsk(c).
The symmetric cipher would be used in our protocols to create standard Yao’s
GC for each garbled table (GT) and decrypt each GT. It is required [38] for
(sEnc,sDec) that it has elusive and efficiently verifiable range. Additionally, we
require that (sEnc,sDec) satisfies a weak form of related-key security, and the
work of Applebaum et al. [2] can be used to construct a scheme that satisfies
the security based on the decisional Diffie-Hellman assumption. Holz, Nissim et
al. [27, Sect. 5.1] used an AES-128 encryption scheme [6] to construct the GC in
the linear PFE protocol.

Definition 1 (EP [46]). The inverse of π3 is defined as an extended permu-
tation function, i.e., π−1

3 . In the following, |ow| elements would be copied and
permuted to |iw| elements, i.e., owi = iwπ−1

3 (i).

Generic 2-Party PFE with Constant Rounds and Linear Active Security 397

(a) A simple example circuit Cf where u = 5,
g = 4 and o = 2.

(b) EP relationship between ow and iw
in f .

Fig. 1. A simple example of circuit Cf , and its corresponding EP relationship.

There are two players in our 2-party PFE protocol, function owner P1 holding
f and data owner P2 holding x. P1 will privately translate the function f into a
Boolean circuit Cf (see Fig. 1) with u input wires, g gates and o output wires (in
general, u ≈ o, u � g). Let N = u + g and M = 2g. Note that all the g gates of
Cf in our protocol are NAND gates with two fan-in and more than one fan-out,
so there is no need to hide the gate function. We declare that this is different
from the standard Yao’s GC protocol. The Cf is like a directed acyclic graph, i.e.,
all the gates have topological order. We use G = {Gi}g

i=1 to denote the g gates
that have been topologically sorted. We divide the g gates into output and non-
output gates according to the destination of each gate output wire, i.e., {Gi}g−o

i=1

are non-output gates and {Gi}g
i=g−o+1 are output gates. We refer to both the

input wires of Cf and the output wires of the non-output gates collectively as
outgoing-wire (abbreviated as ow), and in addition refer to the input wires of all
gates collectively as incoming-wire (abbreviated as iw). It is obvious that we can
observe that |ow| = N − o, |iw | = M and |ow| ≤ |iw |. Since each gate of Cf is
the NAND gate, the problem of protecting the private function f is transformed
into the problem of protecting the EP relation from ow to iw (iwi = owπ3(i)),
i.e., P1 hides the topological order of circuit Cf from P2. We decompose the EP
problem (π−1

3) into two permutation problems (π1 and π2).

3 Two-Party PFE with Linear Active Security

3.1 High-Level Description

Next, we describe our generic construction of actively secure 2-party PFE. We
suppose the readers are familiar with Yao’s GC. Our PFE has two parties, P1

the function owner and P2 the data owner. P1 has private function f(·) (one-
variable), and P2 has private data x. In the original Yao’s GC, function owner
acts as the garbler of the circuit and data owner acts as the evaluator of the
circuit. In our PFE however, they are assumed opposite roles, i.e., P2 acts as the
garbler of the circuit and P1 acts as the evaluator of the circuit. The goal is that
P1 and P2 cooperate to compute y = f(x) (only disclosed to P2), while P2 cannot

398 H. Jia et al.

learn valid knowledge about f and P1 cannot learn x. Our PFE uses a singly
homomorphic encryption as one of the building blocks. EC ElGamal encryption
is currently one of the most effective candidates applicable to our PFE [27,30].

The function f of P1 is translated privately as a Boolean circuit Cf with u
inputs, o outputs and g gates, and we let N = u + g. The g gates are all NAND
gates. All gates are two fan-in and can be any fan-out. For each gate with the
fan-out greater than 1, we view each of its output wires as a different wire. This
differs from the gates in the universal circuit [41,55]. Highly optimized hardware
synthesis tools already exist for translating the function to Boolean circuits with
a small number of (or optimized) NAND gates [27]. Since the output of each
non-output NAND gate and the input of the circuit (ow) are used at least once
in the circuit Cf , P1 can compute a set C. P2 has private data x ∈ {0, 1}u.

We view u, o, g and C as system parameters, which are not secret knowl-
edge of f and x, i.e., others can know these parameters but cannot recover f and
x effectively. The topology of Cf and x should be only known to P1 and P2,
respectively. In our protocol, P2 does not know the topology of the circuit, so
he cannot construct the garbled gates directly. Instead, we can take advantage
of the property that the ciphertexts can be directly summed up in a homo-
morphic encryption: let P2 provide N - o wire keys, encrypt these wire keys,
and send the ciphertexts to P1. According to the topology of the circuit, P1

can perform permutation (π1) and re-randomization on N - o ciphertexts to
obtain new N - o ciphertexts about the ow, and then apply permutation (π2)
and re-randomization to the replication results of N - o ciphertexts to obtain
new 2g ciphertexts about the iw. Note that the protocol here is different from
KM protocol, where P2 generates the wire keys about ow directly. We say that
P1 constructs the encrypted garbled gate (abbreviated as encGGi) for the i -th
NAND gate in the circuit. By decrypting encGGi, P2 can obtain 3g-o new wire
keys which can be used to create garbled tables. After P2 gets g encGGs, he can
act as the garbler. As each wire key is re-randomized by P1, P2 cannot learn the
topology of the circuit. We describe the protocol in detail below.

3.2 Specification

We decouple the PFE into three phases: the offline phase, the initiation phase,
and the evaluation phase. Figure 2 shows the details.

1) Offline Phase. In this phase, P1 translates the private function f into a
circuit Cf and discloses the parameters u, g, o, and C . P2 generates a pub-
lic/private key pair (pk,sk) for a singly homomorphic encryption and discloses
the public key pk. In addition, P2 chooses uniformly ri ←R {0, 1}k, i ∈ {1, 2},
where k is the security parameter (say 128 [27]). These two random values would
be used in creating the garbled tables.

Then, P2 randomly generates a set of wire keys, H = {hi}N
i=1. We assume

that all the N wire keys represent the bit value 0, which are written as
H 0 = {h0

i }N
i=1. Similarly, we use H 1 = {h1

i }N
i=1 to represent the N wire keys

Generic 2-Party PFE with Constant Rounds and Linear Active Security 399

Fig. 2. Our 2-party PFE protocol. π3 maps 2g incoming wires to N-o outgoing wires.

400 H. Jia et al.

corresponding to the bit value 1. Rather than sampling the wire key h1
i as h0

i ,
we produce it by adding a global shift r to h0

i , i.e., h1
i = h0

i + r. This trick
also appears in the application of free-XOR [33]. The security of Yao’s proto-
col depends on the indistinguishability of the wire keys h0

i and h1
i . Note that

these N wire keys do not correspond one-to-one4 to the N-o outgoing wires and
o output wires of Cf . In the semi-honest adversary model [30], the first u of
these N wire keys correspond to the bits that represent the data x, the next g
- o correspond to the output results that represent the non-output gates, and
the last o correspond to the results that represent the output gates. We assume
that P2 selects the last o wire keys in H 0, i.e., {h0

i }N
i=N−o+1, which correspond

one-to-one to the output results used for the o output gates. P2 encrypts the
other N - o wire keys in H 0. In addition, P1 uniformly chooses N - o random
values ai and 2g random values bi and encrypts them under pk.

The complexity of this phase is O(g) and we have about ||G|| communication
bits and 8g exponentiation computations. This phase can be set up before the
start of the protocol and thus one may freeze out the consumption of the phase.

2) Initiation Phase. In this phase, P2 sends {Encpk(h0
i)}N−o

i=1 to P1. Upon
receiving N − o ciphertexts, P1 first needs to determine the order of the
wire keys used for ow . He applies permutation (π1) and re-randomization to
{Encpk(h0

i)}N−o
i=1 to obtain N - o new ciphertexts Encpk(s0i) = Encpk(h0

π−1
1 (i)

) +
Encpk(ai) based on the topology of the circuit and the property of homomor-
phic addition. The first u plaintexts in {Encpk(s0i)}

N−o
i=1 correspond one-to-one

to the wire keys that represent x. The next g - o plaintexts correspond one-to-
one to the wire keys that represent the outputs of the non-output gates. Then
P1 extends {Encpk(h0

i)}N−o
i=1 to 2g ciphertexts according to C and we denote

the new set as {Encpk(h
′0
i)}2g

i=1. This process is a (ci - 1)-copy operation on
Encpk(h0

i), i.e., each ciphertext in {Encpk(h
′0∑i−1

j=1 cj+1
), · · · ,Encpk(h

′0∑i
j=1 cj

)} is

equal to Encpk(h0
i), where ci is the i -th value in C , i ∈ {1, · · · , N − o}. Next,

P1 applies permutation (π2) and re-randomization to Encpk(h′
j) to obtain 2g

new ciphertexts Encpk(v0
j) = Encpk(h

′0
π−1
2 (j)

) + Encpk(bj), j ∈ {1, · · · , 2g}. The
plaintexts of these 2g new ciphertexts correspond one-to-one to the wire keys of
the incoming wires of the g gates that have been topologically sorted, i.e., the
plaintexts of Encpk(v2i−1) and Encpk(v2i) correspond to the two wire keys of the
i -th gate’s two incoming wires, i ∈ {1, · · · , g}. P1 creates g encrypted garbled
gates encGG i, where the first g - o have different forms from the last o. Thus,
the wire keys of two incoming wires used in the gate Gi and representing the
bit value 0 are v0

2i−1 and v0
2i, and the wire keys of the outgoing wire are s0u+i,

i ∈ {1, · · · , g}, then the first g - o are encGGi = (Encpk(v0
2i−1), Encpk(v0

2i),
Encpk(s0u+i)) (1 ≤ i ≤ g − o) and the last o are encGGi = (Encpk(v0

2i−1),
Encpk(v0

2i)) (g − o+1 ≤ i ≤ g). P1 then sends {encGGi}g
i=1 and {Encpk(s0i)}u

i=1

to P2. P1 also applies ZKDS to prove the correctness of his execution. Then,
P2 decrypts each encGGi and recovers the new wire keys in preparation for

4 The one-to-one here means that the i-th element of the former set (A) corresponds
to the i-th element of the latter set (B), i.e., Ai corresponds to Bi.

Generic 2-Party PFE with Constant Rounds and Linear Active Security 401

constructing the GTs. From each of the first g - o encGGi, P2 obtains two input
wire keys representing the bit value 0 of gate Gi, v0

2i−1 and v0
2i, and also the

output wire keys representing the bit value 0, s0u+i, i ∈ {1, · · · , g − o}. From
each of the last o encGGi, P2 gets only two input wire keys representing the
bit value 0 of gates Gi, v0

2i−1 and v0
2i, i ∈ {g − o + 1, · · · , g}. P2 also decrypts

{Encpk(s0i)}u
i=1 and obtains {s0i }u

i=1. Even with {s0i }N−o
i=1 and {v0

j }2g
j=1, P2 cannot

learn about the topology of the circuit due to P1’s re-randomization on these
values.

The complexity of this phase is O(g) and we have approximately (4u+ 8g −
4o) · ||G||+9g · ||Zq|| communication bits and 39g exponentiation computations.

3) Evaluation Phase. By decrypting each encGGi, P2 can act as the circuit
garbler in Yao’s protocol. As shown in Fig. 3, we let Li, Ri and Oi denote the left
incoming wire, right incoming wire and outgoing wire of the gate Gi. Next, we
use the global random values r1 and r2 generated in the offline phase to define
the corresponding wire keys: L0

i = v0
2i−1 + r1, L1

i = v0
2i−1 + r2, and similarly,

R0
i = v0

2i + r1 and R1
i = v0

2i + r2. There will be a bit different for outgoing
wires. The wire keys about the g - o non-output gates are O0

i = s0u+i + r1 and
O1

i = s0u+i + r2, i ∈ {1, · · · , g − o}; the wire keys of the o output gates are
O0

i = h0
i + r1 and O1

i = h0
i + r2, i ∈ {g − o + 1, · · · , g}. Garbled tables GTi can

then be generated according to Yao’s protocol, and the detailed implementation
is shown in Fig. 4 where we use symmetric encipher sEnc. The secret keys of
the symmetric encipher are the input keys (L0

i , L
1
i) and (R0

i , R
1
i) of Gi, and

the plaintext is the output key (O0
i , O1

i), i ∈ {1, · · · , g}. This yields a truth
table which needs to be randomly permuted to become a garbled table. In [27],
sEnc is instantiated with AES-128. We emphasize that the input and output
wire keys of each gate in the circuit are preprocessed and additive homomorphic
operations are applied. More discussions on optimization techniques (e.g., point-
and-permute [5], garbled row reduction [49,53], or half-gates [59]) might be found
in [27]. After that, P2 sends {GTi}g

i=1 to P1.
Now P2 needs to compute the wire keys representing the private data x. It

may be noted that we have not used the u wire keys about {s0i }u
i=1. P2 does

not directly use these wire keys to represent the 0-bit in data x, but to perform
the following computations. P2 calculates sxi

i := s0i + r1 to denote xi = 0 and
sxi

i := s0i + r2 to denote xi = 1, i ∈ {1, · · · , u}, i.e., sxi
i := s0i +rxi+1. We use the

wire keys {sxi
i }u

i=1 of the circuit input wires to denote P2’s input bits {xi}u
i=1.

P2 sends these new wire keys to P1.

Fig. 3. Li is the left incoming wire of Gi, Ri the right incoming wire and Oi the
outgoing wire.

402 H. Jia et al.

Fig. 4. Create a garbled table.

P1 has the ability to act as the circuit evaluator after receiving the input bit
keys sent to him by P2, and he has enough information to decrypt the garbled
tables and then recover the wire keys for the output wires in this circuit. This
decryption process is similar to Yao’s GC method, but not exactly the same.
Next P1 decrypts the garbled table corresponding to the g NAND gates one
by one according to the topological order of the circuit. In order to decrypt the
garbled table GTi, P1 recovers the keys used to encrypt the GTi. Starting from
GT1, the two incoming wires of G1 are the keys of the input bits about x, i.e.,
sx1
1 and sx2

2 . P1 knows the random values a1 and a2 used to re-randomize the two
keys and also knows b1 and b2, so he can calculate Lx1

1 = sx1
1 −a1+b1 = v0

1+rx1+1

and Rx2
1 = sx2

2 − a2 + b2 = v0
2 + rx2+1. P2 gets Lx1

1 and Rx2
1 to decrypt GT1

and recovers the outgoing wire key O
NAND(x1,x2)
1 , which is used to decrypt

the garbled table(s) later. Thus P1 decrypts the garbled tables one by one in
topological order, and once all the garbled tables are computed, he obtains the
output wire keys of the o output gates {Og−o+1, · · · , Og}, and sends these wire
keys to P2. P2 receives {Og−o+1, · · · , Og} to recover the value of f(x).

The complexity of this phase is O(g) and we have (u + 4g + o) · k communi-
cation bits and u exponentiation computations. The costs of symmetric cipher
are negligible.

To sum up, the computation complexity of the proposed protocol is O(g).
We have the total communication overhead of (4u + 8g − 4o + 1) · ||G|| + 9g ·
||Zq||+(u+4g+o) ·k bits and approximately 39g exponentiation computations5.

3.3 Heuristic Analysis

We next check whether it can resist against malicious adversaries. To achieve
actively secure PFE protocol, malicious P1 should be prevented from learning
the valid knowledge of P2’s private x, and malicious P2 should be prevented from
learning the valid knowledge of P1’s private f. If one party cheats in the protocol,
it should be checkable by another party or this cheating is useless. In addition,
the function f of P1 should be irreversible, i.e., it should not be like f(x) = x.

5 Exponentiation is the dominant computation in the protocol. We omit lightweight
operations (e.g., symmetric cipher, addition, etc.).

Generic 2-Party PFE with Constant Rounds and Linear Active Security 403

We analyze above three phases (the values, the computation, and the inter-
action) one by one. Note that there is a takeaway in the protocol: we need to
prove that P1 uses the correct permutation maps π1 and π2. Fortunately, this
can be resolved exactly by ZKDS protocol. For the public key pk sent by P2 to
P1 in the offline phase, one can simply and efficiently verify that it is generated
by ElGamal encryption. P2 generates random values r1 and r2 as part of the
keys used to represent the wires, and for his own security he does not fudge, and
even if he does he cannot learn the valid knowledge of f. In the initiation phase,
the N - o wire keys sent by P2 to P1 can also be verified simply and efficiently
that these ciphertexts are well-formed corresponding to the public key pk. Then
P1 does a permutation (π1) and re-randomization operation on the N - o wire
keys generated by P2, and a permutation (π2) and re-randomization operation
on the 2g extended wire keys. At the end of this phase, P2 knows the ciphertexts
of v0 and s0. Along with the knowledge of C , he knows the inputs and outputs
of the two shuffles (permutation and re-randomization). P1 can convince P2 that
he performs the correctly local work through the ZKDS protocol. In the eval-
uation phase P2 creates the garbled tables. If P2 does not create these garbled
tables correctly, it could be using fake wire keys or using the gates other than
NAND. The former will be checked when P1 decrypts the garbled table, and the
latter is P2 not getting the correct result. As long as P1 does not tell P2 in the
process that he made an error in decrypting that one garbled table, P2 cannot
learn valid knowledge of f. The next P2 sends P1 the u bit keys representing the
data x. These ciphertexts are well-formed corresponding to the public key pk
and can be verified simply and efficiently, and P2 cannot learn valid knowledge
about f by falsifying these ciphertexts. At the end, P1 decrypts the g garbled
tables one by one, which are constructed using a symmetric encryption scheme.
P1 can only recover one row of the corresponding garbled table using the keys
obtained in decrypting encrypted GT1, and then calculates the keys to decrypt
the subsequent garbled tables, and finally obtains o wire keys Oyi

g−o+i (where yi

is the i -th bit of f(x)), i ∈ {1, · · · , o}. Since P1 does not know the random values
r1 and r2, the possibility of replacing Oyi

g−o+i with O1−yi

g−o+i is negligible. If P1

modifies Oyi

g−o+i privately, this can be checked by P2 quite simply and effectively.

3.4 Security

Theorem 1. The proposed 2-party PFE protocol has active security.

Proof sketch. We can demonstrate the security of the proposed 2-party PFE
protocol in the malicious adversary model by the real-ideal simulation paradigm.
Intuitively, a protocol P is secure if anything a party sees can only be computed
from that party’s inputs and outputs.

We construct a simulator S2−party that makes a poly-time environment Z
unable to distinguish between the real protocol system and the ideal protocol
system. We assume here that the corrupted adversary is malicious (active) and
static. This simulator S2−party runs a copy of the protocol given in Fig. 2, which
relays messages between the parties and Z so that Z will see the same interface

404 H. Jia et al.

as when the actual protocol is interacted with. The next detailed description of
S2−party is presented in Table 2.

Table 2. Simulator S2−party

Simulator S2−party

1) Offline Phase
P2 generates (pk, sk).

– If P2 is a corrupter. Simulator S2−party verifies whether pk is a
well-formed public key, and if not, simulator aborts.

– If P2 is not a corrupter. Simulator S2−party honestly follows the protocol.
2) Initiation Phase

P2 sends N − o ciphertexts, {Encpk(hi)}N−o
i=1 .

– If P2 is the corrupter. Simulator S2−party verifies whether
{Encpk(hi)}N−o

i=1 are well-formed ciphertexts, and if not, simulator aborts.
– If P2 is not a corrupter. Simulator S2−party honestly follows the protocol.

P1 performs two different shuffling operations on {Encpk(hi)}N−o
i=1 , as

described in Sect. 3.
– If P1 is the corrupter. Simulator S2−party randomly generates two mapping

functions (π1 and π2) and sends them to ZKDS . Then, simulator aborts.
– If P1 is not the corrupter. Simulator S2−party waits for two mapping

functions (π1 and π2) sent by P1 and sends them to ZKDS .
In both cases, if P2 aborts, simulator aborts.

3) Evaluation Phase
After P2 decrypts the encrypted garbled gates, he creates g garbled tables and

calculates u wire keys representing his data x.
– If P2 is the corrupter. Simulator S2−party randomly generates g garbled

tables and u wire keys and proceeds to decrypt the garbled tables.
– If P2 is not the corrupter. Simulator S2−party follows the protocol honestly.

In both cases, if P1 aborts, simulator aborts.
P1 decrypts the garbled tables and recovers the o wire keys

– If P1 is the corrupter. Simulator S2−party randomly generates o wire keys
and proceeds with the protocol.

– If P1 is not the corrupter. Simulator S2−party follows the protocol honestly
In both cases, if P2 aborts, simulator aborts.

In order to see that the simulated process is indistinguishable from the real
process, we will show that the view of the environment in the ideal process is
computationally indistinguishable from the view in the real process. This view
includes the honest player’s inputs and outputs as well as the corrupted player’s
view of the protocol execution.

The views of the adversaries P1 include: the public key pk, random val-
ues {ai}N−o

i=1 and {bi}2g
i=1, {Encpk(h0

i)}N−o
i=1 , {Encpk(s0i)}N−o

i=1 , {Encpk(v0
i)}2g

i=1,

Generic 2-Party PFE with Constant Rounds and Linear Active Security 405

{GTi}g
i=1, {sxi

i }u
i=1, {Li}g

i=1, {Ri}g
i=1 and {Oi}g

i=1. {sxi
i }u

i=1, {Li}g
i=1, {Ri}g

i=1

and {Oi}g
i=1 are the results computed from the random values, which all look

random and are therefore indistinguishable in real and ideal execution. Due
to the randomness of r1 and r2, the probability that P1 accurately computes
{O1−yi

g−o+i}o
i=1 based on {Oyi

g−o+i}o
i=1 is negligible, so in the evaluation phase, he

must send the obtained o wire keys to P2 correctly, and malicious falsification
of wire keys is easily detected by P2. The ElGamal scheme is based on the DDH
difficulty assumption, and the probability of recovering sk according to pk is neg-
ligible. {Encpk(h0

i)}N−o
i=1 are the ciphertexts encrypted by the ElGamal scheme,

sk is private to P2 and therefore indistinguishable in the real and ideal execu-
tion. If the protocol is not aborted, {Encpk(s0i)}N−o

i=1 and {Encpk(v0
i)}2g

i=1 are
valid permuted and re-randomized ElGamal ciphertexts due to the verification
of ZKDS . {GTi}g

i=1 are obtained based on the symmetric encryption scheme and
random garbled, and is therefore indistinguishable in real and ideal execution.

The views of the adversaries P2 include: the pk and sk, random values r1
and r2, {Encpk(h0

i)}N−o
i=1 , {Encpk(s0i)}N−o

i=1 , {Encpk(v0
i)}2g

i=1, {h0
i }N

i=1, {s0i }N−o
i=1 ,

{v0
i }2g

i=1, {Li}g
i=1, {Ri}g

i=1, {Oi}g
i=1, {GTi}g

i=1 and {sxi
i }u

i=1. {sxi
i }u

i=1, {s0i }N−o
i=1 ,

{v0
i }2g

i=1, {Li}g
i=1, {Ri}g

i=1 and {Oi}g
i=1 are the results computed from the ran-

dom values, which all look random and are therefore indistinguishable in real
and ideal execution. ElGamal ciphertexts all are indistinguishable in real and
ideal execution. P2 must ensure that the {GTi}g

i=1 created is correct, otherwise
they will be checked by P1 when decrypting the garbled, or P2 doesn’t get the
correct result. If P2 wants to successfully cheat P1 and learn valid knowledge
of Cf , he must guess exactly every mapping relation of the function π3, which
is obviously a negligible probability. The random values and wire keys all have
uniform distribution in ideal and real execution.

As a result, it is indistinguishable between ideal and real execution for envi-
ronment Z.

4 Performance

In this paper, we initiate the first generic construction of 2-party PFE protocol
with constant rounds and linear complexity in the malicious adversary model. In
the case where the function is invoked once, we compare it (after instantiated by
ElGamal encryption and Groth’s secret shuffle [22]) with the only 2-party PFE
protocol LWY [42] in the malicious adversary model. See Table 3. We consider
the total communication costs and the exponentiation of the protocol. We let
||G|| = 1024 and ||Zq|| = 160. The communication bits and exponentiation com-
putations of our protocol are about 10144g and 39g, respectively. For the same
parameters, LWY requires about 20800g communication bits and 82g exponen-
tiation (including 8g exponentiation in constructing and decrypting GTs). Our
protocol reduces approximately 51.2% communication costs and 52.4% compu-
tation costs, compared to the first execution of LWY. We mention that from the
second execution, LWY requires at least a total of 4096g communication bits
and 8g exponentiation computations in each execution.

406 H. Jia et al.

We also analyze the communication costs of all passively secure 2-party PFE
protocols. The communication costs in the original KM protocol Sect.3.1 [30],
optimal KM protocol Sect.3.2 [30], MS [46], and Bicer et al.’s protocol [9] are
approximately 16896g bits, 8704g bits, 10752g bits, and 7168g bits, respectively.
Thus our protocol even outperforms the original KM and MS that are passively
secure from the communication perspective.

Table 3. Communication costs and exponentiation consumption in LWY and ours.
||G|| = 1024, ||Zq|| = 160 and k = 128.

PFE Communication (bits) Exponentiation
P1 P2 Total P1 P2 Total

LWY [42] ∼15520g ∼5280g ∼20800g ∼51g ∼31g ∼82g

Ours ∼7584g ∼2560g ∼10144g ∼18g ∼21g ∼39g

5 Conclusion

Both our generic PFE and the concrete LWY are with constant rounds, linear
complexity, and full security. They make optimal solutions available for non-
reusable and reusable private functions, respectively. We believe that our con-
structions have practical relevance. In particular, we do expect our PFE could
be both easier to implement and more efficient (for large circuits) than existing
proposals (e.g., UC-based). We are also interested in constructing 2-party PFE
with constant rounds and linear active security from other cryptographic prim-
itives (to pursue better performance, e.g., without the usage of homomorphic
encryption or reducing the number of exponentiations). We leave all above as
future work.

Acknowledgement. Xiangxue Li is supported by National Natural Science Founda-
tion of China (61971192), Shanghai Municipal Education Commission (2021-01-07–00-
08-E00101), and Shanghai Trusted Industry Internet Software Collaborative Innovation
Center.

References

1. Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and scalable uni-
versal circuits. J. Cryptol. 33(3), 1216–1271 (2020)

2. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks
and applications. In: Innovations in Computer Science - ICS 2011, pp. 45–60 (2011)

3. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications.
In: ESORICS 2009

Generic 2-Party PFE with Constant Rounds and Linear Active Security 407

4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4_17

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC (1990)

6. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
pp. 478–492 (2013)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC (1988)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2–4, 1988, Chicago, Illinois, USA. pp. 1–10. ACM (1988). https://
doi.org/10.1145/62212.62213

9. Bicer, O., Bingol, M.A., Kiraz, M.S., Levi, A.: Highly efficient and re-executable
private function evaluation with linear complexity. IEEE Trans. Dependable Secure
Comput. 19(2), 835–847 (2020)

10. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: ACM CCS (2007)

11. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334 (2018)

12. Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

13. Evans, D., Kolesnikov, V., Rosulek, M.: A pragmatic introduction to secure multi-
party computation. Found. Trends Priv. Secur. 2(2–3), 70–246 (2018)

14. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Mini-
LEGO: Efficient Secure Two-Party Computation from General Assumptions. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–
556. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_32

15. Frikken, K.B., Atallah, M.J., Li, J.: Attribute-based access control with hidden
policies and hidden credentials. IEEE Trans. Comput. 55(10), 1259–1270 (2006)

16. Frikken, K.B., Atallah, M.J., Zhang, C.: Privacy-preserving credit checking. In: EC
(2005)

17. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8_22

18. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

19. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In: Balcan, M., Weinberger, K.Q. (eds.) Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19–24, 2016. JMLR Workshop and Conference Proceedings, vol. 48, pp.
201–210. JMLR.org (2016)

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC,
pp. 218–229 (1987)

https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-642-38348-9_32
https://doi.org/10.1007/3-540-44647-8_22

408 H. Jia et al.

21. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8_12

22. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. Cryptol. 23(4),
546–579 (2010)

23. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_22

24. Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71677-8_25

25. Günther, D., Kiss, Á., Scheidel, L., Schneider, T.: Poster: Framework for semi-
private function evaluation with application to secure insurance rate calculation.
In: ACM CCS, pp. 2541–2543 (2019)

26. Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit constructions.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 443–470.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_16

27. Holz, M., Kiss, Á., Rathee, D., Schneider, T.: Linear-complexity private func-
tion evaluation is practical. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.)
ESORICS 2020. LNCS, vol. 12309, pp. 401–420. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-59013-0_20

28. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: ACM CCS, pp.955–966 (2013)

29. Jia, H., Li, X.: Pfe: Linear active security, double-shuffle proofs, and low-complexity
communication. Cryptology ePrint Archive, Report 2022/219 (2022)

30. Katz, J., Malka, L.: Constant-round private function evaluation with linear com-
plexity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
556–571. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0_30

31. Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 699–728. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_27

32. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party
computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155.
Springer, Heidelberg (2005). https://doi.org/10.1007/11593447_8

33. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and appli-
cations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdót-
tir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40

34. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8_7

35. Lindell, Y.: Fast cut-and-choose-based protocols for malicious and covert adver-
saries. J. Cryptol. 29(2), 456–490 (2015). https://doi.org/10.1007/s00145-015-
9198-0

36. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4_4

https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-540-71677-8_25
https://doi.org/10.1007/978-3-319-70697-9_16
https://doi.org/10.1007/978-3-030-59013-0_20
https://doi.org/10.1007/978-3-030-59013-0_20
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-662-49890-3_27
https://doi.org/10.1007/11593447_8
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/s00145-015-9198-0
https://doi.org/10.1007/s00145-015-9198-0
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4

Generic 2-Party PFE with Constant Rounds and Linear Active Security 409

37. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party com-
putation. J. Cryptol. 22(2), 161–188 (2008). https://doi.org/10.1007/s00145-008-
9036-8

38. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

39. Lindell, Y., Riva, B.: Blazing fast 2pc in the offline/online setting with security for
malicious adversaries. In: ACM CCS (2015)

40. Lipmaa, H., Mohassel, P., Sadeghian, S.: Valiant’s universal circuit: Improvements,
implementation, and applications, iACR Eprint 2016/017

41. Liu, H., Yu, Yu., Zhao, S., Zhang, J., Liu, W., Hu, Z.: Pushing the limits of valiant’s
universal circuits: simpler, tighter and more compact. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 365–394. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1_13

42. Liu, Y., Wang, Q., Yiu, S.: Making private function evaluation safer, faster, and
simpler. IACR Cryptol. ePrint Arch. p. 1682 (2021)

43. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computa-
tion system. In: USENIX Security (2004)

44. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP). pp.
19–38 (2017). https://doi.org/10.1109/SP.2017.12

45. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine learning.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15–19, 2018, pp. 35–52. ACM (2018). https://doi.
org/10.1145/3243734.3243760

46. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for
private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9_33

47. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for
private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9_33

48. Mohassel, P., Sadeghian, S., Smart, N.P.: Actively secure private function evalu-
ation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
486–505. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8_26

49. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: EC (1999)

50. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: CCS 2001,
pp. 116–125 (2001)

51. Niksefat, S., Sadeghiyan, B., Mohassel, P., Sadeghian, S.S.: ZIDS: a privacy-
preserving intrusion detection system using secure two-party computation pro-
tocols. Comput. J. 57(4), 494–509 (2014)

52. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

53. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7_15

https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/978-3-030-84245-1_13
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15

410 H. Jia et al.

54. Shelat, A., Shen, C.: Two-output secure computation with malicious adversaries.
In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_22

55. Valiant, L.G.: Universal circuits (preliminary report). In: STOC (1976)
56. Wagh, S., Gupta, D., Chandran, N.: Securenn: 3-party secure computation for

neural network training. Proc. Priv. Enhancing Technol. 2019(3), 26–49 (2019)
57. Yao, A.C.: Protocols for secure computations. In: FOCS (1982)
58. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS (1986)
59. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,

Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_8

60. Zhao, S., Yu, Yu., Zhang, J., Liu, H.: Valiant’s universal circuits revisited: an
overall improvement and a lower bound. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11921, pp. 401–425. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34578-5_15

https://doi.org/10.1007/978-3-642-20465-4_22
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-030-34578-5_15
https://doi.org/10.1007/978-3-030-34578-5_15

Data Security

A Random Reversible Watermarking
Scheme for Relational Data

Qiang Liu1,2, Hequ Xian1,2(B), Jiancheng Zhang3,4, and Kunpeng Liu4

1 College of Computer Science and Technology, Qingdao University, Qingdao, China
xianhq@126.com

2 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

3 Shandong Computer Science Center, Jinan, China
zhangjc@sdas.org

4 Shandong Zhengzhong Information Technology Co., Ltd., Jinan, China

liukp@sdas.org

Abstract. In the era of Big Data, relational data is at risk of piracy
and misuse when distributed, shared and used. The use of digital water-
marking technology is a reliable way to protect the copyright of relational
data. In order to protect the copyright of relational data and recover the
original data, many reversible watermarking schemes have been proposed
in recent years. But most of them cannot extract the watermark infor-
mation completely under severe attacks. To address this problem, a ran-
dom reversible watermarking scheme is proposed. Watermark embedding
algorithm, watermark integrity checking algorithm, watermark detec-
tion algorithm and data recovery algorithm are designed. The water-
mark capacity is increased by embedding multiple watermarks in selected
tuples, and the randomness of the watermark information distribution is
increased by embedding unequal proportions of watermarks in different
tuples. In extracting the watermark, the attacked bits are discarded to
improve the accuracy of watermark detection. In addition, only a par-
tition with complete watermark information is selected for watermark
extraction. This not only improves the speed of watermark extraction,
but also avoids the risk of key leakage from other partitions. The exper-
imental results show that the complete watermark information can be
extracted even when more than 90% of the tuples are under attack.

Keywords: Relational data · Reversible watermark · Copyright ·
Multiple verification

1 Introduction

There is currently an increasing amount of data on the internet due to the
widespread use of big data and cloud computing [1]. This data is stored on the
internet in various forms such as audio, video, images, text, and relational data.
As it circulates and used, this data constantly creates new value. These data can

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 413–430, 2023.

https://doi.org/10.1007/978-3-031-25538-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_22&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_22

414 Q. Liu et al.

be easily copied, modified and distributed through public channels, which makes
them more vulnerable to misuse. Information misuse has become a more frequent
data security issue than information corruption or leakage [2]. How to protect
data security and prove data ownership in an open and shared environment has
become an urgent issue.

Digital watermarking is a technology used for copyright protection of mul-
timedia data, such as images, audio, video, natural languages, and relational
databases [3–7]. Database watermarking is a recently proposed technique for
database copyright protection. Before distributing the data, Data owners embed
their unique copyright mark into the data via a watermark embedding algorithm
and then distributed the data through public channels. After obtaining the data,
the malicious attacker will use various attacks to destroy the watermark in the
data to interfere with the proof of copyright. Common attacks include tuple
addition, tuple alteration, and tuple deletion attacks. The data owner extracts
a unique copyright mark from the stolen data for copyright proofing.

In this paper, we propose a dynamic random distributed watermarking
scheme for relational data, which improves the robustness of watermarking while
reducing data distortion. Experimental results show that our scheme is better
than the previous schemes in terms of robustness and data availability.

The subsequent sections of the paper are structured as follows: In Sect. 2,
some related researches are provided. In Sect. 3, the proposed scheme is described
in detail. In Sect. 4, experiments and results are discussed concisely. At last, the
paper is concluded in Sect. 5.

2 Related Work

In 2002, Agrawal and Kiernan proposed the first watermarking scheme for rela-
tional data [7]. The author uses a key to select special bits for specific attributes
and embeds some particular values forming the watermark. After that, Sion
et al. proposed a different watermarking scheme [8]. This scheme uses a key
to rearrange and repartition the tuples. The authors achieve the embedding of
watermark information by changing the distribution characteristics of the data.
However, this scheme has poor resistance to tuple deletion attacks. In 2003, Prof.
Niu et al. proposed a scheme to embed meaningful strings into data [9]. This
scheme embeds a matching relation in the selected attribute value of the tuple
chosen, and the value of the watermarked bits is confirmed by verifying the exis-
tence of the matching relation when detecting the watermark. In 2008, Shehab
et al. reduced digital watermarking to an optimization problem with constraints
and proposed a digital watermarking scheme using genetic algorithms to reduce
data distortion [10].

These intentionally introduced particular values will inevitably cause a cer-
tain degree of distortion to the data and, in some cases, will not meet the usabil-
ity requirements. In 2006, Zhang et al. proposed the first reversible relational
database watermarking scheme(HSW), which constructs histograms by exploit-
ing the differences between attribute values and extends the histogram technique

A Random Reversible Watermarking Scheme for Relational Data 415

to achieve reversibility of database watermarking [11]. In the same year, Zhang
et al. designed a reversible watermarking scheme for relational data by exploiting
the reversible nature of exclusive or operations [12]. However, this technique can-
not be used against attacks that target large numbers of tuples. In 2008, Gupta
and Pieprzyk used the differential extended watermarking technique DEW to
achieve reversible watermarking of relational data [13], but the robustness of
this scheme is poor. In 2010, Farfoura and Horng proposed a prediction error
extended watermarking technique (PEEW) [14], where the authors used a pre-
dictor to select the watermarked bits and features in the embedded data. In
2013, K. Jawad et al. first used genetic algorithms in database watermarking
and designed a reversible watermarking scheme based on genetic algorithms and
differential extended watermarking techniques (GADEW) [15]. The scheme uses
a genetic algorithm to select the optimal attributes to reduce data distortion
and increase the watermarking capacity, which improves the scheme’s robust-
ness. In 2015, Iftikhar et al. used genetic algorithms and data analysis methods
from information theory to deal with the watermarking problem (RRW) [16].
They used genetic algorithms to generate optimal watermarks to reduce data
distortion. However, developing the optimal watermark requires a large amount
of computation time. Therefore the efficiency of the algorithm is too low when
dealing with large amounts of data. In the same year, Franco-Contreras J et al.
proposed a robust watermarking algorithm based on circular histograms by using
circular histograms to modify data in plain text domains [17]. In 2017, Imamoglu
M B et al. proposed a new reversible watermarking scheme for relational data
(FFADEW) by combining differential extension techniques and the Firefly algo-
rithm (FFA) [18]. The Firefly algorithm is another evolutionary algorithm that
the authors use to select the optimal attribute-value pairs to achieve minimal
distortion. In 2018, Hu et al. proposed a genetic algorithm-based histogram shift
watermarking scheme (GAHSW) [19]. The authors used a genetic algorithm to
partition the tuples and then used a histogram shift method to embed the water-
mark. This method improves the robustness of watermarking while reducing data
distortion. In 2019, Li et al. proposed a low-distortion reversible database water-
marking method based on histogram gaps (HGW) [20]. The method reduces
data distortion without weakening the robustness of watermarking. Compared
to GAHSW, this method reduces data distortion without cutting watermarking
robustness. In 2020, Li et al. improved the histogram shifting scheme by propos-
ing a non-redundancy shifting-based method. It changed the histogram shifting
method to reduce the distortion caused by watermarking and slightly enhance
the usability of the data [21]. In 2022, Xiang et al. proposed a robust watermark-
ing algorithm based on order-preserving encryption scheme(OPES) and circular
histograms [22].

The above schemes for relational data show that researchers are trying to
improve the robustness and capacity of watermarking while reducing the impact
of watermarking on the data. It seems that the robustness of watermarking and
data availability cannot be achieved at the same time. To solve this problem, we
propose a random reversible watermarking scheme in this work.

416 Q. Liu et al.

Fig. 1. System architecture.

3 Scheme

The main structure of the scheme is shown in Fig. 1. The scheme mainly includes
the following five main phases: (1) preprocessing; (2) watermark embedding; (3)
watermark integrity detection; (4) watermark extraction; (5) data recovery.

The watermark preprocessing is mainly to do some preparatory work before
embedding watermark. The first step is encoding the data owner’s copyright
information into a watermark sequence that can be embedded in the database.
The second step is filtering out the attribute columns suitable for embedding the
watermark. The final step is to generate a random function to determine the pro-
portion of each tuple in which the watermark will be embedded. The main task
of the watermark embedding phase is to embed the watermark information into
the data according to the key, and finally obtain the database with the water-
mark and return the auxiliary data. The watermark integrity check phase checks
each partition’s watermark integrity. The watermark extraction phase extracts
the watermark information from the stolen watermarked data and implements
the issue of proof of copyright. The data recovery phase removes the watermark
from the data and restores the original data. Notation used in the scheme is
given in Table 1.

Definition 1. Watermark Integrity, WI(Watermark Integrity), indicates the
watermark’s degree of integrity for each partition and. In some ways, it reflects
the extent to which data has been corrupted. WI = [f1, f2, f3, ..., fN](fi ∈ 0, 1).
Where fi is the identifier of the complete watermark of partition i.

We will select only one of the partitions with a full watermark for detection
during watermark extraction. The use of watermark completeness improves the
efficiency of watermark detection. It ensures that in case of severe attacks in
the database, the data owner can still extract the complete watermark from the
data.

A Random Reversible Watermarking Scheme for Relational Data 417

Table 1. The meaning of the symbols in the scheme.

Symbol Description Symbol Description

DO Original database DW Databases with embedded
watermarks

DR Restored database DAW Databases under attack

1/ω Proportion of attribute
embedding

λ Number of data partitions

σ Random number greater than
the length of the watermark

1/η Proportion of tuples with
watermarks embedded

ξ Length of watermarked
information

ν Number of bits in the least
significant bit

KP Data partition key KS [i] Watermark embedding key
for partition i

r Example tuple of data Aj The jth attribute of the data

bit[k] The kth bit of the LSB W [l] kth bit of watermark
information

bitW [k] The kth watermarked bit of
the LSB

WD[l] The lth bit of the detected
watermark

Max Proportional limit for
embedding watermark
attributes

LSB The least significant bit of the
data

mp Auxiliary data MSB The most significant bit of
the data

mp[i] Auxiliary data for partition i mpw Auxiliary data for the data to
be tested

r.key Primary key for tuple r count[l] Array of majority vote marks

WI Marker array bits Bits to be embedded

fi Markers for partition i bitsl Information about the
watermarked bits stored

bito The original bits that be
recovered

bitwsl The value of the bitsl in the
checked data

Mean Mean value of the attribute Std Standard deviation of
attributes

3.1 Preprocessing

Before embedding the watermark, the data needs to be preprocessed. The main
tasks in the preprocessing phase are: (1) selecting the appropriate attributes for
watermark embedding; (2) creating watermark information for embedding; (3)
determining a random function.

Attribute Selection. Not all attributes are suitable for embedding attributes,
and for some attributes, small changes can significantly impact data quality. We

418 Q. Liu et al.

select multiple attribute columns from the database as candidate attributes that
can be used as identifiable features, and embedding a watermark in an attribute
fewer impacts data quality. The candidate attributes are then reordered and
numbered in ascending order, and the reordering enhances robustness against
attribute attacks.

Watermark Creation. The watermark information is not only a carrier of the
data owner’s copyright information but also evidence of the owner’s copyright
claim. The unique identification information is converted into a binary sequence.
Then the binary sequence is encoded with the data as watermark information.
We embed the full watermark into the different partitions. We simply select
the partition with the most complete watermark for the copyright claim. The
watermark creation equation is shown in Eq. (1):

W = Info xor Rand (1)

Info is the copyright information of the data owner, and Rand is random num-
ber. By encode Info with an Rand, the data owner’s information can be effec-
tively prevented from being leaked.

Determine Random Function. We embed an unequal number of watermarks
in each tuple. The F function chooses the number of watermarks embedded in
each tuple. The input to the F function is the tuple’s primary key and key,
and the output is a random integer of [0,Max] to ensure that the number of
watermarks embedded is random. The data owner can choose any generation
function. In this case, the following function is selected by Eq.(2):

F (x, y, z) = H(x|H(x|y))%z (2)

3.2 Watermark Embedding

Fig. 2. Least significant bits

A Random Reversible Watermarking Scheme for Relational Data 419

The main task of the watermark embedding phase is to embed the watermark
into the database in an invisible way. After embedding the watermark, the
data owner stores the auxiliary data bitsl and uses them during the watermark
integrity check, watermark extraction, and data recovery phases. The informa-
tion stored in the auxiliary array mp consists of the original data bit value bit[k]
and the subscript position l of the watermark. bit[k] is selected as shown in Fig. 2,
and bits are generated by selecting one of the LSB and dissociating bit[k] with
W [l]. bitls are generated by processing the bits, and the final stored value bitls
is calculated according to Eq. (3).

bitsl = l + σ ∗ bits (3)

l is the subscript position of the embedded watermark W . sigma is any ran-
dom number bigger than the watermark length ξ. When extracting the stored
information, if the value of bitsl is bigger than ξ or not, the value of bits is 1 or
0. When the value of bitsl is less than ξ, the value of l is bitsl. Otherwise, l is
calculated by Eq. (4). The specific watermarking process is shown in Algorithm 1.

l = bits − σ ∗ bits (4)

Algorithm 1. Watermark embedding algorithm
Input: DO, KP , KS , W
Output: DW , mp
1: for each tuple r ∈ D do
2: i = H(r.key, KP , MSB) mod λ
3: if H(r.key, KS [i]) mod η =0 then
4: for each Aj in r do
5: ω=F(r.key, KS [i], Max)
6: if H(r.key, KS [i], MSB) mod �ω� = 0 then
7: Windex l = H(r.key, KS [i]) mod ξ
8: bitindex k = H(r.key, KS [i]) mod υ
9: bits = bit[k] xor W [l]

10: bitsl = l + σ ∗ bits
11: Stroe(mp[i], bitsl)
12: Update(bit[k], bits)
13: end if
14: end for
15: end if
16: end for
17: return DW , mp

420 Q. Liu et al.

Here we take an arbitrary tuple r as an example. Line 2 determines the
partition of r. The primary key of the tuple and the key KP are hashed. Line 3
determines whether the tuple is watermarked or not, and 1/η is the parameter
that controls the tuple embedding ratio. Line 4 determines for each attribute
whether the attribute is embedded into a watermark bit or not. Lines 5 and 6
generate a random number and attributes in the tuple with a ratio of 1/ω will
be watermarked. The value of ω is determined by the key, the primary key of
the tuple, and Max. This approach increases the watermarking capacity and the
randomness of the watermark embedding. We can adjust the watermark capacity
and control the data distortion by adjusting Max. Line 7 selects one bit from
the watermark string as the embedded bit, ν being the length of the watermark.
Line 8 selects the bit position for embedding, ξ is the number of least significant
bits. Line 9 combines the watermarked bits with the original information using
an exception or operation to generate a new bit. Line 10 connects the embedded
watermark bits with the subscript of the watermark where it is located to create
the auxiliary data bitsl with the embedded watermark and watermark position
information via Eq. (3). Then, store(mp[i], bitsl) means to store the bitsl into the
auxiliary array element mp[i], mp[i] represents the auxiliary data for partition
i. Update(bit[k], bits) in line 12 updates the kth bit of the least significant bit
to bits. Finally, the algorithm returns the embedded watermarked data DW and
the auxiliary data mp.

3.3 Watermark Integrity Detection

To ensure that the data owner can detect its watermark, we check the water-
mark integrity of all partitions. The watermark completeness check uses the
Check(mpW [i],mp[i]) function to check the watermark completeness of parti-
tion i. This function checks ξ watermark positions in the ith partition. If the
function detects at least one occurrence of watermark information in ξ water-
mark positions, the partition’s watermark information is considered complete
and returns 1; otherwise, it returns 0. We have discarded the attacked water-
mark bits in the watermark extraction stage, so when each watermark bit is
detected at least once in partition i, the correct result can be obtained by the
majority voting mechanism. When extracting the watermark, the watermark is
extracted for the partition with complete watermark information. The water-
mark integrity checking algorithm is shown in Algorithm 2.

A Random Reversible Watermarking Scheme for Relational Data 421

Algorithm 2. Watermark integrity checking algorithm
Input: DW , KP , KS , mp
Output: WI
1: for each tuple r ∈ DW do
2: i = H(r.key, KP) mod λ
3: if H(r.key, KS [i]) mod η =0 then
4: for each Aj in r do
5: ω = F(r.key, KS [i], Max)
6: if H(r.key, KS [i], MSB) mod �ω� = 0 then
7: Windex l = H(r.key, KS [i]) mod ξ
8: bitindex k = H(r.key, KS [i]) mod υ
9: bitwsl = l + σ ∗ bit[k]

10: if bitwsl in mp[i] then
11: Store(mpw[i], bitwsl)
12: end if
13: if mpw[i].length%ξ = 0 then
14: WI[i] = Check(mpw[i], mp[i])
15: end if
16: end if
17: end for
18: end if
19: end for
20: return WI

Lines 1 to 8 of Algorithm 2 are similar to the watermark embedding algo-
rithm. Only line 3 has an additional line to determine the partition i to which
tuple r belongs. If the watermark integrity token WI[i] of partition i is already
1, the partition is no longer checked. Line 9 calculates the value of bitwsl using
Eq. 3. Lines 10–12 determine if bitwsl is stored in mp[i], and if so, store it in
mpw[i]. Lines 13–15 determine the length of mpw[i], and if the length is an
integer multiple of ξ, perform a Check(mpw[i],mp[i]). This can greatly improve
the detection efficiency by periodically checking whether the watermark is com-
plete. When the marker array WI[i] of partition i is set to 1, no subsequent
tuples of that partition are checked. The algorithm only detects all tuples when
the data does not contain watermark information. When all partitions have a
marker array of 0, the data does not contain copyright information.

3.4 Watermark Extraction

The data owner extracts the watermarked information from the data for copy-
right claim. This requires the watermark to be robust. Even in the case of a severe
attack on the data, the data owner can still extract the complete watermark
information from the data. We use majority voting in the watermark extraction
process to reduce the attack’s impact and improve the accuracy of watermark
detection. The watermark extraction algorithm is shown in Algorithm 3.

422 Q. Liu et al.

Algorithm 3. Watermark extraction algorithm
Input: DW ,KP ,KS ,mp,WI
Output: WD

1: get fi = 1, fi ∈ WI
2: Initialize count = 0
3: for each tuple r ∈ D do
4: i = H(r.key,KP) mod λ
5: if i == fi then
6: if H(r.key,KS [i]) mod η =0 then
7: for each Aj in r do
8: ω = F(r.key,KS [i],Max)
9: if H(r.key,KS [i],MSB) mod ω = 0 then

10: Windex l = H(r.key,KS [i]) mod ξ
11: bitindex k = H(r.key,KS [i]) mod υ
12: Get(mp[i], bitsl)
13: bits = (bitsl − l)/σ
14: bitws = bits xor W [l]
15: WD[l] = bitW [k] xor bitws
16: if WD[l] = 1 then
17: count[l] + +
18: else
19: count[l] − −
20: end if
21: end if
22: end for
23: end if
24: end if
25: end for
26: for n=0 to ξ − 1 do
27: if count[n] > 0 then
28: WD[n] = 1
29: else
30: WD[n] = 0
31: end if
32: end for
33: return WD

In line 1, a partition with complete watermark information is selected, and
only the tuples of this partition are watermark extracted next. Line 2 initial-
izes the count variable. Lines 3 and 4 determine the partition to which the
tuple belongs. Line 6 determines whether the tuple is a tuple with a water-
mark. Lines 7 to 11 search for the location of the watermark embedding. Line 12
Get(bits,mp[i]) extracts the bitls from the auxiliary data of partition i,mp[i].
Line 13 calculates the value of the bits stored in the bitsl. Line 14 calculates
the embedded watermark information. If WD[l] is 1, the count value is added

A Random Reversible Watermarking Scheme for Relational Data 423

to 1, if WD[l] is 0, the count value is subtracted from 1. Lines 25 to 31 calculate
the final vote result and finally return the detected watermark information WD.
WD is encrypted and is decrypted using a key to get Info. Info is the copyright
information of the owner of the decrypted data.

3.5 Data Recovery

When the quality of the data is not sufficient to meet the demand, the data will
be useless. The data owner licenses the key and supporting files to the data user,
who then uses the key and data recovery algorithm to recover the original data.
The data recovery algorithm is shown in Algorithm 4.

Algorithm 4. Data recovery algorithms
Input: DW DAW ,KP ,KS ,mp,W
Output: DR

1: for each tuple r ∈ D do
2: i = H(r.key,KP) mod λ
3: if H(r.key,KS [i]) mod η =0 then
4: for each Aj in r do
5: ω = F(r.key,KS [i],Max)
6: if H(r.key,KS [i],MSB) mod �ω� = 0 then
7: Windex l = H(r.key,KS [i]) mod ξ
8: bitindex k = H(r.key,KS [i]) mod υ
9: Get(bitsl,mp[i])

10: bits = (bitsl − l)/σ
11: if bits in mp[i] then
12: bito = bits Xor W [l]
13: Update(bitw[k], bito)
14: end if
15: end if
16: end for
17: end if
18: end for
19: return DR

Lines 1 to 8 are same as the watermark embedding algorithm. Line 9 gets the
value of the stored bitsl from the auxiliary array. Lines 10 compute the values
of bits. If the bits is in the auxiliary data mp[i], line 12 is an alias to the bits
to get the original bito. Line 13 uses Update(bitW [s], bito) to update the value
of bitW [k] to bito, removing the watermark information. Finally, the recovered
data is returned to DR.

4 Experimental Analysis

This section evaluates various aspects of the scheme. The experiments aim to
verify the accuracy and robustness of the scheme. The experiments include

424 Q. Liu et al.

(1) Statistical distortion experiments, (2) watermark capacity experiments, (3)
robustness experiments. The experimental environment is: a 2.0 GHz Intel Core
CPU, 16 GB RAM, Ubuntu 20.04LTS operating system, IDEA2021.1.3 develop-
ment environment, and MariaDB 10.3.29 database. The experimental data were
obtained using the Forest Cover dataset provided by the University of Califor-
nia(kdd.ics.uci.edu/databases/covertype/covertype.html). The dataset contains
a total of 581012 tuples and 54 attributes. We selected 100000 tuples and 10
attributes from this data set and transformed them to be the experimental data.

Experimental parameters: number of data tuples n = 100000, number of
data partitions μ= 10, watermark tuple embedding ratio 1/η= 1/5, F-function
parameter Max = 5.

4.1 Statistical Distortion Experiments

Watermarking inevitably causes distortion of the data, and the longer the water-
mark, the more severe the distortion. Therefore, we compared some statistical
metrics of the original and watermarked databases. The results of the compar-
ison were compared with other schemes, such as DEW, GADEW, PEEW and
GAHSW.

To visualize the effect of watermarking on data distortion, we calculate the
mean, standard deviation and mean absolute error(MAE) before and after
watermark embedding data. And the value of MAE is calculated from Eq. (5).

MAE =
∑n

i=1 |Ai − Aw
i |

n
(5)

where Ai is the original attribute, Aw
i is its watermarked version, and n is the

total number of attributes for all tuples in the database.
To make the experimental results more precise, the results were averaged

from 10 experiments. Table 2 shows the experimental results for each attribute
of the database, and the results are compared with other schemes in the table.
To visualize the changes in mean and variance, the difference in mean (DM) and
difference in standard deviation (DS) for each attribute are given in Table 3. DM
and DS are calculated by Eq. (6) and Eq. (7):

DM = |MeanD − MeanDW | (6)

DS = |StdD − StdDW | (7)

where MeanD and StdD represent the original database’s mean and standard
deviation values, MeanDW and StdDW represent the mean and standard devia-
tion of the watermarked database. In addition, the MAE values for the different
scenarios are shown in the last row of Table.

As shown in Table 3, the variation in our scheme’s mean and standard devia-
tion between the original and watermarked databases is minimal. The maximum

A Random Reversible Watermarking Scheme for Relational Data 425

Table 2. Results of statistical distortion of the database.

variation caused is 0.035, which is negligible compared to DEW, GADEW, and
PEEW. Although the variation in mean and standard deviation for the GAHSW
scenario is also tiny, it is still worse than the results in our scheme. It is impor-
tant to note that DEW and PEEW change 0 for some attributes, such as the
first attribute shown in Table 3. This is because the watermark is not embedded
in these attribute columns. In general, the smaller the variation in the mean and
standard deviation, the smaller the impact of the watermarking scheme on the
data quality. The same is also applicable to the MAE for quantifying attribute
distortion. The MAE values for DEW, GADEW, and PEEW are not ideal, with
their values being 28.395, 7.867, and 133.125, respectively. This means that these
schemes introduce relatively large distortions into the data, which severely affect
its usability of the data. The MAE value of GAHSW is the lowest, at 0.775.
Although this value is much lower than the other schemes, it is still higher than
the value in our proposed scheme. Although the improvement is minor, it is still
an improvement. Thus, the experiments show that our proposed scheme is highly
effective and significantly outperforms the other schemes in terms of statistical
distortion performance.

426 Q. Liu et al.

Table 3. Results of difference in Mean, difference in Std and MAE

DEW GADEW PEEW GAHSW OUR

Attributename DM DS DM DS DM DS DM DS DM DS

Elevation 0 0 0.019 0.067 0 0 0.003 0.087 0.035 0

Aspec 0.240 0.167 0.451 0.144 0.666 1.37 0.043 0.068 0.004 0

Slope 0.016 0.540 0.015 0.008 0.015 0.012 0.032 0.037 0.031 0.036

H D To Hydrology 0 0 0.288 0.408 1.264 0.733 0.079 0.035 0.008 0.003

V D To Hydrology 13.220 23.976 9.649 15.165 6.298 5.483 0.872 0.503 0.035 0.004

H D To Roadways 2.407 4.183 1.554 2.785 8.457 3.473 0.003 0.099 0.004 0.002

Hillshade 9am 0.071 0.313 0.092 0.417 0.218 1.216 0.077 0.028 0.036 0.011

Hillshade Noon 0.086 0.044 0.046 0.256 0.124 0.801 0.059 0.035 0.004 0.001

Hillshade 3pm 0.087 0.138 0.250 0.212 0.318 0.309 0.009 0.051 0.032 0.009

H D To Fire Points 2.305 4.871 1.265 0.343 110.753 289.816 0.042 0.094 0.003 0.001

MAE 28.395 7.867 133.125 0.775 0.624

Fig. 3. Watermark capacity under dif-
ferent tuples

Fig. 4. Watermark capacity in differ-
ent proportions

4.2 Watermark Capacity Experiment

Watermark capacity is a measure of the ability of a watermark to resist attacks.
The more bits of information a watermark has in a certain amount of data, the
more resistant the watermark will be against malicious attacks. However, the
larger the watermark capacity, the greater the distortion of the data.

Figure 3 shows the change in watermark capacity under different number of
tuples at 1/η = 1/5. Figure 4 shows the difference in the number of embedded
watermark bits by varying the value of 1/η when the number of tuples is 100000.
Since our scheme embeds watermarks in the attributes of the selected tuple 1/η
ratio, the value is randomly generated by the F function. Mathematical reasoning
shows that there are about N * (lnν + C)/(η*Max) number of bits of information
embedded in the data (C is the Euler constant). The experimental results are
consistent with the inference results within the error tolerance.

4.3 Robustness Experiments

In this section, different attacks are performed on the watermarked data. These
attacks include (1) tuple addition attack, (2) tuple alteration attack, and

A Random Reversible Watermarking Scheme for Relational Data 427

(3) tuple deletion attack. We also compare our scheme with recent reversible
database watermarking schemes, such as DEW, GADEW, PEEW, and RRW.
Since the watermark detection rate criteria of GAHSW schemes are not the same
as the previous ones, this scheme can’t be compared.

Tuple Addition Attack. In this type of attack, the attacker adds some new
tuples to the watermarked data set in an attempt to interfere with the watermark
detection. The attacker may insert several randomly generated tuples into the
watermarked data.

Watermark detection: As shown in Fig. 5, when the same amount increases
the number of tuples as the original data, the detection accuracy of our scheme
remains 100%. At this point, the detection accuracy of DEW is already less than
88%, and the accuracy of PEEW is only 98%.

Data recovery: As shown in Fig. 6, after inserting 100% of the tuples, 100%
of the watermarked data can be recovered accurately. This is because the tuple
addition attack does not destroy any original data or watermark, and the hash
function and auxiliary data can pinpoint the location of the added watermark.

Fig. 5. Watermark detection accuracy
after tuples addition attack

Fig. 6. Data recovery accuracy after
tuples addition attack

Tuple Alteration Attack. In this type of attack, the attacker changes some
tuples at random. Here we perform a bit-inversion attack on all attributes of a
randomly selected tuple to interfere with the watermark detection.

Watermark detection: As shown in Fig. 7, when 90% of the tuples are alter-
nated, our scheme still maintains 100% accuracy in watermark detection, while
only RRW maintains 100% accuracy in the other schemes.

Data recovery: As shown in Fig. 8, it is almost impossible to perform complete
data recovery on data knowing that it has been subjected to a tuple alteration
attack. The experimental results are generally consistent with the results of the
tuple deletion attack, and the scheme is still able to recover data that has not
been attacked fully.

428 Q. Liu et al.

Fig. 7. Watermark detection accuracy
after tuples alteration attack

Fig. 8. Data recovery accuracy after
tuples alteration attack

Tuple Deletion Attack. In this attack, the attacker removes a certain number
of tuples at random, trying to interfere with watermark detection by removing
tuples containing watermark information.

Watermark detection: As shown in Fig. 9, when 90% of the tuples are deleted,
our scheme can still maintain 100% watermark detection accuracy. When many
tuples are deleted, the detection accuracy of GADEW, PEEW, GAHSW, and
other methods, except RRW, decreases significantly.

Data recovery: As seen in Fig. 10, the original data can be recovered accu-
rately. This is because the tuple deletion does not destroy the remaining part of
the original data, and the remaining data can still be watermarked and restored
to its original state.

Fig. 9. Watermark detection accuracy
after tuples deletion attack

Fig. 10. Data recovery accuracy after
tuples deletion attack

5 Conclusion

Aiming at the problem that the watermark information extracted under severe
attack is incomplete, a random reversible watermarking scheme based on LSB
modification is proposed. Watermark embedding algorithm, watermark integrity
checking algorithm, watermark detection algorithm, and data recovery algorithm
are designed. The watermark capacity is improved by embedding multiple water-
marks in the selected tuples. The randomness of watermark information distribu-
tion is increased by controlling different tuples to embed an unequal proportion of

A Random Reversible Watermarking Scheme for Relational Data 429

watermarks. When extracting the watermark, the accuracy of watermark detec-
tion is improved by discarding the attacked bits. Finally, the scheme’s statistical
distortion, watermark capacity, and robustness experiments are analyzed. We
can draw some conclusions. Firstly, our scheme can resist severe tuple attacks.
Secondly, the impact of embedded watermarks on data availability is small. Com-
pared with DEW, GADEW, RRW, PEEW, and GAHSW, our scheme has better
attack resistance and causes less data distortion, which can meet the require-
ments of most application scenarios.

References

1. Liu, Y.-C., Ma, Y.-T., Zhang, H.-S., Li, D.-Y., Chen, G.-S.: A method for trust
management in cloud computing: Data coloring by cloud watermarking. Int. J.
Autom. Comput. 8(3), 280–285 (2011)

2. Cheng, L., Liu, F., Yao, D.: Enterprise data breach: causes, challenges, prevention,
and future directions. Wiley Interdisc. Rev. Data Mining Knowl. Discov. 7(5), 1211
(2017)

3. Wong, P.W., Memon, N.: Secret and public key image watermarking schemes
for image authentication and ownership verification. IEEE Trans. Image Process.
10(10), 1593–1601 (2001)

4. Saadi, S., Merrad, A., Benziane, A.: Novel secured scheme for blind audio/speech
norm-space watermarking by arnold algorithm. Signal Process. 154, 74–86 (2019)

5. Venugopala, P., Sarojadevi, H., Chiplunkar, N.N.: An approach to embed image
in video as watermark using a mobile device. Sustain. Comput.: Inform. Syst. 15,
82–87 (2017)

6. Brassil, J.T., Low, S., Maxemchuk, N.F.: Copyright protection for the electronic
distribution of text documents. Proc. IEEE 87(7), 1181–1196 (1999)

7. Agrawal, R., Kiernan, J.: Watermarking relational databases. In: VLDB’02: Pro-
ceedings of the 28th International Conference on Very Large Databases, pp. 155–
166. Elsevier (2002)

8. Sion, R., Atallah, M., Prabhakar, S.: Rights protection for categorical data. IEEE
Trans. Knowl. Data Eng. 17(7), 912–926 (2005)

9. Niu, X., Zhao, L., Huang, W., Zhang, H.: Watermarking relational databases for
ownership protection. Acta Electron. Sin. 31(S1), 2050 (2003)

10. Shehab, M., Bertino, E., Ghafoor, A.: Watermarking relational databases using
optimization-based techniques. IEEE Trans. Knowl. Data Eng. 20(1), 116–129
(2008)

11. Zhang, Y., Yang, B., Niu, X.-M.: Reversible watermarking for relational database
authentication. J. Comput. 17(2), 59–66 (2006)

12. Zhang, Y., Niu, X.-M.: Reversible watermark technique for relational databases.
Acta Electron. Sin. 34(S1), 2425 (2006)

13. Gupta, G., Pieprzyk, J.: Reversible and blind database watermarking using differ-
ence expansion. Int. J. Digital Crime Forensics (IJDCF) 1(2), 42–54 (2009)

14. Farfoura, M.E., Horng, S.-J., Wang, X.: A novel blind reversible method for water-
marking relational databases. J. Chin. Inst. Eng. 36(1), 87–97 (2013)

15. Jawad, K., Khan, A.: Genetic algorithm and difference expansion based reversible
watermarking for relational databases. J. Syst. Softw. 86(11), 2742–2753 (2013)

430 Q. Liu et al.

16. Iftikhar, S., Kamran, M., Anwar, Z.: Rrw-a robust and reversible watermarking
technique for relational data. IEEE Trans. Knowl. Data Eng. 27(4), 1132–1145
(2014)

17. Franco-Contreras, J., Coatrieux, G.: Robust watermarking of relational databases
with ontology-guided distortion control. IEEE Trans. Inf. Forensics Secur. 10(9),
1939–1952 (2015)

18. Imamoglu, M.B., Ulutas, M., Ulutas, G.: A new reversible database watermarking
approach with firefly optimization algorithm. Math. Problems in Eng. 2017(2),
1–14 (2017)

19. Hu, D., Zhao, D., Zheng, S.: A new robust approach for reversible database water-
marking with distortion control. IEEE Trans. Knowl. Data Eng. 31(6), 1024–1037
(2018)

20. Li, Y., Wang, J., Ge, S., Luo, X., Wang, B.: A reversible database watermarking
method with low distortion. Math. Biosci. Eng. 16(5), 4053–4068 (2019)

21. Li, Y., Wang, J., Luo, X.: A reversible database watermarking method non-
redundancy shifting-based histogram gaps. Int. J. Distrib. Sens. Netw. 16(5),
1550147720921769 (2020)

22. Xiang, S., Ruan, G., Li, H., He, J.: Robust watermarking of databases in order-
preserving encrypted domain. Front. Comp. Sci. 16(2), 1–9 (2022). https://doi.
org/10.1007/s11704-020-0112-z

https://doi.org/10.1007/s11704-020-0112-z
https://doi.org/10.1007/s11704-020-0112-z

Enabling Accurate Data Recovery
for Mobile Devices Against Malware

Attacks

Wen Xie, Niusen Chen, and Bo Chen(B)

Department of Computer Science, Michigan Technological University, Michigan, USA

bchen@mtu.edu

Abstract. Mobile computing devices today suffer from various malware
attacks. After the malware attack, it is challenging to restore the device’s
data back to the exact state right before the attack happens. This chal-
lenge would be exacerbated if the malware can compromise the OS of the
victim device, obtaining the root privilege. In this work, we aim to design
a novel data recovery framework for mobile computing devices, which
can ensure recoverability of user data at the corruption point against
the strong OS-level malware. By leveraging the version control capabil-
ity of the cloud server and the hardware features of the local mobile
device, we have successfully built MobiDR, the first system which can
ensure restoration of data at the corruption point against the malware
attacks. Our security analysis and experimental evaluation on the real-
world implementation have justified the security and the practicality of
MobiDR.

Keywords: Mobile device · Data recovery · OS-level malware ·
Corruption point · FTL · TrustZone · Version control

1 Introduction

Mainstream mobile computing devices (e.g., smart phones, tablets, etc.) have
been suffering from various malware attacks [8]. For example, ransomware
encrypts the data of a victim device and asks for ransom; trojans first steal
data from a victim device, send the data to the remote controller, and corrupt
the data locally. Especially, there is one type of strong malware [15] which can
compromise the OS, obtaining the root privilege. This type of OS-level malware
is difficult to combat due to its high system privilege [15]. Data are extremely
valuable for both organizations and individuals. Therefore, after a mobile device
is attacked by the OS-level malware and the stored data are corrupted, it is of
significant importance to ensure that the valuable data can be restored to the
exact state right before the malware corruption (data recovery guarantee).
We define the point of time right before the malware starts to corrupt the data
as the “corruption point”, and the data recovery guarantee requires restoring
the data at the corruption point after malware attacks.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 431–449, 2023.

https://doi.org/10.1007/978-3-031-25538-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_23&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_23

432 W. Xie et al.

To enable data recovery, existing works either 1) purely rely on a remote
version control server [12,19,20], or 2) purely rely on the local device [9,10,22,
24,29,30]. Simply relying on the remote version control server cannot achieve
the data recovery guarantee, as the OS-level malware may compromise the most
recent data changes (i.e., delta) in the device which have not1 been committed
remotely and, the remote server can only allow restoring the historical state of
the data rather than the exact state at the corruption point. Simply relying on
the local storage cannot achieve the data recovery guarantee against the OS-level
malware either, because: First, FlashGuard [22] and TIMESSD [30] retain his-
torical data in the storage hardware for data recovery. This is essentially equal to
maintaining a local version control system but, due to the limited local storage
capacity, the historical data can only be retained for a short term (e.g., 20 d in
FlashGuard). This implies that the data which are not retained any more may
become irrecoverable if compromised by the malware. Second, MimosaFTL [29],
SSD-Insider [9], and Amoeba [24] incorporate malware detection to avoid retain-
ing too much unnecessary historical data, but the malware detection may suffer
from false negatives and the data corrupted by the undetected malware may
be lost. SSD-Insider++ [10] tries to compensate the false negatives, but their
strategy is specific for the ransomware and, their lazy detection algorithm still
suffers from potential false negatives.

In this work, we aim to achieve the data recovery guarantee against the OS-
level malware. Our key idea is to build a secure version control system virtually
across the mobile device and the version control server in an adversarial set-
ting (Fig. 1), such that the most recent delta data are correctly maintained in
the mobile device and the historical delta data are correctly stored in the cloud
server. In this manner, any version of data is recoverable in the mobile device
hence the version of data at the corruption point is always recoverable. A salient
advantage of our design is that it does not rely on any malware detection mech-
anisms and hence does not suffer from false negatives and, meanwhile, it does
not suffer from the storage capacity as the cloud storage can be easily scaled up.
Towards the aforementioned goal, the first step of our design is to ensure that
the OS-level malware cannot corrupt any newly generated delta data. Mobile
devices today usually use flash memory as external storage and, a flash storage
medium typically exhibits two salient hardware features: 1) performing out-of-
place update internally, and 2) introducing a flash translation layer (FTL) to
transparently handle the flash memory hardware. Therefore, we can simply hide
the delta data in the flash memory [21,22]: due to the physical isolation, the
malware cannot physically “damage” the delta data stored in the flash memory
even if it can compromise the OS; additionally, as the flash storage performs
out-of-place update, overwriting operations performed by the malware at the
OS level can only invalidate rather than delete the delta data stored in the flash
memory. Besides, our design needs to address extra challenges:

1 Typically, delta data are committed to the remote server periodically rather than
continuously, to reduce bandwidth/energy consumption imposed on the low-power
mobile computing devices.

Enabling Accurate Data Recovery for Mobile Devices 433

Fig. 1. A virtual version control system across the cloud server and the mobile device.
We focus on defending against attackers in the mobile device side. Handling attackers
in the cloud server side has been explored extensively before [12,13,18–20,27,32].

First, the malware may first overwrite the user data at the OS level, invali-
dating them in the flash memory, and then fill the entire disk (on top of the block
device) to force the garbage collection in the flash memory to reclaim those flash
blocks storing invalid data. To address this challenge, we periodically invoke
a backup process which commits the new delta data to the cloud server and,
before any new delta data are committed remotely, we will temporarily “freeze”
the garbage collection over them. In other words, once the new delta data are
committed remotely, the garbage collection on them can run normally.

Second, the OS-level malware may disturb the backup process, so that the
delta data may not be securely extracted from the flash memory and correctly
committed to the cloud server. To facilitate the backup process, we need a backup
app which runs in the application layer, securely extracting delta data and com-
mitting them to the cloud server. Two issues need to be tackled:

1) How can we prevent the backup app from being compromised by the OS-
level malware? Mobile devices today are broadly equipped with Arm processors,
which provide a hardware-level security feature TrustZone. TrustZone can allow
creating a trusted execution environment (i.e., a secure world) and, any code
running in this environment cannot be compromised by the adversary which can
compromise the OS. We therefore move critical components of the backup app
into the secure world to avoid being compromised by the malware.

2) How can the backup app securely extract delta data from the flash memory?
The backup app runs at the application layer and does not have access to the raw
data in the flash memory. We therefore modify the FTL, so that upon the backup
process, it can work with the backup app, extracting the raw flash memory data
and sending them to the backup app. To prevent the malware from disturbing
the extraction process, we incorporate a backup mode into the FTL and, if the
mode is activated, the FTL will be exclusively working for the backup process.
To activate the backup mode securely, authentication is performed based on
the secret known by the backup app and the FTL. To prevent the malware
from corrupting delta data sent from the FTL to the backup app, the FTL will
compute cryptographic tags for the delta data using a secret key, and the backup
app will verify the delta data before committing them remotely. To prevent the
malware from replaying old delta data, the version number should be embedded

434 W. Xie et al.

into each tag. Note that the FTL stays isolated from the OS, therefore the
malware cannot compromise the tag computing process as well as the secret key.

Contributions. We summarize our contributions below:

– We have designed MobiDR, the first data recovery system for mobile com-
puting devices, that can ensure recoverability of data at the corruption point
against malware attacks. We consider the strong malware which is allowed to
compromise the OS of the victim device.

– We have built two user-level apps, DRBack and DRecover, which make the
proposed design usable by regular mobile users in the user space. The apps
work together with our modified FTL (DRFTL) to enable secure data backup
(periodically) and data recovery (upon failures).

– We have analyzed the security of MobiDR. In addition, we have implemented
a real-world prototype of MobiDR using a few embedded boards and a remote
version control server, and assessed the performance of MobiDR.

2 Background

Flash Memory. Flash memory especially NAND flash is widely used as the
mass storage for mobile devices today. For instance, main-stream smartphones
and tablets use eMMC and UFS cards; smart IoT devices use microSD cards.
Flash memory is typically organized into blocks, each of which is further divided
into pages. The number of pages in a flash block varies from 32 to 128, and the
page size varies from 512, 2048, to 4096 bits. Each page usually contains a small
spare out-of-band (OOB) area, used for storing metadata like error correcting
code. Flash memory typically supports three operations: read, program, and
erase. The read/program operation is performed on the basis of pages, while the
erase operation is performed on the basis of blocks. Different from conventional
mechanical drives, flash memory exhibits some unique characteristics. First, it
follows an erase-then-write design. This means, re-programming a flash page
usually requires first erasing it. However, since the erase operation can only be
performed on blocks, re-programming a few pages would be expensive. Therefore,
flash memory uses an out-of-place update strategy for small writes. Second, each
block can be programmed/erased for a limited number of times, and a block
would be worn out if it is programmed/erased too often. Therefore, wear leveling
is usually integrated to distribute writes/erasures across the flash evenly.

Flash Translation Layer (FTL). Flash memory exhibits completely different
nature compared to HDDs (hard disk drive). To be compatible with traditional
block file systems (e.g., EXT4, FAT32) built for HDDs, a flash-based storage
device is usually used as a block device. This is achieved by introducing an
extra firmware layer, namely, the flash translation layer (FTL) to transparently
handle unique characteristics of flash memory, exposing a block access inter-
face. The FTL stays isolated from the OS, implementing a few unique functions

Enabling Accurate Data Recovery for Mobile Devices 435

Fig. 2. Our system model. The part on the left is the architecture of the mobile device,
in which the components in yellow color are isolated from the untrusted OS. (Color
figure online)

including address translation, garbage collection, wear leveling, and bad block
management. Address translation maintains the address mappings between the
addresses (i.e., the Logical Block Addresses or LBAs) accessible to upper layers
and the flash memory addresses (i.e., the Physical Block Addresses or PBAs).
Garbage collection periodically reclaims the flash memory space occupied by
obsolete data which have been invalidated by the FTL after the out-of-place
update is performed. Wear leveling periodically swaps blocks so that the pro-
grammings/erasures performed over the entire flash blocks can be even out. Bad
block management handles those blocks which have been worn out.

TrustZone. ARM TrustZone is a main-stream trusted execution environment
(TEE) implementation for mobile devices. It is a hardware-based technology
which provides security extension to ARM processors2. TrustZone separates two
worlds, a secure world and a normal world. The two worlds have isolated mem-
ory space and different privilege level to peripherals. Applications running in the
normal world cannot access memory space of the secure world, while applica-
tions running in the secure world can access memory space of the normal world
in certain conditions. The processor can only run in one world at a certain time.
A special Non-secure (NS) bit determines in which world the processor is cur-
rently running. A privileged instruction Secure Monitor Call (SMC) switches
the processor between the normal and the secure world.

3 System and Adversarial Model

System Model. Our system mainly consists of two entities (Fig. 2): 1) a mobile
computing device; and 2) a remote cloud server. The mobile device is equipped
with a flash-based block device as external storage (e.g., an eMMC card, a

2 TrustZone has been broadly supported since ARMv7.

436 W. Xie et al.

microSD card, or a UFS card) and Arm processors with TrustZone enabled. The
flash memory is transparently managed by the FTL, exposing a block access
interface. The TrustZone can separate two worlds in the mobile device, a nor-
mal world running untrusted applications, and a secure world running trusted
applications (TA). The cloud server runs a version control system and interacts
with the mobile device. As the server is running as a cloud instance, its compu-
tational resources (i.e., computing power, data storage) can be easily scaling up
and down according to the need.

Adversarial Model. In the mobile device, we mainly consider an adversary
(Fig. 2) which performs data corruption attacks, i.e., data corruption malware.
This can be ransomware which encrypts a victim device’s data and asks for
ransom. This can also be a piece of trojan or backdoor malware that first steals
user data and then damages them locally in the victim device. We consider
the strong OS-level malware [15] which can compromise the regular OS running
in the TrustZone normal world and corrupt any data visible to the OS. Here
“data” especially refers to the information having been committed to the external
storage rather than those staying in the memory and not yet been committed.

The cloud server is assumed to correctly store and maintain the version-
ing data, and how to ensure integrity of the versioning data outsourced to an
untrusted remote server has been explored extensively in prior works [12,18,20].
Other assumptions include: 1) TrustZone is secure, and the malware cannot
compromise the secure world, including the trusted applications and data in it.
This is a reasonable assumption in the domain of TrustZone technologies [21].
Although a few security leaks [25,31] have been found in TrustZone, hardening
TrustZone has been explored extensively in the literature [28] and is not our
focus. 2) The malware is not able to hack into the FTL. This is also reasonable
as the FTL is isolated from the OS (Fig. 2) and there are no known attacks which
can bypass the isolation utilizing the limited block access interface exposed by
the flash device. 3) The communication channel between the mobile device and
the cloud server is assumed to be protected by TLS/SSL. 4) The malware will not
perform arbitrary behaviors like blocking user I/Os or conducting DoS attacks
which would be easily noticed by the device’s owner.

4 MobiDR

4.1 Design Rationale

To achieve the data recovery guarantee against the OS-level malware, MobiDR
relies on the versioning data in the cloud server as well as the most recent delta
stored in the local device. Periodically, MobiDR securely commits changes of data
(i.e. delta) in the local device to the cloud server (the backup phase). After a
malware attack, MobiDR will retrieve the versioning data from the server, apply-
ing the most recent delta (stored locally) to restore the data at the corruption
point (the recovery phase).

Enabling Accurate Data Recovery for Mobile Devices 437

The Backup Phase. The backup phase happens periodically. After each suc-
cessful backup, the FTL will monitor write requests from the OS and, if a new
flash page is written, it will push the corresponding PBA into a stack and the
garbage collection on those new flash pages should be frozen3 temporarily even
if they are invalidated. Meanwhile, the FTL will monitor write requests on some
reserved LBAs. Note that the LBAs are accessible to the OS, e.g., if a disk sector
is 512-byte, and a flash page is 2 KB, every 4 sector addresses can be converted
to one LBA. If a secret write sequence on the reserved LBAs is observed by the
FTL, a new backup phase has been invoked by the backup app and the FTL
will enter the backup mode. In the backup mode, the backup app will work with
the FTL to extract the most recent delta data securely from the flash memory
and to correctly commit them to the cloud server. The backup app will issue
read requests (i.e., by writing the reserved LBAs) and, upon receiving a read
request, the FTL will: 1) pop a PBA from the stack, read the data stored in the
corresponding flash page, and identify the corresponding LBA; and 2) compute
a cryptographic tag over a concatenation of the data, the LBA, the current ver-
sion number as well as the sequence number (during each backup process, the
sequence number starts from 0, and is increased by 1 after each read request),
using a secret key; and 3) return the data, the LBA, and the tag for each read
request. Upon receiving a response from the FTL, the backup app will verify the
integrity of the data using the tag and the secret key. Once the stack is exhausted
by the FTL, the backup app will verify and commit all the delta data together
with their tags to the cloud server, and quit the backup mode. Note that critical
components of the backup app should be run in the TrustZone secure world to
avoid being compromised by the OS-level malware.

The Recovery Phase. Once a mobile device suffers from a malware attack and
the stored data are corrupted, a data recovery phase will be activated to restore
the data back to the corruption point. The malware is assumed to have been
detected [15] at some point of time (i.e., the detection point) and eliminated4

from the victim device and, therefore, the recovery app can be run in the normal
world. As the backup phase is activated periodically, the device should have
conducted a successful backup process (i.e., the most recent backup point) before
the malware is detected. The corruption point should be located either between
the most recent backup point and the detection point (if the malware detection
is effective and can detect the malware immediately) or before the most recent
backup point (if the malware detection suffers from false negatives). The recovery
app will restore the data at the corruption point by: 1) retrieving versioning data
from the remote server (correctness of the data is verified via the cryptographic

3 An extreme case is that the device is almost filled and there are no unused blocks.
In this case, if there is a flash block which stores invalid data that have not been
backed up yet, MobiDR will back up those data immediately and garbage collection
can be immediately performed on this block.

4 If the malware is impossible to be eliminated, we can unplug the flash storage medium
from the victim device and plug it into a clean device for the recovery phase.

438 W. Xie et al.

Fig. 3. The design overview of MobiDR.

tags), and 2) extracting the most recent delta preserved locally in the flash
memory, and 3) approaching the corruption point by interacting with the user
following a binary searching manner (details elaborated in DRecover of Sect. 4.2).

4.2 Design Details

Overview. The overview of MobiDR is shown in Fig. 3. The version control
server runs a version control system which allows storing and retrieving ver-
sioning data. The DRFTL is a special flash translation layer tuned for MobiDR
design, which can transparently manage the raw NAND flash and work with
the user-level apps for data backup and recovery. The DRBack app consists of
a client application (i.e. CA) which runs in the normal world (based on a rich
untrusted OS) and a trusted application (i.e. TA) which runs in the secure world
of TrustZone. The backup phase is conducted periodically by the DRBack app,
which communicates with both the DRFTL via the OS (for extracting delta data
from the flash memory) and the remote version control server (for storing the
delta data remotely). The recovery phase is conducted by the DRecover app. The
DRecover app communicates with the remote version control server (for retriev-
ing necessary versioning data) and the DRFTL (for extracting the most recent
delta preserved in the flash memory, reconstructing the data at the corruption
point as well as placing the data back to the flash memory). In the following, we
elaborate the design detail of each major component in MobiDR.

The Version Control Server. The cloud server runs a version control sys-
tem [12,20] which allows the client to commit a new version of the data (e.g.,
via commit), or to retrieve an arbitrary historical version (e.g., via checkout).
In MobiDR, the data committed during each backup phase are the most recent
delta currently and the corresponding cryptographic tags. The data retrieved
during the recovery phase are the collection of deltas (and their corresponding
tags) from the initial version up to an arbitrary version. Each delta is a collection
of raw data newly stored to the flash memory pages.

Enabling Accurate Data Recovery for Mobile Devices 439

DRFTL. The DRFTL will keep track of delta data (not yet committed
remotely), protecting them from being deleted by the malware. It will also col-
laborate with the DRBack to correctly extract and commit the delta data, and
collaborate with the DRecover to restore the data to the corruption point.

To protect the delta data in the flash memory, we need to understand the
delta a bit. Here the delta means the changes of data in the flash memory. In
the user space, there are typically three operations: read, write, and delete. The
read operation usually does not generate delta. The delete operation is typically
handled by the OS as follows: the OS will mark the corresponding disk space
as invalid by updating its metadata which may cause an overwrite operation in
the flash memory. The write operation in the user space may either cause a new
write or an overwrite in the flash memory. For a new write, the new content
will be placed to a new PBA (corresponding to a physical flash page) in the
flash memory; for an overwrite, the obsolete content in the old PBA will be
invalidated, and the new content will be placed to a new PBA due to the out-of-
place update. Therefore, our observation is that, the new content generated since
the last backup process is always stored in the new PBAs and, therefore, we can
simply keep track of all the new PBAs in the flash memory, following the order
they are written. In addition, each flash page has an OOB area which typically
records its corresponding LBA. Therefore, the content in a PBA contains all the
information5 needed for the recovery. Note that the malware cannot compromise
the delta as the flash memory performs the out-of-place update, and only the
garbage collection in the FTL can remove data.

To keep track of new PBAs, the DRFTL maintains a stack in the internal
RAM of the flash device. To avoid data loss due to unexpected instances like
power loss, we should periodically commit the data in the stack to the flash and,
once the backup phase is finished, the data associated with the stack can be
cleared from both the RAM and the flash. Once a backup phase is invoked, the
DRFTL will pop a PBA from the stack, read the content from the correspond-
ing flash page, and return it to the DRBack. The aforementioned step will be
terminated when all the delta data are extracted (i.e., the stack is empty).

In order to differentiate the backup/recovery phase with the normal use, we
define a backup and a recovery mode for the FTL, respectively. In the backup
mode, the FTL will exclusively work with the DRBack for extracting and com-
mitting the delta and, in the recovery mode, the FTL will exclusively work with
the DRecover to restore the data to the corruption point. Since only the DRBack
knows when to enter the backup mode, it should inform the DRFTL once it
launches the backup phase. This can be achieved by reserving some LBAs, and
the DRBack will perform writes on those LBAs with some secret sequence known
to the DRFTL. To avoid replay attacks, we can concatenate the sequence with
an index (increased by one upon a new backup phase) and encrypt it using the
secret key shared between the DRBack and the DRFTL. Similarly, the DRecover

5 During recovery, we can simply place the content back to the LBA in the flash
memory, since where the content will be physically located is not important.

440 W. Xie et al.

will inform the DRFTL once it launches the recovery phase with another secret
write sequence on the reserved LBAs.

To prevent reclaiming flash blocks which store the delta data that have not
been committed remotely, the garbage collection on the delta data will be dis-
abled temporarily, but will be resumed as soon as a following backup is finished
(in which the delta data are committed to the remote server).

DRBack. The DRBack will work with the DRFTL to extract the most recent
delta data from the flash memory, and send them to the cloud server after
having verified their correctness. Note that the DRBack contains both a trusted
application (TA) running in the TrustZone secure world (mainly responsible for
verifying and committing the delta), and an untrusted client application (CA)
running the normal world (used as a proxy for the TA to communicate with the
DRFTL to extract the delta data).

Periodically, the TA of the DRBack will issue a secret write sequence (using
CA as a proxy) to the reserved LBAs, changing the DRFTL to a backup mode.
In the backup mode, the TA continuously reads a special LBA until having
extracting all the new delta data since the last backup process. When the DRFTL
receives a read request from the TA, it will read a flash page (the PBAs are kept
in the stack), and compute a cryptographic tag for the data of the page. To defend
against the replay attack, the current version number, the page sequence number,
the LBA and the data of the page are combined together when computing the
tag. The DRFTL will return the data of the page in the first read; the LBA,
the current version number, the page sequence number in the current version, as
well as the tag will be combined and returned in the second read. Therefore, to
extract the delta data stored at a single page, the TA needs to perform two read
operations. After all the new delta data are read, the DRFTL will inform the TA
(this can be achieved by responding with some special content to the read request
issued by the TA). The TA will verify the delta data and, if they are correct,
the TA will commit them to the cloud server. It will then send a confirmation
(together with a cryptographic tag, computed over the confirmation and the
version number via the secret key shared between the TA and the DRFTL) to
the DRFTL and, after the DRFTL has successfully verified the confirmation, it
will quit the backup mode and return to a normal state.

DRecover. The DRecover will collaborate with the DRFTL to restore the data
to the corruption point. The DRecover will first issue a different secret write
sequence to the reserved LBAs to change the DRFTL to the recovery mode;
it will then retrieve the most recent delta data from the flash memory. The
most recent delta data can be stored in another computing device or committed
remotely. Next, it will retrieve the most recent version of the data from the cloud
server, verify its integrity, and place them back to the flash memory. The user
needs to check whether this restored data version has any corruptions or not. If it
has no corruptions, the corruption point is located somewhere between the most
recent backup point and the detection point (case #1); otherwise, the corruption

Enabling Accurate Data Recovery for Mobile Devices 441

point is located somewhere between the initial point and the most recent backup
point (case #2). After the recovery phase is finished, the DRecover will change
the DRFTL back to the normal state.

Handling case #1: The DRecover will first restore the data to the most recent
backup point, and then sort the most recent delta data based on the times-
tamps of each page in the increasing order (for simplicity, we call them the
sorted delta data). The DRecover places the first half6 of the sorted delta data
back to the flash memory, and the user will check whether this restored version
contains corrupted data or not. If it contains, the corruption point should be
moved backwards; otherwise, the corruption point should be moved forwards. A
binary searching will be continued in either half, recursively. The number of user
involvement will be O(log l), where l is the total number of pages in the sorted
delta. Note that the user involvement seems to be unavoidable, as only the user
knows whether his/her data were corrupted or not.

Handling case #2: The DRecover will retrieve a historical version from the remote
server which is at the middle of the initial point and the most recent backup
point, and work with the DRFTL to place this version back to the flash memory.
The user will check whether this restored version contains corrupted data or not.
If it does, the corruption point is located at a point even earlier; otherwise, the
corruption point is located at a point later. A binary searching will be continued
in either half, recursively. After a target version is located, the corruption point
can be further located similar to case #1. The number of user involvement will
be O(log n + log l), when n is the total number of historical versions stored in
the remote server and l is the maximal number of pages in a delta.

5 Security Analysis and Discussion

Security Analysis. In the following, we show that MobiDR can ensure recovery
of data at the corruption point against the OS-level malware.

Any Newly Created Delta can be Correctly Committed to the Remote
Server During the Backup Phase. The newly created data which have been
written to the flash memory will not be deleted by the garbage collection of the
DRFTL before they are committed to the remote server. Therefore, regardless
how the malware behaves at the OS level, e.g., over-writing the user data at the
block layer to invalidate them in the flash memory, writing arbitrary data to the
disk sectors, the new data will stay intact in the flash memory. Note that the
DRFTL is transparent to the OS, and will not be affected malware. The DRBack
runs in the user space, which is separated into two parts: one (CA) is running
in the normal world and acts as a proxy to communicate with the DRFTL, and
the other (TA) is running in the secure world and is responsible to verify the
extracted data and to commit them remotely after the verification. The malware

6 The description here is not very exact. In practice, a few pages together may belong
to the same atomic operation and cannot be separated.

442 W. Xie et al.

may affect the CA, e.g., when the CA is used as a proxy to extract data from
the DRFTL, the malware may corrupt the data passing through the untrusted
OS. This corruption attack can be mitigated as the DRFTL will compute cryp-
tographic tags for the extracted data and, the corruption will be detected by
the TA which will not be affected by the malware. If the corruption is detected,
the TA will require the CA to extract the data again (note that if the corrup-
tion persists, the TA should notify the user, as there is a potential DoS attack);
others, the TA will send the extracted data, together with the associated tags,
to the server.

The Most Recent Delta Data will not be Corrupted by the Malware.
After the latest backup process, any new data created by the user since then,
cannot be compromised by the OS-level malware once they have been written
to the flash memory. This is because, the data stored at the flash memory are
not accessible to the OS, and can only be removed by the garbage collection of
the FTL; however, DRFTL has modified the garbage collection strategy so that
any newly created data, valid or not, will not be deleted from the flash memory
before they are correctly committed to the remote server.

MobiDR Can Always Recover Data at the Corruption Point During the
Recovery Phase. During the recovery phase, the device is always in a healthy
state, either because the malware has been eliminated from the victim device
or because a clean device has been used for recovery. Therefore, the DRecover
can run correctly in the OS. An arbitrary historical version of the data can be
retrieved correctly by the DRecover from the version control server (crytographic
tags are used to verify the correctness of a historical version upon retrieval). In
addition, the new data changes since the most recent committed version are
preserved in the flash memory, and are extractable by the DRecover. Being able
to have access to any version of the historical data, as well as the most recent
delta data, the DRecover is able to restore data at any point over the history,
surely including the corruption point.

Discussion. In the following, we discuss a few minor issues in MobiDR.

Sharing Secret Keys Between the DRFTL and the TA. During initializa-
tion, the device owner can generate the secret keys, and send them to the TA
in the secure world; in addition, the secret keys can be passed to the FTL as
follows: the FTL reserves an LBA and monitors the writes on this page; once
the device owner writes the secret keys to this LBA, the FTL will read it, copy
the keys to other area invisible to the OS, and clear the data in this LBA.

Handling Device Failures. If the device fails (e.g., suffering from power
loss [23]) upon backup and the most recent delta has not been committed yet,
the user could try mobile device forensics [11] to extract the most recent delta
from the device, though there is no guarantee whether the delta can be extracted

Enabling Accurate Data Recovery for Mobile Devices 443

or not. If the device is lost/stolen, there is still a possibility that the latest delta
would be backed up to the remote server if the “pickpocket” turns on the device
and network connection is available for the device. In the worst case, the user can
at least restore the data to the latest backup stored in the remote server. It seems
no approach can completely address the aforementioned limitation, unless the
device backs up every single operation to the remote server which is impractical.

The Impact of “Freezing” Garbage Collection. Freezing the garbage col-
lection will not affect the system much because: 1) The garbage collection is only
frozen for those data not yet been committed remotely. 2) The garbage collec-
tion on the not-yet-committed data is only frozen for a short period, e.g., if the
device is backed up daily, the period is one day. 3) If the malware fills the entire
storage on purpose (i.e., no unused flash blocks), the backup operation will be
performed immediately, and the garbage collection will run normally after it.

Moving the Entire DRBack into the TrustZone Secure World. One alter-
native is to move the entire DRBack to the secure world to prevent DoS attacks
conducted by the malware. However, accessing the external storage in the secure
world is non-trivial. This may require incorporating extra software components
into the secure world, including disk driver and other components along the
storage path [15]. We will investigate this alternative in our future work.

6 Experimental Evaluation

We have implemented a prototype of MobiDR, which includes DRFTL, a DRBack
app, a DRecover app, and a server program. DRFTL was implemented by modi-
fying OpenNFM [16], an open-sourced flash controller framework written in C.
The cryptographic tag was instantiated using HMAC-SHA1. The DRBack app,
the DRecover app, and the server program were all written in C. The DRBack
app consists of two major software components (both were implemented in C):
one software component (CA) runs in the normal world, and the other software
component (TA) runs in the secure world of ARM TrustZone. Our TA relies
on the support of OP-TEE [4], an open source trusted execution environment
implementing Arm TrustZone technology, which has been ported to many Arm
devices and platforms. The code of the prototype is publicly available in [1].

Experimental setup. We ported the DRFTL to LPC-H3131 [3], a USB header
development prototype board with ARM9 32-bit ARM926EJ-S (180 Mhz), 32
MB SDRAM, and 512 MB NAND flash. After the DRFTL is ported, LPC-H3131
can be used as a flash-based block device via USB 2.0. Both the DRBack (CA)
and the DRecover were run as an application in another electronic development
board Firefly AIO-3399J [2], equipped with Six-Core ARM 64-bit processor (up
to 1.8 GHz) and 4 GB Dual-Channel DDR3. AIO-3399J acts as the host com-
puting device of the mobile device to perform I/Os on the flash storage provided

444 W. Xie et al.

by LPC-H3131. Note that although the processor of Firefly AIO-3399J can sup-
port TrustZone, the manufacturer of this electronic board does not offer a free
support for TrustZone development. We instead measured the TA of DRBack in
TrustZone secure world provided by a cheap Raspberry Pi (version 3 Model B,
with Quad Core 1.2 GHz Broadcom BCM2837 64bit CPU, 1 GB RAM) [5], by
porting OP-TEE7 to it. The remote version control server was run by a desktop
(8 core Intel Core i7-9700K CPU, 3.60 GHz, 32GB RAM), which was connected
to a local area network in our lab, and the electronic boards (Firefly AIO-3399J
and Raspberry Pi) were both connected to the same local area network. Note
that none of the prior works (Sect. 7) can ensure recoverability of the data at
the corruption point over time under an adversarial setting; therefore, we did
not experimentally compare MobiDR with them, considering that the goal of
MobiDR is different from all of them and the comparison would not be fair.

Evaluating The Backup Phase. The backup process is conducted by
DRBack, together with DRFTL and the remote version control server. The
DRBack needs to first extract data from the raw flash memory to the user
space, by working with the DRFTL. This sub-process is taken care by the CA of
DRBack, which runs in the normal world (rather than TrustZone secure world).
The DRFTL computes tags for the data being extracted. As shown in Fig. 4(a),
the throughput for data extraction is approximately 1 MB/s, which is regu-
lar for a USB 2.0 interface. The throughput for computing the tags in LPC-
H3131 is around 100 KB/s. This is reasonable for a low-power electronic board
equipped with a 180 MHz processor. In practice, we can replace the crypto-
graphic hash function SHA1 with a more efficient non-cryptographic hash func-
tion like XXH128, which was shown 30 times faster than SHA1 [7].

After having extracting the data, the DRBack will verify integrity of the data
based on the associated tags, and send them (together with tags) to the remote
server if the verification is successful. This sub-process is taken care by the TA
of DRBack, which runs in the TrustZone secure world. As shown in Fig. 4(a),
the throughput for these TA operations is approximately 250KB/s. The major
computation in the TA (running in the TrustZone of Raspberry Pi) is to verify
the correctness of the tag (HMAC-SHA1), which requires a similar computing
workload compared to the tag generation (running in the LPC-H3131). The
performance of the tag verification in Raspberry Pi is 2×-3× better than the
tag generation in LPC-H3131, which makes sense since Raspberry Pi is more
powerful than LPC-H3131.

Evaluating The Recovery Phase. The recovery phase is conducted by
DRecover, together with DRFTL and the remote version control server. If the
corruption happens after the most recent backup process, MobiDR will restore
the device by retrieving the most recent data version from the remote server, and
applying the local delta up to the corruption point. If the corruption happens
before the most recent backup process, it implies that the malware detection

7 Currently OP-TEE has not supported TLS yet, which can be implemented as “a
glue layer between mbedTLS and the GP API provided [6]”.

Enabling Accurate Data Recovery for Mobile Devices 445

(a) The throughput of each component in the
backup phase.

(b) The throughput of each component in
the recovery phase

Fig. 4. Performance in the backup and the recovery phase.

cannot detect the malware timely, or suffer from false negatives in the past.
Therefore, the corruption point should be located anywhere from the initial
data version to the most recent data version. For this case, we can retrieve the
most recent data version, and localize the data version which is before but clos-
est to the corruption point. The data at the corruption point can be restored
by starting from the closest version, and applying the corresponding delta up
to the corruption point. In the following, we assess the performance of two key
steps: 1) retrieving the most recent data version from the remote server; and 2)
localizing the closest data version from the most recent data version locally. As
MobiDR performs data recovery by centering around the raw data in the flash
memory (rather than the traditional file data), we also access whether it can
recover a given file accurately or not.

Retrieving the most recent data version from the server. To retrieve the
most recent data version, DRecover will retrieve all the deltas from the server,
verifying them, and committing them back to the flash memory (by working with
the DRFTL). The experimental results are shown in Fig. 4(b). The throughput for
data retrieval is around 50 MB/s, which is reasonable since the communication
happens in a local area network. The throughput for data verification is around
9 MB/s. This is because, Firefly AIO-3399J is a high-end electronic board with
performance comparable to the desktop. The throughput for data commit is
around 2.5 MB/s. This is reasonable for a USB 2.0 interface. Compared to the
data extraction in Fig. 4(a), the throughput for data commit is 2× faster. This
is because, the data extraction requires extra read operations for obtaining the
tags, but the data commit does not need to write the tags.

Localizing the Closest Data Version. We have conducted an experiment in
which there are 64 data versions in total, and the delta size is 2 MB (i.e., each
version will generate 2 MB additional data compared to its immediate previous
version). After the DRFTL has retrieved the most recent data version, it will

446 W. Xie et al.

Table 1. The overhead for localizing a closest data version in DRecover, in which the
most recent data version is 64, and each delta size is 2 MB.

Closest version number Time (s) #User involvement

8 39.10 3

16 33.84 2

32 22.96 1

48 35.17 2

56 41.63 3

localize a closest data version following a binary search manner, i.e., a new data
version will be restored in the device and the user will get involved to determine
how the “search” will be moved next. The results are shown in Table 1. We can
observe that, if the targeted data version is 32, it will be localized with the
minimal time, since the first version to be examined is version 32 based on the
rule of binary search, and the total number of user involvements is 1; similarly,
if the targeted data version is 16 or 48, it will take more time compared to
version 32, since DRFTL needs to first examine version 32, and then examine
version 16 or 48 (depending on the user feedback), and the total number of user
involvement is 2. Without knowing where is the close data version, binary search
would require at most log(n) user involvements, and the total number of versions
needed to be examined is also bounded by log(n).

Recovery Rate. To evaluate whether MobiDR can recover a given file accu-
rately by placing the raw data back to the flash memory, we tested 100 sample
files, covering 5 categories and 30 file types (see Table 2), with file size varying
between 1 MB to 100 MB. The results show that MobiDR can accurately recover
all of them, which indicates a recovery rate of 100%.

Table 2. Summary of sample files used for testing the recovery rate.

category file type

text files txt,pdf,rtf,ppt,odp,doc

image files jpg,webp,tiff,gif,psd

video files flv,mkv,3gp,mp4,wmv,webm,avi,f4v

audio files mp3,ogg,wav,flac

others zip,bin,db,tar,img,exe,msi

7 Related Work

Continella et al. designed ShieldFS [17], a self-healing, ransomware-aware file sys-
tem. ShieldFS can automatically shadow a copy whenever a file is modified and,

Enabling Accurate Data Recovery for Mobile Devices 447

the shadow copy can be used to recover the file corrupted by the ransomware.
Subedi et al. proposed RDS3 [26], which hides backup data to an isolated storage
space for data recovery. Both ShieldFS and RDS3 cannot combat the malware
which can compromise the OS, as they are both deployed at the OS level.

Huang et al. proposed FlashGuard [22] to enable data recovery from ran-
somware attacks. FlashGuard needs to preserve all the historical versions of
“possibly” attacked data locally in the flash memory to maximize probability of
successful recovery. Wang et al. proposed TIMESSD [30] to enable data recovery
by retaining past storage states in the local SSD. FlashGuard and TIMESSD
try to support data recovery via the local version control, and both unavoid-
ably suffer from the limited storage space in the local device. SSD-insider (Baek
et al. [9]), and MimosaFTL (Wang et al. [29]) and Amoeba (Min et al. [24])
improved FlashGuard by incorporating a ransomware detection into the FTL,
so that the local device does not need to preserve invalid data in the flash mem-
ory if the ransomware is not detected. This can save local storage space, but the
malware detection unavoidably suffers from false negatives and, if a false nega-
tive happens, the data corrupted by the ransomware will become irrecoverable
as they are no longer preserved locally. SSD-Insider++ [10] further employed
instant backup/recovery and lazy detection algorithms to mitigate the data loss
due to false negatives. However, the “lazy detection algorithm” still suffers from
false negatives and, additionally, their design is only applicable to ransomware.

Guan et al. [21] proposed Bolt to enable system restoration after bare-metal
malware analysis. However, Bolt is specifically designed to enable system restora-
tion during the malware analysis, in which the malware analyst has a full control
over the malware. It cannot be applied to our scenarios, in which the malware
is out of the control of the victim, e.g., the malware may come anytime, and
may behave arbitrarily. Chen et al. designed mobiDOM [14,15] which aims to
combat malware which comes any time. However, mobiDOM can only restore
data to a historical state, rather than the exact state at the corruption point.
In addition, mobiDOM relies on the malware detection which suffers from both
false positives and false negatives.

8 Conclusion

In this work, we have designed MobiDR, the first secure data recovery system
which can allow a victim mobile device to restore its data at the corruption point
when suffering from malware attacks. Security analysis and experimental evalu-
ation confirm that MobiDR can ensure recoverability of data at the corruption
point, at the cost of a modest extra overhead.

Acknowledgment. This work was supported by US National Science Foundation
under grant number 1938130-CNS, 1928349-CNS, and 2043022-DGE.

448 W. Xie et al.

References

1. DRFlash - A Prototype of MobiDR. https://snp.cs.mtu.edu/drflash.html
2. Firefly AIO-3399J. https://en.t-firefly.com/product/industry/aio 3399
3. Lpc-h3131. https://www.olimex.com/Products/ARM/NXP/LPC-H3131/
4. Open Portable Trusted Execution Environment. https://www.op-tee.org/
5. Raspberry Pi 3 Model B. https://www.raspberrypi.org/products/raspberry-pi-3-

model-b/
6. TLS support in OPTEE #4075. https://github.com/OP-TEE/optee os/issues/

4075
7. xxHash. https://cyan4973.github.io/xxHash/
8. Mobile Malware. https://usa.kaspersky.com/resource-center/threats/mobile-

malware, 1998
9. Baek, S.H., Jung, Y., Mohaisen, A., Lee, S., Nyang, D.H.: Ssd-insider: Internal

defense of solid-state drive against ransomware with perfect data recovery. In:
Proceedings of ICDCS, pp. 875–884 (2018)

10. Baek, S., Jung, Y., Mohaisen, A., Lee, S., Nyang, D.: Ssd-assisted ransomware
detection and data recovery techniques. IEEE Trans. Comput. 70(10), 1762–1776
(2020)

11. Breeuwsma, M., De Jongh, M., Klaver, C., Van Der Knijff, R., Roeloffs, M.: Foren-
sic data recovery from flash memory. Small Scale Digital Device Forensics J. 1(1),
1–17 (2007)

12. Chen, B., Curtmola, R.: Auditable version control systems. In: Proceedings of
NDSS (2014)

13. Chen, B., Curtmola, R., Dai, J.: Auditable version control systems in untrusted
public clouds. In: Software Architecture for Big Data and the Cloud, pp. 353–366.
Elsevier (2017)

14. Chen, N., Chen, B.: Defending against os-level malware in mobile devices via real-
time malware detection and storage restoration. J. Cybersecur. Privacy 2(2), 311–
328 (2022)

15. Chen, N., Xie, W., Chen, B.: Combating the OS-level malware in mobile devices
by leveraging isolation and steganography. In: Zhou, J., et al. (eds.) ACNS 2021.
LNCS, vol. 12809, pp. 397–413. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81645-2 23

16. Google Code. Opennfm. https://code.google.com/p/opennfm/
17. Continella, A.: Shieldfs: a self-healing, ransomware-aware filesystem. In: Proceed-

ings of ACSAC, pp. 336–347. ACM (2016)
18. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data

possession. ACM Trans. Inform. Syst. Secur. (TISSEC), 17(4), 1–29 (2015)
19. Esiner, E., Datta, A.: Auditable versioned data storage outsourcing. Futur. Gener.

Comput. Syst. 55, 17–28 (2016)
20. Etemad, M., Küpçü, A.: Transparent, distributed, and replicated dynamic provable

data possession. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.)
ACNS 2013. LNCS, vol. 7954, pp. 1–18. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38980-1 1

21. Guan, L., et al.: Supporting transparent snapshot for bare-metal malware analysis
on mobile devices. In: Proceedings of ACSAC, pp. 339–349 (2017)

22. Huang, J., Xu, J., Xing, X., Liu, P., Qureshi, M.K.: Flashguard: Leveraging intrin-
sic flash properties to defend against encryption ransomware. In: Proceedings of
ACM CCS, pp. 2231–2244. ACM (2017)

https://snp.cs.mtu.edu/drflash.html
https://en.t-firefly.com/product/industry/aio_3399
https://www.olimex.com/Products/ARM/NXP/LPC-H3131/
https://www.op-tee.org/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://github.com/OP-TEE/optee_os/issues/4075
https://github.com/OP-TEE/optee_os/issues/4075
https://cyan4973.github.io/xxHash/
https://usa.kaspersky.com/resource-center/threats/mobile-malware
https://usa.kaspersky.com/resource-center/threats/mobile-malware
https://doi.org/10.1007/978-3-030-81645-2_23
https://doi.org/10.1007/978-3-030-81645-2_23
https://code.google.com/p/opennfm/
https://doi.org/10.1007/978-3-642-38980-1_1
https://doi.org/10.1007/978-3-642-38980-1_1

Enabling Accurate Data Recovery for Mobile Devices 449

23. Krishnan, A.S., Suslowicz, C., Dinu, D., Schaumont, P.: Secure intermittent com-
puting protocol: Protecting state across power loss. In: 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 734–739. IEEE (2019)

24. Min, D., et al.: Amoeba: an autonomous backup and recovery ssd for ransomware
attack defense. IEEE Comput. Archit. Lett. 17(2), 245–248 (2018)

25. Qiu, P., Wang, D., Lyu, Y., Qu, G.: Voltjockey: Breaching trustzone by software-
controlled voltage manipulation over multi-core frequencies. In: Proceedings of
ACM CCS, pp. 195–209 (2019)

26. Subedi, K.P., Budhathoki, D.R., Chen, B., Dasgupta, D.: Rds3: Ransomware
defense strategy by using stealthily spare space. In: Computational Intelligence
(SSCI), 2017 IEEE Symposium Series on, pp. 1–8. IEEE (2017)

27. Vaidya, S., Torres-Arias, S., Curtmola, R., Cappos, J.: Commit Signatures for
Centralized Version Control Systems. In: Dhillon, G., Karlsson, F., Hedström, K.,
Zúquete, A. (eds.) SEC 2019. IAICT, vol. 562, pp. 359–373. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-22312-0 25

28. Wan, S., Sun, M., Sun, K., Zhang, N., He, X. Rustee: Developing memory-safe arm
trustzone applications. In: Annual Computer Security Applications Conference, pp.
442–453 (2020)

29. Wang, P., Jia, S., Chen, B., Xia, L., Liu, P.: Mimosaftl: Adding secure and prac-
tical ransomware defense strategy to flash translation layer. In: Proceedings of
the Ninth ACM Conference on Data and Application Security and Privacy, pp.
327–338 (2019)

30. Wang, X., Yuan, Y., Zhou, Y., Coats, C.C., Huang, J.: Project almanac: A time-
traveling solid-state drive. In: Proceedings of the Fourteenth EuroSys Conference
2019, pp. 1–16 (2019)

31. Zhang, N., Sun, K., Shands, D., Lou, W., Hou, Y.T.: Trusense: Information leakage
from trustzone. In: Proceedings of IEEE INFOCOM, pp. 1097–1105. IEEE (2018)

32. Zhang, Y., Blanton, M.: Efficient dynamic provable possession of remote data via
update trees. ACM Trans. Storage (TOS) 12(2), 1–45 (2016)

https://doi.org/10.1007/978-3-030-22312-0_25

Bootstrapping Trust in Community
Repository Projects

Sangat Vaidya1(B), Santiago Torres-Arias2, Justin Cappos3,
and Reza Curtmola1

1 New Jersey Institute of Technology, Newark, NJ, USA
{ssv33,crix}@njit.edu

2 Purdue University, West Lafayette, IN, USA
santiagotorres@purdue.edu

3 New York University, New York, NY, USA
jcappos@nyu.edu

Abstract. Community repositories such as PyPI and NPM are
immensely popular and collectively serve more than a billion packages
per day. However, existing software certification mechanisms such as code
signing, which seeks to provide to end users authenticity and integrity for
a piece of software, are not suitable for community repositories and are
not used in this context. This is very concerning, given the recent increase
in the frequency and variety of attacks against community repositories.
In this work, we propose a different approach for certifying the validity
of software projects hosted on community repositories. We design and
implement a Software Certification Service (SCS) that receives certifica-
tion requests from a project owner for a specific project and then issues
a project certificate once the project owner successfully completes a pro-
tocol for proving ownership of the project. The proposed certification
protocol is inspired from the highly-successful ACME protocol used by
Let’s Encrypt and can be fully automated on the SCS side. It is, how-
ever, fundamentally different in its attack mitigation capabilities and in
how ownership is proven. It is also compatible with existing commu-
nity repositories such as PyPI, RubyGems, or NPM, without requiring
changes to these repositories. To support this claim, we instantiate the
proposed certification service with several practical deployments.

Keywords: Software certification · Trust establishment

1 Introduction

Community repositories such as PyPI [34], RubyGems [36], and NPM [32] are
among the most popular and accessible ways of publishing and distributing open
source software. Their immense popularity is illustrated by the large number
of downloads: PyPI, the Python package manager, sees more than 600 million
downloads per day [35]; npm, the Javascript package manager, more than 700 K
downloads a day [33]; RubyGems, the public repository of Ruby packages, has
seen more than 107 billion downloads since its creation (as of August 2022).
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
Published by Springer Nature Switzerland AG 2023. All Rights Reserved
F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 450–469, 2023.
https://doi.org/10.1007/978-3-031-25538-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_24&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_24

Bootstrapping Trust in Community Repository Projects 451

Due to their popularity, attacks against community repositories have been on
the rise in the recent past [1,3,4,7,10,13,15,16,37]. For instance, in July 2021, a
PyPI package containing a backdoor was downloaded almost 30,000 times before
the breach was detected [10]. In April 2020, a supply chain attack on RubyGems
used packages with names similar to popular packages to infect the end user’s
system [37]. Similar types of supply chain attacks have become a rising concern
for users of NPM as well [1,3,7,13].

This increase in frequency and variety of attacks against community reposi-
tories makes it necessary to improve the overall security stance of these popular
custodians of open-source software. In this work, we focus on a fundamental
question: How can end users retrieve an authentic version of a community repos-
itory project, as intended by the project owner? Trust in a software project can
be bootstrapped by ensuring that what is retrieved is what the project owner
intended. When a software project is digitally signed, this question becomes:
How can end users obtain an authentic version of the project owner’s public
key?

Looking at existing mechanisms to certify software, we realized that they
may not be appropriate in the context of community repositories. While code
signing certificates [24–26] ostensibly provide a means to validate the identity
of the software publisher, apart from a few large companies, they are rarely
used in practice. This sort of certification often requires out-of-band verification
and cannot be easily automated. As a result, unfortunately, the effort required
to obtain a certificate is prohibitive, making these unsuitable for all types of
software projects. We elaborate more in Sect. 3 on the limitations of existing
certification mechanisms, including code signing.

In this work, we propose a different approach for certifying the validity of
software projects hosted on community repositories. To leverage the existing PKI
model of trust, our goal is to provide a way to bootstrap trust using this mech-
anism. In the PKI model, a certification authority binds a domain owner and a
domain name to a public key. The domain owner provides proof of ownership in
order to get the X.509 domain certificate. Similarly, we propose a solution where
the software project owner proves the ownership of the project and gets a digital
certificate that binds the project owner and the project name to a public key.
We design and implement a Software Certification Service (SCS) that receives
certification requests from a project owner for a specific project and then issues a
project certificate once the owner successfully completes a procedure for proving
project ownership. This project certificate validates a public key for the project.

Unlike in the code signing model, which seeks to establish trust in the identity
of the software publisher using a cumbersome procedure, the proposed Software
Certification Service relies on a certification protocol with the project publisher
to establish ownership of the software. The proposed certification protocol is
inspired from the highly-successful ACME protocol [2] used by Let’s Encrypt [30]
and can be fully automated on the SCS side. It is, however, fundamentally differ-
ent in its attack mitigation capabilities (i.e., compromise resiliency) and in how
ownership is proven (e.g., how to account for the specifics of software naming as

452 S. Vaidya et al.

opposed to domain names). It is also compatible with community repositories
such as PyPI, RubyGems, NPM, without requiring changes to them.

In the ACME protocol, the owner of a domain proves ownership of that
domain by provisioning a specific HTTP resource (e.g., random token chosen
by the Let’s Encrypt CA) at a specific URL at that domain. In our approach,
the project publisher proves ownership over a project by executing a certification
protocol with the SCS, which requires the publisher to answer SCS challenges by
provisioning certain HTTP resources (e.g., random tokens chosen by the SCS) at
a specific location on the project’s webpage. The ability to answer SCS challenges
proves control over the project’s repository. After successfully completing the
certification protocol, the project owner gets a project certificate which binds a
public key to a (project ID, project owner) tuple. The project owner signs the
software project with the corresponding private key for distribution to end users.

The SCS certification protocol includes safeguards to provide resiliency
against an adversary who is able to gain control of a project repository (e.g.
by compromising the project repository credentials). First, the certification pro-
tocol is designed to last over an extended period of time. We raise the bar to
adversaries who must maintain control over a project for a prolonged period of
time, which is arguably more difficult to achieve while going undetected. Second,
the SCS protocol requires that the response to a challenge must be placed on
the project’s repository in a publicly visible way (i.e., the project’s webpage).
This will prevent an adversary to execute the certification protocol in a stealthy
manner.

Finally, we instantiate the proposed service with several practical deploy-
ments. First, we use the service to automate the certification of community repos-
itories projects. Our deployments include several popular community reposito-
ries: PyPI, RubyGems, and NPM. Second, we use the service to automate the del-
egation process in community repositories that rely on systems like TUF [12,18]
to provide compromise resilience. We are actively working with Google and PyPI
on integrating our service into existing cloud security frameworks.

2 Background on the ACME Protocol

The software certification protocol proposed in this paper is modeled after the
Automatic Certificate Management Environment (ACME) protocol [2], which
can be used by a certificate authority (CA) and an applicant to automate the
process of verification and HTTPS certificate issuance. Certificate issuance using
ACME resembles a traditional CA’s issuance process, in that a user creates an
account, requests a certificate for a domain, and proves control of the domain in
that certificate in order for the CA to issue the requested certificate.

The entities interacting in the ACME protocol are the ACME client (i.e.,
the applicant for the HTTPS certificate) and the ACME server (i.e., the CA
who issues HTTPS certificates). To begin the process of certificate issuance,
the ACME client generates a key pair whose public key will be included in the
HTTPS certificate to be generated by the CA. The client proves knowledge of
the corresponding private key by signing a CSR (certificate signing request).

Bootstrapping Trust in Community Repository Projects 453

The client then engages in a protocol with the ACME server to prove control
over the requested domain. For this, the client needs to complete a challenge
issued by the ACME server. Once the validation is successful, the client sends a
certificate signing request (CSR) just like in the traditional certificate issuance
process. On receiving the request, the CA issues the certificate.

The ACME protocol is similar to a traditional certificate issuance protocol.
However, the major difference lies in the step where the client proves control over
the domain. For a traditional CA, this step requires human intervention. Instead,
ACME automates these processes. Let’s Encrypt [30] is a free, automated, and
open CA which relies on ACME to issue domain certificates. Since its debut in
September 2015, it has grown rapidly to become the largest CA on the web.

3 Existing Software Certification Mechanisms

3.1 Code Signing

The code signing model mirrors the PKI model used to issue domain validation
TLS X.509 certificates. A software publisher applies for a publisher certificate
with a Certificate Authority (CA) and proves its identity in the process. Having
verified the publisher’s identity, the CA issues a code signing certificate which
binds the identity of the software publisher to a public key. The publisher then
signs the software using the private key corresponding to the public key in the
certificate. Finally, the user downloads the signed software, verifies the signature,
and validates the publisher’s certificate.

Code signing provides the following two guarantees: (1) Validation of the
software publisher, i.e., the software comes from a known publisher, and (2)
Software integrity (i.e., it has not been modified since it was signed and released
by the publisher). The code signing certificate that accompanies the software
provides a guarantee that certain checks were done by the CA about the identity
of the publisher. As such, it fits best scenarios in which end users need to establish
the trustworthiness of the publisher.

Unfortunately, to have its identity verified by the CA, the software publisher
needs to go through a very cumbersome process. In addition to verifying that the
publisher controls the domain name(s) listed on certificate, the CA need to verify
the legal, physical and operational existence of the publisher’s business before
issuing the certificate. This requires the publisher to provide relevant documents
and answer phone calls to complete validation. The CA must also verify the
name, title, authority and signature of the person(s) requesting the certificate.

Given this manual and lengthy validation process, code signing certification
cannot be automated and imposes large operational costs for the CA. The current
code signing model is not suitable for all types of software, as it might be difficult
for small businesses, start-ups, independent developers and freelancers to afford
a code signing certificate (which few users will validate) that incurs significant
costs. Another direct consequence of the cumbersome and intrusive certification
process is the low adoption rate for code signing certificates. Besides limited use
cases inside closed ecosystems such as Microsoft (for the Windows ecosystem

454 S. Vaidya et al.

and MS Office objects), Apple (for software developed using Xcode), and Adobe
(for Adobe Air applications), code signing remains largely unused for the large
majority of software, including open source software.

3.2 Package Signatures

Some community repositories allow their packages to be cryptographically signed
with a private key so that end users can verify the packages with a public key.
There are generally two types of package signing:

Signed-By-Repository: In community repositories such as NPM [32], the
repository signs uploaded packages with a repository private key. The corre-
sponding public key is publicized on Keybase [29] and is used by end users to
verify downloaded packages. The repository private key is kept online to ensure
that new packages can be signed as soon as possible. This results in a coarse-
grained security guarantee. A compromise of the repository invalidates the secu-
rity of all its packages. If, on the other hand, the repository private key remains
secure, a package signature guarantees that the package uploaded to the reposi-
tory is the package that an end user downloads. This in itself does not account for
the possibility that an individual project’s credentials were compromised (even
for a brief amount of time) and a malicious version of a package was uploaded
to the repository.

Signed-By-Author: In community repositories such as RubyGems [36], a
package is signed by its author before being uploaded. The private key used
for signing is kept offline. In turn, end users verify the end-to-end authenticity of
the downloaded packages based on the corresponding public key. The problem
with this model is that end users must discover the correct key by using out-
of-band channels, a manual process that is vulnerable to fake key distribution
attacks. Alternatively, the authenticity of a public key can be established using a
PGP decentralized “web of trust”, in which authors vouch for each other’s GPG
keys.

Some repositories, such as RubyGems, allow the project owner to upload a
public key in a dedicated location of the repository – this is a mechanism that can
be used to distribute the owner’s public key. However, this solution is vulnerable
to an attacker that gains control over a project’s repository and replaces the
owner’s authentic public key. The solution we propose provides better resiliency
against attackers that gain control over a project’s repository.

4 System and Threat Model

4.1 System Model

Figure 1 describes the general architecture of the proposed software certification
service. At a high level, our approach is similar to the model employed by code

Bootstrapping Trust in Community Repository Projects 455

Software Certification
Service (SCS)

(1)
request
project
certificate;
prove project
ownership

(2)
issue
project
certificate

Software Publisher

Project certificate

(3) sign
software
project

Private key

End User

(4)
deliver
signed

software
project

(5) check
signature and
certificate;
install software

Fig. 1. The software certification architecture.

signing. A software publisher contacts the Software Certification Service (SCS)
requesting a project certificate for a software project that it owns (e.g., a Python
package hosted on the PyPI community repository). The software publisher then
proves ownership of the software project by executing a software project certifica-
tion protocol with the SCS (Step 1). Once the certification protocol is completed
successfully, the SCS issues a project certificate that binds together a certificate
public key to a (project ID, project owner) tuple (Step 2). The software publisher
then uses the corresponding private key to sign the software project (Step 3) for
distribution to end users (Step 4). Finally, end users can verify the integrity of
the retrieved software by checking the signature on the software and can get
assurance that the software is authentic and originates with the project owner
by checking the project certificate (Step 5).

The main difference from the code signing model is in Step 1. Whereas code
signing seeks to establish trust in the identity of the software publisher based on
a manual procedure that requires human intervention, our approach relies on a
certification protocol that requires the software publisher to establish ownership
of the software – a protocol designed to be fully automated on the SCS side.

Software publishers that wish to apply for a project certificate need to estab-
lish an account with the SCS. This account will be used by the SCS to track
interactions with the software publisher. During the software certification pro-
tocol, messages sent by a software publisher to the SCS server are authenticated
using the publisher’s SCS account key. Software publishers use a different set of
credentials to manage projects hosted on a community repository, referred to as
a repository key (e.g., a password used to log into the community repository).

Community Repository. We describe the salient features of a community
repository, which hosts and distributes third party software that represents the
main target for the proposed certification service. A community repository is a
collection of individual projects which, usually, are open source and are developed

456 S. Vaidya et al.

using the same programming language. For example, PyPI [34] (the Python
package index), RubyGems [36] (the Ruby package manager), NPM [32] (the
JavaScript package manager), or CPAN [27] (the Perl module manager).

Each project has a web-based homepage with a standard format that is uni-
form across all projects hosted on the same community repository. Typically, a
project’s homepage contains several sections that can be edited by project owner,
such as the project name, owner details, project description, and download links.
The proposed certification service leverages the project description section of a
project’s homepage during the protocol used to prove ownership over a project.

4.2 Threat Model and Security Goals

We assume that the SCS service will face adversaries that fit the following threat
model. The SCS service (i.e., the SCS server) is trustworthy and the private key
used by the SCS service for signing project certificates is out of the attacker’s
reach. We assume that a software publisher is able to protect her certificate
signing key (this is the private key corresponding to the certificate public key).
For example, this key can be stored offline, and only be used to sign new project
releases. The communication between the SCS server and software publishers
(acting as clients) happens over a secure channel (for example using SSL/TLS).
We also assume that standard cryptographic primitives can be deployed, such
as digital signatures that guarantee integrity and authenticity.
We consider the following types of adversaries:

A1: An attacker who gains access to the client’s SCS account. This means that
the attacker controls the SCS account key that is used to authenticate a
publisher’s messages to the SCS server. In this case, the attacker is able to
impersonate a software publisher to the SCS service.

A2: An attacker who gains access to the project’s repository account. This
type of attacker controls the credential used by the project owner to man-
age the project on the community repository (e.g., a password). This allows
the attacker to arbitrarily change content in the project repository, includ-
ing modifying the project description, adding/deleting project versions, or
modifying the project files.

A3: An attacker who executes a network MITM attack between the SCS client
and the SCS server. This type of attacker may be a nation state that has the
ability to tamper with messages exchanged between the publisher and the
SCS service as part of the software certification protocol.

Although an A2-type adversary may gain access to a project’s repository
account, we assume that the attacker does not control the entire infrastructure
of the community repository. As such, the attacker cannot cause the community
repository to provide different views of the project repository to different sets
of clients. In addition, as our goal is to ensure the security of the certification
protocol, we assume that the following attacks are outside the scope of this work:

– An attacker modifies the software package directly in the community repos-
itory, or its source code in the corresponding version control system (e.g., a

Bootstrapping Trust in Community Repository Projects 457

GitHub repository), and this goes unnoticed by the project owner/maintainer.
We assume that proper checks are in place before a community repository
project is signed for release.

– Name typosquatting attacks, in which the attacker registers a package with
a similar name as a target package.

Attacker Goals: The attacker seeks to obtain a valid signed project certificate
that binds a tuple (project ID, project owner) to a public key PK, such that
the attacker is not the owner of this project and it possesses the private key
corresponding to PK. This will allow the attacker to sign arbitrary versions of
the project (e.g., a malicious version that has a backdoor embedded).

Security Goals. Only the legitimate owner of a project should be able to
complete a certification protocol for that project. Still, we need to account for
occasional events when an attacker gains control over a project’s repository, i.e.,
we need to provide compromise resilience.

Of particular interest are adversaries that can gain control over a project for a
short amount of time, during which they may try to obtain a project certificate by
executing the certification protocol stealthily. If, on the other hand, adversaries
must maintain control over a project for a prolonged period of time in order to
successfully complete the certification protocol, this is arguably more difficult to
achieve while going undetected. This is especially true if the certification protocol
produces artifacts that are publicly visible on the project’s webpage.

Concretely, we aim to achieve the following security goals:

SG1: Only an entity that controls an identifier should be able to successfully
complete the certification for that identifier (by completing the given chal-
lenge). In particular, only the owner of a software project should be able to
complete the certification protocol for that project.

SG2: Messages generated during one execution of the certification protocol for
one account (i.e., between the SCS server and one client) cannot be used
towards obtaining authorizations for other accounts.

SG3: Attackers that gain control over a project’s repository for a short period
of time should not be able to successfully complete the certification protocol.
This prevents such attackers from obtaining a project certificate unbeknownst
to the project owner.

SG4: Anyone who can access a project’s webpage should be able to know whether
an instance of the certification protocol is currently running for that project.
In particular, the project owner should be able to tell if someone other than
the project owner is trying to obtain a certificate for the project.

5 Software Certification Service

5.1 Preliminaries

General Terms. During the course of execution of the proposed protocol for
software certification, we make use of the following terms:

458 S. Vaidya et al.

– SCS server: The server software run by the Software Certification Service
(SCS) acting as a Certification Authority (CA) that issues project certificates
upon request by software publishers.

– SCS client: The client software run by a software publisher that interacts with
the SCS server in order to obtain a project certificate for a project owned by
that publisher.

– Project Repository: The repository used for hosting the project. This refers
to an individual project repository hosted on a community repository.

– Project: The project/package for which the certificate is requested.
– Project Owner: The software publisher who owns the project for which cer-

tification is requested. The project owner controls the SCS client and the
project hosted on the repository.

– End Users: The users that download the project distribution from the project
repository for installation and use.

Keys. The SCS server has a CA key pair, and uses the CA private key to sign
project certificates. The CA private key has high value and its compromise can
have serious consequence for the security of the SCS service. As such, it must be
kept offline, or protected using dedicated hardware (e.g., HSMs).

The following types of keys are used by the project owner:

– SCS account keys (public/private key pair): Used to authenticate an SCS
account holder (acting as a client) to the SCS server. Specifically, the client
uses the SCS account private key to sign the messages sent to the SCS server
while executing the SCS certification protocol. There is only one SCS account
key pair per client, generated by the client. Once registered with the SCS
server, an SCS account key can be used to obtain multiple project certificates
for multiple projects owned by the client.

– certificate keys (public/private key pair): This key pair is generated by the
client (acting as a project owner) and its public key is included in the project
certificate generated by the SCS. The corresponding private key will be used
by the project owner to sign a software project.

– repository key : This is the credential used by a project owner to manage the
project on the community repository. For example, it can be the password
used by the project owner to log into her account with community repositories
such as PyPI, RubyGems or NPM.

High-Level Details. As our proposed protocol is inspired from the ACME
protocol, we reuse several of ACME’s protocol design choices. We mention these
details here, so as not to overload unnecessarily the actual protocol description.

JSON Objects and Signatures. Information exchanged between the SCS server
and clients is encapsulated in objects encoded as JSON messages [14] carried
over HTTPS. Typically, the client sends to the SCS server a stub object, and
the server returns the object where various fields have been filled.

Bootstrapping Trust in Community Repository Projects 459

Software Certification
Service (SCS)

Software
Publisher

certificate order

Authorization URL, Finalize URL

Authorization URL
request identifier auth

Challenge URL, token

Community Repository
Project

Challenge Response
(by Software Publisher)

Challenge URL
challenge complete

Verify
challenge

Finalize URL
finalize order (CSR request)

project certificate

Fig. 2. SCS protocol overview (Phase 2: Obtaining a project certificate).

Messages sent by the client to the server are signed using the private key of
the client’s SCS account key pair. The server uses the corresponding public key
to verify the authenticity and integrity of messages from the client.

Nonces Against Replay Attacks. To ensure protection against replay attacks, the
protocol uses an anti-replay mechanism based on nonces: The server maintains
a list of nonces issued to clients, and any signed request from the client must
include a nonce. The server verifies that the nonces it receives from clients are
among those that it has issued to clients, and ensures that nonces can be used
at most once by clients.

5.2 Certification Protocol Description

We now describe the protocol used by the SCS to issue a software project certifi-
cate. The protocol has two major phases: 1) Register an account with the SCS
server; 2) Request a project certificate. Phase 1 is carried out only once, when
the publisher is communicating with the server for the first time. Each publisher
creates an account with the SCS server, so that the SCS server can keep track of
its interactions with different publishers. The same account can then be used to
get certificates for multiple projects owned by the publisher. Phase 2, illustrated
in Fig. 2, is carried out every time the publisher needs a certificate for a project.
Appendix A provides a security analysis of the proposed certification protocol.

SCS Account Registration. The protocol execution is initiated by the pub-
lisher (i.e. project owner) using the SCS client. To register an account with the
SCS server, a publisher emgages in the following protocol with the SCS server:

1. The client generates a fresh pair of SCS account keys (public/private keys).
2. The client sends to the SCS server a registration request that contains the

following information: the contact details of the client (email address), the
SCS account public key, and a signature over the entire registration request
using the SCS account private key.

460 S. Vaidya et al.

3. The SCS server verifies that the signature is valid and that no account is
already registered under this SCS account public key. The server then creates
an account and stores the SCS account public key used to verify the registra-
tion request. This SCS account key is used to uniquely identify the account
and will be used to authenticate future requests from this account.

4. The SCS server informs the client that the account was successfully created.

Obtaining a Project Certificate. To obtain a project certificate, a publisher
who has previously registered an SCS account, takes the following four steps:

(1) Submit a project certificate order. The client sends to the SCS server a project
certificate order request that contains the software project identifier for which the
certificate is requested (e.g., project URL), and the certificate expiration date.
Upon receipt of the order request, the SCS server performs some basic checks
regarding the project identifier, such as checking the validity of the project URL.
The server may also check if the project URL matches one of the participating
community repositories.

The SCS server then informs the client that the order is created, together
with an “expires” time by when the client needs to complete authorization of the
requested project identifier. The server’s response also contains an Authorization
URL (a location on the server where the server makes available an identifier
authorization resource associated with this new order request) and a Finalize
URL (a location on the server where the client will inform the server that it has
completed the project ownership proof requirement).

(2) Obtain authorization over the project identifier. The project identifier autho-
rization process establishes that an SCS account holder is authorized to manage
project certificates for a given project identifier. For this, the client must prove
ownership over the project by completing multiple validation challenges chosen
by the SCS server. To complete a validation challenge, the client provisions the
challenge response on the project’s repository (more details in Sect. 5.3). The
following steps are executed in order to complete a validation challenge:

1. The client sends a request to the Authorization URL and the SCS server
responds with an Authorization object that contains the project identifier
(i.e., the project URL), the Challenge URL, and a validation token for this
challenge. The validation token is a string randomly generated by the SCS
server for this challenge. The Challenge URL is a location on the SCS server
where the client will notify the server that the challenge has been completed.

2. The client completes the challenge by provisioning the challenge response on
the project’s repository.

3. The client notifies the SCS server that the challenge was completed by sending
a request to the Challenge URL.

4. The SCS server verifies that the challenge was completed.

To address the threat model described in Sect. 4.2, the SCS certification
protocol requires a client to respond to multiple challenges spread over time,

Bootstrapping Trust in Community Repository Projects 461

and the SCS server to check that the client’s response to the challenges remains
persistently visible on the project’s repository. In Sect. 5.3, we provide details on
how challenges are completed by the client and verified by the SCS server.

(3) Finalize the order by submitting a CSR. Once the client completes the server’s
requirements for this project certificate order, it generates a certificate key pair
(public/private keys). It also creates a Certificate Signing Request (CSR) and
requests to finalize the order by sending the CSR to the Finalize URL. The CSR
contains the software project identifier for which the certificate is requested
(e.g., project URL), the certificate public key, the project owner details (name,
email address), temporal information (valid from date, expiration date), and a
signature over the entire CSR using the certificate private key.

If the request to finalize the order is successful, the SCS server issues the
project certificate, which is signed with the server’s CA private key. The SCS
server then responds to the client with a Certificate URL.

(4) Download the project certificate. The client downloads the project certificate
by sending a request to the Certificate URL, located on the SCS server.

5.3 Identifier Authorization

An attacker who gains control over the project’s repository for a brief period of
time may be able to provision the challenge response on the project’s repository,
notify the server to validate the challenge, and then quickly remove the challenge
response from the project’s repository. In order to achieve security goal SG3
and mitigate attackers that can take control of the project repository for a
brief period of time, we design the identifier authorization step to last over an
extended period of time. In this way, a successful attacker needs to maintain
control over the project repository for a longer period of time, which is arguably
more difficult to achieve while going undetected.

Specifically, to obtain authorization over a project identifier, a project owner
acting as a client in the certification protocol must complete not just one chal-
lenge, but multiple validation challenges spread over an identifier validation win-
dow of time. Additionally, for each challenge, the client must not only provision
the challenge response on the project’s repository, but must also maintain per-
sistently this challenge response on the project’s repository over a challenge
validation window of time. For example, we may consider a 7-day identifier val-
idation window1 during which the server will send a new challenge every 24 h
for 7 d in a row. For each challenge, the server will check the persistence of the
challenge answer on the project’s repository multiple times randomly during the
24-hour challenge validation window.

The project identifier authorization process establishes that an SCS account
holder is authorized to manage project certificates for a given project identifier.

1 We picked 7 d based on previous repository breaches, which were detected as early
as a few hours in some cases or it took 5–7 d in other cases [21–23].

462 S. Vaidya et al.

Validation of individual challenges. For each validation challenge, the client must
provision a challenge response on the project’s repository. In order to achieve
security goal SG4 and deal with long-term adversarial presence, the validation
requires that the response to a challenge must be placed on the project’s repos-
itory in a publicly visible way. This will prevent an adversary to execute the
certification protocol stealthily, as the legitimate project owner and/or other
project maintainers will notice that a certification protocol is ongoing.

Specifically, to complete a challenge, the client must provision the challenge
response in the project description section of the project’s homepage. To preserve
the functionality of the project description section and reduce confusion for
the casual user who browses that project’s homepage, the challenge response
is placed at the end of the project description, using delimiters that make it
clear they are not part of the actual project description. Placing the challenge
response in the project description meets our requirement that the certification
protocol must generate artifacts that are publicly visible.

The client generates the challenge response as a Base64-encoded string of
characters generated by concatenating the validation token for the challenge
with a key fingerprint, separated by a"." character:
Response = token || "." || base64(fingerprint(SCS account key)),

where "||" denotes concatenation of strings, and the fingerprint is computed
as a SHA-256 digest of the SCS account key. The response is placed at the end
of the project’s description, using clear delimiters.

After notifying the server about completion of the challenge, the client needs
to maintain the challenge response on the project homepage during the challenge
validation window. The server checks the existence of the challenge response
multiple times at random times within this window. If all the server checks during
the challenge validation window are successful, the server deems the challenge
as successfully completed, and generates the next challenge for the client.

6 Deployments

6.1 SCS Implementation Details

The SCS service has two components, the server and the client. We implemented
the SCS server on top of Boulder [39], which is an open-source ACME-based CA
built for Let’s Encrypt and written in Go. We have adapted the code to process
the Project ID (the project repository URL) instead of the domain names. For
example, when the client requests a project certificate, the server verifies that the
project URL comprises of a valid set of characters and that the URL belongs
to one of the community repositories that the SCS service has been deployed
to. We also implement the challenge-response protocol used for proving project
ownership. The SCS server is engages by keeping track of the challenge-response
process and how far the client is in the proof of ownership process. The process
on the server side is automated and does not require manual intervention.

We implemented the SCS client on top of Lego [31], which is an ACME client
implementation for Let’s Encrypt, written in Go. The SCS client is responsible

Bootstrapping Trust in Community Repository Projects 463

for initiating the certificate issuance process, by placing a request to the server.
The client is also responsible for participating in the challenge-response protocol
and for fulfilling the challenge issued by the server. The project owner gets
the challenge response from the SCS client and provisions it on the project
homepage. This is the only step that requires manual intervention during the
challenge-response SCS protocol execution.

6.2 Deployment to Community Repositories

We deployed the SCS service to several community repositories to automate the
issuance of certificates for the projects hosted on these repositories. By design,
the SCS service does not require any changes to these community repositories,
which makes it deployable right away and serves as an incentive for adoption.

The SCS service can be deployed to community repositories where each indi-
vidual project has a dedicated webpage containing a project description section.
Most community repositories fit this scenario, with the project description being
normally used to provide basic information about the project. Although every
community repository may have a different web layout for the project descrip-
tion, all the projects that are hosted on the same community repository have
the same layout for the project description.

During the SCS protocol execution, the project owner provisions on the
project description webpage the responses to challenges issued by the SCS server.
To preserve the functionality of the project description field and reduce confusion
for the casual user who browses the project’s webpage, the challenge responses
are placed at the end of the project description, using delimiters that make it
clear they are not part of the actual project description (see Sect. 5.3). As shown
in Fig. 3, the challenge response will be publicly visible on the project’s webpage.

SCS for PyPI. PyPI [34] is used for hosting and distributing Python packages.
We use the “Project description” page to display the SCS challenge response. For
this, the project owner includes the challenge response in the project description
section of the setup.py file, which generally contains the metadata for the Python
package, and then builds the package and uploads it to PyPI.

SCS for RubyGems. RubyGems [36] is used for hosting and distributing
Ruby projects, known as “gems”. To display the SCS challenge response, we use
a section on a project’s webpage where the owner can provide a short description
of the project, which can range from a single sentence to a few paragraphs. Also,
the project page does not allow HTML or Markdown formatting and so, unlike
in PyPI, project owners do not have any choice in the way a challenge response
gets displayed in the section. The project owner includes the challenge response
in the description field of the gemspec file, which generally contains the metadata
for the gem, and then builds the package and uploads it to RubyGems.

464 S. Vaidya et al.

(a) PyPI
(b) NPM

Fig. 3. Challenge response on the project webpage for various community repos.

SCS for NPM. NPM [32] is the Node package manager used for hosting and
distributing JavaScript packages. We use the “Readme” page to display the SCS
challenge response. For this, the project owner includes the challenge response
in the package.json file and then builds the package and uploads it to NPM.

6.3 Automating Delegations in Community Repositories

We consider a setting in which a system such as TUF [18] or Diplomat [12] is
used to provide compromise resilience for a community repository such as PyPI.
This type of protection is achieved through several mechanisms, such as the
use of roles (which allow to separate responsibility in a system) and delegations
(which allow to distribute responsibilities in a system).

For PyPI, there is a root role, which indicates which keys are authorized for
other roles, such as the projects, release, and timestamp roles. The projects
role is trusted to validate all the packages on PyPI. This role delegates trust for
individual packages to the developers responsible for those packages. For exam-
ple, the projects role may delegate the BeautifulSoup project to the public
key belonging to the developer Alice, who is responsible for BeautifulSoup.

This delegation step can occur whenever a new project is created on PyPI,
or an existing project wants to change an existing delegation. Currently, such
a delegation involves manual operations on the part of the PyPI maintainers,
which is not scalable since PyPI has over 345,000 projects (as of December 2021).

We automate this delegation step using the SCS service. To have her public
key certified as trusted for the BeautifulSoup project, the developer responsible
for BeautifulSoup engages in the SCS ownership-proving protocol with the
entity responsible for the projects role (i.e., the PyPI server). If the developer
successfully completes the SCS protocol, this serves as proof that the developer
owns the BeautifulSoup project. As a result, the projects role will delegate
trust for the BeautifulSoup project to the public key of this developer.

Specifically, once the ownership protocol is completed successfully, the server
updates the top-level projects role to include a new “delegations" entry to a new
role BeautifulSoupOwner that is in charge of BeautifulSoup. This entry will
include the public key of the developer responsible for BeautifulSoup. Then,
the developer creates the projects file for the BeautifulSoupOwner role.

Bootstrapping Trust in Community Repository Projects 465

7 Related Work

Previous works in the area of securing community repositories studied the design
and implementation of community repositories and proposed attacks [5,6] and
defenses [11,12,17]. These works focus on designing more secure software ecosys-
tems with properties such as compromise-resilience and supply chain integrity.
[19] discusses the security issues with the programming language specific com-
munity repositories like PyPI, RubyGems or NPM. In addition, due to the
rising number of vulnerabilities and malware in the NPM ecosystem, various
works [8,9,40] have been proposed to find new vulnerabilities, isolate untrusted
packages, evaluate risks and remediate issues. [20] discusses the typosquatting
and combosquatting attacks on the Python software ecosystems like PyPI. Other
frameworks, such as in-toto [17,28] and Sigstore [38], focus on the security of the
entire software supply chain. As opposed to previous work, our focus is on boot-
strapping trust in a community repository project by ensuring that end users can
retrieve an authentic version of a community repository project, as intended by
the project owner. Specifically, we propose a new mechanism to certify software
hosted in community repositories.

8 Conclusion

In this work, we have presented a new approach for certifying the validity of
software projects hosted on community repositories. Towards this goal, we have
introduced a Software Certification Service (SCS) which gives software publish-
ers the ability to prove the ownership of their projects and then get a project
certificate that binds the project owner and the project name to a public key.
Although inspired from the ACME protocol in that it can be fully automated
on the SCS side, the proposed certification protocol is fundamentally different
in its attack mitigation capabilities and in how ownership is proven.

We deployed the SCS service to several community repositories, including
PyPI, RubyGems, and NPM, to automate the issuance of certificates for projects
hosted on these repositories. By design, the SCS service does not require any
changes to these community repositories, which makes it deployable right away
and serves as an incentive for adoption. We are currently working with Google
and PyPI on integrating our service into existing cloud security frameworks. As
future work, we plan to extend the SCS service to more community reposito-
ries (currently, we require that each individual project has a dedicated webpage
containing a project description section) and to explore other use cases that
can benefit from automated verification. We also plan to evaluate the usability
aspects of the proposed SCS certification protocol; in particular, we need to bet-
ter understand what are appropriate values for the validation windows, which
should be chosen as a tradeoff between usability and security.

Acknowledgments. This research was supported by the US National Science Foun-
dation under Grants No. CNS 1801430, DGE 1565478, and DGE 2043104.

466 S. Vaidya et al.

A Security Analysis

We now turn to analyzing the security of the proposed SCS protocol. We first
show that the protocol meets the security goals stated in Sect. 4.2, and then
analyze the protocol’s compromise resiliency.

SG1: Only a project’s owner should be able to complete the certification for
that project. To prove ownership over a project, which is required for completing
the certification protocol, an entity must successfully complete the challenges
generated by the SCS server. As such, for each challenge, the entity must both:
– Hold the private key of the SCS account key pair used to respond to the

challenge. This is because the responses from the client to the SCS server
must be signed with that key.

– Control the project in question. This is because successfully provisioning the
challenge response on the project’s homepage requires write-access to the
project’s repository.

Since only the project owner has write-access to the project’s repository, a
successful execution of the SCS protocol ensures that a specific SCS account
holder is also the entity that controls a project (i.e., the project owner).

SG2: Messages generated during one execution of the certification protocol for
one account (i.e., between the SCS server and one client) cannot be used towards
obtaining authorizations for other accounts. This is achieved because all messages
sent by an SCS client to the SCS server are signed using that client’s SCS
account private key. Thus, such messages cannot be reused between instances of
the certification protocol executed by different SCS account holders.

SG3: Attackers that gain control over a project’s repository for a short period
of time are not be able to successfully complete the SCS certification proto-
col. The certification protocol is designed so that the identifier authorization
step lasts over an extended period of time. An entity attempting to complete
the certification protocol for a project must complete multiple challenges. For
each challenge, the challenge response must be maintained persistently on the
project’s homepage, because the SCS server will check multiple times randomly
during the challenge validation window. If an attacker is able to briefly gain
control over the project’s repository, she maybe able to provision a valid chal-
lenge response for that challenge. However, such an attacker will not be able to
successfully provision valid information for subsequent challenges.

SG4: We need to show that an attacker cannot complete an SCS certification for
a project in a stealthy manner. The SCS protocol achieves this by requiring that
all challenge responses must be placed on the project’s repository in a publicly
visible way (i.e., on the project’s homepage). This ensures that the legitimate
project owner and/or other project maintainers will notice that a certification
protocol is ongoing.

Bootstrapping Trust in Community Repository Projects 467

Compromise Resiliency. If an attacker is able to get hold of the repository key
for a project, this allows the attacker unfettered access to the project repository,
including making changes to the project’s homepage. The attacker can register
an account with the SCS server and then request a project certificate under this
SCS account. Having access to the repository key, the attacker will be able to
provision challenge responses on the project homepage.

The SCS protocol has two safeguards in place to deal with a repository
key compromise. First, the certification protocol is designed to to last over an
extended period of time. Thus, if the repository key compromise is detected
early enough, the project owner can change the repository key, preventing the
attacker from successfully completing the certification protocol. In this way, a
successful attacker would have to maintain control over the project repository
for a longer period of time, which is arguably more difficult to achieve while
going undetected. Second, the SCS protocol requires that the response to a
challenge must be placed on the project’s repository in a publicly visible way
(i.e., the project’s homepage). This will prevent an adversary to execute the
certification protocol stealthily, as the legitimate project owner and/or other
project maintainers will notice that a certification protocol is ongoing and will
take steps to terminate such an active threat.

References

1. Aguirre, J.: Fake npm Roblox API Package Installs Ransomware and
has a Spooky Surprise. https://blog.sonatype.com/fake-npm-roblox-api-package-
installs-ransomware-spooky-surprise (2021)

2. Barnes, R., Hoffman-Andrews, J., McCarney, D., Kasten, J.: Automatic Certificate
Management Environment (ACME). RFC 8555 (Mar 2019). https://datatracker.
ietf.org/doc/html/rfc8555

3. Barsan, A.: Dependency Confusion: How I Hacked Into Apple, Microsoft
and Dozens of Other Companies. https://medium.com/@alex.birsan/dependency-
confusion-4a5d60fec610/ (February 2021)

4. Burt, J.: Supply Chain Flaws Found in Python Package Repository. https://
www.esecurityplanet.com/threats/supply-chain-flaws-found-in-python-package-
repository/ (August 2021)

5. Cappos, J., Samuel, J., Baker, S., Hartman, J.H.: A look in the mirror: Attacks
on package managers. In: Proceedings of the 15th ACM Conference on Computer
and Communications Security, pp. 565–574. CCS ’08, ACM, New York, NY, USA
(2008)

6. Cappos, J., Samuel, J., Baker, S., Hartman, J.H.: Package Management Security.
Tech. rep., University of Arizona (2008)

7. Cimpanu, C.: Malware found in npm package with millions of weekly down-
loads. https://therecord.media/malware-found-in-npm-package-with-millions-of-
weekly-downloads/ (October 2021)

8. Decan, A., Mens, T., Constantinou, E.: On the impact of security vulnerabilities
in the npm package dependency network. In: Proceedings of the 15th International
Conference on Mining Software Repositories, pp. 181–191. MSR ’18, ACM (2018)

https://blog.sonatype.com/fake-npm-roblox-api-package-installs-ransomware-spooky-surprise
https://blog.sonatype.com/fake-npm-roblox-api-package-installs-ransomware-spooky-surprise
https://datatracker.ietf.org/doc/html/rfc8555
https://datatracker.ietf.org/doc/html/rfc8555
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610/
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610/
https://www.esecurityplanet.com/threats/supply-chain-flaws-found-in-python-package-repository/
https://www.esecurityplanet.com/threats/supply-chain-flaws-found-in-python-package-repository/
https://www.esecurityplanet.com/threats/supply-chain-flaws-found-in-python-package-repository/
https://therecord.media/malware-found-in-npm-package-with-millions-of-weekly-downloads/
https://therecord.media/malware-found-in-npm-package-with-millions-of-weekly-downloads/

468 S. Vaidya et al.

9. Garrett, K., Ferreira, G., Jia, L., Sunshine, J., Kästner, C.: Detecting suspicious
package updates. In: Proceedings of the 41st International Conference on Software
Engineering: New Ideas and Emerging Results, pp. 13–16. ICSE-NIER ’19, IEEE
Press (2019). https://doi.org/10.1109/ICSE-NIER.2019.00012

10. Goodin, D.: Software downloaded 30,000 times from PyPI ransacked
developers’ machines. https://arstechnica.com/gadgets/2021/07/malicious-pypi-
packages-caught-stealing-developer-data-and-injecting-code/ (July 2021)

11. Kuppusamy, T.K., Diaz, V., Cappos, J.: Mercury: Bandwidth-effective preven-
tion of rollback attacks against community repositories. In: Proceedings of the
2017 USENIX Conference on Usenix Annual Technical Conference, pp. 673–688.
USENIX ATC ’17 (2017)

12. Kuppusamy, T.K., Torres-Arias, S., Diaz, V., Cappos, J.: Diplomat: Using dele-
gations to protect community repositories. In: 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 16), pp. 567–581 (2016)

13. Lakshmanan, R.: Two NPM Packages With 22 Million Weekly Downloads Found
Backdoored. https://thehackernews.com/2021/11/two-npm-packages-with-22-
million-weekly.html (November 2021)

14. Rfc 8259. https://datatracker.ietf.org/doc/html/rfc8259
15. Ruohonen, J., Hjerppe, K., Rindell, K.: A Large-Scale Security-Oriented Static

Analysis of Python Packages in PyPI. In: Proceedings of the 18th International
Conference on Privacy, Security and Trust (PST). IEEE (2021)

16. Sharma, A.: Sonatype Catches New PyPI Cryptomining Malware. https://blog.
sonatype.com/sonatype-catches-new-pypi-cryptomining-malware-via-automated-
detection/ (June 2021)

17. Torres-Arias, S., Afzali, H., Kuppusamy, T.K., Curtmola, R., Cappos, J.: In-toto:
Providing farm-to-table guarantees for bits and bytes. In: Proceedings of the 28th
USENIX Conference on Security Symposium, pp. 1393–1410. SEC’19 (2019)

18. TUF: The Update Framework. https://www.updateframework.com/
19. Vaidya, R.K., Carli, L.D., Davidson, D., Rastogi, V.: Security issues in language-

based sofware ecosystems. CoRR abs/1903.02613 (2019)
20. Vu, D.L., Pashchenko, I., Massacci, F., Plate, H., Sabetta, A.: Typosquatting and

combosquatting attacks on the python ecosystem. In: 2020 IEEE European Sym-
posium on Security and Privacy Workshops (EuroS PW). pp. 509–514 (2020).
https://doi.org/10.1109/EuroSPW51379.2020.00074

21. Bitcoin gold issues critical alert. https://www.enterprisetimes.co.uk/2017/11/27/
bitcoin-gold-issues-critical-alert

22. Npm packages disguised as roblox api code caught carrying ransomware. https://
www.theregister.com/2021/10/27/npm_roblox_ransomware/

23. Typosquatting attacks on rubygems. https://thehackernews.com/2020/04/
rubygem-typosquatting-malware.html

24. Introduction to Code Signing. https://docs.microsoft.com/en-us/previous-
versions/windows/internet-explorer/ie-developer/platform-apis/ms537361(v=vs.
85)

25. Minimum Requirements for the Issuance and Mgmt. of Publicly-Trusted
Code Signing Certificates. https://casecurity.org/wp-content/uploads/2016/09/
Minimum-requirements-for-the-Issuance-and-Management-of-code-signing.pdf

26. Leading Certificate Authorities and Microsoft Introduce New Standards to
Protect Consumers Online. https://casecurity.org/2016/12/08/leading-certificate-
authorities-and-microsoft-introduce-new-standards-to-protect-consumers-online/

27. Comprehensive Perl Archive Network. https://www.cpan.org/

https://doi.org/10.1109/ICSE-NIER.2019.00012
https://arstechnica.com/gadgets/2021/07/malicious-pypi-packages-caught-stealing-developer-data-and-injecting-code/
https://arstechnica.com/gadgets/2021/07/malicious-pypi-packages-caught-stealing-developer-data-and-injecting-code/
https://thehackernews.com/2021/11/two-npm-packages-with-22-million-weekly.html
https://thehackernews.com/2021/11/two-npm-packages-with-22-million-weekly.html
https://datatracker.ietf.org/doc/html/rfc8259
https://blog.sonatype.com/sonatype-catches-new-pypi-cryptomining-malware-via-automated-detection/
https://blog.sonatype.com/sonatype-catches-new-pypi-cryptomining-malware-via-automated-detection/
https://blog.sonatype.com/sonatype-catches-new-pypi-cryptomining-malware-via-automated-detection/
https://www.updateframework.com/
https://doi.org/10.1109/EuroSPW51379.2020.00074
https://www.enterprisetimes.co.uk/2017/11/27/bitcoin-gold-issues-critical-alert
https://www.enterprisetimes.co.uk/2017/11/27/bitcoin-gold-issues-critical-alert
https://www.theregister.com/2021/10/27/npm_roblox_ransomware/
https://www.theregister.com/2021/10/27/npm_roblox_ransomware/
https://thehackernews.com/2020/04/rubygem-typosquatting-malware.html
https://thehackernews.com/2020/04/rubygem-typosquatting-malware.html
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms537361(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms537361(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms537361(v=vs.85)
https://casecurity.org/wp-content/uploads/2016/09/Minimum-requirements-for-the-Issuance-and-Management-of-code-signing.pdf
https://casecurity.org/wp-content/uploads/2016/09/Minimum-requirements-for-the-Issuance-and-Management-of-code-signing.pdf
https://casecurity.org/2016/12/08/leading-certificate-authorities-and-microsoft-introduce-new-standards-to-protect-consumers-online/
https://casecurity.org/2016/12/08/leading-certificate-authorities-and-microsoft-introduce-new-standards-to-protect-consumers-online/
https://www.cpan.org/

Bootstrapping Trust in Community Repository Projects 469

28. in-toto. https://in-toto.io/
29. Keybase. https://keybase.io/
30. Let’s Encrypt. https://letsencrypt.org/
31. ACME client implementation. https://letsencrypt.org/docs/client-options/
32. Javascript Node package manager. https://npmjs.com
33. NPM download stats. https://npmcharts.com/
34. Python Packaging Index. https://pypi.org
35. PyPI download stats. https://pypistats.org/packages/__all__
36. RubyGems statistics. https://rubygems.org/stats
37. Supply-chain attack hits RubyGems repository with 725 malicious packages.

https://arstechnica.com/information-technology/2020/04/725-bitcoin-stealing-
apps-snuck-into-ruby-repository/ (2020)

38. Sigstore. https://www.sigstore.dev/
39. ACME server Boulder. https://github.com/letsencrypt/boulder
40. Zimmermann, M., Staicu, C.A., Tenny, C., Pradel, M.: Small world with high

risks: A study of security threats in the npm ecosystem. In: 28th USENIX Security
Symposium (USENIX Security 19). pp. 995–1010 (2019)

https://in-toto.io/
https://keybase.io/
https://letsencrypt.org/
https://letsencrypt.org/docs/client-options/
https://npmjs.com
https://npmcharts.com/
https://pypi.org
https://pypistats.org/packages/__all__
https://rubygems.org/stats
https://arstechnica.com/information-technology/2020/04/725-bitcoin-stealing-apps-snuck-into-ruby-repository/
https://arstechnica.com/information-technology/2020/04/725-bitcoin-stealing-apps-snuck-into-ruby-repository/
https://www.sigstore.dev/
https://github.com/letsencrypt/boulder

Intrusion Detection

Assessing the Quality of Differentially
Private Synthetic Data for Intrusion

Detection

Md Ali Reza Al Amin1(B), Sachin Shetty1, Valerio Formicola2,
and Martin Otto3

1 Old Dominion University, Norfolk, VA 23508, USA
{malam002,sshetty}@odu.edu

2 California Polytechnic State University, Pomona, California, USA
vformicola@cpp.edu

3 Siemens Technology US, Princeton, NJ 08540, USA
m.otto@siemens.com

Abstract. Supervised learning is effectively adopted in Network Intru-
sion Detection Systems (IDS) to detect malicious activities in Informa-
tion Technology (IT) and Operation Technology (OT). Sharing high-
quality network data among cyber-security practitioners increases the
chance of detecting new threat campaigns by analyzing updated traffic
features. As data sharing brings privacy concerns, Differential-Privacy
(DP) has emerged as a promising approach to performing privacy-
preserving analytics. This paper presents an approach to generating
high-quality synthetic network features using a differentially private Gen-
erative Adversarial Network (DP-GAN) based on the DoppleGANger
https://github.com/fjxmlzn/DoppelGANger toolset. We assess the clas-
sification performance of several machine learning (ML) models on a
privacy-preserved synthetic dataset derived from the NSL-KDD intru-
sion dataset. Experiments show ML algorithms achieve high classifica-
tion accuracy on the synthetic data (95.95%) with a low privacy bud-
get (ε = 6.73), i.e., low success rates for membership inference attacks.
Hence, DP-GAN models offer a promising tool for sharing traffic features
with bounded loss of privacy.

Keywords: Intrusion detection system · Differential privacy ·
Generative adversarial networks · Data sharing

1 Motivation

With the increasing adoption of Information Technology (IT) and Operation
Technology (OT), Intrusion Detection System (IDS) is one of the most criti-
cal defensive mechanisms against cyber-attacks with potential impact on the
cyber-physical system. Network IDS detects malicious or anomalous activities

V. Formicola—This work has been performed while at Siemens Technology US.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 473–490, 2023.

https://doi.org/10.1007/978-3-031-25538-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_25&domain=pdf
https://github.com/fjxmlzn/DoppelGANger
https://doi.org/10.1007/978-3-031-25538-0_25

474 Md A. R. Al Amin et al.

within a network domain by analyzing network traffic characteristics (features).
Detecting if network traffic is malicious or benign, or determining the attack
category, is a classification problem. Several supervised machine learning models
have been widely used to train IDS and improve detection accuracy with good
success on known attack methods. However, as attackers develop new techniques,
for example, developing and using variants of known attack tools, models have to
be re-trained against new features. Updating a data-driven network IDS is more
effective if information and data are shared among cyber-security practitioners
in a timely manner. As a matter of fact, data sharing is very controlled and
limited, despite the benefit, due to privacy concerns in the exposure of sensitive
information.

Most anonymization techniques require a subset of real data to be shared
among security practitioners. However, for some domains sharing real data
with remote entities imposes a security threat. For example, intrusion detection
datasets contain real attack signatures and sensitive information (i.e., source
and destination IP addresses, port numbers, etc.). During data sharing, attack-
ers can use the attack signature information to learn how to bypass the detection
if the real data gets compromised. At the same time, large network-level intru-
sion data under attack scenarios can help to build good machine learning-based
intrusion detection systems. However, the lack of such attack datasets has sig-
nificantly hampered data-driven research. Sometimes, it is not feasible to share
data among different teams, even within the organization. To guarantee no part
of the attack datasets is being shared outside the organization’s private network,
we need an alternative method to sharing real data that can be used to build a
robust machine learning model.

In this work, we leverage a tool, DoppleGANger (DG) [13] to build the syn-
thetic data generation framework and investigate the synthetic data utility -i.e.,
classification of malicious traffic - while protecting the privacy of information
contained in a dataset. DG is developed to generate synthetic networked time-
series data using generative adversarial networks (GANs) while improving the
data fidelity, i.e., long-term dependencies, complex multidimensional relation-
ships, mode collapse. DG claims to achieve 43% better fidelity than other base-
line models. DG also tackles the mode collapse issue of GANs by developing a
custom auto-normalization heuristic method. Previous studies [5] have proposed
synthetic data generation using Decision Trees, Random Forest, etc., by keeping
the statistical properties like mean or median close to the original dataset. How-
ever, it is also important to test the machine learning model’s performance (i.e.,
classification accuracy) on the original dataset when the model is trained on the
synthetic dataset. One promising way to generate synthetic data that resembles
original data for analytical tasks is to use GANs. GANs are neural networks that
use random noise as input and generate realistic data samples. GANs have been
widely used to generate synthetic data and translation in image and text data
[2,9]. However, GAN-based models are prone to Membership Inference Attacks
(MIA). In MIA, the attacker aims to identify whether a specific record was used
to train the model. Moreover, GAN-based generation does not allow the user
to quantify and assess the level of privacy achieved. To alleviate that issue, we

Quality of Synthetic Data 475

apply the differential privacy on GAN, DP-GAN, generated synthetic data to
make the privacy guarantee and make the machine learning model robust against
MIA. The DP-GAN model consists of two networks, a generator and a discrimi-
nator, which can be modeled based on the application domain. Long Short Term
Memories (LSTM) is used inside the generator to model continuous data, and
Multilayer Perceptron (MLP) is used to model discrete data. To achieve the
differential privacy guarantee, we used the Differentially Private Stochastic Gra-
dient Descent (DP-SGD), proposed by [1], to train the discriminator and the
Adam optimizer to train the generator.

We use a well-known Intrusion Detection Dataset, NSL-KDD, to conduct the
experiments. To date, NSL-KDD has still been considered an intrusion detection
benchmark because of its diverse attacks groups [18]. In summary, we provide
the following contributions:

– Generate differentially private synthetic intrusion detection dataset from
NSL-KDD while maintaining high accuracy for classification. Further, we
assess the differential privacy achieved in the synthetic intrusion detection
dataset. Even if GAN-based approaches are well studied, no quantification has
been done so far regarding differential privacy and against membership infer-
ence attacks. Therefore, our investigation on differentially private intrusion
detection, where we retain 95% classification accuracy, supports the research
on synthetic data in the cyber-security community.

– We perform an assessment of detection accuracy by following a use case sce-
nario where data is trained on a differentially private synthetic dataset and
tested on the original dataset for validation. As a result, we achieve 90%
accuracy in detecting malicious traffic from benign traffic.

– We find the parameters of DP-GAN to generate synthetic data that achieve
a trade-off between privacy and accuracy for intrusion detection.

The rest of the paper is as follows: in Sect. 2, we describe the related work,
Sect. 3 describes the Privacy-Preserving framework, Sect. 4 explains how we
prepare the dataset and privacy we are protecting, and lastly, in Sect. 5, exper-
imental results are presented.

2 Related Work

Privacy-preserving data sharing has been widely discussed in the past. However,
organizations are still skeptical about sharing their own data for use in research.
To improve the intrusion detection accuracy, a large volume of network data is
needed. Previous technique for IDS like Snort [3] works with detection rule for
known attack. The main drawback for the rule based method is that it does
not perform well for novel attacks. This is why ML based methods are currently
being used for the automated rule generation by the machine. Previous efforts
[14,21] in intrusion detection heavily rely on large volumes of network data.
Sharing these data with the research community is not practical as the dataset
contains sensitive information that impose privacy guarantee.

476 Md A. R. Al Amin et al.

There has been some work done on improving the detection accuracy using
GAN using the dataset we have used in this paper. Authors in [12] propose a
framework based on GANs to generate adversarial samples to improve intru-
sion detection. NSL-KDD dataset is used to test the feasibility of the model.
The authors in [17] proposed a generative adversarial network (GAN) based
intrusion detection system (G-IDS), where GAN generates synthetic samples,
and IDS gets trained on them along with the original ones. GAN based IDS
work focused on generating adversarial samples but does not guarantee the pri-
vacy. Several other approaches as in [8,16,22] use GANs to generate synthetic
datasets for ad-hoc and Industrial Internet of Things (IIoT) networks. These
models are focused on solving the imbalance problems in the intrusion detection
dataset. Compared to these works, our work focuses on generating the synthetic
intrusion detection dataset and assessing privacy while maintaining high-level
classification accuracy.

The authors in [11], propose a framework to generate privacy-preserving syn-
thetic data suitable for release for analytical purposes. To ensure the privacy,
the principal of t-closeness is applied GAN model. PATE-GAN [10] is the Pri-
vate Aggregation of Teacher Ensembles (PATE) framework which applies to
the GANs. Another differentially private generative adversarial network app-
roach described in [19] achieved differential privacy in GANs by adding carefully
designed noise to gradients during learning procedure. The authors used MNIST
and MIMIC-III dataset to do evaluation. However, to the best of our knowledge
so far DP-GAN is not directly applied to the Network Intrusion Detection Sys-
tem dataset NSL-KDD. We also show that, DP-GAN is robust than the GAN
to defend against membership inference attacks.

3 Privacy Preserving Framework

In this section, we elaborate on the design of privacy-preserving framework, a
differentially private generative adversarial network, to mitigate privacy expo-
sure and maintain desirable utility in the generated intrusion detection data.
In our proposed approach, we first train a DG model using real data. After the
training, the generator in the DG model can generate a sample dataset which can
be used instead of real dataset. Then, differential privacy is applied on the GAN
generated synthetic dataset to meet the privacy guarantee and defend against
MIA. We elaborate the detail of data generation and preserving privacy in our
approach further in this section.

3.1 Generation Using DG

GANs are a data-driven generative modeling technique that takes training data
samples as an input (original data) and outputs a model that generates new
samples from the same distribution of the input. A GAN consists of a generator
G and a discriminator D. First, the generator maps the noise vector to samples
and generates plausible data. Then, the discriminator is trained by taking sam-
ples as input and classifying those samples as fake or real. More precisely, GANs

Quality of Synthetic Data 477

assume to have a dataset of n samples O1, ..., On, where Oi ∈ R
p, and each

sample is drawn i.i.d. from some distribution Oi ∼ PO. The goal of GANs is to
use these samples to learn a model that can draw samples from the distribution
PO, usually a Gaussian or a uniform. At the same time, the discriminator takes
samples as input and classify as either real or fake. Backpropagation is used to
minimize the errors in the classification task to train the parameters of both
the generator and discriminator. As soon as the training begins, the generator
generates fake data, and the discriminator learns that the data is fake. After
some training rounds, the generator learns how to fool the discriminator, result-
ing in the identification of fake data as real data. The loss function for GANs is:
minGmaxDEx∼px

[logD(x)] + Ez∼pz
[log(1 − D(G(z)))]. In contrast to the prior

generative modeling approach, e.g., likelihood maximization of parametric mod-
els, GANs make very few assumptions about the original data structure. The
original GAN process [6] is presented in Fig. 1

GAN has been widely used in fake image generation and vanilla GAN have
proven the success. The real-valued or continuous variables in the image data can
be modeled using Gaussian distribution. Generating images of specific categories
rather than high quality is still a challenging task as high variance is present in
the specific image category. The authors in [20] states that when min-max nor-
malizer is used on pixel values data to normalize, it is followed the Gaussian-like
distribution. However, it is not always true for continuous variables in domains
like computer vision that the distribution come from Gaussian. Moreover, min-
max normalization can lead to vanishing gradient descent problem. This raises
the concerns to handle non-image continuous data and other discrete types data.

Fig. 1. GAN process

One of the well-known issue with the GAN is mode-collapse [6]. In mode-
collapse, GAN generates a single type of output or small set of outputs despite
being trained on diverse dataset. This issue happens when the generator finds a
sample type that can fool the discriminator and it keeps generating that type as
there is no incentive for the generator to change things up. Mode-collapse can
cause serious issue when dealing with intrusion detection dataset as the dataset
contains diverse types of data. Authors in the paper [13] claim to have dealt with
the mode-collapse problem. Measurements of physical properties (metadata) can

478 Md A. R. Al Amin et al.

also influence the characteristics of the measurements. For example, a denial-
of-service (DoS) attack can create a larger traffic than a probing attack. So
that GAN needs to learn the joint distribution between metadata and their
corresponding measurements. The following steps were used in the DG paper to
generate synthetic data:

– Mode-collapse
– Capturing attribute relationship

To tackle the mode collapse, DG develops a custom auto-normalization
heuristics. For example, we have a dataset which has two time series with dif-
ferent offsets (min max values). A standard normalization approach would first
normalize the data by the global min and max and store them as global con-
stants. Then, GAN model train on the normalized data where normalization is
just scaling and shifting by a constant. So the mode collapse still occurs. Instead
DG, normalize each time series signal individually and store the min/max as
fake metadata. Thus GAN learns to generate fake metadata by identifying the
min.max for each time series individually, which are then used to rescale measure-
ments to a realistic range. In our case, intrusion detection dataset, we consider
each network flow as an individual time series signal. As in the intrusion detec-
tion dataset, each traffic flow at each time-step defined as malicious or benign
traffic.

DG achieves in capturing the attribute relationship by introducing an auxil-
iary discriminator. Because, generating metadata and measurements using a sin-
gle discriminator is too difficult. The auxiliary discriminator only discriminates
on metadata. The losses from discriminator and auxiliary discriminator are then
combined by a weighted parameter α : minGmaxD1,D2L1(G,D1) + αL2(G,D2)
where Li, i ∈ {1, 2} is the Wasserstein loss of original and auxiliary discriminator
respectively.

3.2 Applying Differential Privacy (DP)

User privacy is a concern in the digital industry with the growing use of data
for a multitude of data-driven applications such as machine learning models.
In the case of data sharing, privacy is the primary aspect to consider due to
the disclosure of sensitive content to third parties. An existing method such as
de-identification protects user privacy by selectively removing information fields
connected to user identities. However, de-identification is prone to reconstruc-
tion attacks, i.e., queries forged on a database to reconstruct individual records.
Further, de-identified databases are prone to linkage attacks where malicious
actors can re-identify users by correlating the remaining fields with background
information, i.e., using auxiliary data sources and forming a big picture of user
profiles.

Differential privacy ensures users’ privacy from reconstruction attacks by
manipulating the output of an analytical query on a database. A differentially
private algorithm guarantees that its outcome changes under controlled condi-
tions (privacy budget), regardless of the data’s single records (elements).

Quality of Synthetic Data 479

In the case of machine learning, DP states that a model M is differentially
private if for any pairs of training datasets D and D′

that differ for a single user
record, and for any input z, it holds that [13]

M(z;D) ≤ eεM(z;D′
) + δ

Fig. 2. Experimental flow diagram

where M(z;D) denotes a model trained on D and evaluated on z. Smaller
values of ε and δ give more privacy. DoppleGANger’s differential privacy frame-
work is developed on top of the Google Tensorflow Privacy library [7]. The basic
idea of Tensorflow Privacy is to modify the gradients used in stochastic gradient
descent (SGD), which is the modified version of vanilla SGD. The first modifi-
cation is done on the sensitivity of each gradient which is bounded by clipping
the gradient computed for each training. The second modification is done with
random noise sampled and added to the clipped gradients, hence making it
impossible to identify which data point was used during training. The privacy
optimizers share some privacy-specific parameters that need to be tuned before
training the model, specifically [7]:

– l2 norm clip : The maximum Euclidean (L2) norm of each individual gradient
that is computed on an individual training example from minibatch.

– noise multiplier: The amount of noise sampled and added to gradients during
training the model.

Our experimental flow diagram is presented in Fig. 2. Initially, to understand
the insights of the DG’s GAN model where it captures the correlations between

480 Md A. R. Al Amin et al.

measurements and their metadata, we conducted the same experiment described
in the paper [13]. Then, in the data training & generation phase, we first train the
GAN framework by feeding the NSL-KDD dataset and then train the DP-GAN
framework. Finally, both (GAN and DP-GAN) synthetic data is generated.

4 Use Case Scenario: Data Sharing for Algorithm
Training

4.1 Dataset Description

KDDCUP’99 is the most widely used dataset for intrusion detection. Despite the
fame, the dataset suffers from two critical issues that highly affect the perfor-
mance of intrusion detection systems trained on it, resulting in a limited validity.
The first issue is the significant number of redundant records, causing biases on
the learning algorithm towards those frequent records. Another issue is the level
of complexity, as authors in [18] show that various evaluations as accuracy, detec-
tion rate, and false-positive rate are not a proper use of the KDD dataset. To
solve these problems, authors in [18] proposed the NSL-KDD dataset, which
consists of selected records of the complete KDD dataset.

The NSL-KDD dataset contains network traffic extracted from the real net-
work environment consisting of normal (benign) traffic and malicious traffic.
There are four main categories of attacks, namely Probing (Probe), Denial of
Service (DoS), user to Root (U2R), and Root to Local (R2L). Extracted fea-
tures from the raw traffic data are labeled as benign or malicious traffic. The 41
features consist of 9 discrete and 32 continuous values. Features are also catego-
rized based on 4 semantic categories, including intrinsic, content, time-based
traffic, and host-based traffic, as presented in Fig. 3. The dataset has 125 k
records for a total size of 20 MB.

We use the Pearson Correlation Coefficient (PCC) for feature extraction in
our experiment. PCC measures the strength and direction of a linear relationship
between two variables. For our case, correlation coefficients whose magnitude
is 0.5 indicate variables that can be considered moderately correlated. There
are 9 features have been selected form NSL-KDD dataset which are, count,
srv serror rate, serror rate, dst host serror rate, dst host srv serror rate,
logged in, dst host same srv rate, dst host srv count, same srv rate.

Fig. 3. Features description

Quality of Synthetic Data 481

Table 1. Non-identifier features examples

Feature type Features examples

Categorical protocol type, service, flag, label

Continuous src bytes, dst bytes, num failed login

Discrete logged in, root shell, su attempted

4.2 Privacy Concerns for the Dataset

IDS is one of the most effective defense mechanisms to protect from cyber-
attacks if equipped adequately with updated rules and signatures. In particular,
for machine learning-based IDS, the availability of high-quality and updated
data is essential to deal with new versions of hacker tools. Data sharing offers
a way to increase the knowledge base of security teams in a relatively short
time and proactively. Privacy is, however, a key stumbling block for the research
community because of contents not suitable to be shared. Privacy-sensitive data
in IDSs can be found from three cases: IDS input data, IDS built-in data, and
IDS generated data [15]. Privacy-sensitive fields in these cases can be present
in two fields: privacy-preserving identifiers (i.e., user-names, IP address) and
privacy-preserving non-identifiers (i.e., time-stamps, attack signature). In this
paper, we focus on privacy-preserving non-identifiers, i.e., attack signatures.

IDS built-in data includes attack signatures to be used in misuse-based IDSs.
Security vendors usually consider attack signatures as a piece of proprietary
information to not be revealed to competitors. Furthermore, attackers can ana-
lyze signatures to learn potential vulnerabilities in target systems and design
their exploits. Therefore, devices running an IDS can become an accessible
source of information for attackers who want to learn and design new attacks.
As we mentioned in the earlier section, there are four categories of attacks in
the NSL-KDD dataset. All the fields in the dataset are non-identifiers, meaning
there are no user names or IP addresses. Therefore, this paper aims to pro-
tect non-identifier information and generate a synthetic version of NSL-KDD
while preserving the attack signature information. In Table 1, we show samples
of non-identifier information from the dataset.

4.3 Data Preprocessing

Dataset needs to be processed before feeding into the training model. In our
experiments we assess the performance with two synthetic data generation
approaches as provided by DoppleGANger, a) intrusion detection accuracy with-
out differential privacy, b) intrusion detection accuracy with differential privacy.
Both approaches require us to pre-process the dataset.

Pre-Processing for ML: NSL-KDD dataset contains 41 features of multiple
types and ranges. To apply the DG tools, we perform numeric conversion and

482 Md A. R. Al Amin et al.

normalization. Among the 41 features, 9 are discrete and 32 are continuous. In
the case of 9 discrete features, 3 features are non-numeric and 6 features binary
(0,1). We use one-hot encoding to convert the non-numeric values to numeric
values, such as ”protocol type” (TCP, UDP, ICMP).

Further, we use standard scalar to eliminate the dimensional impact between
features values. For all discrete and continuous features, the min-max normal-
ization method is used to convert the numeric values into the interval of [0,1]:

y
′
=

y − ymin

ymax − ymin

where, y represents the value before normalization for a specific feature in
the dataset and y

′
is the value after the normalization.

Fig. 4. Dataset formatting for DP-GAN

Pre-Processing for DP-GAN: To train the DP-GAN model, dataset needs
to be formatted into the metadata and measurements categories [13] as show in
Fig. 4. In the schema for metadata, data feature and data attribute represent
a list of objects, indicating dimension, type, and normalization of each feature
and attributes in the Python Pickle format (e.g., data feature output.pkl). The
data attribute in the metadata are protocol type, service, flag. The remain-
ing 38 features for dimension, type, and normalization are present in the
data feature.

In the schema for measurements, data feature represents the value of differ-
ent features in NumPy 3D array format. data attribute represents the one-hot
encoding of 3 categorical features (protocol type, service, flag) and label of
each record i.e. benign and malicious. data gen flag represents the time-series
activation. All values are stored in an NPZ format with three arrays [13]:

– data feature: Training features are stored in numpy float32 array format. The
size is [(number of training samples) x (maximum length) x (total dimension
of features)]. Categorical features are stored by one-hot encoding; for example,

Quality of Synthetic Data 483

Table 2. Accuracy in detection of normal and malicious traffic in original dataset

Classification algorithm Training accuracy Testing accuracy

Random Forest 99.42 98.69

Linear Support 97.84 97.8

Vector Machine

Logistic Regression 96.99 96.99

Gaussian Naive Bayes 84.45 84.33

Gradient Boosting 98.24 98.21

Multi-Layer Perceptron 98.61 98.51

if a categorical feature has 3 possibilities, then it can take values between [1.,
0., 0.], [0., 1., 0.], and [0., 0., 1.]

– data attribute: Training attributes are stored in numpy float32 array format.
The size is [(number of training samples) x (total dimension of attributes)].
Categorical attributes are stored by one-hot encoding; for example, if a cat-
egorical attribute has 3 possibilities, then it can take values between [1., 0.,
0.], [0., 1., 0.], and [0., 0., 1.].

– data gen flag: Flags indicating the activation of features, in numpy float32
array format. The size is [(number of training samples) x (maximum length)].
1 means the time series is activated at this time step, 0 means the time series
is inactivated at this time step. In our case, data gen flag remains activated
(1) all the time as the dataset does not have missing values.

5 Experimental Evaluation

We use Python (v3.7.10) and Tensorflow (v1.14.0) for the experiments. Ten-
sorflow can be run on CPU or GPU; however, for our experiment, we use
GPU Task Scheduler library, which is computationally faster than CPU. To
record the intrusion detection accuracy, we tested 6 supervised machine learn-
ing models, specifically Random Forest (RF), Linear Support Vector Machine
(LSVM), Logistic Regression (LR), Gaussian Naive Bayes (GNB), Gradient
Boosting (GB), and Multi-Layer Perceptron (MLP).

To start with the normal and malicious traffic classification on the original
NSL-KDD dataset, we process it as mentioned in Sect. 4. We adopt correlation-
based feature selection to reduce dimensionality, thus obtaining a reduced set
of 9 features. We divide the dataset in two, with 0.75 for training and 0.25 for
testing. The accuracy in detecting normal and malicious traffic on the original
dataset is presented in Table 2.

In the next phase of our experiment, we feed the processed dataset as
described in Sect. 4. C to generate a pure GAN-based synthetic dataset. In
Table 3, some of the core parameters of the GAN-based framework [13] are
reported.

484 Md A. R. Al Amin et al.

Table 3. GAN model parameter

Parameter Value Meaning

batch size 100 Training batch size

d rounds 1 Number of discriminator

steps per batch

g rounds 1 Number of generator

steps per batch

g lr 0.001 Learning rate in Adam

for training the generator (1/s)

d lr 0.001 Learning rate in Adam

for training the discriminator (1/s)

attr disc num layers 5 Number of layers in the

auxiliary discriminator

attr disc num units 200 Number of units in each layer

of the auxiliary discriminator

disc num layers 5 Number of units in each layer

of the auxiliary discriminator

initial state random “random” means setting

the initial state to random numbers

l2 norm clip 1.0 Bound the optimizer’s

sensitivity to individual

training points

noise multiplier [1.0, 2.0, Amount of noise

4.0] sampled and added to gradients

during training

Table 4. Accuracy in detection of normal and malicious traffic in synthetic dataset

Classification algorithm Training accuracy Testing accuracy

Random Forest 99.99 99.6

Linear Support 98.25 97.93

Vector Machine

Logistic Regression 96.85 96.44

Gaussian Naive Bayes 90.71 90.61

Gradient Boosting 99.28 99.15

Multi-layer Perceptron 99.15 98.92

After the training, the GAN framework generates samples with a mix of nor-
mal and malicious traffic. The pure GAN generates 125K samples for training
and 50K samples for testing. The accuracy detection on the synthetic dataset

Quality of Synthetic Data 485

Fig. 5. Classification accuracy comparison (original vs GAN)

Fig. 6. Classification accuracy comparison (original vs DP-GAN)

is presented in Table 4. In Fig. 5, we present a comparison of testing accuracy
between the original dataset and GAN-based synthetic data. It is notable from
Fig. 5 that all the machine learning models perform well in classifying mali-
cious traffic on the synthetic dataset than the original dataset. In the origi-
nal NSL-KDD dataset, the distribution between malicious and normal traffic is
imbalanced. On the other hand, the malicious and normal traffic distribution
is balanced in the synthetic dataset. We observe that the GAN-based synthetic
dataset gives high accuracy in classifying malicious traffic from normal traffic.

In the next phase of the experiments, we assess the accuracy of the differen-
tial privacy GAN (DP-GAN). We train the model using DoppleGANger’s [13]
differential privacy framework, which is based on the Google Tensorflow Privacy
library [7]. The trained model generates synthetic samples for malicious and nor-
mal traffic. Machine learning models of the previous assessment are also applied
to the differentially private synthetic dataset. Classification accuracy is presented
in Fig. 6 for ε = 6.73. Here, we note that the detection accuracy for malicious
traffic is close to the detection of malicious traffic on the original dataset. Since

486 Md A. R. Al Amin et al.

Fig. 7. Classification accuracy for different privacy budget values

Fig. 8. Classification accuracy when ML models are trained on DP-GAN dataset and
test on original dataset.

DP-GAN provides a model with a differential privacy budget, we can now assess
the detection accuracy against several values of privacy parameters. In order to
proceed in the assessment with DP, we record the accuracy for different ε values
as depicted in Fig. 7 for Random Forest algorithm. The value on the x-axis rep-
resents different epsilon values (the letter E represents power of 10 as exponent).
We observe that lowering the budget value deteriorates the accuracy to an unac-
ceptable level. We also observe that when the privacy budget parameter is ε =
6.73, the accuracy is 95%, which is close to the original accuracy. For ε = 6.73,
we obtain a good trade-off between differential privacy and accuracy. Finally,
we assess the DP-GAN model in a realistic scenario, where it is trained on the
syntehtic dataset and it is tested on the original dataset, while keeping the same
privacy budget parameter found above. The generated dataset has 126k samples

Quality of Synthetic Data 487

Table 5. Confusion Matrix when models are trained on synthetic dataset and tested
on original dataset

ML Accuracy Precision Recall F1-score

models

RF 0.8456 0.9127 0.7863 0.8448

LSVM 0.5292 0.6969 0.2112 0.3242

LR 0.5440 0.7711 0.2091 0.3290

GNB 0.6831 0.6348 0.9586 0.7638

GB 0.9038 0.9060 0.9149 0.9104

MLP 0.5893 0.7835 0.3203 0.4547

for training the ML models. We observe Random Forest and Gradient Boosting
models perform well on the original dataset where the accuracy is 85% and 90%
respectively, as shown in Fig. 8. However, the other models seem to suffer from
generative effects, thus showing worse performance than training with original
data.

To further understand ML models’ performance, we use three well-known
metrics: Precision, Recall, and F1-Score. These metrics depend on four basic
attributes, as follows:

– True Positive (TP) - Attack data which is correctly classified as an attack.
– True Negative (TN) - Benign data which is correctly classified as benign.
– False Positive (FP) - Benign data which is incorrectly classified as an attack.
– False Negative (FN) - Attack data which is incorrectly classified as benign.

The accuracy is the percentage of total correct classifications, where precision
- i.e., TP/(TP+FP) - measures the number of positive classifications that belong
to the positive class. Recall - i.e., TP/(TP+FN) - quantifies the number of correct
class predictions made out of all positive examples in the dataset. F1-score -
i.e., (2*Precision*Recall)/(Precision+Recall) - provides the harmonic mean of
precision and recall in one number. From Table 5, it is evident that Random
Forest and Gradient Boosting both models F1-score is close to the value of
accuracy. Hence, we can conclude that both models (RF and GB) performed
well.

Membership Inference Attacks Evaluation: GAN models are susceptible
to Membership Inference Attacks (MIA). In the membership inference attacks,
the attacker aims at inferring whether trained data samples have been used to
train a machine learning model, hence revealing content in the original dataset.
A simple MIA model is presented in Fig. 9. Authors in [4] argue that a smaller
training dataset leads to a higher risk of revealing information used in training.
This raises the concern when dealing with a real-world privacy-sensitive dataset
(e.g., intrusion detection samples), and differential privacy is an effective defense
mechanism against MIA on GAN training models [4].

488 Md A. R. Al Amin et al.

Fig. 9. Membership inference attack model

Fig. 10. Membership inference attacks against DP-GAN based dataset

To measure GAN model robustness against MIA, we use attack success rate
[13] as a metric. We find that the attack success rate is high when the train-
ing sample size is small. For instance, with 200 training samples, the attack
success rate is 0.998. However, increasing the sample size, the attack success
rate decreases, as shown in Fig. 10. For the DP-GAN model, we note that, with
200 training samples, the attack success rate is 0.54, which is lower than GAN.
Our results suggest that the differential privacy-based GAN model can effec-
tively defend against MIA using more training data as compared to pure GAN
models.

6 Conclusion

In this paper, we investigated methods to protect privacy in the case of data
sharing and for training machine learning algorithms for intrusion detection.
First, we assessed the quality of synthetic datasets generated with Generative
Adversarial Networks (GANs) and Differential Privacy, particularly with the

Quality of Synthetic Data 489

DoppleGANger toolset. We assessed the quality of synthetic data in terms of
detection accuracy, i.e., ability to classify malicious vs. benign network traffic.
We use the well-known intrusion detection dataset NSL-KDD. The experimen-
tal results showed that the synthetic dataset with differential privacy (DP-GAN)
could achieve high classification accuracy (95.95%) while maintaining a low pri-
vacy budget parameter (ε = 6.73), i.e., the low success rate for member inference
attacks. We also observed a 90% accuracy when the model was trained on the
DP-GAN dataset and tested on the original dataset. Our results suggested a
practical guideline: dataset owners can generate differentially private synthetic
datasets and share the dataset among researchers and cyber-security practition-
ers without privacy concerns. Then, the researcher can develop ML models to
achieve high binary (malicious or benign) and multiclass (attack categories, i.e.,
probe, DoD, R2L, U2R) classification accuracy.

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC conference on computer and communications security, pp.
308–318 (2016)

2. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

3. Chakrabarti, S., Chakraborty, M., Mukhopadhyay, I.: Study of snort-based ids. In:
Proceedings of the International Conference and Workshop on Emerging Trends
in Technology, pp. 43–47 (2010)

4. Chen, D., Yu, N., Zhang, Y., Fritz, M.: Gan-leaks: A taxonomy of membership
inference attacks against generative models. In: Proceedings of the 2020 ACM
SIGSAC conference on computer and communications security, pp. 343–362 (2020)

5. Dandekar, A., Zen, R.A.M., Bressan, S.: A Comparative Study of Synthetic Dataset
Generation Techniques. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G.,
Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11030, pp. 387–395. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98812-2 35

6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, vol. 27 (2014)

7. Google: Tensorflow privacy. https://github.com/tensorflow/privacy
8. Huang, S., Lei, K.: Igan-ids: an imbalanced generative adversarial network towards

intrusion detection system in ad-hoc networks. Ad Hoc Netw. 105, 102177 (2020)
9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-

tional adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1125–1134 (2017)

10. Jordon, J., Yoon, J., Van Der Schaar, M.: Pate-gan: Generating synthetic data
with differential privacy guarantees. In: International conference on learning rep-
resentations (2018)

11. Kotal, A., Piplai, A., Chukkapalli, S.S.L., Joshi, A., et al.: Privetab: Secure and
privacy-preserving sharing of tabular data. In: ACM International Workshop on
Security and Privacy Analytics (2022)

12. Lin, Z., Shi, Y., Xue, Z.: Idsgan: Generative adversarial networks for attack gen-
eration against intrusion detection. arXiv preprint arXiv:1809.02077 (2018)

http://arxiv.org/abs/1809.11096
https://doi.org/10.1007/978-3-319-98812-2_35
https://github.com/tensorflow/privacy
http://arxiv.org/abs/1809.02077

490 Md A. R. Al Amin et al.

13. Lin, Z., Jain, A., Wang, C., Fanti, G., Sekar, V.: Using gans for sharing networked
time series data: Challenges, initial promise, and open questions. In: Proceedings
of the ACM Internet Measurement Conference, pp. 464–483 (2020)

14. Mukherjee, S., Sharma, N.: Intrusion detection using naive bayes classifier with
feature reduction. Procedia Technol. 4, 119–128 (2012)

15. Niksefat, S., Kaghazgaran, P., Sadeghiyan, B.: Privacy issues in intrusion detection
systems: a taxonomy, survey and future directions. Comput. Sci. Rev. 25, 69–78
(2017)

16. Salem, M., Taheri, S., Yuan, J.S.: Anomaly generation using generative adversarial
networks in host-based intrusion detection. In: 2018 9th IEEE Annual Ubiquitous
Computing, Electronics & Mobile Communication Conference (UEMCON), pp.
683–687. IEEE (2018)

17. Shahriar, M.H., Haque, N.I., Rahman, M.A., Alonso, M.: G-ids: Generative adver-
sarial networks assisted intrusion detection system. In: 2020 IEEE 44th Annual
Computers, Software, and Applications Conference (COMPSAC), pp. 376–385.
IEEE (2020)

18. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the
kdd cup 99 data set. In: 2009 IEEE symposium on computational intelligence for
security and defense applications, pp. 1–6. IEEE (2009)

19. Xie, L., Lin, K., Wang, S., Wang, F., Zhou, J.: Differentially private generative
adversarial network. arXiv preprint arXiv:1802.06739 (2018)

20. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular
data using conditional gan. In: Advances in Neural Information Processing Systems
32 (2019)

21. Yu, Z., Tsai, J.J.: A framework of machine learning based intrusion detection
for wireless sensor networks. In: 2008 IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (sutc 2008), pp. 272–279. IEEE
(2008)

22. Zhang, L., Jiang, S., Shen, X., Gupta, B.B., Tian, Z.: Pwg-ids: An intrusion detec-
tion model for solving class imbalance in iiot networks using generative adversarial
networks. arXiv preprint arXiv:2110.03445 (2021)

http://arxiv.org/abs/1802.06739
http://arxiv.org/abs/2110.03445

Forensic Analysis and Detection
of Spoofing Based Email Attack Using

Memory Forensics and Machine Learning

Sanjeev Shukla1(B), Manoj Misra1, and Gaurav Varshney2

1 Department of Computer Science and Engineering, Indian Institute of Technology,
Roorkee, India

{sanjufcc,manojfec}@iitr.ac.in
2 Department of Computer Science and Engineering, Indian Institute of Technology,

Jammu, India
gaurav.varshney@iitjammu.ac.in

Abstract. Emails encounter many types of cyber-attacks and email
spoofing is one of the most common and challenging investigation prob-
lems. This paper identifies spoofing-based email attacks in an organiza-
tion by analyzing received and replied emails. The detection works by
capturing the email traces via memory forensics. Unlike the traditional
approaches of capturing the entire physical memory, we only capture
the memory of relevant processes for email header extraction. It sig-
nificantly reduces the size of the memory dump and makes detection
faster. We suggest a novel mechanism called URL extractor, which uses
seven novel features from URL to identify the live running email mes-
sage process by applying ML that traces received emails and captures
their header fields for analysis. The authentication header fields of SPF,
DKIM, DMARC, and ARC are examined closely to develop a detection
algorithm for received emails. Similarly, novel header fields of Reference
along with MX record are applied for the detection of replied emails. The
MX record is fetched to verify the domain name by sending a forward
ns-lookup query to DNS. It also includes an email attack alert mecha-
nism for intimating IT admins of an organization regarding suspected
attacks. The results thus obtained show that email detection takes 35
secs (apprx.) to complete with high accuracy and low false positives.

Keywords: Email forensics · Email spoofing · Memory forensics ·
Cyber security · Email attacks

1 Introduction

In the modern era of an IT-enabled society, consumers increasingly use digital
communication as a preferred mode of interaction for their business and personal
needs. Email is still a reliable, safe, and most widely used mode of data commu-
nication on the Internet. As email services have gained popularity, attackers are

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 491–509, 2023.

https://doi.org/10.1007/978-3-031-25538-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_26&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_26

492 S. Shukla et al.

using email as a platform to launch cyber attacks [1]. Email spoofing is one of
the prevalent attacks on the email platform. Most Business Email Compromises
(BEC) and phishing attacks use email spoofing as the first step. In email spoof-
ing, the attacker finds a way to deceive the receiver into trusting a false identity
of the sender, eventually gaining a higher level of trust. Email spoofing is gener-
ally performed by finding out an open relay or open simple mail transfer protocol
(SMTP) server which can relay the emails without any sender authentication.

1.1 Motivation

CSO Online article “Top cybersecurity facts, figures and statistics” and a survey
by International Data Group (IDG) in 2020 report that email application is
still mostly preferred for malicious propagation as found in 94% of cases. It
also states that phishing accounts for 80% of reported security incidents [2]. It
brings a unique challenge for organizations as it caters to both external and
internal attack threats. The inbound emails (received emails) attacks pose a
challenge of early detection so that necessary mitigation steps can be applied.
Also, a malicious insider can use the organization’s precious resources to launch
an email spoofing attack. This outbound emails (sent emails) attack is more
difficult to detect and needs urgent attention as it blacklists the IP addresses of
the organization and brings a bad reputation. Therefore, the motivation of this
work is to provide a mechanism for detection and early warning for admins and
security experts to address email spoofing attacks precisely and timely.

1.2 Email Forensics

Email forensics is a sub-branch of network forensics that performs forensic inves-
tigation to extract digital evidence regarding an email for further analysis. Emails
are subjected to threats and are vulnerable to spoofing, spamming [3], and phish-
ing attacks [4]. Email spoofing [5] is a critical step to a successful phishing attack
as the hacker impersonates someone whom the victim trusts [6]. This is due
to the SMTP’s inherent weakness, lacking source authentication or verification
mechanisms. The email header analysis is crucial to email forensics investigation
because the critical information related to the email sender along the path from
sending mail transfer agent (MTA) to receiving MTA can be obtained through
the email header metadata [7].

1.3 Memory Forensics

Memory forensics is a crucial element and upcoming sub-branch of digital foren-
sics, where the current state of physical memory (RAM) of a compromised device
or application is captured and dumped on the hard disk as a snapshot file for
forensic investigation [8,9]. This snapshot file is referred to as a memory dump.
The most significant advantage of using memory forensics is that it guaran-
tees non-repudiation and can retrieve data even when end-to-end encryption is

FA and Detection of Spoong Based Email Attack Using MF and ML 493

applied at the application or transport layer. Though memory forensics is quite
effective in some instances, its practical application has some critical challenges.
The biggest challenge is the size of memory dump file. Every snapshot of the
entire physical memory is enormous in size and is proportional to the size of
the RAM installed on a computing device. Periodically storing or processing
memory for any analysis is expensive and time-consuming, and hence only near
real-time solutions can be built using such analysis.

1.4 Contribution

This paper proposes a detection scheme that identifies spoofed emails in received
and replied emails via live memory forensics. The traditional approach in mem-
ory forensics is to capture live memory dump of complete RAM resulting in a
large file to be stored, which further requires a significant amount of time for
processing and extracting the email header [10]. This approach was improved
by capturing all the live processes associated with the browser having multiple
tabs [11]. The above method can further be enhanced by addressing the research
gap by identifying only the process (amongst all live browser running processes
having multiple tabs and web pages opened for browsing) associated with email
inbox messages and only capturing it. Therefore if user is running a chrome
browser and is browsing ten websites (10 processes), then the objective is to find
the one process out of 10 which is associated with the email inbox message. The
significant contributions of this paper are, thus, as follows:

– We propose a resource-effective email header extraction process from live
memory by identifying 7 novel features from URL to identify the live running
email message process by using ML.

– We develop an email spoofing detection algorithm using novel header fields
of ARC and References for received and replied emails.

2 Literature Survey

A literature survey for email spoofing detection techniques and approaches is
carried out where research articles after 2013 are considered, as shown in Table 1.

P. Mishra et al. [12] proposed email date and time as measures to detect
email spoofing. The algorithm checks the semantics of the date and time fields
and matches the sending date and the last date of the received email. Finally,
it calculates the threshold or margin of standard time taken by receiving email,
which indicates it is a spoofed or legitimate email. S. Gupta et al. [13] proposed
spoofed email detection of received emails by examining the header fields of email
authentication standards like SPF, DKIM, DKIM-Signature, and DMARC. The
proposed algorithm checks the header field values and decides the authenticity
of an email. Small dataset and not finding accuracy are its limitation. R. P Iyer
et al. [10] proposed spoofed email detection that uses the volatile memory of
a system. They captured a host machine’s complete volatile memory (RAM)

494 S. Shukla et al.

Table 1. Comparison of similar email spoofing detection schemes

Author(s) Novelty Spoofed email detection uses Email header used for Dataset

Memory Received Replied Received Replied Database Size

Forensic Email Email Email Email (Emails)

P. Mishra To detect email spoofing using No Yes No Date, Time - Self Total =3

et al. [12] date and time fields Generated (All S)

S. Gupta Developed algorithm based on No Yes No SPF, DKIM, D- - Self Total =10

et al. [13] Authentication header field values Sig, DMARC Generated (Mix)

R.P Iyer Applied the concept of memory Yes Yes Yes Message-ID InReplyTo Self Total =70

et al. [10] Forensic for the first time. Generated (All S)

S. Shukla Reduced computational complexity Yes Yes No Message-ID Self G=50, S=50,

et al. [11] By using process forensics MX record – Generated Mix =100

O. Oduni Classification of email header No Yes No From, - Self 1000

bosi [14] Using ML to detect spoofing Message-ID Generated

K. Konno Detect false positive email deliveries No Yes No DMARC - Dmarc 1 week D-

et al. [15] In sender domain authentication – Report marc Report

S. Maroof Large-scale analysis of the adoption No Yes No SPF, DMARC Open 236 mil+

et al. [16] of email anti-spoofing schemes – Source 32k (approx)

G-Genuine, S-Spoofed, FP - False Positive, Mix - both Spoofed and Genuine emails

and extracted email header features from it. The detection algorithm used only
one email header called message-ID to check whether the email was legitimate
or spoofed. The limitation of this approach was the generation of a large size
memory snapshot file resulting in significant time required for the detection
algorithm. S. Shukla et al. [11] proposed an improved method where instead of
capturing the entire RAM, only live running processes related to the browser
were captured. It reduced the size of the captured file significantly and improved
the capturing speed. The detection algorithm used message-ID and DNS lookup
in real-time to verify the domain IP address. The limitation of this technique
was that it captured all the live running processes since it could not identify the
exact browser process of all. O. Odunibosi [14], in his work, proposed machine
learning to perform email spoofing detection. He extracted the emails from the
user inbox using python script, saved the headers in CSV format, and classified
the user inbox message as spoofed or legitimate using the RF algorithm. The
limitations of such an approach is its dependence on an email server for open-
port or protocol for fetching emails, the necessity to write a new script for each
email server, and the usage of only one header field (message-ID) to determine
spoofed emails. K. Konno et al. [15] suggested an approach to identify legitimate
IP addresses by using DMARC report. K-means clustering is applied to find false
positives in sender domain authentication. The limitation is that it only works
where DMARC is implemented, and it does not check false negatives. S. Maroofi
et al. [16] studied and evaluated the adoption rate of SPF and DMARC across
a vast set of domains. He proposed an algorithm to detect defensively registered
domains and enumerated misconfigured SPF, deployment in sub-domains, and
the possibility of sending spoofed emails in a non-existent subdomain by an end-
to-end subdomain. The limitation of its approach is that it does not provide any
detection algorithm and results in sharing recommendations.

FA and Detection of Spoong Based Email Attack Using MF and ML 495

3 Proposed Approach

The proposed scheme of spoofed email attack detection is designed to identify
spoofed email attacks by analyzing the email header of both received and replied
emails. This is achieved by capturing the memory of the live running process
associated with an email inbox opened over the browser on the host. The email
header information is then extracted from the live memory dump and passed to
the detection algorithm to flag spoofed emails.

3.1 System Architecture

The architecture of the proposed system consists of two modules - The email
header capturing module and The detection module - as shown in Fig. 1.

Fig. 1. Architecture diagram of the proposed work

Email header capturing module consists of four sub-modules:

URL Extractor: The task of this sub-module is to extract the URL of a pro-
cess with an open email inbox and extract features from the URL representing
an email transaction. In order to extract features, we have studied 35 most
popular email servers currently used to provide email services [17]. Our experi-
ment included extracting the open email URL. For this, we had to create email
accounts on these servers. That gave us access to the email inbox. We even sent
a few test emails and extracted open email URLs. After obtaining all the URLs
from these email servers, we closely examined the structure of the complete
URL to extract common features that can be attributed as distinguishable (i.e.,
features which can reliably be used to identify a URL as an email transaction
URL).

496 S. Shukla et al.

Feature Extraction: Any webpage opened is referred to by its Uniform
Resource Locator (URL). We have selected eight features (F1-F8) to identify
an email based URL. While F1-F6 are Text-based Features that are searched to
find the occurrence’s of the keyword in URL, F7-F8 are other features. Out of
eight features, F1-F7 are novel features and F8 is taken from literature. These
features in the structure of opened email URL are discussed below:

– Mail: The ‘mail’ keyword is very commonly used in URLs, prefixing the
domain name of an email server. This is a strong feature that is found in
most email servers. E.g., ; is an email message opened URL. Here ‘mail’ pre-
fixes the google.com domain. In some cases, if the mail keyword is not present
as a prefix of a domain, then it is found in the structure of the email URL.
Therefore we check the keyword ‘mail’ in the URL structure and its presence
is considered as relevant URL.

F1 =

{
1, if ’mail’ keyword exists
0, otherwise

(1)

– Message-ID: This is a long alphanumeric string of random characters that are
very common in all email URLs. It represents the unique reference given to
each message. E.g., https://mail.protonmail.com/inbox/bdb1RXwqXwqR8J-
gUhUfMxVb; is an email-based URL where message-ID is mentioned at the
end of the URL structure.

F2 =

{
1, if the last alphanumeric string exists
0, otherwise

(2)

– Inbox: ‘Inbox’ keyword is another significant feature found in an email
opened URLs. E.g., https://www.fastmail.com/-mail/Inbox/ff47cec8a17710
ad.M6eb-41729aIn; some places, the ‘inbox’ keyword is represented by
’folder/1’. Its presence in URL is marked as relevant.

F3 =

{
1, if ’inbox’ keyword exists or ’folder/1’ exist
0, otherwise

(3)

– Messages: Some email servers use ‘message’ as a keyword to represent
the email message in the URL. Its presence in URLs by some service
providers is observed. E.g., https://in.mail.yahoo.com/d/folders/1/message/
277?greferrer-a0cHM6-Ly9sb2dpanclBJ55Acd0YZH8t.

F4 =

{
1, if ’message’ keyword exists
0, otherwise

(4)

– Home directory: This is represented by ‘/0’in
the URL to mark the home directory. E.g., https://outlook.live.com/mail/
0/inbox/id/ADAwATMwMtM2NmOC.

F5 =

{
1, if ’/0’ exists
0, otherwise

(5)

https://mail.google.com/mail/u/0/inbox/FMfcgzGkXSV-mkp
https://mail.protonmail.com/inbox/bdb1RXwqXwqR8J-gUhUfMxVb
https://mail.protonmail.com/inbox/bdb1RXwqXwqR8J-gUhUfMxVb
https://www.fastmail.com/-mail/Inbox/ff47cec8a17710ad.M6eb-41729aIn
https://www.fastmail.com/-mail/Inbox/ff47cec8a17710ad.M6eb-41729aIn
https://in.mail.yahoo.com/d/folders/1/message/277?greferrer-a0cHM6-Ly9sb2dpanclBJ55Acd0YZH8t
https://in.mail.yahoo.com/d/folders/1/message/277?greferrer-a0cHM6-Ly9sb2dpanclBJ55Acd0YZH8t
https://outlook.live.com/mail/0/inbox/id/ADAwATMwMtM2NmOC
https://outlook.live.com/mail/0/inbox/id/ADAwATMwMtM2NmOC

FA and Detection of Spoong Based Email Attack Using MF and ML 497

– User ID: The ‘uid’ or ‘id’ keyword is present in most URLs representing user
ID. This feature is commonly cited in most email URLs. E.g., https://mail.
yan-dex.com/?uid=1426701416#message/175921860444160001.

F6 =

{
1, if ’uid’ or ’id’ keyword exists
0, otherwise

(6)

– Special Character: The presence of a special character in a URL like ‘?’
is acceptable. This is commonly found in email URLs. E.g., https://mail.
tutanota.com/mail/id=?-MaDCBSW-7-2MaDCBXBUZ-2; Any other spe-
cial symbol found like ’@’ can be malicious, phished, or irrelevant.

F7 =

{
1, if ’?’ or no special character
0, otherwise

(7)

– HTTPS/HTTP count: We count the number of occurrences of this feature
(protocol) in the URL. More than one count is malicious while a single count
of HTTPS/HTTP is genuine.

F8 =

{
1, if https/http count is > 1
0, otherwise

(8)

In order to further experiment and find the significance of features, we use
ML-based algorithms. Before applying ML, we need to prepare our dataset.

Dataset - Our dataset thus used comprises a total of 33080 URLs, of which
14350 URLs are downloaded from the 35 popular email servers having email
features [17] and the rest are non-email URLs that are used from Alexa top
websites [18]. We then prepare a CSV file have eight columns representing the
eight features (discussed above) and the tuples represent the URL. We take the
first tuple, check the keywords and mark them as 1 or 0 based on their presence
in the URL. E.g., If a feature (named “mail”) is present in the URL, it is marked
as 1 (in the ”mail” column) and if it is not, then it is represented as 0. In this
way, each URL is searched to find the presence of the corresponding feature
and they are marked as 1 or 0 in the csv file. The class is characterized as 1, if
features are present and 0, if features are not present.

Feature Selection - Feature selection is the most critical part of any data
model. Here, our aim is to select the most optimal features that should be inde-
pendent of any bias in order to generate a highly efficient data model. To achieve
this, we used Filtering Method, where we tried Chi-Square(CS) and Information
gain (IG) techniques and we found that CS results were not appropriate for our
problem due to their dependence on the significance level. Therefore, we chose
IG. Further, a brief comparison was also made to understand the discrepancies
between Gini Index (GI) and IG based on the Entropy quantifier. In contrast,
GI facilitates the bigger distributions and is easy to implement, whereas the IG
favors lesser distributions having small counts with multiple specific values. GI

https://mail.yan-dex.com/?uid=1426701416#message/175921860444160001
https://mail.yan-dex.com/?uid=1426701416#message/175921860444160001
https://mail.tutanota.com/mail/id=?-MaDCBSW-7-2MaDCBXBUZ-2
https://mail.tutanota.com/mail/id=?-MaDCBSW-7-2MaDCBXBUZ-2

498 S. Shukla et al.

is predominantly used in CART algorithms, while IG is used in ID3, C4.5, and
J48 algorithms. Also, GI operates on the categorical target variables, whereas IG
computes the difference between entropy before and after the split and indicates
the impurity in classes of elements. IG is thus applied to calculate the normalized
average impurity using Eq. 9.

Gain(S,A) = Ent(S) −
∑

v∈V alues(A)

|Sv|
S

Ent|Sv| (9)

where, Values(A) is the all possible values of attribute A, and Sv is the subset
of S for which attribute A has value v. Ent(Entropy) is calculated using Eq. 10.

Entropy(S) = −(P ⊕ log2P ⊕ +P � log2P�) (10)

Where, P⊕ is the portion of positive examples and P� is the portion of negative
examples in S.

Fig. 2. Feature extraction

Figure 2 shows the ranking of all the features based on their information gain
values, where the x-axis shows the features and the y-axis shows the Info Gain
value. As we can observe from Fig 2, the gain value stagnates at F6, F7 and F4
and then takes a dip after F8. Thus we select the top 7 features which have the
highest significance value and impact on the model.

Classifier Selection: The next step is to select an appropriate classifier based
on its performance to predict the model correctly. We use binary classifiers to
test our proposed method based on the features described above and classify the

FA and Detection of Spoong Based Email Attack Using MF and ML 499

URLs as relevant (for opened emails) or irrelevant (for non-email URLs). Next, 6
binary ML classifiers, Naive Bayes (NB), Support Vector Machine (SVM), Log-
ical Regression (LR), Decision Tree (DT), Random Forest (RF) and K Nearest
Neighbour (KNN), are compared with 7 features set (as obtained from feature
extraction) where k-fold cross validation (k = 10) is applied.

Fig. 3. Comparison of different ML classifier

All the chosen classifier performance is evaluated with precision, recall, and
F1-score values, as shown in Fig. 3, respectively. We chose the RF classifier based
on its performance (which is highest amongst all), avoids overfitting while model
buildup time is marginally higher (1–2%). After the selection of the classifier, the
dataset is used to train and test the model. The dataset is divided with various
random data splits using 10-fold cross-validation.

Our program works as follows. Each instance of browser execution triggers
the event listener of the URL extraction module to obtain the URL and Process
ID(PID) of the browser tab and verify whether the URL is of relevance (email is
opened in the browser). The relevance of URL is found by applying ML, which
uses the 7 email URL features as explained above. If the URL is not relevant, it
is immediately rejected, and the program (developed in python) stops.

Memory Forensics: The live active processes from memory associated with
email are captured using PID (PID obtained from URL extraction module) by
using Magnet Process Capturing Tool [19].

Extract Strings: From captured memory dump, we extract ASCII and UNI-
CODE strings using Microsoft’s Sysinternal Strings64 [20].

Filter Email Header: Finally, the email header fields that the Detection Algo-
rithm will use are extracted from the Strings file.

500 S. Shukla et al.

3.2 Detection Algorithm for Received Emails

Email header analysis is essential to identify spoofing attacks in emails. Some of
the header fields used in the detection algorithm are explained in Table 2:

Table 2. Header Field Description

Header field Definition/Description

From E-mail message sender’s email
address

To The first or main recipient’s email
address

Message-ID A unique reference to email message
created by originating email server

SPF A message value that specifies a
valid host that can send emails for
that domain

DKIM It validates the origin of an email
from a domain through
cryptography authentication

DMARC Authenticates emails by checking the
alignment of SPF and DKIM checks

ARC Authenticates original email when it
is modified between senders and
receivers

References It indicates threaded mail reading
and message-ID added with each
reply

MX Record A DNS record that specifies a
domain’s valid mail server

To detect spoofed emails received, we extract SPF, DMARC, DKIM, and ARC
headers, analyze the values of each field as per Algorithm 1, and determine
whether an email is spoofed or legitimate. In the case of legacy email servers or
service providers that do not use authentication methods, we may not get header
field values. In such cases, we rely on message-ID-based spoofing detection.

FA and Detection of Spoong Based Email Attack Using MF and ML 501

Algorithm 1: Spoofed Email Detection for Received Emails
Input: Received Email Headers

Result: Genuine Email, Spoofed Email
while read header do

if Header value != none then
if DMARC = PASS then

Genuine Email;
else

Check DKIM;
if DKIM = PASS AND DKIM Signature domain value = domain value of message-ID field then

Genuine Email;
else

Check SPF;
if SPF = PASS AND ARC = PASS then

Genuine Email;
else

Spoofed Email;
end

end

end

else
compare (message-ID Domain = From email ID Domain);
if matched then

Genuine Email;
else

Spoofed Email;
end

end
ReceivedLog = write (From, To, DMARC, DKIM, SPF, ARC)

end

3.3 Detection Algorithm for Replied Emails

Algorithm 2 detects spoofed emails replied by an employee by matching the
header values of Reference and To fields. If they match, we declare it as a
legitimate email else, we again check it by querying the DNS through forward
ns-lookup to fetch MX records. The domain name thus obtained is matched with
Reference field. In case of a match, we consider it as a genuine email else, we
declare it as a spoofed email.

Algorithm 2: Spoofed Email Detection for Replied Emails
Input: Replied Email Headers

Result: Genuine Email, Spoofed Email
while read header do

From = From Field of Header;
To = To Field of Header;
References = References Field of Header;
ToDName = GetDomainName (To);
RefDName = GetDomainName (Reference);
comp = Compare (ToDName, RefDName)
if comp = TRUE then

Genuine Email;
else

Check MX Record;
nslkupMX = nslookup (ToDName);
comp1 = Compare (nslkupMX, RefDName);
if comp1 = TRUE then

Genuine Email;
else

Spoofed Email;
end

end
RepliedLog = write (From, To, References)

end

A local database of MX records is maintained to increase algorithm speed
and reduce the bottleneck and dependency on internet connectivity. The algo-
rithm first queries the local database and then queries the DNS and also saves

502 S. Shukla et al.

this value to keep the database updated. The MX record matching is applied
when a genuine email fails to match Reference with To field, as shown in Fig. 4.

Fig. 4. Genuine email fails in To and reference matching

It has been experimentally tested and identified that Reference matching
fails when enterprises purchase email-related services from email vendors. For
instance, if an enterprise (here, iimraipur) uses G-suite from Google, the emails
will retain the original domain (iimraipur.ac.in), but the Reference generated
by MTA of originating email-server (here, Gmail) has the Google domain. Com-
paring this with the To field domain will always show a legitimate email as
spoofed. This shortcoming is resolved with MX record matching, as shown by
our program in Fig. 5.

Fig. 5. MX record matching

4 Experimental Setup and Testing

4.1 Assumption

The laptop used for testing is free from any infection from malicious programs.
Hence, it is assumed that the memory dump used for analysis contains an unmod-
ified/authentic version of the live memory.

FA and Detection of Spoong Based Email Attack Using MF and ML 503

4.2 Experimental Setup

The proposed method is tested on a laptop having Intel(R) Core(TM) i5-7200U
CPU @ 2.7 GHz as processor, x64-based processor with 64-bit Operating Sys-
tem (Windows 10), 16 GB and 1 TB HDD. To test legitimate and spoofed
emails, both types of emails are sent. Fake emails were sent from anonymous
or fake email services like anonymailer.net, sendanonymousemail.net, emkei.cz,
and spoofbox.com, whereas genuine emails are sent from Gmail and Yahoo. The
proposed method is deployed as a client-side solution with alert messages sent to
the admin over HTTP. Every PC or laptop provided to the working employees
in any organization has pre-loaded software installed, and this tool is expected
to be one of them in commercial deployment whose primary task is to detect and
report spoofed emails being received or replied by an employee in an organization
to administrators.

Our program is developed in python, which runs as a listener event to check
the browser instance to call back and activate the URL extractor function. The
output of the URL extractor passes the PID to the process capturing tool, which
generates memory snapshot file of the process associated with PID. This file is
searched using String64 to finally extract the email headers. Further, the header
field values are then extracted and saved to create a CSV file. This CSV file is
used in our python code by using pandas (an open-source data analysis package)
to implement a spoofing detection algorithm.

5 Results and Discussion

5.1 Results of URL Extractor

The performance of the URL extractor module to find relevant URLs is evaluated
using accuracy-98.8, precision-98.9, recall-97.3, and F1 score-99.1. The results
thus obtained show the model has performed better with an average metric
score of 98%.

5.2 Detection Algorithm

In order to test the detection algorithm accuracy, a real case scenario consist-
ing of both genuine and spoofed emails is taken. The dataset is collected via
an automated browser extension program that can open the full path of email
header metadata of emails in inboxes over the browser and dump them as a file
to be used for header extraction. The browser extension uses a content script to
read the contents of the document object module (DOM) and hence the raw text
required for header extraction. The extension, however, needs to follow the email
inbox DOM that has the necessary information to construct URLs that can lead
us to the individual emails’ original or raw headers information. The active tab
permission is enough in the manifest file to allow browser extension to access
the DOM of a page. The dataset thus obtained consists of 17200 emails (a mix
of both spoofed and genuine emails where spoofed email = 2967 and genuine

504 S. Shukla et al.

email = 14233). Emails from the 3 most popular public email servers of Gmail,
Yahoo and Rediffmail are used for testing the detection algorithm. The dataset
is further anonymized, and no privacy issues have been violated in preparing
the dataset. A comparison of our proposed approach results with other standard
state-of-art email spoofing detection methods is shown below in Table 3.

Table 3. Comparison of the proposed approach with other standard methods

Approach Accuracy Precision Recall F1 score

P. Mishra [12] Not given

S. Gupta [13] Not given

R. P Iyer [10] 96 – – –

S. Shukla [11] 98 – – 99

O.Odunibosi [14] 1 99 1 1

K. Konno [15] SPF+DKIM FP=7%, DMARC FP=50%

S. Maroof [16] Recommendations

Proposed Received=96.15 96.9 97.89 97.39

Method Replied=95.09 95.68 97.51 96.59

5.3 Resource Utilization

Performance analysis is carried out by executing the proposed scheme on the
user machine while considering various system parameters. Average values of
CPU utilization, disk usage, memory consumption, and time required for the
execution of the detection algorithm were observed as shown in Fig. 6.

Fig. 6. Performance analysis

FA and Detection of Spoong Based Email Attack Using MF and ML 505

Figure 7 shows the detection time required for varying sizes of captured data
files. These are the memory dump (dmp file) captured from live memory. The
average detection time is 34.57 s for an average data file of size 161.7 MB.

Fig. 7. Detection time with varying sizes of captured data file

Figure 8 contains PM as the proposed method and [10] and [11] as similar
state-of-the-art references that are used for comparison.

Fig. 8. Comparison of resource utilization

506 S. Shukla et al.

The total time, thus, required by the proposed method from capturing live
process dump to detecting spoofed email is 35 sec approx. This is better than
the 12 min time taken for performance analysis by a similar method [10] or the
1 min time taken by the process-based approach [11], as shown in Fig. 8.

5.4 Comparison Points in the Benchmarks and Proposed
Framework

After recognizing and defining the comparative checklist issues, our proposed
method was compared with those from other relevant studies with the help of
a benchmarking checklist that is shown in Table 4. Comparison results show
that most of the benchmark studies obtained scores between 16.66% to 83.33%,
covering 1 to 5 benchmark points, whereas our proposed method covered all
the points and obtained a score of 100%. The comparison score also validates
our comparison analysis with [10,11], as both of them are the top two highest
scores. The study of previous benchmarks was mainly focused on the inbound
attack (received emails) and did not consider outbound attack by an inside
user (relied email). In contrast, our proposed method focuses on both types of
attacks. Though some studies saved detection results in log files, any kind of alert
mechanism was not used in the past. Also, the key benchmark points missed by
previous research studies were related to the number of header fields used for
detection, dataset size, detection accuracy and detection time.

Table 4. Benchmarking checklist

Comparison
points

P. Mishra
et al. [12]

S. Gupta et
al. [13]

R.P. Iyer et
al. [10]

S. Shukla
et al. [11]

O. Oduni
et al. [14]

K. Konno
et al. [15]

S. Maroof
et al. [16]

Proposed
work

Handling
received and
replied emails

x x � � x x x �

Email alert
mechanism

x x x x x x x �

Save the results
as log files

x x � � x x x �

No of email
headers used
(more than 1)

� � � � � x � �

Large dataset
greater then 1000

x x x x � � � �

Detection time
(less than 1 min)

x x x � x x x �

Accuracy greater
than 95%

x x � � � x x �

Score 16.66% 16.66% 66.66% 83.33% 50% 16.66% 33.33% 100%

Difference 83.33% 83.33% 33.33% 16.66% 50% 83.33% 66.66% –

FA and Detection of Spoong Based Email Attack Using MF and ML 507

5.5 Commercial Applications and Limitations

The proposed tool can be deployed as a client-side tool that can detect email
spoofing. The novelty of memory forensics is that the organization can even
prevent email spoofing in scenarios where it does not own the email server used
by the employee in the organization. The tool can detect email spoofing even
when the email is received on a personal email service used by the employee on
the host provided by the organization. The limitation of the proposed scheme is
that it is currently tested on webmail-based email services.

6 Conclusion and Future Work

The advantage of using memory forensics in spoofed email detection is that it
guarantees non-repudiation of a digital trace of the host in physical memory [8].
Further, by identifying the exact processes and only capturing them addresses
the disadvantage of capturing the entire physical memory. In our work, we exam-
ine the current URLs to identify the ones related to opened emails and then
capture this live process to perform header extraction and further apply detec-
tion algorithm to identify and store the results in respective log files. The alert
mechanism of emailing the log file, thus, gives a threat profile and early warning
to the IT admins and security team of the organization to initiate further foren-
sic investigation [21] and adopt a suitable mitigation strategy for such threat
scenarios [16]. Our performance analysis shows that the proposed work takes
approximately 35 s to complete the email detection process with minimum false
positives. This is achieved with minimal consumption of system resources, least
overheads, and without interference with the normal functioning of the user’s
system. Also, the earlier practice of periodic program scheduling with a fixed
time interval had challenges in determining the time interval and storage of
irrelevant memory dumps. By replacing scheduling with the callback function to
auto-trigger, any instance of browser execution saved system resources and over-
head significantly. It is also better than the browser extension method of spoofed
email detection due to the ease with which users can switch off the extension
[22]. Also, the browser extension method is not browser independent and one
has to write different extension codes for different browsers used. Future work
can be extended to include other email client-side applications such as Outlook,
Postbox, Apple Mail, Mozilla Thunderbird, etc. Similarly, the proposed scheme
can be extended to mobile phones to test its performance and efficacy on android
and apple OS used in mobiles.

Compliance with Ethical Standards

Conflict of Interest. The authors declare that they have no conflict of interest.

Ethical Approval. This article does not contain any studies with human participants

or animals performed by any of the authors.

508 S. Shukla et al.

References

1. Lutui, R.: A multidisciplinary digital forensic investigation process model. Bus.
Horiz. 59(6), 593–604 (2016)

2. Fruhlinger, J.: Top cybersecurity facts, figures and statistics. CSO Online, IDG
(2020)

3. Sheikhalishahi, M., Saracino, A., Martinelli, F., Marra, A., Mejri, M., Mejri, N.:
Digital waste disposal: an automated framework for analysis of spam emails. Int.
J. Inf. Secur. 19, 499–522 (2020)

4. Gupta, B.B., Arachchilage, N.A.G., Psannis, K.: Defending against phishing
attacks: taxonomy of methods, current issues and future directions. Telecommun.
Syst. J. 67, 247–267 (2018)

5. Mooloo, D., Fowdu, T.P.: An ssl-based client-oriented anti-spoofing email applica-
tion. Africon, pp. 1–5 (2013)

6. Hu, H., Peng, P., Wang, G.: Towards understanding the adoption of anti-spoofing
protocols in email systems. In: IEEE Cybersecurity Development (SecDev 2018)
(2018)

7. Hunt, R., Zeadally, R.: Network forensics: an analysis of techniques, tools, and
trends. IEEE Comput. 45(12), 36–43 (2012)

8. Pagani, F., Fedorov, S., Balzarotti, D.: Introducing the temporal dimension to
memory forensics. ACM Trans. Priv. Sec. 22(9), 1–21 (2019)

9. Parida, T., Das, S.: Pagedumper: a mechanism to collect page table manipulation
information at run-time. Int. J. Inf. Secur. 20, 603–619 (2021)

10. Iyer, R., Atrey, P.K., Varshney, G., Misra, M.: Email spoofing detection using
volatile memory forensics. In: IEEE Conference on Communications and Network
Security (CNS), Las Vegas, NV, pp. 619–625 (2017)

11. Shukla, S., Misra, M., Varshney, G.: Identification of spoofed emails by applying
email forensics and memory forensics. In: Published in Proceeding of ACM Digital
Online, 10th International Conference (ICCNS 2020), pp. 109–114 (2020)

12. Mishra, P., Pilli, E., Joshi, R.: Forensic analysis of e-mail date and time spoofing.
In: Third International Conference on Computer and Communication Technology
(2013)

13. Gupta, S., Pilli, E.S., Mishra, P., Pilli, S., Joshi, R.C.: Forensic analysis of e-mail
address spoofing. In: 5th IEEE International Conference on the Next Generation
Information Technology Summit, pp. 898–904 (2014)

14. Odunibosi, O.: The classification of email headers using random forest algorithm
to detect email spoofing. School of Computing, National College, Ireland (2019)

15. Konno, K., Kitagawa, N., Yamai, N.: False positive detection in sender domain
authentication by dmarc by dmarc report analysis. In: 3rd International Conference
on Information Science and System ICISS, pp. 38–41 (2020)

16. Maroofi, S., Korczynski, M., Hölzel, A., Duda, A.: Adoption of email anti-spoofing
schemes: A large scale analysis. IEEE Trans. Netw. Service Manage. 1–1 (2021)

17. Hu, H., Wang, G.: End-to-end measurements of email spoofing attacks. In: Pro-
ceedings of 27th USENIX Security Symposium (2018)

18. Alexa: Alexa most popular website. http://www.alexa.com/topsites
19. Magnet: Magnet process capture tool. https://www.magnetforensics.com/

resources/magnet-process-capture/
20. Microsoft: Windows sysinternals strings v2.53. https://docs.microsoft.com/en-us/

sysinternals/downloads/strings

http://www.alexa.com/topsites
https://www.magnetforensics.com/resources/magnet-process-capture/
https://www.magnetforensics.com/resources/magnet-process-capture/
https://docs.microsoft.com/en-us/sysinternals/downloads/strings
https://docs.microsoft.com/en-us/sysinternals/downloads/strings

FA and Detection of Spoong Based Email Attack Using MF and ML 509

21. Banday, M.T.: Analysing e-mail headers for forensic investigation. J. Digital Foren.
Sec. Law 6, 49–64 (2011)

22. Sanchez, P., Tapiador, J., Schneider, G.: After you, please: browser extensions order
attacks and countermeasures. Int. J. Inf. Secur. 19, 623–638 (2020)

AttackMiner: A Graph Neural Network
Based Approach for Attack Detection

from Audit Logs

Yuedong Pan1,2, Lijun Cai1(B), Tao Leng1,2, Lixin Zhao1, Jiangang Ma1,
Aimin Yu1, and Dan Meng1

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{panyuedong,cailijun,lengtao,zhaolixin,majiangang,yuaimin,

mengdan}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. In an enterprise environment, intrusion detection systems
generate many threat alerts on anomalous events every day, and these
alerts may involve certain steps of a long-dormant advanced persistent
threat (APT). In this paper, we present AttackMiner, an attack detection
framework that combines contextual information from audit logs. Our
main observation is that the same attack behavior may occur in various
possible contexts, and combining various possible contextual information
can provide more effective information for detecting such attacks. We uti-
lize a combination of provenance graph causal analysis and deep learning
techniques to build a graph-structure-based model that builds key pat-
terns of attack graphs and benign graphs from audit logs. During detec-
tion, the detection system creates provenance graphs using the input
audit logs. After being optimized by our customized graph optimization
mechanism, it identifies whether an attack has occurred. Our evalua-
tions on the DARPA TC dataset show that AttackMiner can successfully
detect attack behaviors with high accuracy and efficiency. Through this
effort, we provide security investigators with a new approach of identi-
fying attack activity from audit logs.

Keywords: Host-based intrusion detection · Graph neural network ·
Attack migration

1 Introduction

Advanced Persistent Threats (APTs), as opposed to regular attacks, are a type
of sophisticated attack performed by experienced adversaries employing a vari-
ety of offensive strategies and tools [23]. APTs typically involve multiple attack
steps over an extended period of time. When a security analyst wants to deter-
mine whether an APT has occurred inside the system, he usually needs to
conduct a lengthy and complex search and analysis of massive logs, and iden-
tify whether there are typical attack behaviors in these logs. This makes these

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 510–528, 2023.

https://doi.org/10.1007/978-3-031-25538-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_27&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_27

AttackMiner: A GNN-Based Approach for Attack Detection from Audit Logs 511

attacks difficult to detect. Traditional detectors [7,25] can detect anomalous
actions that do not fit into previously learned benign patterns. However, attack-
ers can easily get around them because they treat system calls or network events
as temporal sequences [6,7,29] and only consider the sequential relationship
between log entries. Existing attack detection and response technologies (e.g.,
endpoint detection and response tools) rely on low-level indicators of compro-
mise (IOCs) or adversarial tactics, techniques, and procedures (TTPs) criteria [1]
being matched. However, simple rule-matching approaches are prone to a huge
number of false positives, resulting in “alert fatigue”.

Recent research [12,13,25–27,38] suggests that host-based intrusion detection
might benefit from abundant contextual knowledge regarding data provenance.
Compared to raw system audit data, data provenance offers more contextual
information, which helps identify malicious behaviors from benign behaviors [12,
14]. Some anomaly-based graph kernel algorithms [12,25] dynamically model the
entire graph and detect anomalous graphs through clustering methods. However,
the provenance graph produced by covert intrusion activities carried out in a
system may be similar to a benign system. Therefore, it is difficult for the graph
kernel algorithm to detect the attack behavior with a few abnormal nodes in
the feature graph. To a certain extent, malicious behavior can be detected by
detecting anomalous paths in the provenance graph [38]. However, the activity
of some complex threats (e.g., APTs) is frequently divided into several parts
rather than appearing in a complete path, making path-level detection difficult.

In this paper, we aim to identify the key steps of attack activities from
audit logs, helping security analysts identify whether a given audit log contains
specific malicious behavior. We propose AttackMiner, a graph neural network-
based attack detector capable of detecting attack patterns in various contextual
scenarios. AttackMiner takes system audit logs as inputs and uses a graph neu-
ral network framework to learn rich contextual information from data sources.
AttackMiner mainly includes three stages: (a) processing audit logs and creat-
ing provenance graphs based on the log sliding window; (b) constructing attack
graphs containing specific attack patterns using attack migration and mutation
techniques; and (c) learning to represent attack semantics using a graph neu-
ral network model, which aids in accurately determining whether a given audit
log contains a specific attack pattern at detection time. Additionally, security
analysts can conduct fast attack investigations from detected logs that contain
attack behavior, saving significant time compared to investigation activity on
massive logs.

Our approach is based on the insight that some complex malicious activities
(e.g., APTs) are usually divided into several parts rather than appearing in
a complete path. A 14-stage APT knowledge base is provided by the MITRE
ATT&CK framework [1] to characterize adversary plans and methodologies for
APTs. The Lockheed Martin Cyber Kill Chain [17] is a 7-stage methodology for
characterizing APTs. However, the multiple stages of APTs span a long time
and generate a large number of logs. This results in significant processing and
storage overhead for over-redundant multi-stage models. Therefore, we focus on
identifying key actions in the attack activity.

512 Y. Pan et al.

In summary, this paper makes the following contributions:

1. We propose AttackMiner, a GNN-based attack detection framework. Attack-
Miner combines model learning techniques for natural language and prove-
nance graph processing to help security analysts quickly detect attacks from
audit logs.

2. We focus on attack migration, migrating various behaviors representing
attacks into various possible log contexts. Through attack migration, attack
behaviors with rich backgrounds can be constructed, providing rich data for
model learning.

3. We implemented a set of provenance graph optimization methods that greatly
reduce the number of redundant edges and nodes. The optimized provenance
graph allows AttackMiner to build efficient GNN-based models to accurately
detect attack activity.

4. We present a concrete implementation and evaluation of AttackMiner. The
experimental results show that AttackMiner can accurately identify various
attack behaviors, and the detection effect is better than other advanced attack
behavior detectors.

The paper is organized as follows. Related work is introduced in Sect. 2. Moti-
vation and assumptions about our work are introduced in Sect. 3. We introduce
the overview of AttackMiner in Sect. 4. In Sect. 5, we provide the formal details of
AttackMiner. The evaluation and conclusion are presented in Sect. 6 and Sect. 7,
respectively.

2 Related Work

2.1 Log-Based Attack Analysis

Many works [9,10,24,32] use system audit logs to perform attack detection and
forensic analysis. Disclosure [5] extracts statistical features from NetFlow logs
to detect botnet C&C channels. Opera et al. [28] utilize DNS or web proxy logs
to detect early infections in the enterprise. LogLens [6] is a real-time anomaly
detection system that deploys an unsupervised learning approach to analyze log
sequences. DeepLog [7] converts system logs into natural language sequences
using the Long Short-term Memory (LSTM) network that can automatically
learn benign patterns and alert anomalies from system behavior. Tiresias [34]
utilizes Recurrent Neural Networks (RNNs) in logs to predict specific attack
steps. Most of these log analysis methods treat the log as temporal sequences,
which only preserves sequential relationships between log entries. AttackMiner
takes into account the spatial and interactive relationships between system enti-
ties through the message-passing mechanism of graph neural networks.

2.2 Provenance Graph-Based Attack Detection

Provenance graph analysis is widely used in APT attack detection [35], foren-
sic analysis [16], and attack scenario reconstruction [15,28]. Holmes [27] and

AttackMiner: A GNN-Based Approach for Attack Detection from Audit Logs 513

RapSheet [13] focus on alert generation, correlation, and scenario reconstruc-
tion for host-based threats, but they rely on the knowledge base of adversarial
TTPs. Log2vec [23] uses logs to construct compositions, extracts log vectors
based on graph embedding, and detects malicious logs based on clustering. It
differs from the provenance-based approach because the nodes in the provenance
graph are entities of the system rather than logs. StreamSpot [25] is a memory-
efficient anomaly detection system that handles provenance graph heterogeneity
and streaming challenges, but suffers from shortcomings in handling locally con-
strained graph features and dynamic cluster maintenance. With only a certain
amount of benign data and a small amount of attack data, our method can
learn key attack steps via the provenance graph. Models trained with optimized
provenance graphs have better detection capabilities.

3 Motivation and Assumptions

Motivation. We define the attack detection problem as a subgraph detec-
tion problem. Specifically, we detect whether the provenance graph contains a
subgraph representing an attack. If it does, it means that attack events have
occurred. Otherwise, no attacks have occurred. The key insight behind our
method is that the attack behavior expressed by the attack subgraph may occur
at various moments when the system is running. In the context of different audit
logs of the system, similar attacks have similar attack patterns, and the attack
pattern is learned through deep learning. The representation of this context
helps to detect attacks. Specifically, Fig. 1 shows a portion of the provenance
graph where the attack occurs, with the shaded area representing a key attack
behavior. This attack mainly starts by exploiting the vulnerability of Nginx. The
attacker downloads and executes the malicious file /tmp/vUgefal, triggering an
alert for file execution. The attacker then writes to another file /var/log/devc,
communicates with the malicious server, and even attempts to inject into the
sshd process. Likewise, this kind of aggressive behavior can occur in other sit-
uations as well. As long as attackers exploit the vulnerability of the software
to invade the system, even if the system is running a background task different
from that in Fig. 1, the attack behavior in Fig. 1 can be achieved.

That is to say, if the attacker performs some malicious behaviors after invad-
ing the system by exploiting a certain software vulnerability this time, the next
time he intrudes the system may be through other vulnerabilities and perform
similar malicious behaviors.

Assumptions. We assume that the underlying operating system and audit
application are part of a trusted computing base (TCB), similar to previous
research on provenance tracking [4,30]. The audit logs used to build the prove-
nance graph are hard to tamper with. The source of the attack is outside the
enterprise. The attacker uses remote network access to infiltrate the system. The
host audit system can normally capture a series of attack behaviors by attackers.

514 Y. Pan et al.

/usr/local/nginx/logs/nginx.pid/usr/local/nginx/logs/nginx.pid
shsh

writewrite

nginxnginx

forkfork

/dev/random/dev/random

nginxnginx

readread

readread

/etc/group/etc/group

readread

readread

nginxnginx

readread

recvfromrecvfrom

recvfromrecvfrom

/var/run/ld-elf.so.hints/var/run/ld-elf.so.hints
readread

readread

recvfromrecvfrom

recvfromrecvfrom

writewrite

writewrite

connectconnect

sendtosendto

forkfork

connectconnect

sendtosendto

writewrite

writewrite

writewrite

/etc/libmap.conf/etc/libmap.conf

readread

readread

/etc/passwd/etc/passwd

readread

readread

writewrite

forkfork

writewrite
forkfork writewrite

writewrite

/usr/local/nginx/logs/nginx.pid
sh

write

nginx

fork

/dev/random

nginx

read

read

/etc/group

read

read

nginx

read

recvfrom

recvfrom

/var/run/ld-elf.so.hints
read

read

recvfrom

recvfrom

write

write

connect

sendto

fork

connect

sendto

write

write

write

/etc/libmap.conf

read

read

/etc/passwd

read

read

write

fork

write
fork write

write

/usr/local/nginx/logs/nginx.pid
sh

write

nginx

fork

/dev/random

nginx

read

read

/etc/group

read

read

nginx

read

recvfrom

recvfrom

/var/run/ld-elf.so.hints
read

read

recvfrom

recvfrom

write

write

connect

sendto

fork

connect

sendto

write

write

write

/etc/libmap.conf

read

read

/etc/passwd

read

read

write

fork

write
fork write

write

Fig. 1. A portion of the provenance graph where the attack occurs, with the shaded
area representing a key attack behavior.

4 Approach Overview

4.1 Overview

AttackMiner is an attack detection tool that models attack and non-attack
behaviors. Figure 2 gives an overview of the AttackMiner architecture. It mainly
consists of four parts: dynamic log sliding window selection (a), provenance graph
construction and optimization (b), deep learning model based on graph neural
network (c), and attack detection (d). In the dynamic log window selection
stage, we randomly and dynamically adjust the start time of two adjacent win-
dows according to the time span of the current log window, which can improve
the representativeness of the data to a certain extent. In the provenance graph
construction stage, AttackMiner first constructs benign provenance graphs and
then constructs malicious provenance graphs through attack migration technol-
ogy. We adopt a series of graph optimization methods to reduce the size of the
provenance graph while preserving the original semantics as much as possible. In
the model training stage, AttackMiner uses a learning model based on a graph
neural network to effectively embed the input data. During the attack detection
stage, AttackMiner accurately determines whether an attack has taken place on
given log files using a novel classifier we developed.

AttackMiner: A GNN-Based Approach for Attack Detection from Audit Logs 515

Kernel Audit Logs

Provenance Graph Construction and
Optimization

Deep Learning Model based on Graph Neural Network

Graph Neural Network Graph Pooling Discrimination Network

Model

p0p0

p1p1

f1f1

f2f2

s1s1

p0

p1

f1

f2

s1

p0

p1

f1

f2

s1

p0

p1

f1

f2

s1

p0p0

p1p1

f1f1

f2f2

s1s1

p0

p1

f1

f2

s1

p0

p1

f1

f2

s1

p0

p1

f1

f2

s1

Attack Detcetion

Model

Attack / Non-attack
Log Detection

window move

Dynamic Log Sliding Window
Selection.

a

b

c

d

Fig. 2. Overview of AttackMiner architecture.

4.2 Challenges and Solutions

In this work, we first need to consider as much as possible the context in which
the attack steps occur, and more importantly, we need to effectively aggregate
the information contained in each provenance graph. Below, we present the chal-
lenges of designing AttackMiner and our corresponding solutions.

Challenge 1. How to construct provenance graphs to cover both benign and
malicious behaviors as much as possible? Previous graph pattern matching mod-
els [2,21,39] analyzed small subgraphs but did not involve log window processing.
In order to include as many benign and malicious behaviors as possible, we run
a dynamic sliding window on the original logs (Sect. 5.1) and combine attack
migration and attack mutation techniques (Sect. 5.3) to provide the model with
realistic learning materials.

Challenge 2. How to optimize provenance graphs while keeping the original
semantics as much as possible? With only a few behaviors in the massive audit log
indicating a real attack, searching for traces of an attack is like “finding a needle
in a haystack”. In order to solve this problem, we adopt log compression methods
based on semantic preservation (Sect. 5.2), which simplifies the provenance graph
structure and improves the detection efficiency.

Challenge 3. How to effectively represent graph information? Previous work
searches for provenance graph information by meta-path [25]. However, repre-
senting provenance graph information via meta-paths requires expert knowledge
of the target system. Graph neural networks have been shown to learn com-
plex graph patterns for downstream tasks such as memory forensic analysis [35]
and binary code similarity detection [40]. In this work, we try to extract graph
patterns with graph neural networks (Sect. 5.4).

516 Y. Pan et al.

5 AttackMiner

5.1 Log Window Sliding

Our main goal is not to detect a complete attack activity with a long time span
but to focus on a typical steps of an attack, such as when the invaded process
communicates with some malicious IP addresses after reading and writing a
private file. These actions are usually completed within a certain time window.

window
movemove

window
movemove

Probabilistic
random time

Fig. 3. Illustration of log sliding window in AttackMiner.

The log sliding window is used to select audit logs within a suitable time
span for constructing provenance graphs. The two adjacent log windows are not
completely separated. This is to cover various situations in the audit log as much
as possible. Figure 3 is an illustration of a log sliding window. A window with a
certain time span moves on the log in chronological order of events. After each
move is completed, AttackMiner constructs the provenance graph with the log
events in the current window. In order to cover as many events as possible, the
distance that the window moves each time is a random time that varies according
to the probability. Additionally, in order to gather useful information, we suggest
choosing log windows with an appropriate length L based on the target behavior.
According to the findings of Sect. 6.5, AttackMiner still has high accuracy when
L is above 60 min.

5.2 Provenance Graph Construction and Optimization

AttackMiner first performs log window sliding on logs generated by benign envi-
ronments and then converts the selected audit logs into a provenance graph.
The provenance graph constructed with logs produced in benign environments

AttackMiner: A GNN-Based Approach for Attack Detection from Audit Logs 517

Table 1. A summarization of nodes and edges in provenance graphs

Subject type Object type Attributes Relations

Process Process Type, Name Fork/Clone

File Type, File Name Read, Write, Execute

Socket Type, Src/Dest IP Recv, Send, Connect

is called the benign provenance graph. The entities and events we use when
building the provenance graph are shown in Table 1, where subjects and objects
correspond to nodes in the graph and relations correspond to edges in the graph.

AttackMiner mainly uses three techniques for graph structure optimization.
First, AttackMiner eliminates isolated nodes in the provenance graph since

these nodes do not have enough graph structure information. At the same time,
we merge socket nodes with the same IP address connected to the same process.
We do not differentiate whether a port is malicious or not in order to obtain a
compact provenance graph.

Process 1Process 1

File 2File 2

T1, writeT1, writeT4, writeT4, write

File 1File 1

T3, readT3, read

Process 1

File 2

T1, writeT4, write

File 1

T3, read

Process 1

File 2

T1, writeT4, write

File 1

T3, read

Process 1Process 1

File 2File 2

T1, writeT1, write T2, writeT2, write T4, writeT4, write

File 1File 1

T3, readT3, read

Process 1

File 2

T1, write T2, write T4, write

File 1

T3, read

Process 1

File 2

T1, write T2, write T4, write

File 1

T3, read

Fig. 4. Event reduction

Process 1Process 1

File 1File 1

T1, writeT1, write

File 2File 2

T3, writeT3, write

File 3File 3

T5, writeT5, write

Process 2Process 2

T2, readT2, read T4, readT4, read T6, readT6, read

Process 1

File 1

T1, write

File 2

T3, write

File 3

T5, write

Process 2

T2, read T4, read T6, read

Process 1

File 1

T1, write

File 2

T3, write

File 3

T5, write

Process 2

T2, read T4, read T6, read

Process 1Process 1

File 1File 1

T1, writeT1, write

Process 2Process 2

T2, readT2, read

Process 1

File 1

T1, write

Process 2

T2, read

Process 1

File 1

T1, write

Process 2

T2, read

Fig. 5. Node reduction

Second, AttackMiner constructs provenance graphs from audit logs with dis-
tinct edges, removing redundant edges while preserving semantics [41]. When a
node has an incoming edge, the incoming edge may affect the semantics of the
node’s outgoing edge. Specifically, as shown in Fig. 4, before the read at time
T3 occurs, the write event at T2 is repeated with the write event at T1, so the
write event at T2 can be removed. The write at T4 occurs after the read at T3,
which affects Process1, so it should be retained.

Third, inspired by research [3], AttackMiner merges nodes and their edges
whose incoming and outgoing edges are events of the same type. As shown in
Fig. 5, file nodes File1, File2, and File3 are merged into one node File1 because
they share same types of incoming edges (read) and outgoing edges (write).

518 Y. Pan et al.

5.3 Attack Provenance Graph Construction

We obtain attack information from threat intelligence or audit logs recording
malicious behaviors, and use the extracted attack information to construct an
attack subgraph Ga. Then we migrate Ga to the benign provenance graph Gb

through the attack migration technique, and finally get a malicious provenance
graph Gm containing the attack subgraph. Figure 6 depicts an example of attack
migration.

/var/log/nginx-error.log/var/log/nginx-error.log

a.a.a.aa.a.a.a

nginxnginx

recvfromrecvfrom

b.b.b.bb.b.b.brecvfromrecvfrom

/dev/random/dev/random readread

writewrite

writewrite

connectconnect

sendtosendto

c.c.c.cc.c.c.cconnectconnect

e.e.e.ee.e.e.e

connectconnect

sendtosendto

g.g.g.gg.g.g.g

writewrite

/var/log/nginx-access.log/var/log/nginx-access.log

writewrite

nginxnginx
forkfork

/etc/passwd/etc/passwd

readread

recvfromrecvfrom

recvfromrecvfrom

readread

/var/log/nginx-error.log

a.a.a.a

nginx

recvfrom

b.b.b.brecvfrom

/dev/random read

write

write

connect

sendto

c.c.c.cconnect

e.e.e.e

connect

sendto

g.g.g.g

write

/var/log/nginx-access.log

write

nginx
fork

/etc/passwd

read

recvfrom

recvfrom

read

/var/log/nginx-error.log

a.a.a.a

nginx

recvfrom

b.b.b.brecvfrom

/dev/random read

write

write

connect

sendto

c.c.c.cconnect

e.e.e.e

connect

sendto

g.g.g.g

write

/var/log/nginx-access.log

write

nginx
fork

/etc/passwd

read

recvfrom

recvfrom

read

n2

/dev/random/dev/random

nginxnginx

readread

/tmp/vUgefal BBBB/tmp/vUgefal BBBB

readread

/tmp/vUgefal/tmp/vUgefal

executeexecute

/dev/null/dev/null

/var/run/ld-elf.so.hints/var/run/ld-elf.so.hints

readread

/var/log/devc/var/log/devc

nginxnginx

forkfork

d.d.d.dd.d.d.d

recvfromrecvfrom

writewrite forkfork

f.f.f.ff.f.f.f

/etc/libmap.conf/etc/libmap.conf

readread

/etc/passwd/etc/passwd

readread

readread

writewrite writewriteconnectconnectsendtosendto connectconnect sendtosendto

/dev/random

nginx

read

/tmp/vUgefal BBBB

read

/tmp/vUgefal

execute

/dev/null

/var/run/ld-elf.so.hints

read

/var/log/devc

nginx

fork

d.d.d.d

recvfrom

write fork

f.f.f.f

/etc/libmap.conf

read

/etc/passwd

read

read

write writeconnectsendto connect sendto

/dev/random

nginx

read

/tmp/vUgefal BBBB

read

/tmp/vUgefal

execute

/dev/null

/var/run/ld-elf.so.hints

read

/var/log/devc

nginx

fork

d.d.d.d

recvfrom

write fork

f.f.f.f

/etc/libmap.conf

read

/etc/passwd

read

read

write writeconnectsendto connect sendto

n1

merge

Gb

Ga

Fig. 6. Illustration of attack migration. (Left) Gb represents part of a benign prove-
nance graph. (Right) Ga represents an attack subgraph that was extracted.

Attack Migration. The purpose of attack migration is to use various log con-
texts where malicious behaviors may occur as the background and construct
attack samples with rich background information. So the trained model has the
ability to shield the interference of background noise and pay attention to mali-
cious behavior itself.

As shown in Fig. 6, Gb represents a benign provenance graph. For the sake of
illustration, we have selected a portion of the benign provenance graph. The right
half of the figure, Ga, is an attack subgraph extracted from attack campaigns.
The attack in Ga invades the system through the vulnerability of nginx, and
the shaded nginx node n1 is the intrusion point for malicious behavior. In the
benign provenance graph Gb, we find the target process node with the same type
and name as the intrusion point (nginx node n2 marked with shadow in Gb),
and then we migrate the events associated with node n1 to node n2, so that node
n1 merges with n2. Algorthim 1 explains our node merging algorithm in detail.

In addition, we randomly mutate the intruding process in the attack subgraph
into another process in the benign provenance graph. And we mutate the name of
the process with the same name as the intrusion process in the attack subgraph

AttackMiner: A GNN-Based Approach for Attack Detection from Audit Logs 519

Algorithm 1: Attack migration algorithm
Input: Benign provenance graph collection ListGb ; Attack subgraph collection

ListGa

Output: Malicious provenance graph ListGm

1 ListGm ← Null ;
2 for Gb in ListGb do

3 V̂ ← random subject node in Gb ;

4 attrV̂ ← attribute of V̂ ;
5 for Ga in ListGa do
6 V ← intrusion subject node in Ga ;

// change the attribute of V , merge V̂ and V
7 attrV ← attrV̂ ;

// migrate Ga to Gb

8 Gm ← migrateGraph(Ga,Gb);
9 ListGm.append(Gm)

10 end

11 end
12 return ListGm

to the name after the mutation of the invading process. This process does not
fundamentally change the attack pattern and, at the same time, increases the
number of attack subgraphs that are not currently triggered but may appear in
the future.

5.4 Deep Learning Model

Input Embedding. AttackMiner uses word2vec [20] for word embedding. We
first convert complete events in the provenance graph into sentences, such as
this sentence converted from an event: Process nginx write file access.log. Then
we feed the sentence into the word2vec model and learn the embedding repre-
sentation of each word in the sentence. Since each node in the provenance graph
contains two attributes, type and name, the input feature hu of node u can be
computed as follows:

hu = Concat(wu
type, w

u
name) (1)

where wu
type is the vector representation of the type word of the node u, and

wu
name is the vector representation of the name word of the node u.

Learning Model Based on Graph Neural Network. Overly complex mod-
els bring certain difficulties to training. We tend to implement our models with
simple network structures. We chose the graph attention network (GAT) [37]
as the basic component of AttackMiner. The GAT is implemented by stacking
simple graph attention layers, which introduce a self-attention mechanism in the
propagation process, and the hidden state of each node is calculated by paying
attention to its neighbor nodes. In our experiments, we use a multi-head atten-
tion mechanism with three heads. More details on GAT can be found in [37].

520 Y. Pan et al.

A Classifier Combining Multiple Receptive Fields. The general approach
to graph classification is to add a multilayer perceptron (MLP) layer to the end
of the graph network. However, we seek to strengthen the model’s robustness
while retaining the various traits of vectors. In contrast to the general approach,
we try to perform 1D-convolution of node vectors with different receptive fields
to obtain high-level features of embedding vectors. Then, we perform graph max-
pooling and average-pooling operations on the convolution results, respectively,
to obtain two graph embedding vectors. Finally, we concatenate the learned
graph embedding vectors and feed them into MLP for multi-classification. The
relevant expressions are as follows:

y1 = GraphPooling(ReLu(Conv1(HG))) (2)

y2 = GraphPooling(ReLu(Conv2(HG))) (3)

ỹ = softmax(
∑

MLP(Concat(y1, y2))) (4)

where HG denotes the node vectors of graph G following GNN embedding.

6 Evaluation

6.1 Implementation

AttackMiner is implemented in Python 3.8 with around 3100 lines of code (LoC).
We use the Gensim [33] library to generate node embeddings for training graphs.
The length of the initial node embedding vector is limited to 200 to reduce the
size of the model. AttackMiner uses a two-layer GAT model to aggregate graph
information. The input and output dimensions of node vectors in the model are
200 and 64, respectively. We optimize the model parameters through the Adam
optimizer. We train the model for 20 epochs with the training batch size set to
64. The learning rate changes exponentially. The rate of change is 0.98 and the
initial value is 0.01. We use Pytorch [31] as the backend and run our experiments
on a server with two Intel Xeon E5-2630 v3 CPUs and 128 GB of memory. The
server has two NVIDIA Tesla P4 GPUs and a 64-bit CentOS 7 operating system
installed.

6.2 Dataset

We chose to evaluate our system using the DARPA TC [18] dataset, which was
generated when the red team played against the blue team in April 2018. In total,
we evaluated AttackMiner using four of these attack scenarios. We describe the
scenarios and properties in Table 2.

For each attack scenario, we construct the corresponding attack subgraph.
We leverage attack migration (detailed in Sect. 5.3) to generate datasets contain-
ing benign and malicious provenance graphs. The number of samples for each
category of provenance graphs (including benign provenance graphs) is 6000,
of which 80% are used as the training set. Before feeding the samples into the
learned model, we use the graph optimization method described in Sect. 5.2 to
optimize the structure of provenance graphs.

AttackMiner: A GNN-Based Approach for Attack Detection from Audit Logs 521

Table 2. Attack scenarios description

Scenario Short description |V (G)| |E(G)|
ATK-1 Nginx vulnerability was exploited to attack CADETS

FreeBSD. The attacker downloaded a file, elevated it
to a new process running as root, and attempted to
inject into the sshd process but fails

22 36

ATK-2 Attackers exploited Nginx with malformed HTTP
requests to attack CADETS, and downloaded the
libdrakon implant file *.so to inject into the sshd
process, but it crashed CADETS

15 21

ATK-3 The shell connection connected to the operator
console via HTTP. The attacker performed the micro
apt implant without root privileges. The micro apt
implant was connected to the C2’s micro apt listener

36 65

ATK-4 The Nginx vulnerability was exploited by attackers to
cause the drakon implant executable to run from disk,
resulting in a new drakon process with root privileges
and operation with a new connection to the
administrator console

28 47

6.3 Effectiveness of Graph Optimization Algorithms

The effectiveness of AttackMiner lies in a set of optimization techniques inte-
grated into its components. As described in Sect. 5.2, to reduce graph complex-
ity, we construct provenance graphs using a set of custom graph optimization
techniques. Here, we detail how these techniques contribute to its effectiveness.
Figure 7 shows the number of entities and events before and after graph opti-
mization when the log window length L is set to 60 min. Compared to the original
graph size, AttackMiner reduces the number of entities in provenance graphs by
an average of 80.20% and the number of events by an average of 83.39%. Attack-
Miner removes redundant or irrelevant events and entities from massive logs that
do not provide any semantics to detect different attack patterns. Therefore, the
further extracted provenance graph is more representative as the input for model
training.

Table 3. Results before and after provenance graph optimization.

Category Before optimization After optimization

Recall % Precision % F1-score % Accuracy % Recall % Precision % F1-score % Accuracy %

Benign 92.52 68.70 78.85 85.15 98.46 91.89 95.06 97.72

ATK-1 70.02 82.77 75.87 99.14 99.06 99.01

ATK-2 92.79 100.00 96.26 98.11 100.00 99.05

ATK-3 87.38 100.00 93.26 99.12 100.00 99.56

ATK-4 81.49 82.61 82.05 93.63 98.31 95.91

522 Y. Pan et al.

Fig. 7. Changes in average number of entities and average number of events before and
after provenance graph optimization.

We present the detection results before and after graph optimization in Table 3
(log window length L is 60 min). As shown in Table 3, the provenance graph opti-
mization improves the overall accuracy by 14.76%, and the F1 scores of the five cat-
egories are increased by 20.56%, 30.49%, 2.90%, 6.76%, and 16.89%, respectively.
This is because graph optimization removes redundant events from massive logs,
making attack patterns more apparent. Overall, the optimized provenance graph
serves as a highly representative training set and is used for model training, which
significantly improves the generalization ability of the model.

6.4 Comparison Analysis

We implemented a set of cutting-edge approaches that can be used to replace
the AttackMiner component and compared their attack detection performance
to that of AttackMiner. We chose the time span of the log window to be 60 min.
Table 4 and Fig. 8 summarize our results.

Support vector machines (SVM) [36]. To evaluate the effectiveness of graph
neural network aggregation, we compare it with SVM. We obtain the embedding
vector of each node on the graph through the input embedding method intro-
duced in 5.4, and then perform the graph pooling operation to obtain the embed-
ded representation of the provenance graph. In order to improve the accuracy
of the classifier, we implement a multi-classifier by combining multiple binary
classifiers and repeatedly adjusting the parameters C, gamma, and the number
of iterations of the SVM. In the evaluation experiments, we use a linear kernel
function with C=1.0, gamma=“auto” and an iteration number of 1000. Although
the average accuracy of SVM can reach 86.55%, it cannot detect some attack
behaviors well, and its recall on ATK-1 is only 66.90%. The main limitation
of SVM is its inability to model the connection relationships between different
entities in the provenance graph, which is one of the key features reflecting attack
patterns.

AttackMiner: A GNN-Based Approach for Attack Detection from Audit Logs 523

Table 4. The results of the comparison analysis.

Category SVM Random forest

Recall % Precision % F1-score % Accuracy % Recall % Precision % F1-score % Accuracy %

Benign 96.67 75.17 84.58 86.55 74.17 78.77 76.40 78.45

ATK-1 66.90 98.98 79.84 60.72 67.69 64.01

ATK-2 97.17 99.21 98.18 98.71 98.80 98.75

ATK-3 97.78 81.97 89.18 98.41 98.10 98.26

ATK-4 72.92 87.21 79.43 59.08 50.91 54.70

Category k-nearest neighbor GCN

Recall % Precision % F1-score % Accuracy % Recall % Precision % F1-score % Accuracy %

Benign 62.23 49.45 55.11 65.25 91.15 95.08 93.07 90.83

ATK-1 48.89 48.06 48.47 80.19 94.54 86.77

ATK-2 92.45 92.92 92.69 99.91 74.47 85.34

ATK-3 85.87 90.62 88.18 83.57 96.43 89.54

ATK-4 35.65 46.05 40.19 99.83 100.0 99.92

Category GraphSAGE AttackMiner

Recall % Precision % F1-score % Accuracy % Recall % Precision % F1-score % Accuracy %

Benign 98.46 85.23 91.37 95.88 98.46 91.89 95.06 97.72

ATK-1 99.14 100.0 99.57 99.14 99.06 99.01

ATK-2 97.85 98.45 98.15 98.11 100.0 99.05

ATK-3 98.57 100.0 99.28 99.12 100.0 99.56

ATK-4 85.14 98.14 91.18 93.63 98.31 95.91

Random Forest (RF) [22]. We chose the Gini coefficient as a function to
measure segmentation quality. As can be seen from the Table 4, the accuracy
of the RF classifier is much lower than that of the SVM. In addition, we also
experimented with k-Nearest Neighbor (KNN) [8], which gives less classification
performance than RF and SVM, and the classification accuracy is only 65.25%.
Figure 8 visually shows the detection distribution of SVM, RF, and KNN. As
shown in Fig. 8(a-c), the detection effects of SVM, RF, and KNN are inferior
to those of GNN-based methods. This is mainly because GNNs can effectively
learn by fusing the attribute information of graphs.

In addition, we compare AttackMiner with GCN [19] and GraphSAGE [11]
to evaluate the effectiveness of AttackMiner in detecting migration attacks based
on various graph neural networks. GCN is a convolution operation defined on the
graph structure. By defining the convolution operation on the graph, the struc-
tural information and node information in the graph are captured. GraphSAGE
aggregates information by sampling neighbor nodes. As can be seen from Table 4,
the accuracies of GCN and GraphSAGE are 90.83% and 95.88%, respectively,
which are only 7.05% and 1.88% lower than the AttackMiner prototype, respec-
tively. In total, the attack behavior in the original audit log is typically made
more obvious by graph structure optimization and attack migration operations.

6.5 Influence of Log Window Size on Detection Effect

In the process of building the provenance graph, we adopt the log window sliding
mechanism. Since log windows of different sizes contain different numbers of

524 Y. Pan et al.

(a) SVM. (b) Random Forest. (c) k-Nearest Neighbor.

(d) GCN. (e) GraphSAGE. (f) AttackMiner.

Fig. 8. Confusion matrices result from comparison analysis.

Fig. 9. Accuracy with different log window timespans.

Table 5. Results of different classifiers.

Category AttackMiner Tra AttackMiner

Recall % Precision % F1-score % Accuracy % Recall % Precision % F1-score % Accuracy %

Benign 92.77 93.61 93.19 92.97 98.46 91.89 95.06 97.72

ATK-1 80.36 94.65 86.92 99.14 99.06 99.01

ATK-2 99.91 82.61 90.44 98.11 100.00 99.05

ATK-3 93.57 96.24 94.89 99.12 100.00 99.56

ATK-4 98.13 100.00 99.06 93.63 98.31 95.91

AttackMiner: A GNN-Based Approach for Attack Detection from Audit Logs 525

entities and events, the size of the log window will affect the detection effect
to a certain extent. We evaluate the impact on detection results when the log
window size is varied from 30 min to 70 min, where the results are evaluated
every 10 min. Figure 9 shows the change in detection accuracy for different log
window sizes. In Fig. 9, as the log window becomes larger, the detection accuracy
decreases slightly, but still maintains a high accuracy (when the log window size
becomes 70 min, the AttackMiner detection accuracy is still above 96%). This
is because while normal entities and events occupy a larger proportion of log
windows with large time spans, AttackMiner learns the characteristics of attack
patterns in different contexts through attack migration. At the same time, our
graph structure optimization methods make the attack pattern more prominent
in the provenance graph, which is also beneficial to the detector detection.

6.6 The Effect of Changes in the Classifier on the Experiment

Traditional classifiers directly input node features into MLP for aggregation clas-
sification. Instead of using the traditional method, we designed a new classifier.
Our classifier is based on convolutional layers and combines multiple receptive
fields. The new classifier can aggregate features from different aspects of the fea-
ture vector by combining multiple receptive fields simultaneously. To understand
the contribution of our classifier module, we created a variant of AttackMiner
called AttackMiner Tra using the traditional classifier. Table 5 shows the perfor-
mance metrics for the above settings. Overall, AttackMiner’s average precision,
recall, and F1-score are all over 4.80% higher than AttackMiner Tra. We believe
that richer attack features can be learned due to the addition of convolutional lay-
ers after the graph neural network. The results show that our classifier improves
the performance of attack detection.

7 Conclusion

We present AttackMiner, a GNN-based attack detection framework for detect-
ing attack activity from system audit logs. AttackMiner combines provenance
graph analysis, natural language processing, and graph neural network techniques.
Through optimization and attack migration based on provenance graph structure,
AttackMiner can identify high-level patterns of different attacks. We extensively
evaluate AttackMiner on real public datasets. AttackMiner successfully detects
all the attacks with high accuracy and efficiency. Our research demonstrates the
successful application of graph neural networks in attack detection.

Acknowledgment. This work is supported by the Strategic Priority Research Pro-
gram of Chinese Academy of Sciences, Grant No. XDC02040200.

References

1. Adversarial tactics, techniques and common knowledge. https://attack.mitre.org/
wiki/Main Page

https://attack.mitre.org/wiki/Main
https://attack.mitre.org/wiki/Main

526 Y. Pan et al.

2. Trace: Preventing advanced persistent threat cyberattacks(2018). https://archive.
sri.com/work/projects/trace-preventing-advanced-persisten-threat-cyberattacks.
(Accessed 1 April 2022)

3. Alsaheel, A., et al.: {ATLAS}: A sequence-based learning approach for attack
investigation. In: 30th USENIX Security Symposium (USENIX Security 21), pp.
3005–3022 (2021)

4. Bates, A., Tian, D.J., Butler, K.R., Moyer, T.: Trustworthy whole-system prove-
nance for the linux kernel. In: 24th USENIX Security Symposium (USENIX Secu-
rity 15), pp. 319–334 (2015)

5. Bilge, L., Balzarotti, D., Robertson, W., Kirda, E., Kruegel, C.: Disclosure: detect-
ing botnet command and control servers through large-scale netflow analysis. In:
Proceedings of the 28th Annual Computer Security Applications Conference, pp.
129–138 (2012)

6. Debnath, B., et al.: Loglens: A real-time log analysis system. In: 2018 IEEE 38th
International Conference On Distributed Computing Systems (ICDCS), pp. 1052–
1062. IEEE (2018)

7. Du, M., Li, F., Zheng, G., Srikumar, V.: Deeplog: Anomaly detection and diagnosis
from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference On Computer And Communications Security, pp. 1285–1298 (2017)

8. Fix, E., Hodges, J.L.: Discriminatory analysis. nonparametric discrimination:
Consistency properties. International Statistical Review/Revue Internationale de
Statistique 57(3), 238–247 (1989)

9. Goel, A., Feng, W.C., Maier, D., Walpole, J.: Forensix: A robust, high-performance
reconstruction system. In: 25th IEEE International Conference on Distributed
Computing Systems Workshops, pp. 155–162. IEEE (2005)

10. Goel, A., Po, K., Farhadi, K., Li, Z., De Lara, E.: The taser intrusion recovery
system. In: Proceedings of the Twentieth ACM Symposium On Operating Systems
Principles, pp. 163–176 (2005)

11. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems 30 (2017)

12. Han, X., Pasquier, T., Bates, A., Mickens, J., Seltzer, M.: Unicorn: Run-
time provenance-based detector for advanced persistent threats. arXiv preprint
arXiv:2001.01525 (2020)

13. Hassan, W.U., Bates, A., Marino, D.: Tactical provenance analysis for endpoint
detection and response systems. In: 2020 IEEE Symposium on Security and Privacy
(SP), pp. 1172–1189. IEEE (2020)

14. Hassan, W.U., et al.: Nodoze: Combatting threat alert fatigue with automated
provenance triage. In: Network and Distributed Systems Security Symposium
(2019)

15. Hassan, W.U., Noureddine, M.A., Datta, P., Bates, A.: Omegalog: High-fidelity
attack investigation via transparent multi-layer log analysis. In: Network and Dis-
tributed System Security Symposium (2020)

16. Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S., Khayami, R.:
Know abnormal, find evil: frequent pattern mining for ransomware threat hunting
and intelligence. IEEE Trans. Emerg. Top. Comput. 8(2), 341–351 (2017)

17. Hutchins, E.M., Cloppert, M.J., Amin, R.M., et al.: Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intrusion kill
chains. Lead. Issues Inf. Warfare Sec. Res. 1(1), 80 (2011)

18. Keromytis, A.D.: Transparent computing engagement 3 data release (2018).
https://github.com/darpa-i2o/Transparent-Computing

https://archive.sri.com/work/projects/trace-preventing-advanced-persisten-threat-cyberattacks
https://archive.sri.com/work/projects/trace-preventing-advanced-persisten-threat-cyberattacks
http://arxiv.org/abs/2001.01525
https://github.com/darpa-i2o/Transparent-Computing

AttackMiner: A GNN-Based Approach for Attack Detection from Audit Logs 527

19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

20. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference On Machine Learning, pp. 1188–1196 (2014)

21. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for
learning the similarity of graph structured objects. In: International Conference on
Machine Learning, pp. 3835–3845. PMLR (2019)

22. Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R news
2(3), 18–22 (2002)

23. Liu, F., Wen, Y., Zhang, D., Jiang, X., Xing, X., Meng, D.: Log2vec: A heteroge-
neous graph embedding based approach for detecting cyber threats within enter-
prise. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1777–1794 (2019)

24. Liu, Y., et al.: Towards a timely causality analysis for enterprise security. In: NDSS
(2018)

25. Manzoor, E., Milajerdi, S.M., Akoglu, L.: Fast memory-efficient anomaly detection
in streaming heterogeneous graphs. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1035–
1044 (2016)

26. Milajerdi, S.M., Eshete, B., Gjomemo, R., Venkatakrishnan, V.: Poirot: Aligning
attack behavior with kernel audit records for cyber threat hunting. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1795–1812 (2019)

27. Milajerdi, S.M., Gjomemo, R., Eshete, B., Sekar, R., Venkatakrishnan, V.: Holmes:
real-time apt detection through correlation of suspicious information flows. In: 2019
IEEE Symposium on Security and Privacy (SP), pp. 1137–1152. IEEE (2019)

28. Oprea, A., Li, Z., Yen, T.F., Chin, S.H., Alrwais, S.: Detection of early-stage enter-
prise infection by mining large-scale log data. In: 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pp. 45–56. IEEE
(2015)

29. Parveen, P., McDaniel, N., Hariharan, V.S., Thuraisingham, B., Khan, L.: Unsu-
pervised ensemble based learning for insider threat detection. In: 2012 International
Conference on Privacy, Security, Risk and Trust and 2012 International Confernece
on Social Computing, pp. 718–727. IEEE (2012)

30. Pasquier, T., et al.: Practical whole-system provenance capture. In: Proceedings of
the 2017 Symposium on Cloud Computing, pp. 405–418 (2017)

31. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp.
8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

32. Pohly, D.J., McLaughlin, S., McDaniel, P., Butler, K.: Hi-fi: collecting high-fidelity
whole-system provenance. In: Proceedings of the 28th Annual Computer Security
Applications Conference, pp. 259–268 (2012)

33. Rehurek, R., Sojka, P.: Software framework for topic modelling with large cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks. Citeseer (2010)

34. Shen, Y., Mariconti, E., Vervier, P.A., Stringhini, G.: Tiresias: Predicting security
events through deep learning. In: Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 592–605 (2018)

http://arxiv.org/abs/1609.02907
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

528 Y. Pan et al.

35. Song, W., Yin, H., Liu, C., Song, D.: Deepmem: Learning graph neural network
models for fast and robust memory forensic analysis. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pp. 606–
618 (2018)

36. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers.
Neural Process. Lett. 9(3), 293–300 (1999)

37. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

38. Wang, Q., et al.: You are what you do: Hunting stealthy malware via data prove-
nance analysis. In: NDSS (2020)

39. Wang, S., et al.: Heterogeneous graph matching networks for unknown malware
detection. In: Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pp. 3762–3770. AAAI Press (2019)

40. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural network-based graph
embedding for cross-platform binary code similarity detection. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 363–376 (2017)

41. Zhu, T., et al.: General, efficient, and real-time data compaction strategy for apt
forensic analysis. IEEE Trans. Inf. Forensics Secur. 16, 3312–3325 (2021)

http://arxiv.org/abs/1710.10903

Hiatus: Unsupervised Generative
Approach for Detection of DoS and DDoS

Attacks

Sivaanandh Muneeswaran(B), Vinay Sachidananda, Rajendra Patil,
Hongyi Peng, Mingchang Liu, and Mohan Gurusamy

National University of Singapore, Singapore, Singapore
e0503509@u.nus.edu, {comvs,rspatil,dcslium,gmohan}@nus.edu.sg,

dcshongp@nus.edu

Abstract. Denial of Service (DoS) and Distributed Denial of Service
(DDoS) attacks pose a serious threat to the internet community by dis-
rupting the availability of services. The current methods for detecting
DoS and DDoS attacks have several drawbacks including a high false-
positive rate and are mostly supervised techniques. The datasets used
lack recent attack types. To overcome these limitations, we propose
Hiatus: two independent generative models as anomaly detectors: (1)
Variational Auto Encoder (VAE), and (2) Generative Adversarial Net-
work (GAN) to classify the traffic flow as either benign or DoS or DDoS.
We make the following contributions: (1) two learning algorithms (VAE
and GAN) are trained in an unsupervised fashion to detect DoS and
DDoS traffic without the involvement of labeled data, (2) avoid exter-
nal feature engineering, (3) both the learning algorithms are trained and
tested on CICDDoS2019 dataset which consists of latest exploitation
and reflection based attacks, and the models are benchmarked by test-
ing them with CICIDS2017 and UNSW-NB15 dataset. With the evalu-
ated results, the proposed approaches outperform existing state-of-the-
art techniques and could be used for effective DoS and DDoS detection.

Keywords: Denial of Service · Distributed Denial of Service ·
Unsupervised learning · VAE · GAN · UNSW-NB15 · CICDDoS2019

1 Introduction

Network attacks pose a serious threat to the growing internet traffic. With high-
speed internet access and the rapid expansion of computer networks, we see an
increase in the number of cyberattacks. One of the most common network attacks
is the Denial of Service or Distributed Denial of Service attacks. Such attacks
tend to disrupt the availability of the resources in the network by overwhelming
traffic from various sources. These DoS and DDoS attacks are focused on obtain-
ing financial or economical benefits, besides being used as a tool for revenge and
also for political and military advantages. According to the quarterly reports on

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
Published by Springer Nature Switzerland AG 2023. All Rights Reserved
F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 529–546, 2023.
https://doi.org/10.1007/978-3-031-25538-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_28&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_28

530 S. Muneeswaran et al.

DDoS attacks by Kaspersky1, for the second quarter of 2021, the top three most
attacked countries are the United States (36.00%), China (10.28%), and Poland
(6.34%). Almost 60% of the attacks were UDP flood attacks, and the next being
SYN flood attacks accounting for 23.67%.

Network Intrusion Detection Systems (NIDS) are employed to detect such
DoS and DDoS attacks. NIDS can be classified into signature-based and
anomaly-based. Signature-based NIDS attempts to match with the known attack
signatures to detect intrusions. The main drawback of such systems is that they
cannot detect unknown attacks. On the other hand, anomaly-based NIDS tries
to capture the normal behavior of the network, and any deviation from such
behavior is flagged as an intrusion. The main advantage of anomaly-based NIDS
over signature-based NIDS is that it could even detect unknown attacks and
hence the former is preferred over the latter.

Such anomaly-based detection systems are built through statistical meth-
ods besides using machine learning techniques. Deep learning has shown to be
effective in various tasks due to the availability of data. Many such learning
techniques have been proposed to detect the normal and DoS and DDoS records
from the network flow. There are some drawbacks to the existing techniques.
One such drawback is the limitation in the availability of labeled data which is
required for the supervised learning techniques. To overcome this, unsupervised
detection of DoS and DDoS traffic is required.

1.1 Motivation and Problem Statement

Most of the state-of-the-art approaches are based on supervised learning tech-
niques. The major challenge with supervised learning techniques is the collection
of large-scale labeled data which is quite tedious. Moreover, supervised learning
techniques do not generalize well to unknown attacks. Even though some unsu-
pervised learning techniques exist for detecting DDoS attacks, they suffer from
a high false-positive rate. Moreover, the datasets used in existing works do not
address the detection of up-to-date DDoS attacks.

The existing works rely on using the network traffic to detect the attacks.
But all these network traffic features do not contribute to the detection of DoS or
DDoS attacks. Therefore, the important features from the network traffic have
to be extracted. Existing works apply different feature engineering techniques to
extract the necessary data from network traffic. But these feature engineering
techniques require expertise and vary with different data and algorithms. In
addition, as the attacks are evolving on a daily basis, it is necessary for the
system to be able to detect recent attacks.

In summary, existing DDoS detection systems suffer from heavy dependence
on labeled data for training, unsatisfactory performance, complex feature engi-
neering techniques. To solve the limitations of existing approaches, there is a need
for a DoS and DDoS detection system which is capable of detecting up-to-date
DoS and DDoS attacks from network traffic without relying much on labeled

1 https://securelist.com/ddos-attacks-in-q2-2021/103424/.

https://securelist.com/ddos-attacks-in-q2-2021/103424/

Hiatus: Unsupervised Detection of DoS and DDoS Attacks 531

data (i.e. in an unsupervised fashion). The proposed model should be capable
of generating abstract features from high dimensional data without involving
domain expertise and without deteriorating performance.

Shortcomings. Most of the above-mentioned techniques implement feature
extraction through various techniques in order to develop the model which
impedes the development of a model suitable across data from different ori-
gins and has to adapt to different algorithms. Moreover, highly accurate models
require labeled data for development. Thus, we need a methodology to detect
DoS, DDoS attacks without heavy dependence on labeled data and complex
feature engineering techniques.

Research Gaps. Even though numerous solutions exist for the detection of
DDoS attacks, the setbacks in the existing works lead to the following research
questions:

– RQ-1: how to develop systems capable of detecting DoS, DDoS attacks with-
out much reliance on labeled data?

– RQ-2: how to generate or extract abstract features from high dimensional
data without any domain expertise?

– RQ-3: how to develop a detection system with a low false-positive rate along
with less inference time capable of detecting recent attacks?

1.2 Approach Overview

To build a model for detecting DoS, DDoS attacks, we train two generative mod-
els in an unsupervised fashion. This will eliminate the reliance on labeled data to
a larger extent. Therefore we train Variational Autoencoder (VAE) and Gener-
ative Adversarial Network (GAN) on a single category of data (either benign or
malicious). Through this, we limit the usage of labeled data. We are aware that
collecting one particular category of data without contamination is not feasible.
Therefore, one of our models i.e. VAE is trained with a particular category of
data along with a few records of another category as outliers. Through this, our
model is robust to outliers in the training data.

Although many works exist for detecting such attacks through shallow and
deep ML models, we propose the use of generative models to design the detection
system. The main advantage of these generative models is the modeling and
learning of the distribution of the training data. Since the model learns the
distribution of the data, additional feature selection techniques are not required.
Hence generative models are best suited to avoid domain expertise and complex
feature engineering procedures.

1.3 Results Overview

We have conducted multiple sets of performance evaluation and benchmarking
experiments. We evaluated Hiatus(VAE and GAN models) on multiple datasets

532 S. Muneeswaran et al.

like CICDDoS2019, CICIDS2017, and UNSW-NB15 datasets containing recent
DoS, and DDoS attacks. The proposed GAN model achieves around 99% recall
with a false positive rate of 4.16% on the CICDDoS2019 dataset. The proposed
VAE model achieves 96.27% recall with a false positive rate of 0.08% on the
CICIDS2017 dataset. Moreover, both the proposed models i.e. GAN and VAE
achieve 99.93% and 98.87% accuracy along with the false-positive rates of 0.35%
and 2.7% respectively.

Our Contributions. We make the following contributions to address the exist-
ing research gaps.

– We propose Hiatus - a DoS, DDoS detection system with two independent
generative models VAE, and GAN trained in an unsupervised fashion to
detect DoS and DDoS attacks.

– We train the generative models without any external feature engineering pro-
cess. These generative models are robust to noise in training data.

– We train the models on CICDDoS2019, consisting of modern reflection-based
attacks and exploitation-based attacks. Also, the models are trained and
tested on datasets like CICIDS2017, UNSW-NB15 and benchmarked.

The remainder of this paper is organized as follows: Section 2 investigates the
existing works, Sect. 3 provides a detailed discussion on the proposed models. In
Sect. 4 and Sect. 5, the performance of the model along with its results in addition
to comparison with existing state-of-the-art is provided. The evaluation results
are discussed in Sect. 6, conclusion is provided in Sect. 7 with references at the
end.

2 Related Work

Various methods for detecting DDoS attacks have been proposed in the liter-
ature. Some techniques use statistical methods to detect such attacks which
resulted in increased computational complexity. Other techniques include data
mining and machine learning methods to detect DDoS attacks. This section sum-
marizes various machine learning techniques to detect DoS and DDoS attacks
along with their missing gaps.

Supervised Learning Techniques: In [15], an ensemble of deep learning tech-
niques (CNN, LSTM, RNN) is trained on the CICIDS2017 dataset to detect
DDoS attacks. Two binary classifiers are trained individually and ensembled.
In [29], DeepDefense - several variations of recurrent deep neural networks like
LSTM, GRU, CNN-LSTM are trained on the ISCX2012 dataset to differenti-
ate normal traffic from DDoS attacks. Generally, deep learning models involve a
higher number of parameters than shallow machine learning models and hence
involve higher inference time. However, there is only a 0.1% difference in F1
score between a Random Forest model and the proposed LSTM model. [14] pro-
posed a deep Autoencoder for feature extraction followed by classification of

Hiatus: Unsupervised Detection of DoS and DDoS Attacks 533

normal and DDoS traffic through the k-Nearest Neighbour algorithm. The pro-
posed work includes both binary and multi-class classification with the hyper-
parameters of k-NN and Autoencoder optimized through Bayesian optimization.
General ML techniques like Random Forest, outperform the proposed AE + k-
NN technique. [16] analyzes statistical features of four different DDoS attacks
(SSH Brute-force, DNS Reflection, ICMP flood, TCP SYN) obtained from a
simulated dataset. The technique aims to detect DDoS attacks from the source
side. The pre-trained model in addition to several machine learning models like
Decision Tree, Naive Bayes, K-means acts as an online learning mechanism i.e.
using these predictions the pre-trained model can be updated. A combination of
different algorithms could have affected the performance, especially in the case
of unsupervised learning algorithms. [9] uses a RNN-autoencoder (autoencoder
with RNN layers) as a feature extractor in the pre-training stage and a softmax
classifier is used in fine-tuning stage to classify the normal and malicious traffic
in CICDDoS2019 dataset. Though the dataset consists of around 11 types of
DDoS attacks, the model is trained as a binary classifier. RNN has its bene-
fits for sequence data. But the advantage of using it over feed-forward neural
networks is not illustrated. One of the major issues of the supervised learning
approach is the lack of labeled data. Obtaining labeled data on a large scale is
costly in terms of computation. Moreover, these approaches employ additional
feature engineering techniques which would vary over data and algorithms.

Unsupervised Learning Techniques: In the case of unsupervised learn-
ing, labeled data is not required for building the classifier. In [10], multivari-
ate correlation analysis is performed on network features to show the degree
of dependency. Clustering through DBSCAN algorithm is used to cluster nor-
mal and DDoS traffic with experiments on CAIDA DDoS dataset. Accuracy of
99.99% with only 3000 testing records could not account for the validity of the
model. But DBSCAN falls behind with datasets where the density of normal
and DDoS records are similar. In [4], K-means clustering is used for determining
the cluster with experiments on CAIDA DDoS dataset. But K-means clustering
does not work well with non-spherical cluster shapes. [22] proposed an autoen-
coder trained on CICIDS2017 dataset to obtain low-dimensional data. The low-
dimensional normal traffic is used to train the One Class-SVM model to classify
the DDoS traffic. Although the model has good accuracy of 99.35% accuracy,
the false positive rate is quite high and also it requires noiseless normal traffic
for training which is difficult to obtain in the real world setup. [19] proposed
two Self-Organizing Maps (SOM) to label the unlabeled data. One SOM is used
to mark the record as normal or suspicious and the other to mark the suspi-
cious record as normal or DDoS attack. The labeled data is used to train an
ensemble of Random Forest, Decision Tree, and Gradient Boosted Tree through
max voting. If the input data has several hot spots, SOM might generate several
smaller groups instead of one larger group. If there are discrepancies with the
initial SOM model, it would adversely affect the classifier. The main drawback
of unsupervised learning algorithms is the high false-positive rate.

534 S. Muneeswaran et al.

Semi-Supervised Learning Techniques: To tackle the problem of high false
rate, and the need for a large amount of labeled data, semi-supervised learning
approaches have been proposed that work on labeled and unlabeled datasets. In
[1], agglomerative clustering and K-means cluster the unlabeled data into two
clusters, and initial labelling is done based on entropy. Labeling is done based
on the voting of the two clustering techniques followed by supervised train-
ing and testing through SVM, Random Forest, k-Nearest Neighbours. A simu-
lated dataset is used for training, and the model is evaluated using CICIDS2017
dataset. Even very slight differences in entropy values may mislead the initial
labeling process and lead to bad clusters. In [17], Co-clustering is employed for
dimensionality reduction, and the dataset (NSL-KDD and ISCX2012) is split
into three clusters: 1. the cluster with DDoS traffic, 2. the cluster with normal
traffic, 3. the cluster with DDoS-normal traffic. Cluster 2 is considered to be
noisy normal traffic and thus it is eliminated and the remaining clusters are
combined and trained with Extra-tree classifier.

In [21], the centroid of 14 clusters (13 attack types and normal) obtained
through Fuzzy C-means clustering is predefined based on the available labeled
data. The cluster for unlabeled data is determined using the membership value.
Botnet 2014 dataset containing 13 DDoS attack types was used for experimenta-
tion. Noise in the available labeled data used for determining the initial clusters
may lead to instability. [13] proposed constrained K-means clustering for distin-
guishing normal traffic from DDoS traffic. The centroid for the clusters is ini-
tialized through the labeled seed set with Lincoln Laboratory Scenarios(DDoS)
1.0 dataset. Though the time to converge is less than K-means, it works on
the assumption that the initial labeling of the seed set is noise-free. In [12],
the candidate feature set is obtained based on entropy difference and ranked
through K-means based on the ratio of average sum of squares error to cluster
distance (RSD) followed by Sequential Forward Selection. After feature selec-
tion, K-means clustering is performed with an allocation of initial cluster centers
based on labeled data density. Experiments were performed on DARPA, CAIDA,
CICIDS2017, and a real-world dataset independently. Feature selection leads to a
very less number of features used for training and testing. With such less number
of features and noise in the data points used for allocating initial cluster centers,
this technique becomes unstable. [3] surveyed the machine learning approaches
used to detect DDoS attacks.

3 Our Proposed Approach

We propose Hiatus - an unsupervised DoS and DDoS detection method based on
generative models like Variational AutoEncoder (VAE) and Generative Adversar-
ial Network(GAN) trained on datasets with recent DDoS attacks. VAE is preferred
over AutoEncoder because the classification of normal and DDoS traffic is based
on the reconstruction score which considers the variability of the distribution of
variables rather than the reconstruction error of AutoEncoder which is determin-
istic. GAN is trained to fit the distribution of normal samples and based on its

Hiatus: Unsupervised Detection of DoS and DDoS Attacks 535

ability to reconstruct a sample from certain latent representations, the classifi-
cation between normal and DDoS traffic is done. Both VAE and GAN can han-
dle complex high dimensional data, thus eliminating the curse of dimensionality.
Moreover, both techniques are trained in an unsupervised fashion.

3.1 Variational Autoencoder

Variational Autoencoder (VAE) [18] is an unsupervised directed probabilistic
model whose structure is similar to that of an Autoencoder. It consists of an
encoder, a latent distribution, and a decoder. The difference between Autoen-
coder and VAE is that Autoencoder is a deterministic model and could not
produce new samples. But VAE is a probabilistic model and can produce new
samples. The probabilistic encoder eθ and the probabilistic decoder dφ together
form the Variational Autoencoder. The objective of VAE is the variational lower
bound of the marginal likelihood of the data. The marginal likelihood of indi-
vidual data points can be written as

logpθ(x(i)) = −DKL(qφ(z|x(i)||pθ(z)) + Eqφ(z|x(i))[logpθ(x|z)] (1)

where qφ(z|x) is the approximate posterior to be modeled. This posterior can be
denoted as N (μφ(x), σφ(x)) where μφ(x) and σφ(x) are the mean and standard
deviation of the posterior distribution derived through the VAE, pθ(z) is the
prior distribution of the latent variable z. pθ(x|z) is the likelihood of x given the
latent variable z. The first term of equation(1) is the KL divergence between
the approximate posterior and the prior. The second term of equation(1) is the
reconstruction of x. VAE models the parameters (mean and standard deviation)
of the distribution. VAE applies reparameterization by using a random variable
from a standard normal distribution. The latent variable z is reparameterized
through a transformation hφ(ε, x) where ε is the random variable from a standard
normal distribution.

z = hφ(ε, x), ε ∼ N (0, 1) (2)
This will ensure that the latent variable z follows the distribution of the approx-
imate posterior.

VAE is trained with one class of data (e.g. normal or with DDoS records)
and with little noise from the other class. During testing, a number of samples
are drawn from the encoder. For every sample, the decoder outputs the mean
and standard deviation. Based on this, the probability of generating the input
data from this distribution is calculated as the reconstruction score. The average
reconstruction score is used as the score for detecting DDoS records.

The main advantage of VAE over Autoencoder is that VAE takes variability
of the data into account which is not in the case of Autoencoder. It is possible
that both normal and DDoS records share the same mean value but their vari-
ance can differ. Most of the techniques for anomaly detection including GAN
require only one particular category of data without noise. Noise in such data
will deteriorate the performance of the model. Since VAE takes variability into
account, it could even work well with noise in the input data. The working of
the proposed VAE is depicted in algorithm 1.

536 S. Muneeswaran et al.

Algorithm 1: VAE for DoS and DDoS detection

INPUT: Training dataset X, Validation dataset Xval, Testing dataset X
(i)
test

i = 1, ..., M
OUTPUT: benign or anomalous
φ, θ ← train a VAE using X ;
α ← obtain through Validation dataset Xval;
for i ← 0 to M do

μz(i) , σz(i) = eθ(z|x(i));
draw N samples from z ∼ N (μz(i), σz(i));
for j ← 0 to N do

μx̂(i,j) , σx̂(i,j) = dφ(x|z(i,j));
end
reconstruction score(i) = 1

N

∑N
n=1 pθ(x(i)|μx̂(i,n) , σx̂(i,n));

if reconstruction score (i) < α then
x(i) is not an anomaly

end
else

x(i) is an anomaly
end

end

3.2 Generative Adversarial Network

Our model is based on [11]. A generative module and discriminative module
are trained for the detection of DoS and DDoS attacks. Both the generator
network G and the discriminator network D are trained in an adversarial fashion.
The generator is involved in mapping uniformly distributed noise sampled from
the latent variable z to the input space X through the mapping G(z). The
objective of the generator is to improve the generation of realistic data. Since
the proposed work is based on traffic flows, instead of CNN, ANN is used in both
generator and discriminator. The discriminator is aimed at mapping the input
data to the probability that the given input to D is real or generated by the
generator. The objective of the discriminator is to improve the identification of
real and generator data. During training, both the generator and discriminator
are optimized through a two-player min-max game.

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x)]
+Ez∼pz(z)[log(1 − D(G(z))]

(3)

After training, the generator is capable of mapping the latent variable z to
realistic data. To detect the anomaly, two components are used: the residualloss
and discriminatorloss. The residual loss deals with the similarity between the
generated data from the generator G and the query data and it can be defined as

LR(z) =
∑

|x − G(z)| (4)

Hiatus: Unsupervised Detection of DoS and DDoS Attacks 537

If the generator is perfectly trained, the residual loss will be zero and the dis-
crimination loss is defined as:

LD(z) =
∑

|f(x) − f(G(z))| (5)

where f(.) represents the output of an intermediate layer of the discriminator.
The idea is to obtain a better feature representation through the intermediate
layer rather than relying on the scalar output of the discriminator. The GAN
model is trained only with one particular category of data (either benign or
anomalous data). In this way, the GAN model learns the representation of the
input data. As the model is being trained only with one particular category of
data, the GAN model could reconstruct that particular category of data. This
ability could be used to find the anomalous data since both the loss components
remain high for any other category of data. Therefore, the overall anomaly score
can be defined as the sum of both residual loss and discriminator loss. The overall
algorithm of the proposed GAN technique is given in Algorithm 2.

L(z) = LR(z) + LD(z) (6)

This anomaly score is used to detect DDoS attacks based on a threshold γ.

Algorithm 2: GAN for DoS and DDoS detection

INPUT: Training dataset X, Validation dataset Xval, Testing dataset X
(i)
test

i = 1, ..., M
OUTPUT: benign or anomalous
G, D ← train a GAN using X ;
α ← obtain through Validation dataset Xval;
for i ← 0 to M do

draw z ∼ N (0, 1);
LR(z) = |x(i) − G(z)|;
LD(z) = |f(x) − f(G(z))|;
anomaly score(i) = LR(z) + LD(z);
if anomaly score(i) < α then

x(i) is not an anomaly
end
else

x(i) is an anomaly
end

end

4 Performance Evaluation

4.1 Datasets

In this section, we list the publicly available datasets consisting of DDoS attacks.

538 S. Muneeswaran et al.

The CAIDA "DDoS Attack 2007" dataset [5] contains one hour of anony-
mous traffic traces from a DDoS attack. DARPA dataset [20] consists of LLDOS
1.0, which includes a DDoS attack by a novice attacker against a naive defender,
LLDOS 2.0.2 which includes a DDoS attack by a stealthy attacker yet novice
against a naive defender, and Windows NT Attack Dataset. NSL-KDD [27] con-
tains four categories of attacks: Probe, DoS, R2L, and U2R. It contains 10 types
of DoS attacks like Neptune, back, Teardrop, Pod, etc.

The main drawback of the above-mentioned datasets is that almost all of
them are outdated. They do not contain recent types of DDoS attacks. In order
to solve this issue, we use the CICDDoS2019 dataset [26] which remains as one
of the largest public dataset and addresses the gaps in the existing datasets. It
contains the most up-to-date DDoS attacks like SSDP, NTP, NETBIOS, etc. It
consists of both reflection-based and exploitation-based attacks. 12 DDoS attacks
were included during the training day and 7 DDoS attacks were included during
the testing day.

Also, to validate the performance of our proposed approach and to com-
pare it with existing literature, we use two more datasets. UNSW-NB15 dataset
[23] is labeled and contains nine categories of attacks including DoS. It con-
sists of 49 features with around 16,353 DoS attack records. CICIDS2017 dataset
[25] is a labeled dataset and contains seven categories of attacks. It consists of
both DoS and DDoS attack types like Hulk, GoldenEye, Slowloris, Slowhttptest,
Heartleech, and Low Orbit Ion Canon attacks. We train our proposed model
with these datasets and benchmark them. Table 1 contains the distribution of
the above-mentioned datasets for both the proposed VAE and GAN models in
case of training, validation, and testing sets.

Table 1. Distribution of datasets for VAE and GAN models.

Dataset Approach Type of record Training Validation Testing

CICDDoS2019 VAE DDoS 207880 36685 61142
Benign 1000 4327 38948

GAN DDoS 181894 32100 91713
Benign – 4427 39848

CICIDS2017 VAE DDoS 22326 3941 11258
Benign 100 5990 539108

GAN DDoS 57127 10082 16803
Benign – 6000 54000

UNSW-NB15 VAE DDoS 100 2819 11276
Benign 89250 15750 45000

GAN DDoS – 2839 11356
Benign 76500 13500 60000

Hiatus: Unsupervised Detection of DoS and DDoS Attacks 539

Pre-Processing. The first step in pre-processing is to obtain the DDoS records
from various datasets. Benign and DDoS records are extracted from datasets
like UNSW-NB15 and CICIDS2017 since these datasets contain other types of
attacks also. Since CICDDoS2019 contains only DDoS records, the records are
equally sampled from all the different DDoS attacks.

The features containing flow details like timestamp, source IP, destination
IP, source port, destination port, etc. are removed. Also, the categorical features
are one-hot encoded. Outliers in the dataset are removed using z-score. Normal-
ization is important to convert all the features into a common scale. Hence the
data is normalized using min-max normalization.

4.2 Experiments

In our experiments, VAE and GAN are trained and tested for different distribu-
tions of datasets. For both, VAE and GAN methods, a threshold γ is required to
classify the data as benign or malicious. This threshold γ is calculated through
the validation set.

Model Setup for VAE. The encoder consists of two hidden layers with 16 and
8 dimensions. The decoder consists of two hidden layers with 8 and 16 dimen-
sions. The latent space consists of 2 dimensions. In addition to this, batch size,
the number of epochs for every dataset is determined through hyper-parameter
tuning. VAE is trained with only one class of data (either benign or DDoS data)
with little noise from the other. During training, the data is preprocessed and
passed into the probabilistic encoder where the latent vector learns the distri-
bution of the training data. The average reconstruction loss of the testing data
is calculated and the threshold is determined using the validation data.

Model Setup for GAN. The generator of GAN consists of two fully connected
layers with 64 and 128 units respectively. The units in the output layer of the
generator are the number of features. Therefore during training, the generator
tunes the latent space accordingly to generate data similar to training data. The
discriminator of GAN consists of three fully connected layers with 256, 128, 128
units respectively. The input to the discriminator is either the data generated by
the generator or the original data and the discriminator classifies the input as
original or fake. All these fully connected layers are activated with LeakyRelu and
20% dropout is applied. By calculating the sum of residual loss and discriminator
loss from the generator and discriminator respectively, and comparing it against
a threshold calculated through the validation set, the testing data is classified.

5 Results and Comparison

This section comprises the results of VAE and GAN implemented for the three
datasets: CICDDoS2019, CICIDS2017, and UNSW-NB15. To evaluate the per-
formance of the model, the metrics like Recall, Precision, F1-score, False Positive

540 S. Muneeswaran et al.

Rate are calculated. Since the testing data is imbalanced, robust scoring metrics
like F1-score, Area under ROC curve, and Area under PRC curve are calculated
in order to avoid bias from the imbalanced data. Moreover to benchmark against
the existing works, other metrics like Accuracy, Precision and Recall are also cal-
culated. Results are also obtained by varying the size of datasets. The training
size of datasets is varied from 50% to 90% and Receiver operating characteristic
curve, Precision-Recall curve are plotted.

5.1 CICDDoS2019 Dataset

Table 2 shows the performance of our proposed GAN and VAE models for CICD-
DoS2019 dataset in comparison with the existing models. It can be seen that
GAN performs a little better than VAE because the training data for VAE con-
tains noise (both categories of data) but GAN simply contains one category of
data. It is a trade-off between the inclusion of noise in training data and the per-
formance of the models. Although [6,9] are supervised approaches, our approach
being unsupervised performs on par and better respectively in terms of higher
accuracy and low false positive rate. Figure 1 shows the ROC curve along with
Area Under the ROC value and Precision-Recall Curve (PRC) along with Area
Under PRC value respectively for different sizes of the dataset for GAN and
VAE models. Figure 1e and Fig. 1f show the comparison between the proposed
VAE and GAN models in terms of ROC curve and Precision-Recall Curve.

Table 2. Performance of Hiatus on CICDDoS2019 dataset.

Method Precision(%) Recall(%) FPR(%) F1(%)

DDoSNet [9] 99% 99% – 99%
Automatic Feature Selection [6] 91.16% 79.41% – 79.39%
Hiatus-GAN (Our approach) 97.33 99.05 4.16 98.18
Hiatus-VAE (Our approach) 95.76 97.52 10.15 96.63

5.2 CICIDS2017 Dataset

Table 3 shows the performance of GAN and VAE for CICIDS2017 dataset. [28]
generalizes higher-order features from attributed network flow graph and detects
the network attack. [8] utilized convolutional neural networks to detect benign
or malicious traffic flows. [24] performs unsupervised feature selection and com-
putes initial cluster centers using a set of semi-identical instances and performs
clustering. [7] classifies DDoS records from normal records through the Ker-
nel Online Anomaly Detection algorithm which is unsupervised. [8] and [28] are
supervised techniques. Although our proposed work is unsupervised, and it is not
a head-to-head comparison, our proposed VAE model could perform equivalent
to the state of the art and in fact could achieve a better false-positive rate than
the state of the art. Our proposed GAN model could perform better than the

Hiatus: Unsupervised Detection of DoS and DDoS Attacks 541

other two existing works. Figure 2 shows the ROC curve along with Area Under
ROC value and Precision-Recall Curve (PRC) along with Area Under PRC value
respectively for different sizes of the dataset for GAN and VAE models.

5.3 UNSW-NB15 Dataset

Table 4 shows the performance of GAN and VAE for UNSW-NB15 dataset. In
[2], Feature Correlation Map is extracted to detect malicious traffic from normal
traffic. [17] utilizes network entropy estimation, co-clustering, and extra-tree

(a)
for GAN.

(b)
sizes of dataset for GAN.

(c)
for VAE.

(d)
sizes of dataset for VAE.

(e) Receiver Operating Characteristic
curve for VAE and GAN.

(f) Precision-Recall curve for VAE and
GAN.

Fig. 1. Results of VAE and GAN with CICDDoS2019 dataset.

542 S. Muneeswaran et al.

(a)
for GAN.

(b)
sizes of dataset for GAN.

(c)
for VAE.

(d)
sizes of dataset for VAE.

(e) Receiver Operating Characteristic
curve for VAE and GAN.

(f) Precision-Recall curve for VAE and
GAN.

Fig. 2. Results of VAE and GAN with CICIDS2017 dataset.

algorithm to detect DDoS attacks. Table 4 shows that the proposed VAE and
GAN methods outperform the existing methods in the literature. The main
reason for low performance in existing works is that the normal and DDoS records
in UNSW-NB15 are similar. Hence most of the models fail to perform better
or result in increased False Positive Rates. Since VAE takes the variability of
the data into account, it could differentiate between normal and DDoS records
effectively.

Hiatus: Unsupervised Detection of DoS and DDoS Attacks 543

Table 3. Performance of Hiatus on CICIDS2017 dataset.

Method Accuracy(%) FPR(%) Precision(%) Recall(%) F1(%)

LUCID [8] 98.88 1.79 98.27 99.52 98.89
DeepGFL [28] – – 75.67 30.24 43.21
Cluster center initialization [24] 81.98 59.68 79.16 81.98 80.54
E-KOAD [7] 99.55 0.23 95.24 95.24 95.24
Hiatus-GAN (Our approach) 91.59 11.01 73.85 100 84.96
Hiatus-VAE (Our approach) 99.28 0.08 99.55 96.27 97.86

Figure 3 shows the ROC curve along with Area Under ROC value and
Precision-Recall Curve (PRC) along with Area Under PRC value respectively
for different sizes of the dataset for GAN and VAE models. Figure 3e and 3f
show the comparison between the proposed VAE and GAN models in terms of
ROC curve and Precision-Recall Curve.

Table 4. Performance of Hiatus on UNSW-NB15 dataset.

Method Accuracy(%) TPR(%) FPR(%) F1(%)

Feature Correlation Map [2] 91.82 60.92 0.46 72.65
Semi supervised machine learning [17] 93.71 – 1.41 –
Hiatus-GAN (Our approach) 99.93 99.99 0.35 99.95
Hiatus-VAE (Our approach) 98.87 99.29 2.7 99.29

6 Discussion

The proposed generative models (VAE and GAN) have the advantage of less
reliance on labeled data during training which makes the feasibility of collection
of large-scale data easier. Considering the noise within a single category of data
in the real-world environment, the proposed VAE model proves to be robust to
noise and has on-par performance with the GAN model.

For different datasets and attacks, the existing works have relied on multiple
rounds of feature selection in order to achieve good performance. However, the
proposed approaches have eliminated the need for such expensive feature engi-
neering techniques. The proposed approaches can handle all the features of the
data and model it completely without any loss in potential information. There-
fore, Hiatus can ingest network traffic data in real time and could detect the
DoS and DDoS attacks without much latency as the system does not involve
complex feature engineering practices and also considers all the information for
detection.

In order to prove the robustness of our approaches, we have conducted multi-
ple experiments with varying proportion of training and testing data in addition
to using robust scoring metrics like Receiver Operating Characteristic (ROC)

544 S. Muneeswaran et al.

(a)
for GAN.

(b)
sizes of dataset for GAN.

(c)
for VAE.

(d)
sizes of dataset for VAE.

(e) Receiver Operating Characteristic
curve for VAE and GAN.

(f) Precision-Recall curve for VAE and
GAN.

Fig. 3. Results of VAE and GAN with UNSW-NB15 dataset.

curve, and Precision Recall Curve (PRC) and plotted their graphs for each of
the dataset to show that our models achieve good performance while handling
the data imbalance problem. Moreover, datasets containing recent attack types
are used and the model is capable of classifying new attack patterns due to its
unsupervised training nature.

Hiatus: Unsupervised Detection of DoS and DDoS Attacks 545

7 Conclusion

In this work, we have presented two generative models for the detection of DDoS
attacks which are capable of outperforming the performance of state-of-the-art
models. The benefit of both models is that they do not require additional domain
expertise for the feature selection and are unsupervised without any dependency
on labels. Despite being an unsupervised technique, our models could achieve a
low false-positive rate. To show the reliability of our approach, we have tested
the models on benchmark datasets and produced the results.

References

1. Aamir, M., Zaidi, S.M.A.: Clustering based semi-supervised machine learning for
ddos attack classification. Journal of King Saud University - Computer and Infor-
mation Sciences (2019). https://doi.org/10.1016/j.jksuci.2019.02.003, http://www.
sciencedirect.com/science/article/pii/S131915781831067X

2. Amma, N.G.B., Subramanian, S.: Feature correlation map based statistical app-
roach for denial of service attacks detection. In: 2019 5th International Conference
on Computing Engineering and Design (ICCED), pp. 1–6 (2019)

3. Bhardwaj, A., Mangat, V., Vig, R., Halder, S., Conti, M.: Distributed denial of ser-
vice attacks in cloud: State-of-the-art of scientific and commercial solutions. Com-
put. Sci. Rev. 39 100332 (2021). https://doi.org/10.1016/j.cosrev.2020.100332,
https://www.sciencedirect.com/science/article/pii/S1574013720304329

4. Bhaya, W., Manna, M.: A proactive ddos attack detection approach using data
mining cluster analysis. J. Next Gener. Inform. Technol. 5 36– 47 (D2014)

5. CAIDA: The caida ucsd “ddos attack 2007” dataset (2007)
6. Can, D.-C., Le, H.-Q., Ha, Q.-T.: Detection of distributed denial of service attacks

using automatic feature selection with enhancement for imbalance dataset. In:
Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds.) ACIIDS 2021.
LNCS (LNAI), vol. 12672, pp. 386–398. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-73280-6_31

7. Daneshgadeh Çakmakçı, S., Kemmerich, T., Ahmed, T., Baykal, N.: Online ddos
attack detection using mahalanobis distance and kernel-based learning algorithm.
J. Netw. Comput. Appl. 168 102756 (2020). https://doi.org/10.1016/j.jnca.2020.
102756, http://www.sciencedirect.com/science/article/pii/S1084804520302307

8. Doriguzzi-Corin, R., Millar, S., Scott-Hayward, S., Martinez-del Rincon, J., Sir-
acusa, D.: Lucid: A practical, lightweight deep learning solution for ddos attack
detection. IEEE Trans. Netw. Serv. Manage. 17(2), 876–889 (2020). https://doi.
org/10.1109/tnsm.2020.2971776, http://dx.doi.org/10.1109/TNSM.2020.2971776

9. Elsayed, M.S., Le-Khac, N.A., Dev, S., Jurcut, A.D.: Ddosnet: A deep-learning
model for detecting network attacks. In: 2020 IEEE 21st International Symposium
on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), pp.
391–396 (2020). https://doi.org/10.1109/WoWMoM49955.2020.00072

10. Girma, A., Wang, P.: An efficient hybrid model for detecting distributed denial of
service (ddos) attacks in cloud computing using multivariate correlation and data
mining clustering techniques. Issues Inform. Syst. 19(2), 12 (2018)

11. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information
Processing Systems. vol. 27. Curran Associates, Inc. (2014). https://proceedings.
neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

https://doi.org/10.1016/j.jksuci.2019.02.003
http://www.sciencedirect.com/science/article/pii/S131915781831067X
http://www.sciencedirect.com/science/article/pii/S131915781831067X
https://doi.org/10.1016/j.cosrev.2020.100332
https://www.sciencedirect.com/science/article/pii/S1574013720304329
https://doi.org/10.1007/978-3-030-73280-6_31
https://doi.org/10.1007/978-3-030-73280-6_31
https://doi.org/10.1016/j.jnca.2020.102756
https://doi.org/10.1016/j.jnca.2020.102756
http://www.sciencedirect.com/science/article/pii/S1084804520302307
https://doi.org/10.1109/tnsm.2020.2971776
https://doi.org/10.1109/tnsm.2020.2971776
http://dx.doi.org/10.1109/TNSM.2020.2971776
https://doi.org/10.1109/WoWMoM49955.2020.00072
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

546 S. Muneeswaran et al.

12. Gu, Y., Li, K., Guo, Z., Wang, Y.: Semi-supervised k-means ddos detection method
using hybrid feature selection algorithm. IEEE Access 7, 64351–64365 (2019)

13. Gu, Y., Wang, Y., Yang, Z., Xiong, F., Gao, Y.: Multiple-features-based semisu-
pervised clustering ddos detection method. Math. Prob. Eng. 2017 (2017)

14. Görmez, Y., Aydin, Z., Karademir, R., Gungor, V.: A deep learning approach
with bayesian optimization and ensemble classifiers for detecting denial of service
attacks. Int. J. Commun. Syst. 33(6), e4401 (2020). https://doi.org/10.1002/dac.
4401

15. Haider, S., et al.: A deep cnn ensemble framework for efficient ddos attack detection
in software defined networks. IEEE Access 8, 53972–53983 (2020)

16. He, Z., Zhang, T., Lee, R.B.: Machine learning based ddos attack detection from
source side in cloud. In: 2017 IEEE CSCloud, pp. 114–120 (2017)

17. Idhammad, M., Afdel, K., Belouch, M.: Semi-supervised machine learning approach
for ddos detection. Appl. Intell. 48(10), 3193–3208 (2018)

18. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. CoRR abs/1312.6114
(2014)

19. Ko, I., Chambers, D., Barrett, E.: Self-supervised network traffic management for
ddos mitigation within the isp domain. Future Gener. Comput. Syst. 112, 524–533
(2020). http://www.sciencedirect.com/science/article/pii/S0167739X20302193

20. Laboratory, M.L.: 2000 darpa intrusion detection scenario specific datasets (2000)
21. Lysenko, S., Savenko, O., Bobrovnikova, K.: Ddos botnet detection technique based

on the use of the semi-supervised fuzzy c-means clustering. In: ICTERI Workshops,
pp. 688–695 (2018)

22. Mhamdi, L., McLernon, D., El-moussa, F., Raza Zaidi, S.A., Ghogho, M., Tang,
T.: A deep learning approach combining autoencoder with one-class svm for ddos
attack detection in sdns. In: 2020 IEEE Eighth International Conference on Com-
munications and Networking (ComNet), pp. 1–6 (2020). https://doi.org/10.1109/
ComNet47917.2020.9306073

23. Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw-nb15 network data set). In: 2015 military communications
and information systems conference (MilCIS), pp. 1–6. IEEE (2015)

24. Prasad, M., Tripathi, S., Dahal, K.: Unsupervised feature selection and cluster
center initialization based arbitrary shaped clusters for intrusion detection. Com-
put. Secur. 99, 102062 (2020). https://doi.org/10.1016/j.cose.2020.102062, http://
www.sciencedirect.com/science/article/pii/S0167404820303357

25. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: ICISSP, pp. 108–116
(2018)

26. Sharafaldin, I., Lashkari, A.H., Hakak, S., Ghorbani, A.A.: Developing realistic
distributed denial of service (ddos) attack dataset and taxonomy. In: 2019 Inter-
national Carnahan Conference on Security Technology (2019)

27. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the
kdd cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for
Security and Defense Applications, pp. 1–6. IEEE (2009)

28. Yao, Y., Su, L., Lu, Z.: Deepgfl: Deep feature learning via graph for attack detection
on flow-based network traffic. In: MILCOM 2018–2018 IEEE Military Communi-
cations Conference (MILCOM), pp. 579–584 (2018)

29. Yuan, X., Li, C., Li, X.: Deepdefense: Identifying ddos attack via deep learning.
In: 2017 IEEE International Conference on Smart Computing, pp. 1–8 (2017)

https://doi.org/10.1002/dac.4401
https://doi.org/10.1002/dac.4401
http://www.sciencedirect.com/science/article/pii/S0167739X20302193
https://doi.org/10.1109/ComNet47917.2020.9306073
https://doi.org/10.1109/ComNet47917.2020.9306073
https://doi.org/10.1016/j.cose.2020.102062
http://www.sciencedirect.com/science/article/pii/S0167404820303357
http://www.sciencedirect.com/science/article/pii/S0167404820303357

Mobile Security

What Data Do the Google Dialer
and Messages Apps on Android Send

to Google?

Douglas J. Leith(B)

Trinity College Dublin, Dublin, Ireland

doug.leith@tcd.ie

Abstract. We report on measurements of the data sent to Google by the
Google Messages and Google Dialer apps on an Android handset. We find
that these apps tell Google when message/phone calls are made/received.
The data sent by Google Messages includes a hash of the message text,
allowing linking of sender and receiver in a message exchange. The data
sent by Google Dialer includes the call time and duration, again allowing
linking of the two handsets engaged in a phone call. Phone numbers are
also sent to Google. In addition, the timing and duration of other user
interactions with the apps are sent to Google. There is no opt out from
this data collection. The data is sent via two channels, (i) the Google
Play Services Clearcut logger and (ii) Google/Firebase Analytics. This
study is therefore one of the first to cast light on the actual telemetry
data sent by Google Play Services, which to date has largely been opaque.
We informed Google of our findings and delayed publication for several
months to engage with them. On foot of this work Google say that they
plan to make multiple changes to their Messages and Dialer apps.

1 Introduction

We analyse the data sent to Google by Android handsets using the Google
Messages and Google Dialer apps. Both are core apps for a mobile handset,
the Messages app being used to send and receive SMS text messages and the
Dialer app to make/receive phone calls. According to the Google Play store the
Google Messages app is installed on > 1 Billion handsets. In the US, AT&T and
T-Mobile recently announced all Android phones on their networks will use the
Google Messages app1 and the app also comes pre-loaded on recent Samsung
handsets2 and on Xiaomi and Huawei handsets. According to the Google Play
store the Google Dialer app is also installed on > 1 Billion handsets.

1 https://www.theverge.com/2021/6/30/22556686/att-android-phones-rcs-google-
messages.

2 https://support.google.com/messages/answer/10324785?hl=en.

This work was supported by Science Foundation Ireland grant 16/IA/4610.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 549–568, 2023.

https://doi.org/10.1007/978-3-031-25538-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_29&domain=pdf
https://www.theverge.com/2021/6/30/22556686/att-android-phones-rcs-google-messages
https://www.theverge.com/2021/6/30/22556686/att-android-phones-rcs-google-messages
https://support.google.com/messages/answer/10324785?hl=en
https://doi.org/10.1007/978-3-031-25538-0_29

550 D. J. Leith

In summary, we find that:

1. When an SMS message is sent/received the Google Messages app sends a
message to Google servers recording this event, the time when the message
was sent/received and a truncated SHA256 hash of the message text. The
latter hash acts to uniquely identify the text message. The message sender’s
phone number is also sent to Google, so by combining data from handsets
exchanging messages the phone numbers of both are revealed.

2. When a phone call is made/received the Google Dialer app similarly logs this
event to Google servers together with the time and the call duration.

This data is sufficient to allow discovery of whether a pair of handsets are com-
municating.

The data sent to Google is tagged with the handset Android ID, which is
linked to the handset’s Google user account and so often to the real identity of
the person involved in a phone call or SMS message. For example, a working
phone number is required to create a Google account, and if the person has
paid for an app on the Google Play store or uses Google Pay then their Google
account is also linked to their credit card/bank details. In this way real-world
identities of the pair of people communicating may be revealed to Google.

In addition to logging the sending/receiving of SMS messages and phone
calls, the Google Messages and Dialer apps send messages to Google recording
user interactions with the app. For example, when the user views an app screen,
an SMS conversation or searches their contacts the nature and timing of this
interaction is sent to Google allowing a detailed picture of app usage over time
to be reconstructed.

There is no opt out from this data collection.
The Google Messages and Dialer apps send data to Google via two channels:

(i) the Google Play Services Clearcut logger service and (ii) Google/Firebase
Analytics. Recent Android measurement studies have noted the large volume of
data sent by Google Play Services to Google servers on most Android handsets [7,
9]. A substantial component of this data is sent by the Clearcut logger service
within Google Play Services. However, the data transmission is largely opaque,
being binary encoded with little public documentation [7,9].

The work reported here is the first close look at the actual data sent by the
Clearcut logger component of Google Play Services. It is limited in nature –
we focus only on the data that the Messages and Dialer apps send via Google
Play Services. Nevertheless, our measurements are already enough to establish
that the data sent goes beyond what is suggested by the Google Play Services
support page and Google’s public statements. The data sent is not simply system
health data (battery and CPU statistics and the like), device configuration data
needed to check for updates, syncing of contacts and account details etc., but
rather extends to details of the phone calls and SMS messages sent/received by
users, and of user interactions with the Messages and Dialer apps (which SMS
conversations viewed and when, dialing of phone numbers and so on).

While we report here on Android 11 measurements, we observed the same
behaviour on a Pixel 4a handset running Android 12.

Google Dialer and Messages Apps on Android 551

1.1 GDPR

We report on a technical study here, not a legal one. Nevertheless, the data
collection that we observe by Google raises obvious questions regarding GDPR
data protection regulations in Europe (the measurements were all carried out
within Europe using handsets purchased in Europe and so it is European data
regulations that apply). Roughly speaking, there are three main basis under
GDPR for data collection3: (i) the data is anonymised, i.e. cannot reasonably
be linked to an individual person, and so is not personal data, (ii) with consent
for a defined purpose and (iii) for the legitimate interests of Google.

Lack of Anonymity. Regarding anonymity, all of the events recorded via the
Google Play Services Clearcut logger are tagged with the handset’s Android ID.
Via other data collected by Google Play Services this ID is linked to (i) the
handset hardware serial number, (ii) the SIM IMEI (which uniquely identifies
the SIM slot) and (iii) the user’s Google account. When a SIM is inserted the
Google Messages app also links the Android ID to the SIM serial number/ICCID,
which uniquely identifies the SIM card.

By making a request using https://takeout.google.com/ for the data associ-
ated with the Google user account used in our tests we further confirmed that
the data reported under the heading “Android Device Configuration Service”
includes the Android ID for each handset used (as well as the handset serial
number, SIM IMEI, last IP address used and mobile operator details).

When creating a Google account it is necessary to supply a phone number on
which a verification text can be received. For many people this will be their own
phone number. Use of Google services such as buying a paid app on the Google
Play store or using Google Pay further links a person’s Google account to their
credit card/bank details. A user’s Google account, and so the Android ID, can
therefore commonly be expected to be linked to the person’s real identity.

Additionally, when a message is received by the Google Messages app the
sender’s phone number is sent to Google via the Google Play Services Clearcut
logger, see Sect. 5.2. By combining data from the pair of handsets involved in an
exchange of messages (which seems perfectly feasible based on the hashes of the
message text that we observe to be sent to Google) both phone numbers may
be revealed and linked to the Android IDs. Similarly when the spam protection
option is enabled in the Google Dialer (as it is by default), see Sect. 6.1.

All of the events recorded via Google Analytics are tagged with the user’s
Google Advertising ID and the sender app’s Firebase ID. The app Firebase ID
is directly linked to the handset Android ID when the app registers to use the
Google Analytics service.

The linkage between the various identifiers is illustrated schematically on
Fig. 1.

3 E.g. see https://gdpr.eu/what-is-gdpr/.

https://takeout.google.com/
https://gdpr.eu/what-is-gdpr/

552 D. J. Leith

No Consent. Specific consent has neither been sought nor given for the data
collection by the Google Messages and Dialer apps that we observe, and there
is no opt out.

Legitimate Interest. Invoking legitimate interest requires the data to be col-
lected for a specific purpose, that the data is necessary for the purpose, that the
data collection is balanced against the interests and freedoms of the individual,
and so on4. The legitimate interest basis for data collection is the least clear, and
probably best left to the lawyers. We note, however, that we could not find an
app-specific privacy policy stating the specific purpose for which the data that
we observe is collected and the basis used for data collection. We discuss this
further next.

Fig. 1. Illustrating how handset data can be linked to a person’s real identity. Handset
data sent to Google via the Google Play Services Clearcut logger is tagged with the
Android ID, which in turn is linked to the user’s Google account and to device/SIM
identifiers. The user’s Google account in turn may be connected to the person’s phone
number, credit card/bank details etc. and so their real identity. Handset data sent to
Google via Google/Firebase Analytics is tagged with the Google Advertising ID and
the Firebase ID of the app carrying out the data collection. The Google Advertising ID
links this data with other data collected for advertising-related purposes. The Firebase
ID is linked to the Android ID, and so to the user Google account etc.

1.2 Lack of App-Specific Privacy Policy

Google Messages. Viewing the privacy policy of the Google Messages app is
not straightforward. It is necessary to: (i) click on the three dots in search bar to
open the Settings menu, (ii) scroll down to see an “About, terms and privacy”
link, (iii) click on this to open a new menu that shows a “Privacy Policy” link,
(iv) click on this link which opens a Google Chrome window to view the privacy
policy web page at http://www.google.com/intl/en IE/policies/privacy/ (note

4 E.g. see https://ico.org.uk/for-organisations/guide-to-data-protection/guide-
to-the-general-data-protection-regulation-gdpr/lawful-basis-for-processing/
legitimate-interests/.

http://www.google.com/intl/en_IE/policies/privacy/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/lawful-basis-for-processing/legitimate-interests/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/lawful-basis-for-processing/legitimate-interests/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/lawful-basis-for-processing/legitimate-interests/

Google Dialer and Messages Apps on Android 553

the use of http rather than https, although this redirects to https://policies.
google.com/privacy?hl=en&gl=IE). Unfortunately, this is not an app-specific
privacy policy but the rather general Google privacy policy. This is silent on the
specific data collected by the Messages app, the associated app-specific purposes
and the basis under which this app-specific data is collected. We note that during
the loading of this privacy policy web page around 20 connections are made that
appear to send telemetry to Google servers, see Sect. 5.4.

Google Dialer. The Google Dialer does not appear to have an app privacy
policy link, only a privacy policy associated with the Support pages.

1.3 Response from Google

The apps studied here are in active use by many millions of people. We informed
Google of our findings, delayed publication to allow them to respond and in
fairness to Google they have engaged positively with us. In summary,
1. Google say they plan to change the app onboarding flow so that users are

notified this is a Google app with a link to Google’s consumer privacy policy.
This will likely include opportunities to provide more “Privacy Tours” that
walk the user through an overview of the app’s data use and data collection.
This will include a new on/off toggle to cover data collection that Google do
not consider to be essential for the app to function.

2. Will halt the collection of the sender phone number via the CARRIER
SERVICES log source, collection of the SIM ICCID and of a hash of sent/re-
ceived message text by Google Messages (the latter change will be rolled out
with version 10.9.160 of Google Messages, the other changes in the next release).

3. Will remove logging of call related events in Firebase Analytics from both
Google Dialer and Messages.

4. Re the recommendation to use short-lived session identifiers for telemetry
data, Google say they would like to see more logging moved to using the
least long-lived identifier available whenever possible and that this an ongoing
project.

5. Re the spam detection/protection service, Google note that this only occurs
for phone numbers not in the handset contacts list and plan to (i) create
a product tour explaining to new users and reminding current users that
caller ID and spam protection is turned on for user protection, and letting
them know how to disable it, (ii) add a visual indicator within the Messages
app that indicates when spam protection is enabled, (iii) investigate whether
an approach similar to the Safe Browsing hash prefix solution can be used.
Google also state that the timestamp logged in the SCOOBY EVENTS log
message (see Section VI.A.4) is fuzzed to the nearest hour server-side, and
will also be fuzzed client-side from version v75 onwards of the Dialer app.

https://policies.google.com/privacy?hl=en&gl=IE
https://policies.google.com/privacy?hl=en&gl=IE

554 D. J. Leith

6. Google state that there are back-end server controls to regulate joins between
the Android ID and user account data, but the policy used to manage joins
is not publicly available. Google also note that when a handset has multiple
Google user accounts then its Android ID would be associated with all of
those user accounts.

2 Related Work

While the Android ecosystem continues to evolve, most smartphone users remain
largely unaware of the personal information disclosed by their devices and the
apps they run [13]. This has motivated extensive privacy and security over recent
years, e.g. see [4–6,10–12,14] and references therein, and triggered data protec-
tion legislation with nearly 100 articles laying out privacy requirements [3]. Its
worth noting that much of this previous work uses static analysis i.e. inspection
of the app binary to infer permissions used etc. While this scales well, allowing
inspection of many apps, it essentially highlights potential rather than actual
app behaviour i.e. can lead to “false positives” re privacy leakage. In the present
work we employ dynamic analysis i.e. inspect the output of the running app.
This has the great advantage that since actual app behaviour is recorded there
are privacy false positives and stronger conclusions can therefore be drawn.

Probably closest to the present work are recent analyses of the data shared
by Google Play Services [7–9]. The measurement study in [8] was motivated
by the emergence of Covid contact tracing apps based on the Google-Apple
Exposure Notification (GAEN) system, which on Android requires that Google
Play Services to be enabled. This highlighted the extensive data collection Google
Play Services. The follow-up work in [7] extended consideration to the data sent
to Apple by an iPhone/IOS. Recently, in [9] the data sent by six variants of
the Android OS, namely those developed by Samsung, Xiaomi, Huawei, Realme,
LineageOS and e/OS, is measured (in [7,8] only Google-brand Android handsets
were studied). While the focus was on data sent to non-Google servers, e.g. on the
data sent to Samsung by a Samsung-brand handset, this study again highlighted
the large volume of data uploaded to Google by Google Play Services on all
handsets apart from the e/OS handset. The volume of data uploaded to Google
was observed to be at least 10× that uploaded by the mobile OS developer,
rising to around 30× for the Xiaomi, Huawei and Realme handsets. This occurs
despite the ‘usage & diagnostics” option being disabled for Google Play Services
in these studies. These previous studies also note the opaque nature of this data
collection by Google, with there being no public documentation, use of binary
encoded payloads and obfuscated code.

The microG project5 is an open source re-implementation of parts of the
Google Play Services API used by popular apps (in particular the Fused Loca-
tion, Maps, Firebase Cloud Messaging/push notifications, authentication and

5 https://microg.org/.

https://microg.org/

Google Dialer and Messages Apps on Android 555

SafetyNet components). However, the microG project has specifically avoided
re-implementation of the analytics components of Google Play Services, includ-
ing Google/Firebase Analytics and the Clearcut logger service, and it is these
that we study here.

3 The Challenge of Seeing What Data Is Sent

It is generally straightforward to observe packets sent from a mobile handset.
Specifically, we configure the handsets studied to use a WiFi connection to a
controlled access point, on which we use tcpdump to capture outgoing traffic.
However, this is of little use for privacy analysis because: (i) packet payloads are
almost always encrypted due to the widespread use of HTTPS to transfer data;
(ii) prior to message encryption, data is often encoded in a binary format for
which there is little or no public documentation

3.1 Decrypting HTTPS Connections

Almost all of the data we observe is sent over HTTPS connections and so
encrypted using TLS/SSL (in addition to any other encryption used by the
app). However, decrypting SSL connections is relatively straightforward. We
route handset traffic via a WiFi access point (AP) that we control, configure
this AP to use mitmdump as a proxy [2] and adjust the firewall settings to
redirect all WiFi HTTP/HTTPS traffic to mitmdump so that the proxying is
transparent to the handset. When a process running on the handset starts a new
network connection, the mitmdump proxy pretends to be the destination server
and presents a fake certificate for the target server. This allows mitmdump to
decrypt the traffic. It then creates an onward connection to the actual target
server and acts as an intermediary, relaying requests and their replies between
the app and the target server while logging the traffic.

System processes typically carry out checks on the authenticity of server
certificates received when starting a new connection and abort the connection
when these checks fail. For Google apps and services, installing the mitmproxy
CA cert as a trusted certificate causes these checks to pass. Installing a trusted
cert is slightly complicated in Android 10 and later, since the system disk par-
tition, on which trusted certs are stored, is read-only and security measures
prevent it being mounted as read-write. Fortunately, folders within the system
disk partition can be overriden by creating a new mount point corresponding
to the folder, and in this way the mitmdump CA cert can be added to the
/system/etc/security/cacerts folder.

556 D. J. Leith

3.2 Google Play Services Telemetry

The Google Message and Dialer apps do not send data directly to Google, but
rather send data to event logging services within Google Play Services. Specifi-
cally, to the Clearcut logger service and the Google/Firebase Analytics service.
These Google Play Service components expose APIs that the app uses to commu-
nicate with them. The Clearcut logger and Google/Firebase Analytics services
then batch up data received and forward it to Google servers. The Clearcut
logger sends data to https://play.googleapis.com/log/batch while Google/Fire-
base Analytics sends data to https://app-measurement.com/. This process is
illustrated schematically in Fig. 2.

The Clearcut logger and Google/Firebase Analytics services encode the data
in different formats for sending to Google. We discuss these formats in more
detail next.

Clearcut logger

Firebase Analytics

Google Play ServicesApp

https://play.googleapis.com/log/batch

https://app-measurement.com/

Fig. 2. Schematic illustrating app data flow. The app sends event data to Google
Play Services via the Clearcut logger and Firebase Analytics APIs. These Google Play
Services components then batch up the data and send it to Google servers. Note that
Google Play Services provides many other APIs and services in addition to the Clearcut
logger and Firebase Analytics.

3.3 Decoding Google Clearcut Logger Data

The Clearcut logger service within Google Play Services sends data to https://
play.googleapis.com/log/batch. Each message sent includes an NID cookie and
an x-server-token authentication token (which act as device identifiers), fol-
lowed by the message body. The message body is encoded in a binary pro-
tobuf format6. Figure 3 shows the structure of the decoded message, includ-
ing an example header message. Note that the sequence of log entries sent
by each log source is encoded as a protobuf array. That is, as a sequence of
<length/varint><protbuf> entries from which the individual log entry proto-
bufs need to be extracted and decoded. Standard tools cannot decode a protobuf
array but we have made software tools that we have developed for this publicly
available, see below.

6 https://developers.google.com/protocol-buffers/.

https://play.googleapis.com/log/batch
https://app-measurement.com/
https://play.googleapis.com/log/batch
https://play.googleapis.com/log/batch
https://developers.google.com/protocol-buffers/

Google Dialer and Messages Apps on Android 557

header
log entry

log entry

/log/batch message

Fig. 3. Structure of messages sent to play.googleapis.com/log/batch by the Google Play
Services Clearcut logger. Each message consists of one or more bundles of log entries,
indicated in brown. Each bundle has a header containing device details and persistent
identifiers (Google androidID, NID cookie) and specifying the log source. This header
is followed by one or more log entries, the format of the log entries being determined
by the log source.

Protobufs can be decoded without knowledge of the message content using
the Google Protobuf compiler with the --decode raw option. However, this
means that the interpretation of values is missing and there is also sometimes
ambiguity as to interpretation of the value types. Figure 4(a) shows an example
of a log entry generated by the Google Messages app ANDROID MESSAGING log
source and decoded in this way. While the contents of the log entry can be viewed,
it remains largely opaque since the interpretation of the various numerical and
string values is not known.

Since there is no public documentation, to determine the meaning of these
values we (i) decompile the Google Messages app, (ii) identify the protobuf used
to encode the log entry within the decompiled code (this step is non-trivial since
the Google Messages app contains more than 2000 distinct protobufs7.) and

7 The protobufs themselves are encoded within the app in compact protobuf format,
which is undocumented although there are useful comments embedded in the
Android source code, see https://cs.android.com/android/platform/superproject/
+/master:external/protobuf/java/core/src/main/java/com/google/protobuf/
RawMessageInfo.java.

https://cs.android.com/android/platform/superproject/+/master:external/protobuf/java/core/src/main/java/com/google/protobuf/RawMessageInfo.java
https://cs.android.com/android/platform/superproject/+/master:external/protobuf/java/core/src/main/java/com/google/protobuf/RawMessageInfo.java
https://cs.android.com/android/platform/superproject/+/master:external/protobuf/java/core/src/main/java/com/google/protobuf/RawMessageInfo.java

558 D. J. Leith

then (iii) trace back within the code to determine how the value of each entry
in the protobuf is calculated. Figure 4(b) shows the result of this fairly laborious
process.

Fig. 4. Example of Google Messages ANDROID MESSAGING Clearcut logger log entry:
(a) protobuf decoded using Google Protobuf compiler with the --decode raw option,
(b) after reverse engineering the schema.

Fig. 5. Example of Google Dialer ANDROID DIALER Impression event log entry record-
ing event that dialpad has been opened.

Google Dialer and Messages Apps on Android 559

Fig. 6. More examples of Google Dialer ANDROID DIALER log entries: (a) logging each
key press when dialing a phone number, (b) call details sent upon completion of a call,
including the call duration (in milliseconds).

Each log source sending data to the Clearcut logger service uses its own
protobuf format for log entries, necessitating seperate reverse engineering of each
in order to decode the message content.

Figure 5 shows an example of a decoded Google Dialer log entry gener-
ated in response to manually dialing a phone number. The AOSPEventType
value MAIN CLICK FAB TO OPEN DIALPAD records the fact that the dialpad
was opened, and the timestamp records the time when this occurred. As the
phone number is typed a searchQuery event is logged for each digit typed,
see Fig. 5(a) for an example log entry sent in response to a keypress. When a
phone call finishes this event is also logged, using a message similar to that in
Fig. 5 but with AOSPEventType value USER PARTICIPATED IN A CALL and
including additional data recording call details, including the call duration (in
milliseconds), see Fig. 5(b).

3.4 Decoding Google/Checkin Message

Google Play Services sends periodic messages to https://android.googleapis.
com/checkin that act to link together a number of persistent device and user
identifiers, see [1,7–9]. The message contains the (i) Android ID (a long-lived
device identifier that can only be changed by carrying out a factory reset), (ii) the
IMEI (which uniquely identifies the handset SIM slot), (ii) the hardware serial
number (which uniquely identifies the handset), (iv) the NID cookie (which acts
as a persistent device identifier), (v) the Google account username/email (which
identifies the handset user) and (vi) a user account authorisation token (which
again identifies the handset user). As already noted, logging messages sent by
the Clearcut logger to https://play.googleapis.com/log/batch are tagged with
the AndroidID, and so via this /checkin message can be linked to long-lived
device and user identifiers.

4 Experimental Setup

4.1 Hardware and Software Used

Google Pixel 2 running Android 11 (build RP1A.201005.004.A1) with Google
Play Services ver. 21.39.16 (150400–402663742) rooted using Magisk v23.0.

https://android.googleapis.com/checkin
https://android.googleapis.com/checkin
https://play.googleapis.com/log/batch

560 D. J. Leith

Google Dialer ver. 70.05.401408800, Google Messages ver. 10.0.014. Although we
only present measurements for Android 11 we also collected measurements from
a Google Pixel 4a running Android 12 (build SP1A.210812.015), Google Play
Services ver. 21.39.17 (190400–405802548), Google Dialer ver. 68.0.392726590,
Google Messages ver 8.4.041. The behaviour observed is almost identical to that
of Android 11.

4.2 Device Settings

At the start of each test we removed any SIM card and reflashed the handset with
a fresh factory image. Following this, the handset reboots to a welcome screen
and the user is then presented with a number of option screens. To mimic a
privacy conscious user, we unchecked any of the options that asked to share data
and only agreed to mandatory terms and conditions. Specifically, we deselected
the (i) “Free up space” option, (ii) “Use location” option, (iii) “Allow scanning”
option and (iv) the “Send usage and diagnostic data” option. Note that there
is no option to deselect automatic updates. We did not log in to Google user
account during the onboarding process. After onboarding we inserted a SIM.

4.3 Test Design

Following previous mobile handset privacy studies [7,9] we assume a privacy-
conscious but busy/non-technical user, who when asked, does not select options
that share data but otherwise leaves handset settings at their default values.
This provides a baseline for privacy analysis, and we expect that the level of
data sharing may well be larger for a less privacy-conscious user.

Both the Google Dialer and Messages app include spam detection/protection
services. By default these are enabled for both apps, but can be disabled by a
user via the settings menu in each app. To explore the impact of these services
on data sharing we take measurements both with spam detection/protection
enabled (the default) and with it disabled. Google documentation8 also suggests
that these spam detection/protection services may treat calls/messages from
phone numbers that are already in the handset contacts database differently
from numbers that not in handset contacts database.

With these considerations in mind we carry out the following experiments:

Phone number in contacts:

1. Start a pair of handsets following a factory reset (mimicking a user receiving
a new phone), insert a SIM in each handset and disable mobile data.

2. Login in to a Google account. This downloads a list of contacts, including the
calling number used in our tests.

3. Make/receive phone calls and send/receive SMS messages between the pair
of handsets. Record the network activity.

8 “Your chats stay private with spam detection”, Google Support page https://
support.google.com/messages/answer/9327903.

https://support.google.com/messages/answer/9327903
https://support.google.com/messages/answer/9327903

Google Dialer and Messages Apps on Android 561

4. Disable the “Caller ID and spam detection” option in Google Dialer and the
“Spam protection” option on Google Messages (both default to “on”).

5. Make/receive calls and send/receive SMS messages. Record the network activ-
ity.

Phone number not in contacts: As above, but do not login to Google account
(the handset contacts database will be empty).

Interacting With Apps: During the above tests we interact with the apps to
send/receive SMS messages and make/receive phone calls. Since our measure-
ments in these tests established that user interactions (screens viewed, buttons
clicked) are logged and sent to Google by the apps we then also additionally
carried out tests where we (i) viewed the call history, (ii) viewed recent call-
s/favourites, (iii) viewed/edited contact details, (iv) opened the in-app settings
menu and viewed the settings screens, (v) entered both text and phone numbers
in the app search bar and

App Privacy Policy: We also tried to view the app privacy policy.

5 Results: Google Messages

5.1 Inserting SIM

When a SIM is inserted into the handset Google Messages records this event via
the Google Play Services ANDROID MESSAGING log source:

event {
eventType: BUGLE_TELEPHONY_EVENT
bugleTelephonyEvent {
carrierInfo {
simStatus: LOADED
simInfoNotUpdated: true
simOperator: "27211"
<...>
simSerialNumber: "89353111802...65506"
simCarrierId: -1

}}}

and similarly via the Google Play Services CARRIER SERVICES log source.
The simOperator value specifies the SIM operator (in this case 48 Mobile
Ireland). The simSerialNumber value is the SIM card serial number or
ICCID, which uniquely identifies the SIM card. Since these event records
are also tagged with the handset AndroidID (see Fig. 3) they act to link
the handset and the SIM. Additionally, Google Play Services also separately
sends SIM details and the AndroidID to https://android.clients.google.com/
fdfe/uploadDynamicConfig, see [7,9].

5.2 Sending/Receiving an SMS Message

We present measurements when sending an SMS message between two handsets
using Google Messages with the spam protection service disabled and the handset
phone numbers not in their contacts list. However, we note that in our tests
similar behaviour was also observed when spam protection is enabled and/or
the handset phone numbers are in the contacts list.

https://android.clients.google.com/fdfe/uploadDynamicConfig
https://android.clients.google.com/fdfe/uploadDynamicConfig

562 D. J. Leith

ANDROID MESSAGING Log Source. On the handset sending a text we
observe, for example, the following sequence of event messages sent by Google
Messages via the Google Play Services ANDROID MESSAGING log source9:

1635968886592 BUGLE_MESSAGE bugleMessageStatus: CREATED
1635968886593 BUGLE_APP_CONFIGURATION
1635968886600 BUGLE_COMPOSE
1635968886623 BUGLE_P2P_SUGGESTION suggestionEventType: SENT_MESSAGE
1635968886735 BUGLE_MESSAGE bugleMessageStatus: MESSAGE_ID_CREATED
1635968887029 BUGLE_P2P_SUGGESTION suggestionEventType: REQUEST
1635968887562 BUGLE MESSAGE bugleMessageStatus:
SENT sha256HashMsg: "247836537599431109" sha256HashPrevMsg: "200428458475182371"

The first BUGLE MESSAGE event records the fact that a new message is
created, the last BUGLE MESSAGE event records the fact that the message
was successfully sent. The BUGLE APP CONFIGURATION event records the
orientation of the screen and whether the handset is in multi-window mode.
The other events log internal app processing steps as a new message is sent for
transmission.

At the receiving handset we observe the following corresponding sequence of
event messages:

1635968888138 BUGLE_P2P_SUGGESTION suggestionEventType: REQUEST
1635968888460 BUGLE MESSAGE bugleMessageStatus:
RECEIVED sha256HashMsg: "247836537599431109" sha256HashPrevMsg: "200428458475182371"
1635968888685 BUGLE_P2P_SUGGESTION suggestionEventType: RECEIVED_MESSAGE
1635968890295 BUGLE_NOTIFICATION
1635968890295 BUGLE_APP appLaunch: VIA_NOTIFICATION
1635968890426 BUGLE_CONTACT_BANNER
1635968890712 BUGLE_MESSAGE bugleMessageStatus: READ

The first BUGLE MESSAGE records the receipt of the message. The
BUGLE P2P SUGGESTION events record processing of the message by the
Google suggestions service (which can suggest links for more information related
to a message, quick replies etc.10). The BUGLE APP event records launch of
the app by the user clicking on the message arrival notification, and the final
BUGLE MESSAGE event records the fact that the received message has been
displayed.

CARRIER SERVICES Log Source. On the receiving handset the phone
number of the SMS sender is transmitted to Google via the Google Play Services
CARRIER SERVICES log source, e.g.

timestamp: 1635968888300
event {
<...>
packageVersionName: "10.0.014 (Isengard_RC01.phone_dynamic)"
<...>

incomingPhoneNumber: "+353872...351"
<...>
}

When a pair of handsets engage in a back-and-forth exchange of SMS mes-
sages, each handset sends the phone number of the other to Google via the
CARRIER SERVICES log source.
9 Each event message is similar to that in Fig. 4 but for clarity and to save space we

just show selected values from each message.
10 https://support.google.com/messages/answer/9265111?hl=en.

https://support.google.com/messages/answer/9265111?hl=en

Google Dialer and Messages Apps on Android 563

Google Analytics Event Logging. On the handset sending a text an event
message is sent to Google Analytics to record this, e.g.11:

1635968887562 data str: "ConversationActivity" event code: "ACTIVE EVENT"
package_name: "com.google.android.apps.messaging"
google ad id: "916c714a-e838-479d-a7a6-3325d838da5f"
firebase instance id: "eVpvvohEDCqhfIGC7pXLnv"

On the receiving handset a corresponding event message is also sent to Google
Analytics, e.g.

1635968894940 data str: "ConversationActivity" event code: "ACTIVE EVENT"
package_name: "com.google.android.apps.messaging"
google ad id: "0fcb9970-3c60-426d-8186-452793942752"
firebase instance id: "fkT8O dZhqxcNAfYucplGA"

These Google Analytics event messages act to link the SMS message exchange
to the Google Advertising IDs of the handsets.

Using Hashes to Identify Communicating Phones. Google Messages also
sends to Google a signature of each message sent/received that uniquely identifies
the message. Observe that the sha256HashMsg and sha256HashPrevMsg
values logged by the sender and receiver in the above measurements are the
same.

The sha256HashMsg value is derived from the SHA256 hash of the time,
in hours since 1st Jan 1970, when the message was sent/received concatenated
with the message content i.e. the message text. This SHA256 hash is 32 bytes
long, the lower 8 bytes are converted to a long int and then to a decimal string,
which gives the sha256HashMsg value. The sha256HashPrevMsg value is
the hash for the previous message sent/received in the conversation.

These sha256HashMsg and sha256HashPrevMsg values can therefore act
to identify the SMS messages sent. Identifying whether a pair of handsets using
Google Messages are communicating therefore simply involves comparing the
pair of sha256Hash values sent by both handsets to Google. Even if there
occasional pairs of hash collisions (the same pair of short text messages is sent
around the same time by two handsets), it only needs one hash miss to reveal
that a pair of handsets are communicating.

5.3 Interacting with Messages App

When a user interacts with the Google Message app, their actions are recorded
and sent to Google both via the Google Play Services ANDROID MESSAGING
log source and via Google Analytics. The events logged include opening of
the app, composing and reading a message, viewing a conversation (message
exchanges between the same pair of handsets), entering text in the app search
bar (where phone numbers, contact names etc. are entered), navigating to the
app home screen.
11 To save space we just show selected values from each message.

564 D. J. Leith

5.4 Viewing App Privacy Policy

As already noted, viewing the privacy policy of the Google Messages app is not
straightforward. It is necessary to: (i) click on the three dots in search bar to open
the Settings menu, (ii) scroll down to see an “About, terms and privacy” link, (iii)
click on this to open a new menu that shows a “Privacy Policy” link, (iv) click
on this link which opens a Google Chrome window. At this point the Messages
app silently sends messages to Google Analytics https://app-measurement.com/
a logging the fact that the page with the privacy policy link has been viewed,
e.g.

event_info {
setting_code: "_pc" // firebase_previous_class
data str: "AboutPrivacyTermsActivity"

}
event_code: "_vs" // screen_view
event timestamp: 1636311111608
}
package_name: "com.google.android.apps.messaging"
google ad id: "916c714a-e838-479d-a7a6-3325d838da5f"
firebase instance id: "eVpvvohEDCqhfIGC7pXLnv"

Agreeing to the Google Chrome terms and conditions loads the page at
http://www.google.com/intl/en IE/policies/privacy/ which redirects to https://
policies.google.com/privacy?hl=en&gl=IE. During the loading of this page (i)
20 connections are made to www.youtube-nocookie.com/youtubei/v1/log event
sending what appears to be telemetry, (ii) a connection is made to download
https://www.google-analytics.com/analytics.js, (iii) and then connections are
made to www.google-analytics.com/j/collect, https://stats.g.doubleclick.net/j/
collect and https://play.google.com/log.

6 Results: Google Dialer

6.1 Making/Receiving a Phone Call

We now present measurements when making a phone calls between two handsets
using Google Dialer with the Caller and Spam ID option disabled. When this
option is enabled additional event messages are sent to Google, but we will
describe these later.

ANDROID MESSAGING Log Source. On the handset initiating the
phone call we observe, for example, the following sequence of event messages
sent by the Google Dialer via the Google Play Services ANDROID DIALER log
source12:

12 Each event message is similar to that in Figs. 5 and 6 but to save space we just show
selected values from each message.

https://app-measurement.com/a
https://app-measurement.com/a
http://www.google.com/intl/en_IE/policies/privacy/
https://policies.google.com/privacy?hl=en&gl=IE
https://policies.google.com/privacy?hl=en&gl=IE
www.youtube-nocookie.com/youtubei/v1/log_event
https://www.google-analytics.com/analytics.js
www.google-analytics.com/j/collect
https://stats.g.doubleclick.net/j/collect
https://stats.g.doubleclick.net/j/collect
https://play.google.com/log

Google Dialer and Messages Apps on Android 565

1635969033382 MAIN_CLICK_FAB_TO_OPEN_DIALPAD
1635969034630 searchQuery
1635969039257 queryLength: 1
1635969039478 queryLength: 2
1635969039881 queryLength: 3
1635969041305 queryLength: 4
1635969041680 queryLength: 5
1635969042060 queryLength: 6
1635969044085 queryLength: 7
1635969044556 queryLength: 8
1635969044906 queryLength: 9
1635969045359 queryLength: 10
1635969064139 PRECALL_INITIATED
1635969065267 TIDEPODS_STATUS_BAR_NOTIFICATION_SHOWED
1635969065297 TIDEPODS_BUBBLE_SHOWED
1635969085622 SCOOBY_CALL_LOG_SPAM_DISABLED
1635969085622 USER PARTICIPATED IN A CALL callDuration: 12344
1635969085720 ANNOTATED_CALL_LOG_FORCE_REFRESH_CHANGES_NEEDED
1635969085868 ANNOTATED_CALL_LOG_FORCE_REFRESH_NO_CHANGES_NEEDED
1635969085918 ANNOTATED_CALL_LOG_NOT_DIRTY

To make the call the dialpad in the app is opened and the phone number
typed. The MAIN CLICK FAB TO OPEN DIALPAD event records opening of the
dialpad, the next sequence of SearchQuery event messages record each individual
keypess as the phone number is typed, and also the timing of these keypresses.
The PRECALL INITIATED event through to the TIDEPODS BUBBLE SHOWED
record the internal process of initating the call over the phone network and dis-
playing the in-call user interface. The USER PARTICIPATED IN A CALL event
records the termination of the call and, amongst other things, sends the call
duration to Google (the value is in milliseconds so a value of 12344 corresponds
to a call of 12.344 s duration). The last three CALL LOG events record internal
actions associated with updating the handset call log.

At the receiving handset we observe the following corresponding sequence of
event messages:

1635969070066 CALL_SCREENING_SERVICE_MUSIC_IS_NOT_ACTIVE
1635969070096 INCOMING_CALL_SCREENED
1635969070639 TIDEPODS_BUBBLE_SHOWED
1635969070644 TIDEPODS_STATUS_BAR_NOTIFICATION_SHOWED
1635969072226 TIDEPODS_STATUS_BAR_NOTIFICATION_ANSWER
1635969085350 SCOOBY_CALL_LOG_SPAM_DISABLED
1635969085350 USER PARTICIPATED IN A CALL callDuration: 12865
1635969085483 ANNOTATED_CALL_LOG_FORCE_REFRESH_CHANGES_NEEDED

The first events record call screening, displaying a notification to the user
that here is an incoming call and the user pressing the answer button. The
USER PARTICIPATED IN A CALL event records the termination of the call and
sends the call duration to Google. Note the close match in the call durations
recorded by the sender and receiver i.e. 12.344 s and 12.865 s respectively. Pre-
sumably the small difference of 0.52 s is due to the telephone network delay
between one phone hanging up and the other phone being informed of this.

Google Analytics Event Logging. On the handset initiating the phone call
an event message is sent to Google Analytics to record this, e.g.

data str: "LegacyInCallActivity" event code: "OUTGOING CALL PLACED"
package_name: "com.google.android.dialer"
google ad id: "916c714a-e838-479d-a7a6-3325d838da5f"
firebase instance id: "f86VDMH SSGcArMl6Up973"

566 D. J. Leith

At the receiving handset the incoming call is also logged to Google Analytics:

data str: "LegacyInCallActivity" event code: "INCOMING CALL RECEIVED"
package_name: "com.google.android.dialer"
google ad id: "0fcb9970-3c60-426d-8186-452793942752"
firebase instance id: "cyoEhnfBQtChaUDlrYRfYB"

These Google Analytics event messages act to link the phone call to the
Google Advertising ID of the sender handsets.

Identifying Pairs of Communicating Handsets. When the caller and
receiver in a phone conversation are both using the Google Dialer, then the
time when the time the call ended and the call duration are both sent to Google
via the above event logging messages. This information can potentially be used
to identify pairs of handsets engaged in phone conversations. For example, Fig. 7
shows the call times and durations sent to Google by a pair of handsets as they
engage in a sequence of phone calls (at roughly 5 min, or 300 s, intervals). Clearly,
by comparing the pattern of call times and call durations on a pair of handsets
it may be possible to infer whether two handsets are communicating.

0 500 1000 1500 2000 2500
logged event time (s)

0

10

20

30

40

50

60

lo
gg

ed
 c

al
l d

ur
at

io
n

(s
)

Phone 1 (Making call)
Phone 2 (Receiving call

Fig. 7. Example of Google Dialer log entries on a pair of communicating handsets. The
x-axis is the logged event timestamp (rescaled from milliseconds to seconds and offset
so the first entry has timestamp 0), the y-axis is the logged callDuration value (again
rescaled from milliseconds to seconds).

Caller and Spam ID Enabled. When the Caller and Spam ID option is
enabled we observe additional events sent to Google via the Google Play Ser-
vices SCOOBY EVENTS log source (Scooby in the internal name for the spam
scanning service). For example:

timestamp: 1635013551317
event {
1 {
packageName: "Dialer"
packageVersionName: "70.05.401408800"
incomingPhoneNumber: "+353872...351"
<...>

}

Google Dialer and Messages Apps on Android 567

The packageVersionName value is the version name of Google Dialer app.
Note that this SCOOBY EVENTS message is sent every time a call is received
and even if the phone number is in the handset contacts database. When a pair
of handsets engage in a back-and-forth phone calls and both have the Caller
and Spam ID option enabled, then each handset sends the phone number of the
other to Google via the SCOOBY EVENTS log source.

6.2 Interacting with Dialer App

Similarly to Google Messages, when a user interacts with the Google Dialer app,
their actions are recorded and sent to Google both via the Google Play Services
ANDROID DIALER log source and via Google Analytics.

7 Summary

We report on measurements of the data sent to Google by the Google Messages
and Google Dialer apps. We find that these apps tell Google when message/phone
calls are made/received. The data sent by Google Messages includes a hash of
the message text, allowing linking of sender and receiver in a message exchange,
and by Google Dialer the call time and duration, again allowing linking of the
two handsets engaged in a phone call. Phone numbers are also sent to Google.
In addition, the timing and duration of user interactions with the apps are sent
to Google. There is no opt out from this data collection. The data is sent via two
channels, the Google Play Services (i) Clearcut logger and (ii) Google/Firebase
Analytics. This study is one of the first to cast light on the actual telemetry data
sent by Google Play Services, which to date has largely been opaque.

References

1. Learn about the Android Device Configuration Service, Google Help Pages
(Accessed 5 Aug 2020). https://support.google.com/android/answer/9021432?
hl=en

2. Cortesi, A., Hils, M., Kriechbaumer, T., contributors: mitmproxy: A free and open
source interactive HTTPS proxy (v5.01) (2020). https://mitmproxy.org/

3. European Parliament and Council of the European Union: Regulation on the pro-
tection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing directive 95/46/ec (data protection
directive) (2016)

4. Gamba, J., Rashed, M., Razaghpanah, A., Tapiador, J., Vallina-Rodriguez, N.: An
analysis of pre-installed android software. In: IEEE Symposium on Security and
Privacy (S&P), pp. 1039–1055 (2020)

5. Jia, Q., Zhou, L., Li, H., Yang, R., Du, S., Zhu, H.: Who leaks my privacy:
Towards automatic and association detection with gdpr compliance. In: Biagioni,
E.S., Zheng, Y., Cheng, S. (eds.) Wireless Algorithms, Systems, and Applications,
pp. 137–148 (2019)

https://support.google.com/android/answer/9021432?hl=en
https://support.google.com/android/answer/9021432?hl=en
https://mitmproxy.org/

568 D. J. Leith

6. Jin, H., et al.: Why are they collecting my data? inferring the purposes of network
traffic in mobile apps. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
2(4), 1–27 (2018)

7. Leith, D.J.: Mobile handset privacy: measuring the data ios and android send to
apple and google. In: Garcia-Alfaro, J., Li, S., Poovendran, R., Debar, H., Yung, M.
(eds.) SecureComm 2021. LNICST, vol. 399, pp. 231–251. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90022-9 12

8. Leith, D.J., Farrell, S.: Contact Tracing App Privacy: What Data Is Shared By
Europe’s GAEN Contact Tracing Apps. In: Proc IEEE INFOCOM (2021)

9. Liu, H., Patras, P., Leith, D.J.: Android Mobile OS Snooping By Samsung,Xiaomi,
Huawei and Realme Handsets. SCSS Tech Report, Oct 2021 (2021). https://www.
scss.tcd.ie/doug.leith/Android privacy report.pdf

10. Razaghpanah, A., Nithyanand, R., Vallina-Rodriguez, N., Sundaresan, S.: Apps,
Trackers, Privacy, and Regulators: A Global Study of the Mobile Tracking Ecosys-
tem. In: Network and Distributed System Security Symposium (NDSS) (2018)

11. Reardon, J., Feal, Á., Wijesekera, P., On, A.E.B., Vallina-Rodriguez, N., Egelman,
S.: 50 ways to leak your data: An exploration of apps’ circumvention of the android
permissions system. In: 28th USENIX Security Symposium (USENIX Security 19),
pp. 603–620. USENIX Association, Santa Clara, CA (Aug 2019). https://www.
usenix.org/conference/usenixsecurity19/presentation/reardon

12. Ren, J., Lindorfer, M., Dubois, D.J., Rao, A., Choffnes, D., Vallina-Rodriguez, N.:
Bug fixes, improvements,... and privacy leaks. In: Network and Distributed System
Security Symposium (NDSS) (2018)

13. Van Kleek, M., Liccardi, I., Binns, R., Zhao, J., Weitzner, D.J., Shadbolt, N.: Better
the devil you know: Exposing the data sharing practices of smartphone apps. In:
CHI Conference on Human Factors in Computing Systems, pp. 5208–5220 (2017)

14. Zhang, D., Guo, Y., Guo, D., Wang, R., Yu, G.: Contextual approach for identifying
malicious inter-component privacy leaks in android apps. In: IEEE Symposium on
Computers and Communications (ISCC), pp. 228–235 (2017)

https://doi.org/10.1007/978-3-030-90022-9_12
https://www.scss.tcd.ie/doug.leith/Android_privacy_report.pdf
https://www.scss.tcd.ie/doug.leith/Android_privacy_report.pdf
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon

Detection and Privacy Leakage Analysis
of Third-Party Libraries in Android Apps

Xiantong Hao, Dandan Ma, and Hongliang Liang(B)

TSIS Lab., Beijing University of Posts and Telecommunications, Beijing, China
{xiantonghao,ma21,hliang}@bupt.edu.cn

Abstract. Third-party libraries (TPL) make Apps’ functionality diver-
sified but introduce severe security risks. Precisely detecting and ana-
lyzing TPLs is challenging because their code usually is not publicly
available or obfuscated. Prior studies do not perform well in detecting
closed-source or obfuscated TPLs and analyzing their privacy risks.

In this paper, we propose a novel approach to detect TPLs in Android
Apps and analyze privacy leakage caused by TPLs. The key idea of our
approach is that it leverages the call frequencies of different types of
APIs as features and conducts a clustering algorithm on these features,
our approach works well on obfuscated TPLs, especially those with dead
code removal and control flow randomization. We also analyze whether
there is privacy leakage in a TPL by dynamically instrumenting privacy-
related APIs and inspecting its call stack. We implement our approach
in a tool named Libmonitor and evaluate it on 162 obfuscated Apps and
217 real-world Apps. Experimental results show that Libmonitor outper-
forms two state-of-the-art tools on two datasets. With obfuscated TPLs,
Libmonitor improves 394.08% over Libradar and 26.32% over LibD on
F1 metric, respectively. With closed-source TPLs, Libmonitor increases
18.66% over Libradar and 150.15% over LibD on F1 metric, respectively.
Besides, Libmonitor found 5809 pieces of privacy leakage risks caused by
152 TPLs in 64 real-world Apps.

Keywords: Android · Third-party library detection · Clustering ·
Privacy leakage analysis

1 Introduction

Now Android is the most popular mobile operating system [1] while developing
a practical Android application is getting more intricate. Today’s Apps require
many additional functions to assist, such as user portraits, personalized recom-
mendations, socialization, etc. To cope with the ever-increasing demand for App
development, existing developers on the Android platform integrate third-party
libraries (TPL) into their Apps. These TPLs have complex sources, diverse types,
and different functions, including advertising, location access, mobile payment,
etc. Related research work [2] shows that each App contains an average of 1.59
TPLs. In extreme circumstances, some Apps use over 30 different TPLs. On
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 569–587, 2023.

https://doi.org/10.1007/978-3-031-25538-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_30&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_30

570 X. Hao et al.

average, over 60% of sub-packages in an App are from third-party libraries [3].
The TPL can reuse code, reduce development time, improve App quality, and
let developers focus on the architecture of the App. However, improper use of
TPL will introduce the following problems:

The first problem is the introduction of vulnerable code. If a developer uses a
TPL with a vulnerability and does not update it in time, the TPL will introduce
the vulnerable code into the App. For example, the SlowMist Security Team
published a report in 2018 [4], there is an XSS 0-day vulnerability in a JavaScript
library named TradingView, which can bypass the Cloudflare defense mechanism.
Wu et al. [5] found 13 popular TPLs have open ports and 61.8% open-port actions
in their App dataset are caused by TPL. Almanee et al. [6] conducted a study on
200 free Apps on Google Play, and tracked the version iterations of Apps using
third-party native libraries between May 2013 and September 2020. The study
found that 53 Apps use malicious versions of third-party libraries with known
CVEs, of which 14 Apps have not updated the vulnerable versions in 2020. Since
multiple Apps may use a same TPL, vulnerabilities in the third-party library
will have an enormous impact, like viruses.

The second problem is the leakage of private information. TPLs may collect
user information to achieve their functions, but sometimes, they may collect
unauthorized or unnecessary data. For example, TPLs provided by Taomike and
Baidu have been exposed to security vulnerabilities. They secretly monitor users’
behaviors and upload sensitive information to remote servers [7]. According to
a survey in 2019 [8], over 40% Apps collect users’ personal information beyond
their own function requirements.

Unfortunately, developers rarely list third-party libraries in their Apps. Some
open-source TPLs can be accessed from Maven [9], GitHub [10], and other web-
sites, however, commercial Apps may use closed-source TPLs. To detect TPLs in
mobile Apps, several prior efforts [2,11,12] use the whitelist approach. However,
closed-source TPLs and the growing of new TPLs make it difficult for researchers
to maintain a complete whitelist. In addition, code obfuscation also makes the
whitelist approach ineffective. Some studies [14,16,33] apply similarity compar-
ison techniques. LibID [13] has two library detection schemes, using the textual
representation in the basic block and class dependency as features, but it cannot
resist dead code removal and control flow randomization. Libpecker [32] uses
signature matching to get a similarity score between a library and an App. By
internal class dependencies in the library, Libpecker generates strict signatures
for each class. To resist the customization and removal of library code as much
as possible, it uses fuzzy match when calculating library similarity. However,
Libpecker requires pre-collection of TPLs to establish a feature database, so it
can’t detect closed-source TPL and is time-consuming.

Other studies leverage feature clustering technique. Libradar [15] uses fea-
ture clustering, but it requires an exact match of hash values in features, so it
cannot deal with TPLs obfuscated with dead code removal. LibD [17] needs to
traverse the decompiled code to build the directory tree and homogeny graphs,
which is time-consuming and cannot detect TPLs obfuscated with control flow
randomization.

Detection and Privacy Leakage Analysis of TPLs 571

As for privacy leakage analysis in Apps, some research efforts use taint anal-
ysis technique. For example, Taintdroid [18] and Taintman [19] work on Dalvik
and ART, respectively. They use dynamic taint analysis to track data flow, but
they need to modify system code and hence are hard to migration. Besides, their
analysis target is a whole App instead of a TPL. Some studies analyze network
traffic to find privacy leakage. For instance, He et al. [20] capture network packets
to match private information and trace back to find the APIs that leak privacy.
VULPIX [21] also collects network traffic to match private information, but it
only considers network interfaces and ignores other interfaces such as logcat and
short-message-service. These methods are either heavy weighted or incomplete
for analyzing privacy leakage in TPLs.

In this paper, we propose a new clustering-based approach to detect TPLs
in Android Apps and perform privacy leakage analysis on TPLs. We classify
Android APIs into 15 categories and extract API call frequencies for every cat-
egory as features. These features can resist control flow randomization because
each API name is persistent in any call place and call time. Considering that
different Apps may import a same TPL, we use fuzzy match to cluster feature
vectors into different clusters and use cluster prediction to detect TPLs, which
means the feature vectors in a cluster don’t have to be exactly the same during
cluster partitioning. In this way, the fuzzy match is not sensitive to dead code
removal. We use dynamic instrumentation to monitor sensitive APIs and per-
form privacy leakage analysis. Dynamic instrumentation is light-weighted and
hence easily applied on most sensitive interfaces like logcat, network, message
and clipboard.

In summary, our contributions are as follows:

– We propose a feature matching approach for detecting TPLs. We divide
Android APIs into 15 categories and extract API call frequency for each
category as features, then perform fuzzy match to cluster feature vectors and
detect TPLs by cluster prediction. Our approach can resist code obfuscation,
especially dead code removal and control flow randomization.

– We develop a TPL privacy leakage analysis approach, which uses dynamic
instrumentation to monitor source and sink APIs, then performs information
match and call stack analysis.

– We implement the proposed approaches in a tool Libmonitor and evaluate it
on 162 obfuscated Apps and 217 real-world Apps respectively. Experimental
results show that Libmonitor outperforms two state-of-the art tools, Libradar
and Libd. Moreover, Libmonitor found 5809 pieces of privacy leakage risks
caused by 152 TPLs in 64 Apps.

2 Background

2.1 Code Obfuscation

Code obfuscation is the act of creating source or machine code that is difficult for
humans to understand without destroying behaviors of a program. The purpose

572 X. Hao et al.

of code obfuscation is to prevent code from being tampered with or reverse-
engineered. Code obfuscation is common in Android Apps, for example, Dong et
al. [22] found that 43% of Google Play Apps and 73% of third-party market Apps
have obfuscated code. Currently common obfuscation strategies in Android apps
are: package flattening, identifier renaming, string encryption, control flow ran-
domization, and dead code removal, the later two of which are difficult to deal
with when detecting TPLs [28]. Existing well-known tools are Dasho and Pro-
guard. Dasho provides all strategies above while Proguard supports the former
two strategies.

2.2 Cluster Algorithm

Cluster analysis is the task to group a set of objects so that objects in the same
cluster are more similar or more closely related to each other. Clustering is a
common statistical data analysis technique. According to the cluster criteria,
clustering algorithms can be divided into the following categories:

– Hierarchical cluster : samples are more related to objects at closer distances.
– Centroid-based cluster : each cluster is marked by a center point and the num-

ber of clustering centers needs to be determined in advance.
– Density-based cluster : clusters are defined as regions with a higher density

than the other objects.

The advantage of cluster analysis over other machine learning algorithms is that
cluster analysis is an unsupervised algorithm and is simple to operate. Cluster
analysis is more cost-effective and time-efficient than other probability sampling
methods, especially for widely distributed samples.

3 Design

3.1 Overview

In this section, we present Libmonitor, a third-party library detection and pri-
vacy leakage analysis system. Libmonitor consists of two modules: TPL detection
and privacy leakage analysis.

We observe that a third-party library may be used in several Apps, so we
can detect closed-source or obfuscated TPLs by clustering features of numerous
Apps. The workflow of TPL detection is shown in Fig. 1. First, a large dataset of
real-world Apps is collected from Android App markets, and API call frequencies
of different types are extracted as features for each App. Then clustering of fuzzy
match is performed, which means that the features are not exactly equal in a
cluster, so our system can resist dead code removal.

The workflow of privacy leakage analysis is shown in Fig. 2. We get private
information, e.g., AdvertiserID, AndroidID, IMEI, MacAddress, DeviceType,
TimeZone, KernelVersion, through android debug bridge (adb) and dynamic
instrumentation. They are encoded or encrypted into a processed information

Detection and Privacy Leakage Analysis of TPLs 573

list (PIL). Then we adopt a dynamic instrumentation technique to separately
monitor and record the invocations of private information related APIs, i.e.,
source and sink APIs. Finally, we match PIL with API invocation record and
perform call stack analysis to generate privacy leakage analysis report for those
TPLs in the TPL list, which is generated in TPL detection module.

Apk data setApk data set

Test ApkTest Apk

Feature Extrac on
Feature1

Feature2

Featuren-1

Featuren

……

Cluster

Feature1

Featuren-1

……
Library1

Feature2

Featuren

Feature1

Feature3

Featuren

Detec on

Library1

Feature1

Fig. 1. Workflow of Third-party library detection

Dynamic
instrumenta�on

monitor
Source API

monitor
Sink API

Private
informa�on

Encode and
encrypt

Base64

SHA1

SHA256

URL Encode

…… Analysis

Informa�on
match

Call stack
analysis

TPL list

report

Adb
command

PIL

Monitor log

Fig. 2. Workflow of privacy leakage analysis

3.2 TPL Detection

Collecting and Unpacking Apps. We collect 10000 Apps from Androzoo
[23], which contains millions of Apps from various App markets. Since Apps
on Google play are more secure and popular, we mainly downloaded Google
play Apps. After unpacking these Apps with apktool [24], we can analyze them
from multiple aspects. Without source code, we need to analyze smali code or
dex file. Generally, the smali code is more friendly for people to read. However,
conversion to smali files is time-consuming, and the analysis of smali files is text
analysis, which loses some structured information in binary, therefore we unpack
Apps to get dex file.

574 X. Hao et al.

Feature Extraction. In this section, we firstly categorize Android APIs into 15
categories according to the functions of the Android APIs, as shown in Table 1,
then we parse dex files in an App and count the call frequency of each type
of API in the App according to Algorithm1. The call frequencies of these APIs
rarely change in the process of obfuscation, and thus can represent the behaviors
(or features) of TPLs in the App. As shown in Algorithm1, we go through all
dex files and class files to extract features. AT is a large array that maps an API
to its API type in total 15 types, these types are represented by numbers from
0 to 14 respectively, thus the feature vector of each node is an array of length
15. We compute the feature vectors of child nodes in Java hierarchy tree and
gradually update the feature vectors of their parent nodes. Finally, we integrate
them and store them in the database. The total API list can be obtained from
the Android Developer website [25].

Table 1. Classification of android APIs

Type Description

io Write to and read file

Security Security verification

Deviceinfo Get IMEI, deviceId, etc.

Network Related to network

Location Get location

UI UI and resource file

Hardware Control of hardware

Multimedia Radio, vedio, etc.

Application Package manager and four components

Database Manage database

Util Universal method

System Scheduling and Parallelization, etc.

Xml Parse xml file

Time Timezone, date, etc.

Datatype Object of Int, String, json, etc.

Feature Clustering. Common clustering algorithms include hierarchical clus-
tering, center-based clustering, spectral clustering, etc. The center-based algo-
rithm needs to determine the number of cluster centers in advance, which is
unknown to us. Spectral clustering is used to deal with the division of nodes
that are related to each other, but we regard each package as an individual node
in our system, therefore this algorithm is not appropriate. Considering these
facts, we adopt the hierarchical clustering method.

Detection and Privacy Leakage Analysis of TPLs 575

Algorithm 1. Extracting features from Dex files
Require: DF : dex files; AT : The array that maps an API to its API type in total

15 types.
Ensure: Dict: features dictionary;
1: dictionary initialize
2: for each file in DF do
3: Parse and construct dexfile object O
4: for each class C in O do
5: Cf=[0]*15
6: for each method in C.methods do
7: Cf [AT[method]]+=1
8: end for
9: add Cname and Cf to Dict

10: while C is not root directory do
11: tmp = C
12: C = C.parent
13: if C in Dict then
14: Dict[C]+ = Dict[tmp]
15: else
16: Dict[C] =Dict[tmp]
17: end if
18: end while
19: end for
20: end for

Android App code has a certain package structure, the obfuscation of iden-
tifier name will not affect the package structure, and the feature of one third-
party library in different Apps are the same, for example, when com.google.gson
is obfuscated into com.a.b, its feature value will not change. Even with dead
code removal, the feature of TPL is similar within limits. Based on the above
observations, we cluster the features at the same package structure level when
implementing the feature cluster.

First, we read the feature vector from the feature database built in Sect. 3.2.
There may be some features that are too small or simple, which can’t represent a
TPL. Considering the existence of these noise points, we filter the feature vector
data to remove these invalid feature vectors. Then we normalize the feature
vector data and use the Birch algorithm [26] to cluster these data. We only
keep the clusters each of which has more sample points than a certain threshold.
Finally, we build the map between a cluster label and a TPL according to package
name that is not obfuscated in the cluster and persist the cluster model.

TPL Detection. After feature clustering, we get lots of potential third-party
libraries in our cluster model. To detect TPLs in an App, we first extract its
features and normalize the feature vector in the same way as Sect. 3.2. Then
we conduct cluster prediction based on the models established in the cluster-
ing process. Our clustering model uses the hierarchical clustering strategy with

576 X. Hao et al.

a threshold, which means that the cluster prediction process performs fuzzy
matching and is resistant to dead code removal. According to the map between
labels and TPLs, we get a list of TPLs used in an App.

3.3 Privacy Leakage Analysis

PIL Collection. Compared with the user’s personal information, the device
information is fixed. We can use adb and instrumentation of the source APIs
to obtain device-related information. Considering that an App may encrypt or
encode the device information when transmitting it, we process acquired device
information using common encoding and encryption algorithms, and finally, the
processed information list (PIL) is obtained.

Dynamic Instrumentation. Sensitive APIs can be divided into source APIs
and sink APIs as shown in Table 2. We record the return values of the source
APIs called by an App and the parameters of the sink APIs as logs, and then
collect the call stack information for subsequent analysis. We leverage dynamic
instrumentation technique to monitor sensitive APIs as shown in Fig. 3. Specifi-
cally, dynamic instrumentation is composed of an Android device and a PC-side
controller. The device is installed with frida server, a typical instrumentor for
Android, and the PC-side controller is implemented as some scripts in JavaScript
which are injected into the Android device. We use Monkey [27] to simulate a
user’s operations on the App. During the App’s execution, the scripts record the
running log for later analysis.

Table 2. Example source APIs and sink APIs

Example Type

android.location.LocationManager.getLastKnownLocation Source

android.content.ClipboardManager.getPrimaryClip Source

android.content.ContentResolver.query Source

android.telephony.TelephonyManager.getDeviceId Source

android.util.Log.i Sink

okhttp3.OkHttpClient.newCall Sink

android.telephony.SmsManager.sendDataMessage Sink

android.util.LogPrinter.println Sink

android.content.ClipboardManager.setPrimaryClip Sink

Private Information Matching. Private information can be divided into two
categories: device information and user-specific personal information. The former
includes deviceID, WifiInfo, etc., while the latter mainly includes user name, age,
home address, etc. Part of the device information is fixed and can be obtained in
advance, and another part of the information such as location information can

Detection and Privacy Leakage Analysis of TPLs 577

Fria-Server

Android Device

Log

PC

Frida
controller

Return log

File storage

Send message
network

monkey

Inject script

Sink APIs

getNetworkId

getDeviceId
getIpAddress

……

Source APIs

Monitor.js

Fig. 3. Dynamic instrumentation

be obtained by instrumentation of the source APIs, this information is processed
in Sect. 3.3 and we can get PIL. For logs of sink APIs, we match logs with PIL
to determine whether there is private information flowing out of the sink APIs.
For logs of source APIs, as long as source APIs are called, we define that the
private information is matched but with low risk. Device information is generally
a specific string, so it can be matched directly in the monitor log. For user-specific
personal information, it is not fixed information but has a certain format, we
can use regular expressions to match user-specific personal information.

Call Stack Analysis. Since our research object is third-party libraries in the
Android App, we need to analyze the acquisition and transmission of private
information by the third-party library. In the third-party library detection mod-
ule, we can get a list of third-party libraries used in the application. The analysis
of the call stack can help us know about the privacy leakage through the third-
party library. As long as the privacy information is successfully matched, we will
evaluate the privacy leakage risk of the third-party library by parsing the call
stacks in logs of source APIs and sink APIs. In this paper, we divide the privacy
leakage risk of third-party libraries into four levels according to the following
rules:

• Level 0: No private information is matched;
• Level 1: Any TPL calls a source API directly or indirectly;
• Level 2: Any TPL indirectly calls a sink API, and any private information is

matched in the API monitor log;
• Level 3: Any TPL directly calls a sink API, and any private information is

matched in the API monitor log.

578 X. Hao et al.

4 Evaluation

4.1 Dataset and Environment

To compare with state-of-the-art TPL detection tools, we get an App dataset
from [28], which contains the ground truth of TPLs in Apps. The dataset con-
sists of two parts: Datasetob for evaluating obfuscation resistance capability and
Datasetper for evaluating performance on precision and time cost. Datasetob con-
sists of Apps processed by Proguard and Dasho. However, the ground truth in the
dataset only considers open-source TPL, we extend it to include closed-source
TPLs and get a complete ground truth.

For privacy leakage analysis of TPL, there are no open-source tools for com-
parison and no widely used datasets, so we randomly selected 64 Apps from
Datasetper, these applications include categories of reading, video, shopping,
image processing, etc.

The program runs on the ubuntu 18.04 operating system and the feature
clustering algorithm is implemented with the scikit-learn toolkit. We use frida
of version 15.1.14 for dynamic instrumentation. We wrote Libmonitor in python
version 3.6.9.

4.2 TPL Detection

We compare our tool with two state-of-the-art clustering-based tools, i.e.,
Libradar and Libd. We do not consider those tools based on similarity com-
parison [13,14,16,32,33] because they can not detect closed-source TPLs. Both
Libradar and LibD use the cluster-based approach to detect TPL, and we can
get the profile database or source code of these two tools online. We design
experiments to answer these questions:

RQ1 How is Libmonitor’s capability to resist obfuscation?
RQ1 How does Libmonitor perform on detecting TPLs?
RQ1 Is Libmonitor efficient compared to other tools?

RQ1: How Is Libmonitor’s Capability to Resist Obfuscation? To eval-
uate the capability of resisting code obfuscation, we perform TPL detection on
Datasetob with 162 Apps, which are obfuscated respectively by Proguard and
Dasho. We compare our tool with Libradar and Libd, and the statistical results
are shown in Table 3. The results show that Libmonitor has best performance on
F1 metrics for Apps obfuscated both by Dasho and Proguard, Libradar performs
well for Proguard Apps, and Libd performs well for Dasho Apps.

We analyze the experimental results. On the one hand, different obfuscation
tools have different effects on the results. Proguard generally employs identifier
renaming while Dasho performs dead code removal and control flow randomiza-
tion for Apps. Libradar requires an accurate comparison of hashes of API call
frequencies and is sensitive to dead code removal. Libd needs to construct the
control flow graph (CFG) to generate features, and thus is sensitive to control

Detection and Privacy Leakage Analysis of TPLs 579

flow randomization caused by Dasho. Compared to exact matching detection
methods or methods based on CFG, our clustering method uses fuzzy matching
and thus performs better. On the other hand, since our method is based on clus-
tering, dataset selection is important. Our clustering dataset contains a more
updated version of Apps, so it has better detection results (Table 3).

Table 3. Experiment Result on datasetob

Tool Proguard Dasho

Precise Recall F1 Precise Recall F1

Libmonitor 71.31% 74.91% 0.7307 91.50% 63.76% 0.7515

Libradar 94.08% 58.19% 0.7191 84.21% 8.36% 0.1521

Libd 54.06% 61.50% 0.5754 60.29% 58.71% 0.5949

RQ2: How Does Libmonitor Perform on Detecting TPLs? To mea-
sure the precision of third-party library detection for real-world applications,
we use another dataset datasetper for evaluation, and the results can be seen
in Table 4. Moreover, we extend the ground truth of the original dataset with
245 closed-source TPLs and count the experimental results of three tools respec-
tively. The results show that Libmonitor outperforms other tools on F1 metrics
when detecting closed-source TPLs. The F1 values of three tools are low accord-
ing to original ground truth, because the clustering-based approach can detect
many closed-source TPL, and the original ground truth doesn’t consider about
it. Libd hashes basic blocks and concatenates features, it can resist code obfus-
cation but doesn’t perform well in restoring package names, so it causes many
false positives. Compared with Libradar, our feature cluster process is based on
the fuzzy match, hence feature vectors are easier to cluster and more clusters
can be generated, so Libmonitor can detect more third-party libraries (Table 4).

Table 4. Experimental results on Datasetper and extended Dataset

Tool Datasetper Extended Dataset

Precise Recall F1 Precise Recall F1

Libmonitor 30.43% 71.80% 0.4275 79.07% 83.98% 0.8145

Libradar 37.77% 50.74% 0.4330 95.78% 53.48% 0.6864

Libd 9.52% 8.70% 0.0909 24.35% 49.12% 0.3256

RQ3: Is Libmonitor Efficient Compared to Other Tools? To evaluate
the efficiency of Libmonitor, we run it and two baseline tools on Datasetper
to compare their runtime cost. The experimental results are listed in Table 5.
The performance of Libmonitor is significantly better than Libd, and slightly

580 X. Hao et al.

weaker than Libradar. In order to represent the performance of these tools more
intuitively, we plot their run time on top 40 Apps in Fig. 4. Obviously, Libmonitor
and Libradar perform comparably while Libd is the most time-consuming.

Table 5. Run time on Datasetper

Tool All Average

Libmonitor 6280.1 s 28.9 s

Libradar 5375.8 s 24.8 s

Libd 27477.0 s 126.6 s

0.0

50.0

100.0

150.0

200.0

250.0

300.0

Libmonitor Libradar Libd

Ti
m

e
 c

os
t(

se
c)

Fig. 4. Run time on top 40 apps in Datasetper.

We explain the reasons behind the results as follows. First, Libd needs to
build CFG and concatenates features of basic blocks, which is relatively time-
consuming. Both Libradar and Libmonitor use the frequency of API calls as fea-
ture by parsing the dex files, and hence run quickly. Second, Libmonitor divides
Android’s APIs into more fine-grained types than ones in Libradar, causing
slightly more run time.

4.3 Privacy Leakage Analysis

We use dynamic instrumentation technique to monitor sensitive APIs, then we
perform information match and call stack analysis. Finally, we generate privacy
leakage analysis reports for third-party libraries. We perform privacy leakage
analysis on 64 Apps and obtain the following experimental results.

Case Studies. Some Apps may leak private information through interfaces
other than the network interface. For instance, as shown in Fig. 5, Cartola App
prints Advertiser ID information through logcat interface. Besides, we found a
serious security threat: DoorDash App transmits the passwords and email of
users in plain text, which means that one can see users’ password and email

Detection and Privacy Leakage Analysis of TPLs 581

through logcat, as indicated in Fig. 6, where we hide some user data such as
mobile phone and email. The App developers should take care of these behaviors
when using TPLs.

Fig. 5. Case study: privacy leakage analysis on Cartola App.

Fig. 6. Case study: privacy leakage analysis on DoorDash App.

Experimental Results. We define a piece of privacy leakage data that one TPL
participates in as a privacy leak risk. For example, if a privacy leakage behav-
ior involves two different TPLs, we will judge it as two privacy leakage risks.
Libmonitor found 5809 pieces of privacy leakage risks caused by 152 TPLs in 64
applications, and the risks in level 1 to level 3 are 3118, 797 and 1894 respectively.
Generally, private information is not necessarily leaked after obtained through
source APIs, and may be used as user profile, so source APIs are called more
frequently, i.e., risks in level 1 are the most. Risks of level 2 and level 3 repre-
sent privacy leakage through sink APIs called indirectly and directly by TPLs,
respectively. Therefore, 46.3% of found risks involves privacy leakage caused by
TPLs.

We count third-party libraries with more leakage risks, and record the types
of private information that are leaked more frequently, as shown in Table 6 and
Table 7. TPL will participate in the leakage of private information. It can be seen
from the experimental results that com.google.android.gms has the most risks of
privacy leakage, and AdvertiserID is the most easily leaked type of private infor-
mation. Most of the applications in the dataset integrate Google’s advertising
service, so AdvertiserID is easy to be leaked. Most Apps on Google play rely on
google mobile service(gms), so com.google.android.gms is used frequently.

582 X. Hao et al.

Table 6. Top 10 privacy
leaked by 152 TPLs

Info. type Freq.

AdvertiserID 1163

BuildNumber 342

DeviceType 323

Country 280

Date of birth 99

Timezone 81

AndroidID 44

Email 34

Uid 14

Kernel version 12

Table 7. Top 10 TPLs leaking privacy

PkgName L1 L2 L3 Total

com.google.android.gms 1064 26 365 1455

com.mopub 93 269 341 703

com.ironsource 7 0 599 606

com.google.firebase 71 310 179 560

io.fabric.sdk.android 246 11 22 279

com.facebook 102 11 150 263

com.crashlytics.android 252 0 0 252

com.applovin 144 2 6 152

com.unity3d 23 61 58 142

com.free.ads 108 0 0 108

We counted the frequency of source APIs and sink APIs called in these pri-
vacy leakage risks, as shown in Table 9 and Table 8. As for sink APIs, APIs in
android.util.Log are the interface of logcat whose call frequency is 328. Others
are the interface of network whose call frequency is 3490. The proportion of
logcat interface is 8.6%, which is ignored in [20,21], because they just collect
network traffic information. In addition, there are SMS and clipboard interfaces.
We did not find calls of these two types of interfaces in this experiment. As
to source APIs, android.provider.Settings$Secure.getString is accessed by most
TPLs, because androidID is a unique identifier which can be accessed easily with-
out permission. Besides, android.content.ContentResolver.query is accessed fre-
quently to query GSFID, image and vedio. Apps that integrate the Google frame-
work are likely to access GSFID, while images and videos usually are accessed
by multimedia related Apps.

Table 8. Top 10 sink APIs

API type frequency

java.net.URL.$init.overload[2] Network 1336

java.net.URL.$init.overload[0] Network 1315

com.android.okhttp.internal.huc.HttpsURLConnection- Network 742

Impl.setRequestProperty

android.util.Log.i.overload[0] Logcat 219

android.util.Log.d.overload[0] Logcat 89

okhttp3.RequestBody.create.overload[2] Network 71

android.util.Log.v.overload[0] Logcat 20

okhttp3.RequestBody.create.overload[1] Network 12

java.net.URL.$init.overload[5] Network 10

org.apache.http.client.methods.HttpGet.$init.overload[0] Network 4

Detection and Privacy Leakage Analysis of TPLs 583

Table 9. Top 10 source APIs

API Frequency

android.provider.Settings$Secure.getString 2589

android.content.ContentResolver.query%GSFID 572

android.hardware.SensorManager.getDefaultSensor 417

android.content.ClipboardManager.getPrimaryClip 97

android.net.wifi.WifiInfo.getMacAddress 86

android.os.BatteryManager.getIntProperty 84

android.location.LocationManager.getLastKnownLocation 49

android.net.wifi.WifiInfo.getIpAddress 27

android.content.ContentResolver.query%image 16

android.content.ContentResolver.query%video 16

5 Discussion

Libmonitor has limitations. First, Libmonitor can also detect open-source TPLs
but it cannot accurately identify the specific version of each TPL. As a future
work, we will combine clustering method and similarity comparison method to
address this issue. Second, our approach to analyze privacy leakage cannot obtain
complete data flow from source to sink, which needs to be improved in future
work.

6 Related Work

6.1 Third-Party Library Detection

On third-party library detection, some prior studies use the simplest whitelist
method. For example, Liu et al. [12] collected a whitelist of 400 SDKs to ana-
lyze the privacy leakage of third-party libraries and classified them according to
the functions of the third-party libraries. The whitelist-based method generally
requires manual collection and needs to be continuously updated as new third-
party libraries appear. In addition, the code obfuscation in Android applications
makes this method invalid.

Other research efforts perform feature extraction on Android applications
and detect third-party libraries through similarity comparison. LibScout [16]
uses class hierarchy analysis to construct a Merkle tree with a fixed depth of
3 as the configuration file of each library and proposes a matching algorithm
to calculate the similarity with collected libraries. They collected 800 libraries
(9623 versions in total) and constituted a tangible database to ensure accurate
detection results. OSSPolice [29] uses normalized signatures and function cen-
troids [30] as features, then uses a hierarchical indexing scheme to compare the
similarity between the feature files and the tens of thousands of source files in

584 X. Hao et al.

the benchmark database. When analyzing the library version, OSSPolice uses
the software birthmark [31]to accurately detect OSS versions. According to the
identified third-party SDK version, OSSPolice reports the third-party SDK ver-
sion that contains security vulnerabilities or violates the open-source agreement.
OSSPolice has also built a third-party SDK whitelist, which contains 110 Java
libraries authorized under GPL and AGPL terms.

ATVHUNTER [33] conducts candidate TPL decoupling by class dependency
and uses features of two granularities for TPL matching, the coarse-grain fea-
ture is serial numbers assigned in the control flow graph, and the fine-grained
feature is the hash of opcode in the basic block. ATVHUNTER builds a TPL
database and can detect the version of the TPL. LibID [13] has two library
identification schemes, designed for scalability and accuracy, respectively named
LibID-S, LIbID-A. LibID-S uses textual representation in basic blocks as the
feature, LidID-A makes use of class dependency to get accurate matching of the
TPL version, besides, LibID uses LSH and minihash to speed up class matching.
These similarity-based tools require building TPL profile in advance and can’t
detect closed-source TPLs.

6.2 Privacy Leakage Analysis

FlowDroid [34] is a static taint tracking system based on Soot, which simu-
lates the complete Android application life cycle, and expresses the control flow
call relationship between the Activity life cycle and all callback functions as a
control flow graph(CFG). FlowDroid uses CFG to track the sensitive data flow
from the source point to the sink point, but FlowDroid cannot analyze data
flow of inter-component communication and uses static analysis which is prone
to false positives. Enck et al. modified the source code of the Android system
and designed the dynamic taint tracking system TaintDroid [18]. By modify-
ing the Dalvik VM interpreter, the corresponding taint label was added to the
private data, and four levels of taint were defined. TaintDroid provides logs to
record private information behaviors and sends messages in the notification bar
to warn users of privacy leakage. However, TaintDroid only implements data
flow tracking but does not analyze control flow and native methods. Taintman
[19] performs static instrumentation on target Apps and system libraries, and
uses taint analysis technique to track data flow and control flow. In addition,
Taintman uses an execution environment reconstruction technology called refer-
ence hijacking, which allows the target application to reference and modify the
system library, so it can run on Android devices without root privilege. However,
Taintdroid and Taintman need to modify system code, which is inconvenient for
migration and adaptation.

7 Conclusion

In this paper, we present a novel approach to detect third-party libraries (TPLs)
in Android Apps and analyze potential privacy leakage in TPLs. We implement

Detection and Privacy Leakage Analysis of TPLs 585

a tool named Libmonitor. It leverages the call frequencies of different types of
APIs as features and uses fuzzy match strategy when performing the clustering
algorithm, and thus works well on obfuscated TPLs.

Experimental results of TPL detection show that Libmonitor outperforms
two state-of-the-art TPL detection tools (i.e., Libradar and LibD) on two
datasets. Besides, Libmonitor found 5809 pieces of privacy leakage risks caused
by 152 TPLs in 64 real-world Apps.

References

1. IDC. Smartphone Market Share. https://www.idc.com/promo/smartphone-
market-share/os

2. Lin, J., Liu, B., Sadeh, N., et al.: Modeling users mobile app privacy preferences:
restoring usability in a sea of permission settings. In: Proceeding SOUPS 2014
Proceedings of the Tenth USENIX Conference on Usable Privacy and Security,
vol. 199 (2014)

3. Wang, H., Guo, Y., Ma, Z., Chen, X.: WuKong: a scalable and accurate two-phase
approach to Android app clone detection. In: Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis, pp. 71–82. ACM, Baltimore
(2015).https://doi.org/10.1145/2771783.2771795

4. Slowmist Knowledge-Base. https://github.com/slowmist/Knowledge-Base/blob/
master/tradingview-xss-vul.md

5. Wu, D., Gao, D., Chang, R.K.C., He, E., Cheng, E.K.T., Deng, R.H.: Understand-
ing open ports in android applications: discovery, diagnosis, and security assess-
ment. In: Proceedings 2019 Network and Distributed System Security Symposium.
Internet Society, San Diego (2019). https://doi.org/10.14722/ndss.2019.23171

6. Almanee, S., Unal, A., Payer, M., Garcia, J.: Too quiet in the library: an empirical
study of security updates in android apps’ native code. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pp. 1347–1359. IEEE,
Madrid (2021). https://doi.org/10.1109/ICSE43902.2021.00122

7. Reardon, J., Feal, Á., Wijesekera, P.: 50 ways to leak your data: an exploration of
apps’ circumvention of the android permissions system, vol. 19 (2019)

8. Mobile application (App) data security and personal information protection white
paper. http://www.caict.ac.cn/kxyj/qwfb/bps/201912/P020191230332039577332.
pdf

9. Maven Repository. https://mvnrepository.com/
10. GitHub: Where the world builds software. https://github.com/
11. Lin, J., Sadeh, N., Amini, S., Lindqvist, J., Hong, J.I., Zhang, J.: Expectation

and purpose: understanding users’ mental models of mobile app privacy through
crowdsourcing. In: Proceedings of the 2012 ACM Conference on Ubiquitous Com-
puting - UbiComp 2012, p. 501. ACM Press, Pittsburgh (2012). https://doi.org/
10.1145/2370216.2370290

12. Liu, B., Liu, B., Jin, H., Govindan, R.: Efficient privilege de-escalation for ad
libraries in mobile apps. In: Proceedings of the 13th Annual International Confer-
ence on Mobile Systems, Applications, and Services, pp. 89–103. ACM, Florence
(2015). https://doi.org/10.1145/2742647.2742668

13. Zhang, J., Beresford, A.R., Kollmann, S.A.: LibID: reliable identification of obfus-
cated third-party Android libraries. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 55–65. ACM, Bei-
jing (2019). https://doi.org/10.1145/3293882.3330563

https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://doi.org/10.1145/2771783.2771795
https://github.com/slowmist/Knowledge-Base/blob/master/tradingview-xss-vul.md
https://github.com/slowmist/Knowledge-Base/blob/master/tradingview-xss-vul.md
https://doi.org/10.14722/ndss.2019.23171
https://doi.org/10.1109/ICSE43902.2021.00122
http://www.caict.ac.cn/kxyj/qwfb/bps/201912/P020191230332039577332.pdf
http://www.caict.ac.cn/kxyj/qwfb/bps/201912/P020191230332039577332.pdf
https://mvnrepository.com/
https://github.com/
https://doi.org/10.1145/2370216.2370290
https://doi.org/10.1145/2370216.2370290
https://doi.org/10.1145/2742647.2742668
https://doi.org/10.1145/3293882.3330563

586 X. Hao et al.

14. Wang, Y., Wu, H., Zhang, H., Rountev, A.: ORLIS: obfuscation-resilient library
detection for Android. In: Proceedings of the 5th International Conference on
Mobile Software Engineering and Systems - MOBILESoft 2018, pp. 13–23. ACM
Press, Gothenburg (2018). https://doi.org/10.1145/3197231.3197248

15. Ma, Z., Wang, H., Guo, Y., Chen, X.: LibRadar: of third-party libraries in Android
apps. In: Proceedings of the 38th International Conference on Software Engineering
Companion - ICSE 2016, pp. 653–656. ACM Press, Austin (2016). https://doi.org/
10.1145/2889160.2889178

16. Backes, M., Bugiel, S., Derr, E.: Reliable third-party library detection in android
and its security applications. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security - CCS 2016, pp. 356–367. ACM Press,
Vienna (2016). https://doi.org/10.1145/2976749.2978333

17. Li, M., et al.: LibD: scalable and precise third-party library detection in android
markets. In: 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE), pp. 335–346 (2017). https://doi.org/10.1109/ICSE.2017.38

18. Enck, W., et al.: TaintDroid: an information flow tracking system for real-time
privacy monitoring on smartphones. Commun. ACM. 57, 99–106 . https://doi.
org/10.1145/2494522

19. You, W., Liang, B., Shi, W., Wang, P., Zhang, X.: TaintMan: an ART-compatible
dynamic taint analysis framework on unmodified and non-rooted android devices.
IEEE Trans. Depend. Secure Comput. 17, 209–222 (2020). https://doi.org/10.
1109/TDSC.2017.2740169

20. He, Y., Yang, X., Hu, B., Wang, W.: Dynamic privacy leakage analysis of Android
third-party libraries. J. Inf. Secur. Appl. 46, 259–270 (2019). https://doi.org/10.
1016/j.jisa.2019.03.014

21. Wongwiwatchai, N., Pongkham, P., Sripanidkulchai, K.: Comprehensive detection
of vulnerable personal information leaks in android applications. In: IEEE INFO-
COM 2020 - IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS), pp. 121–126. IEEE, Toronto (2020). https://doi.org/10.1109/
INFOCOMWKSHPS50562.2020.9163043

22. Dong, S., et al.: Understanding android obfuscation techniques: a large-scale inves-
tigation in the wild. In: Beyah, R., Chang, B., Li, Y., Zhu, S. (eds.) SecureComm
2018. LNICST, vol. 254, pp. 172–192. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01701-9 10

23. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: AndroZoo: collecting millions of
Android apps for the research community. In: Proceedings of the 13th International
Conference on Mining Software Repositories, pp. 468–471. ACM, Austin (2016).
https://doi.org/10.1145/2901739.2903508

24. A tool for reverse engineering Android apk files. https://ibotpeaches.github.io/
Apktool/

25. Android Developer. https://developer.android.com/reference/packages
26. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering

method for very large databases. SIGMOD Rec. 25, 103–114 (1996). https://doi.
org/10.1145/235968.233324

27. Monkey. https://developer.android.com/studio/test/monkey
28. Zhan, X., et al.: Automated third-party library detection for Android applications:

are we there yet? In: Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering, pp. 919–930. ACM, Virtual Event Australia
(2020). https://doi.org/10.1145/3324884.3416582

https://doi.org/10.1145/3197231.3197248
https://doi.org/10.1145/2889160.2889178
https://doi.org/10.1145/2889160.2889178
https://doi.org/10.1145/2976749.2978333
https://doi.org/10.1109/ICSE.2017.38
https://doi.org/10.1145/2494522
https://doi.org/10.1145/2494522
https://doi.org/10.1109/TDSC.2017.2740169
https://doi.org/10.1109/TDSC.2017.2740169
https://doi.org/10.1016/j.jisa.2019.03.014
https://doi.org/10.1016/j.jisa.2019.03.014
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9163043
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9163043
https://doi.org/10.1007/978-3-030-01701-9_10
https://doi.org/10.1007/978-3-030-01701-9_10
https://doi.org/10.1145/2901739.2903508
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/reference/packages
https://doi.org/10.1145/235968.233324
https://doi.org/10.1145/235968.233324
https://developer.android.com/studio/test/monkey
https://doi.org/10.1145/3324884.3416582

Detection and Privacy Leakage Analysis of TPLs 587

29. Duan, R., Bijlani, A., Xu, M., Kim, T., Lee, W.: Identifying open-source license
violation and 1-day security risk at large scale. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 2169–2185.
ACM, Dallas (2017). https://doi.org/10.1145/3133956.3134048

30. Chen, K., Liu, P., Zhang, Y.: Achieving accuracy and scalability simultaneously
in detecting application clones on Android markets. In: Proceedings of the 36th
International Conference on Software Engineering - ICSE 2014, pp. 175–186. ACM
Press, Hyderabad (2014). https://doi.org/10.1145/2568225.2568286

31. The protection of computer software - Its technology and applications: edited by
Derrick Grover, 2nd Edition, 1992 (British Computer Society Monographs in Infor-
matics - Cambridge University Press, Softcover), 307pp, £17.95 (US $32.95), ISBN
0-521-42462-3. Computer Law & Security Review. 8, 204 (1992). https://doi.org/
10.1016/0267-3649(92)90069-L

32. Zhang, Y., et al.: Detecting third-party libraries in Android applications with high
precision and recall. In: 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 141–152. IEEE, Campobasso
(2018). https://doi.org/10.1109/SANER.2018.8330204

33. Zhan, X., et al.: ATVHunter: reliable version detection of third-party libraries for
vulnerability identification in android applications. In: ICSE (2021)

34. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for Android apps. In: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation - PLDI 2014,
pp. 259–269. ACM Press, Edinburgh (2013). https://doi.org/10.1145/2594291.
2594299

https://doi.org/10.1145/3133956.3134048
https://doi.org/10.1145/2568225.2568286
https://doi.org/10.1016/0267-3649(92)90069-L
https://doi.org/10.1016/0267-3649(92)90069-L
https://doi.org/10.1109/SANER.2018.8330204
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299

Secure CV2X Using COTS Smartphones
over LTE Infrastructure

Spandan Mahadevegowda1(B), Ryan Gerdes1, Thidapat Chantem1,
and Rose Qingyang Hu2

1 Virginia Tech, Arlington, VA, USA
{spandan,rgerdes,tchantem}@vt.edu

2 Utah State University, Logan, UT, USA
rose.hu@usu.edu

Abstract. With the proliferation of vehicle technologies to support
sophisticated features like assisted and autonomous driving, advanced
communication protocols like cellular-vehicle-to-everything (CV2X) have
been proposed. However, practical large-scale deployments have been
hindered due to caveats such as hardware, security, and cellular infras-
tructure demands. This work presents and evaluates a practical approach
to utilizing ARM TrustZone to turn commercial off-the-shelf smart-
phones into secure CV2X radios that communicate over the LTE net-
work. These smartphone-based CV2x radios communicate with each
other via an intermediary server placed outside/within the LTE infras-
tructure without affecting normal operations of the phone, like using
navigation, calls, and music. Vehicle owners would only have to install
the CV2X application to use their smartphones as CV2X radios. The
approach would boost the adoption of CV2X by reducing the require-
ment for dedicated hardware and reusing existing infrastructure. In this
work, we empirically evaluate the on-device overhead coupled with vari-
ous network topologies concerning the location of an intermediary server
and the LTE infrastructure. We show that our proposed approach can
meet the required real-time constraints for safe CV2X operation while
ensuring the integrity of the on-device communication from manipulation
by remote attackers.

Keywords: CV2X · COTS devices · LTE · Secure communication ·
TEE · Trustzone

1 Introduction

With the advancements in communication and processing technologies, mod-
ern vehicles and traffic infrastructure have become smarter, providing improved
safety, security, and overall commuting experience. Today, we have automated

This work was supported by the National Science Foundation (NSF) under grant num-
bers 2038726 and 1941524.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 588–607, 2023.

https://doi.org/10.1007/978-3-031-25538-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_31&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_31

Secure CV2X Using COTS Smartphones over LTE Infrastructure 589

Fig. 1. Secure COTS based CV2X overview

driver assistance, cruise control, pedestrian detection, etc., that can save lives and
increase commuter comfort while decreasing commute time. However, establish-
ing connectivity among vehicles and the infrastructure is essential to enable the
large-scale integration of such data-driven technologies. Features such as over-
the-air updates and diagnostics of vehicle software have only been made possible
from such connectivity [1]. One widely explored and investigated solution is the
cellular vehicle to everything (CV2X) framework, which uses a high-speed cel-
lular network to interconnect vehicles and traffic infrastructure. However, this
has caveats. Enabling CV2X would mean significant investment in developing
dedicated software and hardware. Moreover, it would require tedious integration
of cellular modules into deployed vehicles or even mean waiting to replace older
vehicles with new models. Additionally, enabling such complex communication
means the exposure of vehicles to malicious entities. Research has already shown
possible attacks and issues on vehicles made by Tesla with wireless/cellular con-
nectivity that can threaten passenger safety and security [2,3].

Also, installing dedicated CV2X radios by vehicle manufacturers will likely
require government mandates. Opportunely, modern-day smartphones that pos-
sess advanced processing power are ubiquitous. Moreover, these smartphones
also come equipped with software and hardware techniques to provide secure
data processing and privacy. For example, watching licensed media on Netflix,
or securely storing/using fingerprints to perform financial transactions, utilizes
said underlying software or hardware security mechanisms, such as TrustZone,
a trusted execution environment on ARM-based processors [4]. Given how ubiq-
uitous smartphones are, we could leverage smartphones instead of dedicated
cellular modules to securely tether vehicles to the CV2X framework. The smart-
phone’s universal serial bus (USB) port can be connected to the vehicle’s on
board diagnostics (OBD/OBD-II)port [5] with a dongle.

Vehicle owners would only need to install a secure application on their smart-
phones to use them as a CV2X radio while not significantly impacting the per-
formance of other applications like navigation or music. However, since these
cellular devices do not inherently support CV2X protocols and frameworks, we
need to provide external servers that will behave as intermediaries to connect

590 S. Mahadevegowda et al.

these smartphones to the CV2X framework. Furthermore, connecting cellular
devices on commercial networks through intermediary servers to enable CV2X
protocol still needs to adhere to low latency, high throughput, etc., for safety-
critical CV2X applications. Figure 1 shows a high level overview of the frame-
work. Smartphone tethered vehicles are communicating with each other for the
purpose of CV2X via the intermediary server on the long term evolution (LTE)
infrastructure. The exchanged information is used to communicate commands
or data to the vehicles for assisted driving, warnings, etc. Therefore, our contri-
butions are:

– We provide a framework for CV2X connectivity using commercial-off-the-shelf
(COTS) cellular devices and analyze intermediary CV2X server on LTE/4G
network considering various topologies. This work is also the first attempt to
establish secure CV2X connectivity using COTS cellular devices to the best
of our knowledge.

– We provide a secure framework using ARM TrustZone to mitigate security
vulnerabilities such as replay and denial of service (DoS) attacks on the COTS
devices running the CV2X application.

– We study and evaluate various network topologies by placing the CV2X server
in various locations within the cellular infrastructure to ensure the real-time
deployability of our approach.

– We evaluate and provide quantitative measurements for the overheads and
latency incurred in the framework. Consequently, we analyze and discuss the
feasibility of using COTS devices for CV2X.

2 Related Work

The objective of our work is provide a secure framework for CV2X using ARM
TrustZone, a trusted execution environment (TEE) while analyzing the feasi-
bility of using LTE as the underlying cellular network. Considerable work on
using trusted execution can be found in literature. Similarly work on analysis
and evaluating LTE for CV2X has been pursued for sometime. However, since
our work looks at an intersection of both these research objectives, we discuss
some relevant literature with overlap of such technologies. The use of trusted
execution environment for real-time network use cases in internet of things has
been studied in [6]. The authors discuss and evaluate how TrustZone can be
used to meet IOT real-time requirements while ensuring security, specifically in
the case of connected industrial systems. [7] discusses enhancing mobile applica-
tion security using TEE with user services identity module (USIM) to provide
secure billing and payment services. Ali Raza discusses the use of TEE on COTS
devices used by public safety officers to secure mission critical services for public
safety over private and commercial LTE networks in the work [8]. To enhance
privacy and enable private conversations on mobile devices, Amit Ahlawat and
Wenliang Du propose and evaluate a TrustZone based secure voice over internet
protocol (VoIP) application in [9].

Given, the real-time demands of the CV2X applications, it is essential to
study latency, packet drop and throughput of the network extensively. Sheng

Secure CV2X Using COTS Smartphones over LTE Infrastructure 591

Liu et al. provide an empirical study of LTE-4G based CV2X performance in
[10]. The authors also study the performance of dedicated short range communi-
cation (DSRC), another vehicle-to-vehicle communication protocol and compare
the two frameworks. [11] evaluates and studies the use of 4G LTE network for
IoT applications with real-time latency demands less than 100ms. The paper
discusses the feasibility of using LTE for such applications with fixed packet
sized transmission. [12] discusses the latency radio access network bottle neck
issue in the LTE network for V2X applications and evaluate the performance
for latency critical use cases. [13] describes a study to measure the possibility
of automated driving using V2X connectivity with 4G-LTE. The authors use
certain assumption to restrict the physical proximity of the LTE subsytems and
evaluate a real-world vehicle setup suggesting that V2X applications are possible
with LTE under certain conditions.

While these prior works consider dedicated and trusted hardware, our app-
roach tries to utilize smartphones connected to vehicles in lieu of such hardware,
aiding in the acceleration of adopting and using CV2X. Additionally, our work
tries to analyze and compare various network topologies with our COTS based
CV2X device deployed on the same.

3 Preliminaries

This section provides an overview of the underlying technologies, ARM Trust-
zone, LTE Architectural Overview, and Open Portable Trusted Execution Envi-
ronment (OP-TEE). We also include details on external constraints. For brevity,
we only highlight the components relevant to this work, readers can refer to the
cited work for more details.

ARM Trustzone: ARM Trustzone [14] is a hardware extension on ARM Cor-
tex devices that provides a platform for creating and executing trusted execution
environments via software. The extension divides the processor execution into
secure and non-secure domains. The secure domain has access to the information
and peripherals of both domains. In contrast, the non-secure domain can only
access its data, code, and peripherals. Software or hardware modules within
the secure extension like secure memory controller (SMC) and secure periph-
eral controller (SPC) control the access permissions. In the case of Cortex-
A devices, ARM provides a default secure monitor called the ARM Trusted-
Firmware (ARM TF) that acts as an intermediary to securely switch between
the domains, preventing information leaks and unauthorized access. Whenever
the non-secure domain wants to process critical data or a secure interrupt gets
raised, the ARM TF discerns the call and routes it to the secure domain after
handling the relevant context switches. Similarly, the ARM TF also handles the
switching back to the non-secure domain.

592 S. Mahadevegowda et al.

Open Portable Trusted Execution Environment (OP-TEE): OP-
TEE [15] is an open-source implementation of TEE that follows the GlobalPlat-
form Trusted Execution Environment specifications [16]. It consists of a secure
kernel with a range of cryptographic libraries that accepts requests from the
non-secure domain via a secure monitor to perform cryptographic operations
and process critical data.

Long-Term Evolution (LTE): LTE [17] is the 4th generation of the universal
terrestrial radio access network (UTRAN). The main components of the LTE
infrastructure are the cellular devices or user devices(UE) like smartphones,
radio access network (RAN), Evolved UTRAN Node (eNB), and the Evolved
Packet Core (EPC). The UEs connect to the eNB at a given locality over RAN.
The eNB schedules and controls the access of the UE connections and resources.
Multiple eNBs connect to the EPC via dedicated interfaces specified by 3rd
Generation Partnership Project (3GPP). The EPC is primarily composed of four
components, (i) the Mobility Management Entity (MME), (ii) Home Subscriber
Server (HSS), (iii)Serving Gateway (SGW), and (iv) Packet Gateway (PGW).
MME and HSS are responsible for the user control signaling that authorizes and
collects billing data, handles authorization and identification of users. The latter
two components, SGW and PGW are the packets switching components that
connect the UEs across networks or the internet for calls/data.

Latency Requirements: Many CV2X applications such as driver assistance,
auotmated braking, etc. are safety critical in nature. Therefore, we have explicit
latency requirements for exchanging information. European Telecommunications
Standards Institute (ETSI) and U.S Department of Transportation (DOT) have
analyzed various traffic and vehicle scenarios and laid out latency demands corre-
sponding for the same [18]. These latency requirements are based on the scenario
for vehicular applications. For example, a 100 ms latency is required for periodic
vehicle-2-vehicle/pedestrian/infrastructure applications such as emergency elec-
tronic brake, stop sign assistance, lane change assistance, etc. Similarly, 1000 ms
latency is mandated for vehicle-2-infrastructure warnings, while pre-crash sens-
ing applications have a requirement of 20 ms. In order to cover majority of the
scenarios and establish a basic CV2X framework, we set our latency constraint
for 100 ms.

Basic Safety Messages (BSMs): BSM is a standardized messaging speci-
fication developed for V2X applications. Originally standardized as an ASN.1
encoded message in the SAE J2735 [19] specification, it carries information
related to vehicle position, speed, direction and other safety extension data.
In our work, we restrict the payload to carry only the position, speed and some
vehicle information primarily obtained using a GPS [20,21] module. However we
refer to this payload as BSM in the rest of the paper and it has an average size
of 67 bytes.

Secure CV2X Using COTS Smartphones over LTE Infrastructure 593

4 System and Threat Models

The smartphones/user equipment (UE) capabilities and architecture considered
for our CV2X framework, as well as attacker capabilities are discussed.

4.1 System Model

UE and Vehicles. The UE is an ARM Cortex-A device with TrustZone hard-
ware extension and secure timers. It houses an LTE modem and a GPS module
with typical cell phone peripherals. The TrustZone extension divides the process-
ing/OS (Fig. 2) into secure (red) and non-secure domains (green). The device also
has secure hardware extensions to control and configure access rights to periph-
erals and memory like the Secure Peripheral and Secure Memory Controllers.

Here, we perform the required cryptographic and secure processing using
trusted applications and return relevant data to the non-secure world.

Finally, we expect that the drivers and/or the passengers connect their smart-
phones with the vehicle via the OBD-II port. Please note that from here on, we
refer to smartphones and cellular devices as UEs. Vehicles tethered to the CV2X
network via the UEs are referred to as UE enabled vehicles.

Fig. 2. Architectural overview of the UE with secure CV2X application

LTE Network and Server. There has been considerable research on using
Device to Device (D2D) and dedicated side channel PC5 [22,23] for V2X com-
munication on the LTE network. However, D2D and PC5 solutions require addi-
tional hardware provisions, which are not guaranteed to be available on LTE
modules of smartphones. Therefore, to support majority of smartphones, we
instead deploy a CV2X server facilitating the connection of various UE-enabled
vehicles. The server after receiving BSMs from UEs, filters relevant BSMs based
on GPS proximity and positional data within the BSM. These filtered BSMs

594 S. Mahadevegowda et al.

are sent as response to relevant UEs. Given the latency constraint of the CV2X
safety-critical applications, we assume that the server is equipped with sufficient
processing capabilities and can communicate at the required bandwidths with
negligible overheads in data transmission.

For the LTE network, we consider the most common setup of the commer-
cially available 3GPP standardized architecture [17]. We do not delve into the
specifics of the LTE network itself, given its vast expanse of intricacies and tech-
nicality. Instead, we look at the LTE at the network level, which suffices for the
most part of our work. UEs attach to the eNB over RAN, and multiple eNBs
connect to the EPC. Though the eNBs are interconnected over the X2 interface
for handovers of moving UEs, we currently ignore this to simplify analysis. Data
packets for general applications or calls on the UE take the traditional user data
plane to connect to the internet or other UEs over the SPGW. Data/BSMs to
and from the secure CV2X application can either follow the traditional path or
modified paths depending on the position of the CV2X server within the LTE
network. The four potential locations for the CV2X server would be (i) on the
internet, (ii) at the end of the EPC, (iii) as a part of the EPC, and (iv) at the end
of eNB as an edge computing server. We analyze the above network topologies
in detail in Sects. 6 and 7, for ease of deployability and latency.

Fig. 3. Modified BSM data packet including security overhead

4.2 Threat Model

We consider an attacker that can access the smartphone remotely on the non-
secure domain to gain complete access and control of the UE connected to the
external world via internet or wireless interfaces. Since the attacker has complete
control of the non-secure kernel, they have complete access to the LTE modem
and the GPS module. Therefore, the attacker can read, modify and delete their
respective data. Thus, the attacker can either corrupt/replay data or launch
denial of service (DoS) attacks on the modem and GPS modules.

It is assumed that the attacker does not have physical access to the system.
Any attack that requires physical access is considered out-of-scope for this work.
Also, we assume that the integrity of the ARM Trustzone and OPTEE cannot
be compromised. We consider that the CV2X application is installed in a secure

Secure CV2X Using COTS Smartphones over LTE Infrastructure 595

environment and not manipulated before the installation, ensuring the integrity
of the secure domain application. In this work, we also assume that the attacker
is not capable of modifying user input by taking control of user interfaces such
as physical buttons/touchscreen. However, this is a minor limitation and can be
addressed as discussed in Sect. 5.4

5 Secure CV2X Framework

We now discuss the architecture, functionality and application flow of our Secure
CV2X framework on COTS UE. Our approach considers both regular and
attacker controlled (see threat model in Sect. 4.2) scenarios.

5.1 Secure CV2X Architecture

Our approach deploys a CV2X framework using UEs tethered to the vehicle over
the OBD-II port. Commands or data for the vehicle are transmitted based on
the exchanged location, speed, and direction information with nearby vehicles
and infrastructure.

Recall from Sect. 3 that such information exchange requires very low latency.
Inability to meet these demands, for example, not exchanging BSMs in a
timely manner with nearby vehicles when performing maneuvers such as lane
changes, may threaten passenger safety. Additionally, attackers may manipulate
data and inject delays to enforce hazardous operating conditions. Therefore, to

Fig. 4. Secure CV2X framework application flow

596 S. Mahadevegowda et al.

enable secure and low overhead BSM exchange, our CV2X application (Fig. 2)
is deployed within the secure domain of the vehicle owner’s TrustZone equipped
UE. Our framework consists of a trusted application (CV2X TA) that sets up the
CV2X state machine for periodically exchanging BSMs with other vehicles. The
secure OS, OP-TEE, is modified to support the CV2X TA. The changes include
the ability to encode and decode the ASN.1 BSM specification, support cryp-
tography operations for encryption and hashing, modifying the SPC to control
access to peripherals, drivers to utilize the LTE and GPS modems, and secure
timer interrupt configuration to periodically trigger BSM exchanges.

Before we delve into how the CV2X TA operates, we first discuss the modi-
fications required to the BSM data packet.

5.2 Modified BSM Data Packet

Figure 3 shows a modified BSM data packet with security overhead. Important
additions include the following fields: a) “Message Type” to identify type based
on the SAE J2735 specification [19], b) “Key ID” to allow us to identify rotated
keys (to prevent brute-force key extraction) for HMAC [24] computation, c)
“IMEI” that allows the CV2X server to identify individual UEs communicating
with it without needing to perform an expensive lookup via the Home Subscriber
System (HSS), d) “Payload Length” to support BSM packet compression by
dropping unused bytes, and e) nonce that consists of a truncated timestamp and
ascon-hash-a [25] based HMAC generated from the payload to validate integrity
of data.

5.3 CV2X TA Operation

As seen in Fig. 4, the user starts the CV2X application from the non-secure
OS, after they connect the UE to the vehicle. The non-secure CV2X applica-
tion invokes a Secure Monitor Call (SMC) via the OP-TEE kernel driver which
instructs the secure monitor, ARM TF, to invoke the CV2X TA. This sets up
the CV2X state machine, initializes the interfaces to connect with the vehicle to
perform secure communication, sets up the secure timer, and changes the inter-
nal state machine to the “RUN” state. No further user interaction is required.
The secure timer is configured to be triggered periodically based on the latency
requirements discussed in Sect. 3. Note only code in the secure domain can mod-
ify the secure timer.

The secure timer interrupt invokes the CV2X state machine which performs
the following actions. It fetches positional information from the GPS/GNSS
module, and the direction and status of the vehicle via the tethered interface. The
information is ASN.1 encoded similar to the original SAE J2375 [19] specification
for BSMs. The keys for HMAC generation are stored in the secure domain during

Secure CV2X Using COTS Smartphones over LTE Infrastructure 597

the installation of the CV2X application. The CV2X TA utilizes the current
timestamp as a nonce, rotates through the store to select a key to generate an
HMAC based on BSM payload, which are then combined to create our final
packet (Sect. 5.2). This packet is sent to the CV2X server. The server responds
with data containing BSM packets of nearby vehicles. The response HMAC is
verified before the payload is utilized for making vehicle maneuvering decisions.
The state machine can be shut down by the user from the non-secure OS at the
end of the commute.

5.4 Security Analysis Under Attack Conditions

Based on our threat model in Sect. 4.2, since the attacker may control the non-
secure domain, the attacker could gain control over two components of our frame-
work: LTE (and GPS) modem, and user input. We shall now look at how the
system may operate when each of these components is compromised.

Compromised LTE+GPS Modem. The attacker may assume complete con-
trol over the shared LTE modem. The attacker then could modify, store and
replay or deny the use of the LTE modem to the secure domain. Considering
Fig. 4 and the elements of the data packet, we can detect an attack or discrepancy
in the CV2X operation as follows:

– If the attacker manipulates the received data, the HMAC verification of the
received data would fail. Here, we consider that the server is not compromised
and use HMAC to validate any manipulations by an attacker at the device
or the LTE network.

– If the attacker reads and saves a server response on the modem, then replays
this message to the device to thwart the CV2X operation. The nonce in the
data can be checked to validate the BSM payload freshness.

– If the attacker performs a denial of service attack on the modem by bombard-
ing the modem with requests, or deletes data before it is read by the secure
side. An internal alive counter is implemented to check for timeliness.

In all the cases, the secure application assumes that the smartphone is com-
promised and invokes the secure peripheral controller (SPC) function to modify
the SPC to explicitly assign access rights of the modem and GPS to the secure
domain. Once the access permissions are changed, the non-secure domain or the
attacker in the non-secure domain cannot access the modem or data lines con-
nected to the modem or GPS. The CV2X application would now continue in the
secure safety mode and follows the flow as described in Sect. 5.3. Though the
mitigation action is strict, it is necessary to ensure passenger safety. Similarly,
attacker intent to disrupt any power to the UE or modem can be thwarted by
taking over the power module of the device on the secure domain during the
execution of the CV2X application.

598 S. Mahadevegowda et al.

Compromised User Input. The capability to start and stop the application
is provided to the user. All other functionality of the CV2X application, such as
generating BSM, computing HMAC and transmission are done automatically in
the secure domain and are outside attacker control based on our threat model.
By controlling user input, the attacker may have the capability to stop the CV2X
application by overriding the user interface on the non-secure side. This can be
countered by reassigning a General-Purpose I/O physical button (such as the
volume rocker button), which becomes the sole mechanism to signal the CV2X
application to stop. This ensures that if every other user input mechanism is
compromised, the attacker cannot remotely shut-off the CV2X application while
the vehicle is in motion.

6 Network Configuration and Topologies

As mentioned in the system model, we consider four network topologies based
on the possible placement of the CV2X server within the LTE network as shown
in the Fig. 8. In this section, we discuss each configuration in detail.

CV2X Server on the Internet. As shown in Fig. 5a, the CV2X server can be
placed on the internet. However to support the real-time latency demands of the
vehicular applications, the CV2X server (i) must be located at a geographical
location closer to the UE to minimize round-trip latency, and (ii) must be on a
high bandwidth network where its traffic is prioritized for real-time applications.
Deploying the CV2X server on the internet does not require any additional
modifications or constraints from the LTE infrastructure in terms of additional
hardware or standards, other than the automatic selection and broadcast of the
IP address of the nearest CV2X server.

Further, placing the CV2X server on the internet provides straightforward
inter-connectivity between different network providers where various operators
can use existing packet data networks (PDNs) to reach the same CV2X server in
a given locality. This mechanism makes the CV2X server agnostic to the origin
and destination of the data, but needs to still maintain the latency requirements
of the applications even with tight bounds on geographical distance and high
bandwidth networks. The round trip latency in this case, is the sum of the latency
from (i) the EPC to the server over the internet, (ii) radio access network, and
(iii) the S1 interface connecting eNB and EPC.

Secure CV2X Using COTS Smartphones over LTE Infrastructure 599

MME HSS

SGW PGW

UUE IN CAR

eNB

LTE EPC
INTERNET

CV2X SERVER

CV2X SERVER ON THE INTERNET CONNECTED OVER THE LTE NW

S1
SGi

RAN

(a)

MME HSS

SGW PGW

UE IN CAR

eNB

LTE EPC
INTERNET

CV2X SERVER

CV2X SERVER AT THE END OF EPC

S1

SGi

RAN

(b)

MME HSS

SGW PGW

UE IN CAR

eNB

LTE EPC
INTERNET

CV2X SERVER

CV2X SERVER INTEGRATED AT EPC

S1
SGi

RAN

(c)

MME HSS

SGW PGW

UE IN CAR

eNB

LTE EPC
INTERNET

CV2X SERVER AS EDGE SERVER AT ENB

S1
SGi

S1

CV2X SERVER

RAN

(d)

Fig. 5. Network topologies based on the position of the CV2X server in the LTE
infrastructure

CV2X Server at the End of the EPC. As in Fig. 5b, the CV2X server is
closer to the core LTE infrastructure when placed at the end of the EPC. This
approach uses a dedicated subsystem at the end of the EPC core connected
to the SPGW for CV2X, similar to IP multimedia systems (IMS) [26], which
provide voice over internet protocol(VoIP), conference calls, etc. This placement
strategy effectively eliminates the delays and network demands of public internet
PDNs. The network round-trip delay is now reduced to latency in (i) radio access
network, and (ii) the S1 interface connecting eNB and the EPC. Further, simi-
lar to IMS infrastructure, multiple network providers can exchange information
across dedicated CV2X servers at the end of individual EPC centers.

CV2X Server as Part of EPC. As shown in Fig. 5c, the CV2X server can also
be placed as a subsystem within the EPC core network connected to the mobil-
ity management entity (MME). However, such integration would require mod-
ifications to the standard interfaces within the LTE infrastructure. Moreover,
exchanging BSMs and data across different network providers in this scenario
would either require the development of novel standards for EPC subsystems
or require implementing wrapper interfaces and modules to synchronize CV2X
servers within EPCs across networks which could add computation and latency
overheads. Due to the impracticality of placing the CV2X server as a part of the
EPC, such a strategy is not included for further analysis.

CV2X Server at End of the eNB. By placing the CV2X server at the end
of the eNB, we envision a mobile edge computing (MEC) platform [27,28] for
the LTE infrastructure, as shown in Fig. 5d. A middlebox implementation [27] of
an MEC server was recently proposed to reduce data processing latency without
significant changes to the standard LTE network. This MEC server also acts

600 S. Mahadevegowda et al.

Fig. 6. Processing overheads and network latency in Secure CV2X framework

as a filter for processing local packets at the edge while forwarding other data
packets to the SPGW. We modify this MEC server approach to integrate our
CV2X server application, which could require having a CV2X server at every
eNB. Alternatively, a server with increased computation capabilities at one eNB
could be shared with other eNBs via the X2 interface.

7 Evaluation and Analysis

We discuss the proof of concept CV2X application built on open source UE
and evaluate the considered network topologies. We describe the hardware,
latency measurements, and simulations to understand the real-world scalability.
Source code and relevant documentation can be found at https://github.com/
spandan-m/secure cv2x.

7.1 Hardware Setup

We use the ARM Cortex-A based Pinephone [29] as the UE to set up our proof of
concept. The device houses a 64-bit quad-core Cortex A53 chipset at 1.152 GHz
with 3 GB of LPDDR3 RAM. The device runs Arch ARM linux with kernel v5.8
as the rich OS (Non-secure domain) and OP-TEE OS v3.14.0-rc1 as the secure
OS (Secure domain). The user application runs on the rich OS and allows the
user to request the ARM Trusted Firmware to load the CV2X TA on OP-TEE.

CV2X TA: We implement most of the features of the CV2X TA as described
in Sect. 5.1. However, since our aim is to measure latency, we omit some features
such as:

– Since previous work [30,31] have already shown the effectiveness of the coun-
termeasures, our goal here is to ensure that latency constraints are still met

https://github.com/spandan-m/secure_cv2x
https://github.com/spandan-m/secure_cv2x

Secure CV2X Using COTS Smartphones over LTE Infrastructure 601

when the countermeasures are used. We assume that there is no attacker dur-
ing our testing, so threat mitigation mechanisms, such as controlling modem
access using SPC, are skipped. However, all packet processing code are con-
sidered in order to report overheads accurately.

– For testing latencies with respect to different number of BSM response pack-
ets, our CV2X server implementation sends the required number of responses
containing random data. We do not implement a realistic CV2X server for
simulating network overhead. Our tests incur negligible server overheads in
generating random but valid HMAC verifiable data.

– We gather the latency for GPS separately as it is unfeasible to establish
assisted GPS within our lab setup.

Table 1. UE processing and communication overhead measurements

Action No. BSMs
sent as
response

from server

Mean [ms] 95% CI [ms]

UE SEND GPS Module data request
and fetch

– 1.2652 1.25874–1.27172

Building data packet + HMAC – 0.0100 0.01002–0.01005

Sending data packet to modem
+ ACK from Modem

– 1.8080 1.80800–1.80801

UE RECV Receive data from Modem 1 BSM 4.8460 4.84371–4.84845

5 BSM 6.3721 6.36952–6.37471

10 BSM 8.3028 8.30093–8.30472

Extract BSMs and Verify HMAC 1 BSM 0.0098 0.00984–0.00992

5 BSM 0.0080 0.00800–0.00801

10 BSM 0.0080 0.0080–0.0080

TOTAL OVERHEAD ON UE
(SEND+RECV)

1BSM 7.9388ms

5BSM 9.4459ms

10BSM 11.3938ms

Network Setup for Server on the Internet: As detailed in Sect. 6. We
require a geographically close server with high processing and bandwidth capa-
bilities. So, we use a server on amazon web services located about 27 miles from
the test zone. We test the latency across an urban, suburban and highway terrain
with vehicle speeds varying between 20–60 miles/hr.

Network Setup for Server at the End of EPC: In this topology, we estab-
lished a private LTE network with the Open Air Interface (OAI) LTE eNB and
EPC stacks on two computers. The eNB and EPC were hosted on Ubuntu 18.04
LTS on an Intel Core i5-6500 quad-core CPU running at 3.2 GHz with 8 GiB
and 16 GiB of RAM, respectively. For the radio interface, we use USRP B210
and test the setup for 100 resource blocks of bandwidth.

602 S. Mahadevegowda et al.

Network Setup for the Server at the End of eNB: The network setup is
similar to the network setup used in the case of the server at the end of EPC.
Additionally, we use another computer for the MEC in between the eNB and
EPC running the OAI stacks. The MEC setup runs Ubuntu 20.04 LTS on an
Intel i7-10750H quad-core CPU at 2.6 GHz with 32 GiB of RAM.

7.2 Latency Evaluation and Analysis - Hardware POC

To understand the overheads and network latency of the proposed approach, it
is better to split the same as shown in Fig. 6. We can split the overhead into two
components: One from the processing of data on the UE and communication
to/from the modem, and the second is the network round trip delay of the LTE
infrastructure. Expanding further, during the sending phase, we have overhead
to request the GPS/GNSS modem for GPS data. Then we have the processing
delay in building a BSM packet, computing, and appending HMAC. Finally, we
send the combined packet to the modem via UART at 3Mbit/s baud and wait
for the modem to provide an acknowledgment. The overheads during the receive
phase are the same, except that they occur in the inverse order of operation and
do not include GPS query. The network round trip delay varies depending on
the network topology discussed in earlier sections.

Table 2. Roundtrip latency for considered network topologies. We provide the mean
and 95% CI for values collected for 5000 Send-Receive Cycles * Ideal Case: eNB-EPC
negligible channel delay

No. BSMs
sent as
response

Latency

for server on
Internet [ms]

Latency

for server at the
end of EPC* [ms]

Latency

for server at
eNB [ms]

1 61.410
[60.391–62.429]

29.139
[29.039–29.238]

28.576
[28.369–28.783]

5 77.039
[75.514–78.564]

26.974
[26.773–27.175]

27.900
[27.783–28.018]

10 84.415
[81.922–86.908]

40.085
[40.577–41.132]

37.015
[37.015–37.576]

We present the results in Tables 1 and 2 It is clearly evident that the
COTS UE incurs minimal overhead for processing and exchanging data with
the modem. We have a total overhead of 7.9388 ms when a single BSM/UE is
sent as response from the server for every BSM. The average increases to 11.3938
ms for 10 BSM/UE as response from the server to every BSM. Therefore, even
for 10 BSMs, the overall overhead is about 10% of a single core utilization on
a low end open-source UE processor running at 1.152 GHz. We can expect even
lesser overhead for processing on devices with proprietary hardware running at
higher clock speeds. Additionally, the latency of communicating with the LTE

Secure CV2X Using COTS Smartphones over LTE Infrastructure 603

modem can be further reduced by increasing the baud rate or choosing a parallel
communication protocol if the hardware permits.

The network round-trip times (RTT) vary depending on the network topol-
ogy. In the first scenario with the server on the internet, we see an average
round trip delay of 61–84 ms depending on the number of BSMs that are sent in
response to the UEs. These latency values could enable CV2X applications with
latency constraints of 100ms but not guarantee the same. In the case of server
at end of EPC and end of eNB, we obtain even lower RTT since the server is
much closer to the UEs. However, note that for the topologies of the server at
the end of EPC and end of eNB, the network RTT represents a lower bound (as
both the cases use a private LTE setup). Also, in the real world, the EPC would
not be as close to the eNB, and a single EPC services numerous eNBs. Thus,
latency values would be higher than the values obtained above; however, placing
servers with consideration for geographical proximity could provide satisfactory
latency [13]. Additionally, the setup for the server at eNB with USRP antenna
inconsistencies has very few UEs to measure any effects of Radio access resource
contention and collisions. The measurements above hold if enough bandwidth is
provided to the CV2X UEs. Therefore, in the worst-case scenario, when there
are 100s of UEs trying to compete for resources from a single eNB, the latency
exponentially increases, though mitigation may be possible [32]. Therefore, in the
next Section, we try to evaluate and empirically determine the number of UEs
that can meet CV2X latency constraints for a single eNB considering available
bandwidth.

Fig. 7. Average latency and packet loss for 100 RBs (in increasing number of UEs
starting from 2 and then in multiples of 5)

604 S. Mahadevegowda et al.

7.3 Simulation Evaluation

As discussed earlier, the primary bottleneck occurs in the radio access network
of the LTE. Considering the most feasible topology for our use case(CV2X server
as MEC at eNB), we modify the ns3 simulator(v3.26) [33] with MEC support
[34] for our CV2X application. We wish to determine the possible number of
UEs that a single eNB can service to measure the feasibility of our approach.
For simplicity, we currently do not consider external traffic other than the CV2X
application. We consider such robust realistic situations for the future.

Simulation Model and Configuration. For a given value of resource blocks,
we consider an increasing number of UEs(n) from 2 to 65. Starting from an ideal
1 response BSM per UE to the worst(each UE sending a BSM to each other),
we have response BSMs/UE(rn) varying from 1 to n − 1 for each n. Using the
standard LTE configurations, we use the resource block values 25, 50, 100 for 5,
10 and 20 MHz(bandwidths of individual LTE bands) respectively. The smaller
resource block values could be looked at as dedicated resource allocations within
the larger 100RB scenario to understand the behavior if some bandwidth is
explicitly reserved for CV2X. We modify the native UDP echo server of ns3
to mimic our CV2X application for measuring latency with varying BSMs/UE.
The UDP echo client on UEs send a BSM every 100 ms, to which the UDP
echo server responds with varying number of BSMs/UE. Additionally, to add
a mobility scenario, we move the UE’s randomly around a central eNB at 20
m/s using the ns3’s 2D random direction mobility model. The eNB is configured
to use an isometric 2× 2 multiple-input multiple-output (MIMO) antenna. We
utilize default ns3 configurations for the rest of the network parameters. Since,
we are more concerned about the latency at the application level, we do not
consider lower level protocol layers, but use the ns3’s Flow monitor module to
get the higher level network layer latency and packet loss.

Simulation Analysis. Even though the periodicity requirement of the applica-
tion is 100 ms, we set a safe cutoff threshold of 60 ms for our analysis. Recall that
our UE proof-of-concept does not consider any latency/overhead for actions from
the vehicle. Also, we only measure the hardware overhead for response upto 10
BSMs/UE. The communication overhead of data between the UE processor and
the modem would considerably increase with size of the response from server.
Therefore, we consider a safe latency threshold of 60ms to determine the feasi-
ble number of UEs the eNB can support. As seen from the Fig. 7, for 100 RBs,
a 2× 2 MIMO antenna setup on the eNB can service up to 45–50 UEs under
our latency threshold. We also only see packet loss when the number of UEs
are above 50. In the case of 25 RBs and 50 RBs, we do see a local maxima for
reduction in latency, but the latency overshoots our latency threshold bar for
other arbitrary values of BSMs per UE. Therefore, from Fig. 8a and Fig. 8b, a
safe value of number of UE that can be supported are 35 and 45 for 25 RBs and
50 RBs respectively.

Secure CV2X Using COTS Smartphones over LTE Infrastructure 605

Fig. 8. Average latency and packet loss for (a) 25 RBs (b) 50 RBs (in increasing number
of UEs starting from 2 and then in multiples of 5)

Given, that the commercial networks utilize more robust software and hard-
ware like 4× 4 MIMO antennas, proprietary scheduling algorithms and dedicated
resources, the number of feasible UEs that could be supported would be slightly
higher than the presented values.

8 Future Work

As mentioned, though we try to analyze the various topologies and COTS smart-
phone capabilities, there is still scope of further investigation. Considering the
network, we assume no external traffic or influences for the simulation. Addi-
tionally, the hardware evaluation with a single UE does not provide a holistic
discussion of the approach. So, we intend to further investigate the possibil-
ity of using LTE via enhanced simulations and a larger scale hardware test
bed. Subsequently, our secure CV2X application on the UE is abstracted from
the underlying cellular modem. So, we would like to explore the possibility of
analysing our approach on the 5G or device-to-device (D2D) frameworks. A more
interesting tangent we wish to also explore is to setup the above approach to
connect with an actual vehicle over the OBD-II port, enabling us to analyze and
investigate our approach for vehicle compatibility and driving applications. This
would enable the end-to-end discussion of our whole idea.

9 Conclusion

In this paper we investigated a secure framework to enable CV2X using commer-
cial of-the-shelf smartphones by leveraging device hardware security extensions.
In particular, we look at using the smartphones as CV2X radios without degrad-
ing their performance for regular operation. Further, we explored possible threats
to using such a framework on smartphones and provide mitigation approaches
to thwart the same. Additionally, we also consider the whole LTE network in our
framework and investigate the possible solutions of using a dedicated server to
act as an intermediary between the UEs. Simulation results, backed by hardware
measurements indicate that CV2X can be securely implemented using COTS
smartphones.

606 S. Mahadevegowda et al.

References

1. Shavit, M., Gryc, A., Miucic, R.: Firmware update over the air (FOTA) for auto-
motive industry. (SAE Technical Paper) (2007)

2. Nie, S., Liu, L., Du, Y.: Free-fall: hacking tesla from wireless to can bus. Briefing,
Black Hat USA 25, 1–16 (2017)

3. Nie, S., Liu, L., Du, Y., Zhang, W.: Over-the-air: How we remotely compromised
the gateway, BCM, and autopilot ECUs of Tesla cars. Briefing, Black Hat USA
(2018)

4. Arm, L.: ARM Security Technology-Building a Secure System using TrustZone
Technology. (PRD-GENC-C. ARM Ltd., Apr. (cit. on p.) (2009)

5. McCord, K.: Automotive Diagnostic Systems: Understanding OBD I and OBD II.
(CarTech Inc.) (2011)

6. Pinto, S., Gomes, T., Pereira, J., Cabral, J., Tavares, A.: IIoTEED: an enhanced,
trusted execution environment for industrial IoT edge devices. IEEE Internet Com-
put. 21, 40–47 (2017)

7. Ahmad, Z., Francis, L., Ahmed, T., Lobodzinski, C., Audsin, D., Jiang, P.: Enhanc-
ing the security of mobile applications by using TEE and (U) SIM. In: 2013 IEEE
10th International Conference on Ubiquitous Intelligence and Computing and 2013
IEEE 10th International Conference on Autonomic And Trusted Computing, pp.
575–582 (2013)

8. Wang, Y., Gao, W., Hei, X., Mungwarama, I., Ren, J.: Independent credible: secure
communication architecture of android devices based on TrustZone. In: 2020 Inter-
national Conferences on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Com-
puting (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on
Cybermatics (Cybermatics), pp. 85–92 (2020)

9. Ahlawat, A., Du, W.: TruzCall: secure VoIP calling on android using ARM Trust-
Zone. In: 2020 Sixth International Conference on Mobile and Secure Services
(MobiSecServ), pp. 1–12 (2020)

10. Liu, S., Xiang, W., Punithan, M.: An empirical study on performance of DSRC and
LTE-4G for vehicular communications. In: 2018 IEEE 88th Vehicular Technology
Conference (VTC-Fall), pp. 1–5 (2018)

11. Hassebo, A., Obaidat, M., Ali, M.: Commercial 4G LTE cellular networks for sup-
porting emerging IoT applications. In: 2018 Advances in Science and Engineering
Technology International Conferences (ASET), pp. 1–6 (2018)

12. Amjad, Z., Sikora, A., Hilt, B., Lauffenburger, J.: Low latency V2X applications
and network requirements: performance evaluation. In: 2018 IEEE Intelligent Vehi-
cles Symposium (IV), pp. 220–225 (2018)

13. Pyykönen, P., Lumiaho, A., Kutila, M., Scholliers, J., Kakes, G.: V2X-supported
automated driving in modern 4G networks. In: 2020 IEEE 16th International Con-
ference on Intelligent Computer Communication and Processing (ICCP), pp. 271–
275 (2020)

14. ARM Arm Security Technology Building a Secure System using TrustZone
Technology. ARMDeveloper. https://developer.arm.com/documentation/PRD29-
GENC-009492/c?lang=en

15. Linaro Open Portable Trusted Execution Environment. OPTEE Documentation.
https://optee.readthedocs.io/en/latest/index.html

16. GlobalPlatorm Introduction to trusted execution environments (2018). https://
globalplatform.org/resource-publication/introduction-to-trusted-execution-
environments/. Accessed 30 Mar 2022

https://developer.arm.com/documentation/PRD29-GENC-009492/c?lang=en
https://developer.arm.com/documentation/PRD29-GENC-009492/c?lang=en
https://optee.readthedocs.io/en/latest/index.html
https://globalplatform.org/resource-publication/introduction-to-trusted-execution-environments/
https://globalplatform.org/resource-publication/introduction-to-trusted-execution-environments/
https://globalplatform.org/resource-publication/introduction-to-trusted-execution-environments/

Secure CV2X Using COTS Smartphones over LTE Infrastructure 607

17. Paradisi, A., Yacoub, M.D., Figueiredo, F.L., Tronco, T.R. (eds.): Long Term Evo-
lution. TIT, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23823-4

18. European Telecommunications Standards Institute. Service requirements for V2X
services ETSI TS 122 185 V14.3.0. (2017)

19. Society of Automotive Engineers. V2X Communications Message Set Dictionary
J2735 202007 (2020)

20. Bajaj, R., Ranaweera, S., Agrawal, D.: GPS: location-tracking technology. Com-
puter 35, 92–94 (2002)

21. Van Diggelen, F.: A-gps: Assisted gps, gnss, and sbas. Artech house (2009)
22. Nardini, G., Virdis, A., Campolo, C., Molinaro, A., Stea, G.: Cellular-V2X com-

munications for platooning: design and evaluation. Sensors 18, 1527 (2018)
23. Miao, L., Virtusio, J., Hua, K.: Pc5-based cellular-v2x evolution and deployment.

Sensors 21, 843 (2021)
24. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: keyed-hashing for message authen-

tication. (RFc 2104) (1997)
25. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: lightweight

authenticated encryption and hashing. J. Cryptol. 34, 1–42 (2021)
26. Camarillo, G., Garcia-Martin, M.: The 3G IP Multimedia Subsystem (IMS): Merg-

ing the Internet and the Cellular Worlds. John Wiley & Sons, Hoboken (2007)
27. Li, C., et al.: Mobile edge computing platform deployment in 4G LTE networks:

a middlebox approach. In: USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 2018) (2018)

28. Giust, F., et al.: MEC deployments in 4G and evolution towards 5G. ETSI White
Paper 24, 1–24 (2018)

29. Pine64 Pinephone. https://www.pine64.org/pinephone/
30. Oehler, M., Glenn, R.: HMAC-MD5 IP authentication with replay prevention

(1997)
31. Lentz, M., Sen, R., Druschel, P., Bhattacharjee, B.: Secloak: arm trustzone-based

mobile peripheral control. In: Proceedings of the 16th Annual International Con-
ference on Mobile Systems, Applications, and Services, pp. 1–13 (2018)

32. Amjad, Z., Sikora, A., Lauffenburger, J., Hilt, B.: Latency reduction in narrowband
4G lte networks. In: 2018 15th International Symposium on Wireless Communica-
tion Systems (ISWCS), pp. 1–5 (2018)

33. Riley, G., Henderson, T.: The ns-3 network simulator. In: Modeling and Tools for
Network Simulation, pp. 15–34 (2010)

34. Nin, J.: NS3-MEC: MEC model for NS-3. GitHub. https://github.com/mmajanen/
ns3-MEC

https://doi.org/10.1007/978-3-319-23823-4
https://www.pine64.org/pinephone/
https://github.com/mmajanen/ns3-MEC
https://github.com/mmajanen/ns3-MEC

Network Security

DQR: A Double Q Learning Multi Agent
Routing Protocol for Wireless Medical

Sensor Network

Muhammad Shadi Hajar1(B) , Harsha Kalutarage1 ,
and M. Omar Al-Kadri2

1 Robert Gordon University, Aberdeen AB10 7GJ, UK
{m.hajar,h.kalutarage}@rgu.ac.uk

2 Birmingham City University, Birmingham B4 7XG, UK
omar.alkadri@bcu.ac.uk

Abstract. Wireless Medical Sensor Network (WMSN) offers innovative
solutions in the healthcare domain. It alleviates the patients’ every-
day life difficulties and supports the already overloaded medical staff
with continuous monitoring tools. However, widespread adoption of these
advancements is still restrained by security concerns and limitations of
existing routing protocols. Routing is challenging in WMSN owing to the
fact that some critical requirements, such as reliable delivery, have been
neglected. To address these challenges, this paper proposes DQR, a dou-
ble Q-learning routing protocol to meet WMSN requirements and over-
come the positive bias estimation problem of the Q-learning based rout-
ing protocols. DQR uses a novel Reinforcement Learning (RL) model to
reduce computational and communication overheads. It is combined with
an effective trust management system to ensure a reliable data transfer
and defeat packet dropping attacks. The experimental results demon-
strate robust performance under various attacks with minimal resource
footprint and efficient energy consumption.

Keywords: Double Q-learning · Routing · Reinforcement Learning ·
Trust management · Blackhole attack · Selective forwarding attack ·
Sinkhole attack

1 Introduction

Wireless Medical Sensor Network (WMSN) has become a critical element in the
healthcare systems to monitor the physiological signs of the human body. This
revolutionized technology provides medical staff with continuous real-time mon-
itoring data without disturbing the patients. However, the widespread uptake of
WMSN applications is still suppressed by security concerns. Ensuring a secure
and reliable data transfer between the sensing units and the sink is still challeng-
ing despite the abundant routing protocols proposed for Wireless Sensor Net-
work (WSN) [1,2]. Although WMSN is regarded as a branch of WSN, routing
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 611–629, 2023.

https://doi.org/10.1007/978-3-031-25538-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_32&domain=pdf
http://orcid.org/0000-0002-5455-6931
http://orcid.org/0000-0001-6430-9558
http://orcid.org/0000-0002-1146-1860
https://doi.org/10.1007/978-3-031-25538-0_32

612 M. S. Hajar et al.

protocols and security countermeasures proposed for WSN do not necessarily
fit WMSN due to its resource limitations, critical applications, and operating
conditions.

Reinforcement Learning (RL) has been used recently to solve distributed
optimization problems, such as routing [3]. RL-based routing protocols rely on
an existence of a learning agent that acts with the environment and receives
rewards based on its actions. By interacting with the network environment, the
learning agents will be able to maximize their reward by making optimal forward-
ing decisions. Q-learning, which is a model-free RL algorithm, is the most used
algorithm for both centralized and decentralized routing protocols [4]. Although
this approach is able to produce an efficient routing protocol that can outperform
other algorithms, it still has drawbacks. First, as it works without prior knowl-
edge about the environment, it requires a series of randomly chosen actions to
explore the environment before converging on the optimal solution. WMSN can-
not tolerate a long learning period because of its sensitive applications. Second,
Q-learning has an inborn overestimation problem which has been overlooked for
a long time [5]. It uses the maximum value as an estimation for the maximum
expected value. The routing performance may be impacted negatively due to this
positive bias. Third, although different parameters have been considered in pro-
tocol design, ensuring reliable data transfer is still challenging as senders cannot
predict the behaviour of other nodes in the path to the destination. Moreover,
taking into consideration more parameters may optimize the routing decisions,
but it involves a significant overhead increase, especially when information must
be exchanged between learning agents. Therefore, a suitable solution is needed
to overcome these aforementioned shortcomings.

The main contribution of this paper is threefold. First, the unique require-
ments for an efficient, lightweight and reliable routing protocol for WMSN are
specified. Second, a double Q-learning trust-aware routing protocol for WMSN
has been proposed. Third, extensive analysis has been carried out to ensure the
robustness of our proposed protocol under different scenarios.

The rest of this article is organized into six sections as follows. Related work is
given in Sect. 2. Section 3 overviews WMSN. DQR routing protocol is described
in Sect. 4, followed by evaluation and performance results in Sect. 5. Finally,
Sect. 6 concludes this article.

2 Related Work

Developing a secure, reliable and efficient routing protocol for WSN is still an
open area of research, and it is more challenging in WMSN due to its resource
scarcity and critical applications. Abundant research has been carried out to pro-
pose an efficient routing protocol using different metrics and methods. Recently,
reinforcement learning has been widely used to find the optimal routing path
with minimal overhead. Q-learning, which uses temporal difference (TD) to esti-
mate the value of an action in a given state, is extensively used to build an
efficient routing policy. However, Q-leaning suffers from an overestimation prob-
lem, which overlooks the optimal action in some cases [5]. Therefore, double

DQR 613

Q-learning, which is an off-policy RL algorithm, is introduced to solve the over-
estimation problem by using double estimators to approximate the maximum
expected value. To the best of our knowledge, only a few works used double
Q-learning to develop a routing protocol. Authors in [6] proposed DQLR, a dou-
ble Q-learning routing protocol for Delay Tolerant Networks (DTN). However,
DQLR only used the number of hops between the source and the destination as
a metric. It achieved an acceptable delivery ratio under normal operation. How-
ever, considering the hop count as the only metric is insufficient to deal with
complicated scenarios.

On the other hand, researchers use various metrics to build the Q-learning
reward function in order to achieve an efficient routing protocol, such as delivery
delay, the number of hops, remaining energy and location information [3,7–9].
Although this kind of metrics could produce an efficient forwarding method,
it cannot deal with malicious activities launched by insiders. Therefore, the
routing protocol needs a different source of information to make an informed
routing decision, such as Trust Management System (TMS). According to our
literature review, only two routing protocols proposed integrating a TMS with
Q-learning. Authors in [10] proposed a resource and security efficient routing
protocol combined with a trust mechanism for WSN. However, this protocol is
not reproducible due to missing some details. In [11], the authors integrate the
beta distribution based trust scheme with the Q-learning algorithm to achieve
a reliable routing protocol for WMSN. However, positioning information is to
be periodically provided in order to choose the optimal path, which could not
be practical for WMSN. Moreover, it needs further investigation under different
packet dropping attacks.

3 Wireless Medical Sensor Network

With the rapid advancement of the low power and intelligent biomedical SNs,
WMSN emerged as a special kind of WSN for healthcare applications. It consists
of a set of tiny SNs that are distributed inside or offside the body to monitor the
body’s biosignals. This revolutionized technology empowers physicians to timely
monitor their patients and intervene when necessary.

3.1 Network Model

This study assumes a WMSN of a ward in a field hospital as shown in Fig. 1.
Due to the ongoing COVID-19 pandemic, field hospitals have become prevalent,
especially in developing countries. The ward dimensions are 10 m × 50 m, where
a number of hospital beds are distributed efficiently to provide the necessary care
and save physical space. A network of 64 SNs was used to simulate the WMSN
conforming to IEEE 802.15.6 [12]. The SNs have been distributed randomly
across the hospital ward. The topology is star, with one SN acting as a sink. All
sensed data is transmitted to the sink, which in turn forwards it to the medical
server. The communication range is 5m. Thus, nodes need to cooperate and relay
packets for other adjacent nodes.

614 M. S. Hajar et al.

3.2 Threat Model

The critical applications of WMSN necessitate a reliable routing protocol as
dropped packets may carry sensitive information. Dropping attacks, such as
blackhole and selective forwarding attacks, may not just disrupt the network
operation but endanger the patient’s life. This kind of attack is difficult to deal
with as malicious nodes are usually legitimate nodes that pass cryptographic
security countermeasures, such as authentication. Dropping attacks have vari-
ous patterns and may happen for different reasons. An SN could get compro-
mised and stop relaying packets for other nodes intentionally. Even benign nodes
could act selfishly to save resources or could get overloaded by an inefficient
routing protocol. Therefore, a reliable, efficient, lightweight routing protocol for
WMSN that ensures secure data delivery between the sensing units and the sink
is required. DQR assumes that all SNs nodes are mutually authenticated and
have a copy of the security keys to ensure a high level of secure communication.

Fig. 1. Network model

4 Protocol Design

In this section, the proposed routing protocol is presented. The design require-
ments are justified and the proposed algorithms are comprehensively discussed.

4.1 Reinforcement Learning and Double Q-Learning

Multi-Agent Reinforcement Learning (MARL) is a subfield in RL that focuses on
studying the behaviour of multiple agents co-existing in a shared environment.
The agents are motivated by reward functions and interact with the environment
and each other to compete or achieve a common goal. MARL is modeled using
the Markov Decision Process (MDP), where the environment has a set of states

DQR 615

st ∈ S and each agent takes action at ∈ A. In the network environment, each
learning agent solves a multi objectives routing problem to make optimal routing
decisions.

Q-Learning is an off-policy, model-free temporal difference (TD) algorithm
to learn the value of an action in a particular state. However, due to its inborn
overestimation problem, Q-Learning could perform poorly in some stochastic
environments because the most optimal action could be obscured by overestima-
tion [5]. Therefore, double Q-learning is introduced as an alternative method to
approximate the maximum expected action-value by using double estimators.

4.2 Design Requirements

The unique characteristics of WMSN dictate rigorous requirements, which must
be kept in mind when designing any potential routing protocol. Therefore, the
proposed protocol must be efficient, lightweight, and attack-resistant.

The routing protocol must always choose the optimal path in order to achieve
a high delivery ratio and low energy consumption. However, Q-learning-based
routing protocols could suffer from poor performance due to the action-value
overestimation problem. This biased estimation leads to bad routing decisions
that negatively affect the packet delivery ratio. Moreover, increasing the number
of transmissions aggravates the energy consumption as transmission activities
account for around 80% of the total consumed energy [13]. Therefore, a new
approach to achieve an efficient routing protocol is required.

WMSN has stringent resource constraints that make the inherited WSN rout-
ing methods not necessarily fit. The traditional RL model necessitates updating
the Q table after each sent or forwarded packet, which is a resource depletion
process [6,11]. Therefore, the routing engine of any proposed routing protocol
must have a minimal resource footprint in terms of processing and memory.

Dropping attacks, such as blackhole and selective forwarding attacks, degrade
the overall performance, and most importantly, it may endanger the patient’s
life. Moreover, the routing process itself could be prone to a specific kind of
attack based on the used method, such as poisoning attacks. Therefore, WMSN
requires a reliable and robust routing design. The delivery reliability allows the
protocol to predict the malicious paths and avoid them, while the design robust-
ness ensures high resiliency to routing attacks.

4.3 DQR Protocol

DQR is designed to fulfill all the above requirements. The reward function is
defined as punishment to ensure that the learning agent always chooses the
lowest-cost path. Moreover, in order to reduce the computational overhead of
the traditional RL model, DQR reformulated the RL model, assuming that the
network will be static for a short period, which is an acceptable assumption as
nodes could be regarded as stationary for a short interval. This assumption allows
the learning agent to perform the same action multiple times before receiving
the corresponding reward, as illustrated in Fig. 2. Adopting this method reduces

616 M. S. Hajar et al.

the computational overhead significantly by updating the Q tables periodically,
which will be discussed comprehensively in Sect. 4.4. Furthermore, DQR incor-
porates an effective TMS to ensure reliable data transfer and avoid malicious
paths.

Fig. 2. Graphical representation of the proposed RL model

WMSN network represents the environment E, which contains a set of SNs,
one of which acts as a sink S. The learning agent in DQR is defined as the tuple
(S,A,R) where S represents a set of states, A is the set of actions the agent can
take, and R is the reward function. At time step t, an agent at state s ∈ S could
get a packet to send to destination d, and hence the agent takes action at ∈ A to
forward the packet to one of its neighbors. The learning agent keeps taking the
same action during the time window [t, t + τ]. At the end of the time window,
the learning agent receives rt+1 ∈ R from the environment and moves from state
st to st+1. DQR defines two Q functions Q

A(i)
t+1 (s(i)t , a

(i)
t) and Q

B(i)
t+1 (s(i)t , a

(i)
t) as

the estimated future reward of agent i at state st taking the action at as shown
in Eq. 2 and Eq. 4. Each one of these estimators is updated using a value from
the other estimator for the next state as shown in Eq. 1 and Eq. 2. Therefore,
the actions a∗

t and b∗
t are the maximum valued actions for Q

A(i)
t+1 (s(i)t , a

(i)
t) and

Q
B(i)
t+1 (s(i)t , a

(i)
t), respectively.

a
∗(i)
t = argmax

a
(i)
t ∈A

Q
A(i)
t (s(i)t+1, a

(i)
t) (1)

Q
A(i)
t+1 (s(i)t , a

(i)
t) ← (1−η)QA(i)

t (s(i)t , a
(i)
t)+η[r(i)t+1(s

(i)
t+1)+γQ

B(i)
t+1 (s(i)t+1, a

∗(i)
t)] (2)

b
∗(i)
t = argmax

a
(i)
t ∈A

Q
B(i)
t (s(i)t+1, a

(i)
t) (3)

Q
B(i)
t+1 (s(i)t , a

(i)
t) ← (1−η)QB(i)

t (s(i)t , a
(i)
t)+η[r(i)t+1(s

(i)
t+1)+γQ

A(i)
t+1 (s(i)t+1, b

∗(i)
t)] (4)

where η ∈ [0, 1] is the learning parameter where small values decelerate the
learning and large ones may prevent algorithm convergence, γ ∈ [0, 1] is the
future reward discount parameter where small values make the learning agent
nearsighted by considering the only immediate reward.

DQR 617

DQR is designed to always choose the most reliable shortest path by defining
the reward function as punishment, as shown in Eq. 5. The delivery reliability is
achieved by incorporating trust information, which is discussed in Sect. 4.6, while
the punishment design reduces the number of transmissions along the path to the
destination to ensure an energy-efficient protocol. Moreover, energy information
from the agent itself is also considered to optimize the network lifetime, which
will be discussed further in Sect. 4.5

r
(i)
t+1(s

(i)
t+1, j) =

⎧
⎪⎨

⎪⎩

−(1 − T
(ij)
t).F (i)

t if O
(ij)
t �= {φ}

−(1 − T
(ij)
t−δ).F (i)

t if O
(ij)
t = {φ} ∧ |O(ij)| > ε

0 Otherwise

(5)

where r
(i)
t+1(s

(i)
t+1, j) is the received reward by node i for taking the action a

(i)
t = j

forwarding the traffic to the neighbor j at time window [t, t+τ], T
(ij)
t is the trust

value of SN j that maintained by SN i at time window t and is evaluated using
Algorithm 4, O

(ij)
t is the direct observations maintained by node i for node j

at time window t, δ is a time lag used to obtain the last trust value, ε is a
threshold to identify the minimum required evidence where higher values means
more historical data is required to use the evaluated trust value.

The learning process must be continual due to network dynamicity and dis-
tributed as no agent has a full view of the network. DQR is a decentralized
protocol where the learning agents exchange their best estimations with their
neighbors, as illustrated in Algorithm 1. The received estimations are then used
to update the QA and QB tables and specify the most optimal next hop. As the
goal of the learning agent is to maximize the received reward in the long run,
greedy action should not always be taken as routing task is a continual online
task and exploiting the greedy action all the time prevents the convergence to
the global optimum. Therefore, DQR uses ε-greedy method to balance between
exploration and exploitation. The learning agent explores the environment with
a probability of θ and exploits it with a probability of (1 − θ). Initially, the
learning agents have no evidence from the network; hence their Q values are
initialized to zeros, which is more practical to motivate the agents to explore the
environment and does not require any hardware or positioning information like
in [11,14].

4.4 Synchronous and Asynchronous Updating

DQR adopted a synchronous Q tables updating method with a view to producing
a lightweight routing protocol. Each action-value function is updated with the
outcome of the other action-value function as shown in Algorithm 2. The actions
a∗(i) and b∗(i) are the maximum value action in state st+1 for QA(i) and QB(i),
respectively. Therefore, both Q tables are updated for the same problem but with
a different set of evidence to produce an unbiased estimate for all action-value(s).
Although the obtained experience is divided between two action-value functions,
the algorithm is still data-efficient as selecting the optimal action is computed

618 M. S. Hajar et al.

Algorithm 1: Routing Protocol
Input:

The reward: r
(i)
t+1(s

(i)
t+1, j)

The Q tables: QA
t & QB

t
The trust table: Tt

Output: Optimal next hop a
(i)
t

Initialization:

Q
A(i)
0 (n(i) ∈ N

(i)
t) = Q

B(i)
0 =

{
0 if n(i) �= S

1 if n(i) = S
// N

(i)
t is the adjacent nodes of i

T
(i)
0 (n(i) ∈ N

(i)
t) = E[uni(0, 1)] = 0.5

a
(i)
1 =

{
S if S ∈ N

(i)
1

n(i) | n(i) ∈ N
(i)
1

(6)

while TRUE do
Wait τ
Broadcast max(Q

A(i)
t) & max(Q

B(i)
t)

if ε − greedy > θ then

a
(i)
t = argmax

a∈A
(

Q
A(i)
t (s,.)+Q

B(i)
t (s,.)

2)

Calculate r
(i)
t+1(s

(i)
t+1, a

(i)
t) as in Eq. 5

Q
A(i)
t+1 (s

(i)
t , a

(i)
t) & Q

B(i)
t+1 (s

(i)
t , a

(i)
t) Synchronous update as in algorithm 2

else

a
(i)
t ← n

(i)
t | n

(i)
t ∈ N

(i)
t

Calculate r
(i)
t+1(s

(i)
t+1, a

(i)
t) as in Eq. 5

Q
A(i)
t+1 (s

(i)
t , a

(i)
t) & Q

B(i)
t+1 (s

(i)
t , a

(i)
t) Synchronous update as in algorithm 2

end

s
(i)
t ← s

(i)
t+1

end

based on the average Q tables as illustrated in Algorithm 1. As the learning
agents collaborate with each other by broadcasting their best estimation to a
destination, this information is then used to keep the Q tables updated. However,
the learning agent forwards the traffic to only one adjacent node during the time
window t, and thus it can only calculate the reward for this action. For instance,
node i take the action a

(i)
t = j during the time window t and receives two updates

from nodes j and k. Consequently, DQR updates the action-value of j with the
calculated reward using double Q-learning, while it checks if there is enough
evidence about node k to update each action-value separately using Q-learning
or keep it unchanged in case of not enough evidence. This method allows DQR
to react quickly to any environment change, and at the same time, it immunizes
DQR against utilizing false updates from malicious nodes.

On the other hand, although the synchronous updating method is computa-
tionally efficient, it may decelerate the convergence as the learning agent, espe-
cially in the exploration phase, may make wrong decisions, and thus keep for-
warding the traffic to the wrong next hop. In traditional RL mode, the learning
agent risks losing one packet each time to update the Q tables. However, by
using only synchronous updating, more packets may be lost before updating
the Q tables. This usually happens when loops occur. Therefore, DQR uses an

DQR 619

Algorithm 2: Synchronous Updating
Input:

The Q Table: Q
A(i)
t and Q

B(i)
t

The reward: r
(i)
t+1(s

(i)
t+1, j)

The trust table: Tt

Output: Q
A(i)
t+1 and Q

B(i)
t+1

while TRUE do
Wait τ
foreach j ∈ Ni

t do
if j == ai

t then
ρ ← rand(0, 1)
if ρ > 0.5 then

Define a∗(i) = argmax
a∈A

Q
A(i)
t (s

(i)
t+1, a

(i)
t)

Q
A(i)
t+1 (s

(i)
t , a

(i)
t) ←

(1 − η)Q
A(i)
t (s

(i)
t , a

(i)
t) + η[r

(i)
t+1(s

(i)
t+1) + γQ

B(i)
t+1 (s

(i)
t+1, a

∗(i)
t)]

else

Define b∗(i) = argmax
a∈A

Q
B(i)
t (s

(i)
t+1, a

(i)
t)

Q
B(i)
t+1 (s

(i)
t , a

(i)
t) ←

(1 − η)Q
B(i)
t (s

(i)
t , a

(i)
t) + η[r

(i)
t+1(s

(i)
t+1) + γQ

A(i)
t+1 (s

(i)
t+1, b

∗(i)
t)]

end

else
if |Oij | > ε then

Q
A(i)
t+1 (s

(i)
t , j) ←

(1 − η)Q
A(i)
t (s

(i)
t , j) + η[r

(i)
t−δ(s

(i)
t−δ, j) + γ max

j∈N
(i)
t

Q
A(i)
t (s

(i)
t+1, j)]

Q
B(i)
t+1 (s

(i)
t , j) ←

(1 − η)Q
B(i)
t (s

(i)
t , j) + η[r

(i)
t−δ(s

(i)
t−δ, j) + γ max

j∈N
(i)
t

Q
B(i)
t (s

(i)
t+1, j)]

else

Q
A(ij)
t+1 ← Q

A(ij)
t

Q
B(bij)
t+1 ← Q

B(ij)
t

end

end

end

end

asynchronous updating method to step up the learning process and makes the
algorithm converge swiftly. Once a loop is detected or expected, such as when
forwarding the packet to its source again, the asynchronous updating method is
triggered to penalize both corresponding action-value(s) and allow the learning
agent to take the appropriate action accordingly, as detailed in Algorithm 3.

4.5 Energy Model

Optimizing the network lifetime is still a challenging concern in WSN and
WMSN in particular. Due to the critical applications of WMSN, dead nodes may
have catastrophic consequences. Moreover, in some cases, replacing the battery
may need surgical intervention. Considering the residual energy of the adjacent
nodes is widely used to maximize the overall network lifetime [15,16]. However,
exchanging energy information between adjacent nodes is neither energy nor

620 M. S. Hajar et al.

Algorithm 3: Asynchronous Updating
Input: A packet to forward: P

(sd)
t

Output: Updated Routing
while TRUE do

if ∀ i ∈ N receives P
(id)
t+δ then // P

(id)
t+δ is a packet from i to d after time lag δ

if η == 1 then

r
(i)
t+1(s

(i)
t+1, j) = −eη(1 − T

(ij)
t).F

(i)
t

else

r
(i)
t+1(s

(i)
t+1, j) = −(1 − T

(ij)
t).F

(i)
t

end

if RQ
A(i)
t−1 (s

(i)
t−1, j) ∧ RQ

B(i)
t−1 (s

(i)
t−1, j) then // RQ

A(i)
t−1 (s

(i)
t−1, j) is the last

expected future reward received from j

update Q
A(ij)
t and Q

B(ij)
t using r

(i)
t+1, RQ

A(i)
t−1 and RQ

B(i)
t−1

else // ζ is the loop penalising parameter

Q
(i)
t+1(s

(i)
t , a

(i)
t = nj) ← Q

(ij)
t − ζ

end

a
(i)
t = argmax

n
(i)
t ∈N

(i)
t

(
Q

A(i)
t (s,.)+Q

B(i)
t (s,.)

2)

Update P
(id)
t

Send P
(id)
t

end

if ∀ i ∈ N receives P
(jd)
t ∧ a

(i)
t = j then

if η == 1 then

r
(i)
t+1(s

(i)
t+1, j) = −eη(1 − T

(ij)
t).F

(i)
t

else

r
(i)
t+1(s

(i)
t+1, j) = −(1 − T

(ij)
t).F

(i)
t

end

if RQ
A(i)
t−1 (s

(i)
t−1, j) ∧ RQ

B(i)
t−1 (s

(i)
t−1, j) then

update Q
A(ij)
t and Q

B(ij)
t using r

(i)
t+1, RQ

A(i)
t−1 and RQ

B(i)
t−1

else

Q
(i)
t+1(s

(i)
t , a

(i)
t = nj) ← Q

(ij)
t − ζ

end

a
(i)
t = argmax

n
(i)
t ∈N

(i)
t

(
Q

A(i)
t (s,.)+Q

B(i)
t (s,.)

2)

Forward P
(jd)
t

end

end

computational efficient. In contrast, DQR only used local energy information
with a view to reducing the computational overhead and avoiding filtering out
false second-hand information. Moreover, it uses two sources of energy infor-
mation with a view to load balancing energy consumption across the network.
When the residual energy percentage is greater than a threshold ϑ, this param-
eter does not contribute in evaluating the consumed energy ratio E

(i)
t ∈ [0, 1] as

shown in Eq. 7. In that case, SNs choose the most reliable shortest path, which
in turn makes some nodes overloaded due to their trustworthiness and positions.
Therefore, DQR defines the energy consumption ratio C

(i)
t to evaluate the extra

burden incurred by the node due to relaying activities, as shown in Eq. 8. The
weighted average of E

(i)
t and C

(i)
t is calculated in Eq. 9. As integrating the energy

DQR 621

into the reward function may influence the nodes routing decision to choose a
malicious path, the energy factor is bounded by λ ∈ [0, 1] as shown in Eq. 10.

E
(i)
t =

{
0 if eres(t)

einit
> ϑ

1 − eres(t)
einit

Otherwise
(7)

C
(i)
t = 1 − cn(t)

ca(t)
(8)

ψ
(i)
t = ωE

(i)
t + (1 − ω)C(i)

t (9)

F
(i)
t = eλψ

(i)
t (10)

where eres(t) is the remaining energy at time t, einit is the initial energy, ϑ is
the residual energy threshold, cn(t) is the node normal energy consumption rate,
ca(t) is the overall energy consumption rate, ω is the average weight, λ is the
bound parameter where λ = 0 is used to disable the energy module.

4.6 Trust Model

DQR evaluates the trust relationship between the SNs using the Lightweight
Trust Management System (LTMS) [17]. LTMS has been chosen for several rea-
sons. It is a lightweight distributed trust scheme designed to fit WMSN require-
ments. The trust value is evaluated using a novel updating mechanism that can
detect packet dropping attacks with different dropping patterns thanks to inte-
grating the slopes bt and dt into the beta distribution shape parameters αt and
βt, which gives more weight to bad activities and makes it difficult to elimi-
nate. As TMSs can be manipulated by intelligent adversaries who launch on-off
attacks, LTMS is provided by a protection module that can detect complicated
on-off attacks by considering short and long-term trust values to detect repeated
dropping patterns as illustrated in Algorithm 4.

5 Evaluation and Performance Results

In this section, our proposed DQR is analyzed under different conditions. Various
simulation scenarios have been run to prove the merit of DQR.

5.1 Experimental Setup

A WMSN for a ward in a field hospital has been adopted, as shown in Fig. 1. The
SNs have been distributed randomly over an area of 50 m × 10 m. A total number
of 64 SNs has been used where one of them acts as a sink, which represents
the maximum number of SNs according to IEEE 802.15.6 [12]. The traffic is
randomly generated using an exponential distribution density function.

622 M. S. Hajar et al.

Algorithm 4: Secure Trust Evaluation
Input: Observations & beta shape parameters
Output: Trust value
initialization;
while TRUE do

if bt−1 ≤ 0 && dt−1 > 0 then
αt = λ(αt−1 + bt−1) + st;
βt = λ(βt−1 + dt−1) + ut;
bt = αt − αt−1;
dt = βt − βt−1;

else
αt = λ.αt−1 + st;
βt = λ.βt−1 + ut;
bt = αt − αt−1;
dt = βt − βt−1;

end
if αt ≤ 0 then

Repij
t = 0;

else

Repij
t =

αt
αt+βt

;

end

if T ij
t−1 ≥ thr1 && Repij

t < thr1 then
if malicious > 0 then

cycle = t − malicious;
malicious = 0;

else
malicious = t;

end

end
if cycle > 0 && Trust(t − 1) < thr2 then

ShRepij
t = mean(T ij

t−cycle:t);

T ij
t = min(ShRepij

t , Repij
t);

else

T ij
t = Repij

t ;
cycle = 0;

end

end

DQR is benchmarked with QRT [11] routing protocol, which has been
designed to handle non-cooperative and misbehaving SNs in WMSN. It has
been proposed as a trust-based extension to RL QRP [14], an RL-based routing
protocol proposed to fit WMSN. QRT has been chosen as a benchmark because
it is the only routing protocol proposed to deal with dropping attacks in WMSN.
To ensure fair comparisons, we adopted the reported parameters setting of QRT
as shown in Table 1. The experiments have been run using a discrete event sim-
ulator based on Simpy [18]. The simulation time is set to 200s where the first
50s represents the learning time. The exploration-exploitation rate is controlled
by ε-greedy strategy and set to 10% as in QRT. Each experiment has been run
30 times to ensure the Gaussian distribution. The results are then averaged out
and reported with one standard deviation.

5.2 Delivery Reliability Analysis

In these experiments, the delivery performance is evaluated under different net-
work conditions ranging from normal operation to under complicated attacks.

DQR 623

The packet delivery ratio and hop counts are considered to compare the opti-
mality of the routing decisions made by both protocols.

Table 1. Simulation parameters

Parameter Value

Application Poisson random traffic

Traffic rate μ 1, 2, 4, 8

Radio range 5 m

Propagation loss model Range propagation loss

Number of SNs 64

Time unit 1 s

Simulation time 200 s

Learning period 50 s

Learning rate η 0.5

Discount factor γ 0.5

ε−greedy 0.1

The average weight ω 0.5

Residual energy threshold ϑ 0.7

The first experiment studies the performance under normal operation with
variable traffic rates. Some SNs generate a low traffic rate of around 1p/s, such
as heart rate SNs [19]. Thus, four traffic rates have been chosen for simulation,
starting at 1p/s and doubling it each time. No malicious SNs are considered in
this experiment. Benign nodes may drop randomly 1% of the traffic. Figure 3a
and 3d show the delivery ratio, and the hop counts for both protocols under
normal operation, respectively. DQR show superior data delivery performance
with optimum routing decision. QRT shows high variability in terms of delivery
ratio and hop count, which indicates that QRT does not converge to the optimum
action-value(s) all the time. Moreover, it finds difficulty working under low traffic
rates.

In the second experiment, blackhole and selective forwarding attacks are
launched during the simulation to study the robustness of both protocols. The
blackhole attack is a dropping attack where malicious nodes drop all received
traffic instead of relaying it. In the selective forwarding attack, the malicious
nodes selectively choose some sources to drop their traffic. Both attacks may
disrupt the network operation. Therefore, nodes should always choose the most
reliable path to destinations. The performance has been evaluated for a variable
number of malicious nodes, starting from 1 malicious nodes and up to 50% of the
total number of SNs. Figure 3b, 3c, 3e and 3g shows the delivery ratio and the
hop counts under blackhole and selective forwarding attacks, respectively. Across
all scenarios, DQR chooses the most optimal reliable paths, as illustrated in the

624 M. S. Hajar et al.

hop counts results. When the number of malicious nodes increases, DQR avoids
malicious paths and tends to choose longer but reliable paths. On the other
hand, QRT is not able to detect malicious paths, as shown in the decreasing hop
counts when introducing more malicious nodes. This means that packets end up
in malicious nodes, which explains the low delivery ratio.

In the third scenario, sinkhole, which is a route poisoning attack, is launched
to study the impact of receiving dishonest updates from other agents on routing
decisions. Different levels of poisoning are evaluated starting by increasing the
updates by 25% and doubling it up to 100%, where the agents send the value
zero, which is the highest Q value in DQR. The delivery and hop counts ratios are
illustrated in Fig. 4a–Fig. 4f. The results show that DQR is robust under different
poisoning levels and can achieve a high delivery ratio. It is worth noting that in
the worst-case scenario when malicious SNs advertise zeros, DQR takes slightly
longer paths as the received false updates influence not only the SN itself but
also its neighbors. However, this behaviour does not affect the delivery ratio.

2 4 6 8
Traffic Rate (p/s)

60

80

100

D
el

iv
er

y
R

at
io

 (%
)

DQR
QRT

(a)

0 10 20 30
Number of Malicious Nodes

60

80

100

D
el

iv
er

y
R

at
io

 (%
)

DQR
QRT

(b)

0 10 20 30
Number of Malicious Nodes

60

70

80

90

100

D
el

iv
er

y
R

at
io

 (%
)

DQR
QRT

(c)

2 4 6 8
Traffic Rate (p/s)

3.00

3.25

3.50

3.75

H
op

 C
ou

nt
s

DQR
QRT

(d)

0 10 20 30
Number of Malicious Nodes

2.5

3.0

H
op

 C
ou

nt
s

DQR
QRT

(e)

0 10 20 30
Number of Malicious Nodes

2.8

3.0

3.2

3.4

H
op

 C
ou

nt
s

DQR
QRT

(f)

Fig. 3. Delivery and hop counts ratios under different conditions

5.3 Convergence

Q-learning is proved to converge to the optimum action-value(s) [20], as is double
Q-learning [5]. However, convergence time is a crucial factor. A longer time to
converge implies risking more packets to lose and consuming extra resources.
In this experiment, the convergence time is evaluated in two scenarios, at the
beginning of the simulation and when patients change their locations. Figure 5a
demonstrates the convergence time at the beginning of the simulation, where
SNs have no information about the environment and need to explore in order to
converge. DQR converges faster than QRT thanks to its asynchronous updating
algorithm. It took less than 50% time to converge compared to QRT. It is worth

DQR 625

0 10 20 30
Number of Malicious Nodes

60

80

D
el

iv
er

y
R

at
io

 (%
)

0.25

DQR
QRT

(a)

0 10 20 30
Number of Malicious Nodes

60

80

D
el

iv
er

y
R

at
io

 (%
)

0.5

DQR
QRT

(b)

0 10 20 30
Number of Malicious Nodes

60

80

D
el

iv
er

y
R

at
io

 (%
)

1.0

DQR
QRT

(c)

0 10 20 30
Number of Malicious Nodes

2.0

2.5

3.0

H
op

 C
ou

nt
s

0.25

DQR
QRT

(d)

0 10 20 30
Number of Malicious Nodes

2.0

2.5

3.0

H
op

 C
ou

nt
s

0.5

DQR
QRT

(e)

0 10 20 30
Number of Malicious Nodes

2.0

2.5

3.0

3.5

H
op

 C
ou

nt
s

1.0

DQR
QRT

(f)

Fig. 4. Delivery and hop counts ratios under sinkhole attack

noting that QRT performs well at the early start because it is provided by
positional information, while DQR works without any prior knowledge. In the
second scenario, patient mobility is considered within the hospital ward. The
patient could have up to three SNs. Thus the simulation is run for 1, 2 or 3
randomly chosen SNs at a time. Two movements have been considered at times
100s and 150s. The simulation has been run for a hostile environment where 50%
of the nodes are launching blackhole attacks. Figure 5b shows mobility results
for only three SNs due to space constraints. The results show a fast convergence
without any noticeable performance degradation for DQR protocol, which proves
the robustness of our methods. On the other hand, QRT suffers from difficulty
in re-converging, especially after the second movement.

0 20 40
Time (s)

20

40

60

80

D
el

iv
er

y
R

at
io

 (%
)

DQR
QRT

(a)

0 50 100 150 200
Time (s)

20

40

60

80

D
el

iv
er

y
R

at
io

 (%
)

DQR
QRT

(b)

Fig. 5. The average convergence time

626 M. S. Hajar et al.

5.4 Energy Efficiency

The energy efficiency has been evaluated in two experiments. In the first, the
network lifetime has been compared between both protocols. The second sce-
nario shows the average consumed energy by a node for different traffic rates.
Network lifetime could be defined as the running time until the first node dies [7].
Both simulation scenarios have been carried out under normal operation without
introducing any attack. Figure 6a shows the percentage of alive nodes during the
simulation. QRT has a very short lifetime compared to DQR. The first node dies
after around 16s on average. This deficiency could be attributed to two reasons.
QRT does not take any energy-related factor into account to choose the optimal
path, and most importantly, the excessive information exchanging increases the
RF activities significantly, which is responsible for 80% of the consumed energy.
On the other hand, DQR shows superior performance because of its resource-
conservative design, which is clearly reflected in consuming less energy for all
traffic rates, as obviously seen in Fig. 6b.

0 50 100 150
Time (s)

60

70

80

90

100

Al
iv

e
N

od
es

 (%
)

DQR
QRT

(a)

2 4 6 8
Traffic Rate (p/s)

1000

2000

3000

4000

C
on

su
m

ed
 E

ne
rg

y
[J

] DQR
QRT

(b)

Fig. 6. Energy efficiency results

5.5 Computational Overhead

In this experiment, the processing and memory overheads of both protocols
are evaluated. The experiment was carried out on an Intel Core i9-10885H at
2.4 GHz and 32 GB RAM. The computational overhead has been evaluated for
traffic rate μ = 4p/s as QRT has converging difficulties for lower rates. No
attacks were launched during the simulation. The simulation was repeated 30
times, and then the mean with one standard deviation was reported.

The average processing time of both protocols is illustrated in Fig. 7a. What
can be clearly seen in this result is the minimum processing overhead of DQR.
It saves around 50% processing overhead compared to QRT. Moreover, unlike
QRT, DQR has minimum variability. This proves that our novel RL model is
resource-efficient. Moreover, the low variability of DQR indicates that DQR is
always able to converge swiftly without any difficulties, proving its robustness.

DQR 627

Memory consumption is another crucial factor for constrained devices, such
as SNs. Figure 7b depicts the average consumed memory of both protocols. Dur-
ing the simulation, the memory allocations were traced using a memory allo-
cation module called tracemalloc [21]. The results show that DQR is able to
save up to 80% of QRT consumed memory. Moreover, unlike QRT, DQR shows
almost no variability, which indicates its robustness.

The results of this experiment show that DQR has a minimum footprint
in terms of processing time and consumed memory. This lightweight computa-
tional overhead could be attributed to its resource-efficient design represented
in synchronous and asynchronous Q tables updating algorithms. Furthermore,
this novel design is able to converge swiftly with minimum variability allowing
the packets to reach their destinations efficiently.

DQR QRT
Routing Protocol

0

20

40

60

Pr
oc

es
si

ng
 T

im
e

(m
)

(a)

DQR QRT
Routing Protocol

0

50

100
M

em
or

y
C

on
su

m
pt

io
n

(M
B)

(b)

Fig. 7. The average processing time and memory consumption

6 Conclusion and Future Work

The resource scarcity and the sensitive applications have brought enormous chal-
lenges to WMSN routing protocols. The existing routing protocols for WSN can-
not be directly adopted for WMSN due to overlooking some imperative require-
ments. In this paper, a lightweight, reliable and energy-efficient routing protocol
for WMSN has been proposed. DQR is a double Q-learning routing protocol that
uses a novel RL model. It uses two updating methods combined with trust man-
agement and energy models to ensure lightweight, reliable and resource-efficient
data delivery. The experimental results show superior performance with minimal
resource footprint. The performance of DQR will be further optimized by tuning
the used hyper-parameters. Additionally, more experiments will be carried out
to ensure robustness under further complicated dropping attacks.

628 M. S. Hajar et al.

References

1. Barker, A., Swany, M.: Distributed cooperative reinforcement learning for wireless
sensor network routing. In: 2022 IEEE Wireless Communications and Networking
Conference (WCNC), pp. 2565–2570 (2022)

2. Keerthika, A., Berlin Hency, V.: Reinforcement-learning based energy efficient
optimized routing protocol for WSN. Peer-to-Peer Network. Appl. 15, 1685–1704
(2022)

3. Mammeri, Z.: Reinforcement learning based routing in networks: review and clas-
sification of approaches. IEEE Access 7, 55916–55950 (2019)

4. Künzel, G., Indrusiak, L.S., Pereira, C.E.: Latency and lifetime enhancements in
industrial wireless sensor networks: a Q-learning approach for graph routing. IEEE
Trans. Ind. Inform. 16, 5617–5625 (2020)

5. Hasselt, H.: Double Q-learning. In: Advances in Neural Information Processing
Systems, vol. 23 (2010)

6. Yuan, F., Wu, J., Zhou, H., Liu, L.: A double Q-learning routing in delay tolerant
networks in ICC 2019. In: 2019 IEEE International Conference on Communications
(ICC), 1–6 (2019)

7. Guo, W., Yan, C., Lu, T.: Optimizing the lifetime of wireless sensor net-
works via reinforcement-learning-based routing. Int. J. Distrib. Sens. Netw. 15,
1550147719833541 (2019)

8. Maivizhi, R., Yogesh, P.: Q-learning based routing for in-network aggregation in
wireless sensor networks. Wireless Netw., 2231–2250 (2021)

9. Al-Rawi, H.A., Ng, M.A., Yau, K.-L.A.: Application of reinforcement learning to
routing in distributed wireless networks: a review. Artif. Intell. Rev. 43, 381–416
(2015)

10. Liu, G., Wang, X., Li, X., Hao, J., Feng, Z.: ESRQ: an efficient secure routing
method in wireless sensor networks based on Q-learning. In: 2018 17th IEEE Inter-
national Conference on Trust, Security And Privacy in Computing and Communi-
cations/12th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pp. 149–155 (2018)

11. Naputta, Y., Usaha, W.: RL-based routing in biomedical mobile wireless sensor
networks using trust and reputation. In: 2012 International Symposium on Wireless
Communication Systems (ISWCS), 521–525 (2012)

12. IEEE. IEEE Standard for Local and metropolitan area networks - Part 15.6: Wire-
less Body Area Networks. IEEE Std 802.15.6-2012, 1–271, February 2012

13. Azdad, N., Elboukhari, M.: Wireless body area networks for healthcare: application
trends and MAC technologies. Int. J. Bus. Data Commun. Network. (IJBDCN) 17,
1–20 (2021)

14. Liang, X., Balasingham, I., Byun, S.-S.: A reinforcement learning based routing
protocol with QoS support for biomedical sensor networks. In: 2008 First Interna-
tional Symposium on Applied Sciences on Biomedical and Communication Tech-
nologies, pp. 1–5 (2008)

15. Jiang, J., Zhu, X., Han, G., Guizani, M., Shu, L.: A dynamic trust evaluation
and update mechanism based on C4. 5 decision tree in underwater wireless sensor
networks. IEEE Trans. Veh. Technol. 69, 9031–9040 (2020)

16. Krishnaswamy, V., Manvi, S.S.: Trusted node selection in clusters for underwater
wireless acoustic sensor networks using fuzzy logic. Phys. Commun. 47, 101388
(2021)

DQR 629

17. Hajar, M.S., Al-Kadri, M.O., Kalutarage, H.: LTMS: a lightweight trust manage-
ment system for wireless medical sensor networks. In: 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), pp. 1783–1790 (2020)

18. Matloff, N.: Introduction to discrete-event simulation and the SimPy language.
In: Davis, C.A. (ed.) Department of Computer Science. University of California at
Davis (2008). Accessed 2 Aug

19. Islam, M.N., Yuce, M.R.: Review of medical implant communication system
(MICS) band and network. Ict Express 2, 188–194 (2016)

20. Melo, F.S.: Convergence of Q-learning: a simple proof. Institute of Systems and
Robotics, Technical Report, 1–4 (2001)

21. TRACEMALLOC - Trace memory allocations - Python 3.10.2 documentation.
https://docs.python.org/3/library/tracemalloc.html. Accessed 8 Feb 2022

https://docs.python.org/3/library/tracemalloc.html

Message Recovery Attack of Kyber Based
on Information Leakage in Decoding

Operation

Mengyao Shi1,2, Zhu Wang1,2(B), Tingting Peng1,2, and Fenghua Li1,2

1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China
wangzhu@iie.ac.cn

2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. In this work, we propose practical side-channel attacks
for message recovery in post-quantum key encapsulation mechanisms
(KEM). As a target scheme, Kyber is a standardized algorithm in the
ongoing NIST standardization process. Notably, this work is the first one
that implements message recovery by exploiting the information leaked
on computational operations during Kyber decoding. The main find-
ings include 1. analyzing computational operations during decoding by
power consumption information to effectively recover message; 2. recov-
ering message by analyzing the time differences existing in decoding sin-
gle bits; 3. by way of simple power analysis, using incremental storage
leakage to recover the message.

Keywords: Lattice-based cryptography · Side-channel attacks ·
Message decoding · Kyber

1 Introduction

The rapid development of quantum computing technology has posed a severe
challenge to the security of traditional modern cryptographic schemes. The
unique physical properties of quantum systems, such as superposition and coher-
ence, make quantum Turing machines more computationally efficient than clas-
sical Turing machines. In 1994, Peter w. Shor of Bell Labs [1] proposed quantum
computing based on the discrete logarithm problem and the significant integer
prime factorization problem, which makes it possible to solve a large number
of decomposition problems in polynomial time; In 1996, Grover [2] proposed to
speed up the key search by continuously doing the Mississippi transformation to
increase the likelihood of the desired solution value. These contributions make
public-key cryptosystems built on the assumption of computational hardness
(e.g., RSA, ECC, and other algorithms) no longer secure, and also raise the
issue of the security of protocols based on such algorithms and the security of
products based on such protocols. Accordingly, research on post-quantum cryp-
tosystems has become a frontier focus issue in the cryptographic field.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 630–647, 2023.

https://doi.org/10.1007/978-3-031-25538-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_33&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_33

Message Recovery Attack of Kyber 631

Based on the new cryptosystem, post-quantum algorithms mainly include
code-based cryptography, hash-based cryptography, lattice-based cryptography,
multivariate cryptography and supersingular isogeny cryptography. At the end
of 2016, the National Institute of Standards and Technology (NIST) launched
the standard solicitation of post-quantum cryptography algorithm [3]. On July
5, 2022, NIST announced it has completed the third round of the post-quantum
Cryptography standardization process. As a result, a total of four candidate
algorithms have been selected for standardization. As one of four, Kyber [4] was
successfully selected as a standardized algorithm for it strong security and excel-
lent performance [5], and NIST expected it to work well in most applications.

The cryptographic algorithm ensures the algorithm’s security through the-
ory, but the mathematical security of algorithm design can not fully guarantee
the security of the implementation. Side-channel attack is an effective technol-
ogy that seriously threatens the safety of cryptographic implementation (cryp-
tographic chip and cryptographic system). Side-channel attacks (refer to Fig. 1)
mainly exploits the leakage of side information (such as time, power consump-
tion, etc.) during the operation of the cryptographic algorithm. It achieves the
attack by analyzing the dependency between the side-channel information and
the secret information. Since timing attack [6] was proposed in 1996, after more
than 20 years of development, the international standard algorithms 3DES,
AES, Sha-3, RSA, ECC, etc. have been successfully analyzed using side-channel
attacks. The mighty power of side-channel attack in analyzing classical cryp-
tographic algorithms seriously threatens the security of cryptographic systems,
which poses a severe challenge to the protection of cryptographic algorithms and
has attracted extensive attention. Therefore, algorithm security is no longer lim-
ited to design safety, and the implementation of security has become an impor-
tant indicator. Therefore, in the third round of evaluation, NIST pointed out
that an important indicator to measure whether the post-quantum cryptogra-
phy candidate algorithm can become a standard is to resist side-channel attack.

Fig. 1. Pictorial representation of the side-channel attack.

From classical cryptography to post-quantum cryptography, side-channel
attack is not a simple transplant. Although assumptions are both based on
mathematical difficulties, the post-quantum public key cryptosystem adopts an

632 M. Shi et al.

entirely different mathematical structure from the traditional public key cryp-
tosystem. The side-channel information leaked in the implementation process
and the subsequent side-channel attack methods are further from the conven-
tional one, so the side-channel security can not be obtained by simply trans-
planting the attack methods. For post-quantum cryptography, the adversary
must invest extra effort to find the key-dependent data required for side-channel
attack. Therefore, to meet the urgent needs of formulating post-quantum cryp-
tography algorithm standards, it is critical to carry out accurate and efficient
side-channel security analysis on post-quantum cryptography.

1.1 Related Work

In the process of encryption and decryption, the cryptographic equipment will
inevitably leak signals (power consumption, electromagnetic emanation, time,
etc.). Unlike other forms of cryptographic analysis, side-channel attacks use the
information leaked from the target device to find information related to the key,
including the time or power consumption of the internal operation of the device
or the error output generated by the device. Currently, the side-channel attack
methods of post-quantum cryptography mainly focus on power consumption/
electromagnetic emanation, time and fault injection. In recent years, side-channel
attacks related to Kyber algorithm mainly include: in 2019, Pessl and Primas [7]
proposed a single power trace attack scheme for NTT in Kyber; In 2020, Ravi et
al. [8] launched a chosen-ciphertext attack against a variety of lattice-based cryp-
tographic algorithms such as Round5, LAC, Kyber, FrodoKEM, NewHope, etc.,
and its main attack targets are error correcting codes and FO-transformation [9].
In 2019, Ravi and Roy et al. [10] proposed a fault attack scheme against nonce
random seeds of Gaussian distribution in NewHope, Kyber, FrodoKEM and
other different cryptographic algorithms; In 2018, Albrecht and Deo et al. [11]
launched cold boot attacks against NTT in Kyber and NewHope. The above
attacks on Kyber and other algorithms mainly focus on core operators such
as NTT, error correcting code and FO-transformation. In fact, there are more
effective attack points than those mentioned above. Information leakage in the
encoding and decoding process can also effectively recover message information.

In the key encapsulation mechanism, the message encoding and message
decoding processes involve arithmetic operations on the message. The study
of side-channel attacks on these two processes is described below separately.

Message Encoding Process. Amiet et al. [12] in PQCrypto 2020 used a single
power trace to attack the message encoding operation in the C reference imple-
mentation of the NewHope key encapsulation mechanism submitted to NIST
for the second round and found that it had a severe side-channel vulnerability.
Under the Hamming weight leakage model, the power consumption of the pro-
cessed sensitive intermediate value under two different values was very different,
which leaked information about single bits of the message. When the compiler
optimization level was -O0, the bit-by-bit recovery of the message could be real-
ized only by using simple power attack. When the compiler optimization level

Message Recovery Attack of Kyber 633

reached -O3, 256 templates should be pre-processed. By combining the template
attack and the brute-force search, the success rate of message recovery could
reach 99%. Based on [12], Sim et al. [13] further explored the side-channel secu-
rity of the message encoding operation in other lattice-based key encapsulation
schemes that entered the third round of NIST evaluation. The author used a
single power trace to analyze the message encoding phase of the key encapsula-
tion scheme implemented by the C reference. It was found that the side-channel
vulnerabilities in [12] commonly exist in Kyber, Saber, and FrodoKEM. In partic-
ular, when analyzing Saber and FrodoKEM, the author used a machine learning
method to build templates to help recover the encoded message. Xu et al. [14]
successfully attacked the memory-efficient and high-speed Kyber encoding oper-
ation in pqm4 [15]. By taking specific preprocessing measures to filter POIs and
calculate the threshold in the profiling stage, the author could use the two-stage
recovery attack on the -O0 and -O3 compiler levels to recover the message with
a 100% success rate.

Message Decoding Process. Ngo et al. [16] conducted a comprehensive study
on the Saber scheme with masking implementation for IND-CCA security. In the
reference implementation, the author found the side-channel leakage point of the
“incremental storage” vulnerability in the message decoding process mentioned
in [17] and the newly found poly A2A() primitive also contains an exploitable
point of “incremental storage” vulnerability. Based on this work, Ngo et al. [18]
subsequently used the ciphertext malleability proposed by [17] to attack the
decoding process of the Saber scheme with shuffling protection at the same
time. As a result, the message recovery attack was realized. Ravi et al. [19]
analyzed the decoding process of multiple lattice-based KEMs and successfully
implemented horizontal message recovery attacks.

These attacks show some vulnerabilities in the lattice-based post-quantum
cryptography schemes and strongly indicate that more potential vulnerabilities
have not been discovered. Therefore, we believe that further research in this field
is necessary to give the implementation scheme a complete security check and
provide security recommendations for deploying these schemes in the real world.

1.2 Our Contribution

We perform side-channel attacks on the implementation of Kyber obtained
from the pqm4 public library, a testing and benchmarking framework for post-
quantum cryptographic schemes on the ARM Cortex-M4 microcontroller. Refer
to Fig. 2 for the pictorial description of our attacks (Attack Decoding) targeting
the message recovery. In this work, by focusing on the message decoding oper-
ation in the decapsulation phase, we comprehensively analyze the side-channel
leakage about time and power consumption that can be used for message recov-
ery in this process. The main contributions of this paper can be summarized as
follows.

(1) Novelty of attack target: Existing attacks focus more on recovery attacks
against the long-term key, while message recovery attacks leading to shared

634 M. Shi et al.

session key recovery have received little attention. Compared with tradi-
tional PKE/KEM based on RSA and ECC, message in LWE/LWR-based
PKE/KEM operates uniquely on each bit of message.

(2) Universality of the attack: In essence, our work exploits the algorith-
mic properties inherent in the LWE/LWR-based scheme since the decoding
operation is unique to the LWE/LWR scheme. In this paper, we achieve
full recovery of the message from the assembly level by analyzing the power
leakage and the time leakage generated during the bitwise computation and
storage of the message.

Fig. 2. Pictorial representation of our proposed attacks on the Kyber decapsulation
procedure.

1.3 Outline

The rest of the paper is organized as follows. In the next section, we recall the
Kyber algorithm and message recovery attacks. Section 3 consists of the detailed
experimental environment. Section 4 shows some findings of our side-channel
attacks on Kyber’s message decoding process. Section 5 makes a complete and
profound analysis of our experimental findings in Sect. 4. Finally, the conclusion
is discussed in Sect. 6.

2 Background

2.1 Parameter Settings

The basic elements in Kyber are the polynomials in the ring Zq[x]/(xn + 1),
denoted by Rq, with n = 256 and q = 3329 in all variants of Kyber. The
parameter k represents the dimension of the matrix of polynomials in Rq. Kyber
has three variants aimed at different security levels. In order of increasing security
they are Kyber512, Kyber768, and Kyber1024, and their parameters can be
found in Table 1. The attack methods proposed in this paper are applicable to
the above three security levels.

Message Recovery Attack of Kyber 635

Table 1. Parameter sets for Kyber.

Algorithm NIST-level n q k

Kyber512 1(AES-128) 256 3329 2

Kyber768 3(AES-192) 256 3329 3

Kyber1024 5(AES-256) 256 3329 4

2.2 Module Learning with Errors Problem

The learning with errors (LWE) problem proposed by Regev [20] is one of the
most well-known hard problems in the average case. It is considered compu-
tationally infeasible for both classical and quantum computers. There are two
versions of the LWE problem - Search LWE and Decisional LWE. The search
variant of the LWE problem requires the attacker to compute the secret value
given several LWE samples. The decisional variant of the LWE problem requires
the attacker to distinguish uniformly random samples from similar LWE samples.

As we know, several lattice-based NIST candidates are constructed based on
LWE or algebraically structured variants of the standard LWE problem known
as Ring/Module-LWE (RLWE/MLWE). The security of Kyber is based on the
Module-LWE hardness assumption. MLWE differs from LWE in using the poly-
nomial ring instead of the integer ring. The decision and search LWE problem
over standard lattices can be extended to the decision and search MLWE prob-
lem over module lattices.

2.3 Kyber

Lattice-based IND-CPA schemes can be made secure against CCA by being
transformed into IND-CCA schemes with the help of a post-quantum variant of
the Fujisaki-Okamoto (FO) transformation [8]. The transformation is also used
by Kyber to achieve IND-CCA security. Kyber KEM contains three algorithms:
Key Generation, Encapsulation, and Decapsulation. Simplified versions of the
three algorithms are described in the corresponding Algorithm 1, Algorithm 2,
and Algorithm 3.

Algorithm 1. Kyber.CCAKEM.KeyGen()
Output: Public key pk ∈ B12·k·n/8+32

Output: Secret key sk ∈ B24·k·n/8+96

1: Z ← B32

2: (pk, sk′) := Kyber.CPAPKE.KeyGen()
3: sk := (sk′||pk||H(pk)||z)
4: return (pk, sk)

636 M. Shi et al.

Algorithm 2. Kyber.CCAKEM.Enc(pk)
Input: Public key pk ∈ B12·k·n/8+32

Output: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Output: Shared key K ∈ B∗

1: m ← B32

2: m ← H(m)
3: (K, r) := G(m||H(pk))
4: c := Kyber.CPAPKE.Enc(pk,m, r)
5: K := KDF(K||H(c))
6: return (c,K)

Algorithm 3. Kyber.CCAKEM.Dec(c, sk)
Input: Ciphertext c ∈ Bdu·k·n/8+dv ·n/8

Input: Secret key sk ∈ B24·k·n/8+96

Output: Shared key K ∈ B∗

1: pk := sk + 12 · k · n/8
2: h := sk + 24 · k · n/8 + 32 ∈ B32

3: z := sk + 24 · k · n/8 + 64
4: m′ := Kyber.CPAPKE.Dec (s, (u, v))

5: (K
′
, r′) := G(m′||h)

6: c′ :=Kyber.CPAPKE.Enc (pk,m′, r′)
7: if c = c′ then
8: return K := KDF(K

′||H(c))
9: else

10: return K := KDF(z||H(c))
11: end if
12: return K

2.4 Message Recovery Attack

By analyzing the implementation of Kyber’s encapsulation and decapsulation
algorithm in the last part, it can be found that if an attacker can try to obtain
the message m, he can easily calculate the shared session key through m and
known public values, which will seriously threaten the session security of both
communication parties. In other words, the leakage of message values will seri-
ously damage the confidentiality of the cryptosystem.

In the part of related work, we summarize the previous message recovery
attacks completed in message encoding and decoding process through side-
channel attacks. Theoretically, any operation related to the message can be
used as a potential attack path to recover useful information about the mes-
sage. Regarding the implementation process of Kyber, there are attack paths
other than message encoding and decoding. In Kyber’s encapsulation procedure
Algorithm 2, step 1 involves the generation of random message m; step 2 is
the hash operation H involving message m; In step 3, as part of the input, m
participates in the hash operation G; The message encoding process in step
4 is an effective and commonly used attack path. In Kyber’s decapsulation

Message Recovery Attack of Kyber 637

procedure Algorithm 3, the first desirable attack path is the message encod-
ing process included in step 4; step 5 here corresponds to step 3 of Algorithm 2,
which is also desirable; Since the Kyber KEM to which the FO transformation is
applied includes the re-encryption operation, there is step 6 similar to step 3 of
Algorithm 2.

Considering the realizability of message recovery under above attack paths,
this paper mainly focuses on the message decoding operation in the decapsulation
procedure. In the following, we will prove that several side-channel vulnerabilities
in the message decoding process can be used to recover the complete message.

1 void poly tomsg(unsigned char msg[32],poly *a){
2 unsigned int k;
3 unsigned short t;
4 int i , j ;
5 for(i =0; i <32; i ++) {
6 msg[i] = 0;
7 for(j =0; j <8; j ++) {
8 k = 8* i + j ;
9 t = ((a)-> coe f f s [k] << 1) + 1664;

10 /∗ c a l c u l a t e message b i t ∗/
11 t = (t / 3329) & 1;
12 /∗ b i t upda te in memory∗/
13 msg[i] |= t << j ;
14 }
15 }
16 }

Listing 1. C code snippet of message decoding operation in Kyber KEM.

3 Experimental Setup

The device under attack we use is an OSR407 development board with a 32bit
ARM Cortex-M4 processor. The target message decoding implementation is from
the public pqm4 library, which provides NIST recommended optimized target
for embedded software implementations. We use the original implementation it
provides (refer to Listing 1 plus a trigger signal to simplify the recording of power
traces. The device used to record power traces is the Lecroy 3000z oscilloscope
with a sampling rate of 1.0 GSam/sec. Refer to Fig. 3 for our power-based SCA
setup used for our experiments.

638 M. Shi et al.

(a) (b)

Fig. 3. Experimental setup for SCA.(a) SCA setup. (b) Zoomed-in view of the DUT.

4 SPA of ARM-Specific Implementation

In this section, we attacked the “ARM-Specific” reference implementation specif-
ically optimized for ARM Cortex-M4 processor of Kyber from a side-channel per-
spective. Accordingly, we found three obvious side-channel leakages on message
decoding operation during the decapsulation procedure of Kyber.

4.1 Power Consumption Leakage in Computation

Collecting power traces during Kyber decapsulation, it is found that there are
significant differences in the power trace when decoding different message bits.
Figure 4 interprets the power trace with the first message byte value of 2. In

Fig. 4. A single trace measurement of msg[0] = 2 (binary 0000 0010).

Message Recovery Attack of Kyber 639

the process of decoding this byte, the recovered bits are 0,1,0,0,0,0,0,0 orderly;
that is, for the calculation results, only the second bit is different. The difference
can be clearly seen in Fig. 4, because the power consumption fluctuation is more
apparent when the recovered message bit value is 1. Therefore, each bit of a
message byte can be directly recovered through simple power attack.

4.2 Timing Leakage

In order to better analyze the time difference in the process of decoding the mes-
sage bits taking different values, we selected 0 and 255 as experimental objects.
When the decoding process of message byte values 255 and 0 is repeated 32
times, we found that the former takes longer than the latter. Additionally, Fig. 5
shows the power traces of the first message byte value of 0 and 255, respectively.
It can be clearly seen that when the start position of the two is the same, the
sampling end time after decoding is different. Therefore, it can be inferred that
processing bit 1 takes much longer than processing bit 0.

Fig. 5. Traces of msg[0] = 0 and msg[0] = 255.

4.3 Incremental Leakage

By comparing the power traces of message bytes with values of 0,1,2... 255 during
message decoding, it is found that there is a fixed peak interval in the interval
processing of adjacent bits, and the maximum power consumption in this interval
is always greater than or approximately equal to the power consumption of the
corresponding interval of the last bit. Figure 6 indicates the comparison details
in the power traces where msg[0] takes 0,1,2,34, and 255, respectively.

640 M. Shi et al.

Fig. 6. Traces of msg[0] = 0, 1, 2, 34, 255 (top to bottom).

5 Analysis of Experimental Results

To better understand the execution details of the message decoding process on
the actual embedded device, we use the arm-none-eabi-gcc compiler toolchain
to further obtain the assembly code under -Os (refer to Listing 2) and -O0
compiler options. The analysis of these instructions can help us to complete
effective message recovery attacks under the message decoding path.

Message Recovery Attack of Kyber 641

1 .L3:
2 strb r6, [r0 , #1]!
3 add r5 , r1, r2 , l s l #1
4 movs r4, #0
5 .L2:
6 /∗ t = ((a)−> c o e f f s [k] << 1) + 1664 ; ∗/
7 ldrsh r3, [r5], #2
8 ldrsh ip , [r0]
9 l s l s r3, r3, #1

10 add r3 , r3, #1664
11 uxth r3, r3
12 /∗ t = (t / 3329) & 1 ; ∗/
13 udiv r3 , r3, 3329
14 and r3 , r3, #1
15 /∗ msg [i] |= t << j ; ∗/
16 l s l s r3, r3, r4
17 adds r4, r4, #1
18 orr r3, r3, ip
19 cmp r4 , #8
20 /∗ s t o r e msg [i] in memory∗/
21 strb r3, [r0]
22 bne .L2
23 adds r2, r2, #8
24 cmp r2 , #256
25 bne .L3

Listing 2. Assembly code snippet (at -Os) of a single iteration of the message decoding
function in Kyber.

5.1 Power Consumption Analysis

Power Consumption Analysis at -Os Level. By comparing the power con-
sumption during decoding, two significant differences in power trace segments
were found when the resultant bits were 0 and 1, respectively. They are now
labeled separately in Fig. 7. According to the execution of instructions, the two
apparent differences are caused by the udiv instruction (integer division instruc-
tion) in one-bit processing and the strb instruction (storage instruction from
register to memory) at the end of one-bit processing. The following analyzes the
two differences, respectively.

642 M. Shi et al.

Fig. 7. Traces at -Os of msg[0] = 0 and msg[0] = 255 (two labels showing differences
between message bit 0 and 1)

udiv Instruction. By analyzing the sampling interval of udiv instruction exe-
cution on power traces, it is found that the power fluctuation amplitude when
the calculation result is 0 is much smaller than that when the calculation result
is 1. This significant difference is marked in Fig. 7 with a blue rectangular box.
Further observation shows that this difference exists in the eight times of decod-
ing with msg[0] = 0 and 255, which is consistent with the above analysis. To
prove the universality of the above analysis, we repeat the above experiment
for 256 possible values of one byte, which is verified to be true. Since the dif-
ference is so significant that the calculation results can be read directly from
the oscilloscope, the value of the message can be recovered from a single power
trace through SPA. Figure 8 shows a single power trace. According to the above

Fig. 8. A single trace measurement where msg[0] = 52.

Message Recovery Attack of Kyber 643

analysis, the decoded message byte can be directly recovered bit by bit horizon-
tally: 52 (binary representation: 00110100).

strb Instruction. It is well known that the storage operation divulges the Ham-
ming weight of the stored value. Therefore, if an attacker can identify the Ham-
ming weight of the median value of each message byte during the decoding oper-
ation, he can recover each bit value of the message byte under the leakage feature
of incremental storage. According to the analysis of Fig. 6, for msg[0] = 0, at
the peak position of 1-bit processing, the values of the first seven processes are
approximately the same because the Hamming weight of the stored operand is 0
every time, so the power consumption of the corresponding instruction execution
is roughly the same; For msg[0] = 255, at the peak position of 1-bit processing,
the value of the first seven processing times is higher than that of the previous
time. This is because each decoded message bit is 1. When it is connected to the
median value of the message byte, the Hamming weight of the value increases by
1. Therefore, the power consumption of strb instruction execution rises with the
increase of the Hamming weight of the operand. For the last bit, the decoding
result of msg[0] = 0 is 0, and the decoding result of msg[0] = 255 is 1. At this
time, the value of the spike position of 1-bit processing is always greater than
the previous one. It can be seen from the assembly code snippet of Listing 2 that
the power consumption sampling in this interval will include the subsequent add
and cmp instructions, and thus the power fluctuation is more significant.

In general, the incremental storage leakage during the decoding operation
can be used to recover the message byte except the first bit and the last bit. To
prove the universality of the above analysis, we repeat the above experiment for
256 possible values of one byte, which is verified to be true. Since the leakage is
so significant that the decoding result can be read directly from the oscilloscope,
six bits of one message byte can be recovered from a single power trace through
simple power analysis.

The Horizontal Message Recovery Scheme. Using the leakage on the udiv divi-
sion instruction, we can recover the value of each message byte bit by bit on a
single power trace. In order to make full use of the leaked information, a fault-
tolerance scheme can be built with the leaked information on the strb instruction
to assist in verifying that the message bits recovered through the udiv instruc-
tion leakage are correct, except the first bit and the last bit of one byte. For 256
possible values of one message byte, we demonstrate that the above horizontal
message recovery scheme can recover the value of message bytes with a 100%
success rate.

Power Consumption Analysis at -O0 Level. At the -O0 level, the division
operation in the decoding process does not use the udiv instruction but the
umull series of instructions. Through experimental analysis, it is found that
the difference in power consumption is not apparent when the operand takes
different values. Therefore, the message value cannot be recovered using the

644 M. Shi et al.

scheme proposed in the last part. The power consumption leakage found on the
udiv instruction no longer applies to the analysis at -O0 compiler level.

To explore the applicability of the horizontal message recovery attack pro-
posed in the last part at this compiler level, the compiler parameter is modified to
-O0, and the experiment under -Os is repeated. To reduce the negative effect of
noise, the decoding experimental data is sampled 1000 times and then averaged.
Figure 9 shows two power traces during the message decoding process where
msg[0] is 0 and 255, respectively.

Fig. 9. Traces of msg[0] = 0 and msg[0] = 255.

For the decoding process with msg[0] = 0, the operand of strb instruction
stored each time is 0, and the corresponding Hamming weight is also 0. There-
fore, with the Hamming weight model, the power consumption of strb instruc-
tion execution is approximately equal in the eight intervals. For the decoding
process with msg[0] = 255, the operands of strb instruction stored each time
are 1,3,7,15,31,63,127,255, and the corresponding Hamming weight increases by
one from 1 to 8. Therefore, under the Hamming weight model, the power con-
sumption during the execution of strb instruction is gradually augmented during
8 intervals. Consequently, the average difference in strb instruction power con-
sumption per bit of decoding processing should be increased. As the result, the
interval in which the difference between the two values shown in Fig. 9 increases
significantly in turn in 8 processes can represent the sampling interval of strb
instruction execution. We express this interval as w[i], where i ∈ [0, 7]. When a
simple power analysis is made for the w[i] interval of a single group of data, the
power consumption values of w[i] in the eight processing processes are approxi-
mately the same in terms of msg[0] = 0; As far as msg[0] = 255 is concerned, the
power consumption of w[i] in the eight processes is significantly higher than that
in the last process. This is consistent with the power consumption characteristics
of Hamming weight model.

Message Recovery Attack of Kyber 645

The Horizontal Message Recovery Scheme. For the attacked message decoding
process, when recovering the message of one byte on the obtained power trace,
first locate the w[i] interval corresponding to the byte, where i ∈ [0, 7]. According
to the analysis in the last section, for i ∈ [1, 7], compare the power consumption
value of w[i] with the power consumption value of w[i− 1] corresponding to the
previous process, and then recover the message value of the ith bit by bit; For
the recovery of the message value of the 0th bit, firstly, build two templates with
the corresponding bit value of w[0] being 0 and 1 respectively, then calculate
the similarity between w[0] and the two templates respectively. Finally, take
the value corresponding to the template with high similarity as the message bit
recovery value of w[0]. As a result of the attack, the value of the message byte
can be completely recovered.

5.2 Timing Leakage Analysis

Usually, the main reason for the leakage of time information is the use of branch
statements. Kyber adopts nested for-loop in the decoding process, and its code
implementation effectively avoids the timing attack based on branch statements.
However, by analyzing the assembly code in the decoding process, we find that
the number of clock cycles spent by udiv instructions depends on the value of
the operand, while strb, add , movs, ldrsh , lsls, uxth , orr , cmp instructions
are completed in fixed number of clock cycles. It can be seen that the time
difference of different message intermediate byte values calculated depends on
the time difference of udiv instruction execution.

For 256 different values of one message byte, we build 256 groups of cipher-
text. Except that the values of the first byte are belonging to [0,255], the message
values of other bytes after decoding are random. To obtain a clear and noise-
weakened power trace, we repeat the decoding process 100 times and average
the obtained power traces.

It is known that the number of sampling points = sampling rate × sampling
time. From the power traces in Fig. 5, we can see that for a 1-byte message
decoding process, the sampling interval of msg[0] = 0 is narrower than that of
msg[0] = 255. Therefore, when the sampling rates are fixed, the execution time
of decoding msg[0] = 255 is longer than that of msg[0] = 0. According to the
clock cycle required for instruction execution, this difference is caused by the
difference of the operand when the udiv instruction is executed. In the process
of decoding msg[0] = 0, the result of 8 times of udiv instruction execution
is 0; In the process of decoding msg[0] = 255, the result of 8 times of udiv
instruction execution is 1. According to the statistics of the sampling points
in the eight effective intervals of Fig. 5, there are significant differences in the
sampling points processed in these eight segments: for msg[0] = 0, there are
about 335 sampling points in an effective interval; For msg[0] = 1, the number
of sampling points in an effective interval is about 373; As explained above,
there is a significant difference in clock cycles spent by the udiv instruction in
implementing the above two calculations.

646 M. Shi et al.

Unlike -Os, which uses the udiv instruction to implement the division opera-
tion t/Q, the other four compiler levels -O0, -O1, -O2, and -O3 use a combination
of multiplication umull , subtraction subs, and addition add instructions to
implement the division operation. In particular, in the Kyber’s specification, the
author mentioned that on the ARM Cortex-M3 processor, the umull instruc-
tion is implemented within a variable number of clock cycles, and its execution
time depends on the value of the operands involved in the operation, which is a
possible source of timing leakage. However, as far as the ARM Cortex-M4 pro-
cessor is concerned, this leakage does not exist because the umull instruction
is guaranteed to complete within a single clock cycle. According to the number
of clock cycles of instructions execution, the analysis of the remaining assem-
bly instructions shows that when these four compiler optimizations are adopted,
the message decoding process does not have side-channel leakage in the time
dimension on the Cortex-M4 processor.

6 Conclusion

In this paper, we prove that Kyber’s decoding process is vulnerable to side-
channel attacks in terms of power consumption and time. Subsequently, We
show a new type of horizontal message recovery attack. The proposed attack
method can use a single power trace to recover the message value with a 100%
success rate. Because of the severe threat to the security system, adding well-
designed shuffling and masking schemes to the message decoding process may
be an effective protection strategy.

References

1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219 (1996)

3. Chen, L., et al.: Report on post-quantum cryptography, vol. 12. US Department
of Commerce, National Institute of Standards and Technology (2016)

4. Bos, J., et al.: CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In:
2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–
367. IEEE (2018)

5. PQC Standardization Process: Announcing Four Candidates to be Standardized,
Plus Fourth Round Candidates. https://csrc.nist.gov/News/2022/pqc-candidates-
to-be-standardized-and-round-4

6. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

7. Pessl, P., Primas, R.: More practical single-trace attacks on the number theoretic
transform. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol.
11774, pp. 130–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30530-7 7

https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-030-30530-7_7

Message Recovery Attack of Kyber 647

8. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks
on CCA-secure lattice-based PKE and KEMS. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(3), 307–335 (2020)

9. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

10. Ravi, P., Roy, D.B., Bhasin, S., Chattopadhyay, A., Mukhopadhyay, D.: Number
“Not Used” once - practical fault attack on pqm4 implementations of NIST can-
didates. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp.
232–250. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16350-1 13

11. Albrecht, M.R., Deo, A., Paterson, K.G.: Cold boot attacks on ring and module
LWE keys under the NTT. Cryptology ePrint Archive (2018)

12. Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.: Defeating NewHope with a
single trace. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp.
189–205. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1 11

13. Sim, B.Y., et al.: Single-trace attacks on message encoding in lattice-based KEMs.
IEEE Access 8, 183175–183191 (2020)

14. Xu, Z., Pemberton, O.M., Roy, S.S., Oswald, D., Yao, W., Zheng, Z.: Magnifying
side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: the
case study of Kyber. IEEE Trans. Comput. 71, 2163–2176 (2021)

15. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: post-quantum
crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4

16. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a masked
IND-CCA secure saber KEM implementation. IACR Trans. Cryptographic Hard-
ware Embedded Syst., 676–707 (2021)

17. Ravi, P., Bhasin, S., Roy, S.S., Chattopadhyay, A.: On exploiting message leakage
in (few) NIST PQC candidates for practical message recovery and key recovery
attacks. Cryptology ePrint Archive (2020)

18. Ngo, K., Dubrova, E., Johansson, T.: Breaking masked and shuffled CCA secure
saber KEM by power analysis. In: Proceedings of the 5th Workshop on Attacks
and Solutions in Hardware Security, pp. 51–61 (2021)

19. Ravi, P., Bhasin, S., Roy, S.S., Chattopadhyay, A.: On exploiting message leakage
in (few) NIST PQC candidates for practical message recovery attacks. IEEE Trans.
Inf. Forensics Secur. 17, 684699 (2021)

20. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-030-16350-1_13
https://doi.org/10.1007/978-3-030-44223-1_11
https://www.github.com/mupq/pqm4

PII-PSM: A New Targeted Password
Strength Meter Using Personally

Identifiable Information

Qiying Dong1, Ding Wang1(B), Yaosheng Shen2, and Chunfu Jia1

1 College of Cyber Science, Nankai University, Tianjin 300071, China
wangding@nankai.edu.cn

2 School of ECE, Peking University Shenzhen Graduate School, Shenzhen 518055,

China

Abstract. In recent years, unending breaches of users’ personally iden-
tifiable information (PII) have become increasingly severe, making tar-
geted password guessing using PII a practical threat. However, to our
knowledge, most password strength meters (PSMs) only consider the
traditional trawling password guessing threat, and no PSM has taken
into account the more severe targeted guessing threat using PII (e.g.,
name, birthday, and phone number). To fill this gap, in this paper,
we mainly focus on targeted password strength evaluation in the sce-
nario where users’ PII is available to the attacker. First, to capture more
fine-grained password structures, we introduce the high-frequency sub-
string as a new grammar tag into leading targeted password probabilis-
tic models TarGuess-I and TarMarkov, and propose TarGuess-I-H and
TarMarkov-H. Then, we weight and combine our two improved models
to devise PII-PSM, the first practical targeted PSM resistant to common
PII-accessible attackers. By using the weighted Spearman (WSpearman)
metric recommended at CCS’18, we evaluate the accuracy of our PII-
PSM and its counterparts (i.e., our TarGuess-I-H and TarMarkov-H, as
well as two benchmarks of Optimal and Min auto). We conduct evalu-
ation experiments on password datasets leaked from eight high-profile
English and Chinese services. Results show that our PII-PSM is more
accurate than TarGuess-I-H and TarMarkov-H, and is closer to Opti-
mal and Min auto, with WSpearman differences of only 0.014∼0.023
and 0.012∼0.031, respectively. This establishes the accuracy of PII-PSM,
facilitating to nudge users to select stronger passwords.

Keywords: Password authentication · Targeted guessing · Password
strength meter · Personally identifiable information · Password
probabilistic model

1 Introduction

Identity authentication is the first line of defense to ensure information system
security, and text passwords are the most widely used method [2]. The most

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 648–669, 2023.

https://doi.org/10.1007/978-3-031-25538-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_34&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_34

PII-PSM: A New Targeted Password Strength Meter Using PII 649

common threat to password-based authentication is password guessing attacks,
which can be divided into trawling attacks and targeted attacks based on the
attacker’s knowledge. By exploiting users’ vulnerable behaviors (e.g., adopting
popular passwords [1,18] and keyboard patterns [23]), a trawling attacker per-
forms indiscriminate password guessing on all user accounts to crack as many
accounts as possible. In contrast, to guess a specific user’s password, a targeted
attacker takes advantage of the user’s personal information to facilitate guess-
ing. This is realistic because users tend to employ a variety of personal informa-
tion (e.g., name, birthday, and old/sister passwords) when generating passwords
[4,9,15,22,24].

In recent years, there have been numerous data breaches containing users’
personal information. For example, the LinkedIn breach [14] leaks 700 million
users’ full names, phone numbers, physical addresses, email addresses, geoloca-
tion records, LinkedIn usernames and profile URLs, personal and professional
experiences and backgrounds, genders, and other social media accounts and user-
names; the Facebook breach [5] leaks 533 million users’ full names, Facebook IDs,
phone numbers, locations, birthdays, biographies, and email addresses; the Nitro
PDF breach [7] leaks 77 million users’ email addresses, full names, bcrypt hashed
passwords, titles, company names, IP addresses, and other system-related infor-
mation. This provides sufficient material for targeted guessing, making it a more
severe and realistic threat than traditional trawling guessing [24].

To nudge users to select strong passwords, nearly every respectable web ser-
vice provider has deployed password strength meters (PSMs). However, as far
as we know, apart from personalized password strength meter (PPSM) [15],
leading PSMs (e.g., [3,6,13,21,26]) only consider trawling guessing scenarios.
These trawling PSMs do not include the user’s personal information in pass-
word strength evaluation, and are thus unable to accurately measure password
strength when facing real-world attacks. Besides, the targeted PPSM [15] relies
on sister passwords from different sites in evaluating password strength, which is
highly impractical due to two reasons: 1) The server generally does not hold the
user’s old (sister) passwords; 2) Sister passwords are not easily accessible [4,24].
For example, Das et al. [4] analyzed 7.96 million accounts from different sites
and found that only 152 (0.00191%) were successfully matched by email more
than once; Wang et al. [24] analyzed 547.56 million accounts and found that less
than 1.02% and 1.73% were successfully matched by email and username more
than once. Comparatively, users often submit personally identifiable information
(PII, such as name and phone number) when registering. Even if they do not
submit, PII is easy to obtain (e.g., through social networks) by attackers. Thus,
designing a PII-based PSM is urgent and necessary.

Contributions

(1) Two Improved Targeted Password Probabilistic Models. We ana-
lyze passwords from eight high-profile English and Chinese services, and find
that high-frequency substrings (HFSs) can capture more fine-grained pass-
word structures than popular passwords. Thus, we introduce the HFS as a
new grammar tag into leading targeted probabilistic models TarGuess-I [24]

650 Q. Dong et al.

and TarMarkov [22], and propose the improved models TarGuess-I-H and
TarMarkov-H.

(2) A New Targeted Password Strength Meter (PSM). We weight and
combine our proposed TarGuess-I-H and TarMarkov-H to devise PII-PSM.
It is the first practical targeted PSM resistant to common targeted attackers
with personally identifiable information (PII), using the stochastic gradient
descent approach to optimize the weights. In this way, the impact of ran-
domly/manually setting the weights on PSM accuracy can be eliminated.

(3) An Extensive Evaluation. By using the weighted Spearman correlation
coefficient (WSpearman) metric recommended by Golla et al. [8], we evaluate
the accuracy of our PII-PSM and its counterparts (including our TarGuess-I-
H and TarMarkov-H, as well as two benchmarks of Optimal and Min auto).
We perform experiments on eight large-scale password datasets with dif-
ferent user languages and service types. Results show that our PII-PSM is
more accurate than TarGuess-I-H and TarMarkov-H, and is closer to Opti-
mal and Min auto, with WSpearman differences of only 0.014∼0.023 and
0.012∼0.031, respectively. This indicates the accuracy of PII-PSM, facilitat-
ing to help users set stronger passwords.

2 Preliminaries and Related Work

In this section, we introduce leading targeted password probabilistic models
using personally identifiable information (PII), and elaborate on the prelimi-
naries of targeted password strength meters (PSMs).

2.1 Targeted Password Probabilistic Models

A password probabilistic model (e.g., [6,9,13,21,22,24]) can assign password
construction probabilities in the password space. It can be used to construct
probability-based PSMs and password guessing models. A targeted guessing
attacker usually utilizes the target user’s personal information to improve guess-
ing efficiency. There are various types of personal information, such as PII (e.g.,
name, user name, and email address), and user identification information (e.g.,
users’ old passwords and sister passwords from different sites) [24]. Targeted
password probabilistic models can be categorized according to the personal infor-
mation incorporated, e.g., Personal-PCFG [9], TarGuess-I [24], and TarMarkov
[22] that employ users PII; TarGuess-II [24], pass2path and PPSM [15], and Das
et al.’s [4] that employ users sister passwords; TarGuess-III [24] including both
PII and sister passwords. In this paper, we mainly focus on the most basic yet
realistic targeted guessing scenario that exploits users’ PII.
Personal-PCFG. Based on the probabilistic context-free grammar (PCFG)
password model [25], Li et al. [9] proposed a targeted model Personal-PCFG. It
divides personal information into six categories (i.e., User name, Email, Name,
Birthday, Phone number, and ID number) and combines PCFG grammar tags
(i.e., Letter string, Digit string, and Symbol string). Besides, it determines the

PII-PSM: A New Targeted Password Strength Meter Using PII 651

password structure according to the type and length of strings and personal
information. For example, the password Li123! for a user named Hua Li is con-
verted to N2D3S1. The rest of the training and password generation approaches
for Personal-PCFG [9] are the same as PCFG [25].

However, Wang et al. [24] have shown that the above length-based PII match-
ing method of Personal-PCFG [9] is inaccurate to capture users’ PII usage
behaviors. For example, Personal-PCFG [9] transforms the passwords Hua123
and Liu456 of the users named Hua Li and Kai Liu into the same base struc-
ture N3D3 during the training phase, and the password wang789 of the user
named Lei Wang into N4D3. However, the user Hua Li uses her given name
to build passwords, while users Kai Liu and Lei Wang use their family names
to build passwords. Such inherently different user behaviors are misleadingly
characterized in Personal-PCFG [9].

TarGuess-I. Almost at the same time, Wang et al. [24] proposed TarGuess-I,
which is based on PCFG but uses a novel type-based PII matching method. For
instance, TarGuess-I [24] transforms the password Hua123 of the user named Hua
Li into N4D3, and passwords Liu456 and wang789 (of users named Kai Liu and
Lei Wang) into the same base structure N3D3. That is, TarGuess-I [24] uses the
subscript n to represent the sub-type of a specific PII type (e.g., Name N and
Birthday B), not the length of a specific PII type as in Personal-PCFG [9]. This
well eliminates the misleading characterization of user behaviors in Personal-
PCFG [9]. Taking Nn as an example, for a user named Lei Wang, N1 stands for
leiwang, N2 for lw, and N3 for wang. The grammar GTarGuess−I = (S,V, Σ,R)
is described as:

Training

Password structures

… … …3 abc 0.64 love 0.3

...

GenerationPII substitution
3 5 0.21 3 3 0.154 1 3 0.014 1 3 0.014 3 0.008

... ...

…
huali123abc; [Hua Li; 1999/08/28]
leiwang0102!@#; [Lei Wang; 1998/01/02]
123456789; [Lin Zhang; 2000/02/03]
love@Jesus; [Ava White; 1988/05/20]
Jimmy#abc; [Jimmy Black; 1991/07/12]
...

Password strings

… …1 3 3 0.151 4 0.124 1 4 0.084 1 3 0.01

... ...

… … …1 @ 0.51 # 0.5

… … …

…

… …

smith1991 0.2

bobsmith123abc 0.005

bob@123 0.0002

Bob#123 0.00012

... ...

User: [Bob Smith; 1991/06/22]

Fig. 1. An illustration of TarGuess-I [24].

1) S ∈ V is the start symbol;
2) V = {S;Ln,Dn, Sn;Nn, Bn, Un, En, In, Tn; ε} is the set of grammar tags,

where
a) Ln,Dn, Sn are the grammar tags of basic PCFG [25], representing the

letter, digit, and symbol strings of length n, respectively;

652 Q. Dong et al.

b) Nn, Bn, Un, En, In, Tn are the grammar tags of TarGuess-I [24], represent-
ing the different forms of Name, Birthday, User name, Email, ID number,
and Phone number distinguished by the number n;

c) ε is the terminator;
3) Σ is the set of 94 printable ASCII characters;
4) R is a finite set of rules of the form A → β, with A ∈ V and β ∈ V ∪ Σ.

Different from PCFG [25], when guessing the target user userA’s password,
TarGuess-I [24] does not directly generate the final passwords for guessing, but
first generates PII-tags and then replaces them with userA’s PII, as shown in
Fig. 1. The experimental results of Wang et al. [24] showed that within 1,000
guesses, the guessing success rate of TarGuess-I is 37.11% higher than Personal-
PCFG [9].

In 2020, Xie et al. [27,28] modified TarGuess-I by introducing grammar
tags of popular passwords, keyboard patterns, and special strings. However,
their experiments showed that these modifications only marginally improved
the guessing success rate of the model (increased by less than 2.62% within 100
guesses). Moreover, the guessing success rate decreased on password datasets of
certain service types (e.g., the train ticketing service 12306). Besides, they only
used passwords leaked from Chinese services in experiments, without consider-
ing the impact of different user languages (e.g., English and Chinese) on model
performance. Therefore, we adopt the original TarGuess-I [24] for evaluation and
comparison in this paper.

TarMarkov. Unlike Personal-PCFG [9] and TarGuess-I [24], TarMarkov [22] is
a sequence model that infers the next string state based on the current string
state. Its grammar GTarMarkov = (S,V,R) is described as below:

1) S ∈ V is the start symbol;
2) V = {S;Nn, Bn, Un, En, In, Tn;Σ; ε} is the state set, where

a) Nn, Bn, Un, En, In, Tn have the same meaning as the corresponding gram-
mar tags in TarGuess-I [24], except that they represent different states
here;

b) Σ is the set of 94 printable ASCII characters;
c) ε is the terminator;

3) R is a finite set of markov state transition rules of the form s1 → s2, with
s1, s2 ∈ V∗.

2.2 Targeted Password Strength Meters

The above targeted password probabilistic models enable us to design targeted
PSMs. Though academia has proposed a series of well-performed PSMs (e.g.,
[3,6,13,21,26]), the main focus is still trawling guessing scenarios, while paying
little attention to the more threatening targeted guessing scenarios (especially
when users’ PII is available). Thus, we mainly focus on targeted PSMs using
common PII.

PII-PSM: A New Targeted Password Strength Meter Using PII 653

Users’ Vulnerable Behaviors. Users’ password security/strength is intrinsi-
cally impacted by their vulnerable behaviors, mainly including [24]: (1) using
popular passwords [1,10], (2) password reuse [11,12], and (3) using personal
information [23]. Existing PSMs can prevent issue-1 and issue-2 well. For exam-
ple, fuzzyPSM [21] can accurately capture users’ password reuse behaviors and
has a built-in base dictionary containing popular passwords. However, to the
best of our knowledge, issue-3 has not been well addressed. This is because cur-
rent practice using third-party corpora (e.g., common names and places) during
training will result in PSM accuracy largely dependent on the corpus selection
[23]. Besides, in a targeted guessing scenario where the attacker can obtain users’
PII, the same password containing PII constructed by different users should be
rated with different strengths. For instance, Hua Li and Lei Wang both select
the password Li123#. The string Li is likely to be constructed by Hua Li using
her family name, while for Lei Wang it may just be a random letter string.
Thus, it is essential to propose a PSM that can accurately evaluate the strength
of different users’ passwords in targeted guessing.

Ideal Targeted Password Strength Meter. For the ideal PSM under trawl-
ing guessing scenarios, the formal definition given by Wang et al. [21] is as follows.
For the function M(·) and password distribution D, if

PD(pwi) ≥ PD(pwj), (1)

there is

∀pwi, pwj ∈ D; M(pwi) ≥ M(pwj). (2)

Then, M(·) is called an ideal trawling PSM.
Analogously, targeted PSMs are adopted to evaluate the strength of the pass-

word pw in the password space under the given users’ PII, so we give the formal
definition of the ideal targeted PSM as follows. Suppose userA uses her own PII
to construct passwords; for the function M(·) and password distribution DuserA

,
if

PDuserA
(pwi) ≥ PDuserA

(pwj), (3)

there is

∀pwi, pwj ∈ DuserA
; M(pwi) ≥ M(pwj). (4)

Then, M(·) is called an ideal targeted PSM.

654 Q. Dong et al.

Table 1. Basic info about our eight password datasets (PII = personally identifiable
information).

Dataset Web service Language When leaked Total passwords With PII

Rootkit Hacker forum English Feb. 2011 69,418 �
12306 Train ticketing Chinese Dec. 2014 129,303 �
Yahoo Web portal English July 2012 453,491

000webhost Web hosting English Oct. 2015 15,299,907

CSDN Programmer Chinese Dec. 2011 6,428,632

Dodonew E-commerce Chinese Dec. 2011 16,283,140

Rockyou Forum English Dec. 2009 32,603,387 —†

Tianya Forum Chinese Dec. 2011 29,513,716 —†

† We choose Rockyou and Tianya as base dictionaries of high-frequency substrings,
so the users’ PII contained in them is not considered.

Table 2. Basic info about our PII datasets (PII=personally identifiable information).

Dataset Items num Types of PII

PII-Rootkit 69,330 Email, User name, Name, Birthday

PII-12306 129,303 Email, User name, Name, Birthday, Phone number

PII-Yahoo 214 Email, User name, Name, Birthday

PII-000webhost 79,580 Email, User name, Name, Birthday

PII-CSDN 77,216 Email, User name, Name, Birthday, Phone number

PII-Dodonew 161,517 Email, User name, Name, Birthday, Phone number

3 Analysis of Real Password Data

In this section, we analyze the characteristics of real-world leaked password data,
and provide the basis for our improved targeted probabilistic models TarGuess-
I-H and TarMarkov-H and our proposed targeted PII-PSM.

3.1 Our Datasets and Ethical Considerations

Datasets. We analyze eight large-scale leaked password datasets and show basic
information in Table 1. These datasets have different password strengths, lan-
guages, and service types, and have been widely used in password research (e.g.,
[8,13,16,21,23–26]). Referring to Wang et al.’s password data cleaning method
[23], we first remove the junk information in the dataset, such as unnecessary
headers, descriptions, footnotes, hash values, and strings containing symbols
other than 94 printable ASCII characters and the space character. Besides, we
remove those passwords longer than 30 for they are unlikely to be chosen by
users but by password managers, while our concerned PSMs are designed to
evaluate user-constructed passwords.

Two of our datasets, 12306 and Rootkit, contain certain types of users’ PII
(e.g., Email, User name, Name, Birthday, and Phone number). To make our

PII-PSM: A New Targeted Password Strength Meter Using PII 655

targeted probabilistic models more extensible, we match the above two datasets
containing users’ PII with the remaining four datasets (i.e., Yahoo, 000webhost,
CSDN, and Dodonew) through email, resulting in four datasets associated with
PII (e.g., PII-Yahoo). The types of PII in each dataset and the number of pass-
words associated with PII are shown in Table 2.

Ethical Considerations. Despite the fact that these password datasets are ever
publicly available and widely used, passwords are highly private and sensitive.
Thus, we still process them with caution. We only show aggregated statistics
(like total passwords, top-10 HFSs%, and given name%) and treat each account
as confidential, so that our use will not make attackers gain extra advantages
in password guessing. Besides, we process all our password-related data on com-
puters not connected to the Internet, and delete sensitive info after finishing
experiments. Furthermore, our use of these datasets is not only beneficial for
research on targeted guessing and password strength evaluation, but also for
security admins to protect user account security.

Table 3. Top-10 popular passwords (left) and high-frequency substrings (right).†

Rank English

Rootkit Yahoo 000webhost Rockyou

1 123456 123456 123456 123456 abc123 abc123 123456 123456

2 password Password Password 101 123456a 123456a 12345 12345

3 Rootkit Rootkit Welcome ana 12qw23we 12qw23we 123456789 123456789

4 111111 111111 Ninja 100 123abc 123abc Password Password

5 12345678 12345678 abc123 cat a123456 a123456 iloveyou iloveyou

6 qwerty qwerty 123456789 red 123qwe 123qwe Princess Princess

7 123456789 123456789 12345678 star secret666 secret 1234567 1234567

8 123123 123123 Sunshine dog YfDbUfNjH10305070 asd rockyou rockyou

9 qwertyui 12345 Princess 102 asd123 qwerty 12345678 12345678

10 12345 1234 qwerty ard qwerty123 YfDbUfNjH10305070‡ abc123 abc123

% 3.94 5.38 1.01 1.93 0.79 1.35 2.05 2.05

Rank Chinese

12306 CSDN Dodonew Tianya

1 123456 123456 123456789 123456789 123456 123456 123456 123456

2 a123456 a123456 12345678 12345678 a123456 a123456 111111 123

3 5201314 5201314 11111111 11111111 123456789 123456789 000000 111

4 123456a 123456a dearbook dearbook 111111 111111 123456789 12345678

5 111111 111111 00000000 00000000 5201314 520 123123 520

6 woaini1314 123123 123123123 123123123 123123 123 123321 321

7 123123 000000 1234567890 1234567890 a321654 a321654 5201314 123123

8 000000 woaini 88888888 88888888 12345 123123 12345678 666666

9 qq123456 qq123456 111111111 111111111 000000 000000 666666 111

10 1qaz2wsx 1qaz 147258369 147258369 123456a 1234 111222tianya tianya

% 3.28 3.78 10.44 10.44 0.79 1.75 7.43 16.33

† A high-frequency substring in blue indicates that it is different from the popular
password of the same rank in the same password dataset. In Chinese, the homophonic
meaning of 5201314 is “I love you (520) forever (1314)”. The Chinese pinyin woaini

means “I love you”.
‡ The letter segment YfDbUfNjH can be mapped to a Russian word that means “navi-
gator”, and why it is so popular is beyond our comprehension.

656 Q. Dong et al.

3.2 High-Frequency Substrings (HFSs) and Popular Passwords

When constructing passwords, users may adopt more common and fine-grained
HFSs as password components than popular passwords [20]. To investigate this
issue, we count top-10 HFSs (see Sects. 4.1 and 5.1 for detailed identification
approaches and parameter settings) and popular passwords in our eight pass-
word datasets, and calculate the proportion of passwords containing them in the
dataset. The results are shown in Table 3. It can be seen that 1.35%∼16.33%
of the passwords contain top-10 HFSs, while only 0.79%∼7.43% contain top-10
popular passwords. That is, HFSs are more common in users’ passwords than
popular passwords, indicating that users may prefer to utilize HFSs to construct
passwords. In addition, when constructing passwords, Chinese users prefer to use
simple digit strings (e.g., 123456, 00000000, and 123123) and some strings with
semantics (e.g., 5201314 and woaini related to “love”). In contrast, English
users tend to use a combination of letter and digit strings (e.g., abc123 and
qwerty123) and common English words/phrases (e.g., password, iloveyou, and
cat).

Table 4. Percentages (%) of users constructing passwords with (left) and only
with (right) their heterogeneous personal information, popular passwords, and high-
frequency substrings (HFSs).†

Typical usages of PII (examples) English Chinese

PII-Rootkit PII-Yahoo PII-000webhost PII-12306 PII-CSDN PII-Dodonew

(69,330) (214) (2,950) (129,303) (77,439) (161,510)

Top-10 popular passwords (123456) 2.45 2.14 0.06 0.02 0.79 0.47 1.56 1.01 9.32 8.42 4.61 2.18

Top-100 popular passwords 2.76 2.31 0.09 0.04 0.87 0.53 1.78 1.14 26.31 24.54 4.91 2.43

Top-10 HFSs (123, abc) 2.98 2.02 0.19 0.00 3.01 0.45 1.78 1.08 12.59 8.42 5.33 2.18

Top-100 HFSs 6.32 2.25 0.59 0.04 6.38 0.49 3.45 1.12 29.32 27.73 7.57 2.39

Full name (hua li) 1.38 0.75 2.34 1.87 2.44 1.32 5.02 1.13 4.85 1.81 4.68 0.82

Family name (li) 2.28 0.78 4.67 1.87 3.73 1.46 11.23 0.00 9.75 0.00 11.15 0.01

Given name (hua) 0.49 0.07 0.93 0.00 0.75 0.20 6.61 0.07 6.26 0.08 6.49 0.07

Abbr. full name (lh, hl, hli) 0.15 0.01 0.00 0.00 0.20 0.00 13.13 0.00 9.42 0.00 13.64 0.02

Full Birthday (19980102, 01021998) 0.08 0.06 0.47 0.00 0.10 0.07 4.33 1.77 6.29 5.16 3.12 1.00

Year of birthday (1982) 0.75 0.01 1.40 0.00 1.12 0.00 10.78 0.00 11.37 0.00 8.92 0.00

Date of birthday (0102, 0201) 0.44 0.01 0.47 0.00 0.58 0.00 10.03 0.00 11.84 0.00 8.32 0.00

Abbr. birthday (199812, 980102) 0.10 0.05 0.00 0.00 0.20 0.14 3.31 1.12 2.89 1.45 2.37 0.59

User name strings (neko 10, neko) 2.91 0.86 4.01 1.40 2.20 1.32 3.57 1.22 0.91 0.67 2.61 1.71

Email strings (loveu@exa, loveu) 0.77 0.49 4.38 1.87 1.32 0.78 3.23 1.95 4.65 2.48 5.37 3.08

Phone strings (123-4567-8900) — — — — — — 0.07 0.01 0.50 0.45 0.11 0.11

† All decimals in the table are in “%”. For instance, 2.45 in the upper left corner means
that 2.45% of the 69,330 PII-Rootkit users employ top-10 popular passwords to build
passwords; 2.14 means that 2.14% of these 69,330 PII-Rootkit users’ passwords are just
top-10 popular passwords.

Further, we extract top-10 and top-100 HFSs and popular passwords, respec-
tively, and use them together with some PII-tags (e.g., name and email) to mark
and analyze passwords. The results are shown in Table 4. The left column cor-
responding to each dataset in Table 4 is the proportion of passwords containing

PII-PSM: A New Targeted Password Strength Meter Using PII 657

the tag, and the right column is the proportion of passwords that are exactly
the tag. For example, if the tag content is 123456, the counted passwords in the
left column include 1234567 and a123456, and that in the right column only
include 123456. It can be seen that passwords with a specific PII-tag account for
a considerable portion, the highest being 13.64%, showing that users’ vulnerable
behaviors of using PII to construct passwords are common.

Here we focus on HFS and popular password tags, and find that: 1) For
the same dataset, the proportion of passwords containing top-10/top-100 HFSs
(on the left column) is greater than that of top-10/top-100 popular passwords
(in two columns), indicating that HFSs can capture more fine-grained password
characteristics than popular passwords; 2) The proportion of passwords that are
exactly the top-10/top-100 HFS-tags (on the right column) is close to the pro-
portion of top-10/top-100 popular passwords (in two columns), indicating that
some HFSs are directly used by users as passwords and play the role of popu-
lar passwords; 3) A larger scale of HFS-tags (e.g., from top-10 to top-100) can
significantly cover more passwords and capture more password characteristics.

3.3 Password Structures

To investigate how HFS-tags and popular password-tags characterize password
structure, we convert the two types of tags into grammar tags of GTarGuess−I

and GTarMarkov. More specifically, we count the top-100 popular passwords and
HFSs, labeled “Pn” which represents a popular password of length n and “Hi

n”
meaning an HFS ranked i in those substrings of length n. Following the longest-
prefix matching rule, we first match PII segments in a password, then use the
remaining segments to match Pn and Hi

n, and obtain password structures. We
show the top-10 password structures and the proportions containing Pn and
Hi

n in Table 5. We find that the top-10 password structures of these password

Table 5. Top-10 password structures marked with popular password tags (Pn; on
the left) and high-frequency substring tags (Hi

n; on the right) of each dataset, and
proportions of password structures containing the two tags (Pn% and Hi

n%) in each
dataset. (Pn=a popular password of length n, and Hi

n=a high-frequency substring
ranked i in those substrings of length n)

Rank English Chinese

Rootkit Yahoo 000webhost 12306 CSDN Dodonew

1 P6 H1
6 P6 H1

6 P6 H1
6 P6 H1

6 P8 D8 E1 E1

2 P8 H1
8 P8 H1

8 P8 H1
8 D6 H2

6 D8 H1
8 D7 H3

7

3 D8 H2
6 D6 H2

6 P7 H2
6 D7 D6 E1 E1 P6 H1

6

4 L8 H2
8 L6 H2

8 D6 H1
7 N2D6 D7 B1 B1 D6 H2

6

5 P7 H1
7 L8 L8 D8 H2

8 U1 H1
7 D9 D9 D8 D6

6 N2D6 H3
6 D9 D9 L6 N1D6 D8 U1 N2D6 N2D6 N2D6 N2D6

7 D5 N2H
1
6 P9 P9 N3D1 U1D1 E1 D8 U1 U1 U1D7 U1D7

8 U1D1 N2D6 N1D1 H1
9 N4D1 N1D1 N2D7 E1 D11 D11 N2D7 N2D7

9 N3D1 U1D1 U1D1 N1D1 E1D3 N3D1 U3 N2D7 N2D7 N2D7 U1 U1

10 N4D1 D5 N3D1 H3
8 D10 N1 U2D6 N2H

1
7 D10 H10

1 U2D6 U2H
1
6

Pn% 14.12 16.78 10.14 6.31 10.11 4.25

Hi
n% 30.13 34.28 26.13 17.22 16.12 6.39

658 Q. Dong et al.

datasets include a number of simple structures independent of PII-tags, such as
single Pn, Hi

n, Ln, and Dn. Therefore, adding Pn and Hi
n tags to GTarGuess−I

and GTarMarkov are likely to facilitate password probabilistic models to identify
simple yet common strings in passwords more effectively, thereby helping to
build more accurate PSMs.

What’s more, Hi
n can characterize more fine-grained password structures than

Pn. For example, after introducing Hi
n tags, the top-2 password structures of

Rootkit are further refined into P6→H1
6 ,H2

6 and P8→H1
8 ,H2

8 . Similarly, there
are P9→H1

9 ; L8→H1
8 ,H2

8 ; and U2D6→U2H
1
6 . This can help TarGuess-I [24] con-

struct more HFSs rather than redundant segments when generating passwords.
For TarMarkov [22], more refined and diverse password structures are helpful to
well solve the long-standing issue of data sparsity. To sum up, we take Hi

n as a
new grammar tag to improve the leading targeted password probabilistic models
TarGuess-I [24] and TarMarkov [22].

4 Methodology

In this section, we first propose two new targeted password probabilistic models,
TarGuess-I-H and TarMarkov-H, which can identify HFSs in users’ passwords.
Based on these two models, we devise a new targeted PSM called PII-PSM.

4.1 Improved Password Probabilistic Models

To help construct accurate and practical targeted PSMs, we first need to devise
well-performed password probabilistic models. Thus, we propose the improved
TarGuess-I-H and TarMarkov-H as follows.

Our TarGuess-I-H. We introduce HFS as a new grammar tag into TarGuess-I
[24], and propose a novel targeted password probabilistic model TarGuess-I-H.
Its grammar GTarGuess−I−H = (S,V, Σ,R) is described as below:

1) S ∈ V is the start symbol;
2) V = {S;Ln,Dn, Sn;Nn, Bn, Un, En, In, Tn;Hi

n; ε} is the set of grammar tags,
where
a) Ln,Dn, Sn are the grammar tags of basic PCFG [25], representing the

letter, digit, and symbol strings of length n, respectively;
b) Nn, Bn, Un, En, In, Tn are the grammar tags of TarGuess-I [24], represent-

ing the different forms of Name, Birthday, User name, Email, ID number,
and Phone number distinguished by the number n;

c) Hi
n is proposed in this paper for the first time, representing the set of

strings ranked i among those substrings of length n in descending order
of frequency;

d) ε is the terminator;

PII-PSM: A New Targeted Password Strength Meter Using PII 659

3) Σ is the set of 94 printable ASCII characters;
4) R is a finite set of rules of the form A → β, with A ∈ V and β ∈ V ∪ Σ.

Our TarMarkov-H. TarMarkov [22] is a sequence model that infers the next
string state based on the current string state. We introduce HFS as a new state
into TarMarkov [22], and propose a novel targeted password probabilistic model
TarMarkov-H. Its grammar GTarMarkov−H = (S,V,R) is described as below:

1) S ∈ V is the start symbol;
2) V = {S;Nn, Bn, Un, En, In, Tn;Hi

n;Σ; ε} is the state set, where
a) Nn, Bn, Un, En, In, Tn and Hi

n have the same meaning as the correspond-
ing grammar tags in TarGuess-I-H, except that they represent different
states in TarMarkov-H;

b) Σ is the set of 94 printable ASCII characters;
c) ε is the terminator;

3) R is a finite set of markov state transition rules of the form s1 → s2, with
s1, s2 ∈ V∗.

High-Frequency Substrings (HFSs). In a password dataset, HFSs are pass-
word substrings with the frequency exceeding a certain threshold, and they can
be identified by taking the following steps:

1) Record the count C(ps) of each password substring ps with the length n≥3;
2) Set the threshold T1 and delete the substrings with a count less than T1;
3) Modify the substring count record as

C(ps)new = C(ps)old −
∑

c∈Σ

[C(c + ps)old + C(ps + c)old], (5)

where C(ps)old is the original count record of ps, and c + ps and ps + c
respectively mean that the character c is concatenated to the beginning and
end of ps;

4) Set the threshold T2 and identify ps as a HFS if C(ps)new ≥ T2;
5) Store HFSs with the same length n into the set Hn (n≥3), arrange them in

descending order of count, and denote the set of substrings ranked i in Hn as
Hi

n. The parsing process is shown in Fig. 2. Parameter setups of T1, T2, and
n are detailed in Sec. 5.1.

660 Q. Dong et al.

abc123

123456

123456789

love123

Jimmy#abc

...

Item #3 Freq

abc 267

123 267

345 141

... ...

Item #4 Freq

1234 292

abcd 211

love 67

... ...

...extract

storage

abc

123

234

Abc

3
1

345

789

pig

cat

3
2

123456

123abc

abcdef

iloveu

6
1

345678

Loveyo

123123

111111

6
2

...

11111111

22222222

Qwertyui

12341234

8
2

...

jimmy9801#345

[Jimmy Brown; 1998 01 02]

PII

parse

4 4#345

[Jimmy Brown; 1998 01 02]

parse

4 4# 3
2

[Jimmy Brown; 1998 01 02]

Fig. 2. An illustration of Hi
n-tag processing. Hi

n denotes the high-frequency substring
ranked i in those substrings of length n.

4.2 Our Targeted PII-PSM

Our proposed password probabilistic models TarGuess-I-H and TarMarkov-H
introduced above can be individually transformed into two targeted PSMs. Still,
we combine these two models to construct a new targeted PSM called PII-PSM,
because Dong et al. [6] found that: In online guessing scenarios (often guess
number<104), PCFG-based password models usually outperform markov-based
ones; on the contrary, in offline guessing scenarios (often guess number>104),
markov-based password models usually outperform PCFG-based ones. Thus,
taking into account PSM performance under both online and offline guessing,
we construct our PII-PSM by weighing the strength scores of the PCFG-based
TarGuess-I-H and markov-based TarMarkov-H. For a password pw, we denote
the probabilities calculated by TarGuess-I-H and TarMarkov-H as p1 and p2, and
the corresponding weights are α (α ∈ [0, 1]) and 1-α (detailed α setups are in
Sect. 5.2). Then the strength score of pw evaluated by PII-PSM under targeted
guessing scenarios can be calculated as

Final scorepw = α × (− log2 p1) + (1 − α) × (− log2 p2). (6)

Justification for PII-PSM. Under targeted guessing scenarios, to evaluate the
strength of the password pw in the password space, it is ideal to obtain all ofuserA’s
personal data (e.g., all PII and all existing passwords), and compute userA’s pass-
word distribution space as P (pw|all userA

′s personal data, public data). How-
ever, this is intrinsically/virtually impossible to obtain all ofuserA’s personal data.
Fortunately, userA’s password distribution space can be approximated more accu-
rately when userA’s more personal data (e.g., common PII) is available. Accord-
ingly, the password strength evaluation models under targeted guessing using PII
hold that

PII-PSM: A New Targeted Password Strength Meter Using PII 661

∀pw, userA, userB ;

∀P (pw|PIIuserA
, public data) �= P (pw|PIIuserB

, public data). (7)

That is, the probabilities of pw in userA’s password space and userB ’s are dif-
ferent.

Table 6. Training and test settings for targeted password guessing and strength eval-
uation.

Exp# Language Training set Test set Auxiliary dataset

1 English 1/2 PII-Rootkit 1/2 PII-Rootkit Rockyou

2 1/2 PII-Yahoo 1/2 PII-Yahoo (1/2 Yahoo†)

3 1/2 PII-000webhost 1/2 PII-000webhost

4 Chinese 1/2 PII-12306 1/2 PII-12306 Tianya

5 1/2 PII-CSDN 1/2 PII-CSDN

6 1/2 PII-Dodonew 1/2 PII-Dodonew

† Since PII-Yahoo size is small (only 214) and thus unable to evaluate targeted PSMs
accurately, in targeted password strength evaluation, we randomly sample half of the
passwords from Yahoo (226,731) as the test set. When an account in the test set
lacks PII, PCFG-based and markov-based models degenerate into basic PCFG [25]
and Markov [11].

It is worth noting that, when evaluating password strength, our PII-PSM
first replaces the PII-related segments in pw with corresponding PII-tags, and
obtains a new password form pwPII−tag. For example, if a user’s name, birthday,
and password are Li Wang, 1998/08/18, and wang980818abc, respectively, the
converted pwPII−tag is N3B8abc. Since PII-PSM uses the same grammar rules
for all users when calculating pwPII−tag, there is

∀pwPII−tag, userA, userB ;

P (pwPII−tag|PIIuserA
, public data) = P (pwPII−tag|PIIuserB

, public data).
(8)

when given users’ PII, pw is determined by pwPII−tag, satisfying Eq. 7 under
targeted guessing scenarios.

5 Experiments

In this section, we first experimentally quantify the improvement of our pro-
posed TarGuess-I-H and TarMarkov-H over the basic TarGuess-I [24] and

662 Q. Dong et al.

TarMarkov [22]. Then, we evaluate the accuracy of our PII-PSM and its counter-
parts (including our TarGuess-I-H and TarMarkov-H, as well as two benchmarks
of Optimal and Min auto) using the weighted Spearman metric recommended
in CCS’18 [8].

5.1 Validation of the Improvements

Many studies (e.g., [3,6,13,15]) have shown that password probabilistic models
with good guessing ability can be used to construct accurate and practical PSMs.
Therefore, we first perform password guessing experiments to demonstrate that
our TarGuess-I-H and TarMarkov-H are indeed significantly improved over the
original TarGuess-I [24] and TarMarkov [22], and thus are likely to be used to
build more accurate targeted PSMs.
Experimental Setups. The user language, service type, and password policy
are the three most influential factors on password security and strength in turn
[23]. The closer the training set is to the passwords of the target site, the better
[23]. Therefore, we sample the training and test sets from the same dataset,
and show the experiment settings in Table 6. Taking Exp #1 as an example, we
randomly divide PII-Rootkit into two equal-sized parts used for training and
testing, respectively.

Since our TarGuess-I-H and TarMarkov-H have considered the impact of
HFSs and introduced Hi

n tags, we need to select third-party auxiliary datasets
to build the HFS dictionary. We use Rockyou and Tianya as auxiliary datasets
for English and Chinese training sets, respectively, because the two low-strength
datasets contain a large number of weak passwords [6,16], and have been widely
used in leading password research (e.g., [6,11,13,15,16,24,25]) in recent years.
Besides, to make our TarGuess-I-H and TarMarkov-H perform well, we have
implemented multiple experiments with different HFS parameter configurations,
and finally set the HFS thresholds T1=500 and T2=50, the HFS length 3≤n≤8,
and the HFS dictionary composed of top-100 HFSs. The settings of targeted
password probabilistic models are shown in Table 7.

Table 7. Settings of targeted password probabilistic models.

Model L/D/S-tags PII-tags Hi
n-tag Model order Probability threshold

TarGuess-I [24] � � — 10−6

TarMarkov [22] � 3 10−6

Our TarGuess-I-H � � � — 10−6

Our TarMarkov-H � � 3 10−6

PII-PSM: A New Targeted Password Strength Meter Using PII 663

(a) PII-Rootkit 1/2→1/2 (b) PII-Yahoo 1/2→1/2 (c) PII-000webhost 1/2→1/2

(d) PII-12306 1/2→1/2 (e) PII-CSDN 1/2→1/2 (f) PII-Dodonew 1/2→1/2

Fig. 3. Experimental results of targeted guessing scenarios on six different datasets.
Sub-figures (a) to (c) are on datasets from English sites, and (d) to (f) are on datasets
from Chinese sites.

Experimental Results. We show the experimental results in Fig. 3 and find
that:

1) In Figs. 3(a)∼3(d), the performances are ordered as our TarMarkov-H, our
TarGuess-I-H, TarMarkov [22], and TarGuess-I [24]. In Figs. 3(e) and 3(f), it
is our TarMarkov-H, TarMarkov [22], our TarGuess-I-H, and TarGuess-I [24].
On average, our added Hi

n-tags make the performances of our TarMarkov-H
and TarGuess-I-H higher than the basic TarMarkov [22] and TarGuess-I [24]
by 1.72% and 3.11%, respectively. The reasons are as follows: (a) Accord-
ing to Sec. 3.2, users tend to use HFSs when constructing passwords. Thus,
password models with Hi

n-tags can well identify HFSs in passwords during
training, and can better learn users’ password construction habits when gen-
erating passwords, thereby improving model performance. (b) According to
Sec. 3.3, password models with Hi

n-tags can more accurately capture pass-
word structures, such as L8→H1

8 ,H2
8 , and thus reduce redundant segments

when generating passwords. (c) Introducing Hi
n-tags can increase the vari-

ety of password structures. For example, in Exp #1 of Table 6, the extracted
password structures increase from 53,168 to 76,133 (a 43.19% increase). In
this way, our TarMarkov-H can mitigate the inherent data sparseness issue
of markov-based password models.

664 Q. Dong et al.

2) Our TarGuess-I-H outperforms TarGuess-I [24] by 2.02%∼3.43% (relative
increases are 8.33%∼15.22%) and our TarMarkov-H outperforms TarMarkov
[22] by 1.45%∼2.63% (relative increases are 9.73%∼15.22%). This is because
markov-based TarMarkov-H and TarMarkov [22] can generate more novel
passwords than PCFG-based TarGuess-I-H and TarGuess-I [24]. In contrast,
the performance of PCFG-based models is largely limited by password struc-
tures in the training set, especially when the training size is small.

3) In Figs. 3(e) (on PII-CSDN) and 3(f) (on PII-Dodonew), TarGuess-I-H and
TarGuess-I [24] perform worse than TarMarkov [22]. A possible explanation
is that, PCFG-based TarGuess-I-H and TarGuess-I [24] parse passwords from
the segment level, and many passwords in PII-CSDN and PII-Dodonew con-
tain digit strings [6] (marked as Dn). This causes the model to generate a large
number of redundant password candidates when filling Dn in the password
generation stage, thus reducing the performance. In contrast, markov-based
TarMarkov [22] parses passwords from the character level, reducing generat-
ing redundant digit strings.

Summary. By adding HFS tags, our TarGuess-I-H and TarMarkov-H signifi-
cantly outperform the basic TarGuess-I [24] and TarMarkov [22] in most cases,
suggesting that our two models can be employed to build accurate targeted
PSMs.

5.2 PSM Accuracy Evaluation

PSM Accuracy Evaluation Metric. Accuracy is the most essential property
of a PSM. Only PSMs with accurate strength feedback can indeed nudge users to
choose stronger passwords [17,18]. In recent years, researchers have used various
metrics (e.g., Spearman and Kendall correlation coefficients) to measure PSM
accuracy [13,21,26]. At CCS’18, Golla et al. [8] tested 19 candidate metrics
for evaluating PSM accuracy and selected the weighted Spearman correlation
coefficient (WSpearman), because it is robust to monotonic transformations,
disturbances, and quantization. Thus, inspired by Golla et al.’s work [8], we use
WSpearman to evaluate PSM accuracy, calculated as

WSpearman(X,Y) =
∑n

i=1 [wi(xi − x̄)(yi − ȳ)]√∑n
i=1[wi(xi − x̄)2]

∑n
i=1[wi(yi − ȳ)2]

, (9)

where X and Y are the weighted rank vectors of the ideal PSM and the tested
PSM, xi and yi are the members of X and Y ranked i (1≤i≤n) in descending
order of frequency, x̄ and ȳ are the weighted means of X and Y, and wi is the
password frequency ranked i in the test set. The higher the WSpearman value
(in [-1,1]), the more accurate the PSM.

PII-PSM: A New Targeted Password Strength Meter Using PII 665

Experimental Setups. TarGuess-I-H and TarMarkov-H in this section refer to
targeted PSMs based on these two models. We show the experimental setups of
targeted password strength evaluation in Table 6, and config the targeted PSMs
and benchmarks for comparison and evaluation as follows:

• Our TarGuess-I-H and TarMarkov-H. The parameter settings of these
two PSMs are shown in Table 7. The strength of the password pw is eval-
uated as − log2 p, where p is the construction probability of pw under the
corresponding model.

• Our PII-PSM. The password strength evaluated by our PII-PSM is
obtained by weighting the strengths output by TarGuess-I-H and TarMarkov-
H with α and 1-α; see Eq. 6. α is initialized to a random value in [0,1], opti-
mized by the stochastic gradient descent (SGD) approach with batchsize=n
(i.e., every n passwords in the training/testing set are split into a batch).
In this way, the impact of randomly/manually setting the α value on PSM
accuracy can be eliminated. We calculate WSpearman for each batch in the
test set and the corresponding batch in the training set, and use it as a loss to
penalize α until α reaches convergence. The convergent α and SGD parame-
ter setups are shown in Table 8. What’s more, since the training set is known
to our PII-PSM, the optimization for α is feasible, which contributes to the
practicality of PII-PSM.

(a) PII-Rootkit 1/2→1/2 (b) 1/2 PII-Yahoo→1/2 Yahoo (c) PII-000webhost 1/2→1/2

(d) PII-12306 1/2→1/2 (e) PII-CSDN 1/2→1/2 (f) PII-Dodonew 1/2→1/2

Fig. 4. Weighted Spearman correlation coefficient of our targeted PSMs. Sub-figures
(a) to (c) are on datasets from English sites, and (d) to (f) are on datasets from Chinese
sites.

666 Q. Dong et al.

Table 8. Convergent α and SGD setups.

Exp# α SGD

Batchsize Step length Δ†

1 0.623 50 [0.2,0.8] 10−5

2 0.629 100 [0.5,1.0]

3 0.642 50 [0.2,0.8]

4 0.612 50 [0.2,0.8]

5 0.601 50 [0.2,0.8]

6 0.617 50 [0.2,0.8]

† When |αnew−αold|≤Δ, SGD stops optimizing
and chooses α as the optimal value.

• Min auto. Min auto is a PSM
strength benchmark indicating a
conservative approximation of
password strength. It is proposed
by Ur et al. [19] and is widely
used in leading PSM research (e.g.,
[13,26]). Regarding a password,
Min auto takes the minimum
value of the results of all evaluated
PSMs as the password strength. In
this paper, we also adopt Min
auto as a PSM strength benchmark, which is calculated as the minimum
evaluation results of our TarGuess-I-H, TarMarkov-H, and PII-PSM.

• Our Optimal. To show the optimal evaluation capability that practical
PSMs can achieve, we propose a new PSM strength benchmark, Optimal.
Given a password, Optimal takes the one closest to the real frequency rank
among the results of all evaluated PSMs (e.g., our TarGuess-I-H, TarMarkov-
H, and PII-PSM in this paper) as the password strength. Note that an Opti-
mal PSM is unlikely to be deployed in real-world scenarios, because one can
hardly know the real password rank. Nevertheless, since the password rank is
known in our experiments, Optimal is effective as a PSM strength benchmark.

Experimental Results. We show WSpearman of targeted PSMs in Fig. 4 and
find that:

1) The Wspearman value of PII-PSM is higher than TarGuess-I-H and
TarMarkov-H, and fluctuates more slightly within top-102 passwords. This
is because our adopted SGD effectively optimizes the weights α and 1-α
of TarGuess-I-H and TarMarkov-H that constitute PII-PSM, thus improv-
ing PII-PSM accuracy. Note that the convergence value of α in Table 8
is 0.601∼0.642 instead of around 0.5, indicating that TarGuess-I-H and
TarMarkov-H have different effects/contributions to PII-PSM accuracy. A
possible explanation is that, according to Fig. 4, TarMarkov-H generally fluc-
tuates more strongly than TarGuess-I-H (especially within top-102 pass-
words), indicating that the former is less accurate than the latter in evaluating
weak passwords. Thus, SGD will give a higher weight to the more accurate
TarGuess-I-H.

2) In Figs. 4(e) (on PII-CSDN) and 4(f) (on PII-Dodonew), the WSpearman
value of all PSMs decreases rapidly in top-3∼top-10 (i.e., top-100.5∼top-101.0)
passwords, and increases slowly from top-30 (i.e., top-101.5) until stable. The
possible reason is that, in PII-CSDN and PII-Dodonew, the top-10 passwords
account for a large proportion (8.33% and 7.91%), resulting in a more con-
centrated password probability distribution that can be accurately evaluated
by PSMs. Thus, the WSpearman value is stable at 1 in top-10. While the
followed passwords have a more uniform probability distribution and thus
PSMs cannot accurately evaluate some of the passwords. As a result, the

PII-PSM: A New Targeted Password Strength Meter Using PII 667

WSpearman value decreases significantly. With more passwords being evalu-
ated, PSMs can more accurately capture password distribution characteris-
tics, so the WSpearman value gradually stabilizes.

3) Compared to individual TarGuess-I-H and TarMarkov-H, PII-PSM is closer
to the Optimal benchmark, and the WSpearman differences are only
0.014∼0.023. This suggests that PII-PSM has almost the optimal evaluation
ability that the compared practical PSMs can achieve, and thus is more accu-
rate. In addition, PII-PSM is also closer to the Min auto benchmark, and the
WSpearman differences are only 0.012∼0.031. This indicates that PII-PSM
evaluates password strength more strictly and conservatively, which may help
nudge users to select stronger passwords.

Summary. Our PII-PSM obtained by combining and weighting TarGuess-I-H
and TarMarkov-H is more accurate than both individual PSMs, and is closer to
the PSM accuracy benchmarks Min auto and our Optimal. This suggests that
a rational combination of multiple PSMs that perform well in different guess-
ing scenarios (e.g., online and offline guessing) is helpful for designing accurate
targeted PSMs.

6 Conclusion

We have introduced the high-frequency substring (HFS) as a new grammar tag
into leading targeted password probabilistic models TarGuess-I [24] and Tar-
Markov [22], and proposed our improved models TarGuess-I-H and TarMarkov-
H. Then, we weighted and combined our two models and, for the first time,
devised a practical targeted password strength meter (PSM) called PII-PSM
that exploits common personally identifiable information PII(e.g., name and
birthday). Extensive evaluation experiments show that our PII-PSM is more
accurate than individual TarGuess-I-H and TarMarkov-H, and is closer to two
benchmarks of Optimal and Min auto. What’s more, eight large-scale password
datasets across different user languages and service types indicate the practi-
cality of our PII-PSM. We believe that our targeted probabilistic models and
PII-PSM can shed light on both existing password practice and future password
research.

Acknowledgment. The authors are grateful to the anonymous reviewers for their
invaluable comments. Ding Wang is the corresponding author. This research was in part
supported by the National Natural Science Foundation of China (Grant No.62172240),
and by the Natural Science Foundation of Tianjin, China (Grant No.21JCZDJC00190).

References

1. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: Proceedings of IEEE S&P 2012, pp. 538–552 (2012)

2. Bonneau, J., Herley, C., van Oorschot, P., Stajano, F.: Passwords and the evolution
of imperfect authentication. Commun. ACM 58(7), 78–87 (2015)

668 Q. Dong et al.

3. Castelluccia, C., Dürmuth, M., Perito, D.: Adaptive password-strength meters from
markov models. In: Proceedings of NDSS 2012, pp. 1–14 (2012)

4. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of
password reuse. In: Proceedings of NDSS 2014, pp. 1–15 (2014)

5. Dellinger, A.: Personal data of 533 million Facebook users leaks online, April 2021.
https://shorturl.at/dlHUV

6. Dong, Q., Jia, C., Duan, F., Wang, D.: RLS-PSM: a robust and accurate password
strength meter based on reuse, Leet and separation. IEEE Trans. Inf. Forensics
Secur. 16, 4988–5002 (2021)

7. Gatlan, S.: Hacker leaks full database of 77 million nitro pdf user records, January
2021. https://shorturl.at/fjwI5

8. Golla, M., Dürmuth, M.: On the accuracy of password strength meters. In: Pro-
ceedings of ACM CCS 2018, pp. 1567–1582 (2018)

9. Li, Y., Wang, H., Sun, K.: A study of personal information in human-chosen pass-
words and its security implications. In: Proceedings of INFOCOM 2016, pp. 1–9
(2016)

10. Li, Z., Han, W., Xu, W.: A large-scale empirical analysis of Chinese web passwords.
In: Proceedings of USENIX SEC 2014, pp. 559–574 (2014)

11. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
Proceedings of IEEE S&P 2014, pp. 689–704 (2014)

12. Mazurek, M.L., et al.: Measuring password guessability for an entire university. In:
Proceedings of ACM CCS 2013, pp. 173–186 (2013)

13. Melicher, W., et al.: Fast, lean, and accurate: modeling password guessability using
neural networks. In: Proceedings of USENIX SEC 2016, pp. 1–17 (2016)

14. Morris, C.: Massive data leak exposes 700 million linkedin users’ information, June
2021. https://shorturl.at/mDGQ1

15. Pal, B., Daniel, T., Chatterjee, R., Ristenpart, T.: Beyond credential stuffing:
password similarity models using neural networks. In: Proceedings of IEEE S&P
2019, pp. 417–434 (2019)

16. Pasquini, D., Gangwal, A., Ateniese, G., Bernaschi, M., Conti, M.: Improving pass-
word guessing via representation learning. In: Proceedings of IEEE S&P 2021, pp.
1382–1399 (2021)

17. Tan, J., Bauer, L., Christin, N., Cranor, L.F.: Practical recommendations for
stronger, more usable passwords combining minimum-strength, minimum-length,
and blocklist requirements. In: Proceedings of ACM CCS 2020, pp. 1407–1426
(2020)

18. Ur, B., et al.: How does your password measure up? The effect of strength meters
on password creation. In: Proceedings of USENIX SEC 2012, pp. 65–80 (2012)

19. Ur, B., et al.: Measuring real-world accuracies and biases in modeling password
guessability. In: Proceedings of USENIX SEC 2015, pp. 463–481 (2015)

20. Veras, R., Collins, C., Thorpe, J.: On the semantic patterns of passwords and their
security impact. In: Proceedings of NDSS 2014, pp. 1–16 (2014)

21. Wang, D., He, D., Cheng, H., Wang, P.: fuzzyPSM: a new password strength meter
using fuzzy probabilistic context-free grammars. In: Proceedings of IEEE/IFIP
DSN 2016, pp. 595–606 (2016)

22. Wang, D., Wang, P.: The emperor’s new password creation policies. In: Proceedings
of ESORICS 2015, pp. 456–477 (2015)

23. Wang, D., Wang, P., He, D., Tian, Y.: Birthday, name and bifacial-security: under-
standing passwords of Chinese web users. In: Proceedings of USENIX SEC 2019,
pp. 1537–1555 (2019)

https://shorturl.at/dlHUV
https://shorturl.at/fjwI5
https://shorturl.at/mDGQ1

PII-PSM: A New Targeted Password Strength Meter Using PII 669

24. Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password
guessing: an underestimated threat. In: Proceedings of ACM CCS 2016, pp. 1242–
1254 (2016)

25. Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: Proceedings of IEEE S&P 2009, pp. 391–
405 (2009)

26. Wheeler, D.L.: zxcvbn: low-budget password strength estimation. In: Proceedings
of USENIX SEC 2016, pp. 157–173 (2016)

27. Xie, Z., Zhang, M., Guo, Y., Li, Z., Wang, H.: Modified password guessing methods
based on Targuess-I. Wirel. Commun. Mob. Comput. 2020, 8837210:1–8837210:22
(2020)

28. Xie, Z., Zhang, M., Yin, A., Li, Z.: A new targeted password guessing model. In:
Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp. 350–368. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-55304-3 18

https://doi.org/10.1007/978-3-030-55304-3_18

Privacy

Silver Surfers on the Tech Wave: Privacy
Analysis of Android Apps for the Elderly

Pranay Kapoor(B), Rohan Pagey, Mohammad Mannan, and Amr Youssef

Concordia University, Montreal, QC, Canada
{p apoo,r pagey}@live.concordia.ca, m.mannan@concordia.ca,

youssef@ciise.concordia.ca

Abstract. Like other segments of the population, elderly people are also
rapidly adopting the use of various mobile apps, and numerous apps are
also being developed exclusively focusing on their specific needs. Mobile
apps help the elderly to improve their daily lives and connectivity, and
their caregivers or family members to monitor the loved ones’ well-being
and health-related activities. While very useful, these apps also deal with
a lot of sensitive private data such as healthcare reports, live location,
and Personally Identifiable Information (PII) of the elderly and care-
givers. While the privacy and security issues in mobile applications for
the general population have been widely analyzed, there is limited work
that focuses on elderly apps. We shed light on the privacy and security
issues in mobile apps intended for elderly users, using a combination of
dynamic and static analysis on 146 popular Android apps from Google
Play Store. To better understand some of these apps, we also test their
corresponding IoT devices. Our analysis uncovers numerous security and
privacy issues, leading to the leakage of private information and allowing
adversaries to access user data. We find that 95/146 apps fail to ade-
quately preserve the security and privacy of their users in one or more
ways; specifically, 15 apps allow full account takeover, and 9 apps have an
improper input validation check, where some of them allow an attacker
to dump the database containing elderly and caregivers’ sensitive infor-
mation. We hope our study will raise awareness about the security and
privacy risks introduced by these apps, and direct the attention of devel-
opers to strengthen their defensive measures.

Keywords: Elderly privacy · Android apps privacy and security

1 Introduction

The adoption of mobile devices is forcing the elderly to navigate the treacherous
waters of a complex digital world [5], wherein online threats can even translate
into offline harm. While over 53% of all elderly own a smartphone [2], and are
keenly adopting mobile technology [7,15], several studies have shown that older
adults are more vulnerable to security and privacy threats than the general
population [16]. According to US FBI and FTC, cybercrimes against older adults
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 673–691, 2023.

https://doi.org/10.1007/978-3-031-25538-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_35&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_35

674 P. Kapoor et al.

in the US have increased five times since 2014, costing over $650 million in yearly
losses [4]. A combination of low self-efficacy, mistrust and lack of awareness
and understanding of security hazards [18] makes the elderly reluctant to adopt
cyber-secure habits, hence vulnerable.1

Applications for the elderly offer various services such as care-giving, e-
learning, and improving physical and mental health (e.g., apps for exercise and
fitness). While these apps might be used daily by the elderly, their inherent
privacy and security implications are not fully known. Weaknesses in elderly
apps may expose sensitive private data, sometimes on a large scale, and endan-
ger users’ safety (online and in the real world). Recent studies [10] have revealed
several security and privacy issues in Android apps, but most large-scale research
has been done on apps used by the general population (also see Sect. 6). A few
studies have exposed privacy issues in only one particularly vulnerable group
(e.g., elderly or children) on a small scale. The work on elderly groups is limited
to the study of elderly behavior concerning their privacy and security.

In this paper, we perform an in-depth analysis of 146 prominent elderly
Android apps. We define a list of pertinent security and privacy related issues
for these apps, and analyze them for such issues (e.g., security vulnerabili-
ties, backend issues, presence of third-party trackers, and insecure data trans-
mission). We also analyze three IoT devices to better understand the corre-
sponding apps and their security implications. We combine the use of sev-
eral existing tools that enable dynamic and static analysis to perform a wide
range of security and privacy tests.

Contributions and Notable Findings

1. We design a hybrid approach of dynamic and static analysis for evaluat-
ing security and privacy issues in elderly apps (and their corresponding IoT
devices). We inspect the apps’ web traffic for personally identifiable infor-
mation (PII) leakage, access control issues, improper authentication manage-
ment, improper input validation, dangerous third-party library permissions,
and the presence of third-party trackers.

2. We apply our analysis framework to 146 Android apps (and the IoT devices
corresponding to three apps). Overall, 95/146 apps fail to adequately protect
the security and privacy of users due to one or more vulnerabilities.

3. 4/146 Android apps (GoldenApp, POC EVV, Senior Discounts, Damava) do
not properly authenticate their server API endpoints, allowing illegitimate
access to view and obtain sensitive data such as elderly users’ physical address,
email, health reports, and private messages on the platform.

4. 15/146 Android apps (e.g., 40 Plus Senior Dating, All Well Senior Care,
Seniority) allow an attacker to easily compromise the account of elderly users
and caregivers.

5. 9/146 (Senior Dating, Empowerji, GoldenApp, Caring Village, EZ Care, Gen-
erations Homecare System, EllieGrid, Seniority, Tricella Health) Android

1 The term “vulnerable user” means a person “at-risk” due to his/her particular cir-
cumstances, and not to be confused with an app having a security “vulnerability”.

Privacy Analysis of Android Apps for the Elderly 675

apps have improper input validation with injection attack vulnerabilities such
as SQL injection, allowing an adversary to dump and modify the application’s
database. We are assigned CVE-2022-30083 [6] for the code injection issue we
found in EllieGrid.

6. 16/146 Android apps transmit PII via HTTP to their client-side servers (e.g.,
Empowerji, GoldenApp), while 8/146 apps transmit PII (6/146 via HTTP and
2/146 via HTTPS) to various third-party domains.

2 Potential Privacy and Security Issues and Threat
Model

Potential Security and Privacy Issues. We primarily consider two types of
data that can be leaked over the network: (1) personally identifiable information
(PII) and (2) smartphone device information and usage. A PII leak is any data
leak which can be used to identify an individual (e.g., email ID, location/ad-
dress, password, date of birth, health data, unique device serial number). Device
information and usage is the combination of the device data (e.g., manufacturer,
model, OS, API level, IP address, screen, battery, cellular carrier, free mem-
ory/disk, language, time zone, orientation), and user interaction (e.g., session
time, button clicks, visited web pages). Device information and usage leaks can
be used to identify an individual or a group of individuals. We tested the most
prominent vulnerability types from the OWASP top 10 for Android, based on
their CVSS scores. From that base knowledge, we define the following list of
potential security and privacy issues to evaluate elderly apps.

1. Improper authentication management: The ability of an attacker to gain
access to a user’s account (unauthorized login).

2. Improper access control: To be able to gain or observe other users’ data on a
given platform without their authorization.

3. Improper input validation: Possible injection attacks (e.g., SQL injection and
code injection) resulting from missing/inadequate input validation, which
may compromise sensitive user data.

4. Vulnerable backend: The use of remotely exploitable outdated server software,
and misconfigured or unauthenticated backend service (e.g., Firebase).

5. Plaintext transmission of authentication secrets (e.g., passwords and session
IDs), which can be easily captured by a network attacker to gain unauthorized
access to user accounts.

6. Insecure PII, device information and usage transmission: PII and device infor-
mation and usage from the client-end is sent without encryption (i.e., plain
HTTP).

7. Data transmission to third-party: Any PII and device/usage information and
usage data transmitted from the client side to third-party domains/ trackers,
or library providers.

8. Inadequate security configurations: Android apps with misconfigured backend
HTTP web servers (e.g., lack of Cross-Origin Resource Sharing or improper
flash cross-domain policy), which may lead to large-scale attacks.

676 P. Kapoor et al.

9. Dangerous permissions (e.g., Write External Storage, Access Fine Location)
automatically acquired by a third-party library when requested by the elderly
app, or by a malicious app using the same signed certificate third-party library
as the elderly app developer.

Threat Model. We consider three attacker types with varying capabilities: (1)
On-device attacker: a malicious app with limited permissions on the user’s device.
(2) On-path attacker: an attacker who is placed between the user’s smartphone
and its server. This attacker can eavesdrop, modify, and behave like a man-in-
the-middle attacker between the user’s device and the app’s backend server. (3)
Remote attacker: any attacker who can connect to an app’s backend server. Our
threat model does not consider attacks requiring physical access to the device.

Fig. 1. Overview of our methodology

Ethical Considerations and Responsible Disclosure. We test vulnerabili-
ties only against accounts that we own and we do not interact with the data of
any legitimate user. We do not use an existing vulnerability to exfiltrate data or
pivot to other systems, i.e., we stop our analysis when we have enough evidence
of a vulnerability and its impact. We also refrain from running any automated
scanners that might bombard the servers to cause denial of service. As part of
the responsible disclosure, we contacted the developers of our vulnerable apps
to share our detailed proof-of-concept and explain to them the related security
consequences. 7/35 developers contacted us back, where 2/7 were automated
replies to acknowledge our email, and 5/7 developers acknowledged the issues
and forwarded them to their respective security teams.

Privacy Analysis of Android Apps for the Elderly 677

3 Analysis Methodology

In this section, we explain how we perform our static and dynamic app analysis,
and also how we select our Android test apps.

3.1 App Selection

We search Google Play Store for elderly apps (and also screen the best apps for
older adults [12]), with relevant keywords.2 The search was conducted on May
20, 2021, which provided us with 500 apps for further consideration. We shortlist
the apps based on the criteria that the apps are specifically designed for elderly
users, their caregivers and relatives. We exclude apps that required financial
account details or verified identities (e.g., bank accounts, credit card numbers,
social security numbers). We manually screen each app to check if it satisfies our
key requirements. Our final dataset contains 146 apps. We found that 24/146
apps have a companion IoT device, where 5/24 apps are pill managing apps
and 19/24 are elderly tracking apps. We purchased 3/24 IoT devices (available
without any subscription and deliverable to our location) to better understand
their functionality. Altogether, these apps have been downloaded 20.8M+ times,
with a range between 10M+ (NeuroNation) to 1000+ downloads (CareGo IoT
companion app). Note that each caregiver/EVV app may indirectly serve (and
have access to) hundreds or thousands of elderly people.

3.2 Dynamic Analysis of Traffic Flow

We perform dynamic testing of the apps to simulate the real world usage for
the apps so that we can observe the apps as they were intended. We set up test
environments for each app (creating user accounts, setting up the IoT device,
etc.), emulate user actions for 20 to 60 min depending on the feature-set of the
app, collect traffic from the elderly apps and the IoT devices (up to 24 h), and
then perform our analysis (explained further in this section). Figure 1 illustrates
our methodology. We use Burp Suite3 for manual dynamic analysis. Burp Suite is
an integrated platform for security testing of web and mobile applications, using
its various extensions. We also notice that some our apps use GraphQL [14]; note
that the use of graph analytics is driving many important business applications
from social network analysis to machine learning. To analyze GraphQL APIs, we
use the official GraphQL IDE called GraphiQL [11] to test the network traffic
on the apps using GraphQL. In-depth dynamic analysis with Burp Suite and
GraphiQL4 helps us find relevant security and privacy issues in our test apps.

The four main components for our dynamic analysis include the following: (1)
Proxy, an intercepting proxy that lets us see and modify the contents of requests
2 The keywords include: “elderly”, “old”, “senior”, “dementia”, “Alzheimer’s”, “retire-

ment”, “senior dating”, “pension”, “seniority”, “caregiver”, “memory”, “maturity”,
“retiree”, “Electronic Visit Verification”, “EVV”, “senior health”, “memory games”.

3 https://portswigger.net/burp/releases/professional-community-2021-12-1.
4 https://github.com/graphql/graphiql.

https://portswigger.net/burp/releases/professional-community-2021-12-1
https://github.com/graphql/graphiql

678 P. Kapoor et al.

and responses while they are in transit. We use this component to analyze the
complete network traffic of the app to check for insecure session management,
insecure PII transmission to the app as well as to any third-parties, and look
out for any suspicious activity from the app. (2) Intruder, a fuzzer used to run a
set of values through an input point and perform brute-force attacks and testing
rate limiting on apps. We use this component to enumerate user IDs (integer
values), list of passwords and API endpoint parameters. (3) Repeater lets us send
requests repeatedly with manual modifications to check for injection attacks and
servers’ response to unexpected values or requests. (4) Decoder lists the common
encoding methods like URL, HTML, Base64, Hex, etc., when looking for chunks
of data in values of parameters or headers.

We install each test app from Google Play Store and run it through Burp
proxy. We analyze every request and response of the app’s APIs (or any included
third-party libraries) to the app server and to any third-party domain and
tracker. We identify the known third-party trackers using EasyList and EasyPri-
vacy [8] filtering rules. We differentiate the requests with weak authentication,
like the ones which are missing authentication headers or cookies, as they are
more likely to be exploitable. This differentiation is done by inspecting the HTTP
request headers and searching for the presence of session headers. We also iden-
tify the requests responsible for user login/logout or any transmission of user
data. We pass these requests through Burp components to check for security
and privacy issues. The requests transmitted via GraphQL are analyzed using
GraphiQL. In particular, we first use an introspection query to read the GraphQL
documentation. Then we inspect the whole documentation to read the available
API calls (queries and mutations). Vulnerabilities in GraphQL are found by
probing and tampering with the queries and mutations.

We assess the collected traffic to check for PII and transmitted authentication
secrets, or leakage of PII to third-party domains that can be leaked via the
request URL, Referer, HTTP Cookie, and requests’ payload. If encoded data is
observed, we use the decoder component in Burp to check for any suspicious data
that is being transmitted to the domain. We also analyze the traffic to check for
API endpoints with improper access control. APIs with weak authentication are
checked first. We conclude that an app has improper access control if we can
retrieve any other user’s data (on the given app, tested using our own accounts)
by changing the existing requests sent from the app to its backend server.

To check improper input validation, we follow the OWASP manual [19] to
test for injection attacks to see how the apps respond to unexpected modified
requests. We check for SQL injection, code injection and cross-site scripting
(XSS) attacks. Any sensitive data observed is immediately deleted from our
databases, and we only record the type of data that the vulnerabilities exposed.

IoT Device Analysis. For each of the selected IoT devices, we test the compan-
ion apps, radio communications and the embedded device. We test the compan-
ion apps by following the same dynamic and static analysis process as for other
apps. For the radio communications, we analyze Bluetooth and WiFi communi-
cations, and we do this by inspecting the packets sent between the IoT device

Privacy Analysis of Android Apps for the Elderly 679

and smartphone. To analyze the underlying embedded device, we pop open the
IoT device and analyze the functionality of the different components. We look
at the debug ports and try to exploit them to gain further access to the device.

3.3 Static Analysis: Library, App Code, and Firebase

Our static analysis aims to complement the dynamic analysis to understand the
apps’ intended flow so that we can correlate that with our dynamic analysis
to look for any suspicious behavior or weak security measures (e.g., bad input
sanitization, unprotected Firebase services, etc.) which can potentially lead to
privacy or security issues. We target the following components:

Third-Party Libraries. Third-party libraries are widely used by Android app
developers to build new functionalities and integrate external services. For an in-
depth library analysis for our elderly apps, we use LiteRadar.5 We run the tool
using our custom Python script, with the APK file to be tested, so that we can
automate the data (e.g., library names, type, permissions used, etc.) collection
process. We analyse the libraries in terms of their permissions and purpose.

Firebase Analysis. We analyze the Firebase configuration for security issues
by performing an automated analysis using Firebase Scanner [23]. Critical mis-
configurations can allow attackers to retrieve all the unprotected data stored on
the cloud server and we followed a similar approach to Appthority’s work [1] on
scanning apps for Firebase misconfigurations.

Static Code Analysis. Mobile Security Framework6 (MobSF) is an automated,
open-source, all-in-one mobile application (Android/iOS/Windows) pen-testing
framework capable of performing fast static, dynamic, and malware analysis of
Android, iOS, and Windows mobile applications [24]. So, we use MobSF for
static analysis of 146 apps to check for vulnerabilities related to sensitive infor-
mation logged or hard-coded in files, improper usage of SQLite databases, inse-
cure implementation of SSL, and WebView implementation. We also check the
Manifest file of each app to obtain their permissions.

4 Results

Following the methodology in Sect. 3, we tested 146 Android apps for elderly
people, between October 2020 and December 2021. For dynamic analysis, we
ran the apps on a Samsung Galaxy M02 (SM-M022G) phone with Android 10.
We report our findings in this section, with an overview of the top 30/146 apps
with the most security and privacy issues in Table 1.

5 https://github.com/pkumza/LibRadar/blob/master/docs/QuickStart.md.
6 http://opensecurity.in/mobilesecurity-framework/.

https://github.com/pkumza/LibRadar/blob/master/docs/QuickStart.md
http://opensecurity.in/mobilesecurity-framework/

680 P. Kapoor et al.

Table 1. Overall results for 30/146 elderly apps with maximum security flaws.
Legend: : On-device Attacker : On-path Attacker : Remote Attacker

Privacy Analysis of Android Apps for the Elderly 681

4.1 Improper Authentication Management

We found that 15/146 apps have authentication management vulnerabilities.
Prominent examples include the following: In Empowerji, 40 Plus Senior Dating,
GoldenApp, EZ Care, FlirtMatures Dating, POC EVV and Cougar Dating, the
login credentials are sent in plaintext over HTTP, so any on-path attacker sniffing
the traffic can get the user login credentials (e.g., Empowerji leaks name, email
ID, password and phone number; POC EVV leaks the 6-digit user ID, a 4-
digit PIN for login and the private messages sent between the caregiver and
his/her supervisor). For All Well Senior Care, Seniority and Tricella Health, we
successfully performed an OTP brute-force attack (on our test account). This is
possible as these apps do not implement any rate limiting and the OTPs consist
of 4 or less numerical digits, which can easily be enumerated (even for the worst-
case scenario, where we could easily try all 10000 requests for a 4-digit number);
we also verified that full account takeover by a remote attacker takes only trivial
efforts. In All Well Senior Care, the attacker can obtain the user’s health data
(e.g., heart rate, blood pressure, etc.), wellness data (wake up time, steps taken,
etc.), see all the hourly updates the user is providing to her caregiver, the location
of the user, all the health charts which are saved on the user’s account, and
even the private messages of the user with their caregiver or their care group
(containing multiple users in one group). Wherein user information (e.g., address,
phone numbers, credit card details) can be obtained in the Seniority app due
to improper authentication management. During our retesting, we also noticed
that Senior Safety App fixed its issues in a software update.

4.2 Insecure Session Management

We found 10/146 apps that had their session IDs sent in plaintext over HTTP.
For example, POC EVV exposes its session ID in plaintext over HTTP, so an
on-path attacker can replay a request from this app and perform an account
takeover. Also, 8/146 apps did not use any authentication secret. For example,
GoldenApp does not make use of any authentication secret for accessing any
resource (which also leads to improper access control issues which is explained
further in Sect. 4.4). The app’s authorization mechanism is purely based on
supplying a mobile number, where there is no verification from the server’s end
regarding which mobile number is tied to which user. An adversary can change
the mobile number from the request and log into the replaced number’s account.
Although the victim’s number is not leaked anywhere, an on-path attacker can
still see the mobile number as the communications are over HTTP. For our
testing, we used only our own test phone numbers. After changing the number,
the attacker can impersonate the victim, e.g., to request home services on the
user’s behalf. Apps like FlirtMatures Dating send their session IDs in plaintext
over HTTP; any on-path attacker can sniff these secrets, and potentially takeover
a user’s account, also allowing the attacker to access user’s sensitive information.

682 P. Kapoor et al.

4.3 PII Exposure, Data Sharing with Third-Parties and Trackers

We found that 16/146 apps send plaintext PII to their servers. Examples include:
POC EVV (login code, login PIN, session ID during login), 40 Plus Senior
Dating (email ID and password during login), Empowerji (full name, email ID,
password, mobile number and city), GoldenApp (username, mobile number, user
address), and EZ Care (username and password during login and the private
messages sent and received between a doctor and the user).

Table 2. Top 10 trackers that receive traffic from 146 elderly apps

Tracker # Apps

crashlytics.com 35

doubleclick.net 22

googlesyndication.com 12

google-analytics.com 8

googletagmanager.com 6

appsflyer.com 6

flurry.com 4

googleadservices.com 4

onesignal.com 3

branch.io 3

Moreover, out of the 16 apps that send plaintext PII to their own servers, 6
of them also send PII in plaintext over HTTP to third-party domains/trackers.
Examples include: Oscar Senior (email ID, user name and profile picture sent to
googleapis, and geolocation to onesignal’s API endpoint), Big Launcher (exact
geolocation to openweathermap.org), Carelinx (email ID to intercom.com), 40
Plus Senior Dating (email ID, user name and profile picture sent to googleapis),
Senior Dating (user name and password sent to googleapis).

18/146 apps send device information and usage data in plaintext (6/146 over
HTTP and 12/146 over HTTPS) to third-party domains. The most common
parameters include phone model and OS build version. Empowerji sends CPU
build, Android version and firmware version to AppsFlyer (third-party domain).
Homage, EZ Care and All Well Senior Care send WiFi, cellular information,
signal strength, and a flag to check if the device is rooted or not. Seniority sends
email ID, device information (phone model and OS build), and the product
details (that the user adds to the shopping cart or buys on the app) to a third-
party analytics tracker (wzrkt.com) over HTTPS.

http://crashlytics.com
http://doubleclick.net
http://googlesyndication.com
http://google-analytics.com
http://googletagmanager.com
http://appsflyer.com
http://flurry.com
http://googleadservices.com
http://onesignal.com
http://branch.io
http://intercom.com
http://wzrkt.com

Privacy Analysis of Android Apps for the Elderly 683

We found that 115/146 apps communicate with 341 third-party (non-tracker)
domains:7 66 apps communicate with Googleapis.com domains, 43 apps with
Firebase sub-domains and 29 apps with Facebook domains. 72/146 apps had
traffic through at least one Google domain. We found 39 unique tracker domains
with 137 occurrences across 76/146 apps (see Table 2). The top 3 prevalent
trackers are Crashlytics (35/146), DoubleClick (22/146) and Google Syndication
(12/146). Crashlytics is a crash reporting software that helps identify bugs in the
apps and report the user’s activity to the app developers so they can take appro-
priate measures to ensure that users do not stop using their app. DoubleClick is
a Google ad service. In 9 apps, we detect 10 or more third-party domains and
trackers (Senior Discounts, Big Keyboard & Notifications, Free Chat & Senior
Dating, Senior Dating by Lauber, Over 40 - Find People 50, 40 Plus Senior
Dating, NeuroNation, Ianacare, Oscar Senior). These apps could expose elderly
users to potential voluminous in-app advertisements, and extensive tracking.

4.4 Improper Access Control

We found 4/146 apps with improper access control. GoldenApp’s access control
issues are due to insecure session management. As there are no authentication
tokens or cookies in the requests, an attacker can replay the requests (even mod-
ify them) to create accounts in other users’ names which can lead to misrepre-
sentation or identity theft for the user. POC EVV contains a 5-digit “dcsId”
parameter as the user ID in the requests which can be changed (by a remote
attacker) to get other users’ data (e.g., phone number, home and office address,
zip code). Senior Discounts plus Coupons has a 6-digit parameter for the user
ID that can be modified to get any other user’s email ID. Damava also has
a similar issue where an attacker can fetch the user details using a GraphQL
query and then modify the user ID to get other users’ data (e.g., email ID,
address, criminal record). The information disclosed in Damava could result
in a full account takeover for both the patient as well as a caregiver. We also
found that the appointment details query and mutation do not implement any
access control in Damava; an adversary can view, modify and cancel any elderly
patient’s appointment. Moreover, given the appointment and caregiver details,
the attacker can also impersonate a caregiver to harm the patient.

4.5 Improper Input Validation

9/146 apps are vulnerable to various injection attacks such as SQL/code injec-
tion, cross-site scripting. For example, Senior Dating by Lauber, GoldenApp,
Caring Village and Generations Homecare System are vulnerable to reflected
cross-site scripting attacks. An attacker can execute malicious JavaScript code
to fetch elderly users’ detail or to phish them. We note that for this attack

7 A domain is considered to be a third-party domain if an app from a developer
connects to it to enable third-party functions. Thus, the domain certificate owner is
not the same as the developer of the app.

684 P. Kapoor et al.

to work, a victim would first need to click on a malicious link crafted by the
attacker. Empowerji, EZ Care and Tricella Health are vulnerable to SQL injec-
tion attacks, allowing an adversary to view, modify and delete any elderly user’s
data. EllieGrid and Seniority are vulnerable to code injection. For this attack,
we added a JavaScript sleep function in the request body and then observed
the response time. When there was a delay of 10 s for the response after the
sleep command of 10 s, we confirmed the code injection vulnerability. This is
a very serious issue that can lead to complete compromise of the application’s
data and functionality, and the server that’s hosting the application [3]. Due to
ethical reasons, we limit our attack in detecting this vulnerability. As there is no
authentication secret on EllieGrid requests, the attacker can perform this attack
remotely by constructing and sending the modified requests to the app’s server.

4.6 Server-Side Security Misconfigurations

We found 16/146 apps with various security misconfigurations. Apps such as
Doulikesenior, Carelinx, Pension Status Search Old Age Widow Handicap and
Homage transmit HTTP requests to modify an object via unprotected GET
requests, and thus are vulnerable to Cross-Site Request Forgery (CSRF) attacks,
mostly executed via sharing/clicking a malicious link. We found that Over 40
Dating Mature has a file path manipulation vulnerability where we placed user-
controllable data (the file path on the app’s server) into the URL path of the
app’s request that might be used on the server to access local resources (which
may be within or outside the web root). With this vulnerability, an attacker can
modify the file path to access different resources, which may contain sensitive
information. For legal and ethical reasons we did not test/validate this attack.

4.7 Dangerous App Permissions

Dangerous permissions grant an app access to personal user data (e.g., user’s
location), or control over the user’s device. They are only granted after explicit
user consent. We found a total of 598 dangerous permissions in 118/146 apps,
i.e., an average of 5 dangerous permissions per app. See Table 3. Ianacare (care-
giver app) and Life Assure (companion app for a tracking device) had the maxi-
mum of 11 dangerous permissions (Call Phone, Camera, Write External Storage,
Read External Storage, Read Calendar, Write Calendar, Read Contacts, Write
Contacts, Read Phone State, Access Coarse Location, Access Fine Location,
Get Accounts, Record Audio). Access Fine Location permission is needed if an
app wants to know detailed information about the user’s location, and respond
accordingly. This is often used with advertising and location-based and social-
network services like Facebook. Read Calendar allows an application to read the
user’s calendar data. Calendar events can, and often do contain contact informa-
tion. The top 2 dangerous permissions found were Write External Storage (92
apps) and Read External Storage (91 apps). Rarely used permissions found were
Read Call Log (BIG Phone for Seniors), Receive SMS (Homedoctor Protección
Senior), Get Tasks (DAGPS) and Write Call Log (BIG Phone for Seniors).

Privacy Analysis of Android Apps for the Elderly 685

84/146 apps required Access Fine Location and 75/146 apps required Access
Coarse Location permission. 61/146 apps asked for Camera permission, such as
Petralex, Walk to End Alzheimer’s, GoutDietRecipes, Seniority, Aveanna EVV,
and 401(K) - Retirement Planning. Apps with a significantly high number of
risky permissions include Ianacare, 401(K) - Retirement Planning, Oscar Senior,
Senior Safety App, CrescendoConnect, Trusted Senior Care and ClearCareGo.

Table 3. 598 Dangerous permissions asked by 118/146 elderly apps

Dangerous Permission # Apps

Write External Storage 92

Read External Storage 91

Access Fine Location 84

Access Coarse Location 75

Camera 61

Record Audio 44

Read Phone State 39

Read Contacts 29

Call Phone 27

Get Accounts 22

Write Settings 9

Read Calendar 8

Write Calendar 8

Write Contacts 5

Get Tasks 1

Read Call Log 1

Receive SMS 1

Write Call Log 1

4.8 Third-Party Libraries and Permissions

Types of Libraries. We found 122 unique third-party libraries and a total of
1008 libraries in 127/146 apps, for various purposes: app development (93/122),
analytics (6/122), advertisements (6/122), and social networking (2/122). We
found 34/146 apps with Facebook social media library and 14/146 apps with
advertisement libraries, mainly Google Ads (9 apps) and Unity3d Ads (3 apps).

Libraries by App Category. A high number of total third-party libraries
were found in 26 caregiver apps (218/1008 libraries), 20 EVV apps (162/1008),
16 location tracking apps (150/1008), 12 dating apps (107/1008) and 6 apps for
Alzheimer’s (55/1008). This shows that the elderly who may need caring, or are
unwell, or socially active may be more prone to privacy and data security issues

686 P. Kapoor et al.

arising via these third-party libraries. 48/146 apps have 10 or more unique third-
party libraries. Examples of apps with a high number (>14) of unique libraries
are Knee Arthritis Exercises (24), Theora Link (22), Walk to End Alzheimer’s
(19), My SOS Family Emergency Alerts (18), Doulikesenior (17), Pension Status
Search Old Age Widow Handicap (16), Tracki GPS (15), and Empowerji (15).

Kinds of Permissions Asked. We found 3 unique signature8 permissions asked
by the libraries (Dump, Write APN Settings, Write Secure Settings). We found
the Dump permission for example used by Firebase (64/146 apps), Glide (41/146
apps) and Facebook (32/146 apps) third-party libraries. Write Secure Settings
permission was asked predominantly by Google Mobile Services (62/146 apps)
and Firebase (62/146 apps). This Development Aid library permission allows an
application to read or write the secure system settings. This permission should
only be seen on Android system apps (and possibly wireless carriers or hardware
manufacturer pre-installed apps) [26]. Write APN Settings permission was asked
by Google Play library (4/146 apps).

4.9 Static Code Analysis

Static code analysis with MobSF shows that 93/146 apps can read/write to
External Storage; 84/146 apps execute raw SQL queries which may expose them
to SQL Injection attacks; 71/146 apps use weak hash functions; 36/146 apps
have insecure WebView implementation; and 12/146 apps have insecure SSL
implementation, a critical security issue. Apps with all these five concerns are
Alzheimer’s Disease Pocketcard, Big Keyboard & Notifications, Over 40 - Find
People 50, Pill Reminder & Medicine App, Doulikesenior, Senior Safety App
and Silver 50 Dating.

4.10 Apps with an IoT Device

We acquired IoT devices that operate with 3/24 IoT companion apps: EllieGrid,
Carego Alphahom, Tuya SOS, and tested them to understand the relationship
between the device and app. We analyzed the app behavior for the remain-
ing 21/24 IoT companion apps, to the extent possible without the IoT device,
and found issues in 7/24 apps. X-GPS Monitor, Family1st, BrickHouse Track-
View and DAGPS are IoT companion apps which help family members track
their elderly loved ones via IoT devices. All these 4 apps had 3 main issues: (1)
improper authentication management, allowing an on-path attacker to sniff the
username and password for full account takeover, (2) insecure session manage-
ment, i.e., there is no use of authentication secrets in their requests, allowing an
attacker to replay the requests, and (3) insecure PII transmission, leaking user-
name and password in plaintext over HTTP. An on-path attacker can exploit
these issues to track the exact location of users wherever they go with their IoT
device due to full account takeover.
8 Enables communication between multiple apps of the same developer. Only granted

if the requesting app is signed with the same certificate.

Privacy Analysis of Android Apps for the Elderly 687

Tricella Health and EllieGrid are smart pill organizers which make medi-
cation management easier and are specifically designed to help the elderly by
reminding them to take their pills on time (they consist of a pillbox and an app).
Tricella Health has improper authentication management, where it is vulnerable
to a remote OTP (3-digit number) brute-force attack during login and regis-
tration, leading to full account takeover. It also has improper input validation
where its login requests are vulnerable to SQL injection attacks. These issues
can lead to a remote attacker changing the user’s medications causing the user
to take the wrong medications, skip doses or overdose.

EllieGrid’s physical pillbox is designed to store pills and receive reminders
as ring notifications. The reminders and medications can be set up in its com-
panion app. We found two major vulnerabilities in EllieGrid. Firstly, it offers a
functionality to alert the elderly user’s caregiver via email and phone, when the
pillbox is not opened on time. We note that there is no access control present
in this functionality, and a remote adversary can completely tamper with the
associated caregiver’s detail by using the caregiver profile setup option, which is
present on the app UI. An adversary can enumerate a caregiver’s ID by brute-
forcing, and then supply it to modify the caregiver’s email and send the alerts
to an attacker under his control, which would allow him to track the elderly
users’ activities and collect their pill taking habits; additionally, the legitimate
caregiver will not receive any further notifications from the pillbox. Secondly,
the EllieGrid solution offers a paid plan with additional functionalities for the
elderly, such as viewing weekly adherence reports and adding a caregiver. Specif-
ically, we found a parameter subscriptionTypeId from the user profile API, which
sets the value of the current plan. An adversary can set this parameter’s value
to premium and upgrade their EllieGrid account for free.

We also found some vulnerabilities by following the static analysis approach
in Carego Alphahom, which provides a personal alarm system for the elderly.
In particular, the app is vulnerable to the Janus vulnerability [17], in which an
adversary can prepend a malicious DEX file to an APK file while keeping its
signature unaffected. Android versions 5.0 - 8.1 accept the file as a valid APK.

4.11 Firebase Analysis

84/146 Android apps use Google Firebase as a backend service and we found
4/84 apps whose Firebase DB was exposed publicly. For ethical reasons and to
protect other customers’ privacy, we created elderly accounts on the four apps.
Then, we updated the Firebase scanner to automatically search for our test data
in its response and record the leaked information from our own account. 2/4
apps (CogniFit and Carely) fixed this issue during the time of our testing. For
UnitedHealthcare EVV Tennessee and Amerigroup EVV Tennessee, at the time
of testing, we could not see any sensitive data being stored on their databases.

688 P. Kapoor et al.

5 Limitations

As Google Play Store does not have a defined “Elderly” or “Senior” app category,
our app search is limited to the keywords used. A major limitation we faced
during our dynamic analysis was the inability to create accounts for 67/115 of our
apps because the companies either make accounts for the users beforehand (and
provide access information) or the apps will validate the user’s information (e.g.,
medical insurance numbers, and organization email IDs, which we cannot provide
in our test accounts) before creating the account. This was most applicable for
the EVV and caregiver apps. For those apps, we conduct a limited dynamic
analysis of pre-login application behaviors. We also did not test any paid apps.

6 Related Work

Slane et al. [25] collected seniors’ perspectives on technological devices and appli-
cations to show how seniors protect their personal information, and what knowl-
edge, tools, and support they would need in order to consider new functions or
devices. Huckvale et al. [13] assessed 79 clinically safe medical/health apps used
by chronic and unwell persons, and found that 23/79 of apps sent unencrypted
PII over the Internet, 63/79 apps communicated directly with third-party ser-
vices and 53/79 of apps had some form of privacy policy. However, this work does
not specifically study elderly users, or analyze the backend security issues. Frik
et al. [9] identified a range of complex privacy and security attitudes and needs
specific to older adults, along with common threat models, misconceptions, and
mitigation strategies. They showed how older adults’ limited technical knowl-
edge, experience, and declining abilities amplify vulnerability to certain risks.
Oliveira et al. [20] showed that older women were the most vulnerable group
to phishing attacks in a study of 158 internet users. Razaghpanah et al. [21]
identified 2,121 third-party advertising and tracking services at the traffic level,
of which 233 were previously unknown to other popular advertising and track-
ing blacklists. Their analysis of the privacy policies of the largest advertising
and tracking service providers showed rampant sharing of harvested data with
subsidiaries and third-party affiliates. Ren et al. [22] analyzed 512 apps for pri-
vacy leaks over time across three dimensions (PII leaks, HTTPS adoption, and
domains contacted) independently, and found that app privacy gets worse as
users upgrade apps and all apps leak at least one type of PII.

In contrast to the above work, we take an in-depth look at the security and
privacy threats in Android apps used by the elderly. We also analyze traffic flows,
PII or device information and usage leaks, dangerous permissions used by apps and
third-party libraries, and backend security issues of high severity, using various
tools for both dynamic and static analysis. Our initial framework also included

Privacy Analysis of Android Apps for the Elderly 689

Lumen Privacy Monitor for dynamic analysis of test apps, but we removed it from
the framework as we found that Lumen did not uncover several security flaws as
compared toBurp Suite. Even thoughLumenwould show leaks, therewas a layer of
uncertainty as to how a leak was transmitted (over HTTP or HTTPS) and where
it was leaked (to the client-side product itself or to some third-party domains).
Also, Lumen did not work reliably on newer Android versions and only worked
best below Android 7. Hence, we decided to use a more manual approach with
Burp Suite.

7 Conclusion

We presented a comprehensive analysis of 146 Android apps that are intended
to assist elderly people. Our methodology included dynamic analysis of traf-
fic domain flows, trackers, leaks, and permissions, static analysis of third-party
libraries for risky permissions and vulnerable backend issues using various auto-
mated as well as manual tools. We reveal individually many red flags in 30/146
apps and how they are most likely to be a security risk. But also, in a wider
sense, we have noticed trends in apps’ permissions and domain flows which show
us how some companies, third-party libraries, or permissions dominate the seg-
ments. This is why we think the analysis should not stop here, as we can delve
even deeper to find more flaws and vulnerabilities. This will create a safe envi-
ronment for the elderly to have the peace of mind that their new smartphones
are safe and they have one less thing to worry about.

Acknowledgements. This work was partly supported by a grant from the Office of
the Privacy Commissioner of Canada (OPC) Contributions Program.

References

1. Arghire, I.: Thousands of mobile apps leak data from firebase databases
(2018). https://www.securityweek.com/thousands-mobile-apps-leak-data-
firebase-databases

2. Bengfort, J.: Senior care and mobility: why smartphones and tablets make
sense. (2019). https://healthtechmagazine.net/article/2019/11/senior-care-and-
mobility-why-smartphones-and-tablets-make-sense

3. Choi, H., Kim, Y.: Large-scale analysis of remote code injection attacks in Android
apps. Secur. Commun. Netw. 2018, 1–17 (2018). https://doi.org/10.1155/2018/
2489214

4. CNBC.com: Here’s how online scammers prey on older Americans, and what they
should know to fight back, November 2019. https://www.cnbc.com/2019/11/23/
new-research-pinpoints-how-elderly-people-are-targeted-in-online-scams.html

5. Columbus, L.: Roundup of internet of things forecasts (2017). https://www.
forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-
forecasts/?sh=4f00f1d11480

6. CVE.mitre.org: Cve-2022-30083, May 2022. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2022-30083

https://www.securityweek.com/thousands-mobile-apps-leak-data-firebase-databases
https://www.securityweek.com/thousands-mobile-apps-leak-data-firebase-databases
https://healthtechmagazine.net/article/2019/11/senior-care-and-mobility-why-smartphones-and-tablets-make-sense
https://healthtechmagazine.net/article/2019/11/senior-care-and-mobility-why-smartphones-and-tablets-make-sense
https://doi.org/10.1155/2018/2489214
https://doi.org/10.1155/2018/2489214
https://www.cnbc.com/2019/11/23/new-research-pinpoints-how-elderly-people-are-targeted-in-online-scams.html
https://www.cnbc.com/2019/11/23/new-research-pinpoints-how-elderly-people-are-targeted-in-online-scams.html
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/?sh=4f00f1d11480
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/?sh=4f00f1d11480
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/?sh=4f00f1d11480
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-30083
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-30083

690 P. Kapoor et al.

7. Davidson, J., Schimmele, C.: Evolving internet use among Canadian seniors. statis-
tics Canada research paper series (2019). https://www150.statcan.gc.ca/n1/pub/
11f0019m/11f0019m2019015-eng.htm

8. Easylist.to: Easylist (2022). https://easylist.to/
9. Frik, A., Nurgalieva, L., Bernd, J., Lee, J.S., Schaub, F., Egelman, S.: Privacy and

security threat models and mitigation strategies of older adults. In: Proceedings of
the Fifteenth USENIX Conference on Usable Privacy and Security, SOUPS 2019,
pp. 21–40. USENIX Association, USA (2019)

10. Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: automatically detect-
ing potential privacy leaks in android applications on a large scale. In: Katzen-
beisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.)
Trust 2012. LNCS, vol. 7344, pp. 291–307. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30921-2 17

11. Github.com: graphiql, January 2022. https://github.com/graphql/graphiql
12. Hoyt, J.: Senior citizen apps (2020). https://www.seniorliving.org/cell-phone/

apps/
13. Huckvale, K., Prieto, J.T., Tilney, M., Benghozi, P.J., Car, J.: Unaddressed privacy

risks in accredited health and wellness apps: a cross-sectional systematic assess-
ment. BMC Med. 13(1), 1–13 (2015)

14. Jindal, A., Madden, S.: Graphiql: a graph intuitive query language for relational
databases. In: 2014 IEEE International Conference on Big Data (Big Data), pp.
441–450. IEEE (2014)

15. Kakulla, B.N.: Older adults keep pace on tech usage. AARP Research (2020).
https://www.aarp.org/research/topics/technology/info-2019/2020-technology-
trends-older-americans.html

16. Maaß, W.: The Elderly and the internet: how senior citizens deal with online
privacy. In: Trepte, S., Reinecke, L. (eds.) Privacy Online, pp. 235–249. Springer,
Berlin (2011). https://doi.org/10.1007/978-3-642-21521-6 17

17. Medium.com: Exploiting apps vulnerable to janus (cve-2017–13156), 26
March 2021. https://medium.com/mobis3c/exploiting-apps-vulnerable-to-janus-
cve-2017-13156-8d52c983b4e0

18. Morrison, B., Coventry, L., Briggs, P.: How do older adults feel about engaging
with cyber-security? Hum. Behav. Emerg. Technol. 3(5), 1033–1049 (2021)

19. Muscat, I.: What are injection attacks, April 2019. https://www.acunetix.com/
blog/articles/injection-attacks

20. Oliveira, D., et al.: Dissecting spear phishing emails for older vs young adults: on
the interplay of weapons of influence and life domains in predicting susceptibility
to phishing. In: Proceedings of the 2017 Chi Conference on Human Factors in
Computing Systems, pp. 6412–6424 (2017)

21. Razaghpanah, A., et al.: Apps, trackers, privacy, and regulators: a global study
of the mobile tracking ecosystem. In: The 25th Annual Network and Distributed
System Security Symposium (NDSS 2018) (2018)

22. Ren, J., Lindorfer, M., Dubois, D.J., Rao, A., Choffnes, D., Vallina-Rodriguez, N.,
et al.: Bug fixes, improvements,... and privacy leaks. In: The 25th Annual Network
and Distributed System Security Symposium (NDSS 2018) (2018)

23. Sahni, S.: Firebase scanner, 28 February 2018. https://github.com/shivsahni/
FireBaseScanner

24. Shirke, K.: Mobile security framework (mobsf) static analysis, January 2019.
https://medium.com/@kshitishirke/mobile-security-framework-mobsf-static-
analysis-df22fcdae46e

https://www150.statcan.gc.ca/n1/pub/11f0019m/11f0019m2019015-eng.htm
https://www150.statcan.gc.ca/n1/pub/11f0019m/11f0019m2019015-eng.htm
https://easylist.to/
https://doi.org/10.1007/978-3-642-30921-2_17
https://doi.org/10.1007/978-3-642-30921-2_17
https://github.com/graphql/graphiql
https://www.seniorliving.org/cell-phone/apps/
https://www.seniorliving.org/cell-phone/apps/
https://www.aarp.org/research/topics/technology/info-2019/2020-technology-trends-older-americans.html
https://www.aarp.org/research/topics/technology/info-2019/2020-technology-trends-older-americans.html
https://doi.org/10.1007/978-3-642-21521-6_17
https://medium.com/mobis3c/exploiting-apps-vulnerable-to-janus-cve-2017-13156-8d52c983b4e0
https://medium.com/mobis3c/exploiting-apps-vulnerable-to-janus-cve-2017-13156-8d52c983b4e0
https://www.acunetix.com/blog/articles/injection-attacks
https://www.acunetix.com/blog/articles/injection-attacks
https://github.com/shivsahni/FireBaseScanner
https://github.com/shivsahni/FireBaseScanner
https://medium.com/@kshitishirke/mobile-security-framework-mobsf-static-analysis-df22fcdae46e
https://medium.com/@kshitishirke/mobile-security-framework-mobsf-static-analysis-df22fcdae46e

Privacy Analysis of Android Apps for the Elderly 691

25. Slane, A., Pedersen, I., Hung, P.C.K.: Involving seniors in developing privacy best
practices: towards the development of social support technologies for seniors. in:
office of the privacy commissioner of Canada (2020). https://www.priv.gc.ca/en/
opc-actions-and-decisions/research/funding-for-privacy-research-and-knowledge-
translation/completed-contributions-program-projects/2019-2020/p 2019-20 03/

26. XDA-developers.com: android permissions & security explained. https://forum.
xda-developers.com/t/android-permissions-security-explained.2312066/

https://www.priv.gc.ca/en/opc-actions-and-decisions/research/funding-for-privacy-research-and-knowledge-translation/completed-contributions-program-projects/2019-2020/p_2019-20_03/
https://www.priv.gc.ca/en/opc-actions-and-decisions/research/funding-for-privacy-research-and-knowledge-translation/completed-contributions-program-projects/2019-2020/p_2019-20_03/
https://www.priv.gc.ca/en/opc-actions-and-decisions/research/funding-for-privacy-research-and-knowledge-translation/completed-contributions-program-projects/2019-2020/p_2019-20_03/
https://forum.xda-developers.com/t/android-permissions-security-explained.2312066/
https://forum.xda-developers.com/t/android-permissions-security-explained.2312066/

MetaPriv: Acting in Favor of Privacy
on Social Media Platforms

Robert Cantaragiu, Antonis Michalas(B), Eugene Frimpong,
and Alexandros Bakas

Tampere University, Tampere, Finland
{robert.cantaragiu,antonios.michalas,eugene.frimpong,

alexandros.bakas}@tuni.fi

Abstract. Social networks such as Facebook (Since October 2021 is also
known as META) (FB) and Instagram are known for tracking user online
behaviour for commercial gain. To this day, there is practically no other
way of achieving privacy in said platforms other than renouncing their
use. However, many users are reluctant in doing so because of convenience
or social and professional reasons. In this work, we propose a means of
balancing convenience and privacy on FB through obfuscation. We have
created MetaPriv, a tool based on simulating user interaction with FB.
MetaPriv allows users to add noise interactions to their account so as
to lead FB’s profiling algorithms astray, and make them draw inaccu-
rate profiles in relation to their interests and habits. To prove our tool’s
effectiveness, we ran extensive experiments on a dummy account and
two existing user accounts. Our results showed that, by using our tool,
users can achieve a higher degree of privacy in just a couple of weeks. We
believe that MetaPriv can be further developed to accommodate other
social media platforms and help users regain their privacy, while main-
taining a reasonable level of convenience. To support open science and
reproducible research, our source code is publicly available online.

Keywords: Metaverse · Obfuscation · Online profiling · Privacy ·
Social networks · Recommendation systems

1 Introduction

Online tracking on social networks (SNs) have raised concerns regarding user
privacy [4,8,15]. Recommendation systems used by social media are developed
to present biased information with the purpose of encouraging user engagement.
When users share their opinions, beliefs and preferences on said platforms –
whether by clicking ‘like’ on an article or by writing a controversial post – the
recommendations they receive are aimed at reinforcing these beliefs. Their goal
is to provide users with information that most likely interests them and enables
them to trace other users sharing the same values. It is believed that through
this approach, users gradually become more engaged with these platforms, while

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 692–709, 2023.

https://doi.org/10.1007/978-3-031-25538-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_36&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_36

MetaPriv: Acting in Favor of Privacy on Social Media Platforms 693

going deeper in the rabbit-hole of subjectivity, since the only information and
news they receive affirms their already established opinions. As a result, users
remain engaged in SN platforms, as the latter make accurate predictions on their
potential consumption needs. Hence, platforms in collaboration with companies
promoting their products manipulate user information for targeted advertising.

Balance Between Privacy and Convenience on Social Networks: Most users seem
to be left with two options when it comes to social network privacy: (1) either reg-
ular use of the platform – hence no privacy or (2) complete abstinence from social
networks – hence full privacy. However, the second option presents a number of
problems. First, the hassle of removing data about oneself from a platform, dis-
courages users as it demands tedious action. Note that data removal does not refer
to deleting the account alone, but to the deletion of all posts, pictures and logged
data from the platform. Secondly, even in cases where all user data is deleted,
SNs may still track individuals through partner companies on different websites
(e.g. through FB Pixel [16]). Finally, completely opting out of SNs results in great
costs in terms of convenience for many individuals, who wish to keep in touch with
their friends, keep up with the news and promote themselves or their activities. To
this end, we believe that complete privacy is not achievable for most users. We do,
however, think that one can strike a balance between privacy and convenience on
said platforms and this has been a major motive behind our work. Our platform
of choice for this work is FB – the world’s largest online SN. However, the idea
presented below can be developed to accommodate privacy on other platforms.

Contributions: The main idea has been developed based on increasing concerns
regarding the breach of user privacy in online SNs. More precisely, the main
concern is that user choices are being covertly manipulated and controlled by
SNs. With this in mind, we built MetaPriv, an automated tool that allows FB
users to obfuscate their data and conceal their real interests and habits from FB.
As a result, the core contribution of this paper is that it provides users with the
necessary tools to protect their privacy when using SNs. It is worth mentioning
that MetaPriv allows users to define the desired level of privacy (e.g. become
almost ’invisible’ online while still using SN platforms, reveal certain information
about their digital and real lives etc.). By doing this, MetaPriv provides a novel
and adaptive balance between privacy and functionality. This is a feature we
believe will be used in several services in the near future.

2 Related Work

A number of research works offer users a more private experience on FB and
other SNs. FaceCloak [12] protects user privacy on SNs by shielding personal
information from the SN and unauthorized users, while maintaining the usability
of the underlying services. FaceCloak achieves this through providing fake infor-
mation to the SN and storing sensitive data in an encrypted form on a separate
server. It is implemented as a Firefox extension for FB. FaceCloak’s user privacy
attempt resembles our work. However, its main purpose is to hide specific data

694 R. Cantaragiu et al.

such as age, name, etc. and not user interests derived from interaction with the
SN. Moreover, as of August 2011, the current version of the FaceCloak Firefox
extension does not work with FB anymore due to changes made by FB [18].

Scramble [3] allows users to enforce access control over their data. It is an SN-
independent Firefox extension allowing users to define access control lists (ACL)
of authorised users for each piece of data, based on their preferences. In addition
to that, it also allows users to encrypt their posted content in the SN, therefore
guaranteeing confidentiality of user data against the SN. The tool allows users
to hide information through cryptography. This may require prior knowledge,
which is usually counter intuitive for ordinary users. Also, it’s implementation
cannot be found anywhere and is likely outdated.

Other privacy approaches focus on different platforms: Google, Youtube,
Amazon etc. While they do not necessarily provide solutions for achieving pri-
vacy on FB, their approaches served as an inspiration for our work.

TrackThis [7] by Mozilla proposes an approach of polluting a users browsing
history by opening 100 tabs at once. This leaves cookies that are unrelated
to the users interests and confuse third party trackers. Similarly, the authors
of [19] and [14] show a way to attack personalization algorithms by polluting
a users browser history with noise by generating false clicks through cross-site
request forgery (XSRF). In [11], the authors present an attack for draining ad
budgets. By repeatedly pulling ads using crafted browsing profiles, they managed
to reduce the chance of showing their ads to real visitors and trash the ad budget.
While having similar approaches to ours, these tools provide limited privacy in
the long run as they have to be relaunched after a period of time.

In [17], the authors test protesting against data labouring [2]: they utilize user
interactions with different services as input for training user profiling algorithms.
They simulate data strikes against recommendation systems. Their results imply
that data strikes can put a certain pressure on technology companies and that
users have more control over their relationship with said companies. Our work
can also be viewed as a protest against the data labouring of users on an SN: if
enough users had access to noise attributes, the recommendation systems of FB
would most likely be disrupted even for new users not using our tool.

Howe and Nissenbaum proposed AdNauseam [6] – a browser extension
designed to obfuscate browsing data and protect user-tracking by advertising
networks. It clicks on every displayed ad in different web pages, thereby dimin-
ishing the value of all ad clicks – obfuscating the real with fake clicks. Another
tool called Harpo [20] uses reinforcement learning to adaptively interleave real
page visits with fake pages to distort a tracker’s view of a user’s browsing profile.
Harpo is also able to achieve better stealthiness to adversarial detection as com-
pared to AdNauseam. Our tool is designed and based on similar obfuscation ideas,
however we focus on a specific SN platform and not only on advertisements.

3 System Model

We now proceed with introducing the system model we consider by describing the
main entities participating in the design of MetaPriv, as well as their capacities.

MetaPriv: Acting in Favor of Privacy on Social Media Platforms 695

Social Network (SN): Defined as a graph G = (U ,R) where the vertices are
comprised of users from a set U , with the edges being the relationship between
said users, described by the set R ⊆ {{u, v} |u, v ∈ U andu �= v}.

Users: Let U := {u1, . . . , un} be the set of all users registered in an online SN
such as FB. Each user has a unique identifier i ∈ [1, n]. In addition to that,
each user is associated with a number of attributes. The set of all attributes
associated with a user ui is denoted as Ai ⊆ A.

Attributes: The set of all available attributes in an SN is denoted by A :=
{a1, . . . , am} and is called the attribute space. An attribute is a specific trait
that a user ui possesses, e.g. “ui likes cats”.

BOT: An entity that adds noise to a user profile (ui). It works by mimicking
the user’s interaction with the SN and generates noise attributes on their behalf.

User Real and Noise Attributes: Assume a user ui with a list of attributes
Ai. Elements of Ai may have been generated legitimately (i.e. through the user’s
real activity) or by the BOT. The set of all attributes generated by the user’s
legitimate activity is denoted as Ar

i ⊆ Ai while the set of all attributes associated
with ui but generated by the BOT is denoted by An

i ⊆ Ai.

3.1 High-Level Overview

The core idea behind MetaPriv is to fuddle FB’s opinion about a user ui by
obfuscating ui’s real attributes Ar

i with the help of noise attributes An
i . To that

end, we use the BOT and have it interact with the SN on behalf of ui. Ideally, to
achieve privacy, the amount of traffic generated by the BOT should be the same
or more than the traffic generated by ui.

When user ui creates an account on FB, they have no attributes (i.e. the set
Ai is empty). Following registration, ui begins generating activity (e.g. adding
friends, liking pages and posts). By collecting and analyzing user activities, FB
creates a list of attributes that represents each user’s perceived interests (e.g., a1
– “ui likes cooking”). For the purposes of this work, we consider these attributes
as real and are added to the set Ar

i – a subset of Ai, i.e. Ar
i ⊆ Ai. The set Ai is

then used by FB to decide which posts and advertisements are presented in the
respective ui feed. In this scenario, all ui’s interests are known to the SN, which
can make accurate predictions about their preferences and therefore populate
their account with accurate personalized content. In this work, we are examining
ways of protecting user privacy from a potentially malicious or at least curious
SN. To achieve this, we have created MetaPriv. With our tool, users can confuse
an SN about their real interests. MetaPriv revolves around a simple idea: Since
the SN personalizes users by analyzing their activities on the platform, our tool
generates noise traffic on behalf of a user. This will result in adding attributes
to the set An

i containing the noise attributes described earlier. With this in
mind, we built a BOT as part of the core of MetaPriv whose functionality is
described below. At this point, it is worth noting that the interactions generated
by MetaPriv consists of primarily liking posts and pages.

696 R. Cantaragiu et al.

Fig. 1. High-level overview of the BOT’s functionality.

1. As a primary requirement, the BOT needs access to ui’s account. This can be
done in one of two ways: Either with ui providing their credentials or through
their browser profile folder i.e. the hidden folder in an operating system’s user
folder, where all web browser cookies, etc. are stored.

2. Once the BOT has gained access to the user account, it requires a set of
keywords generated by a different part of MetaPriv, which would serve as
noise attributes. The keyword generator, however, requires a seed keyword
that the user must input at least once.

3. The user then inputs their desired level of privacy. This privacy level simply
refers to the level of convenience and benefits that a user is willing to accom-
modate to better protect their privacy. In practice, it represents the amount
of noise that is persistently added to an account.

4. Finally, the BOT repetitively executes a series of steps represented in Fig. 1.

3.2 Extending MetaPriv

After extensive experiments, we observed limited success with the initial version
of MetaPriv, which we attributed to its limited interactions (i.e., simply liking
posts and pages). These results are discussed in Sect. 5. As such, it became neces-
sary to add extra features to MetaPriv. To limit the amount of noise generated,
before the BOT switches to another page, it waits for a random amount of time.
In the basic implementation, MetaPriv did not run any tasks during this wait
period. However, in this extended version, MetaPriv watches keyword related
videos and clicks Facebook ads displayed in user’s main feed instead of simply
waiting. Our observations showed that video watching did not seem to raise any
suspicions from FB, i.e. the browser session did not get logged out or blocked,
hence the BOT clicks on every ad from the first 100 posts in the main feed,
searches the keyword in FB’s video page and watches all the videos returned.
This, we believe, helps to further reinforce the noise and give it more variety.
Figure 2 provides an overview of the extended functionalities of MetaPriv.

MetaPriv: Acting in Favor of Privacy on Social Media Platforms 697

Fig. 2. Extended BOT functionality.

4 Measuring User Privacy on Facebook

Previous works focus on measuring privacy according to the visibility and sen-
sitivity of user attributes [1,5,13]. This approach, however, is inapplicable, as
the aim is to confuse the data collector, thus leading to inaccurate user profile
predictions. Visibility of a user’s attributes would always be maximum, since the
SN stores all user interactions with it. Additionally, in this work the concept of
sensitivity cannot apply, since all user attributes are known to the SN (i.e. can
be considered public). With this in mind, we propose a new definition for privacy
on an SN based on a user’s real and noisy interactions with the SN. Real inter-
actions are daily, legitimate user interactions with the SN. Noisy interactions are
BOT-produced and mainly generate fake activity on a user’s profile.

Our first approach on quantifying privacy was characterized by rather ele-
mentary and naive thinking: Initially, we defined the notion of Theoretical Pri-
vacy. The intuition behind Theoretical Privacy was that a user’s level of privacy
is proportional to the number of noise in their profile. However, the results of
our first experiments did not support this. Apparently, the time that a user likes
a post, a page, etc. seems to be significant for FB’s personalization algorithms.
More precisely, it seems that FB weighs a user’s recent rather than older con-
tent. In view of the above, we refined our idea on quantifying privacy and defined
Effective Privacy – an alternative that better fits FB’s models.

Definition 1 (Theoretical Privacy). Theoretical privacy is measured by tak-
ing into account the amount of posts liked by a user ui and the BOT. User ui’s
theoretical privacy with j + k attributes is defined as:

P th
i =

∑
j∈Ar

i
RAth

j − ∑
k∈An

i
NAth

k

T
, (1)

698 R. Cantaragiu et al.

where RAth is the number of specific attribute-related posts liked by ui, NAth is
the number of specific attribute-related posts liked by the BOT and T is the total
number of posts liked by ui’s account.

Definition 2 (Effective Privacy). For this definition we consider the effec-
tive strength of user real and noise attributes. The strength of a user’s real
attribute is proportional to:

– the number of posts in the main feed from liked pages linked to an attribute.
Variable: rp

– the number of recommended, suggested and sponsored posts in the main feed
from pages linked to an attribute, but not liked by the user or the BOT. Variable:
rsp

– the number of video posts from the main video feed (https://www.facebook.
com/watch) linked to an attribute. Variable: rvp

– the number of video posts from the latest video feed (https://www.facebook.
com/watch/ latest) linked to an attribute. Variable: rlvp

The effective strength of a real attribute is defined as:

RAeff =
1
n

(

a
rp
tp

+ b
rsp
tsp

+ c
rvp
tvp

+ d
rlvp
tlvp

)

, (2)

where a, b, c, d ∈ {0, 1}, n = a+ b+ c+d, tp is the total number of posts shown in
the main feed, tsp is the total number of suggested posts shown in the main feed,
tvp is the total number of video posts related to ui’s attributes from the main
video feed and tlvp is the total number of video posts from the latest video feed.
Each of the variables a, b, c, d is given the value 0, when their respective fraction
is 0. Otherwise they are given the value 1. This is done so that, if one effective
strength variable has a value of 0 (i.e. no posts), then it will not be taken into
account for the final effective privacy value.

A similar definition stands for the effective strength of noise attributes
NAeff . variables rp, rsp, rvp and rlvp are replaced with corresponding noise
attributes i.e. np, nsp, nvp and nlvp. The strength of a noise attribute is defined
as:

NAeff =
1
n

(

a
np

tp
+ b

nsp

tsp
+ c

nvp

tvp
+ d

nlvp

tlvp

)

(3)

Finally, for a user ui with j+k attributes, we combine the two variables and
reach the effective privacy:

P eff
i =

∑

j∈Ar
i

RAeff
j −

∑

k∈An
i

NAeff
k (4)

In both cases, the resulting value will be P ∈ [−1, 1]. The closer it is to
0, the more indistinguishable will the noise attributes be from real attributes.
Therefore, the account of an arbitrary user ui is private iff P ≈ 0 or P ≤ 0.

https://www.facebook.com/watch
https://www.facebook.com/watch
https://www.facebook.com/watch/latest
https://www.facebook.com/watch/latest

MetaPriv: Acting in Favor of Privacy on Social Media Platforms 699

5 Implementation and Results

To demonstrate MetaPriv’s functionality and practicality, we evaluated both the
basic and the extended versions. For the basic version, we created a dummy FB
account and ran a 10-week experiment to build the account’s real and noise
attributes. While for the extended version, we tested MetaPriv on two real
FB accounts that have existed and are active for over a decade. To evaluate
the dummy account, we used MetaPriv to simulate both user and BOT inter-
actions1 with FB. Our test program was implemented using Python 3.10 and
Selenium WebDriver – a framework for testing web applications that allowed us
to simulate an automated user interaction with FB.

Open Science and Reproducible Research: Our source code2 has been
anonymized and made publicly available online to support open science and
reproducible research.

5.1 Dummy Account Results

For the dummy FB account, we created a 22-year-old female user from Ireland
(the account and all interactions were made through an Azure server with an
Irish IP address). At the end of each week, we ran an extensive analysis of FB’s
main, video and latest video feed by opening the respective URLs, going through
a certain amount of posts in them and saving the information about said posts
in an SQL database.

Weeks 1 & 2: The first two weeks primarily consisted of building the user profile
with a single attribute. To be more specific, we used the attribute “cat”, so FB
would associate our user with cats. We then provided the keyword “cat pictures”
as input to MetaPriv. The program liked 1,056 posts from 51 keyword-related
pages over these two weeks. This keyword served as the user’s real attribute.
After one week, ‘Recommended’ posts appeared in the main feed. Out of 264
posts, 32 were recommended and 11 seemed relevant to the user’s profile:

1 post related to demographics -a house in Dublin; 1 post about cats from
a page about cats; 2 posts about tigers (both from FB group: WildCat
Ridge Sanctuary); 1 post about demographics and cats (page name: North
Dublin Cat Rescue Ireland); 1 post about ostriches, 1 about bulls, 2 about
dogs, 1 about rare animals (related to animals); 1 post about “Dads Acting
Like Their Teenage Daughters” (possibly gender-related).

Other recommended posts were unrelated to “cats” and had a dozen million
views (we assume these were most likely trending posts). Almost all the rec-
ommended posts were videos3. After these two weeks, we analyzed 449 posts
1 We make a clear distinction between MetaPriv and the BOT. BOT interactions will be

used to refer to the noise traffic generated by MetaPriv.
2 https://github.com/ctrgrb/MetaPriv.
3 This could be because users show a higher rate of engagement to online videos

compared to text (e.g. articles, blog posts, etc.).

https://www.selenium.dev/documentation/webdriver/
https://github.com/ctrgrb/MetaPriv

700 R. Cantaragiu et al.

from the main feed and got 13 recommended posts along with 23 “join group”
recommendations from cat-related FB groups. 8 of the recommended posts were
linked to the user’s profile:

1 post related to demographics: Football game GERMANY vs IRELAND
(2002); 1 post about cats from FB group: CAT LOVERS PHILIPPINES;
4 posts about animals from a group about animal comics; 1 post about
cats from the ‘Daily Mail’ page; 1 post from a group about Dinosaurs. The
name of the person posting was: Margaret Happycat.

This time, most recommendations appeared from groups, though the user was
not a member of any.

Week 3: For the third week, we added a second keyword as a noise attribute to
the profile. At this point, the noise was manifested through liking a noise-related
page and its posts at every 10th page switch. In essence, 10% of the interactions
with FB were now related to a single noise attribute. This 10% represented 72
out of 554 posts liked in week 3 from 5 pages linked to the chosen noise keyword
“guns”4. We observed that there were no recommended posts after this period.
An analysis of 547 posts from the main feed showed that 19 were linked to the
noise attribute. The latest video feed contained only 21 videos from liked pages
related to the real attribute (i.e. cats). In the main video feed, we analyzed 184
video posts. 70 of them included words such as: [‘cat’,‘Cat’,‘kitten’,‘Kitten’] in
their description or page URL and were, thus, related to the real attribute, while
nothing was related to the noise attribute.

Week 4: For this period, we increased the noise amount from 10% to 20%. Out
of 530 liked posts, 112 came from 8 pages related to the noise attribute. In the
main feed, out of 337 posts, 38 were from pages related to the noise attribute.
FB stopped showing recommended posts at this point, however, ‘Suggested for
you’ posts began to show. Out of the 337 posts, 8 were labeled as ‘Suggested’
out of which 1 was related to animals, 3 specifically to cats and the remaining
were possibly gender-related. This time too, the latest video feed showed only
cat-related videos and in the main video feed, out of 152 videos, 35 included
the words: [‘cat’,‘Cat’,‘kitten’,‘Kitten’] in the description or page URL, while no
videos were related to guns.

Week 5: We decided to add another noise attribute, thus dividing FB interaction
as follows: 70% cats, 20% guns and 10% cooking. From a total of 485 liked
posts, 130 were related to the keyword “guns” and 36 to “cooking recipes”. This
time, out of 673 posts in the main feed, 67 were related to guns and 147 to
cooking. Our theory for increased cooking content is that a cat lover is more
likely to also like cooking rather than guns5. This time, out of 16 suggested
posts, 14 were cats. In the latest video feed, out of 51 videos, 21 were cats, 1
4 It is worth noting that the percentage value is an approximation since MetaPriv is

designed with randomness in mind to avoid patterns in its behaviour.
5 This might also be related to the fact that Ireland has one of Europe’s least permis-

sive firearm legislation – hence gun-related content is heavily regulated.

MetaPriv: Acting in Favor of Privacy on Social Media Platforms 701

guns and 26 cooking. Finally, in the main video feed, out of 136 posts, 27 were
cats, 3 guns and 7 cooking.

Week 6: We increased the amount of noise for the cooking attribute to 20% and
the gun attribute to 30%, thus dividing FB interaction as follows: 50% cats, 30%
guns and 20% cooking. From a total of 647 liked posts, 213 were guns and 125
cooking. In the main feed, out of 405 posts, 35 were guns and 66 cooking. There
were also 7 suggested posts, out of which 4 were cooking and 2 cats. In the latest
video feed, out of 65 posts, 12 were cats, 2 guns and 51 cooking. Finally, in the
main video feed’s 103 posts, 27 were cats and 15 cooking.

Week 7: We added another noise attribute that would be stronger than others.
Hence, FB interaction became: 23% cats, 23% guns, 23% cooking and 30% chess.
From a total of 365 liked posts, 90 were cats, 89 guns, 76 cooking and 110 chess.
The main feed’s 286 posts were divided as follows: 45 guns, 72 cooking and 2
chess. From 14 suggested posts, 10 were cooking and 1 chess. In the latest video
feed, out of 162 posts, 18 were cats, 35 guns, 83 cooking and 22 chess. The 137
posts in the video feed were divided as follows: 25 cats, 1 guns, 9 cooking and 1
chess.

Week 8: The aim was to examine results, when new attributes were added
without reinforcing old ones. For the first half of the week FB interaction was
100% fishing-related and the second half 20% fishing and 80% bodybuilding.

– First half: Liked 235 posts about fishing. In the main feed, out of 402 posts,
207 were cats, 45 guns, 115 cooking, 4 chess and 15 fishing. Out of 7 suggested
posts, 4 had to do with fishing and the others were unrelated to the user’s
attributes. In the latest video feed, from 190 videos, 14 were cats, 48 guns, 72
cooking, 39 chess and 18 fishing. In the main video feed, out of 148 videos,
12 were cats, 2 guns, 10 cooking, 3 chess and 1 fishing.

– Second half: Liked 48 fishing posts and 181 bodybuilding posts. In the main
feed, out of 423 posts, 229 were cats, 33 guns, 127 cooking, 22 fishing and 7
bodybuilding. Out of 2 suggested posts, 1 was bodybuilding and the other
unrelated. In the latest video feed, out of 156 videos, 16 were cats, 9 guns, 30
cooking, 34 fishing and 72 bodybuilding. In the main video feed, out of 128
videos, 1 was cats, 2 guns, 20 cooking, 1 chess and 1 fishing.

Week 9: We ran MetaPriv with 10% cat-related traffic and the remaining with
the following noise attribute layout: 20% guns, 20% cooking, 20% chess, 20%
fishing, 10% bodybuilding. From 626 liked posts, 51 were about cats, 122 guns,
130 cooking, 144 chess, 149 fishing and 29 bodybuilding. In the main feed, out of
460 posts, 199 were about cats, 51 guns, 145 cooking, 19 chess, 25 fishing and 7
bodybuilding. This time there were no suggested posts. In the latest video feed,
from 154 videos, 18 had to do with cats, 14 guns, 77 cooking, 35 chess and 18
fishing. In the main video feed, from 137 videos, 25 were about cats, 1 guns, 9
cooking and 1 chess.

702 R. Cantaragiu et al.

(a) Weekly progression of theoretical at-
tribute strength

(b) Ratio of weekly liked posts

Fig. 3. The total amount of posts liked and the ratio of posts liked per week.

Week 10: In the last week we ran MetaPriv with the same parameters as in
week 9: 10% cats, 20% guns, 20% cooking, 20% chess, 20% fishing and 10%
bodybuilding. From 381 liked posts, 42 were cats, 75 guns, 96 cooking, 94 chess,
52 fishing and 22 bodybuilding. In the main feed, out of 442 posts, 160 were cats,
71 guns, 139 cooking, 30 chess, 32 fishing and 4 bodybuilding. Again, there were
no suggested posts. In the latest video feed, from 133 videos, 10 were cats, 15
guns, 75 cooking, 22 chess and 12 fishing. Finally, in the main video feed, from
124 videos, 6 were cooking, 1 chess and 2 bodybuilding.

The total amount of posts liked on a weekly basis for each attribute (attribute
strength), is shown in Fig. 3a. The week number is noted on the horizontal axis
and the attribute strength (total amount of posts liked) on the vertical axis.
As the figure indicates, even on week 10, the ‘cat’ attribute strength outweighs
all others combined, since the attribute remained reinforced even when said
reinforcement decreased over time. Figure 3b represents the ratio of posts. Here,
the ratio is calculated using the posts liked on a specific week, omitting those of
previous weeks. This time, the attribute strength on the vertical axis stands for
the percentage of liked posts for each attribute.

Next, we present the results of each variable for the effective attribute
strength. The main feed, recommended posts, latest video feed and main video
feed are represented in Fig. 4.

We can, now, compare results between Fig. 4 and Fig. 3b: on weeks 5 to 8,
noise-effective attribute strength variables approached real variables. Figure 3b
shows that around week 6, there are more noise-related likes than real likes.
Consequently, FB’s recommendations show more noise-related content as we
can see from Fig. 4. In the first 4 weeks, Fig. 4c and Fig. 4d show no relation
to noise attributes. We thus conclude that 20% noise is not enough to change
said variables. Also, Fig. 4b shows that in a few weeks’ time, there were no
recommended/suggested posts in the main feed (weeks 3, 9 and 10).

To avoid confusion in Fig. 4 we must clarify that in the main video feed Fig. 4d
and the recommended, suggested and sponsored posts Fig. 4b, the FB content
is derived from pages not liked by the user. The content is both user attribute-
related and unrelated. It is assumed that the unrelated content is presented by
FB because of other features in their recommendation systems e.g. users who
liked X also liked Y. Their recommendation algorithms are not open source,

MetaPriv: Acting in Favor of Privacy on Social Media Platforms 703

(a) The percentage of posts for each
attribute from liked pages in the main
feed.

(b) The percentage of recommended,
suggested and sponsored posts for each
attribute in the main feed from pages not
liked by the user nor the BOT .

(c) The percentage of video posts for
each attribute from the latest video feed.

(d) The percentage of each attribute of
video posts from the main video feed.

Fig. 4. Effective attribute strength variables with combined noise

hence their mode of operation is concealed. Due to this, our results are based on
content exclusively related to user attributes.

5.2 Privacy Results

Based on the definitions described in Sect. 4, we calculated each week’s Theoret-
ical (Fig. 5a) and Effective Privacy (Fig. 5b) values. During the first two weeks,
we built the user’s real attributes and added increasing noise to render FB’s
noise feed equal to the real.

(a) Theoretical privacy (b) Effective privacy

Fig. 5. Theoretical and effective privacy results

Notably, the Effective Privacy in week 6 (50% noise) is close to 0. Once the
amount of real traffic generated by users equals the amount of noise traffic, users
achieve privacy. The theoretical real attribute strength outweighs the combined
noise attribute strengths even after 10 weeks, as shown in Fig. 3a. This explains
the difference between the Theoretical and Effective Privacy values and shows

704 R. Cantaragiu et al.

that FB emphasises on the user’s recent interests, suggesting a “time of like”
variable in its recommendation systems. This also proves that the Effective Pri-
vacy is a more accurate way of measuring privacy on a SN.

We added more noise in week 7 and saw a small decrease in the Effective
Privacy value – i.e. the account became more private. During week 8, we stopped
reinforcing the real attribute to simulate what would happen if the user took a
break from FB, while the BOT ran. We noted significant decrease in the Effective
Privacy value. Finally, in weeks 9 and 10, we simulated a rarely active user
combined with BOT background activity (90% noise). The Effective Privacy value
increased as the real attribute was re-enforced again in week 9, while the Effective
Privacy value decreased again during week 10.

5.3 Real Account Results

When evaluating MetaPriv extended features on real existing accounts, a dif-
ferent approach was used as compared to that used for the dummy account.
The theoretical privacy takes into account all the likes that a user did during
their entire history with FB, which is unfeasible to obtain and categorise into
keywords. To this end, when analyzing the results, we considered the feed from
pages related to the noise keywords as our noise attribute. For the real data,
we simply considered the feeds unrelated to our chosen noise keyword. To this
end, we ran our experiments for 4 weeks on two existing accounts (account A
and account B). Account A was set to like an average of 27 posts per day, while
account B was set to like 54 posts per day.

Account A: During the 4 week period, the BOT liked 754 posts from 79 pages
and watched 1122 videos. The chosen seed keyword was ‘opera’ after which the
BOT generated other related noise keywords. These keywords, along with their
respective amount of posts, pages and videos can be seen in Fig. 6. During the
first week of our evaluations, the BOT used the first two keywords: ‘opera’ and
‘composition’. We then analyzed the results, and again observed a complete
absence of noise from the FB feeds (this eventually led to the development of
the video watching and link clicking features). The extended version of MetaPriv
run for the subsequent 3 weeks.

We then analyzed the different FB feeds. In the main feed, out of 596 posts, 86
were related to real interests and 127 were noise related. From 136 suggested
posts, 11 were based on real interests, 67 were based on noise and 58 seemed
to be related only to location (local grocery advertisements, etc.). In the latest
video feed, from 132 videos, 123 were related to real interests and 9 to noise.
Finally, in the main video feed, out of 300 videos, 27 were real interest related, 15
were noise related and the rest seemed unrelated to noise or real interests. These
results are represented graphically in Fig. 7. Figure 7a shows the exact number
of real and noise data (the unrelated bar is out of bounds as it it not used in the
calculations) and Fig. 7b shows the percentage of real and noise data.

MetaPriv: Acting in Favor of Privacy on Social Media Platforms 705

(a) Keywords and their respective
amount of liked posts, liked pages and
watched videos

(b) Keywords and their respective
amount of liked pages

(c) Keywords and their respective
amount of liked posts

(d) Keywords and their respective
amount of watched videos

Fig. 6. Keyword statistics of account A.

(a) Raw representation (b) Percentage representation

Fig. 7. Graphical representation of the collected data from account A.

Account B: For this account, the BOT liked 1518 posts from 129 pages and
watched 2871 videos. The chosen seed keyword was ‘toyota’ and the keyword
statistics are shown in Fig. 8. With this account, the extended MetaPriv was
used from the beginning. Once completed, we analyzed the different FB feeds.
In the main feed, out of 300 posts, 79 were real interest related and 27 were noise
related. From 59 suggested posts, 4 were based on real interests, 4 were based on
noise and 51 seemed to be related only to location (local grocery advertisements,
data carriers, etc.). In the latest video feed, from 300 videos, 100 were related
to real interests and 200 were related to noise. Finally, in the main video feed,
out of 300 videos 30 were real interest related, 14 were noise related and the
rest seemed unrelated to noise or real interests. The results are also represented
graphically in Fig. 9.

706 R. Cantaragiu et al.

(a) Keywords and their respective
amount of liked posts, liked pages and
watched videos

(b) Keywords and their respective
amount of liked pages

(c) Keywords and their respective
amount of liked posts

(d) Keywords and their respective
amount of watched videos

Fig. 8. Keyword statistics of account B.

(a) Raw representation (b) Percentage representation

Fig. 9. Graphical representation of the collected data from account B.

It should be noted that analyzing the feed of a real account can be a tedious
process as every post has to be manually inspected. Implementing a script to
automate this task would be very challenging as there is no way it could distin-
guish between posts from pages and posts from friends and groups. Additionally,
for the FB feed that came as suggested (suggested posts and main video feed),
it was harder to understand what was related to the real or noise data. With the
old accounts there are significantly more variables to consider such as friends,
devices, locations etc. as opposed to a new account that exists in a controlled
environment. Hence, the results should be treated as an approximation.

Observations: We compared the percentage representation of the FB feeds
from the 2 accounts: Fig. 7b and Fig. 9b.

1. Account A has significantly more noise in its main feed as compared to
account B, with most of these from suggested posts. We believe account A
had more keywords that were of interest to FB. When account A searched
for keywords like development, building and growth, FB showed pages that
generally were more popular and posted a lot on their pages. In essence,

MetaPriv: Acting in Favor of Privacy on Social Media Platforms 707

we believe that these specific interests likely bring FB more profit as they
advertise exact products that a user can easily buy.

2. Account B has significantly more noise related feed in its latest video feed.
This, we believe is because account B had the keywords cooking, chef and
kitchen which produced a lot of video feed about cooking recipes.

From these two observations, we can conclude that adding noise efficiently
depends more on the keywords themselves than on the amount of likes and
video watches. Nonetheless, with the acquired data, we proceeded to calculate
the effective privacy. Posts from friends were ignored since those usually did
not reflect any particular attribute of the user. By taking these results into
account, the effective privacy yields a result of 0.06 for account A and 0.13 for
account B. Both accounts seem to have achieved a larger degree of privacy, with
account A basically having its noise attributes almost indistinguishable from its
real attributes. This, according to Sect. 4, means that account A has achieved
privacy. Account B however, likely needs more time to run the tool.

Limitations: After running experiments with MetaPriv, we observed the follow-
ing limitations in its usability. Firstly, the user’s FB feeds become less appealing
as they become more and more infested with noise related posts. The current
solution for this would be to tone down the amount of noise the tool gener-
ates. As a future work, a noise filtering tool can be implemented as a browser
extension to filter out the noise feed while using FB in the browser.

Another limitation is the variety of noise data that a tool can generate auto-
matically. In our implementation, we used liking posts, pages and watching
videos as ways to generate noise. These were chosen as they represent direct
interest of the topic at hand. Nevertheless, they are only a fraction of things
that a normal user can do on FB. Other interactions such as user posting, com-
menting, reacting to posts and playing games are likely also used by FB for better
user profiling. These interactions however are very hard to simulate adequately
and can lead to unwanted issues such as generating posts that are unintelligible,
inappropriate or even extremist, which, in the end, can lead to account blocking.

It is also worth mentioning that some users may be hesitant to use MetaPriv
out of fear of liking something inappropriate. This is one of the reasons that the
noise generated by the tool is not completely random. Mainly, the user chooses a
seed keyword that will define the first noise attribute and start generating traffic
based on it. The next noise attribute will be generated based on the initial seed
– a word that is related to the seed word. We admit that this might not be a
perfect solution and solutions can be further developed in future works. Another
concern is generating traffic related to illegal, extremist or abuse topics. This
traffic however is constantly removed from the platform.

6 Conclusion and Societal Impact

Social networks shaped the digital world becoming an indispensable part of our
daily lives. Over the years, these platforms have gained a reputation for tracking

708 R. Cantaragiu et al.

user online activity. These strategies may prove threatening for multiple spheres
of peoples’ lives – spanning from consumption to opinion formation – and may
have ominous effects on democracy [9,10]. This vast collection of personal data
by SNs is often exposed (i.e. sold) to third-party companies.

In addition, SN users do not usually have a say on the information they
access, as SNs prioritize the content presented on feeds, based on what users
most probably want to see. In other words, SN algorithms seemingly hide content
and have a great impact on the information users are able to reach. With privacy
and societal concerns over SNs rapidly rising, these platforms are seen as rather
controversial.

Having identified these issues, we built MetaPriv, a tool that adds new pri-
vacy safeguards for SN users aimed at hampering SN ability to serve targeted
content. MetaPriv allows users to define their desired level of privacy. In this way
MetaPriv strikes a balance between privacy and functionality. We believe this
feature will be used in several services in the near future and will help towards
building less biased SNs, while minimizing the amount of personal information
processed by platforms.

References

1. Aghasian, E., Garg, S., Montgomery, J.: User’s privacy in recommendation systems
applying online social network data, a survey and taxonomy (2018)

2. Arrieta-Ibarra, I., Goff, L., Jiménez-Hernández, D., Lanier, J., Weyl, E.G.: Should
we treat data as labor? Moving beyond “free”. In: AEA Papers and Proceedings
(2018)

3. Beato, F., Kohlweiss, M., Wouters, K.: Scramble! your social network data. In:
Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 211–225.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4 12

4. Constine, J.: Facebook pays teens to install VPN that spies on them (2019).
https://techcrunch.com/2019/01/29/facebook-project-atlas/. Accessed 10 July
2022

5. Domingo-Ferrer, J.: Rational privacy disclosure in social networks. In: Torra, V.,
Narukawa, Y., Daumas, M. (eds.) MDAI 2010. LNCS (LNAI), vol. 6408, pp. 255–
265. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16292-3 25

6. Howe, D.C., Nissenbaum, H.: Engineering privacy and protest: a case study of
adnauseam. In: CEUR Workshop Proceedings, vol. 1873, pp. 57–64 (2017)

7. Hull, L.: Hey advertisers, track THIS (2019). https://blog.mozilla.org/products/
firefox/hey-advertisers-track-this/. Accessed 7 July 2022

8. Kelly, H.: Facebook bug set 14 million users’ sharing settings to pub-
lic (2018). https://money.cnn.com/2018/06/07/technology/facebook-public-post-
error/index.html. Accessed 10 July 2022

9. Khan, T., Michalas, A.: Trust and believe - should we? Evaluating the trustwor-
thiness of twitter users. In: 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), pp. 1791–
1800 (2020). https://doi.org/10.1109/TrustCom50675.2020.00246

10. Khan, T., Michalas, A., Akhunzada, A.: Fake news outbreak 2021: can we stop the
viral spread? J. Netw. Comp. Appl. 190, 103112 (2021)

https://doi.org/10.1007/978-3-642-22263-4_12
https://techcrunch.com/2019/01/29/facebook-project-atlas/
https://doi.org/10.1007/978-3-642-16292-3_25
https://blog.mozilla.org/products/firefox/hey-advertisers-track-this/
https://blog.mozilla.org/products/firefox/hey-advertisers-track-this/
https://money.cnn.com/2018/06/07/technology/facebook-public-post-error/index.html
https://money.cnn.com/2018/06/07/technology/facebook-public-post-error/index.html
https://doi.org/10.1109/TrustCom50675.2020.00246

MetaPriv: Acting in Favor of Privacy on Social Media Platforms 709

11. Kim, I.L., et al.: Adbudgetkiller: online advertising budget draining attack. In:
Proceedings of the 2018 World Wide Web Conference, pp. 297–307 (2018)

12. Luo, W., Xie, Q., Hengartner, U.: Facecloak: an architecture for user privacy on
social networking sites. In: In Proceedings of 2009 IEEE International Conference
on Privacy, Security, Risk and Trust (PASSAT-09), p. 1 (2009)

13. Maximilien, E.M., Grandison, T., Liu, K., Sun, T., Richardson, D., Guo, S.:
Enabling privacy as a fundamental construct for social networks. In: 2009 Interna-
tional Conference on Computational Science and Engineering, vol. 4. IEEE (2009)

14. Meng, W., Xing, X., Sheth, A., Weinsberg, U., Lee, W.: Your online interests:
Pwned! a pollution attack against targeted advertising. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. CCS 2014,
pp. 129–140. Association for Computing Machinery, New York (2014). https://doi.
org/10.1145/2660267.2687258

15. Meta: Suspending Cambridge Analytica and SCL Group From Facebook (2018).
https://about.fb.com/news/2018/03/suspending-cambridge-analytica/. Accessed
10 July 2022

16. Meta: The Facebook pixel - measure, optimise and build audiences for your adver-
tising campaigns (2022). https://www.facebook.com/business/learn/facebook-
ads-pixel. Accessed 7 July 2022

17. Vincent, N., Hecht, B., Sen, S.: “data strikes”: Evaluating the effectiveness of a
new form of collective action against technology companies. In: The World Wide
Web Conference. WWW 2019, pp. 1931–1943. ACM, New York (2019)

18. Wanying Luo, Q.X., Hengartner, U.: FaceCloak implementation download (2009
2010). https://crysp.uwaterloo.ca/software/facecloak/download.html. Accessed 7
July 2022

19. Xing, X., Meng, W., Doozan, D., Snoeren, A.C., Feamster, N., Lee, W.: Take this
personally: pollution attacks on personalized services. In: 22nd USENIX Security
Symposium (USENIX Security 13), pp. 671–686. USENIX Association, Washing-
ton, D.C. (2013). https://www.usenix.org/conference/usenixsecurity13/technical-
sessions/paper/xing

20. Zhang, J., Psounis, K., Haroon, M., Shafiq, Z.: Harpo: Learning to subvert online
behavioral advertising. arXiv preprint arXiv:2111.05792 (2021)

https://doi.org/10.1145/2660267.2687258
https://doi.org/10.1145/2660267.2687258
https://about.fb.com/news/2018/03/suspending-cambridge-analytica/
https://www.facebook.com/business/learn/facebook-ads-pixel
https://www.facebook.com/business/learn/facebook-ads-pixel
https://crysp.uwaterloo.ca/software/facecloak/download.html
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/xing
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/xing
http://arxiv.org/abs/2111.05792

Adversary for Social Good: Leveraging
Attribute-Obfuscating Attack to Protect

User Privacy on Social Networks

Xiaoting Li1(B), Lingwei Chen2, and Dinghao Wu3

1 Visa Research, Palo Alto, CA, USA
xiaotili@visa.com

2 Wright State University, Dayton, OH, USA
lingwei.chen@wright.edu

3 Pennsylvania State University, University Park, PA, USA

dwu@psu.edu

Abstract. As social networks become indispensable for people’s daily
lives, inference attacks pose significant threat to users’ privacy where
attackers can infiltrate users’ information and infer their private
attributes. In particular, social networks are represented as graph-
structured data, maintaining rich user activities and complex relationships
among them. This enables attackers to deploy state-of-the-art graph neu-
ral networks (GNNs) to automate attribute inference attacks for users’ pri-
vacy disclosure. To address this challenge, in this paper, we leverage the
vulnerability of GNNs to adversarial attacks, and propose a new graph
adversarial method, called Attribute-Obfuscating Attack (AttrOBF) to
mislead GNNs into misclassification and thus protect user attribute pri-
vacy against GNN-based inference attacks on social networks. Different
from the prior attacks using perturbations on graph structure or node
features, AttrOBF provides a more practical formulation by obfuscating
optimal training user attribute values, and also advances the attribute
obfuscation by solving the unavailability issue of test attribute anno-
tations, black-box setting, bi-level optimization, and non-differentiable
obfuscating operation. We demonstrate the effectiveness of AttrOBF on
user attribute obfuscation by extensive experiments over three real-world
social network datasets. We believe our work yields great potential of
applying adversarial attacks to attribute protection on social networks.

Keywords: Attribute privacy · Inference attack · Social networks ·
Graph adversarial attack · Attribute obfuscation

1 Introduction

Social networks have emerged as an indispensable part of our daily lives, allow-
ing us to conveniently share personal ideas for social engagements. Such an

X. Li and L. Chen—Equal contribution. Work done while at PSU.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 710–728, 2023.

https://doi.org/10.1007/978-3-031-25538-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_37&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_37

Adversary for Social Good 711

Attr value 1

Perturbation

Attribute-obfuscating

GNN

Target

Attribute of target user
gets misclassified

GNN

Attr value 2 Unknown .. User feature

Fig. 1. GNN-based inference attack and graph adversarial attack leading to attribute
obfuscation (attribute of target user gets misclassified) through traditional perturbation
on graph structure/node feature or AttrOBF operation.

interactive environment generates a large amount of user-oriented data. Due to
its accessibility and information richness, this data attracts attackers to disclose
users’ sensitive information and fulfill their malicious intents (e.g., unwanted
advertising, user tracing) [3,35]. This puts users’ privacy at risk. In fact, with
the revolutionary development in machine learning, such privacy risk is not rare
on social networks, and could be quickly transmitted and propagated through
attribute inference attacks in an automatic fashion [9,13,16,22,26,37].

In particular, social networks are naturally represented as graph-structured
data, maintaining user activities and complex relationships among them. For
example, nodes in these social graphs usually encode users’ profiles, posts, pho-
tos, or other statuses, while edges connect users with their friendships, kin-
ships, or follower-followee relationships. In the meanwhile, graph neural net-
works (GNNs) provide powerful techniques for graph understanding and mining
[1,15,19,34]. These GNNs take graph connectivity structure as filter to per-
form neighborhood information aggregation and extract high-level features from
nodes and their neighborhoods [4], which have boosted the state-of-the-art for a
variety of downstream tasks over graphs. Therefore, a surge of effective inference
attacks utilize GNNs to reveal personal attributes (e.g., age, gender, location,
career, and political views) that people are unwilling to disclose on social net-
works [7,21,32]. The idea is visualized as an example on the left-hand side of
Fig. 1 illustrating that the attribute of the target user can be correctly identified
by leveraging GNNs over graph structure and user features.

In this work, we demonstrate an attribute privacy threat on social networks
as the scenario that an attacker trains a well-performed GNN model to infer
users’ private attributes from graph-structured data such as Facebook friend-
ship networks and Twitter follower-followee networks. With this in mind, some
previous attempts have paid close attention to protect these attributes against
inference attacks [3,12,16,18,23,25,27], which, however, limit to unstructured

712 X. Li et al.

image or text data [12,18,23,27]. Thus, our goal here is to generalize the investi-
gation to more challenging graph-structured data, and protect personal attribute
privacy in this regard from a novel and practical adversarial learning perspective.
Despite great success, recent studies [5,8,31,33,38,39] have shown that GNNs
remain vulnerable to adversarial attacks [6] that can easily fool the models into
misclassification by performing small perturbations to graph structures and/or
node features, which is shown in Fig. 1. As the effectiveness of attribute inference
attacks depends on high learning performance from GNN model while adversar-
ial attacks substantially decrease its performance, this observation accordingly
inspires us to take advantage of such a vulnerability and cast personal attribute
privacy protection problem on social networks as an adversarial attack formu-
lation problem against GNN-based attribute inference attacks. To achieve this
goal, we face two challenges: (1) as inference attackers have a variety of choices
in GNN construction, it is impossible for us to access the inference models for
crafting graph adversarial attacks; (2) due to multimodality of user represen-
tations and intractability of relationship manipulations, modifications on either
graph structures or node features cannot guarantee the validity of adversarial
social networks, which are impractical in the real-world settings.

To address these challenges, in this paper, we design a black-box adversarial
attack, called attribute-obfuscating attack (AttrOBF), which aims to deterio-
rate GNNs into misclassification and thus protect personal attribute privacy
against GNN-based attribute inferences on social network data. Given a social
network, AttrOBF proceeds by modifying a small fraction of optimal training
users’ attribute values, while the obfuscated attribute information can propagate
along the whole graph through layer-wise neighborhood aggregations, such that
the overall performance of attribute inferences by a surrogate GNN model is dras-
tically degraded. Figure 1 illustrates the goal of our work. Due to transferability
in adversarial machine learning [24], the obfuscated attribute over social net-
works is very likely to mislead the real attackers’ inference GNN models. More
importantly, it is necessary for inference attackers to collect initial attribute
annotations for training, while users’ annotating on social networks generally
relies on their self-reporting; therefore, attribute obfuscating can be conveniently
and proactively realized by users and data publishers, and also easily passed
to subsequent inference attacks. These advantages allow a refined paradigm to
efficiently mitigate the impacts of GNN-based inference attacks on attribute dis-
closure and enhance personal privacy protection in practice. In summary, our
major contributions of this work are listed as follows:

– A novel and practical perspective of protecting privacy on social networks
that leverages adversarial attacks to mitigate GNN-based inference attacks.

– A new adversarial attack AttrOBF for attribute obfuscation. To avoid NP-
hard search, AttrOBF employs gradient-based method to obfuscate optimal
training attribute values in an efficient way, where the problems regarding
unavailability of test attribute annotations, black-box setting, bi-level opti-
mization, and non-differential obfuscating operation are specially addressed.

– Extensive experiments on real-world social network datasets to evaluate the
effectiveness of AttrOBF on attribute obfuscation and privacy protection.

Adversary for Social Good 713

2 Background and Related Work

2.1 Graph Neural Network for Attribute Inference

Social networks may indicate users’ sensitive information, and thus easily expose
them to the attackers who can access the data and infer the private attributes of
interest to fulfill the economic, social, or political intents [27]. Considering that
social networks are represented as graph-structured data, here we assume that
the attackers would take advantage of user features and relationships to train
GNN models so as to achieve their attribute inference goals [7,21,32].

Without loss of generality, we denote social network data G to be of the
form G = (V,E,X), where V (n = |V |) is the set of user nodes, E is the set
of edges specifying relationships among users, and X ∈ R

n×d is feature matrix.
Nodes V can be further divided into annotated node set Vl (nl = |Vl|) and
unannotated node set Vu (nu = |Vu|), where each annotated node is associated
with a ground-truth attribute value y ∈ Y = {0, 1, · · · , k − 1}. For instance,
for gender attribute, Y = {0:male, 1:female}. Edges E can be encoded as an
adjacency matrix A ∈ R

n×n and Aij = {0, 1}. That is, if (vi, vj) ∈ E, then
Aij = 1; otherwise, Aij = 0. Given A, X, and Vl with attribute values yl, a
GNN model Z = fW(A,X) (Z ∈ R

n×k and k = |Y |) is well trained to predict
the attribute value for each node in Vu by minimizing the training loss as follows,

W∗ = argmin
W

Lgnn(fW(A,X),yl) = argmin
W

l(Zl,yl) + λ‖W‖2
2 (1)

where W is the trainable weight matrix, and l(·, ·) is the loss function. A GNN
model fW(A,X) can be specified as graph convolutional networks (GCNs) [15],
graph attention networks (GATs) [28], or others [1,10,34]. GNNs can be applied
under inductive and transductive settings. In this paper, we focus on transductive
inferences where all node connections and features are accessible during training.

2.2 Graph Adversarial Attack for Attribute Protection

Given a private attribute, a graph adversarial attack attempts to perturb the
graph to obfuscate that attribute and prevent GNN-based inference attack mod-
els from correctly identifying users’ private attribute values. Generally, it modi-
fies G with its structure and/or node features to an adversarial graph Ĝ = (Â, X̂)
[8,38,39], such that the test loss over nodes in Vu can be maximized as follows,

max
Â,X̂

Latk(fW∗(Â, X̂),yu)

s.t.W∗ = argmin
W

Lgnn(fW(Â, X̂),yl), ‖G − Ĝ‖0 ≤ Δ
(2)

where a budget constraint Δ is imposed on perturbations to limit the number of
changes over node features and edges to ensure the imperceptibility of attacks.

Clearly, this is a challenging bi-level optimization problem: the attacker aims
to maximize the test loss achieved after optimizing the model parameters on the

714 X. Li et al.

modified graph Ĝ; also, the action space of the attacker from G to Ĝ are dis-
crete, enforcing vast combinatorial search [39]. Even worse, these attacks based
on either graph structure or node feature manipulations are impractical in real-
world social graph setting: (1) user nodes usually encode multi-modal data (e.g.,
profiles, posts, and other activities), where perturbations computed from the fea-
ture space are hard to map into user information space in an end-to-end manner;
(2) due to limited access to large-scale social networks (especially for ones built
on private interactions like Facebook), it is unreasonable to assume that users
can alter any relationship as they wish. By contrast, users’ attribute values can
be easier to manipulate through users’ self-reporting. It is necessary for infer-
ence attackers to collect initial attribute values for training, while these attribute
values on social networks generally come from users’ self-reporting. Therefore,
attribute value manipulation has a direct impact on the model training and
effectiveness of GNN-based inference attacks. Recent studies [20,36] show that
flipping a few training labels successfully drags down node classification accuracy
to a great extent for graph models, which, however, can merely apply to binary
classification tasks. To this end, in this paper, we would like to formulate a more
general attribute-obfuscating method on social graphs to protect user attributes
in practice, which specifically addresses the aforementioned challenges.

3 AttrOBF for User Privacy Protection

In this section, we first identify our goal and challenges, and then detail the
technical steps of AttrOBF. The overview of AttrOBF is illustrated in Fig. 2.

3.1 Attack Goal and Challenges

In our application setting, AttrOBF is designed to obfuscate a small fraction of
optimal training users’ attribute values so as to maximally decrease the overall
performance of GNN-based attribute inferences trained on the modified graph.
More specifically, given a target attribute with either binary or multiple classes,
the goal is to have the test users classified as any attribute value different from
the true one. In this regard, we can update the general graph adversarial attacks
in Eq. (2), and the final objective function of AttrOBF has the following form.

min
Φ(yl)

− Latk(fW∗(A,X),yu)

s.t.W∗ = argmin
W

Lgnn(fW(A,X),Φ(yl)), ‖Φ(yl) − yl‖0 ≤ εnl

(3)

where Φ(yl) denotes the attribute obfuscating operation on the training attribute
values yl, and ε is the obfuscating rate to nl to ensure that AttrOBF is unno-
ticeable. Equation (3) indicates the objective of AttrOBF that directly relates
to the loss maximization on the test attribute values yu. Also, AttrOBF only
performs changes to the training attribute values yl; hence we treat the graph
structure A and node features X as two constants during our attack formulation.
Equation (3) poses four unique challenges to the design of our attack AttrOBF.

Adversary for Social Good 715

Social Networks Social Graph Setting

Gumbel Estimator

Closed Form Solution of GNN

Obfuscating Operation

Optimization using Test Attribute Annotations

Attribute-Obfuscating Attack Attacked Social Graph

K

Fig. 2. The overview of AttrOBF to protect attribute privacy on social networks.

Black-Box Setting. AttrOBF is put under the black-box setting, where it is
not aware of the GNN model fW(·, ·) used by inference attackers, including model
choice, and parameters. As AttrOBF is a data poisoning attack while we aim to
prevent inference attackers from disclosing users’ private attribute values on our
modified social networks, it is reasonable to assume that AttrOBF has access to
the social graph data with respect to A, X, and yl, which will be collected by
inference attackers after attribute obfuscating in real-world scenarios.

Bi-level Optimization. The problem formulation in Eq. (3) is of bi-level
nature: the optimization on the attack loss Latk is achieved after the optimiza-
tion on the classification loss Lgnn. In this respect, maximizing the test loss
to obtain the optimal attribute obfuscating operation Φ(yl) requires retraining
the GNN model, while the GNN model parameters W∗ is constrained by the
obfuscating operation Φ(yl) on the training attribute values. Optimizing such a
bi-level problem is highly challenging by itself.

Non-differentiable Obfuscating Operation. In our graph setting, the train-
ing attribute data and the action space of the attribute obfuscating are discrete:
the training attribute values are yl = {0, 1, · · · , k−1}nl , and the possible actions
are attribute value changes from the current one to any others. This makes the
action space of the problem vast: given the maximum allowed training attribute
value changes εnl, the number of possible attacks is in O((k−1)εnlnεnl

l); exhaus-
tive search is clearly infeasible, while greedy search easily leads to sub-optimal
solution. Gradient-based methods can avoid the combinatorial search; however,
discrete obfuscating operation Φ(yl) is non-differentiable, preventing AttrOBF
from directly applying gradients to optimize the test loss.

3.2 Test Attribute Value Prediction

Transductive inferences over a graph imply that all node connections and fea-
tures are accessible during training. Thus, we can use those annotated data to
learn a GNN model described in Eq. (1) to estimate attribute values yu of the
unannotated or test nodes Vu

yu ≈ y∗
u = argmax

i∈Y
Zu,i, Z = fW(A,X) (4)

716 X. Li et al.

The advantage yielded here is that we can designate the surrogate model, which
will be introduced in Sect. 3.3, as fW(A,X) in Eq. (4) to estimate yu; if the
adversarial attack formulated in a self-learning manner (i.e., using these pre-
dicted attribute values) has a high test error, it is very possible to also generalize
poorly with the same surrogate model used to perform AttrOBF over the same
graph. It is worth noting that only the attribute values yl of the training nodes
Vl are used to optimize the GNN model, while the test attribute annotations yu

from estimation are only used to maximize the test loss for attack formulation.

3.3 Surrogate Model

Under the black-box setting, we use two-layer Simple Graph Convolution (SGC)
[30] as a surrogate model to perform our attribute-obfuscating attack on social
graphs. Specifically, SGC is a linearized two-layer GCN

Z = fW(A,X) = softmax(Â2XW), Z ∈ R
n×k (5)

where Â = D− 1
2 ÃD− 1

2 , Ã = A+I, and D is the diagonal degree matrix defined
on Ã, i.e., Dii =

∑n
j=1 Ãij .

There are three reasons behind this surrogate model choice: (1) SGC removes
the non-linearity between GCN layers, which not only makes the model more
tractable with less unnecessary complexity, but also captures the idea of graph
convolutions (as demonstrated in [30], compared to those regular GNNs like
GCN [15], GAT [28], FastGCN [4], SGC achieves the comparable or better test
accuracy on different classification tasks); (2) SGC has been widely deployed
as surrogate model in some successful graph adversarial attack formulations
[36,38,39]; (3) SGC of linearity provides a simple closed form solution for W∗,
and thus transforms the bi-level optimization in Eq. (3) into single-level, which
will be discussed in the following subsection. Due to transferability in adversarial
machine learning [24], the attribute obfuscating operation optimized to mislead
the surrogate model is very likely to degrade the real attackers’ inference models.

3.4 Closed Form Solution

To solve the aforementioned bi-level optimization, nettack [38] trains a fixed sur-
rogate model to reduce the attack to the problem simply built upon Latk; metat-
tack [39] approximates the attack by choosing Lgnn as an alternate of Latk, argu-
ing that a model of high training loss very likely misclassifies test nodes; some
other attacks [20,36] derive the model parameters and transform the bi-level
optimization into single-level. Here, we leverage the closed form transformation
idea to compute W∗ and simplify the optimization on Latk.

Based on Eq. (1), Eq. (3), and Eq. (5), W∗ can be rewritten as

W∗ = argmin
W

l((Â2X)lW,Φ(yl)) + λ‖W‖2
2 (6)

After replacing the loss function l(·, ·) with mean square loss function, and con-
sidering attribute obfuscating operation Φ(yl) as an nl × k-dimensional matrix

Adversary for Social Good 717

where each row is a one-hot vector specifying new attribute value, Eq. (6) can
be further updated as

W∗ = argmin
W

1
nl

‖(Â2X)lW − Φ(yl)‖2
2 + λ‖W‖2

2 (7)

In this way, we can approximately obtain the closed form of W∗ through the
derivation as follows,

1
nl

∂

∂W
(‖(Â2X)lW − Φ(yl)‖2

2 + λ‖W‖2
2) = 0

=⇒ (Â2X)T
l ((Â2X)lW − Φ(yl)) + λW = 0

=⇒ (Â2X)T
l (Â2X)lW + λW = (Â2X)T

l Φ(yl)

=⇒ W∗ = ((Â2X)T
l (Â2X)l + λI)−1(Â2X)T

l Φ(yl)
=⇒ W∗ = KΦ(yl)

(8)

where we use K = ((Â2X)T
l (Â2X)l + λI)−1(Â2X)T

l for the sake of simplicity.
Given the closed form of W∗, the bi-level optimization of AttrOBF in Eq. (3)
can be updated as the following single-level optimization on Φ(yl).

min
Φ(yl)

− Latk(fW∗(A,X),yu) ⇒

min
Φ(yl)

− l((Â2X)uKΦ(yl),yu) + λ‖Φ(yl)‖2
2

s.t. ‖Φ(yl) − yl‖0 ≤ εnl

(9)

3.5 Gumbel Estimator

To solve the optimization problem in Eq. (9), the attribute obfuscating operation
Φ(yl) is the key component. However, Φ(yl) is discrete thus non-differentiable,
which means that we cannot directly use gradient-based methods to make
updates on Φ(yl). To facilitate closed form solution in Sect. 3.4, we consider
Φ(yl) as an nl × k-dimensional matrix, each row of which is represented as a
one-hot vector to indicate the new attribute value. From the probabilistic per-
spective, we can model each attribute obfuscating operation as a categorical
distribution, and this one-hot vector can be then sampled from k label prob-
abilities (p0, p1, · · · , pk−1), where the position of 1 (i.e., the best obfuscating
operation) is decided by the highest probability: one hot(argmaxi[pi]).

In other words, given the categorical distribution P ∈ R
nl×k, the test loss of

AttrOBF defined in Eq. (9) is an expectation over categorical variables.

min
P

− Latk(P) ⇒ min
P

− EΦ(yl)∼Pl((Â2X)uKΦ(yl),yu) + λ‖P‖2
2 (10)

The categorical sampling Φ(yl) ∼ P is still non-differentiable. To solve Eq. (10),
we need to find a good gradient estimator. To this end, we use Gumbel estimator

718 X. Li et al.

Algorithm 1: AttrOBF for attribute privacy protection.
Input: G = (A,X): Social graph G with graph structure A and user features

X, Vl: nl training user nodes with attribute values yl, Vu: nu test user
nodes without attribute values, ε: obfuscating rate, τ : temperature
parameter, T : epochs.

Output: yl: the obfuscated training attribute values.

Train a GNN model using A, X and yl through Eq. (5);
Estimate yu for the unannotated nodes Vu;

Pre-calculate Â2X;

Pre-calculate K = ((Â2X)Tl (Â2X)l + λI)−1(Â2X)Tl ;
for each epoch t ≤ T do

Sample G ∼ Gumbel(0, 1);
Calculate h(P,G) using Eq. (11);

Calculate test loss −Latk(P) ≈ −l((Â2X)uKh(P,G),yu) + λ‖P‖2
2;

Update P by minimizing −Latk(P);

end
Φ(yl) = one hot (argmax (P, axis = 1));
Update yl using new attribute values in Φ(yl) with top εnl highest probabilities
in P;

[11] to draw samples Φ(yl) from P in a simple and efficient way. Different from
performing argmax to search for the maximal probability, the Gumbel estima-
tor utilizes the Gumbel-Softmax function to generate continuous differentiable
approximation to original categorical sampling. Specifically, let φ (one row of
Φ(yl)) be sampled from the corresponding categorical distribution p (one row
of P); φ is approximated as

φi = h(p,g) =
exp ((log(pi) + gi)/τ)

∑k−1
j=0 exp ((log(pj) + gj)/τ)

, for i = 0, 1, · · · , k − 1 (11)

where g ∼ Gumbel(0, 1) is Gumbel distribution, and τ is the temperature con-
trolling the steepness of softmax function. As the temperature increases, the
expected value converges to a uniform distribution over the categories; on the
contrary, as τ approaches 0, samples from the Gumbel-Softmax distribution
become one-hot. Monte Carlo sampling from g makes Gumbel estimator unbi-
ased and low variance [20]. Let G = [g0, ...,gk−1]T ; by replacing Φ(yl) with
h(P,G), the final test loss of AttrOBF is updated as

min
P

− Latk(P) ⇒ min
P

− EGl((Â2X)uKh(P,G),yu) + λ‖P‖2
2 (12)

Accordingly, the derivative of −Latk(P) regarding the categorical distribution P
can be computed in an approximate way.

− ∂Latk(P)
∂P

≈ − ∂

∂P

[
l((Â2X)uKh(P,G),yu) + λ‖P‖2

2

]
(13)

Adversary for Social Good 719

The problem in Eq. (13) is differentiable and tractable. Therefore, it can be easily
solved by gradient-based methods (e.g., stochastic gradient descent, Adam).

After the categorical distribution P is optimally updated, the attribute obfus-
cating operation Φ(yl) is uniquely defined as:

Φ(yl) = one hot (argmax (P, axis = 1)) (14)

Note that, Φ(yl) indicates the obfuscating operation on the whole training
attribute values yl. As specified in Eq. (3) and Eq. (9), to ensure the imper-
ceptibility of attack, the attribute obfuscating operation is constrained by
‖Φ(yl)−yl‖0 ≤ εnl. That is, the number of maximum allowed training attribute
value changes is εnl. As such, we leverage Φ(yl) and P to decide the actual
attribute obfuscating: we first collect all new training attribute values from Φ(yl)
that are different from the original and their corresponding probabilities from
P, and then use those new attribute values with top εnl highest probabilities
to update yl so as to guarantee the optimal operation. Algorithm 1 illustrates
our proposed attribute-obfuscating attack AttrOBF to protect attribute privacy
on social networks. As graph structure A and node features X are constants
during attribute-obfuscating attack, we can pre-calculate Â2X and K using
O(max(n3, d3)), which significantly decreases the time complexity for each opti-
mization iteration to O(nlnud) (k � d). Therefore, this efficient attack strategy
has implications on its applicability for attribute protection on large social net-
works in practice.

4 Experimental Results and Analysis

4.1 Experimental Setup

Datasets. In our practical setting, we utilize three real-world social network
datasets to conduct our experiments: Polblogs [2], Yale [17], and Rochester [17].
Polblogs represents a political blog network where their attribute values indicate
political view of each user. Yale and Rochester datasets collect all the Facebook
friendships of Yale University and Rochester University as well as some user
attributes, in which career, gender, class year serve as private attributes. We
train GNN models in a standard transductive setting where all node features
are utilized and 20 nodes are annotated per class, and another 500 annotated
nodes are viewed as validation set. Then, we randomly sample 1,000 nodes to
evaluate the performance. Table 1 presents the dataset statistics.

Baseline Methods and Parameter Settings. In our study, the proposed
AttrOBF is designed for practical attribute privacy protections in social media,
and to the best of our knowledge, graph adversarial attacks via modifications on
multi-class annotations have not yet been explored. Thus, we formulate a couple
of baselines in this regard to compare against AttrOBF: (1) Random attribute-
obfuscating attacks (Rand-obf) where we randomly select a number of training
nodes and obfuscate their attribute values to a random one. (2) Degree-based
attribute-obfuscating attacks (Deg-obf) where we obfuscate the training nodes

720 X. Li et al.

Table 1. Statistics of three social network datasets in five attribute settings.

Dataset Attr. Nodes Edges Classes Train./Val./Test

Polblogs Politics 1,490 19,025 2 40/500/950

Yale Career 8,578 405,450 2 20 × classes/500/1000

Class-year 6

Rochester Gender 4,563 167,653 2 20 × classes/500/1000

Class-year 5

with the highest degrees because we believe these nodes play a more important
role in the information propagation for GNNs than those with lower degrees;
similarly, for all inference settings, we modify the attribute values of the selected
nodes to a random one. Note that, as we only focus on attribute obfuscating,
those adversarial methods designed for different settings, such as manipulat-
ing graph structure or node features, are not comparable here. Following the
baseline designs in [36], in order to investigate how different components affect
the performance of AttrOBF, we further formulate two variants as baselines by
replacing surrogate model and loss function: (3) AttrOBF-lp follows the same
steps of AttrOBF except that we use label propagation as our surrogate model,
which accordingly updates the closed form in Eq. (8) and single-level optimiza-
tion in (9). (4) AttrOBF-cse replaces mean square error in loss function to
cross-entropy, which updates the final test loss of AttrOBF in Eq. (12). In our
parameter settings, we set the optimization epoch in AttrOBF as 1,000 and
training epoch of GNN models as 200. The temperature parameter for Gumbel
estimator τ introduced in Eq. (11) is set as 0.2 and λ = 0.01 for optimization.

Attack Model for Attribute Inference Attacks. Attackers conduct attribute
inference attacks to disclose private attributes of users by learning a GNN model on
public social network data. Since we do not know the attacker’s model, we use SGC
to solve black-box setting and closed form for AttrOBF. In our experimental set-
ting, we train simple graph convolution (SGC) [30], graph convolutional network
(GCN) [15], graph attention network (GAT) [28], and GCN-based label propaga-
tion network (GCN-LP) [29] to perform the inference attack. We mainly use GCN
to evaluate the effectiveness of AttrOBF and the impacts of different parameters,
while the comparisons among these four models are leveraged for transferability
evaluation in Sect. 4.4. To be comparable, these four GNN models are of two-layer
structure and the dimension of the hidden layer is set as 16. All other model param-
eters align with their original works [15,28–30].

4.2 Evaluation of AttrOBF

Effectiveness. In our experiments, we test the results of five inference set-
tings (i.e., Polblogs-politics, Yale-career, Yale-class, Rochester-class, Rochester-
gender) while using AttrOBF to obfuscate the training attribute values with
obfuscating rate ε ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where 0.0 means no attack in

Adversary for Social Good 721

Fig. 3. (a) represents the test accuracy of all inference tasks on different attribute
obfuscating rate ε, while (b) specifies the evaluation results of AttrOBF under different
values of temperature parameter τ .

place. It is worth mentioning that we merely modify 10 training nodes per class
even when reaching the largest obfuscating rate 0.5. We believe this complies
with its practicability requirement considering the large graph volume. In this
experiment, we use test accuracy to evaluate attribute privacy protection perfor-
mance. The lower test accuracy represents the better performance of our method.
The experimental results are shown in Fig. 3(a). We can see that the attribute
inference accuracy for Polblogs-politics, Yale-career, Yale-class, Rochester-class
and Rochester-gender on clean data is 81.1%, 88.1%, 84.5%, 82.8%, and 71.4%,
which are relatively close to the state-of-the-art results on each dataset. Obvi-
ously, AttrOBF drastically decreases all the accuracy of inference attacks and
thus achieves the goal of protecting users’ attribute privacy on social networks.

Impact of Attribute Obfuscating Rate ε. Intuitively, when we enlarge the
ε, the number of the training node attribute values obfuscated by AttrOBF
increases and the accuracy of inference attacks should decrease. The results
in Fig. 3(a) confirm this point: as the obfuscating rate increases from 0.0 to
0.5, the inference accuracy drops 45.3% for Polblogs-politics, 57.6% for Yale-
career, 41.2% for Yale-class, 41.3% for Rochester-class, and 44.2% for Rochester-
gender. We can also observe that AttrOBF obtains better performance on binary
inference settings than multi-class inference tasks. The reason behind this could
be that attacking space on multi-class social graphs is larger, which leads to
more uncertainty and difficulty than binary problems that flipping labels can
directly impact on neighborhoods and thus more easily mislead the GNN model.

Impact of Temperature for Gumbel Estimator τ . The temperature τ for
Gumber estimator is an important parameter in our method that controls the
effectiveness of the one-hot sampling. We gradually increase the value of τ in
AttrOBF to analyze its impact to the attack performance. In the experiments, we

722 X. Li et al.

Table 2. Inference accuracy of using true or estimated test attributes.

Test labels Pol-politics Yale-career Yale-class Roch-class Roch-gender

True 33.1% 29.3% 43.0% 40.9% 25.7%

Estimated 35.7% 30.5% 43.3% 41.5% 27.1%

assess the effectiveness of AttrOBF with temperature τ ∈ {0.2, 0.5, 1.0, 5.0, 10.0}
in five inference settings when ε = 0.5. We show the results in Fig. 3(b). We can
see from the figure that AttrOBF achieves the best performance when τ = 0.2
for all inference tasks. As τ increases, the capability of our adversarial attack
in alleviating the inference models is degraded. This is because when we con-
tinuously amplify the τ value, Gumbel-Softmax distribution becomes closer to
uniform distribution, which more significantly deviates from one-hot sampling
and thus affects the effectiveness of attribute obfuscating operation. There is a
trade-off between near-zero temperatures, where samples are identical to one-
hot but the variance of the gradients is large as well. Based on this fact, we use
τ = 0.2 throughout the following evaluations.

Impact of Test Attribute Annotations yu. We use the prediction results
of the surrogate model to estimate the test attribute values in our evaluations,
and compare with the true test attribute annotations to investigate the impact
of them on the performance of AttrOBF. The comparative results are shown
in Table 2 with obfuscating rate ε = 0.5. We can observe that integrating
true test attribute annotations in our objective loss function can obtain bet-
ter attack results than the estimated ones, as the estimation might introduce
extra loss in our objectives. However, the inference accuracy difference between
using true and estimated test attribute annotations seems not very significant.
The reason behind this could be that the surrogate model’s inference accu-
racy for different attribute settings is relatively high (i.e., 81.1%, 88.1%, 84.5%,
82.8%, and 71.4% for Polblogs-politics, Yale-career, Yale-class, Rochester-class
and Rochester-gender respectively), which makes the estimation closer to ground
truth. This implies that our method is not tightly coupled with true test attribute
annotations, and can be easily feasible in practical applications.

4.3 Comparisons with Other Attack Baselines

In this section, we compare our method AttrOBF against four baselines: Rand-
obf, Deg-obf, AttrOBF-lp and AttrOBF-cse. For all methods, we set the obfus-
cating rate ε as 0.5, and use GCNs as the attack model to assess the infer-
ence accuracy. The results of five inference settings are presented in Table 3. We
can observe that our method AttrOBF significantly outperforms Rand-obf on
all inference tasks. Under Rand-obf attack, the inference accuracy only slightly
decreases for all obfuscating rates, which indicates that GCNs are quite robust
to random label noise. This also benefits from the powerful learning capability

Adversary for Social Good 723

Table 3. Comparisons with other attack baselines (inference accuracy).

Setting Rand-obf Deg-obf AttrOBF-lp AttrOBF-cse AttrOBF

Pol-politics 55.7% 37.0% 42.5% 36.5% 35.7%

Yale-career 61.2% 47.2% 49.4% 38.6% 30.5%

Yale-class 72.0% 53.1% 45.5% 43.8% 43.3%

Roch-class 69.6% 54.2% 43.5% 42.1% 41.5%

Roch-gender 46.7% 42.1% 39.9% 31.0% 27.1%

of GCNs on graph data of embracing both node features and graph topolog-
ical structure. Therefore, GCNs are resilient against random node obfuscating
operations but still vulnerable to our well-designed adversarial attacks. AttrOBF
also achieves better performance than Deg-obf attack, especially for multi-class
inference problems. For instance, AttrOBF reduces the inference accuracy to
43.3% and 41.5% for Yale-class and Rochester-class while the results of Deg-obf
attack are 53.1% and 54.2%, respectively. This is due to the fact that adversarial
attribute values generated by AttrOBF are specifically derived from the goal of
misleading the learning model, which are much more effective to degrade the
performance of node classification, while Deg-obf identifies the degree informa-
tion of nodes as the only influential factor for graph learning but ignores other
conditions (e.g., node features) leveraged by GCNs.

Regarding to AttrOBF-lp, AttrOBF achieves better results for all classi-
fication settings. Compared to graph neural networks, label propagation only
aggregates the label information from nodes’ neighbors without considering the
important feature information. Therefore, choosing SGC to be the surrogate
model to compute the closed form solution is more reasonable and effective for
our formulation. The similar variant AttrOBF-cse can achieve comparable results
but still slightly underperforms our method. The reason behind this performance
difference could be that mean square error can better formalize the discrepancy
between ground truth and prediction results in the embedding space.

4.4 Transferability of AttrOBF

Under the black-box setting, we don’t know what model the attacker is using to
infer private attributes. This naturally leads us to the question: can our attack
strategy generalize to other inference attack models? To answer this question, in
this evaluation, we explore the transferability of our method AttrOBF. Specifi-
cally, we deploy AttrOBF to obfuscate the training attribute values and generate
adversarial graph on five attribute inference settings. Then we test the inference
results of the poisoned data against four state-of-the-art GNN models, including
SGC [30], GCN [15], GAT [28] and GCN-LP [29] under five obfuscating rates
(i.e., ε = {0.1, 0.2, 0.3, 0.4, 0.5}). To ensure our results are comparable, we build
up these models with the same parameter and data settings.

724 X. Li et al.

(a) SGC (b) GCN

(c) GAT (d) GCN-lp

Fig. 4. (a), (b), (c) and (d) specify the inference accuracy of SGC, GCN, GAT and
GCN-lp while conducting AttrOBF on our surrogate model over different data settings;
lower inference accuracy indicates better attack transferability.

The results presented in Fig. 4 show that the adversarial attack performed
by AttrOBF can successfully transfer to different graph neural networks. Our
AttrOBF method learned on a linearized GCN (i.e., SGC) presents the simi-
lar effectiveness against different GNN models under the same inference setting.
For example, when ε is set as 0.5, AttrOBF reduces the accuracy of SGC, GCN,
GCN-LP to 35.6%, 35.7% and 36.4% on polblogs-politics inference attack and
33.5%, 27.1% and 34.2% on Rochester-gender inference setting. For Yale-career,
the inference accuracy of all GNN models drops over 30% when increasing ε
from 0.1 to 0.5. While for Yale-class and Rochester-class inference settings, the
transferability of AttrOBF on four GNN models are very close and slightly under-
perform other inference tasks. On the other hand, the results also imply that
the complexity of the surrogate model and the intrinsic adversarial vulnerability
of the target model contribute to attack transferability: the attack results on
SGC and GCN outperform those with more complex model structure such as
GAT and GCN-LP. Since the target models are uncontrollable, when applying
AttrOBF in practice, we may need to elaborate the surrogate model for better
transferability. We leave it as our future exploration.

Adversary for Social Good 725

5 Impact, Applicability and Limitation

Our previous method formulation and experimental evaluations demonstrate the
impact of our proposed graph adversarial attack solution for attribute privacy
protection on social networks: (1) as graph structure and node features are not
perturbed, the utilities of social networks regarding user activities and rela-
tionships are well preserved without any influence on other downstream tasks;
(2) mere small yet optimal training annotation changes can effectively miti-
gate attribute inference attacks; (3) attribute obfuscating is easy to operate for
both data publishers and users. Therefore, in practice, AttrOBF can work as
an easy-to-use API provided on the social network server side that enables data
publishers to either locally or globally manipulate user attribute values before
making the social graphs publicly available, or warn users of potential attribute
privacy threats such that users can proactively change their attribute informa-
tion on the client side. Nonetheless, our approach also poses a limitation which
we discuss as follows. In our experiments, we train some regular GNN-based
attack models for attribute inferences on social networks. Though AttrOBF has
been validated to be transferable to these GNNs, the attackers could take advan-
tage of more advanced and robust GNN models (e.g., adversarial training via
latent perturbation [14]) to infer attributes and thus deteriorate AttrOBF. We
acknowledge this limitation and leave the investigation on this arms race as our
future work, yet it does not impact the great value and general validity of our
new insight about leveraging graph adversarial attacks for attribute obfuscation
and privacy protection on social networks in practice, as graph learning models
of inherent vulnerability could always be evaded by more complicated and more
sophisticated adversarial techniques.

6 Conclusion

In this paper, we investigate adversary for social good, and cast attribute privacy
protection problem on social networks as a graph adversarial attack formulation
problem to defend against GNN-based attribute inference attacks. We design
a black-box attribute-obfuscating attack AttrOBF, where a linearized two-layer
GCN is used as a surrogate model to perform our attack. Under the help of this
surrogate model, a closed form of model weights is obtained to transform the bi-
level optimization for AttrOBF into single-level. To address non-differentiable
attribute obfuscating operation, we introduce Gumbel estimator to generate
continuous differentiable approximation that enables gradient-based methods
to search for the optimal training attribute values to change. We conduct exten-
sive experimental studies on real-world social network datasets to evaluate the
performance of AttrOBF, which validate its effectiveness against GNN-based
attribute inference attacks. Despite the limitation, we believe that our work has
implications on the applicability of adversarial attacks for attribute obfuscation
and privacy protection in practice.

726 X. Li et al.

Acknowledgement. The work was supported in part by a seed grant from the Penn
State Center for Security Research and Education (CSRE).

References

1. Abu-El-Haija, S., et al.: Mixhop: higher-order graph convolutional architectures via
sparsified neighborhood mixing. In: International Conference on Machine Learning,
pp. 21–29 (2019)

2. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 us election:
divided they blog. In: Proceedings of the 3rd International Workshop on Link
Discovery, pp. 36–43 (2005)

3. Beigi, G., Shu, K., Zhang, Y., Liu, H.: Securing social media user data: an adver-
sarial approach. In: Hypertext and Social Media, pp. 165–173 (2018)

4. Chen, J., Ma, T., Xiao, C.: FastGCN: fast learning with graph convolutional net-
works via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

5. Chen, L., Li, X., Wu, D.: Enhancing robustness of graph convolutional networks via
dropping graph connections. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 412–428 (2020)

6. Chen, L., Ye, Y., Bourlai, T.: Adversarial machine learning in malware detection:
Arms race between evasion attack and defense. In: 2017 European Intelligence and
Security Informatics Conference (EISIC), pp. 99–106. IEEE (2017)

7. Chen, W., et al.: Semi-supervised user profiling with heterogeneous graph attention
networks. In: IJCAI, vol. 19, pp. 2116–2122 (2019)

8. Dai, H., et al.: Adversarial attack on graph structured data. arXiv preprint
arXiv:1806.02371 (2018)

9. Gong, N.Z., Liu, B.: Attribute inference attacks in online social networks. TOPS
21(1), 3 (2018)

10. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. arXiv preprint arXiv:1706.02216 (2017)

11. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144 (2016)

12. Jia, J., Gong, N.Z.: AttriGuard: a practical defense against attribute inference
attacks via adversarial machine learning. In: USENIX Security, pp. 513–529 (2018)

13. Jia, J., Wang, B., Zhang, L., Gong, N.Z.: Attriinfer: Inferring user attributes in
online social networks using Markov random fields. In: WWW, pp. 1561–1569
(2017)

14. Jin, H., Zhang, X.: Robust training of graph convolutional networks via latent
perturbation. In: Machine Learning and Knowledge Discovery in Databases: Euro-
pean Conference, ECML PKDD 2020, Ghent, Belgium, 14–18 September 2020,
Proceedings, Part III, pp. 394–411 (2021)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

16. Kumar, C., Ryan, R., Shao, M.: Adversary for social good: Protecting familial
privacy through joint adversarial attacks. In: AAAI (2020)

17. Li, K., Luo, G., Ye, Y., Li, W., Ji, S., Cai, Z.: Adversarial privacy preserving
graph embedding against inference attack. IEEE Internet Things J. 8(8), 6904–
6915 (2020)

http://arxiv.org/abs/1801.10247
http://arxiv.org/abs/1806.02371
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1609.02907

Adversary for Social Good 727

18. Li, X., Chen, L., Wu, D.: Turning attacks into protection: Social media privacy pro-
tection using adversarial attacks. In: Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM), pp. 208–216. SIAM (2021)

19. Liu, S., Chen, L., Dong, H., Wang, Z., Wu, D., Huang, Z.: Higher-order weighted
graph convolutional networks. arXiv preprint arXiv:1911.04129 (2019)

20. Liu, X., Si, S., Zhu, X., Li, Y., Hsieh, C.J.: A unified framework for data poisoning
attack to graph-based semi-supervised learning. arXiv:1910.14147 (2019)

21. Mohamed, A., Qian, K., Elhoseiny, M., Claudel, C.: Social-STGCNN: a social
spatio-temporal graph convolutional neural network for human trajectory predic-
tion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 14424–14432 (2020)

22. Morgan-Lopez, A.A., Kim, A.E., Chew, R.F., Ruddle, P.: Predicting age groups of
twitter users based on language and metadata features. PloS ONE 12(8), e0183537
(2017)

23. Oh, S.J., Fritz, M., Schiele, B.: Adversarial image perturbation for privacy protec-
tion a game theory perspective. In: ICCV, pp. 1491–1500 (2017)

24. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277 (2016)

25. Qian, J., Li, X.Y., Jung, T., Fan, Y., Wang, Y., Tang, S.: Social network de-
anonymization: more adversarial knowledge, more users re-identified? TOIT 19(3),
1–22 (2019)

26. Ruder, S., Ghaffari, P., Breslin, J.G.: Character-level and multi-channel convo-
lutional neural networks for large-scale authorship attribution. arXiv preprint
arXiv:1609.06686 (2016)

27. Shetty, R., Schiele, B., Fritz, M.: A4nt: author attribute anonymity by adversar-
ial training of neural machine translation. In: Proceedings of the 27th USENIX
Security Symposium (USENIX Security 18), pp. 1633–1650 (2018)

28. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

29. Wang, H., Leskovec, J.: Unifying graph convolutional neural networks and label
propagation. arXiv preprint arXiv:2002.06755 (2020)

30. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: International Conference on Machine Learning, pp.
6861–6871. PMLR (2019)

31. Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K., Zhu, L.: Adversarial
examples for graph data: deep insights into attack and defense. In: IJCAI, pp.
4816–4823 (2019)

32. Wu, Y., Lian, D., Jin, S., Chen, E.: Graph convolutional networks on user mobility
heterogeneous graphs for social relationship inference. In: IJCAI, pp. 3898–3904
(2019)

33. Xu, K., et al.: Topology attack and defense for graph neural networks: an opti-
mization perspective. arXiv preprint arXiv:1906.04214 (2019)

34. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: SIGKDD,
pp. 974–983 (2018)

35. Yu, S., Vorobeychik, Y., Alfeld, S.: Adversarial classification on social networks.
In: AAMAS, pp. 211–219 (2018)

36. Zhang, M., Hu, L., Shi, C., Wang, X.: Adversarial label-flipping attack and defense
for graph neural networks. In: ICDM, pp. 791–800 (2020)

http://arxiv.org/abs/1911.04129
http://arxiv.org/abs/1910.14147
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1609.06686
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2002.06755
http://arxiv.org/abs/1906.04214

728 X. Li et al.

37. Zhang, Y., Humbert, M., Rahman, T., Pang, J., Backes, M.: Tagvisor: a privacy
advisor for sharing hashtags. In: WWW (2018)

38. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural net-
works for graph data. In: SIGKDD, pp. 2847–2856 (2018)

39. Zügner, D., Günnemann, S.: Adversarial attacks on graph neural networks via
meta learning. arXiv preprint arXiv:1902.08412 (2019)

http://arxiv.org/abs/1902.08412

Software Security

No-Fuzz: Efficient Anti-fuzzing
Techniques

Zhengxiang Zhou(B), Cong Wang, and Qingchuan Zhao

City University of Hong Kong, Hong Kong, China
zxzhou4-c@my.cityu.edu.hk, {congwang,cs.qczhao}@cityu.edu.hk

Abstract. Fuzzing is an automated software testing technique that has
achieved great success in recent years. While this technique allows devel-
opers to uncover vulnerabilities avoiding consequent issues (e.g., financial
loss), it can also be leveraged by attackers to find zero-day vulnerabilities.
To mitigate, anti-fuzzing techniques were proposed to impede the fuzzing
process by slowing down its rate, misinforming the feedback, and compli-
cating the data flow. Unfortunately, the state-of-the-art of anti-fuzzing
entirely focuses on enhancing its defensive capability but underestimates
the nontrivial performance overhead and overlooks the requirement of
extra manual efforts. In this paper, to advance the state-of-the-art, we
propose an efficient and automatic anti-fuzzing technique and implement
a prototype, called No-Fuzz. Comparing to prior works, our evaluations
illustrate that No-Fuzz introduces less performance overhead, i.e., less
than 15% of the storage cost for one fake block. In addition, in respect of
the binary-only fuzzing, No-Fuzz can precisely determine the correspond-
ing running environments and eliminate unnecessary storage overheads
with high effectiveness. Specifically, it reduces 95% of the total stor-
age cost compared with the prior works for the same number of branch
reductions. Moreover, our study sheds light on approaches to improve
the practicality of anti-fuzzing techniques.

Keywords: Anti-fuzzing · Software testing · Fuzzing

1 Introduction

Fuzzing was first introduced as a software testing technique in 1990 [25]. Typ-
ically, a fuzzer would persistently feed the target program with randomly gen-
erated inputs and observe the abnormalities of the program (e.g., segmentation
faults) to identify program bugs. Recently, fuzzers have been well-developed
- researchers integrate fuzzers with techniques like program instrumentation
[3,12,28,29,31,36,38], program analysis techniques [30,33,35] for the efficiency
in bug-finding. Besides, researchers also modify the fuzzing mechanisms of some
classic works [3,36], to meticulously reallocate the fuzzing resources on some spe-
cific tasks (e.g., directly fuzzing a particular code area [7,8,10,23]). In general,
fuzzers have achieved great success with plenty of bugs uncovered [14,15,27,31].

However, exposing bugs in the program is a double-edged sword. Developers
can find and fix bugs before they spread on the internet. Meanwhile, attackers

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 731–751, 2023.

https://doi.org/10.1007/978-3-031-25538-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_38&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_38

732 Z. Zhou et al.

can also leverage fuzzers to explore zero-day vulnerabilities, which might cause
financial loss to the companies. Although the adversaries can manually analyze
the commercial software, recent studies [17,32] have shown that attackers lean
more towards automated tools, like fuzzers, to find vulnerabilities than manual
analysis. In the face of the worse situations of bug finding, anti-fuzzing tech-
niques were proposed to hinder malicious use of fuzzers (ANTIFUZZ [16] and
FUZZIFICATION [21]). The purpose of anti-fuzzing is to maintain the advanta-
geous position of developers over adversaries on bug-finding. These techniques
introduce penalties on fuzzers to disturb the fuzzing heuristics or slow down the
fuzzing rate. The source codes of the protected program will be compiled into two
versions - one is protected with anti-fuzzing codes, and the other is unmodified.
Developers keep the original version, and they can thoroughly test the program.
Adversaries only retrieve the protected version, and the anti-fuzzing codes inside
the program can severely hinder the use of fuzzers. Consequently, developers are
expected to uncover far more bugs than the adversaries and fix them to avoid
the possible loss from zero-day vulnerabilities.

Anti-fuzzing techniques are promising, but the prototypes in prior works
should be improved to more fine-grained application scope. Intuitively, the stor-
age overhead should be taken into consideration for the practical adoption of
anti-fuzzing techniques. In prior works, fake blocks are artificially inserted into
the program to saturate the bitmap of fuzzers, while this technique can enlarge
the size of the program by even several times the original program. Developers
would be unwilling to burden such storage costs only for anti-fuzzing. Instead,
they can resort to lighter obfuscation tools whenever applicable, even though
these tools may not provide sufficient protection against fuzzers. Another fac-
tor that matters is the automation of the tools, i.e., existing prototypes are
inconvenient to use. On the one hand, the developers have to locate some code
areas manually; on the other hand, the prototypes have some dependencies with
third-party tools/libraries that may be incompatible with the OS of users. We
believe these factors challenge the future design and implementation of anti-
fuzzing techniques. More specifically, the anti-fuzzing techniques should ideally
hold the following two properties:

P1) Both storage and performance overheads should be minimized;
P2) The implementation should support automation which has no modifi-

cation to the development procedures of the program.
Based on these thoughts, we propose our solution to anti-fuzzing techniques.

The solution involves two categories of techniques - the passive detection meth-
ods and active disturbance methods. The passive detection methods precisely
check whether the protected program is being fuzzed and launch mitigation
strategies once fuzzers are detected. In our design, we integrate instrumentation
checking and execution frequency checking to achieve low overhead anti-fuzzing
techniques. The active disturbance methods impede fuzzers by attacking the
basic fuzzing assumptions and prevent the fuzzers from working normally. We
optimize the defective fake blocks. In our design, the fake blocks achieve the
minimum storage overhead, which is less than 15% of that in prior works.

No-Fuzz: Efficient Anti-fuzzing Techniques 733

We implement these techniques as a fully automated tool, i.e., No-Fuzz.
The anti-fuzzing techniques are directly added to the source codes of programs,
i.e., no modification is needed to the compilation procedures (e.g., header files,
linked libraries, compilation commands). Notably, No-Fuzz is also compatible
with other anti-fuzzing techniques in prior works that are not mentioned.

In the evaluation, we measure the effectiveness of our techniques in reduc-
ing branch coverage with real-world software from Binutils and two popular
benchmarks (Google FTS [1] and Magma [18]). Moreover, we show that our
techniques can hinder bug findings for the LAVA-M [13] dataset. To confirm our
optimizations to prior works, we have also compared No-Fuzz with the corre-
sponding techniques in ANTIFUZZ [16] and FUZZIFICATION [21]. The results
show that our design introduces less overhead and mitigates the negative effects
of anti-fuzzing techniques on regular users. Specifically, we reduce about 95% of
the storage cost compared with the prior works for the same number of branch
reductions. Furthermore, we tackle the obstacle that there is no suitable metric
to compare different anti-fuzzing techniques currently. Existing works measure
the anti-fuzzing effects and the overhead separately. However, the performance
and overhead are orthogonal - both of them vary according to different configu-
rations; it is unfair to compare the performance of different works with unequal
overhead directly. Therefore, in addition to measuring the performance and over-
head separately, we propose a new metric - “anti-fuzzing efficacy” linking the
two metrics to measure the increased defensive capability per unit overhead.

In short, this paper makes the following contributions: 1) throws light on the
facts of existing anti-fuzzing prototypes and summarises the properties of the
ideal anti-fuzzing techniques; 2) designs and implements automated anti-fuzzing
prototype No-Fuzz which can detect and disturb run-time fuzzing mechanisms;
3) evaluate No-Fuzz and some of the prior anti-fuzzing techniques on common
benchmarks, showing No-Fuzz’s negligible overhead to the protected binary and
its effectiveness at impeding binary-only fuzzing. The source codes of all imple-
mented tools are available at https://github.com/CongGroup/No-Fuzz.

2 Technical Background of Anti-fuzzing

The purpose of anti-fuzzing techniques is to combat fuzzers to reduce the number
of bugs reported on protected binaries. Existing techniques can be majorly sum-
marized as anti-fast-execution, anti-feedback, and anti-hybrid techniques based
on the affected fuzzing mechanisms. We will briefly introduce them in the fol-
lowing parts of this section.

Anti-fast-execution: Introduce Latency to Binary. One of the fuzzers’
assumptions is that more trials with different inputs are expected to explore
more paths in the binary. Fuzzers are usually designed with accelerating tech-
niques feeding thousands of seeds per second to the program under test (PUT)
[37]. Anti-fast-execution techniques insert latency into the binary to prevent
fast-execution. However, the challenge is that the latency can also affect regular

https://github.com/CongGroup/No-Fuzz

734 Z. Zhou et al.

users. ANTIFUZZ [16] inserts delay functions in the error handling codes man-
ually; FUZZIFICATION [21] inserts the latency functions in cold blocks. Both
techniques are trying to delay the areas that regular users rarely reach, but
fuzzers are easy to fall into.

Anti-feedback: Disturb the Feedback Information. Modern fuzzers
majorly rely on two feedbacks to decide fuzzing heuristics - coverage-feedback
and error signals. The coverage information is stored in a bitmap of limited size,
and fuzzers are expected to make decisions on seeds and mutations to maxi-
mize the coverage. The error signals inform fuzzers to save and report the seeds
triggering bugs, which is also the ultimate goal of using fuzzers.

Anti-feedback techniques insert fake blocks into the protected binary to dis-
turb the coverage feedback. These blocks contain codes irrelevant to the pro-
gram logic but are recorded as valid blocks in the bitmap. If most space of the
bitmap has been taken up by these fake blocks, fuzzers will be unable to update
new coverage. ANTIFUZZ hijacks the control flows to randomly generated fake
functions in the protected program. FUZZIFICATION inserts a fixed number of
constraints and functions into the binary, and builds ROP chains as fake paths
on the assembly code snippets.

For the error signals, ChaffBugs [19] suggests inserting non-exploitable
bugs into the binary to confuse the segmentation faults reported to fuzzers.
ANTIFUZZ proposed an approach to hinder the crash discovery by installing a
signal handler. The handler hides signals from fuzzers with elegant exits, and
thus fuzzers are unaware of crashes.

Anti-hybrid: Impede Program Analysis. Hybrid fuzzers [11,20,30,35] gen-
erally rely on taint analysis and symbolic execution to accelerate fuzzing. Anti-
hybrid techniques embed complex data flows in protected binary to hinder both
of the techniques. The idea is based on the fact that program analysis tech-
niques have difficulty in dealing with complex data flows due to the limited
CPU resources. ANTIFUZZ encrypts and decrypts the inputs and transforms
variables in critical comparisons to their hash values. Similarly, FUZZIFICATION

adds extra copy operations to the operand string to complicate the data flows
and mislead taint analysis engines to a wrong tag map.

3 No-Fuzz Design

No-Fuzz includes passive detection methods and the optimized active technique
(fake blocks) of prior works. Passive detection methods detect whether the pro-
tected binary is being fuzzed in binary-only-fuzzing (BOF) mode. Once the
fuzzers are found, the protection will trigger fuzzing mitigation mechanisms (e.g.,
introducing latency). As aforementioned, the active methods in prior works are
not practical due to the storage overhead. We optimize the fake blocks and design
the landing space exploiting the block-identification mechanism of binary-only
instrumentation. It reduces the storage overhead of a fake block to only one byte.

No-Fuzz: Efficient Anti-fuzzing Techniques 735

3.1 Passive Detection Methods

A fundamental requirement for anti-fuzzing is to avoid the negative effects of
the inserted anti-fuzzing techniques on regular users. Ideally, if the protected
program itself can accurately perceive the fuzzers, we can impose severe penalties
on adversaries covertly. Based on this thinking, we introduce passive detection
methods to identify the running environments of protected binaries. Once fuzzers
are detected, we carry out mitigation mechanisms such as delaying the execution
and aborting the program to prevent fuzzing.

Detect Binary-Only Instrumentation. In the scenario of using anti-fuzzing
techniques, adversaries are not able to retrieve the source codes of the protected
binary - they rely on the binary-only mode of fuzzers. The key is that no mat-
ter what techniques they are using, they have to collect coverage information
of the target program. Techniques such as dynamic instrumentation, hardware
assistance, and binary rewriting are the most used for this observation, but all of
them cause significant latency (a timing gap) to the PUT. We can detect the tim-
ing gap between the native execution and the execution with coverage-collecting
codes to determine the running environment.

Timing-related techniques are common in the scope of malware detection
[5,22,24]. We learn from existing works and design the detection on binary
instrumentations. In the native execution environment (real CPU), the control
flow directly falls into the block after a branch-taken instruction. On the con-
trary, with BOF, the instrumented program executes the additional instructions
collecting coverage at the beginning of a block. We detect BOF by checking the
edge instructions count (EIC). EIC is the estimated number of instructions exe-
cuted when entering a function or a block (instructions of an edge). According
to the experiments, the EIC for BOF can be about ten times larger than that
in the native execution. If we detect the timing gap in a protected program, we
acknowledge the existence of BOF and carry out mitigation techniques.

Mitigation - Introduce Latency. Due to the performance variation of the
CPU, there will be false positives in the detection. A few portions of executions
can have a relatively large timing gap, even if they are in the native environment.
This usually happens when the CPU is conducting context switching, and extra
overhead is counted as a part of the timing gap. According to our experiments,
0.03% of the executions are false positives in a stable environment, and the false-
positive rate will be 0.1% in a busy environment where too many parallel tasks
are executed simultaneously.

As a consequence, the mitigation mechanisms to fuzzing should be moderate
in case the false positives affect regular users. We add a one-second latency to the
program by triggering an IO blocking if the BOF instrumentation is detected.
Although one second is insufficiently long for a fuzzer, the general effectiveness
of the penalty can be guaranteed if we insert more than one detection function
into the protected program.

736 Z. Zhou et al.

Examining Execution Frequency. The nature of fuzzing is that the PUT will
be re-executed a large number of times in a short period. This can be leveraged
to detect whether the program is being fuzzed. We come up with the idea from
“many a little makes a mickle”. If the PUT leaves some vestiges every fuzzing
round, the vestiges will accumulate during the fast re-executions. After a while,
they grow large enough and inform the PUT that it is being fuzzed. In our design,
the protected program creates a temporary file every time it runs. If more than
60 files are created in a minute (the threshold is according to configurations),
the program will be alerted to the existence of a fuzzer. However, the challenge
is that the program only creates the files, but it is difficult to manage them.
It can be time-consuming to traverse the temporary files and check which are
created by the protected program. Besides, not deleting them can mess up the file
systems for regular users. To cope with this program, we find that the daemon
process is suitable for the management of temporary files.

A daemon process is a process that runs as a background process. It detaches
from the parent process and keeps running after the termination of its parent. We
designed the daemon process to patrol the temporary files - to prevent the tempo-
rary files from being unintentionally deleted and delete them after the patrolling.
The patrolling daemon process detaches itself from the protected program during
the execution. A temporary file with an ID to indicate its order will be created
by the daemon process. These files are created in ascending order, and the largest
order is the detection threshold for fuzzers. It then locks the file for a period which
we call “patrolling time”. After the patroling, it checks whether the file it locks is
correct and deletes the file it creates. The protected program seeks temporary files
with the threshold order for every execution. Once the file is found, it means the
program has been executed more than the threshold number of times in the patrol-
ing time, and the BOF is likely to exist; so we can apply the mitigation techniques.

Mitigation - Aborting Program. Different from the timing gap, the results
of the daemon process are accurate, and there are no false positives. We can
adopt a more severe penalty in this method. The protected PUT can abort
the execution or trigger an artificially inserted bug to misinform the crashes to
fuzzers. To further avoid the mitigation strategy affecting the regular users in
some unexpected situations, the developers can set a long patrolling time (5 min)
and a large threshold (1000 files). Regular users can rarely execute the program
at such a high frequency.

3.2 Active Methods: Minimum Fake Blocks

Existing fake blocks impede fuzzers at a non-optimal storage cost. ANTIFUZZ

[16] (default configuration) introduces about 20 MB of anti-fuzzing codes, while
based on the OSS-Fuzz [4] project, most commercial software occupies no more
than 100 MB. Besides, small programs are more sensitive to storage costs and
are hard to burden high storage costs. Unfortunately, they are more likely to be
chosen as the fuzzing targets by attackers due to their faster execution speed
and less program logic.

No-Fuzz: Efficient Anti-fuzzing Techniques 737

This defect comes to the fore as future fuzzers enhance the capability of
fuzzing mechanisms (e.g., size of the bitmap) or improve fuzzing heuristics (e.g.,
scheduling seeds to avoid triggering anti-fuzzing mechanisms). Anti-fuzzing tech-
niques have to insert more protection codes in proportion to the increased fuzzer
capability to handle the intensified arms race. Under this condition, the funda-
mental storage overhead should be as low as possible; otherwise, the proportioned
overhead needed in the arms race will be unsustainable.

The landing space is designed to minimize the extra storage overhead of fake
blocks. Existing approaches pile up function calls and constraints, disturbing
fuzzers at the function level, where one fake block takes up about nine bytes
(one cmp and one jmp instructions). However, we observe that some of the
storage overhead of fake blocks is unnecessary at the assembly level. For example,
C compilers generate function frames for each function that controls the base
pointer and stack pointer (e.g., push ebp). These assembly codes have nothing to
do with anti-fuzzing, and eliminating these codes can further reduce the storage
overhead.

As adversarial cannot retrieve the source codes of targets, they use BOF with
the assistance of external tools to collect coverage feedback. These tools insert
codes before entering a new block. If a control-flow-changing instruction (jmp,
call and ret) is encountered, they generate a new block record as the updated
coverage. Theoretically, the minimum block is the instruction only occupying one
byte (opcode of the minimum size), which should be at most 15% (from nine
bytes to one byte) of the storage cost of prior works. To achieve the minimum
fake block, we instrument each function with a code segment called landing
space. The landing space contains instructions that have no effect on the normal
execution. They are either one-byte instructions or two-byte instructions with
an immediate value which is the opcode of a one-byte instruction. This ensures
that each byte in the landing space can be translated into a valid instruction.

We further modify the destination address of function calls to the address
of a random byte in the landing space. The rationale is that when the modified

40058b
40058c
40058f

push rbp
mov rbp, rsp
sub rsp, 10h

400586
400587
400588
400589
40058a

nop
xor al, $iv
nop
cli
cmc

LandingSpace
*(0x400586 + rand()%6)(argu)

Modified function call

Fig. 1. A function with landing space.$iv is the immediate value, in this example, it
will be 0 × 90 which is the opcode for nop.

738 Z. Zhou et al.

function call is invoked, the control flow “land” at a random instruction. The
fuzzer considers this instruction the start of a new block and records the address
as new coverage. Since the control flow can “land” at any byte in the landing
space, fuzzers will record most of the possible addresses after sufficient rounds
of fuzzing. The corresponding fake coverage can overwhelm the fuzzer’s bitmap.

Figure 1 illustrates the assembly codes of a function and the landing space.
The original destination address of the function is 0x40058b, and we insert the
landing space before this address in the text section between 0x400586 and
0x40058a. The modified function call (0x400586 + rand()%6) jumps to the
landing space or the original start of the function. In this example, a fuzzer
will record six fake blocks at the cost of six bytes.

Optimizations. The naive implementation of the landing space seems able to
disturb the coverage feedback of BOF. However, we found that the size of the
landing space is restricted. A too large size introduces non-negligible latency to
the protected program. Moreover, fuzzers like AFL calculate the hash value by
exclusive-or operations on the addresses of two blocks. The problem is that the
addresses of fake blocks in the landing space are close, and so are the calculated
hash values. The chance of hash collision in the landing space is higher than that
in normal functions. Intuitively, the more hash collisions happen in the landing
space, the less bitmap can be saturated by fake blocks. In other words, the fuzzer
will be more powerful in discovering real branches in the protected program.
As a means of coping strategy, we propose two optimizations to mitigate the
limitations.

Jump Over Unnecessary Instructions. If the control flow lands on the
first few bytes in the landing space, it has to execute the rest instructions,
which incurs significant latency for a large landing space. To avoid executing the
unnecessary instructions, we modify some one-byte instructions to a short jump,
and the jumping offset is the opcode of the next instruction. As shown in Fig. 2,
if control flow lands at 0x400500, the assembly code is translated as a two-byte

400596
400597
40059a

push rbp
mov rbp, rsp
sub rsp, 10h

400500
400501
400502
...
400594
400595

0xeb
0x34
0x90
...
0x90
0xf5

LandingSpace
400500
400502
...

jmp 0x36
nop
...

400501
...

xor al, 0x90
...

Assembly

Fig. 2. Jump over unnecessary blocks

No-Fuzz: Efficient Anti-fuzzing Techniques 739

short jump with offset 0x36. However, if it lands at the next byte 0x400501, the
corresponding assembly code is “xor al, 0x90”. The functionality of the landing
space still remains as every byte can be disassembled correctly and recorded as
a new block. Yet the jump instructions reduce the performance overhead to 5%
of the original landing space.

Spray LandingSpace at Different Addresses. To reduce the hash colli-
sion rates, we increase the blocks of different addresses. As shown in Fig. 2, we
wrap functions in the original program with several intermediate blocks. The
intermediate blocks only redirect the control flows in the protected binaries but
have no effect on the program execution. We artificially keep wide disparities
in the addresses of intermediate blocks; thus, these blocks are likely to generate
more hash values than those generated from a single landing space. The size of
the landing spaces in these functions is accordingly reduced, and they will be
distributed to the intermediate blocks.

4 Evaluation

We evaluate No-Fuzz to answer the following four research questions (RQs):

– RQ 1. Can No-Fuzz hinder fuzzers from exploring new branches?
– RQ 2. How effective are the anti-fuzzing techniques at preventing fuzzers

from finding bugs?
– RQ 3. What are the storage and performance overhead to deploy anti-fuzzing

techniques?
– RQ 4. What is the suitable metric to compare different anti-fuzzing tech-

niques?

For RQ 1, coverage is considered orthogonal to the bug-finding abilities of
fuzzers [9]. The more coverage a fuzzer can reach, the more likely it finds bugs
inside the target program. We evaluate the coverage reduction on real-world
binaries after applying No-Fuzz to show the defense effectiveness of anti-fuzzing
techniques. To stress RQ 2, we evaluate the anti-fuzzing techniques on the
LAVA-M [13] benchmark and measure the shortest time needed to find a bug.
The benchmark consists of four buggy binaries (base64, md5sum, who, uniq)
with dozens to thousands of artificially inserted bugs.

The RQ 3. and RQ 4. are both related to the overhead evaluation of anti-
fuzzing techniques. To answer RQ 3., we evaluate the storage and performance
overhead of anti-fuzzing techniques on real-world programs of different sizes.
The RQ 4. is based on the concern that the overhead alone is not able to judge
an anti-fuzzing technique comprehensively. The problem is that if the number
of defensive codes added to the protected programs increases, the overhead is
likely to increase accordingly. The defensive capability is orthogonal to the extra
overhead as the more defensive codes are inserted into the protected binary,
the safer it is able to be. Thus judging a defensive technique only based on one

740 Z. Zhou et al.

metric (anti-fuzzing effect or the overhead) is not enough. We suggest combining
these two metrics and unifying the judging criteria of anti-fuzzing techniques by
measuring the defensive ability at a unit cost of storage or execution rate. We
define a new metric anti-fuzzing efficacy as the number of reduced branches per
byte of extra storage cost and that per millisecond of latency. It measures the
capability of anti-fuzzing techniques with respect to the introduced overhead.

In all experiments, the latency mitigation is set to be one second; the daemon
process will patrol for one minute and alert if there are more than 60 times
of executions; the landing space is configured to occupy 100 bytes, and the
functions will be wrapped in 50 intermediate functions. AFL and AFL-based
fuzzers (AFLFast and QSYM) use AFL-QEMU. HonggFuzz supports Intel-PT
and QEMU, and we adopt both binary-only modes. Each fuzzing campaign runs
with three CPU cores. Notably, QSYM runs two AFL instances with two CPU
cores and an SMT solver using one core. Fuzzing campaigns on the LAVA-M
dataset are kept running for 48 h, while the others last for 24 h. Due to the
nondeterministic fuzzing behaviors, we repeat fuzzing campaigns ten times for
each fuzzer x target combination.

4.1 Reducing Code Coverage

We evaluated the branch coverage of five fuzzers against eight real-world binaries
from Binutils, Magma, and Google FTS. Figure 3 shows the average branches
covered by each fuzzer on the binaries with and without No-Fuzz protection.
Each technique is separately evaluated to avoid the effect of one technique cover-
ing up others. From the figure, the combo of all No-Fuzz techniques can severely
hinder the branch explorations of fuzzers. The fuzzers can only discover 36.9%
of branches on average that should have been, and most of the branches are just
for initializations and input correctness checks.

A single passive detection technique reduces 34.8%–52.2% of the branch cov-
erage. The effect variation of the detection should also be attributed to the
choices of mitigation techniques and the difference in fuzzers. As the results
show, aborting the PUT (the purple columnar) is more effective than introduc-
ing latency (the gray ones) to the protected programs. However, introducing
latency affects users more slightly than aborting the program. This is the trade-
off between effectiveness and impacts on users. It will be reckless to conclude
that one mitigation technique outperforms the others. Our suggestion is to apply
the more severe mitigation techniques to the more precise detection techniques.

The landing space hinders, on average, 32.4% of the branches. We observe
that it is less effective against HonggFuzz. It is because Honggfuzz records the
coverage in a temporary file and the size of the bitmap is 16 M, while the bitmap
of AFL only occupies 64 K. We consider the current configuration of the landing
space too small to saturate the bitmap of Honggfuzz. In the actual situation,
the developers can configure a larger landing space for better protection against
Honggfuzz.

No-Fuzz: Efficient Anti-fuzzing Techniques 741

Fig. 3. Branch covered by four fuzzers against eight binaries with and without different

protections. The techniques are Timing Gap, Daemon Process, Landing Space. The

fuzzers are AFL, AFLFast, Honggfuzz-QEMU, Honggfuzz-PT, and QSYM .

4.2 Preventing Fuzzers from Finding Bugs

LAVA-M Benchmark. Despite many recent works suggesting using the up-
to-date benchmarks in bug-finding experiments(e.g., Google fuzzer test suite [1]
and Magma [18]), we find they are not suitable for the evaluation of BOF. The
problem is that these benchmarks heavily rely on sanitizers, but unfortunately,
most BOF techniques are not able to support sanitizers. There are some works
like QEMU-AddressSanitizer [2] to fill the gap in BOF and sanitizers, but our
evaluation covers different BOF techniques, and not all of them have such com-
plementary tools. Due to this limitation, we decided to use LAVA-M, whose bugs
directly trigger segmentation faults and can be caught by the BOF.

Moreover, the efficiency of BOF severely degrades compared with static
instrumentation, which is almost a quarter of that of the latter. Even the LAVA-
M benchmark contains thousands of bugs; only a few unique bugs can be uncov-
ered for each buggy binary in BOF. Measuring the number of bugs found will be
insignificant even though it is considered the ground truth for fuzzer evaluation.
Instead of the number of bugs found, we measure the time that fuzzers need
to find the first bug in each buggy binary within 48 h. This metric can better
illustrate the bug-finding capabilities of BOF in the LAVA-M benchmark.

Results. The average time of five fuzzers to find one bug in the LAVA-M
benchmark is shown in Table 1. From the table, we find that all fuzzers are able
to find at least one bug in the unprotected programs in 48 h. Note that QSYM

finds the bug in only several minutes, which is quite faster than other fuzzers. It
can be attributed to the design of the LAVA-M benchmark. The bugs in LAVA-
M are all designed based on an integer comparison. If an input can bypass
the comparison, the corresponding bug will be triggered. This mechanism is

742 Z. Zhou et al.

essentially more beneficial to fuzzers that are able to solve constraints. It makes
sense that QSYM , as a hybrid fuzzer, outperforms other mutational fuzzers due
to its symbolic execution engine.

On the other hand, with the anti-fuzzing defenses, some fuzzing campaigns
exceed the 48-h time limit and fail to find any bug. The rest campaigns uncover
some bugs, but it takes much more time than that spent on the corresponding
unprotected programs. Notably, we found Honggfuzz is incompatible with the
target md5sum in LAVA-M as it misjudges the handled errors as crash signals.
HonggFuzz generates millions of crash seed files, and the majority of them are
false positives. It is difficult to distinguish the correct crash seeds in the millions
of files, and we have to discard this fuzzer x target combination.

Generally, the passive detection techniques and the landing space successfully
impede all fuzzing campaigns, as the time to find a bug extends after applying

Table 1. Time of fuzzers to find a bug in native and protected LAVA-M.
√

means the
fuzzing campaign fails to find a bug within 48 h.

native TG DP LS all

base64

AFL 12 h 54 m
√ √ √ √

AFLFast 13 h 8 m
√ √ √ √

Hfz-QEMU 1 h 22 m
√ √ √ √

Hfz-PT 5 h 23 m
√ √ √ √

QSYM 2 m
√ √ √ √

md5sum

AFL 36 h 32 m
√ √ √ √

AFLFast 9 h 20 m
√ √ √ √

Hfz-QEMU – – – – –

Hfz-PT – – – – –

QSYM 51 m
√ √ √ √

who

AFL 3 h 8 m
√ √ √ √

AFLFast 6 h 37 m
√ √ √ √

Hfz-QEMU 37 m 2 h 9 m
√

6 h 32m
√

Hfz-PT 4 h 31 m 11 h 45 m
√ √ √

QSYM 1 m
√ √ √ √

uniq

AFL 7 h 19 m
√ √ √ √

AFLFast 6 h 47 m 23 h 59 m
√ √ √

Hfz-QEMU 4 m 10 h 55 m
√

9 h 3 m
√

Hfz-PT 2 h 48 m 16 h 20 m
√

17 h 56m
√

QSYM 5 m
√ √ √ √

No-Fuzz: Efficient Anti-fuzzing Techniques 743

these techniques. If all of the anti-fuzzing techniques in No-Fuzz are applied, none
of the fuzzing campaigns can find a bug. Overall, the evaluation confirms that
No-Fuzz is effective at preventing the BOF of different fuzzers from discovering
bugs in the protected programs.

4.3 Performance and Storage Overhead of No-Fuzz

We are inspired by the fact that the size of input files can affect the performance
overhead accordingly. Generally, a larger input will invoke more functions and
be processed for a longer time. Considering the overhead of the landing space is
also accordingly proportional to the functions executed, for fairness, we prepare
two sets of input files. One set only contains small invalid files, which can fastly
trigger errors in the programs, while the other set consists of valid samples of
different sizes to trigger the normal functionalities. The results adopt the average
time of the executions with both sets of input samples. Another consideration
is that the overhead will be less significant for large and complex programs.
The programs are categorized into two groups based on their size and average
execution time to mitigate the bias in the evaluations, as shown in Appendix 6.
The evaluation results of each group will be analyzed separately.

Performance Overhead. As shown in Table 2, the performance overhead for
passive detection techniques is about 10–20% for small binaries and less than 1%
for large binaries. Although the overhead is relatively large for small programs,
the absolute latency is only around 5 ms, which is usually unnoticeable for regular
users. The timing gap detection introduces a little more latency than the daemon
process. We think it should be attributed to the false positives of the timing gap.
Similarly, the landing space introduces the overhead proportioned to the size and
complexity of the programs. Small programs incur 40% latency, while for large
programs, the proportion decreases to 2%.

Storage Overhead. From Table 2, No-Fuzz introduces negligible storage over-
head to protected binaries. The passive detection techniques take up storage
ranging from about 1 KB to 50 KB (10 KB on average), but they are all less
than 1% of the original size of the protected programs. The landing space inserts
fake blocks according to the number of functions in the protected binary. Basi-
cally, the fewer functions in the original program, the less overhead it has. The
storage cost can range from 0.3 MB to 1 MB (0.8 M on average) for different
programs.

Comparisons with Prior Works. We evaluate the existing anti-coverage
techniques in prior works to show that the landing space is worth it. The default
configurations of ANTIFUZZ and FUZZIFICATION insert a fixed number of fake
blocks; thus the storage overhead is stable - 20 MB for ANTIFUZZ and 1.2 MB for
FUZZIFICATION . Clearly, both techniques take up more space than the landing

744 Z. Zhou et al.

space, and the storage advantage of No-Fuzz is more evident for small binaries
due to the accordingly fewer fake blocks in smaller binaries. Note that the storage
overhead of FUZZIFICATION is much smaller than that of ANTIFUZZ . However,
according to our experiments (Appendix 4), we find the default configuration of
the FUZZIFICATION is not enough to saturate the bitmaps of fuzzers. The real
storage overhead of the effective configuration of FUZZIFICATION should be
even larger than the current 1.2 MB.

Table 2. Overhead (CPU) of No-Fuzz and anti-coverage techniques of ANTIFUZZ

and FUZZIFICATION on real-world programs.

TG DP LS All AF(cov) FZ(cov) Reference

CPU

Small 6.8 ms (21.4%) 3.4 ms (10.6%) 13.1 ms (40.9%) 47.2 ms (147.5%) 11.3 ms (35.3%) 14.7 ms (45.9%) 32.0 ms

Large 23.5 ms (1.1%) 10.7 ms (0.5%) 43.8 ms (2.0%) 64.7 ms (3.0%) 15.6 ms (0.7%) 44.6 ms (2.1%) 2156.2 ms

Storage

Small 8.4 K (0.2%) 10.5 K (0.3%) 0.8 M (25.9%) 1.1 M (35.3%) 22.2 M (696.6%) 1.25 M (39.1%) 3.2 M

Large 43.0 K (0.04%) 27.1 K (0.02%) 2.0 M (1.9%) 2.4 M (2.2%) 22.3 M (21.0%) 1.27 M (1.2%) 106.5 M

4.4 Anti-fuzzing Efficacy

To compare the merits of different anti-fuzzing techniques, we introduce a new
metric - anti-fuzzing efficacy. The efficacy illustrates the associations between
the anti-fuzzing effects (coverage reduction) and storage/performance overhead.
As anti-fuzzing techniques improve the defensive capability by inserting extra
codes into the protected programs, more defensive codes promise more defensive
effects. A well-designed anti-fuzzing technique should introduce as low overhead
as possible while possessing effective defensive capability. The defense capability
per unit storage/performance cost should be a better metric to describe the anti-
fuzzing effects. Specifically, we calculate the efficacy by the number of coverage
reductions every kilobyte of defensive codes and the reduction of every millisec-
ond of latency. As a reference, we also calculate the efficacy of ANTIFUZZ and
FUZZIFICATION based on the results in Appendix 4.

From Table 3, the passive detection techniques have both the highest per-
formance and storage anti-fuzzing efficacy. Passive detection techniques are the
most affordable anti-fuzzing techniques that can hinder the BOF at the lowest
cost. Moreover, these techniques insert fixed defensive codes into the protected
programs. Thus, the efficacy is stable and more or less has the same order of mag-
nitude among all evaluated programs. The performance efficacy of the landing
space is about 20% of the passive detection techniques, and the storage efficacy
is much smaller (only about 1% of the passive detection methods). Despite the
fact that the landing space seems to be less efficient, it can be deemed as a com-
plement to the passive detection techniques. As we will discuss in Sect. 5, a single
defensive technique is weak against adversaries, and it is worth the development
of different techniques.

No-Fuzz: Efficient Anti-fuzzing Techniques 745

For reference, we evaluate the anti-coverage techniques of ANTIFUZZ and
FUZZIFICATION . The performance efficacy of landing space and ANTIFUZZ

is close, while FUZZIFICATION is inefficient due to the insufficient number of
blocks. The storage efficacy of the landing space is 14–28 times that of these anti-
coverage techniques, i.e., on average, we reduce about 95% of the initial storage
cost. It illustrates that No-Fuzz is more practical, which can better utilize the
storage while keeping adequate anti-fuzzing protection.

Table 3. Space and performance efficacy of different anti-fuzzing techniques against
four fuzzers.

TG DP LS All AF(cov) FZ(cov)

Performance (#branches/ms)

AFL 183.9 559.3 84.2 46.6 144.1 11.5

AFLFast 165.0 509.3 61.9 42.3 121.7 5.3

Hfz-Q 158.5 530.1 86.2 47.0 133.9 17.0

Hfz-P 134.5 428.4 62.6 36.9 91.9 5.0

QSYM 226.8 684.9 120.7 58.6 174.6 14.8

Avg 173.7 542.4 83.1 46.3 133.2 10.7

Storage (#branches/kB)

AFL 148.8 181.1 1.4 2.0 0.07 0.14

AFLFast 133.6 164.9 1.0 1.8 0.06 0.15

Hfz-Q 128.3 171.6 1.4 2.0 0.07 0.20

Hfz-P 108.9 138.7 1.0 1.6 0.05 0.06

QSYM 183.6 221.8 2.0 2.5 0.09 0.17

Avg 140.6 175.6 1.4 2.0 0.07 0.14

5 Discussion

While our design performs effectively and efficiently, it could be further
improved. We consider our design a complement to prior works, and we appreci-
ate some designs in prior works which also deserve adoption in the future develop-
ment of anti-fuzzing tools (e.g., installing the signal handler to hide crashes). We
will also stress these concerns in our discussion. In the following, we will discuss
the robustness of the anti-fuzzing technique and the advantages of anti-fuzzing
over obfuscation because the potential inherent problems (i.e., robustness) and
the seemingly possibility that they can be substituted by obfuscation techniques
in certain cases.

746 Z. Zhou et al.

Robustness of Anti-fuzzing Techniques. A primary concern about anti-
fuzzing is its robustness. In particular, a dedicated attacker can perform manual
analysis to disarm the defense if the details are known, and several prior works
suggested applying obfuscation techniques as a countermeasure against reverse
engineering. However, for experienced attackers, obfuscation techniques can also
be disarmed. We want to reflect the necessity for anti-fuzzing techniques to be
robust against manual analysis. Anti-fuzzing techniques are proposed to intro-
duce extra efforts (time, resources, knowledge, etc.) adversaries need to fuzz
a protected program. Particularly, they are suitable to defend the untargeted
fuzzing tasks on a large scale that are not worth enough to analyze a single
binary for attackers manually. Moreover, anti-fuzzing techniques enhance the
basic requirements of BOF, from knowing nothing to at least understanding
anti-fuzzing and reverse-engineering techniques. The defensive techniques can
further reduce the chance that protected binaries are chosen as the targets of
BOF. Due to the above reasons, we consider that reverse engineering does not
contradict the ultimate purpose of anti-fuzzing techniques.

Anti-fuzzing or Obfuscation. Obfuscation is originally considered a potential
solution to anti-fuzzing. Compared with the emerging anti-fuzzing techniques, it
is well-developed with profound community support. Prior works have conducted
some experiments to show the ineffectiveness of obfuscation in anti-fuzzing [16,
21]. However, we will revise their arguments with more experiments and show
that obfuscation techniques can be effective at times.

In fact, there are already obfuscation techniques designed to confront sym-
bolic executions, which are similar to anti-hybrid techniques [6,34]. In addi-
tion, the obfuscation techniques involving self-modifying codes can be even more
powerful against BOF. The self-modifying code is a common technique used in
packing and encryption. It reuses the memory space by overwriting the existing
opcodes with those of new instructions. The problem is that no matter how many
functions are overwritten to a self-modifying block, they possess the same mem-
ory address. Most fuzzers record the hash values of function block addresses,
and the self-modifying block will be identified as only one function; thus, the
coverage information of overwritten functions is lost.

We have conducted some experiments with BOF and dummy programs where
the programs are protected by self-modifying codes. The results (appendix 7
and 7) show that BOF cannot be correctly performed on the program with self-
modifying codes. Besides, [26] shows that self-modifying codes will severely slow
down the translations in emulators, which confirms the anti-fuzzing effectiveness
of obfuscation against BOF like afl-qemu and honggfuzz-qemu. Fortunately,
self-modifying codes are usually not welcomed by developers. Commercial soft-
ware rarely uses self-modifying codes due to the possibility of false positives as
malicious attempts and the new bugs introduced by risky modifications. Over-
all, anti-fuzzing techniques cover the shortage of static obfuscation techniques
against fuzzers, and we argue that future anti-fuzzing works should be designed
in the scope of static techniques without self-modifying codes.

No-Fuzz: Efficient Anti-fuzzing Techniques 747

Future Work. We consider that the future work of anti-fuzzing can focus on
the following two aspects. On the one hand, we can keep reducing the overhead
for existing anti-fuzzing techniques, which increases the number of defensive
codes inserted into a program in a disguised way. A possible direction is that the
anti-hybrid techniques in prior works are overqualified to disturb the program
analysis. They use cryptography functions (e.g., hash, CRC) to wrap the vari-
ables. We have conducted some experiments, and it turns out that only hundreds
of calculations are enough to overwhelm the symbolic executions, and they are
cheaper than the heavy cryptography functions. On the other hand, future anti-
fuzzing works can embed anti-fuzzing mechanisms into the program logic. For
instance, similar to the flatten technique in obfuscation, we can split a block into
several new blocks, and each new block contains a part of the assembly codes of
the original block. Thus, each new block is logically dependent on the program
and cannot be easily eliminated. Indeed, there are some challenges that need to
be solved for this idea, e.g., how to maintain the context among different blocks
and how to ensure the number of fake blocks is large enough.

6 Conclusion

In this paper, we design several practical and fully-automated anti-fuzzing tech-
niques and integrate them into a prototype tool No-Fuzz. We optimize the stor-
age cost of fake blocks as prior works insert them at the function level occupying
an unrealistic storage room. In addition to the active anti-fuzzing techniques that
disturb the fuzzing mechanisms, we also design the passive detection methods
which precisely determine the running environments of the protected programs
and launch mitigation techniques when binary-only-fuzzing exists. The evalu-
ations demonstrate that No-Fuzz significantly reduces the branch coverage of
fuzzers. Furthermore, we have also shown that No-Fuzz can impede bug findings
in the LAVA-M dataset, i.e., fuzzers have to spend much more time finding a
bug. We propose a new metric, the anti-fuzzing efficacy, to measure the defensive
capability of an anti-fuzzing technique at a unit overhead cost. Based on this
metric, we illustrate that No-Fuzz achieves the same or higher level of protection
against fuzzers with even lower overhead than prior works.

In summary, we enhance the awareness of overhead and the importance of
automation in an anti-fuzzing arms race. Inspired by this, we summarize the
desired properties for future anti-fuzzing techniques - be with less overhead and
automated. We have moved one step toward practical anti-fuzzing techniques
and hope our efforts can further promote this topic.

Acknowledgements. This work was supported by the Research Grants Council
of Hong Kong under Grants CityU 11217819, 11217620, 11218521, N CityU139/21,
RFS2122-1S04, C2004-21GF, R1012-21, and R6021-20F.

748 Z. Zhou et al.

A Appendix

(See Tables 4, 5, 6, 7 and 8)

Table 4. The branch coverage of ANTIFUZZ and FUZZIFICATION

readelf objdump size nm xmllint libpng gueutzli sqlite3

AFL

AF(cov) 1745 1449 839 706 1691 919 2103 3840

FZ(cov) 4498 2630 1247 1529 5556 1702 2805 4994

AFLFast

AF(cov) 1913 1345 656 774 1503 958 2207 3757

FZ(cov) 3383 2848 1102 1411 5463 1492 2727 5065

Hfz-Q

AF(cov) 1049 875 622 894 4117 1073 2499 4103

FZ(cov) 2422 2812 1277 1523 6122 1996 3040 6144

Hfz-P

AF(cov) 1884 1067 899 632 3555 788 1931 3097

FZ(cov) 2612 2374 1148 1190 5312 1540 2563 4833

QSYM

AF(cov) 1946 1276 814 932 4255 1287 2493 4441

FZ(cov) 5072 3731 1448 1740 6442 2084 3538 7433

Table 5. The overhead comparisons between upx and existing anti-fuzzing techniques.
As emphasized in the table, the overhead of existing anti-fuzzing techniques is more or
less close to that of packing techniques.

readelf objdump

Exec time 125.4 ms 2156.2 ms

upx +13.0% +24.3%

AF(cov) +37.7% +2.0%

FZ(cov) +32.9% +14.6%

Storage cost 3.22 M 9.94 M

upx −2.24M (−69.6%) −7.44M (−74.8%)

AF(cov) 21.27 M (+660.6%) 21.25 M (+213.8%)

FZ(cov) 1.29 M (+40.1%) 1.28 M (+12.9%)

No-Fuzz: Efficient Anti-fuzzing Techniques 749

Table 6. Real-world programs of different size and execution time.

size & exec time files

Small readelf, objdump, size, nm guetzli, libpng, sqlite3, xmllint

Large ffmpeg g, nomacs, calc, impress

Table 7. We fuzz a dummy program as well as the obfuscated versions. The dummy
program contains several magic-byte checks and will crash if the constraints are satis-
fied. Tigrees(S) only applies static obfuscation, while Tigrees(D) adopts self-modifying
codes which are dynamic.

First crash Fuzz rate

Native 45 s 1805 exc/s

UPX 1 m 27 s 1800 exc/s

Tigress(D) + ∞ 0 exc/s

Tigrees(S) 2 m 4 s 1667 exc/s

llvm-obfuscator 1 m 48 s 1400 exc/s

Table 8. Evaluations to launch BOF on obfuscated/packed binaries. × means BOF
cannot initialize on the binary within 30min for all four fuzzers.

√
means all fuzzers

succeed in launching the BOF. As the table suggests, self-modifying codes (upx &
obfuscation with JIT) can completely prevent the BOF from initialization.

native upx llvm-obf Tigress (D) Tigress (S)

dummy
√ √ √ × √

binutils
√ × √ × √

libjpeg
√ × √ × √

libpng
√ × √ × √

libtiff
√ × √ × √

ffmpeg
√ × √ × √

gzip
√ × √ × √

References

1. Binary-only fuzzing of honggfuzz. https://github.com/google/fuzzer-test-suite.
Accessed 12 Mar 2022

2. QASan (QEMU-AddressSanitizer). https://github.com/andreafioraldi/qasan.
Accessed 12 Mar 2021

3. A library for coverage-guided fuzz testing. https://llvm.org/docs/LibFuzzer.html
(2017)Accessed 23 Oct 2020

4. Aizatsky, M., Serebryany, K., Chang, O., Arya, A.: Announcing oss-fuzz: continu-
ous fuzzing for open source software. Google Testing Blog, Announcing OSS-Fuzz
(2016)

https://github.com/google/fuzzer-test-suite
https://github.com/andreafioraldi/qasan
https://llvm.org/docs/LibFuzzer.html

750 Z. Zhou et al.

5. Balzarotti, D., et al.: Efficient detection of split personalities in malware. In: Pro-
ceedings of the NDSS (2010)

6. Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., Pretschner, A.: Code obfus-
cation against symbolic execution attacks. In: Proceedings of the ACSAC (2016)

7. Böhme, M., Pham, V.-T., Roychoudhury, A.: Coverage-based greybox fuzzing as
Markov chain. In: Proceedings of the ACM CCS (2016)

8. Böhme, M., Pham, V.-T., Nguyen, M.-D., Roychoudhury, A.: Directed greybox
fuzzing. In: Proceedings of the ACM CCS (2017)

9. Böhme, M., Szekeres, L., Metzman, J.: On the reliability of coverage-based fuzzer
benchmarking. In: Proceedings of the IEEE ICSE (2022)

10. Chen, H., et al.: Hawkeye: towards a desired directed grey-box fuzzer. In: Proceed-
ings of the ACM CCS (2018)

11. Chen, Y., et al.: SAVIOR: towards bug-driven hybrid testing. In: Proceedings of
the IEEE S&P (2020)

12. Dinesh, S., Burow, N., Xu, D., Payer, M.: RetroWrite: statically instrumenting cots
binaries for fuzzing and sanitization. In: Proceedings of the IEEE S&P (2020)

13. Dolan-Gavitt, B.: LAVA: large-scale automated vulnerability addition. In: Pro-
ceedings of the IEEE S&P (2016)

14. Google: A scalable fuzzing infrastructure. https://github.com/google/clusterfuzz.
Accessed 23 Oct 2020

15. Google: syzkaller found bugs - Linux kernel. https://github.com/google/syzkaller/
blob/master/docs/linux/found bugs.md

16. Güler, E., Aschermann, C., Abbasi, A., Holz, T.: ANTIFUZZ: impeding fuzzing
audits of binary executables. In: Proceedings of the USENIX Security (2019)

17. Hafiz, M., Fang, M.: Game of detections: how are security vulnerabilities discovered
in the wild? In: Proceedings of ACM ESE (2015)

18. Hazimeh, A., Herrera, A., Payer, M.: Magma: a ground-truth fuzzing benchmark.
In: Proceedings of ACM Measurement and Analysis of Computing Systems (2020)

19. Zhenghao, H., Yu, H., Dolan-Gavitt, B.: Chaff bugs: deterring attackers by making
software buggier. arXiv (2018)

20. Huang, H., Yao, P., Wu, R., Shi, Q., Zhang, C.: Pangolin: Incremental hybrid
fuzzing with polyhedral path abstraction. In: Proceedings of IEEE S&P (2020)

21. Jung, J., Hong, H., Solodukhin, D., Pagan, D., Hyung Lee, K., Kim, T.: Fuzzifica-
tion: anti-fuzzing techniques. In: Proceedings of USENIX Security (2019)

22. Kang, M.G., Yin, H., Hanna, S., McCamant, S., Song, D.: Emulating emulation-
resistant malware. In: Proceedings of ACM Workshop on Virtual Machine Security
(2009)

23. Lemieux, C., Sen, K.: Fairfuzz: A targeted mutation strategy for increasing greybox
fuzz testing coverage. In: Proceedings of the ACM/IEEE ASE (2018)

24. Lindorfer, M., Kolbitsch, C., Comparetti, P.M.: Detecting environment-sensitive
malware. In: Proceedings of the International Workshop on Recent Advances in
Intrusion Detection (2011)

25. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of unix
utilities. In: Proceedings of the ACM Communication (1990)

26. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting system emulators. In: Proceed-
ings of the International Conference on Information Security (2007)

27. Rash, M.: A collection of vulnerabilities discovered by the afl fuzzer. https://github.
com/mrash/afl-cve. Accessed 13 Sept 2020

28. Rawat, S., et al.: Application-aware evolutionary fuzzing. In: Proceedings of the
NDSS, Vuzzer (2017)

https://github.com/google/clusterfuzz
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/mrash/afl-cve
https://github.com/mrash/afl-cve

No-Fuzz: Efficient Anti-fuzzing Techniques 751

29. Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S., Holz, T: KAFL: Hardware-
assisted feedback fuzzing for OS kernels. In: Proceedings of the USENIX Security
(2017)

30. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: Proceedings of the NDSS (2016)

31. Swiecki, R.: Honggfuzz (2020). https://github.com/google/honggfuzz
32. Votipka, D., Stevens, R., Redmiles, E., Hu, J., Mazurek, M.: Hackers vs. testers:

a comparison of software vulnerability discovery processes. In: Proceedings of the
IEEE S&P (2018)

33. Wang, T., Wei, T., Gu, G., Zou, W.: TaintScope: a checksum-aware directed fuzzing
tool for automatic software vulnerability detection. In: Proceedings of the IEEE
S&P (2010)

34. Wang, Z., Ming, J., Jia, C., Gao, D.: Linear obfuscation to combat symbolic exe-
cution. In: Proceedings of the ESORICS (2011)

35. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM: a practical concolic execution
engine tailored for hybrid fuzzing. In: Proceedings of USENIX Security (2018)

36. Zalewski, M.: American fuzzy lop (2019). http://lcamtuf.coredump.cx/afl
37. Zalewski, M.: Technical “whitepaper” for afl-fuzz (2019). http://lcamtuf.coredump.

cx/afl/technical details.txt
38. Zhang, Z., You, W., Tao, G., Aafer, Y., Liu, X., Zhang, X.: STOCHFUZZ: sound

and cost-effective fuzzing of stripped binaries by incremental and stochastic rewrit-
ing. In: Proceedings of IEEE S&P (2021)

https://github.com/google/honggfuzz
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

eSROP Attack: Leveraging Signal
Handler to Implement Turing-Complete

Attack Under CFI Defense

Tianning Zhang1,2(B), Miao Cai2,3,4, Diming Zhang5, and Hao Huang1,2

1 Department of Computer Science and Technology,
Nanjing University, Nanjing, China

2 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China
zhangtianning128@126.com

3 Key Laboratory of Water Big Data Technology of Ministry of Water Resources,
Hohai University, Nanjing, China

4 School of Computer and Information, Hohai University, Nanjing, China
5 College of Computer Engineering, Jiangsu University of Science and Technology,

Nanjing, China

Abstract. Signal Return Oriented Programming (SROP) is a danger-
ous code reuse attack method. Recently, defense techniques have been
proposed to defeat SROP attacks. In this paper, we leverage the signal
nesting mechanism provided by current operating systems and propose
a new variant of SROP attack called enhanced SROP (eSROP) attack.
eSROP provides the ability of invoking arbitrary system calls, simulating
Turing-complete computation, and even bypassing the fine-grained label-
based CFI defense, without modifying the return address and instruction
register in the signal frame. Because the signal returns to the interrupted
instruction, the shadow stack defense can hardly detect our attack. Sig-
nal has strong flexibility which can interrupt the normal control flow. We
leverage such flexibility to design a new code reuse attack. To evaluate
eSROP, we perform two exploits on two real-world programs, namely
Proftpd and Wu-ftpd. In our attacks, adversaries can invoke arbitrary
system calls and obtain a root shell. Both attacks succeed within 10 min
under strict system defense such as data execution prevention, address
space layout randomization, and coarse-grained control flow integrity.

Keywords: Code reuse attack · SROP · Signal security

1 Introduction

Code reuse attacks [25] are still the major attack means nowadays. Among them,
sigreturn-oriented programming [5] is a powerful attack technique. It overwrites
the return address on the stack to invoke the sigreturn system call and prepares
a counterfeit signal frame on the stack to manipulate the rip register’s value.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 752–769, 2023.

https://doi.org/10.1007/978-3-031-25538-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_39&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_39

eSROP Attack 753

After the sigreturn function’s invocation, the control flow will transfer to an
arbitrary location with an arbitrary register context.

SROP attack has been greatly restricted by several proposed defenses. For
example, the signal cookies [3] method uses the kernel to insert a secret value
into the signal frame to detect whether the signal frame has been tampered with.
This is analogous to stack canary [2].

Another method that PiCFI [24] and MCFI [23] use to mitigate SROP attacks
is to inline sigreturn system calls into each signal handler, and make the sigreturn
system call unreachable from other application code. As a result, attackers need
to trigger real signals to execute the sigreturn system call. From the authors’
perspective, the attackers may have to either exploit a buggy signal handler
to corrupt the saved thread context or use other threads to concurrently and
reliably modify the signal handling thread’s saved context. And neither of them
they believe is easy since signal handlers rarely have complex code and usually
do not run for an extended period of time [24].

However, it is still possible for attackers to conduct attacks by leveraging
signal handlers to modify the signal frame. In this paper, we deeply investigate
the signal handlers of real-world programs and find that many of them can be
leveraged by attackers. Although they usually do not contain normal vulnera-
bilities, we can leverage them by doing some minor changes, such as overwriting
the GOT table entry. Hence we propose eSROP (enhanced sigreturn-oriented
programming) attack. It is a more dangerous variant of SROP attack. It can
survive under defenses that are proposed to prevent traditional SROP attacks,
such as signal cookies [3] or control flow integrity [1].

Our attack method is as follows. We send a signal when the program is execut-
ing some security-critical instructions. The signal handler leaks the currently exe-
cuted instruction address. The attacker decides whether the interrupted instruc-
tion is the target one. If it is, the attacker sends the second signal. The same signal
handler responses. This time, it overwrites the signal frame on the stack. Then the
signal returns to the interrupted instruction to continue execution. However, with
a different register context, the instruction will do completely different work. The
core idea is still overwriting the signal frame. However, we do not directly over-
write the control data, such as the rip register’s value. We only modify other gen-
eral registers’ values. So the control flow is preserved, but the data flow is changed.
We do not violate backward edge protection, so strong defenses such as shadow
stack [6] can hardly detect our attack.

Depending on the type of interrupted instructions, there are three cases.
When the interrupted instruction (interrupted by the signal) is a syscall instruc-
tion, the attacker can invoke an arbitrary system call instead of the original one.
Because the syscall number is stored in the rax register, which has been manip-
ulated by our attack.

When the interrupted instruction is a DOP gadget [16], the attacker can
leverage the gadget to implement Turing-complete computation. Original DOP
attack [16] requires dispatcher gadget to connect DOP gadgets. But our attack
removes this pre-requisite for using the DOP gadget. We use signals to connect
different gadgets and implement complex semantics.

754 T. Zhang et al.

When the interrupted instruction is the CFI verification code, the attacker
can even bypass fine-grained label-based CFI protection [1]. Since the signal
handler can manipulate the verification result by modifying the general registers,
the program will finally be fooled to jump to an attacker-controlled area. Most
attacks [10,14] on CFI leverage the implementation defect of it. However, we
show that the more fatal problem of CFI is that it cannot defend against signal
attacks. Because signal can cause unexpected control flow transfer.

We build two end-to-end exploits to demonstrate the concrete techniques to
construct eSROP attacks. In our first Proftpd attack, we show how to attack,
show how to leverage the original signal handler to obtain arbitrary system calls
invocation primitive, and finally get a shell. Our second Wu-ftpd attack exhibits
how to obtain a root shell when we do not directly use the original signal handler.
We manipulate the program memory and register a new signal handler for usage.
Both of our exploits work reliably with ASLR and DEP defenses turned on and
assuming the coarse-grained CFI defense [31] in place. As a consequence, we
suggest that defenders should consider the security of signal processing more
seriously.

2 Background and Assumptions

2.1 ROP Attack

Return Oriented Programming [25] attack reuses code snippets in the victim
program to perform malicious behavior instead of injecting malicious code. It is
a kind of control flow attack which diverts the victim program’s execution flow.
It has been popular for decades and has lots of variants.

2.2 SROP Attack

Sigreturn Oriented Programming [5] is one of the variants of ROP attacks. It is
an attack that is related to signals. It leverages the sigreturn system call which
is invoked when the signal returns. The attacker sets up a fake signal frame on
the stack and invokes sigreturn. When the sigreturn gets executed, it treats the
fake signal frame as the signal interrupted context and uses it to restore all the
registers’ values.

2.3 Attack Assumptions

In this paper, we assume a powerful yet realistic threat model. We assume the
attacker can obtain arbitrary read/write primitive through the vulnerability. In
practice, many vulnerabilities equip the attacker with this kind of ability, such
as CVE-2017-7184, CVE-2017-0143, CVE-2016-4117, and CVE-2015-0057. This
assumption is the same as other ROP attacks [11,13,27,28]. Then we assume
the attacker can send signals to the victim program. It is easy to achieve in local
attacks. In this paper, we mainly discuss local attacks, but our method can also

eSROP Attack 755

be applied to remote attacks. We leave this as future work. This assumption is
similar to other signal attacks [7,32]. Once we can send signals, we can finally
obtain a root shell.

We also assume that the system is under the following protections. Data
execution prevention [12] is deployed in the system. The process is running with
non-executable data and non-writable code. Address Space Layout Randomiza-
tion [20] is also applied in the target system. Since the ASLR defense is enabled,
the starting addresses of all the libraries and heap and stack are randomized
in each execution. But the text and data segments are always mapped to the
same memory addresses. At the same time, coarse-grained CFI defense [31] is in
use. An indirect call or jump can go to any function’s starting address. Returns
should go back to any return address, i.e. an instruction following a call. When we
discuss our attack to bypass label-based CFI defense [1] in Sect. 3.3, we assume
fine-grained CFI [1] is in use.

Finally, we assume the program is dynamically linked and the GOT table is
not under protection.

3 eSROP Attack Method

In this section, we illustrate the techniques of enhanced Sigreturn-oriented Pro-
gramming attack.

Code

Mov rdi, xxx;
Mov rsi, xxx;
Mov rcx, xxx;
Mov rax, xxx;

Syscall;
Signal

Signal handler

Stack

Sigreturn

Signal frame

Copy(sigframe,
fake_sigframe); Rax

Rdi

Rsi

Rcx

Rip

Rsp

Before signal After signal

Parameters for write() syscall Parameters for exec() syscall Interrupted instruction
address

Interrupted stack pointer

Not changed

Fig. 1. Attack procedure on modifying the signal frame. When the signal returns, the
program execute exec() system call instead of write() system call.

3.1 Invoke Arbitrary System Call

In the following, we will demonstrate how to invoke arbitrary system call under
coarse-grained CFI defense [31].

Our attack is based on the following facts. First, in a normal program, library
functions will always be invoked several times. Some of these library functions
will invoke the system call. Second, signals can arrive at any time during the
program’s execution. If the victim process is executing in userspace (not execut-
ing kernel code), and the signal is not blocked by the process. The signal can

756 T. Zhang et al.

immediately interrupt the process, and divert the control flow to execute the
corresponding signal handler. Third, signal handlers are executed in userspace.
They can modify the values on the user stack. Forth, the signal frame is stored
on the user stack. The signal frame is used to store the process context (all
the register values) that was interrupted by the signal. when the signal returns,
the process uses the values in the signal frame to restore all the registers and
continues to execute the interrupted instruction.

As shown in Fig. 1, we exploit the timing of a program executing instructions
right before the syscall instruction and right after the register setting instructions.
This timing is transient but it widely exists in a program’s execution. We need
to capture the timing to send the signal and make the signal arrives just at the
point. Then, in the signal handler, we overwrite the signal frame that was stored
on the stack to modify the system call number and all the parameters reserved in
general registers. When the signal returns, the program will continue to execute
the syscall instruction. Now we successfully tamper with the system call that the
program originally intended to execute and invoke an arbitrary system call.

Compared with SROP: SROP directly modifies the return address to the address
of the sigreturn function and prepares a fake signal frame on the stack. When the
vulnerable function returns, it will invoke the sigreturn. This is not the normal
execution flow, so it can be easily detected. However, in eSROP, we leverage
the signal handler to tamper with the on-stack signal frame. eSROP sends the
signal and returns to the sigreturn as usual. At the same time, we do not directly
overwrite the control data, such as the rip register value. The program returns
to the point where it is stopped by the signal. The reason is if we modify the rip
register value, it can be easily detected by other strong defenses such as shadow
stack [6], which backs up the return address in a safe area. So eSROP is more
stealthy than SROP attack. We do not cause abnormal control transfer during
signal processing. Meanwhile, our attack is still powerful, it gives attackers the
ability to invoke arbitrary system calls by only modifying the data that the
program process to influence the execution result.

Adversary

GOT

Sigemptyset@GOT
Sigaction@GOT

Alarm@GOT

Puts().addr
Sigaction().addr

Sleep().addr

1 Overwrite
GOT entries

stdout

_IO_read_end

_IO_write_base
_IO_write_ptr
_IO_write_end
_IO_buf_base
_IO_buf_end

Orig_sigframe.start

Orig_sigframe.start

Orig_sigframe.start
Orig_sigframe.end

Orig_sigframe.end

2
Manipulate

stdout
Stack

Orig_sigframe

Fake_sigframe

High

Low

3 Prepare
fake sigframe

Orig_sigframe.end

Fig. 2. Attack steps that adversary takes to leverage original signal handler. Note that,
the stdout. IO write ptr is first set to Orig sigframe.end. After the puts() function’s first
execution, it will automatically adjust to point to Orig sigframe.start.

eSROP Attack 757

Details: In this attack procedure, there exist some problems to be solved. First,
how to capture the timing of sending the signal. Maybe we need to implement
a highly precise timer to stop the program at any instructions. Second, we need
a signal handler to overwrite the signal frame which is usually not the intended
work that a signal handler will do.

We solve the first problem by sending a lot of signals to the target process.
Since the timing is transient and difficult to catch in one shot, we send lots of
signals. After a few seconds, one of the signals will hit the target instruction. The
signal handler will decide whether the instruction pointer that was interrupted
by the signal equals the target. If it is, the signal handler covers the signal frame
on the stack. When the signal returns, the program will execute the exec() system
call. Finally, we will successfully obtain a shell.

To solve the second problem, people may think we must register a new signal
handler to implement the semantics. The original signal handler is not designed
for this purpose, so it is useless. However, when we thoroughly investigate the
signal handler of many real-world programs. We surprisingly find that many of
them can be leveraged by attackers, and some of them can even be directly used.
This means that we need not install a new signal handler, just leverage the one
that the program originally registered. It seems difficult, but we show that by
exploiting the puts() function, we can overcome all the difficulties (as shown in
Fig. 2).

In the following, we will demonstrate two approaches for two different cases.
In the first case, the signal handler in the program can be directly used. In the
second case, the signal handler in the program cannot be used by the attacker.
We show how to conduct attacks in each of these cases.

Attacker Victim
Normal flow Signal 1

SIGALRM

Puts().leak_sigframe
sigframe

Sleep()Judge

Do not send
Signal 2

Case 1: Leaked_sigframe.rip != syscall

Attacker Victim
Normal flow Signal 1

SIGALRM

Puts().leak_sigframe
sigframe

Sleep()Judge

Send Signal 2

Case 2: Leaked_sigframe.rip == syscall

Signal 2

Sigreturn()

SIGALRM

Puts().overwrite_sigframe

Sleep()

Sigreturn()

Fig. 3. Attack procedure on sending signals. The attacker decides whether to send the
second signal depending on the leaked sigframe.rip value.

Approach 1. In this case, the signal handler can be directly used. People may
wonder why this happens. We will show that attackers can achieve this by doing
some minor changes to the GOT table entries. At the same time, the signal
handler must meet some conditions.

First, in the signal handler, there must be a GOT function that has at least
one parameter and the first parameter is an address. The address must point to

758 T. Zhang et al.

an area that the attacker can modify. This GOT function will later be replaced
by the puts() function. Second, in the signal handler, there must be another GOT
function that has at least one parameter and the first parameter is an integer.
This GOT function will later be replaced by sleep() or usleep() function.

These conditions are easy to meet. Since some normal signal handlers always
re-install the same signal handler for usage the next time, they will invoke the
sigaction() function to register the current function again. Before the sigaction()
function’s execution, the program usually prepares a sigaction structure and calls
another function sigemptyset(). This function meets our first condition. It has
one parameter and the parameter points to the data on the stack. The data is
stored on the lower stack. It has not been used and is not initialized. Attackers
can easily control the value in it.

The second condition is also easy to meet. For example, in the signal handler
of SIGALRM signal, it is normal to invoke the alarm() function. This function
is a library function. The program invokes it by looking up GOT table. It has
one parameter and the parameter is an integer. We can modify the alarm()
function’s address in the GOT table to change it to the sleep() function. When
the program invokes the alarm() function, it executes the sleep() function.

As a whole, we need the signal handler to execute the puts() function and
sleep() function. And puts() is executed before sleep() function. The reason we
choose these two functions is that we leverage the puts() function to first leak
the signal frame on the stack. The leaked information contains the current inter-
rupted instruction pointer, the attacker observes this value and decides whether
it is the target instruction (syscall instruction). The sleep() function is used to
wait for the attacker’s second signal. The attacker will send the second signal
to the program when he finds that the current interrupted instruction is the
target. Once the second signal arrives, the same signal handler responds. This
time puts() function overwrites the signal frame with a fake signal frame (stored
in the puts() function’s parameter). When the signal returns, the program will
execute the interrupted system call. But this time, all the general registers’ val-
ues have changed and the program executes a different system call (as shown in
Fig. 3). More details can be found in the evaluation section.

Approach 2. In this case, the original signal handler cannot be leveraged by
the attacker. So we have to register a new signal handler.

When the signal handler does not meet the requirements shown in approach
1, the attacker can turn to approach 2 to overcome the problem. In this approach,
we don’t make any assumptions about the original signal handler. We just do not
use it and leverage sigaction() function to register a new signal handler. However,
the sigaction() is usually called before the program begins handling requests. So
most of the time, we cannot directly leverage the sigaction() function. We can
leverage other frequently called functions, which have a similar parameter type
and number with sigaction(). We modify their GOT entries and change their
parameters to invoke sigaction() to install a new signal handler.

People may wonder whether this kind of GOT function exists. In practice,
we find that it is not difficult to find this kind of function. For example, the

eSROP Attack 759

sigprocmask() function has similar parameters as the sigaction(). The value of
SIG UNBLOCK is 0x1, which corresponds to the SIGHUP signal number. The
SIGHUP is a signal that can be registered by users. The second parameter
is usually a global variable. With the arbitrary write primitive, we can easily
manipulate its value. We can construct a sigaction structure on it.

_IO_file_xsputn()

_IO_write_end >
_IO_write_ptr ?

Memcpy(_IO_write_ptr, arg)

_IO_default_xsputn()

_IO_do_write()

_IO_SYSWRITE()

Overwrite functionality

Leak functionality

sigframe sigframe sigframe
_IO_write_base _IO_write_base _IO_write_base

_IO_write_ptr

_IO_write_ptr
_IO_write_ptr

_IO_write_end _IO_write_end _IO_write_end
Before 1st Puts() Before 2nd Puts() After 2nd Puts()

Original sigframe

Fake sigframe

Fig. 4. Puts() function’s functionality. The puts() function’s first execution implements
leakage, and its second execution implements overwritten.

Discussion: Here we leverage signal nesting to achieve our goal. We use the
puts() function twice but exploits its different functionalities. For the first time,
puts() only leaks the signal frame. For the second time, it will overwrite the signal
frame. The reason why it can have different functionalities in two continuous
executions is that the parameter is different in two executions and the write
buffer pointer is changed automatically. For the first time, we make the puts()
function’s parameter point to some zero space, it won’t copy anything into the
signal frame. We precisely adjust the pointers in stdout object’s FILE structure
(as shown in Fig 4) and make it disclose the current signal frame. For the second
time, we make the puts() function’s parameter point to a fake signal frame.
After the output, the puts() function automatically adjust the current write
pointer to the start of the first signal frame. The area between IO write ptr and
IO write end are used to buffer data. When the second time puts() is executed,
the overwritten happens. The original signal frame is covered with fake values.

The attack shown above can bypass coarse-grained CFI [31]. First, we never
overwrite any return addresses on the stack, even if the signal returns to the
interrupted instruction. So we do not violate the backward edge protection. At
the same time, we do not violate the forward edge protection. We do modify
some control data, such as GOT entries. However, coarse-grained CFI cannot
ensure only one target for indirect jumps. We find that the program invokes
GOT table functions by using jmp instructions. This kind of instruction can
have a large number of valid targets. The GOT table is dynamically updated
when the program is executed. So the defense cannot differentiate GOT table
functions from each other. We leverage this feature to conduct our attack.

760 T. Zhang et al.

3.2 Search and Execute DOP Gadgets

To implement more complex attack semantics, we need to use gadgets.

DOP Gadgets. As shown in the DOP [16] attack, DOP gadgets are short instruc-
tion sequences and are connected sequentially to achieve the attacker’s desired
functionality. DOP gadgets can implement arithmetic/logic calculation, assign-
ment, load, and store operations. Different from original ROP gadgets, DOP
gadgets require to deliver operation results with memory. We find that DOP
gadgets are more suitable to be our attack targets. Because DOP gadgets need
not be executed one after another. Since the DOP gadgets’ operation results have
been preserved in memory, the program can execute several other instructions
between two adjacent DOP gadgets. This also works in our eSROP attack.

Code

mov (%esi), %ebx
mov 0x4(%edi), %eax
add %ebx, %eax
mov %eax, 0x4(%edi)

SIG

Before SIG After SIG

eax

edi

esi

ebx

eip

esp

Change to

DOP gadgets

Fig. 5. Attack procedure on simulating Turing-Complete computation. The attacker
can send a signal before the DOP gadget’s execution and modify the data flow. When
the signal returns, the gadget will do the computation on attacker-controlled data
rather than the original data.

Chaining DOP Gadgets without Dispatcher Gadget. The DOP attack has inves-
tigated that the DOP gadgets widely exist in most programs. We can easily
leverage them. Different from the original DOP attack, our attack removes the
need for dispatcher gadgets. The dispatcher gadgets are used to chain the DOP
gadgets. It equips the attacker with the ability to repeat gadget invocations. It
plays a crucial role in DOP attacks. Because without it, the DOP attack fails. It
also limits the DOP attack. Because dispatcher gadgets are rare and sometimes
do not exist in a victim program. Even if it exists, it constrains the DOP gadgets
that the attacker can use. Because only the DOP gadgets that are reachable by
the dispatcher gadgets can be used. At the same time, the DOP attack leverages
the vulnerability to modify data flow. This requires that the DOP gadgets are
also reachable by the vulnerability.

We show that with the help of the eSROP method, all these limitations can
be solved. First, we eliminate the need for dispatcher gadgets. Any DOP gadgets
in the program can be used by eSROP. Second, we leverage the signal handler

eSROP Attack 761

to overwrite the data flow instead of using the vulnerability to modify the data
flow. This is more flexible. The DOP gadgets that are not reachable by the
vulnerability can also be used.

The way to implement this is similar to what we used to implement arbitrary
system calls. This time, the target instruction is a DOP gadget instead of a syscall
instruction (as shown in Fig. 5). We first leak the program code to identify DOP
gadgets. Then we choose the target gadgets we want to execute. When the
program executes just before the target gadget, we send the signal. In the signal
handler, we modify all the general registers to prepare a new environment for
the gadget. When the signal returns, the program continues to execute the DOP
gadget, but now the data have been changed. The program does completely
different work.

Since that, we can use all the DOP gadgets, and DOP gadgets can simulate
Turing complete computation, we can conclude that eSROP is Turing complete.

3.3 Bypass Fine-Grained Label-Based CFI

Except for invoking arbitrary system calls and doing Turing complete computa-
tion, an eSROP attack can be even more dangerous. It can bypass fine-grained
CFI.

The milestone paper [1] proposed by Abadi et al. uses the label-based app-
roach to ensure the program’s execution is within its control flow graph (CFG).
It is a fine-grained CFI defense. Later, many other label-based approaches [4,30]
have been proposed to further develop this method. But we observe that these
label-based fine-grained CFI methods are vulnerable when they encounter some
unpredictable events, such as signals. Because the CFG represents the intended
behavior of the program, it cannot deal with unpredictable events that may hap-
pen at run time [22]. The CFG assumes that the control transfer only happens
at the end of each basic block. In the real world, signals can be sent to the
program at any time. A signal’s arrival can cause exceptional flow transfer. This
kind of control transfer is not triggered by any instruction but will interrupt the
normal execution (even in the middle of a basic block) and force the control to
move to the signal handler. Hence the signal handler can be used to hijack the
control flow. Although the signal handler is usually small and does not contain
stack overflow or other memory vulnerabilities, our eSROP attack can help to
accomplish this work.

Method Description: The fine-grained label-based CFI modifies the compiled
binary to insert unique IDs at the beginning of each basic block. Before each
indirect branch, it inserts a few instructions to check if the destination contains
the pre-computed basic block’s ID. Normal control flow tampering will cause the
check to fail because the destination ID will not match the label ID stored in
the program. However, attacks are still possible if a signal arrives at the right
moment.

The above code is used to ensure that the jmp ecx instruction reaches the
code starting with label ID 12345678h.

762 T. Zhang et al.

1 cmp [ecx], 12345678h

2 jne violation

3 lea ecx, [ecx+4]

4 jmp ecx

Fig. 6. Fine-grained label-based CFI verification code.

With a memory vulnerability, suppose an attacker has already tampered
with the ecx content with a malicious code address. A signal arrives between the
cmp and jne instructions, and the processor status word (PSW) is pushed on
top of the stack in the signal frame. By leveraging our eSROP method, we can
maliciously overwrite the PSW in the signal handler. So the ZP flag is reset,
and when returning, the violation is bypassed and the malicious code address is
reachable by the attacker.

The above attack needs to capture the timing. Once the signal does not arrive
on time, CFI will detect the attack. Another more stable attack is possible. We
do not modify ecx beforehand. We just send the signal after the violation check
and before the jmp instruction. In the signal handler, we modify the ecx register’s
value in the signal frame. Once returns, the program will jump to our malicious
code instead of the intended location. The advantage of this attack is if our
signal does not arrive on time, the modification just doesn’t take place, we avoid
the program crash. We can wait for the next chance.

Other label-based instrumentation is also vulnerable to our attack, such as
control flow locking [4].

3.4 Attack Prevention and Defense

To prevent the eSROP attack, it is important to move the signal frame to some
safe area instead of storing it on the user stack. For example, Virtual Ghost [9]
saves the signal frame within the VM’s internal memory.

Existing techniques that prevent eSROP attack includes, CCFI [21], CPI [18]
and GOT protections [17]. CCFI [21] called cryptographic CFI, uses MACs to
protect control flow elements, such as return addresses, function pointers, and
vtable pointers. CPI [18] is a defense that guarantees the integrity of all code
pointers in a program (e.g., function pointers, saved return addresses). Both
CCFI [21] and CPI [18] protect the integrity of code pointers.

Some CFI defenses that prohibit overwriting the GOT table can also prevent
our attack, such as Modular CFI [23], LLVM cross-DSO [26], PiCFI [24] and
uCFI [15].

GOT protection defenses prevent GOT table overwritten attacks. For exam-
ple, Full Relro (Relocation Read only) [29] arranges the GOT section as read-
only at program startup. However, it causes nontrivial loading overhead and does
not apply to libraries. People also propose a CFI-based protection scheme [17]
against the GOT overwrite attack.

However, these defenses have not been widely adopted in real systems. So
eSROP attacks and GOT overwritten attacks still threaten the application secu-
rity.

eSROP Attack 763

4 Evaluation

4.1 Experimental Setup

We conduct two experiments, Proftpd and Wu-ftpd. Both of them are in a
VirtualBox virtual machine. The host machine has an Intel Core i7-10510U with
2 cores @ 1.80 GHz 2.30 GHz and 16 GB DRAM. Both experiments are in 32-bit
environments. The operating system of the virtual machine is Ubuntu 16.04.

For Proftpd, we add the parameter “–with-mod tls” when we configure the
program. For the other program, we use the default settings.

In the attacks, the DEP and ASLR defenses are deployed. The programs are
not compiled with position-independent code options. So the code and data sec-
tions are not randomized. However, library sections are randomized by default.

4.2 ProFTPD

The vulnerability CVE-2006-5815 in Proftpd 1.3.0 is a stack buffer overflow.
The vulnerable function is sreplace() function. There is an off-by-one error in
this function. The attacker can leverage this error to copy a large buffer onto the
stack. The buffer will overwrite the local data. It can also overwrite the return
address. However, in our attack, we don’t cover the return address. Some of these
covered local data are security-critical, they are the parameters of the strcpy()
function. They can implement arbitrary copy primitive. With this primitive, we
can further implement our attack.

The following list is an excerpt from Proftpd 1.3.0. The function sig alarm() is
the signal handler for the SIGALRM signal, which is registered by the program
itself.

Step 1: Modify GOT Table Entries. We modify sigemptyset() function’s
GOT table entry to change it to the puts() function’s address. We leverage
memory copy primitive to copy the puts() function’s GOT table entry to the
sigemptyset() function’s GOT table entry. The puts() function will later do the
memory leakage and memory overwritten for us. Then we modify alarm() func-
tion’s GOT table entry to change it to the sleep() function’s address. The sleep()
function is also important in this attack because it gives the attacker enough time
to decide whether to send the second signal depending on the leaked information.

Step 2: Modify stdout’s Output Buffer. In our attack, the puts() func-
tion plays a crucial role. We use it to implement memory leakage and memory
overwritten in a signal handler. To leverage the puts() function, we should first
modify some pointers in the FILE structure of stdout. The puts() function has
an output buffer, we redirect the output buffer onto the stack to point to the
signal frame.

To manipulate the FILE structure, we need first modify the flags field of the
stdout object. The IO write base, IO write ptr, and IO write end represent
the base write pointer, current write pointer, and end write pointer respectively.
The area between IO write base and IO write ptr is used to buffer the written

764 T. Zhang et al.

1 static RETSIGTYPE sig_alarm(int signo) {

2 struct sigaction act;

3
4 act.sa_handler = sig_alarm;

5 sigemptyset(&act.sa_mask);

6 act.sa_flags = 0;

7
8 #ifdef SA_INTERRUPT

9 act.sa_flags |= SA_INTERRUPT;

10 #endif

11
12
13 sigaction(SIGALRM, &act, NULL);

14
15 #ifdef HAVE_SIGINTERRUPT

16 siginterrupt(SIGALRM, 1);

17 #endif

18
19 recvd_signal_flags |= RECEIVED_SIG_ALRM;

20 nalarms++;

21
22
23 _total_time += _current_timeout;

24 if(_current_timeout) {

25 _alarmed_time = time(NULL);

26 alarm(_current_timeout);

27 }

28 }

Fig. 7. Proftpd 1.3.0 code snippet.

data that has not been flushed out. We can leverage this area to leak the data.
Note that in order to successfully leak the data, the IO read end must equal to
the IO write base. The area between IO write ptr and IO write end is used
to store the parameter data of the puts() function. We can manipulate these two
pointers to control the overwritten.

If we want to leak and overwrite the same area, for example, the signal frame
in our attack. Meanwhile, we have no chance of adjusting the buffer pointers
between leakage and overwritten. The modification will be a little bit compli-
cated. As shown in Fig 4, we first make the IO write ptr points to the end of the
signal frame. We make the IO write end equal to the IO write ptr. The pro-
gram realizes that the current write pointer is at the end of the buffer, it will first
flush out the buffer. Then it adjusts the IO write ptr to point to IO write base
and copy new data into the buffer. This time we can leak the target object and
at the same time overwrite it.

Step 3: Prepare a Fake Signal Frame. The attacker leverages the arbi-
trary copy primitive to write some parameters in the process memory, such
as “/bin/sh”. Then the attacker prepares a fake signal frame that is stored in
the area pointed by the puts() parameter. The fake signal frame contains all
the parameters and the system call number that the attacker chooses to exe-
cute. When the puts() function is executed, it will copy the data pointed by
its parameter to the write buffer. Now the write buffer points to the real signal
frame, so the overwritten can take place.

eSROP Attack 765

Step 4: Send the First Signal. Now the attacker can send a signal to the
victim. The original signal handler responds. In it, the puts() function is executed
instead of the sigemptyset() function. The puts() function will leak the original
signal frame. Then, the sleep() function will be executed. The program will sleep
for a few moments. In this period, the attacker can observe the output signal
frame.

Step 5: Decide Whether to Send the Second Signal. There is critical data
in the output signal frame, current interrupted instruction pointer. The attacker
can determine whether the interrupted instruction is a syscall instruction. If it
is, we get the point. We can send the second signal immediately. This time, the
same signal handler responds. We use the puts() function to overwrite the signal
frame. Otherwise, we do not send the second signal and wait for the sleep()
function’s completion. The signal frame won’t change and we avoid possible
crashes.

The signal-sending process cannot promise success in one shot. So it sends
lots of signals to the program. The program’s signal handler decides whether the
condition meets. If the condition meets, the signal handler does the coverage.
Otherwise, the signal handler doesn’t make the coverage.

Our attack is implemented in a ruby script. It is invoked by the Metasploit
framework. We can obtain a shell. The attack can be completed within 6 min.

4.3 Wu-ftp

The vulnerability CVE-2000-0573 is a format string vulnerability in Wu-ftpd
2.6.0. The format string vulnerability gives the attacker the ability to leak and
overwrite arbitrary memory. The Wu-ftpd misuses the user input as a format
string to pass it to the vsnprintf () function. The attacker can construct a specific
format string to cover on-stack values and finally leak and overwrite arbitrary
memory.

The above code is abstract from the Wu-ftpd 2.6.0. The attacker can leverage
the program code to obtain a root shell. There is an interesting function in the
code, called ftpd popen(). It invokes seteuid(0) and execv() function. We leverage
this function to achieve our goal.

We send the signal when the program is executing the ftpd popen() function.
Make sure the signal arrives before the execv() function’s execution and after the
seteuid(0)’s execution. When the signal arrives, we leverage the signal handler to
overwrite the execv() function’s parameter gargv. When the signal returns, the
program continues to execute the execv() function. And this time, the parameters
have all been changed. The attacker obtains a root shell.

Here we use our second approach. We register a new signal handler by using
sigprocmask() function.

Step 1: Modify GOT Table Entries. We modify the GOT table entry
of sigprocmask() function to the address of the sigaction(). The two func-
tions have similar parameters. The sigprocmask() function’s first parameter is

766 T. Zhang et al.

1 FILE *ftpd_popen(char *program, char *type,

2 int closestderr)

3 {

4 ...

5 i = geteuid();

6 delay_signaling();

7 seteuid(0);

8 setgid(getegid());

9 setuid(i);

10 enable_signaling();

11 execv(gargv[0], gargv);

12 _exit(1);

13 }

14
15 int enable_signaling(void)

16 {

17 if(delaying != 0){

18 delaying = 0;

19 if(sigprocmask(SIG_SETMASK,

20 &saved_sigmask, (sigset_t *)0) < 0){

21 syslog(LOG_ERR, "sigprocmask: %m");
22 return (-1);

23 }

24 return (0);

25 }

26 }

Fig. 8. Wu-ftpd 2.6.0 code snippet.

SIG SETMASK. Its value is 0x2. The corresponding signal is SIGINT. It can
be registered by the attacker. The second parameter of the sigprocmask() func-
tion is saved sigmask. The saved sigmask is a global variable. Its value can be
manipulated. We can construct a sigaction structure on it.

Step 2: Choose a Suitable Signal Handler. Actually, we can use an arbi-
trary function in the program as the signal handler. However, the function must
meet some conditions. First, the function must have no parameter or only one
parameter and the parameter is a little integer. Because the signal handler has
only one parameter which is the signal number. Second, the function must meet
the requirements shown in approach 1. Here the newly registered signal handler
is pwd(). It is a function that already exists in the victim program. It has no
parameters which can match the normal signal handler. It invokes the function
getcwd(). We modify the getcwd() function’s GOT table entry to the address of
puts() function.

Step 3: Prepare Fake Data. We modify the content of the getcwd() function’s
parameter “path”. We change it to point to the fake gargv structure. The fake
structure contains the “\bin\sh”. We modify the stdout object’s FILE structure
and change the output buffer to point to the execv() function’s parameter gargv.
The gargv is stored on the stack.

Step 4: Trigger the Function and Send a Signal. The way to trigger
ftpd popen() function is by calling NLST command. The program will invoke
send file list(), and finally invoke ftpd popen() function. We send the signal when

eSROP Attack 767

the program is executing the ftpd popen() function. When the signal arrives,
the signal handler (pwd() function) will invoke puts() function instead of the
getcwd() function. The puts() function’s execution will cause the execv() func-
tion’s parameter gargv be covered. Finally, we can obtain a root shell.

Our attack is implemented in a C program. It can also be implemented in a
python script in which attackers can leverage the pwntools to assist the attack.
We can obtain a root shell. Our attack can be completed in 5 min.

Security Analysis. In our attack, we do not violate the signal cookies [3] defense.
Because we only partly overwrite the signal frame (we leave the rip and rsp
register unchanged), we can avoid touching the signal cookie field in the signal
frame. A stronger defense such as computing a hash for the signal frame may
help to prevent our attack.

We also do not violate shadow stack [6], because we do not manipulate control
flow elements on backward edges. Most shadow stack defenses do not protect the
integrity of general registers in the signal frame, except for the PACStack [19].

5 Related Work

Since we have described eSROP-related defenses in previous sections, we only
discuss eSROP-related attacks here.

The attacks that are most related to ours are the Control Flow Bending
attack [8] and the Control Flow Interrupt attack [22]. In Control Flow Bending,
they leverage the functions, such as memcpy and printf to do some self modifica-
tions. They show that printf -like functions can do Turing complete computation.
In the eSROP attack, we leverage the puts function to both leak and overwrite
the same memory space. We show that by carefully adjusting the pointers in
the FILE structure, we can make the same function automatically complete
two different works continuously. In Control Flow Interrupt, they show that the
unexpected trigger of an interrupt and the sudden execution of an Interrupt
Service Routine can circumvent CFI-based defenses. Similarly, we show that a
signal can help the attacker bypass the fine-grained label-based CFI defenses.
In their work, they do not show the experiments and the detailed techniques to
overcome the difficulties. But we show the attack methods and experiments for
real-world programs.

6 Conclusion

In this paper, we propose the eSROP attack. It is a kind of attack that leverages
the vulnerable signal-handling process. We build two end-to-end exploits to show
how to invoke arbitrary system calls and perform Turing Complete computations
without violating DEP, ASLR, and coarse-grained CFI defenses. Both of our
attacks can be completed within 10 min. The findings in this paper emphasize
the importance of signal-related security. More research on defending against
signal attacks is needed. We will leave it as future work.

768 T. Zhang et al.

Acknowledgement. This paper is supported by Fundamental Research Funds for
the Central Universities (No. B220202073), Natural Science Foundation of Jiangsu
Province (No. BK20220973), CCF-Huawei Innovation Research Plan (No. CCF2021-
admin-270-202101), China Postdoctoral Science Foundation (No. 2022M711014),
Jiangsu Planned Projects for Postdoctoral Research Funds (No. 2021K635C).

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles,
implementations, and applications. ACM Trans. Inform. Syst. Secur. (TISSEC)
13(1), 1–40 (2009)

2. Baratloo, A., Singh, N., Tsai, T.: Transparent {Run-Time} defense against {Stack-
Smashing} attacks. In: 2000 USENIX Annual Technical Conference (USENIX ATC
00) (2000)

3. Bauer, S.: Srop mitigation: Signal cookies. Linux Mailing List: https://lwn.net/
Articles/67486132 (2016)

4. Bletsch, T., Jiang, X., Freeh, V.: Mitigating code-reuse attacks with control-flow
locking. In: Proceedings of the 27th Annual Computer Security Applications Con-
ference, pp. 353–362 (2011)

5. Bosman, E., Bos, H.: Framing signals-a return to portable shellcode. In: 2014 IEEE
Symposium on Security and Privacy, pp. 243–258. IEEE (2014)

6. Burow, N., Zhang, X., Payer, M.: Sok: Shining light on shadow stacks. In: 2019
IEEE Symposium on Security and Privacy (SP), pp. 985–999. IEEE (2019)

7. Cai, X., Gui, Y., Johnson, R.: Exploiting unix file-system races via algorithmic
complexity attacks. In: 2009 30th IEEE Symposium on Security and Privacy, pp.
27–41. IEEE (2009)

8. Carlini, N., Barresi, A., Payer, M., Wagner, D., Gross, T.R.: Control-flow bend-
ing: On the effectiveness of control-flow integrity. In: 24th {USENIX} Security
Symposium ({USENIX} Security 15), pp. 161–176 (2015)

9. Criswell, J., Dautenhahn, N., Adve, V.: Virtual ghost: protecting applications from
hostile operating systems. ACM SIGARCH Comput. Architect. News 42(1), 81–96
(2014)

10. Evans, I., et al.: Control jujutsu: On the weaknesses of fine-grained control flow
integrity. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 901–913 (2015)

11. Farkhani, R.M., Jafari, S., Arshad, S., Robertson, W.K., Kirda, E., Okhravi, H.:
On the effectiveness of type-based control flow integrity. In: Proceedings of the
34th Annual Computer Security Applications Conference (2018)

12. Gao, Y.c., Zhou, A.m., Liu, L.: Data-execution prevention technology in windows
system. Information Security & Communications Privacy (2013)

13. Gawlik, R., Kollenda, B., Koppe, P., Garmany, B., Holz, T.: Enabling client-
side crash-resistance to overcome diversification and information hiding. In: NDSS
(2016)

14. Göktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: Over-
coming control-flow integrity. In: 2014 IEEE Symposium on Security and Privacy,
pp. 575–589. IEEE (2014)

15. Hu, H., et al.: Enforcing unique code target property for control-flow integrity. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1470–1486 (2018)

https://lwn.net/Articles/674861
https://lwn.net/Articles/674861

eSROP Attack 769

16. Hu, H., Shinde, S., Adrian, S., Chua, Z.L., Saxena, P., Liang, Z.: Data-oriented
programming: On the expressiveness of non-control data attacks. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 969–986. IEEE (2016)

17. Jeong, S., Hwang, J., Kwon, H., Shin, D.: A cfi countermeasure against got
overwrite attacks. IEEE Access 8, 36267–36280 (2020). https://doi.org/10.1109/
ACCESS.2020.2975037

18. Kuznetzov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
pointer integrity. In: The Continuing Arms Race: Code-Reuse Attacks and
Defenses, pp. 81–116 (2018)

19. Liljestrand, H., Nyman, T., Gunn, L.J., Ekberg, J.E., Asokan, N.: {PACStack}: an
authenticated call stack. In: 30th USENIX Security Symposium (USENIX Security
21), pp. 357–374 (2021)

20. Marco-Gisbert, H., Ripoll Ripoll, I.: Address space layout randomization next gen-
eration. Appl. Sci. 9(14), 2928 (2019)

21. Mashtizadeh, A.J., Bittau, A., Boneh, D., Mazières, D.: CCFI: Cryptographically
enforced control flow integrity. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 941–951 (2015)

22. Maunero, N., Prinetto, P., Roascio, G.: CFI: Control flow integrity or control flow
interruption? In: 2019 IEEE East-West Design & Test Symposium (EWDTS), pp.
1–6. IEEE (2019)

23. Niu, B., Tan, G.: Modular control-flow integrity. In: Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
577–587 (2014)

24. Niu, B., Tan, G.: Per-input control-flow integrity. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, pp. 914–
926 (2015)

25. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented programming:
systems, languages, and applications. ACM Trans. Inform. Syst. Security (TISSEC)
15(1), 1–34 (2012)

26. Rohlf, C.: Cross dso cfi-llvm and android (2020)
27. Rudd, R., et al.: Address oblivious code reuse: On the effectiveness of leakage

resilient diversity. In: NDSS (2017)
28. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A., Holz, T.: Counterfeit

object-oriented programming: On the difficulty of preventing code reuse attacks in
C++ applications. In: IEEE Symposium on Security and Privacy, pp. 745–762

29. Sidhpurwala, H.: Hardening elf binaries using relocation read-only (relro). Red
Hat-We make open source technologies for the enterprise (2019)

30. Zhang, C., et al.: Practical control flow integrity and randomization for binary
executables. In: 2013 IEEE Symposium on Security and Privacy, pp. 559–573.
IEEE (2013)

31. Zhang, M., Sekar, R.: Control flow integrity for {COTS} binaries. In: 22nd
{USENIX} Security Symposium ({USENIX} Security 13), pp. 337–352 (2013)

32. Zhou, J., Vigna, G.: Detecting attacks that exploit application-logic errors through
application-level auditing. In: 20th Annual Computer Security Applications Con-
ference, pp. 168–178. IEEE (2004)

https://doi.org/10.1109/ACCESS.2020.2975037
https://doi.org/10.1109/ACCESS.2020.2975037

Breaking Embedded Software
Homogeneity with Protocol Mutations

Tongwei Ren1, Ryan Williams2, Sirshendu Ganguly1, Lorenzo De Carli1(B),
and Long Lu2

1 Worcester Polytechnic Institute, Worcester, MA 01609, USA
{tren,sganguly,ldecarli}@wpi.edu

2 Northeastern University, Boston, MA 02115, USA
{williams.ry,l.lu}@northeastern.edu

Abstract. Network-connected embedded devices suffer from easy-to-
exploit security issues. Due to code and platform reuse the same vulner-
ability oftentimes ends up affecting a large installed base. These circum-
stances enable destructive types of attacks, like ones in which compro-
mised devices disrupt the power grid.

We tackle an enabling factors of these attacks: software homogene-
ity. We propose techniques to inject syntax mutations in application-
level network protocols used in the embedded/IoT space. Our approach
makes it easy to diversify a protocol into syntactically different dialects,
at the granularity of individual deployments. This form of moving-target
defense disrupts batch compromise of devices, preventing reusable net-
work exploits. Our approach identifies candidate program data structures
and functions via a set of heuristics, mutate them via static transforma-
tions, and selects correctness-preserving mutations using dynamic testing.

Evaluation on 4 popular protocols shows that we mitigate known
exploitable vulnerabilities, while introducing no bugs.

Keywords: Software diversity · Protocol mutations · MTD

1 Introduction

Connectivity is now ubiquitous within smart and embedded devices—appliances
such as light bulbs, power meters and industrial control systems; and in the
near-future robot swarms, sensors and weapon systems. Such devices are already
deployed in large numbers, with glaring security vulnerabilities [21,29,33,41,49],
and outdated, hard-to-upgrade firmware [56]. Different devices may reuse the
same components and platform [39], resulting in replication of vulnerabilities.

The situation presents analogies with the early 2000s, when worms like
CodeRed spread uncontrollably, exploiting widely-installed, vulnerable internet-
facing software [44,45]. The same factors are now resulting in botnets such as
Mirai [16,31,43]. For now, large-scale embedded device compromise has resulted
in attacks that—while large—remain within reach of traditional cyberdefenses.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
Published by Springer Nature Switzerland AG 2023. All Rights Reserved
F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 770–790, 2023.
https://doi.org/10.1007/978-3-031-25538-0_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_40&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_40

Breaking Embedded Software Homogeneity with Protocol Mutations 771

New attack models are however possible, and researchers are just beginning
to understand them. Ronen et al. [50] demonstrated an IoT worm targeting smart
public street lights. Possible attacks involve bricking devices, wireless jamming,
and inducing epileptic seizures at large scale. Other works suggest that with a
relatively small botnet of power-hungry IoT devices, an attacker could create a
demand surge large enough to collapse a large power grid [57], or control energy
pricing [55]. In the industrial domain, highly damaging attacks have already
been observed [46]. And internet-connected robotic swarms, poised to becoming
commonplace in robotics and military applications [18,33], will need safeguards
too as the consequences of attacks are potentially catastrophic.

Even a single widespread vulnerability can enable attacks. For example, a
single 0-day affecting Huawei home gateway devices enabled cybercriminals to
create a 100,000-strong botnet in December 2017 [31]. It is therefore important
to reason about defense-in-depth techniques that can protect devices against
yet-unknown 0-day attacks. Authentication helps preventing basic attacks, but
it is ineffective in case of default or easily guessable credentials [21], or creden-
tial stuffing. Anomaly-based intrusion detection systems (IDSs) suffer from low
accuracy [27], while specification-based IDSs may miss stealth attacks [19].

To address this problem, we propose a novel form of moving-target defense for
embedded/IoT, based on protocol mutations. We address one of the fundamen-
tal problems of large-scale IoT deployments: software homogeneity. It can arise
when multiple deployments of devices all share the same vulnerable network-
facing code. We support the diversification of application-level network protocol
implementations, resulting in dialects which can be deployed at the granularity
of individual installations. Dialects can be made mutually incompatible, thus
communication with a device without knowledge of its mutations is impossible.
This approach works by statically analyzing and mutating protocol source code.

Our work is not meant to replace security best-practices; rather, it com-
plements them. It prevents one-size-fits-all exploits, thus avoiding rapid attack
propagation among embedded devices. Furthermore, it is easy to incorporate
as mutations are largely automated. The approach is also desirable in contexts
where encryption is difficult to deploy due to resource constraints. We note that
our work is not applicable to consumer/home IoT scenarios, where applying
a different mutation to each individual device sold quickly grows impractical.
Instead, it targets Self-Contained Critical Deployments: military or infrastruc-
ture deployments of homogeneous devices, all managed by the same organization.

Achieving our goal entails solving a number of challenges. First, modifying
sender and receiver of a network communication entails identifying code and data
structures used to create and parse messages. Unfortunately, to the best of our
knowledge no existing technique can identify and map this information. Thus, we
devise our own technique, which we name PaCo (Parser/Constructor extrac-
tor), implementing a problem-specific static analysis heuristic. A second com-
ponent, named Aloja

1, then selects candidate constructor/parser pair, apply
mutations, and test the mutated implementation for correctness. The output is
a protocol implementation which incorporates a set of safe mutations.

1 In Catalan mythology, an Aloja is a mythical creature able to shape-shift into a bird.

772 T. Ren et al.

Our results show that this approach results in mutation that are effective in
blocking paths to successful attack completion. Overall contributions:

1. We propose a static analysis technique to identify message-related structures
and functions in network protocol implementations.

2. Based on the technique above, we propose static program transformations to
inject symmetric mutations in message generators/parsers.

3. We thoroughly evaluate the techniques above on 4 protocols. We achieve
93% accuracy in identifying relevant functions. Mutations successfully block
all reproducible CVEs we identified, and do not affect correctness.

4. We release a software artifact implementing our proposed techniques, enabling
analysis and further experimentation by the community
(https://osf.io/9gc3n/?view_only=6da059eab07f4ffe934d6b59b49fee2b
https://github.com/TongweiRen/Aloja).

2 Background

2.1 Target Scenarios

We target a style of IoT and embedded systems that we term Self-contained
Critical Deployments (SCDs): deployments where (i) the set of devices belong-
ing to the deployment is known a priori; (ii) the devices perform a task where loss
of function can lead to significant disruption; and (iii) an attacker with incen-
tives to cause disruption can communicate to the deployment. SCDs arise in
military and infrastructure-related settings. Compared to the consumer domain,
SCDs are self-contained within a single organization, so backward compatibility
is not critical. Furthermore, they are expected to survive for an extended period
while performing critical functions, which makes the (small) additional effort to
introduce mutations acceptable. We review two example scenarios.

Autonomous Robotic Swarms. A recent DARPA BAA, OFFensive Swarm-
Enabled Tactics (OFFSET), envisions a class of autonomous swarms of
unmanned aircraft and/or ground systems used to accomplish missions in
urban environments [20]. US Army also funded the MAST project, aimed at
autonomous collections of intelligence-gathering robots [1]. A major issue with
robotic swarms is attacks where malicious robots can be injected into the
swarm [33]. Consequences of a cyberattack involve equipment damage, and fail-
ure to complete the task.

Infrastructure/Industrial. Increasingly, public and industrial spaces incorporate
network of internet-connected embedded appliances, such as street lights and
security cameras. These deployments are characterized by a large number of
identical devices within the same network. Attacks may create widespread dis-
ruption: if a firmware vulnerability exists, then all devices are susceptible to it.
In past work, Ronen et al. demonstrated a building-scale attack, where all the
smart lights in a large building fall under control of an attacker [50].

https://osf.io/9gc3n/?view_only=6da059eab07f4ffe934d6b59b49fee2b
https://github.com/TongweiRen/Aloja

Breaking Embedded Software Homogeneity with Protocol Mutations 773

2.2 Software Diversity in SCDs

Best-practice security measures such as encryption and authentication can help
mitigate the risk of attackers infiltrating SCDs. However, past experiences demon-
strate that buggy code, leftover development accounts, and other high-level issues
can allow the attacker to bypass these lines of defense [38]. Here, we propose the
use of software diversity as an additional line of defense that can provide addi-
tional security when paired with best-practices, in a defense-in-depth approach.

Software diversity [30,40] consists in deploying, with each installation of a
given software, a copy which is functionally identical, but differs in the imple-
mentation from any other copy. Differentiation is typically envisioned using spe-
cialized compilation [22] or binary rewriting techniques [26], in some cases aided
by VMs [61]. Differentiation aims at preventing an attacker to devise a general
exploit by analyzing a single copy of the program. Introducing variations forces
the attacker to tailor their exploits to each copy of the program.

Diversity-based defenses however cannot be ported directly to the SCD
domain. Any approach with large overhead—e.g., interposing a VM—has to
confront the resource-constrained nature of many devices. Furthermore, some
attacks exploit vulnerabilities at levels of abstraction high enough to be imper-
vious to binary-level diversification (e.g. default factory passwords). Third, vul-
nerabilities are nearly exclusively triggered via network; it is therefore reasonable
to deploy diversity within components that deal with network communications.

A relevant question is whether diversification at the granularity of SCDs—
and not individual devices—provides enough variety to prevent standardized
exploits from spreading. Based on the large number of deployments for popular
embedded devices, we expect SCD-level granularity to still provide sufficient
diversity.

2.3 Goals and Threat Model

Our goal is to introduce software diversity by injecting mutations in the syn-
tax of network protocol messages, thus preventing standardized exploits. Since
attacks infect victims via malicious network input, we mutate protocols so that
different deployments speak different protocol dialects. Mutations can be made
incompatible: valid messages within one dialect are rejected by the network mes-
sage parser in another. By focusing on early rejection of input, our approach is
practical against both low-level binary exploits and high-level logic bugs.

We do not target protocols at layer-IV and below (e.g., WiFI, IP, 6LoW-
PAN, TCP), as those are typically implemented within the operating system
and/or hardware. Instead, we focus on implementations of middleware pro-
tocols, such as Cyclone DDS [11]. These typically provide services like pub-
lisher/subscriber communication, and have wide applicability within the SCD
domain. For example, the DDS protocol is used in domains as diverse as smart
cities [10], robotics [42] and military applications [59].

In our current work, we mostly focus on off-path attackers. The attacker scans
the internet for vulnerable devices (e.g., using vulnerability search engines [8]).

774 T. Ren et al.

They commandeer any vulnerable device which replies to their probes. For exam-
ple, the original Mirai botnet was built using similar techniques [16]. The attacker
can send traffic towards potential victims and receive replies, but cannot observe
the victim’s communication with other nodes.

We also discuss on-path attackers. In addition to sending and receiving traf-
fic to/from victim, this attacker can observe communications between non-
compromised devices prior to the attack. The attacker may use its on-path capa-
bility to reverse-engineer wireless communications and identify vulnerabilities,
inject messages, and batch-compromise devices.

In general, off-path attackers can be targeted using static mutations, and
on-path attackers using dynamic mutations. We discuss both in the following.

2.4 Possible Mutation Types

We define different categories of protocol mutations, each being relevant to dif-
ferent types of attackers.

Static Mutations. A static mutation is statically embedded into the proto-
col firmware at compile time. A given mutated binary always exhibits the same
mutation. The mutation behavior can evolve over medium time scales, by peri-
odically recompiling the firmware (e.g., with firmware updates).

Static mutations target off-path attackers, who must guess the particular
set of mutations in order to communicate. With an appropriately large set of
mutations and their parameters, the effort required to break into the device
is increased many-fold. Consider an attack which is carried over a sequence of
N messages. Assume each message is independently mutated by a randomly
selected mutation2 from a set S s.t. |S| = M . Without any additional informa-
tion, an off-path attacker must guess the correct mutation by trial-and-error;
worst-case and expected number of tries are respectively MN and M+1

2 N . A
multiplicative increase in the attack complexity raises the bar against casual
attackers, and has the advantage of simplicity. In this paper, we focus on static
mutations.

Dynamic Mutations. A dynamic mutation is a one which can be
reparametrized or disabled without recompiling the program. Dynamic muta-
tions become necessary with an on-path attacker, who may be able to reverse-
engineer mutations, by comparing unmutated protocol executions to the mutated
ones in the target network. This attack can be mitigated by deploying a set of
dynamic mutations, which evolve according to a mutation schedule. Dynamic
mutations introduce additional complexity: two communicating peers must syn-
chronize their mutation schedules so that they are always speaking the same pro-
tocol dialect, without leaking details of the schedule to the attacker. Our imple-
mentation of mutations exports an API through which individual mutations
2 Note that a parametrized mutation with an n-bit parameter can be seen as a set of
2n possible distinct mutations.

Breaking Embedded Software Homogeneity with Protocol Mutations 775

can be enabled/disabled at run-time, which provides a foundation for dynamic
mutations. However, we leave a full implementation of this concept to future
work.

2.5 One-Size-Fits-all Exploits

Oftentimes protocol implementations in the wild are affected by various types of
bugs in the parsing logic. We performed an extensive review of historical parsing-
related security bugs from six protocol implementations: Mosquitto MQTT [3],
Wakaama [9], MQTT-C [6], Cyclone DDS [11], OpenDDS [7], and DSVPN[4].
Results show that these vulnerabilities can be categorized as follows: incorrect
buffer sizing, lack of sanitization, and invalid/improper assertions. For example,
a buffer sizing issue reported in CVE-2017-7651 causes a Mosquitto broker to
crash after receiving a crafted packet. CVE-2017-7653 causes a Mosquitto broker
to disconnect other clients, upon reception of an attack message with an invalid
UTF-8 string. This bug is due to lack of string checking. Our approach focuses
on early rejection of input, with the goal of containing this style of attacks.

Fig. 1. Overview of Aloja

3 Approach Overview

Our approach receives as input the source of a network protocol implementation,
such as Mosquitto MQTT [3]. We assume that a single codebase contains both
components necessary to create and parse messages. We first analyze the code to
identify program components (data structures and functions) which are involved
in creating and parsing network messages. This task is performed by the PaCo

tool, discussed in Sect. 3.1. The information returned by PaCo is then used
to identify suitable locations for mutations, and to injects the actual mutations.
This is performed by the Aloja tool, described in Sect. 3.2. The overall workflow
is described in the following and outlined in Fig. 1.

776 T. Ren et al.

3.1 PACO: Identification of Relevant Program Components

First, the PaCo tool identifies program functions and structures whose purpose
is to construct and parse network messages. PaCo’s overall algorithm receives
as input a program implementing a network protocol of interest, and return a
structure graph describing message-carrying structs and protocol constructors
and parsers, which we define below. Our implementation is based on the LLVM
compiler toolkit, and works at the level of LLVM IR.

Definition 1 (Message-carrying struct). A message-carrying struct is a
composite data type which represents the structure and content of a network pro-
tocol message as a sequence of contiguous binary fields, to be serialized when the
message is sent. Such a struct s consist of a sequence of field types s = f1, ..., fn.

The notion of message as a sequence of binary fields is consistent with
protocol reverse-engineering literature [28], and captures a large number of
application-level protocols used in the embedded/IoT space. Based on this
assumption, the definition of message constructor and parser follows:

Definition 2 (Constructor and Parser). Consider the IR-level representa-
tion R of the implementation of a protocol P , and the set S of message-carrying
structs in R. A message constructor function (constructor) fC : S → P is a func-
tion in R which receives as input a struct argument and returns a valid message
in the protocol P . Similarly, a message parser function (parser) fP : P → S is
a function which receives as input a message and returns a struct.

Unambiguous identifying the entities above in R is challenging, due to the
variety of parsing and construction techniques used in different network pro-
tocols. Rather than attempting to model the semantic of all possible protocol
implementations, PaCo’s algorithm is heuristic and returns an approximation
of the correct sets of structs, constructors and parsers. The approximation is
neither sound nor complete; however, Sect. 4 shows that it is highly accurate.

PaCo Workflow. First, PaCo collects all struct types appearing in the pro-
gram, and filters the result to remove standard library structs (e.g., __sigset_t)
unrelated to network messages. Further filtering retains only structs passed as
input or output to functions that either (i) read or write data from the network;
or (ii) perform memory copy (e.g., memcpy). Including the latter is necessary
as oftentimes protocol code will not send and receive directly from structs, but
copy parts of them into separate buffers. These operations, depicted in Step 1
of Fig. 1, result in a set S of candidate message-carrying structs.

PaCo then proceeds to collect functions operating on structs in S and build-
ing a structure graph. The algorithm iterates over all functions in the program,
collecting each function that either reads or write to a variable whose type is in
S (Step 2 in Fig. 1). This result in a set F of relevant functions. Intuitively, the
set F includes candidate constructors and parsers in R.

Finally, PaCo builds a structure graph G = (V,E) as follows. First, it defines
the set of vertices V as S∪F . Then, it establishes an edge between each function
node in F and the structs in S that the function reads and/or writes (Step 3).

Breaking Embedded Software Homogeneity with Protocol Mutations 777

Table 1. Aloja’s mutation library

Mutation Description

Global/const refactoring Remap values of enum fields/globals/consts
Mutate field value Linearly combine field value with parameter
Encrypt field value Encrypt field value with pre-determined cipher/key

3.2 ALOJA: Deployment of Mutations

Aloja uses the structure graph G to inject symmetric mutations in constructor
and corresponding parser functions.

Definition 3 (Mutation). Consider a message-carrying struct s ∈ S, defined
as in Definition 1. Further consider a constructor and a parser function fC , fP ∈
F which operate on s. A mutation is a transformation of fC and fP in such a way
that the mutated functions f ′

C , f
′
P exchange messages in a format s′ �= s different

from their non-mutated counterparts, but the result of the message exchange is
functionally identical.

Mutations must be invertible, i.e., it must be possible to reverse any trans-
formation applied to generated messages when those are received. This excludes
mutations that hash message fields, and similar applications of one-way func-
tions. Any mutation which removes data from messages is also non-invertible.

Intuitively, Aloja embeds a given mutation function into a constructor fC ,
and the inverse mutation into the corresponding parser fP . A desirable prop-
erty of invertible functions, or bijections, is that they are composable; i.e., the
composition of invertible functions is also invertible. It is thus possible to inject
multiple mutations by composing the corresponding mutation functions.

In practice, we meet the requirement above by restricting Aloja to muta-
tions which apply invertible transformations to individual fields. Supported
mutations, satisfying the property above, are detailed in Table 1. Our imple-
mentation, based on the injection of mutation templates into protocol code,
makes it easy to expand this set with arbitrary additional mutations.

Aloja Workflow. Aloja identifies candidate locations for mutations by ana-
lyzing the structure graph G. First, it marks every function operating on any
struct member in G as parser, constructor, or both based on whether the function
reads/writes it. It also discards any struct member whose compiler-level type is
not compatible with any mutation. Then, applies a heuristic to remove parser
and constructor functions that are unlikely to directly affect wire-level protocol
messages. First, Aloja generates the function-level callgraph. Furthermore, it
removes each constructor (parser) which has a direct edge to (from) another
constructor (parser). The empirical insight is that values that affect network
messages are typically written (read) by low-level (high-level) utility functions,
which appear as leaves (non-leaf nodes) in the callgraph. This is represented in
Fig. 1, Step 4. The output of this step is a pruned structure graph G′. We remark

778 T. Ren et al.

that filtering candidates is a performance optimization, but it is not necessary for
correctness—thus, we believe an heuristic approach is appropriate. Our testing
step, described below, can effectively remove mutants that involve incorrectly
selected parsers/generators. We further discuss the performance benefits of fil-
tering in Sect. 4.5.

In the next step, Aloja build all possible mutation candidates, where a
candidate c = (fC , fP ,M) is a tuple including a constructor fC and a parser fP
in G′ operating on the same struct s, and a mutation compatible with the type
of s. To deploy a candidate mutation, Aloja wraps the last write to the target
struct member in s within the constructor fC with a template which mutates
s prior to writing. Similarly, the parser fP is mutated by injecting a wrapper
implementing the reverse mutation before the first field read (Step 5).

For the same mutation strategy, our implementation will insert different IR
code into the application based on the type of field we choose to mutate. For
example, the code for changing int32 field and int64 field is syntactically dif-
ferent, but semantically same. This is to make sure our mutation will not change
the field length and cause errors.

Next, the mutated program is tested to evaluate correctness. This step is the
only one requiring (offline) user involvement, to specify a command executing a
test procedure to verify correctness. Note that the procedure may simply run unit
tests shipped with the codebase. For each mutation, Aloja first runs a mutated
server and client to check whether they can communicate correctly; then, it runs
a mutated server and an unmutated client to ensure that the communication
fails (Step 6). Aloja returns all mutations that pass both tests.

4 Evaluation

In this section, we evaluate Aloja against the following experimental questions:

– Question #1: can PaCo correctly identify message-related program
structures and functions? In Sect. 4.2, we show that PaCo can identify
relevant program elements with high accuracy.

– Question #2: do mutations lead to a measurable change in the
difficulty to exploit a vulnerability? In Sect. 4.3, we show that Aloja’s
mutations can mitigate reusable attacks.

– Question #3: can Aloja correctly introduce mutations without
affecting program correctness? Extensive testing, discussed in Sect. 4.4,
shows that Aloja did not introduce any new bug.

– Question #4: are Aloja filtering heuristics successful in limiting
the number of mutations to be tested? Sect. 4.5 shows that filtering
heuristic lead to up to a 41% reduction in the number of tested mutations.

– Question #5: do introduced mutations generate overhead in the
execution of mutated protocols? In Sect. 4.6, we show acceptable compile-
time and run-time overhead, thus our mutations are practical.

Breaking Embedded Software Homogeneity with Protocol Mutations 779

Table 2. Characterization of codebases

Program Protocol # LOCs # Functions

Mosquitto [3] MQTT 79,859 338
Wakaama [9] LwM2M 28,040 302
MQTT-C [6] MQTT 12,845 98
Cyclone DDS [11] DDS 109,954 2,146

Table 3. Accuracy of PaCo in identifying message-related structures

Program True positives (Positives) True negatives (Negatives) Accuracy

Mosquitto 2 (3) 26 (26) 96.6%
MQTT-C 1 (1) 17 (17) 100%
Wakaama 5 (5) 18 (18) 100%
CycloneDDS 42 (51) 291 (300) 97.3%
Overall 50 (59) 352 (361) 97.8%

4.1 Implementation and Dataset

We created a prototype implementing the full pipeline described in Sect. 3. It
is implemented as a set of LLVM passes and Python modules used to statically
analyze IR files, perform mutation injection, and run the mutation test process.
In total, our pipeline consists of 1183 lines of C/C++ code (LLVM passes) and
7961 lines of Python code (IR analysis and test automation).

Dataset. Table 2 describes the codebases used for the experiments. We selected
these 4 projects as they are implementations of representative protocols com-
monly used in the IoT realm. Mosquitto [3] is an implementation of the popular
MQTT protocol, while MQTT-C [6] is another implementation stripped of all
extraneous features to provide a minimal install. We also evaluate Wakaama [9],
a C implementation of the LwM2M machine-to-machine protocol, and Cyclone
DDS [11], a C implementation of the DDS protocol. Although all applications
we evaluated are middleware protocol applications, our system can be used for
any upper-layer protocol applications using struct to construct messages.

4.2 Structure Graph Generation

Methodology. In this section, we evaluate the effectiveness of PaCo in identifying
message-related functions and structs. In order to identify false positives and
negatives, we performed a manual analysis of each codebase and compared the
correct sets of functions and structures to those generated by PaCo. Manual
analysis involved going through every function and struct, and verifying based
on their name and functionality if they were, in fact, parser- or constructor-
related. We envision PaCo as a general tool for code understanding; therefore

780 T. Ren et al.

Table 4. Accuracy of PaCo in identifying message-related functions

Program True positives (Positives) True negatives (Negatives) Accuracy

Mosquitto 10 (11) 203 (203) 99.5%
MQTT-C 6 (6) 57 (57) 100%
Wakaama 32 (32) 60 (66) 93.9%
CycloneDDS 26 (39) 89 (102) 81.6%
Overall 74 (88) 409 (428) 93.6%

we use a broader notion of “message-related” than that used by Aloja. We
consider a function/struct message-related if it performs processing/stores data
which is directly or indirectly used to construct and/or parse network messages.

Results-Structure Identification. Table 3 summarizes structure identification
accuracy. True Positives/Negatives are the numbers of network-related/non-
network-related functions PaCo successfully identified. Positives/Negatives rep-
resent the numbers of actual network-related/non-network-related functions in
each codebase. Structure identification is heuristic and based on how a struct
is used. False negatives come from network-related structs not being directly
used for memory copy and network operations. False positives occur due to
PaCo heuristics being misled by the presence of syscalls that are frequently, but
not always, network-related, e.g. redundant recv functions when the applica-
tion actually uses read to receive messages. Overall, results show high accuracy
across the codebases (97.8%).

Results - Function Identification. Table 4 summarizes results regarding the accu-
racy of function identification across our four evaluation codebases. Overall,
PaCo achieves 93.6% accuracy. Analysis of mistakes indicates that they occur
due to mislabeling of the corresponding structs, as discussed above.

Overall, we conclude that PaCo’s heuristics are effective in identifying
message-related structures and functions, providing actionable information to
Aloja.

4.3 Exploit Mitigation

Methodology. For this experiment, we compare the behavior of unmutated com-
piled binaries with mutated ones. We identified reproducible vulnerabilities in
the protocols of interest, by picking older releases with known vulnerabilities,
and mutating them using Aloja. The mutation strategy we used for our exper-
iments was mutating a field value as shown in Table 1, row 3. This process
resulted in two versions of a vulnerable protocol implementation, without and
with the mutation. We first verified that the vulnerability could be successfully
reproduced in the non-mutated client/server. Then, we used the same client and
sent the same packets, as we did before, to the mutated server, to check that
the vulnerability could no longer be triggered. Because our mutations targets

Breaking Embedded Software Homogeneity with Protocol Mutations 781

parser/constructor functions, we look specifically at parser-/constructor-related
vulnerabilities that are triggerable by malformed network input. For example,
CVE-2017-7653 causes a Mosquitto broker to disconnect other clients, upon
reception of an attack packet containing an invalid UTF-8 string.

Collected Vulnerabilities. For Mosquitto, we did an extensive review of relevant
Common Vulnerabilities and Exposures (CVE) reports. We found 17 vulnerabil-
ity reports of which 7 are parser-/constructor-related. We only show the results
of three CVE reports which we could reliably reproduce, including CVE-2019-
11779, CVE-2018-12543 and CVE-2017-7653. We could not reliably reproduce
the remaining ones (e.g. CVE-2019-11778), as they are caused by heisenbugs. For
Wakaama, we reliably reproduced one relevant CVE report, CVE-2019-9004. For
MQTT-C and Cyclone DDS, we did not find recent relevant CVE reports.

Results. In the case of CVE-2019-11779, the reception of the attack packet in
unmutated Mosquitto triggers the vulnerable function mosquitto_sub_topic
_check. The same attack against the mutated version results in the packet being
dropped. The vulnerability is not triggered, and the unmutated attacker’s client
gets forcibly disconnected. Our experiments for CVE-2018-12543, CVE-2017-
7653, and CVE-2019-9004, also resulted in successful exploit in the non-mutated
version, and failed exploit in the mutated one. These results show that Aloja’s
mutation approach is effective in mitigating network-based exploits.

4.4 Correctness

Methodology. In this section we evaluate the correctness of mutations applied by
Aloja. It is important to ensure that the mutations do not break any underlying
functionality. In order to do so, we run unit tests against the unmutated and
mutated version of each protocol, and compare the results of the two runs. The
mutation strategy we used for our experiments is mutating an existing field value,
shown in Table 1, row 2. All protocols include high-quality developer-provided
unit tests which we use for this purpose. We emphasize that these are not
the tests we used for selecting useful mutants. To avoid biasing the correctness
evaluation, for the latter purpose we develop our own test scenarios.

We also performed an in-depth case study on Mosquitto, by designing and
building a fuzzing MQTT client based on the Boofuzz fuzzer [5]. The fuzzer
generates protocol messages and directs them to a mutated Mosquitto binary.
To ensure extensive coverage, we do not generate completely random input, but
messages with a structure approximating MQTT’s specifications and sessions.

Results. Table 5 shows that 3 out of 1233 test cases failed. We manually analyzed
each failed test; in all cases, test failures were due to the tests expecting protocol
messages in the original (i.e., non-mutated) format. We ruled out these failures
as benign, as our mutation strategy is specifically designed to trigger failures
like these. Furthermore, our Mosquitto fuzz tester ran for 64.22min without
triggering any unexpected behavior. Overall, these results suggest that Aloja

does not introduce any new bugs or vulnerabilities into the codebase it mutates.

782 T. Ren et al.

Table 5. Results of correctness evaluation tests.

Program # Tests # Failed tests (benign)

Mosquitto 207 2 (2)
Wakaama 71 0 (0)
MQTT-C 18 1 (1)
Cyclone DDS 937 0 (0)

Table 6. Impact of heuristic on mutation generation

Program W/O Heuristic (Useful)) W/Heuristic (Useful)

Mosquitto 242(2) 142(2)
MQTT-C 116(7) 73(5)
Wakaama 340(3) 235(3)
Cyclone DDS 969(6) 795(2)

4.5 Impact of Mutation Filtering Heuristics

Methodology. Aloja uses callgraph analysis to filter constructor and parser
functions unlikely to directly operate on message content (discussed in Sect. 3.2).
It is important to determine whether such heuristics (i) lead to a reduction in
the number of possible mutations to be tested; and (ii) do not lead to loss of
potentially useful mutations. In order to evaluate the impact of heuristics, we
ran Aloja twice on each codebase, first with the heuristic deployment, and then
deactivated. We compared the runs on two aspects: number of useful mutants
and number of overall generated mutants.

Results. Table 6 show the number of useful and overall mutations across the three
codebases. The heuristic causes a best-case reduction of 41.3% (Mosquitto) in
the number of mutants, and an overall reduction of 25.3%. Only 6 out of
422 removed mutations are useful, which amount to losing 33.3% of useful
mutations. We conclude that the filtering heuristic selects and remove incorrect
mutations with reasonable accuracy.

4.6 Performance Impact of Mutations

Methodology. To evaluate the overhead incurred due to running a mutated pro-
tocol, we examined two aspects. The first is the compile-time overhead due to
running PaCo and Aloja, measured by timing the overall compilation without
and with the mutation process. We do not report detailed results on code size
increase due to mutation, as such overhead remains small—between 0.1% and
1%—for all codebases.

Breaking Embedded Software Homogeneity with Protocol Mutations 783

Table 7. Incurred compile time overhead. PaCo overhead includes structure graph
construction. Aloja’s overhead is dominated by testing of mutants.

Program w/o mutations w/ mutations PaCo Aloja

Mosquitto 3 m 21 s 11 m 36 s 10 s 8 m 05 s
Wakaama 2.33 s 15 m 21.33 s 24 s 14 m 55 s
MQTT-C 1.85 s 8 m 49.41 s 0.56 s 8 m 47 s
Cyclone DDS 1 m57 s 152 m12 s 13 m 18 s 138 m 54 s

The second is the run-time overhead due the additional computation per-
formed by injected mutation templates. In order to estimate this, we measured
the latency overhead when sending batches of 10 messages per client, with a
fixed size of 10KB each, via the respective protocol with a set number of clients
in the network. Note that the impact of the number of clients in the network
on protocol performance depends on the design of the protocol itself. Therefore,
introduced overhead cannot be compared across different protocols; however, the
results still highlight general trends in the overhead introduced by mutations.
We evaluated this overhead using 10, 100, and 500 clients for each protocol. As
deploying a device network of this size on an experimental testbed is imprac-
tical, we simulated the setup by running the server and the client instances on
a dedicated machine. We acknowledge this approach is only an approximation
of an actual deployment; however we believe it is sufficient to derive high-level
conclusions about mutation overhead. All performance evaluations were run on
an Ubuntu 20.04 VM with 4 3.7 GHz cores and 10 GB of RAM.

Results-Compile Time. Across our 4 codebases, it took, on average, an additional
45.7 min to run the mutation-enabled compilation process. This includes all
stages of PaCo and Aloja. Table 7 compares the compile times achieved by
clang to that of our process, which also uses clang but applies mutations prior
to binary generation. Most of increased overhead is due to testing mutations in
Aloja. For each possible mutation, Aloja must run the mutated application
twice. The significant compilation time for Cyclone DDS indeed results from the
fact that its large codebases induces many candidate mutants, than must then
be vetted (on average, testing a mutant requires 10 s). The process could be sped
up by better mutation filtering heuristics, which we leave as future work. Also,
multiple mutants could be tested in parallel, which would result in significant
improvement on modern multicore platforms. Finally, we emphasize that the
mutation overhead only need to be incurred once at compile time.

Results-Execution Time. Table 8 shows the overhead in message send latency
introduced by Aloja. The overhead ranges from negligible to significant,
although the relative overhead generally increases sublinearly with the number
of clients, and notably decreases in the case of Wakaama when going from 100 to
500 clients! This fact in particular lead us to suspect that 100-client Wakaama

784 T. Ren et al.

Table 8. Incurred overhead of running n = 10, 100, and 500 clients sending 10 KB
messages in the original vs. mutated system

Program 10 clients 100 clients 500 clients

Mosquitto (Mutated) 3 ms (3 ms) 47 ms (58 ms) 160 ms (200 ms)
Wakaama (Mutated) 80 ms (122 ms) 120 ms (230 ms) 270 ms (360 ms)
MQTT-C (Mutated) 15 ms (15 ms) 32 ms (40 ms) 120 ms (190 ms)
Cyclone DDS (Mutated) 14 ms (15 ms) 139 ms (149 ms) 699 ms (851 ms)

results may be affected by an experimental artifact, but were not able to trace
the source of the deviation. Future work should focus on further optimizing
mutations and better understanding their performance impact.

5 Discussion

Mutation vs Encryption. A possible way to diversify a protocol is to retrofit
it with encryption, and vary encryption keys across deployments. We deliber-
ately decided to design a more general approach based on field-level mutations,
for the following reasons. Field-level mutations can be retrofitted automatically
during compilation, and do not change protocol state machine, packet size and
structure, thus maximizing compatibility with existing network infrastructure
and middleboxes. It is also worth noting that, if desired, field-level mutations
can be used to deploy encryption (supported by Aloja). However, they are not
limited to it, and can also implement more lightweight forms of obfuscation.
We believe this to be useful to control the performance impact of mutations.
For smart sensors, which have to operate for extended periods without battery
replacement, even a small increase in computation may translate in significant
reduction in device life. Summarizing, our goal is to provide software diversity,
not data secrecy. Consistently with the end-to-end principle [52], we believe this
is best served by evaluating a range of syntactic mutations, and let application
designers choose the most appropriate.

Mutation-Agnostic Attacks. Other forms of mutation-based moving target
defenses have been shown to be vulnerable to mutation-agnostic attacks [51].
In our context, such an attack would consist of a message which triggers a
vulnerability regardless of the mutations. This may happen for example if the
victim parses each message field iteratively, and relevant mutations only affect
fields which are parsed after the malicious data. These attacks can be mitigated
by carefully choosing mutations, which always minimize the amount of code
executed in response to an non-mutated message.

Integration into Embedded Development Workflow. A relevant question is
whether incentives exist for embedded developers to integrate mutations into
firmware, since manufacturers have limited incentive to improving security. As

Breaking Embedded Software Homogeneity with Protocol Mutations 785

discussed in Sect. 2.1, we target self-contained deployments managed by same
organization. Firmware for mission-critical devices such as robot swarms or mil-
itary is custom-developed and specified by contract, which simplifies requesting
mutation technology. Cheaper white-label devices, such as camera, may ship
with closed-source firmware. There, applying mutations may require re-flashing
devices with Open-Source, customizable firmware (e.g., OpenIPC [12] for cam-
eras).

Limitations of Dynamic Analysis. The dynamic testing techniques we employ,
such as unit tests, cannot guarantee correctness. However, we decided to use
them due to the intrinsic limitations of the alternative, which is static analysis.
Network protocol implementation exhibit a great variety of programming pat-
terns, which makes statically inferring mutation locations challenging. This is
exacerbated by the fact that core static analysis algorithms are in general unde-
cidable, and have precision limitations [54]. Thus, we consider dynamic analysis
as an acceptable trade-off.

6 Related Work

Moving Target Defense (MTD). Traditional MTD strategies can be divided
into two categories: operating system (OS)-, network-level. As MTD is a large
area of research, we only discuss selected examples. At the OS level, Seibert et
al. [53] and Hu et al. [34] use Address Space Layout Randomization (ASLR) and
Instruction Set Randomization (ISR) to prevent memory corruption vulnerabili-
ties and low-level code injection attacks. Pappas et al. [47] and Wartell et al. [60]
introduce schemes to prevent memory disclosure issues by randomizing the data
and code segments of each application [64]. At the network level, Al-Shaer [13]
proposes an architecture to enable network configuration changes without dis-
rupting network operations. Haadi Jafarian et al. [37] present a software-defined
network (SDN)-based MTD strategy that mutates IP addresses, while maintain-
ing configuration integrity. Huang and Ghosh [35] present an MTD scheme to
protect web services, by creating a set of diverse offline virtual servers to replace
online servers according to the rotation schedule. OS-level mutations do not pre-
vent many kinds of relevant high-level attacks (such as default password reuse).
Traditional network-level mutations affect the network configuration and are
orthogonal to ours; they can be seen as an additional possible layer of defense.
We separately discuss software-level mutations below.

Software Diversification. Software diversification is a popular MTD strategy to
prevent application level attacks. Jackson et al. [36] propose a compiler-based
technique which uses instruction set and register randomization to generate a
large number of variants. This technique is designed for mobile apps. Franz [30]
similarly discuss a mobile-oriented approach to generate a unique version of an
app for each client which downloads it. Cabutto et al. [17] propose to store
chunks of executable binary on a trusted server, dynamically downloading them

786 T. Ren et al.

at execution time. However, this method cannot prevent existed vulnerabilities
from being triggered since the attacker can still touch the vulnerable code. Wu
et al. [62] present LLVM-based binary software randomization, which apply a
number of IR-level transformations (e.g., instruction replacement) prior to com-
pilation. This technique has limitations similar to OS-level MTD. Beurdouche
et al. [15] propose a verified implementation of a TLS state machine that can be
embedded into OpenSSL to change the overall state machine. Our system focuses
on a broader set of protocol implementations. Collberg et al. [24] use a trusted
server to generate diverse code variants, which are then dynamically installed
within running clients. Our system injects the full mutation logic within the
client, thus simplifying deployment. Cui and Stolfo [25] propose a host-based
defense mechanism called Symbiotic Embedded Machines (SEM). They inject
SEMs into host software as an additional component providing monitoring and
defense. Compared with SEM, our method does not introduce an executable
middleware and does not impose significant overhead on the target applica-
tion. Pappas et al. [48] propose in-place code randomization, which breaks the
semantics of gadgets used in return-oriented programming attacks. Our tech-
nique addresses a broader range of attacks.

Mutation Testing. Mutation testing, which aims at introducing errors in source
code to ensure effectiveness of test cases, can also generate different mutants dur-
ing the test process. Hariri et al. [32] present a toolset, SRCIROR, for achieving
mutation testing at the C/C++ source code and LLVM intermediate represen-
tation (IR). Sousa and Sen [58] also present a LLVM IR-based mutation testing,
which changes integer constants, to improve the generation of Transaction Level
Modeling (TLM) testbenches. Although mutation testing applies mutations sim-
ilar to those used in MTD, its goal is orthogonal. Evaluating the applications of
Aloja to mutation testing is an interesting direction for future work.

Parser/Constructor Function Identification. Polytracker [2] is an LLVM-based
instrumentation tool for dynamic taint analysis, which we initially attempted to
use within our project. However, we found that, although taint tracking can be
used to locate parsing code, it is less suited for identifying message constructors.
Besides, it requires users to provide sufficient and comprehensive inputs. Cojo-
car et al. [23] propose PIE, a methodology to identify protocol implementation
parsers in embedded systems. Similar to Polytracker, PIE is also a parser iden-
tification approach and does not identify constructors. Bao et al. [14] and Yin et
al. [63] present binary-analysis-based function identification methods. Compared
to them, our function mapping leverages source code, and can provide a smaller
but more precise function set which includes parser/constructor functions.

7 Conclusion

In this paper, we described a technique for injecting mutations into implemen-
tations of embedded/IoT-oriented network protocols as a form of moving-target

Breaking Embedded Software Homogeneity with Protocol Mutations 787

defense. Our evaluation shows that we correctly identify message-generating and
parsing code and inject mutations which preserve functional correctness of a pro-
tocol. Furthermore, mutations are effective in preventing one-size-fits-all exploits,
and only introduce limited overhead. By automating program analysis and trans-
formations necessary for mutations, our work provides an important foundation
for moving-target defense based on protocol dialects.

Acknowledgments. We thank the anonymous reviewers for their insightful com-
ments. This project was supported by the Office of Naval Research (Grants#: N00014-
18-1-2660; N00014-21-1-2492). Any opinions, findings, and conclusions or recommen-
dations expressed in this paper are those of the authors and do not necessarily reflect
the views of the funding agency.

References

1. Micro Autonomous System Technologies (MAST). http://www.mast-cta.org/
2. trailofbits/polytracker: An LLVM-based instrumentation tool for universal taint

analysis. https://github.com/trailofbits/polytracker
3. Eclipse Mosquitto (January 2020). https://mosquitto.org/
4. DSVPN (February 2021). https://github.com/jedisct1/dsvpn
5. GitHub - jtpereyda/boofuzz (February 2021). https://github.com/jtpereyda/

boofuzz
6. MQTT-C (February 2021). https://github.com/LiamBindle/MQTT-C
7. OpenDDS (August 2021). https://opendds.org/
8. Shodan (January 2021). https://www.shodan.io/
9. wakaama (February 2021). https://www.eclipse.org/wakaama/

10. Who’s Using DDS? (January 2021). https://www.dds-foundation.org/who-is-
using-dds-2/

11. CycloneDDS (2022). https://github.com/eclipse-cyclonedds/cyclonedds
12. OpenIPC (December 2022). https://openipc.org/
13. Al-Shaer, E.: Toward network configuration randomization for moving target

defense. In: Moving Target Defense (2011)
14. Bao, T., Burket, J., Woo, M., Turner, R., Brumley, D.: BYTEWEIGHT: Learning

to recognize functions in binary code. In: USENIX Security Symposium (2014)
15. Beurdouche, B., et al.: A messy state of the union: Taming the composite state

machines of tls. In: IEEE S&P (2015)
16. Brian Krebs: Who Makes the IoT Things Under Attack? — Krebs on Security

(October 2016). https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-
under-attack/

17. Cabutto, A., Falcarin, P., Abrath, B., Coppens, B., De Sutter, B.: Software pro-
tection with code mobility. In: ACM MTD Workshop (2015)

18. Cameron, L.: IoT Meets the Military | IEEE Computer Society (March
2017). https://www.computer.org/publications/tech-news/research/internet-of-
military-battlefield-things-iomt-iobt

19. Caselli, M., Zambon, E., Sommer, R., Kargl, F., Amann, J.: Specification mining for
intrusion detection in networked control systems. In: USENIX Security Symposium
(2017)

http://www.mast-cta.org/
https://github.com/trailofbits/polytracker
https://mosquitto.org/
https://github.com/jedisct1/dsvpn
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://github.com/LiamBindle/MQTT-C
https://opendds.org/
https://www.shodan.io/
https://www.eclipse.org/wakaama/
https://www.dds-foundation.org/who-is-using-dds-2/
https://www.dds-foundation.org/who-is-using-dds-2/
https://github.com/eclipse-cyclonedds/cyclonedds
https://openipc.org/
https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/
https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/
https://www.computer.org/publications/tech-news/research/internet-of-military-battlefield-things-iomt-iobt
https://www.computer.org/publications/tech-news/research/internet-of-military-battlefield-things-iomt-iobt

788 T. Ren et al.

20. Chung, T.: OFFensive Swarm-Enabled Tactics. https://www.darpa.mil/program/
offensive-swarm-enabled-tactics

21. Cimpanu, C.: Hacker leaks passwords for more than 500,000 servers, routers,
and IoT devices (January 2020). https://www.zdnet.com/article/hacker-leaks-
passwords-for-more-than-500000-servers-routers-and-iot-devices/

22. Cohen, F.B.: Operating system protection through program evolution. Comput.
Sec. 12(6), 565–584 (1993)

23. Cojocar, L., Zaddach, J., Verdult, R., Bos, H., Francillon, A., Balzarotti, D.: Pie:
Parser identification in embedded systems. In: ACSAC (2015)

24. Collberg, C., Martin, S., Myers, J., Nagra, J.: Distributed application tamper detec-
tion via continuous software updates. In: ACSAC (2012)

25. Cui, A., Stolfo, S.: Symbiotes and defensive mutualism: Moving target defense. In:
Moving Target Defense, pp. 99–108 (August 2011)

26. Davi, L.V., Dmitrienko, A., Nürnberger, S., Sadeghi, A.R.: Gadge me if you can:
Secure and efficient ad-hoc instruction-level randomization for x86 and ARM. In:
ASIA CCS (2013)

27. De Carli, L., Mignano, A.: Network security for home iot devices must involve the
user: a position paper. In: FPS (2020)

28. De Carli, L., Torres, R., Modelo-Howard, G., Tongaonkar, A., Jha, S.: Botnet
protocol inference in the presence of encrypted traffic. In: INFOCOM (2017)

29. Eduard Kovacs: Serious Vulnerabilities Found in Schneider Electric Power
Meters | SecurityWeek.Com (March 2021). https://www.securityweek.com/
serious-vulnerabilities-found-schneider-electric-power-meters

30. Franz, M.: E unibus pluram: Massive-scale software diversity as a defense mecha-
nism. In: NSPW (2010)

31. Goodin, D.: 100,000-strong botnet built on router 0-day could strike at any
time (December 2017). https://arstechnica.com/information-technology/2017/12/
100000-strong-botnet-built-on-router-0-day-could-strike-at-any-time/

32. Hariri, F., Shi, A.: Srciror: A toolset for mutation testing of c source code and llvm
intermediate representation. In: ACM/IEEE ASE (2018)

33. Higgins, F., Tomlinson, A., Martin, K.M.: Threats to the Swarm: Security Consid-
erations for Swarm Robotics. Int. J. Adv. Sec. 2(2&3) (2009)

34. Hu, W., et al.: Secure and practical defense against code-injection attacks using
software dynamic translation. In: VEE (2006)

35. Huang, Y., Ghosh, A.: Introducing diversity and uncertainty to create moving
attack surfaces for web services. In: Moving Target Defense, pp. 131–151 (August
2011)

36. Jackson, T., et al.: Compiler-generated software diversity. In: Moving Target
Defense, pp. 77–98 (August 2011)

37. Jafarian, J.H., Al-Shaer, E., Duan, Q.: Openflow random host mutation: Transpar-
ent moving target defense using software defined networking. In: HotSDN (2012)

38. Kat Hall: Hyperoptic’s ZTE-made 1gbps routers had hyper-hardcoded hyper-
root hyper-password (April 2018). https://www.theregister.co.uk/2018/04/26/
hyperoptics_zte_routers/

39. Krebs, B.: Naming & Shaming Web Polluters: Xiongmai - Krebs on Security (Octo-
ber 2018). https://krebsonsecurity.com/2018/10/naming-shaming-web-polluters-
xiongmai/

40. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: Automated Software
Diversity. In: IEEE S&P (2014)

41. Lewellen, T.: CERT/CC Vulnerability Note VU#800094 (September 2013).
https://www.kb.cert.org

https://www.darpa.mil/program/offensive-swarm-enabled-tactics
https://www.darpa.mil/program/offensive-swarm-enabled-tactics
https://www.zdnet.com/article/hacker-leaks-passwords-for-more-than-500000-servers-routers-and-iot-devices/
https://www.zdnet.com/article/hacker-leaks-passwords-for-more-than-500000-servers-routers-and-iot-devices/
https://www.securityweek.com/serious-vulnerabilities-found-schneider-electric-power-meters
https://www.securityweek.com/serious-vulnerabilities-found-schneider-electric-power-meters
https://arstechnica.com/information-technology/2017/12/100000-strong-botnet-built-on-router-0-day-could-strike-at-any-time/
https://arstechnica.com/information-technology/2017/12/100000-strong-botnet-built-on-router-0-day-could-strike-at-any-time/
https://www.theregister.co.uk/2018/04/26/hyperoptics_zte_routers/
https://www.theregister.co.uk/2018/04/26/hyperoptics_zte_routers/
https://krebsonsecurity.com/2018/10/naming-shaming-web-polluters-xiongmai/
https://krebsonsecurity.com/2018/10/naming-shaming-web-polluters-xiongmai/
https://www.kb.cert.org

Breaking Embedded Software Homogeneity with Protocol Mutations 789

42. Maruyama, Y., Kato, S., Azumi, T.: Exploring the performance of ros2. In:
EMSOFT (2016)

43. Merces, F., Remillano II, A., Molina, J.: Mirai Botnet Attack IoT Devices via
CVE-2020-5902 (July 2020). https://www.trendmicro.com/en_us/research/20/g/
mirai-botnet-attack-iot-devices-via-cve-2020-5902.html

44. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside
the Slammer worm. IEEE Sec. Privacy 1(4), 33–39 (2003)

45. Moore, D., Shannon, C., claffy, k.: Code-Red: A case study on the spread and
victims of an internet worm. In: ACM IMW (2002)

46. Muncaster, P.: A Third of Industrial Control Systems Attacked in H1
2021 (September 2021). https://www.infosecurity-magazine.com/news/third-
industrial-control-systems/

47. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: Hindering
return-oriented programming using in-place code randomization. In: IEEE S&P
(2012)

48. Pappas, V., Polychronakis, M., Keromytis, A.: Practical software diversification
using in-place code randomization. In: Moving Target Defense (2013)

49. Pascu, L.: Multiple critical security flaws found in nearly 400 IP cameras -
Bitdefender BOX Blog (June 2018), https://www.bitdefender.com/box/blog/
ip-cameras-vulnerabilities/multiple-critical-security-flaws-found-nearly-400-ip-
cameras/

50. Ronen, E., Shamir, A., Weingarten, A., O’Flynn, C.: IoT goes nuclear: creating a
zigbee chain reaction. In: IEEE S&P (2017)

51. Rudd, R., et al.: Address oblivious code reuse: on the effectiveness of leakage-
resilient diversity. In: NDSS (2017)

52. Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design.
ACM Trans. Comput. Syst. (TOCS) 2(4), 277–288 (1984)

53. Seibert, J., Okhravi, H., Söderström, E.: Information leaks without memory dis-
closures: Remote side channel attacks on diversified code. In: ACM CCS (2014)

54. Shapiro, M., Horwitz, S.: The effects of the precision of pointer analysis. In: Van
Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 16–34. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0032731

55. Shekari, T., Irvene, C., Beyah, R.: IoT Skimmer: Energy Market Manipulation
through High-Wattage IoT Botnets - Black Hat USA 2020 (August 2020), https://
www.blackhat.com/us-20/briefings/schedule/index.html#iot-skimmer-energy-
market-manipulation-through-high-wattage-iot-botnets-20280

56. Simpson, A.K., Roesner, F., Kohno, T.: Securing vulnerable home IoT devices with
an in-hub security manager. In: PerCom Workshop (2017)

57. Soltan, S., Mittal, P., Poor, H.V.: BlackIoT: IoT botnet of high wattage devices
can disrupt the power grid. In: USENIX Security (2018)

58. Sousa, M., Sen, A.: Generation of tlm testbenches using mutation testing. In:
CODES+ISSS 2012 (2012)

59. Wang, N., Schmidt, D.C., van’t Hag, H., Corsaro, A.: Toward an adaptive data
distribution service for dynamic large-scale network-centric operation and warfare
(ncow) systems. In: MILCOM (2008)

60. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In: ACM CCS (2012)

61. Williams, D., Hu, W., Davidson, J.W., Hiser, J.D., Knight, J.C., Nguyen-Tuong,
A.: Security through diversity: leveraging virtual machine technology. IEEE Sec.
Privacy 7(1), 26–33 (2009)

https://www.trendmicro.com/en_us/research/20/g/mirai-botnet-attack-iot-devices-via-cve-2020-5902.html
https://www.trendmicro.com/en_us/research/20/g/mirai-botnet-attack-iot-devices-via-cve-2020-5902.html
https://www.infosecurity-magazine.com/news/third-industrial-control-systems/
https://www.infosecurity-magazine.com/news/third-industrial-control-systems/
https://www.bitdefender.com/box/blog/ip-cameras-vulnerabilities/multiple-critical-security-flaws-found-nearly-400-ip-cameras/
https://www.bitdefender.com/box/blog/ip-cameras-vulnerabilities/multiple-critical-security-flaws-found-nearly-400-ip-cameras/
https://www.bitdefender.com/box/blog/ip-cameras-vulnerabilities/multiple-critical-security-flaws-found-nearly-400-ip-cameras/
https://doi.org/10.1007/BFb0032731
https://www.blackhat.com/us-20/briefings/schedule/index.html#iot-skimmer-energy-market-manipulation-through-high-wattage-iot-botnets-20280
https://www.blackhat.com/us-20/briefings/schedule/index.html#iot-skimmer-energy-market-manipulation-through-high-wattage-iot-botnets-20280
https://www.blackhat.com/us-20/briefings/schedule/index.html#iot-skimmer-energy-market-manipulation-through-high-wattage-iot-botnets-20280

790 T. Ren et al.

62. Wu, B., Ma, Y., Fan, L., Qian, F.: Binary software randomization method based on
llvm. In: 2018 IEEE International Conference of Safety Produce Informatization
(IICSPI), pp. 808–811 (2018)

63. Yin, X., Liu, S., Liu, L., Xiao, D.: Function recognition in stripped binary of
embedded devices. IEEE Access 6, 75682–75694 (2018)

64. Zheng, J., Siami Namin, A.: A survey on the moving target defense strategies: An
architectural perspective. J. Comput. Sci. Technol. 34, 207–233 (2019)

Security and Privacy-Preserving
Solutions in the Internet of Things

(S/P-IoT) Workshop

A Generalized Unknown Malware
Classification

Nanda Rani, Ayushi Mishra, Rahul Kumar, Sarbajit Ghosh,
Sandeep K. Shukla, and Priyanka Bagade(B)

Department of Computer Science and Engineering, Indian Institute of Technology,
Kanpur, Kanpur, India

{nandarani,ayushim,rahulkumar,sarbajitg,sandeeps,pbagade}@cse.iitk.ac.in

Abstract. Although state-of-the-art image-based malware classification
models give the best performance, these models fail to consider real-
world deployment challenges due to various reasons. We address three
such problems through this work: limited dataset problems, imbalanced
dataset problems, and lack of model generalizability. We employ a pro-
totypical network-based few-shot learning method for a limited dataset
problem and achieve 98.71% accuracy while training with only four mal-
ware samples of each class. To address the imbalanced dataset problem,
we propose a class-weight technique to increase the weightage of minor-
ity classes during the training. The model performs well by improving
precision and recall from 0% to close to 60% for the minority class. For
the generalized model, we present a meta-learning-based approach and
improve model performance from 48% to 72.06% accuracy. We report
performances on five diverse datasets. The proposed solutions have the
potential to set benchmark performance for their corresponding problem
statements.

Keywords: Malware classification · Deep learning · Cyber Security ·
Malware

1 Introduction

The advancement in malware development leads to rapidly evolving malware
families. Several image-based deep learning (DL) models, such as ResNet, MLP,
LSTM, and GRU, are available that perform well for the corresponding datasets.
The recent state-of-the-art models offer close to 99–100% accuracy on some of the
datasets [1–3,7]. Although these models perform well, they lack with following
capabilities, which we address through this research work:

1. Limited Dataset - The traditional deep learning model requires more data to
learn significant features from given image sets. There will always be fewer
samples for newly evolved malware classes. In such cases, traditional DL
models fail to identify the patterns of the latest evolved malware families.
Collecting more newly evolved malware samples to train the traditional model

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 793–806, 2023.

https://doi.org/10.1007/978-3-031-25538-0_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_41&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_41

794 N. Rani et al.

may cause a delay in recognizing malware family classes. Hence, there is a
need for a model that can learn features from limited malware samples that
are newly evolved.

2. Imbalanced Dataset - The datasets used to train various malware classifica-
tion models [1,5,7] as well as publicly available datasets [1,3,7] are highly
imbalanced. Imbalance data may lead to overfitting the model or may result
in a biased model. Generating synthetic malware samples may not be a good
option for dealing with the imbalanced dataset problem as the actual malware
may differ in functionality. Hence, there is a need for a learning methodology
that gives importance to classes with fewer samples in the dataset during the
training phase to overcome overfitting.

3. Lack of model generalizability - It is always considered that training and
testing datasets belong to the same distribution. However, there is a signifi-
cant chance that unseen test set malware may belong to out-of-distribution
from the training sample’s distribution. Hence, there is a need for a generic
model that can generalize the malware family class and identify patterns from
unseen out-of-distribution malware samples. Based on our knowledge, there
is no research work for generic malware classification models that can detect
out-of-distribution samples.

We introduce three approaches based on advanced deep learning methods
to address these problems. First, we implement a prototypical network-based
few-shot learning model that can learn new sophisticated malware sample pat-
terns by only seeing very few samples of each malware class. Second, we propose
a class weight technique to provide weightage to minority classes and signif-
icantly improve the precision-recall of the minority class. Lastly, we employ
meta-learning to propose generic models that can detect out-of-distribution
malware samples. We utilize five malware datasets of different distributions
and achieve better results. We verify the differences between distributions of
multiple datasets by implementing out-of-distributions techniques proposed by
Zaeemzadeh et al. [12]. Our contributions through this research work are the
following:

1. We present a model based on few-shot learning that can learn patterns of
newly evolved malware with very few samples.

2. We propose a class weight-based model that can balance the imbalance effect
in the malware dataset during training.

3. We introduce a generic model that can classify out-of-distribution samples
belonging to the training set’s malware class.

We discuss related research work for image-based malware classification in
Sect. 2. Section 3 explains the background of malware analysis techniques and
how it evolves. We elaborated the implemented methodology to address men-
tioned research gaps in Sect. 4. Section 5 discusses the experiment implementa-
tion and the results. Further, we conclude the contribution and future scope of
this research in Sect. 6.

A Generalized Unknown Malware Classification 795

2 Related Work

Recently, image-based malware classification has gained popularity over tradi-
tional malware classification methods, i.e., static and dynamic malware analysis
[2,6]. However, the textural differences between malware images make DL models
suitable for identifying malware patterns. Many research experiments are avail-
able which implement deep learning models on diverse datasets and exploring
several possible feature sets for image-based malware classification. This section
discusses a summary of recently proposed malware classification methods.

Natraj et al. [6] propose the first idea to visualize the malware binaries
and classify malware based on images. They released the very first image-based
dataset named Malimg publicly. Microsoft released malware samples in one of
the Kaggle challenges for image-based malware classification [14]. Both datasets,
Malimg and Microsoft, have a total of 9,339 and 20,860 samples, respectively.

Singh et al. [1] demonstrate a novel method for malware classification by
implementing a pre-trained ResNet50 model and achieved an accuracy of 99.40%.
However, they mentioned that their model gives low accuracy for previously
unseen malware [1]. Bozkir et al. [5] recognize malware from RGB images gener-
ated from a memory dump of the suspicious process by utilizing GIST and HOG
features. Among all implemented learning models, the best accuracy is 96.39%.
They perform manual feature extraction, which may not be a good option when
deploying a model in real time. Similarly, Dhavalle et al. [2] extract features
from the images, including energy, entropy, contrast, dissimilarity, homogeneity,
and correlation and build various machine learning classifiers. The random forest
model achieves the highest accuracy of 96.7%. Bhodia et al. [7] implement several
variants of ResNet to identify malware patterns. Even though the authors use
several DL models to identify malware, none of them is a generic model which
can detect unseen malware. In [3], the authors present diverse deep learning
models, including MLP, CNN, LSTM and GRU, to utilize image-based features
and opcode features to train the models. VGG19 and ResNet152 perform well
with 92% accuracy, but their model is not validated for unknown malware vari-
ants. Kim et al. [4] employs a hybrid deep generative model which exploits local
and global features of malware images and uses variational autoencoders. The
model doesn’t validate generalizability with diverse datasets [4].

Zhu et al. [10] implement a Siamese Neural Network-based few-shot learn-
ing method to detect malware with few samples, detecting ransomware attacks
with few samples. However, their work is limited to ransomware malware class
only. Matching networks and prototypical network-based methods for malware
classification are introduced by Tran et al. [19]. They claimed performance on
a very limited number of experiments and matching network-based model per-
forms poor for Malimg dataset as well as both proposed model performs poor
for Microsoft dataset. All of the above research works primarily focus on model
performance accuracy and overlook class-wise precision and recall. Also, there is
not much work on malware classification with limited malware samples and work
which discusses model generalizability for malware classifications. Therefore, we
address these research problems in this paper.

796 N. Rani et al.

3 Background

Malware is a malicious code that aims to conduct various destructive opera-
tions without the victim’s consent and awareness. Attackers introduce several
malware families; some notorious families are Trojans, Backdoors, Ransomware,
and Worms. With the newly emerging cyber threats, malware is growing expo-
nentially.

As malware evolves rapidly, It is necessary to have intelligent algorithms to
identify malware patterns effectively. Primarily, two main analysis techniques
are there for malware analysis: static and dynamic. Static analysis can identify
malicious patterns without running the executables, and by observing the code
structures [17]. However, this method is ineffective against obfuscated malware.

Dynamic code analysis executes the code in a sandbox environment to reveal
the runtime behavior [18]. Although it is better than static analysis, dynamic
analysis consumes more time and resources. Also, some sophisticated malware
may not demonstrate malicious behaviour while running in the sandbox. On the
other hand, image-based malware classification provides a novel way to classify
the malware without executing the code and performing manual code investiga-
tion. The image-based classification techniques provide an emerging exploration
method to classify malware with respect to texture variations between malware
classes. The texture difference between malware families is shown in Fig. 1.

Fig. 1. Malware Families representation in Grayscale images

4 Proposed Methodology

4.1 Dataset

The Malimg [6] and Microsoft challenge datasets [14] are the only publicly avail-
able. These datasets contain old malware sample variants that may not contain
recent malware patterns. Therefore, we create our dataset by collecting recent
malware samples from MalwareBazaar1. MalwareBazaar is a platform that aims
to share malware samples with the cyber community for study purposes. Our

1 https://bazaar.abuse.ch/.

https://bazaar.abuse.ch/

A Generalized Unknown Malware Classification 797

dataset contains 11,273 malware samples belonging to different malware classes,
including ransomware, worm, trojan, adware and backdoor, with 813, 4012, 3926,
426 and 2096 samples, respectively.

We generate grayscale images by converting the executable samples from our
dataset. As executable binaries are sequences of 0’s and 1’s, we use this sequence
to group consecutive 8 bits and calculate their corresponding decimal value. The
sequence of decimal values is stored in an array and considered as a pixel value
for generating the grayscale image for executables. The generated images are
visually distinguishable between different malware families (Fig. 1). We set the
width of the image size to 256 and let the length be flexible according to the size
of executables [1]. We explain all these steps in Algorithm 1.

Algorithm 1. Executable to grey-scale image conversion
0: procedure Binary to Image(file) {Convert binary executable to grayscale

image}
1: Width = 256
2: Length = File Size/Width
3: Calculate decimal values for each consecutive 8 bits.
4: Create a 2-D array by fixing width as 256.
5: Convert 2-D array into grayscale images.

We obtain datasets from Singh et al. [1] and Prajapati et al. [3]. We use
five datasets (Malimg [6], Microsoft [14], Singh et al. [1], Prajapati et al. [3]
and our dataset) to perform experiments. We address the research gaps dis-
cussed in Sect. 1 by introducing few-shot learning for limited dataset problems
(Sect. 4.2), class weight method for imbalanced dataset problems (Sect. 4.3) and
meta-learning for model generalizability (Sect. 4.4).

4.2 Limited Dataset

We present a prototypical network-based few-shot learning model to address the
limited dataset problem.The prototypical network is based on the idea that there is
an embedding in which several points cluster around a single prototype representa-
tion for each class, present in Fig. 2. The goal is to learn per-class prototypes using
feature space sample averaging. In this implementation, we assume ’m’ labelled
datasets as a support set, where ’m’ is as small as one or two samples. The support
set is represented as S = (x1, y1), ..., (xm, ym), in which xi ∈ R

D is D-dimensional
feature vector and yi ∈ 1,, n is corresponding labels. We can denote the support
set as Sn, represented as data samples with class l. The prototype for each class
is represented as Cn, where Cn ∈ R

m, an embedding function fθ : R
D → R

m

having φ as the learnable parameter. Each prototype represents the average of the
embedded support points in its class [13].

Cn =
1

|Sn|
∑

(xi,yi)εSn

fφ(Xi) (1)

798 N. Rani et al.

Fig. 2. Prototypical networks [13]

The learning phase of Prototypical Networks is to perform by minimizing the
negative log-probability J(φ), often known as log-softmax loss [13].

J(φ) = −log(pφ(y = n|x)) for true class k

where,

pφ(y = n|x) =
exp(−d(fφ(x), cn))

Σn′exp(−d(fφ(x), cn′

Here d represents euclidean distance.
The key benefit of utilizing a logarithm is that the loss is drastically increased

when model fails to predict the correct class labels. The query images classify
by measuring the distance between each unlabeled image and prototypes using
Euclidean distance. After computing distances, we apply softmax to obtain the
probability of belonging to each class, then assign a class based on greater the
probability, shorter the distance.

4.3 Imbalanced Dataset

We employ class weight techniques to balance the imbalance effect of data sam-
ples during training. We assign low and high-weight values to the majority and
minority classes. We calculate the weight for each class by using the following
formula:

wi =
n samples

(n classes ∗ n samplesi)
(2)

where,
wi is the weight for each class (i represents the class)
n samples is the total number of samples in the dataset
n classes is the total number of unique classes
n samplesi is the total number of samples of the respective class

The aim is to give the minority class more weight throughout the training
phase. We implement a weighted log loss function to achieve the same.

log loss =
1
N

N∑

i=1

[−(ω0(yi ∗ log(ŷi)) + ω1((1 − yi) ∗ log(1 − ŷi)))] (3)

A Generalized Unknown Malware Classification 799

where,
ω0 is the class weight for zero class.
ω1 is the class weight for one class.

The goal of the objective function in Eq. 3 is to penalize the minority class
for misclassification by assigning them a higher class weight while the majority
class gets a lower weight. We implement this technique with the ResNet50 model
using the weight and loss function shown in Eq. 3.

4.4 Model Generalization

We present a meta-learning-based model generalization method to build a generic
model. The aim is to build a generic model which can identify malware patterns in
the dataset whose distribution was not present in the training dataset. To the best
of our knowledge, there are no generic models available that can get trained on one
distribution dataset and detect samples of datasets with different distributions. All
state-of-the-art model training and testing perform on the same distribution, i.e.,
the same dataset only [1,3,6,7]. We had a total of five datasets, and before proceed-
ing with generalization, we first needed to verify whether the distribution of all five
datasets was different or not. Therefore, we verify the distribution differentiation
by implementing out-of-distribution detection.

Out of Distribution Detection. In real-world scenarios, test samples may not
contain the data from train samples. Therefore, detecting the out-of-distribution
(OOD) samples that do not belong to the training classes is desirable. We imple-
ment the union of 1-dimensional spaces [12] to perform the OOD detection.

OOD samples can get recognized more robustly and with a greater probabil-
ity if the feature vectors of the training samples are in a 1-dimensional subspace
[12]. Given a training dataset of N-sample label pairings from L available classes,
the goal is to train a neural network to detect out-of-distribution samples during
testing (not belonging to any known L classes).

Making the distribution of known classes as compact as possible reduces the
risk of error. The error probability is given by pe =

√
plpo exp(−B), where B is

the Bhattacharyya distance [15] and is given by:

B =
1
8
ΔT (

Σl + Σo

2
)−1Δ +

1
2

log
(det Σl+Σo

2)√
detΣl det Σo

(4)

Δ = (μl − μo)

The distance B is a combination of the Mahalanobis distance and a measure
of the compactness of the distributions [12]. We distinguish OOD and IN distri-
butions during test time using the cosine similarities between the test samples
and the singular vector corresponding to each class. The cosine similarity is:

cos(θln) =
wT

l xn

||wl|| ||xn|| (5)

800 N. Rani et al.

OOD test perform by computing the angular minimum distance of test fea-
ture vector xn, which is given by

φn = min
l

arccos(
|xT

nv
(l)
1 |

||xn||) (6)

Meta Learning Based Model Generalization. We implement a meta-
learning-based model generalization method. For generalization, Li et al. [11]
present a novel meta-learning approach to synthesize virtual training and test
domain for validation during training for achieving generalization, which we fol-
low for this work. Our model generalization method provides a model agnostic
training method that enhances the domain generalizability of a base learner.
We use ResNet18 as a base learner for this work. We divide a set of different
distribution datasets in a train, val and test set so that all have different distri-
butions dataset. We train the base learner on a train set distribution and, at the
same time, validate on a validation set distribution(which is different from the
training distribution). The meta-optimization goal is to reduce the loss on the
training distributions while simultaneously ensuring that the direction is taken
to accomplish this also improves the validation loss (having a different distri-
bution than the train set). Once a model learns to minimize the loss on the
validation set (different distribution), we can evaluate performance on the test
set (having novel different distribution data). We illustrate the model general-
ization learning flow in Fig. 3 (Different symbols represent different distributions
of data samples).

Fig. 3. Model generalization model learning method

We assume there are total n d different distributions of malware datasets in
the training set. The test dataset belongs to different distribution, which is not
present in the training set. The malware class for all distribution datasets must
be the same to compare generalizability. Therefore, we compare the malware
class of all available datasets and found three common malware families in all
five datasets. These are trojan class, worm class and backdoor class. Hence we

A Generalized Unknown Malware Classification 801

validate our implementation with the three-class classification. The steps follow
to implement the generic model are following:

– We define a base model, ResNet18, parameterized as θ and hyperparameters
α, β, γ. to solve the malware classification task. Where, α is meta step size,
β is meta val beta and γ is decay rate.

– For each iteration, we follow the below steps:
• Split the n d distribution into n̂d and n̄d.
• For meta-train we calculate gradients

∇θ = F ′
(n̂d; θ)

where F is the cross-entropy loss function.
• We update the model parameter with θ

′
= θ − α∇θ

• We calculate cross entropy loss by using n̄d and θ
′
i.e.,G(n̄d; θ

′
)

• For meta-optimization we update the model by using

θ = θ − γ
∂(F(n̂d; θ) + βG(n̄d; θ − α∇θ))

∂θ

We minimize the following objective function for this algorithm.:

F(θ) + βG(θ − αF ′
(θ)) (7)

5 Experiment and Results Discussion

5.1 Limited Dataset Results

We implement few-shot learning on various datasets available, and the model
achieves best performance considerably by seeing very few malware samples.
Malimg, Microsoft, Singh et al. [6] and our dataset has seven, six, eight and
five classes, respectively. Hence we run them for the number of different class
way n shots, where n can be small, i.e. no newly evolved samples available. The
accuracy achieved by model on the datasets is present in Table 1.

Table 1. Result of limited dataset problem

Our dataset Acc (%) Malimg Acc (%) Microsoft Acc (%) Singh et al. [1] Acc (%)

5-way 1-shot 53.85 6-way 1-shot 86.96 7-way 1-shot 91.24 8-way 1-shot 63.04

5-way 2-shot 53.57 6-way 2-shot 87.12 7-way 2-shot 90.43 8-way 2-shot 71.59

5-way 4-shot 56.86 6-way 4-shot 95 7-way 4-shot 98.71 8-way 4-shot 70

5-way 8-shot 65.85 6-way 8-shot 96.88 7-way 8-shot 95.50 8-way 8-shot 69.53

802 N. Rani et al.

5.2 Imbalanced Dataset Results

We implement a class weight-based methodology to resolve the imbalance dataset
problem. To assess the model performance, we need to verify whether class-
wise precision-recall of minority classes is improving or not, as accuracy may
not always be a suitable indicator of model performance with an imbalanced
dataset. The implemented method improves minority class performance signifi-
cantly. Hence, Improvement in minority class performance in terms of precision
and recall is present in Tables 2, 3, 4 and 5.

Table 2. Result of imbalanced problem on Microsoft Dataset

Without proposed method With proposed method

Class name Precision Recall Precision Recall

Adware 0.97 0.98 0.94 0.99

Backdoor 0.00 0.00 0.25 0.60

Virtool 0.85 0.91 0.86 0.91

Worm 0.96 0.88 0.97 0.94

Trojan 0.87 0.84 0.95 0.76

Botnet 1.00 1.00 0.99 1.00

Table 3. Result of imbalanced problem on Our Dataset

Without proposed method With proposed method

Class name Precision Recall Precision Recall

Adware 0.86 0.60 0.85 0.73

Backdoor 0.94 0.89 0.87 0.91

Ransomware 0.80 0.79 0.80 0.79

Worm 0.00 0.00 0.32 0.50

Trojan 0.46 0.60 0.67 0.58

Table 4. Result of Imbalanced problem on Singh et al. [1] Dataset

Without proposed method With proposed method

Class name Precision Recall Precision Recall

Trojan Dropper 1.0 1.0 1.0 0.99

Virus 0.94 0.77 0.84 0.77

Trojan Downloader 0.89 0.88 0.79 0.93

Backdoor 0.84 0.76 0.83 0.62

Virtool 0.00 0.00 0.59 0.40

Worm 1.0 1.00 0.99 1.00

Trojan 0.78 0.89 0.75 0.92

Rogue 0.00 0.00 0.00 0.00

A Generalized Unknown Malware Classification 803

Table 5. Result of imbalanced problem on Malimg Dataset

Without proposed method With proposed method

Class name Precision Recall Precision Recall

Trojan Downloader 0.98 0.95 0.92 0.98

Backdoor 1.00 1.00 1.00 1.00

Worm 1.00 1.00 1.00 1.00

Trojan 0.95 0.97 0.99 0.91

PWS 1.00 0.99 1.00 0.99

Dialer 0.99 1.00 0.99 1.00

Rogue 0.98 1.00 0.98 1.00

5.3 Model Generalization Results

We first verify whether the available dataset is in different distribution or not
before moving towards generic model implementation.

Out of Distribution Results. We implement an OOD detection method to
test the distribution difference between datasets by measuring FPR@95TPR
and AUC (Area under the ROC Curve). FPR@95TPR is the probability that
a negative (out-of-distribution) example gets miscategorized as positive (in-
distribution) when the true positive rate (TPR) is as high as 95%. The lower
value for FPR@95TPR and higher value for AUC proves the in-data and out-data
taken belongs to different distributions. We verified the distribution difference
by implementing the method explained in Sect. 4.4 and obtained FPR@95TPR
value as 0.2573 and AUC value as 0.93616. The lower value of FPR@95TPR and
higher value of AUC proves that the taken datasets are of different distributions.

Meta Learning for Domain Generalization Results. To create a baseline
for comparing proposed method performance, we evaluate model performance
without implementing the proposed meta-learning approach. We implement a
commonly used ResNet50 neural network and train on our dataset and Microsoft
dataset, and test it on the Malimg dataset and receive only 48% accuracy. Which
is not preferable and needs to have a generic model which can perform better
than the baseline. Hence, we trained the meta-learning model on the set of
Our dataset and Microsoft dataset, and tested on Malimg dataset. Initially, the
model achieved accuracy of 68.21%, which is an improvement form the baseline,
but we experiment more to improve the performance. Next, in order to increase
the diversity of the training set, we train it with the set consists our dataset,
Microsoft dataset, and Singh et al. [1] dataset and test on Malimg dataset. This
time model improves the accuracy to 69.83%. Finally, we use all five datasets
and selected our dataset, Microsoft dataset, Singh et al. [1], and Prajapati et
al. [3] dataset for training and Malimg dataset for testing. This time the model
improved the accuracy significantly and achieved 72.06%. We can see a high jump

804 N. Rani et al.

compared to the baseline ResNet model from 48% to 72.06% by adding a meta-
learning approach on top of the base learner. The result of implemented meta-
learning proves that by adding a more diverse distribution dataset in the training
phase, the model is learning unknown dimensions of data and generalizing more
towards pattern detection for unseen and different distribution malware samples.
We summarize the performance of meta-learning for generic models in Table 6.

Table 6. Result of model generalization

Cases number Training set Testing set Acc.

Case 1 (Baseline) Microsoft Malimg Dataset 48%

Case 2 Microsoft and Our dataset Malimg Dataset 68.21%

Case 3 Microsoft, our dataset and Singh
et al. [1]

Malimg Dataset 69.83%

Case 4 Microsoft, our dataset, Singh et al.
[1] and Prajapati et al. [3]

Malimg Dataset 72.06%

6 Conclusions and Future Scope

This research addresses the critical gaps present in the current malware classifi-
cation using image representation. The key contribution of this research work is
to handle limited and imbalanced dataset problems and present a robust generic
malware classification model. Our work focuses on implementing image-based
malware classification techniques rather than static and dynamic analysis. This
research highlights the malware classification model generalization, which has the
potential to provide a new research dimension in malware classification research.
As a part of the future work, Hyperparameter tuning can be one of the possi-
ble modifications to improve model generalization algorithm performance. The
proposed class weight-based technique significantly improves the precision and
recall of minority classes and effectively balances the imbalance data effect. The
presented model for the limited dataset problem can also further improve by
using a zero-shot deep learning technique. In a nutshell, this research work has
the strength to serve as a foundation for several future studies on the imbal-
ance and limited malware dataset problem and enhancement of the malware
classification model’s generalization ability.

Acknowledgement. We thank to the C3i (Cyber Security and Cyber Security for
Cyber-Physical Systems) Innovation Hub for partially funding this research project.

A Generalized Unknown Malware Classification 805

References

1. Singh, A., Handa, A., Kumar, N., Shukla, S.K.: Malware classification using image
representation. In: Dolev, S., Hendler, D., Lodha, S., Yung, M. (eds.) CSCML
2019. LNCS, vol. 11527, pp. 75–92. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-20951-3 6

2. Dhavlle, A., Shukla, S.: A novel malware detection mechanism based on fea-
tures extracted from converted malware binary images, ArXiv, vol. abs/2104.06652
(2021)

3. Prajapati, P., Stamp, M.: An empirical analysis of image-based learning techniques
for malware classification. In: Stamp, M., Alazab, M., Shalaginov, A. (eds.) Mal-
ware Analysis Using Artificial Intelligence and Deep Learning. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-62582-5 16

4. Kim, J.Y., Cho, S.B.: Obfuscated malware detection using deep generative model
based on global/local features. Comput. Secur. 112, 102501 (2022). ISSN 0167-
4048. https://doi.org/10.1016/j.cose.2021.102501

5. Bozkir, A., Tahillioglu, E., Aydos, M., Kara, I.: Catch them alive: a malware detec-
tion approach through memory forensics, manifold learning and computer vision.
Comput. Secur. 103, 04 (2021)

6. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware images: visual-
ization and automatic classification. In: Proceedings of the 8th International Sym-
posium on Visualization for Cyber Security, VizSec 2011. Association for Comput-
ing Machinery, New York (2011)

7. Bhodia, N., Prajapati, P., Di Troia, F., Stamp, M.: Transfer learning for image-
based malware classification. In: Proceedings of the 5th International Conference
on Information Systems Security and Privacy (2019)

8. Vasan, D., Alazab, M., Wassan, S., Safaei, B., Zheng, Q.: Image-based malware
classification using ensemble of cnn architectures (imcec). Comput. Secur. 92,
101748 (2020)

9. Lu, Y., Li, J.: Generative adversarial network for improving deep learning based
malware classification. In: 2019 Winter Simulation Conference (WSC), pp. 584–593
(2019)

10. Zhu, J., Jang-Jaccard, J., Singh, A., Welch, I., AI-Sahaf, H., Camtepe, S.: A few-
shot meta-learning based siamese neural network using entropy features for ran-
somware classification. Comput. Secur. 117, 102691 (2022)

11. Li, D., Yang, Y., Song, Y.-Z., Hospedales, T.M.: Learning to generalize: meta-
learning for domain generalization (2017)

12. Zaeemzadeh, A., Bisagno, N., Sambugaro, Z., Conci, N., Rahnavard, N., Shah, M.:
Out-of-distribution detection using union of 1-dimensional subspaces. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 9452–9461 (2021)

13. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning
(2017)

14. Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., Ahmadi, M.: Microsoft malware
classification challenge (2018)

15. Bhattacharyya, A.: On a measure of divergence between two statistical populations
defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109
(1943)

16. Tran, T.K., Sato, H., Kubo, M.: One-shot learning approach for unknown malware
classification. In: 2018 5th Asian Conference on Defense Technology (ACDT), pp.
8–13 (2018). https://doi.org/10.1109/ACDT.2018.8593203

https://doi.org/10.1007/978-3-030-20951-3_6
https://doi.org/10.1007/978-3-030-20951-3_6
https://doi.org/10.1007/978-3-030-62582-5_16
https://doi.org/10.1016/j.cose.2021.102501
https://doi.org/10.1109/ACDT.2018.8593203

806 N. Rani et al.

17. Chen, L.: Understanding the efficacy, reliability and resiliency of computer vision
techniques for malware detection and future research directions (2019)

18. Saurabh, A.M., Static, A.U., Methodology, D.: International Conference on
Advanced Computation and Telecommunication (ICACAT) 2018, pp. 1–5 (2018).
https://doi.org/10.1109/ICACAT.2018.8933769

19. Tran, T.K., Sato, H., Kubo, M.: Image-based unknown malware classification with
few-shot learning models. In: Seventh International Symposium on Computing and
Networking Workshops (CANDARW) 2019, pp. 401–407 (2019). https://doi.org/
10.1109/CANDARW.2019.00075

https://doi.org/10.1109/ICACAT.2018.8933769
https://doi.org/10.1109/CANDARW.2019.00075
https://doi.org/10.1109/CANDARW.2019.00075

Research on the Grouping Method
of Side-Channel Leakage Detection

Xiaoyi Duan, Ye Huang, YongHua Su, Yujin Li, and XiaoHong Fan(B)

Beijing Electronic Science and Technology Institute, Beijing, China
fanxiaohong@139.com

Abstract. Power analysis attack is amethod to obtain the key of the cryptographic
chip by analyzing the correlation between power consumption information leaked
by the cryptographic chip during the computing process and the key. The efficiency
of power analysis attack poses a serious threat to the software and hardware imple-
mentation of cryptographic algorithms. In order to detect whether a cryptographic
chip has information leakage, it is necessary to assess it by using detection tech-
niques. The t-test is a hypothesis test used in the field of statistics to test whether
there is a significant difference in the means of two normally distributed popula-
tions with unknown variance, and is also a useful tool in side-channel information
leakage assessment. In this paper, two groupingmethods are proposed based on the
characteristics of the AES algorithm to investigate the construction of two overall
groups before the implementation of the Welch’s t-test. Experimental verification
of the DPA contest V4 dataset shows that both grouping methods were effective
in detecting a large number of leakage points on power traces, but the grouping
method by AES first round S-box output Hamming weight has a higher proportion
of both the number of leakage points and the high t-statistic distribution than the
method of grouping by bit value.

Keywords: Leakage detection · Welch’s T-test · AES

1 Introduction

With the widespread use of cryptographic devices such as smart cards, the security of
cryptographic chips has become a major concern as a security safeguard for crypto-
graphic devices. The key determines the security of the cryptographic algorithm, so
the attackers often target the key of the cryptographic algorithm. Traditional brute-
force attacks using hardware and software are time-consuming and inefficient. In recent
years, the emergence of Side Channel Attack (SCA) has allowed information such as
power, runtime and electromagnetic radiation leaked during the operation of crypto-
graphic devices to be used by attackers to analyze the correlation with intermediate
values of cryptographic algorithms and ultimately to break keys. The operation of the
cryptographic algorithm in the cryptographic chip will result in the leakage of a lot of
information. The power analysis attack on key information is an important part of the

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
Published by Springer Nature Switzerland AG 2023. All Rights Reserved
F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 807–818, 2023.
https://doi.org/10.1007/978-3-031-25538-0_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_42&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_42

808 X. Duan et al.

side-channel attack, which attempts to decipher keys by collecting the power consump-
tion information leaked by the cryptographic chip during the operation and analyzing
the relationship between the power consumption values and keys [1]. Generally, power
analysis attack techniques have beenmature, commonly usedmethods are Simple Power
Analysis(SPA), Differential Power Analysis [2](DPA), Correlation Power Analysis [3]
(CPA), template attack [4], etc. Since power analysis attack, in terms of experimental
means, only requires passive acquisition of power traces, do not cause any interference
with the operation of the cryptographic circuit, and do not require physical damage to
the chips as intrusive attacks typically do [5], it is not easily detected. Power analy-
sis attack poses a serious threat to the security of cryptographic devices. Therefore, it is
very important to detect whether there is information leakage during the implementation
of cryptographic algorithms and to evaluate the ability of cryptographic chips to resist
power analysis attack. Power leakage assessment can help designers have a preliminary
understanding of the security level of the cryptographic chip and carry out targeted pro-
tection, which can greatly improve the security of the cryptographic chip. In addition,
a set of sample points on power traces that are most relevant to the sensitive intermedi-
ate value of the cryptographic algorithm can be obtained through side-channel leakage
detection, and then all sample points on power traces are divided into two groups: leak-
age points and nonleakage points [6]. Subsequently, the leakage points can be selected
as feature points containing the most key-dependent information [7] for power analysis
attack, which can effectively reduce the computational complexity and time consumed
in the attack and improve the efficiency of the SCA attack.

1.1 Related Work

Themainmethod of cryptographic chip information leakage detection is hypothesis test,
based on the principle that intermediate values generated by chips during cryptographic
operations can result in power information leakage if intermediate values affect side-
channel information(i.e., power traces) in a statistically significant manner. Hypothesis
test methods have become the primary means of leakage detection by calculating test
statistics and significance levels to identify outliers. For example, Goodwill et al. [8] used
a specific t-test to evaluate the side-channel information leakage of the implementation of
the AES (Advanced Encryption Standard) encryption algorithm, proving the availability
of the t-test in leakage detection. The method divides the collected power traces into
two sets based on the individual bit values of the target intermediate values during
the operation of the algorithm. If the sample sizes of the two sets are not equal, the
Welch’s t-test is used to measure the difference between the mean values of the power
consumption data of the two sets at each sample point. When the statistic exceeds a
threshold at a certain place, it is determined that the traces in two sets have a high
confidence difference at that sample point and there is side-channel power information
leakage, i.e., the corresponding sample point on the energy curve is the leakage point
and the chosen intermediate state value significantly affects the power consumption of
the cryptographic chip. In 2013 BECKER et al. [9] proposed the TVLA (Test Vector
Leakage Assessment) method, which uses the non-specific t-test to divide the power
traces into two groups according to fixed plaintext and random plaintext, and if the value
of the t-statistic at a certain time sample exceeds the threshold, that point is a leakage

Research on the Grouping Method of Side-Channel Leakage Detection 809

point. The specific t-test can offer higher confidence in detection at a lower cost than
the non-specific t-test [10]. Other common hypothesis test methods include the F-test,
which is similar in principle to the t-test in that it detects leakage through statistical
differences in power consumption values at every sample point, but the t-test focuses
on differences in means between two sets of samples, whereas the F-test focuses on
differences in variances.

In addition to the hypothesis test in statistical inference, mutual information is also
a commonly used leakage detection method. Mather et al. [11] compared t-test, discrete
mutual information (DMI) and continuous mutual information (CMI), in terms of leak-
age detection capability and computational complexity. The results of the experiment
show that the t-test is better when the overall population is normally distributed and the
significance of the difference between means needs to be measured. However, CMI can
be applied to leakagemeasurement in any situation, and there are no special requirements
for distribution and statistic characteristics.

The t-test is still the most commonly used detection method for side-channel leakage
detection. The Welch’s t-test is an extension of Student’s t-test and is more reliable
in cases where the sample sizes of two sets are not equal. Since the Welch’s t-test
measures the mean difference between two sets of normally distributed populations, in
order to accurately use the Welch’s t-test to evaluate side-channel leakage information,
the key lies in grouping all traces, that is, constructing suitable two sets. At present,
there are two main grouping methods for Welch’s t-test. The first is to divide all traces
into two sets according to fixed plaintext and random plaintext, and the second is to
group according to the difference of intermediate variable values. In [12], Welch’s t-
test is used to measure the side-channel leakage information during the operation of
the 3DES algorithm. When constructing the trace sets, only the second type of data is
constructed, and eight kinds of variable values are selected from different intermediate
states according to the characteristics of the 3DES algorithm. The results of leakage
information tests obtained by usingWelch’s t-test under different groups are different. It
can be seen that in the process of using Welch’s t-test to detect leakage, the selection of
test positions is very important. For the secondmethod of grouping according to different
values of intermediate variables, there is a lack of research on specific groupingmethods,
especially how to group according to bits and Hamming weights.

1.2 Our Contribution

There are two main types of grouping methods for Welch’s t-test. The first is to divide
into two sets of leakage traces according to fixed plaintext and random plaintext, and
the second is to group according to different values of intermediate variables.

In this paper, for the second type of grouping method, the grouping position is
determined based on the key intermediate state of the AES algorithm’s first round S-box
output, combinedwith theHammingweightmodel. Two groupingmethods are proposed
to measure the leakage information during the operation of the AES algorithm, and the
effects of the two methods are compared through experiments. The results show that
both the number of leakage points and the distribution ratio of high t-statistic are higher
than the method of grouping by bit value.

810 X. Duan et al.

1.3 Structure of This Paper

The structure of the article is as follows. The first chapter is the introduction, which
mainly introduces the research background and research status. The second chapter
describes the basic principles of AES and Welch’s t-test. The third chapter introduces
the selection of test positions and different grouping methods in the process of leakage
detection using Welch’s t-test, and finally explains the necessity of repeated tests. The
experimental results and analysis of the DPA contest V4 dataset are introduced in Sect. 4.
In the last chapter, the full text is summarized.

2 Preliminaries

2.1 AES

The Advanced Encryption Standard is the most widely used symmetric encryption algo-
rithm today, which is based on the SP cryptographic structure. Although the increase in
the length of the key increases the strength of the algorithm, the number of iterations also
increases accordingly. The key length of 128 bits for AES which requires 10 iterations
is sufficient for most purposes. In AES encryption, except for the last round, each round
of transformation includes 4 basic operations: SubBytes, Shift Rows, Mix Columns, and
Add Round Key. There is no Mix Columns operation in the last round.

Shift Rows, Mix Columns and Add Round Key in the AES algorithm are just lin-
ear transformations which can only serve as an overall diffusion in the encryption and
decryption process. SubBytes is a non-linear transformation, and non-linear transfor-
mation is the essence of modern cryptographic algorithms. SubBytes is implemented
by replacing each byte in the original matrix with a value obtained from the non-linear
component S-box, which has a confusing and local diffusion effect on the data during
the encryption process, i.e. a bit different in the S-box input will result in multiple bits
different in the output. The good non-linear characteristic can effectively resist tradi-
tional cryptanalysis techniques such as linear analysis and differential analysis. Since
the S-box transformation is the only nonlinear transformation of the AES algorithm, it
largely determines the security of the block cipher. However, its nonlinear characteristic
makes it exploited by attackers during side-channel attacks, so the power analysis attack
generally selects the output of the first round of S-box or the input of the last round of
S-box when the AES algorithm runs as the target intermediate value to carry out the
attack.

2.2 Welch’s t-test

Welch’s t-test is an extension of Student’s t-test, which is applicable when the sample
size and variance of the two sets are not equal. For n power traces Li, each containing m
sampling points, a certain intermediate value during the operation of the cryptographic
algorithm is selected as the grouping basis, and the side-channel leakage traces L is
divided into two groups (i.e. L0 and L1) according to the two possibilities of this value.
The sample sizes, means and variances of L0 and L1 are

(
n0, μ0, S20

)
and

(
n1, μ1, S21

)
,

respectively. The null hypothesis is that the two sets of power consumption traces have

Research on the Grouping Method of Side-Channel Leakage Detection 811

the same mean, and it can be considered that the power traces in the two subsets are not
statistically different with high confidence, that is, there is no leakage of side-channel
power information. The t-statistic can be expressed as follows.

t = μ0 − μ1√
S20
n0

+ S21
n1

(1)

Its degree of freedom v is expressed as follows:

v =

(
S20
n0

+ S21
n1

)1

(
S20
n0

)2

n0−1 +
(

S21
n1

)2

n1−1

(2)

The probability density function of the t distribution can be obtained from the degrees
of freedom as:

f (t, v) = �
(v+1

2

)

√
πv�

(v
2

)
(
1 + t2

v

)− v+1
2

(3)

�(·) is the gamma function. The probability that the null hypothesis holds in the
Welch’s t-test is as follows.

p = 2

∞∫

|t|
f (t, v)dt = 2F(−|t|, v) (4)

F is the distribution function, which can be expressed as:

F(t, v) = 1

2
+ t�

(
v + 1

2

)
2
F1

(
1
2 , v+1

2 , 32 ,− x2
v

)

√
πv�

(v
2

) (5)

2F1 is hypergeometric function in (5).

2.3 Pass/Fail Criteria

The probability that the null hypothesis is established in the t-test, that is, the calculation
result of Eq. (4), gives the probability that the data mean values of the two sets of power
traces at a certain sample point are different. If there is a high-confidence difference
between two sets of power consumption values at a particular point, that is, the p-value
of the corresponding point is very small, it means that the null hypothesis is rejected and
the leakage can be detected. If the p-value is large, it means that the mean difference
between the two sets of power consumption data is small, so the null hypothesis is
acceptable. The size of the p-value is extremely related to the acceptance or rejection of
the null hypothesis, so an appropriate threshold needs to be set. When less severe leaks

812 X. Duan et al.

need to be detected, the threshold can be set to a small value. Conversely, if a higher level
of leakage needs to be detected, the threshold should be set to a larger value. Because of
the large computational volume and the complexity of the test process for conducting
a full t-test, the actual test is often simplified to calculate only the t-statistic. t-test is
usually set at 4.5, as shown in Eq. (6). When the sample size is greater than 1000, setting
the threshold for accepting or rejecting the null hypothesis at 4.5 will enable the t-test
to be accurate at 99.999% or more [8].

p = 2F(t = ±4.5, v > 1000) < 10−5 (6)

When the absolute value of t calculated by Eq. (1) is greater than the threshold value
of 4.5, the difference between the two sets of power consumption values is determined,
i.e. the leakage of power information can be detected.

3 Leakage Detection with Welch’s t-test

3.1 Dataset

This paper conducts experimental analysis and validation with the help of power con-
sumption data from the DPA Contest dataset[13], where the power traces are obtained
from an AES-256 RSM (Rotating S-box Masking) implementation. The output of the
first S-box which is the first round of the AES encryption algorithm was chosen as the
object of the t-test. The 20,000 power traces of the AES encryption algorithm in the DPA
Contest V4 dataset have the same fixed key. There are 400,000 samples on each power
trace. The choice was to evaluate the first byte of the key for leakage information.

3.2 Welch’s t-test Grouping Construction

Most of the existing differential power attacks have been carried out by using the output
of the first S-box or the input of the last S-box of the block cipher algorithm run as the
target intermediate value. From Eq. (1), it can be seen that the Welch’s t-test also uses
the difference characteristic. Therefore, in the process of detecting the leakage of power
information withWelch’s t-test, the first round of S-box output or the last round of S-box
input can also be set as the position of the test to improve efficiency. Combined with
the analysis of SubBytes in Sect. 2.1, this paper selects the output of the first round of
S-box in the AES algorithm encryption process as the sensitive intermediate variable
value in the Welch’s t-test, proposes two grouping methods, and then constructs two
data sets according to the different values of the test position. As shown in Table 1, the
first method in the table is the Hamming weight model, and select the Hamming weight
(HW) for the first round of S-box output for classification, and the second method is to
select each bit of the output value of the S-box for grouping (Fig. 1).

Research on the Grouping Method of Side-Channel Leakage Detection 813

Fig. 1. Diagram of the S-box input and the two corresponding grouping methods

Table 1. Group construction methods for Welch’s t-test

Group method Set I Set II

Method I HW for the first round of the S-box
output

HW = {0, 1, 2, 3, 4} HW = {5, 6, 7, 8}

Method II The first 8 bits values of the S-box
output

bit = 0 bit = 1

3.3 Repeated Tests

In the experiment, each leakage trace contains 400,000 sample points. Even if the thresh-
old is set to 4.5, the accuracy of the t-test can reach more than 99.999%, it still cannot be
ruled out that at a certain sample point, the absolute value of the t-statistic exceeds the
threshold, and there is still a possibility of error at a certain point. In order to minimize
the false alarm rate, it is therefore necessary to carry out two independent experiments as
a repeat test. 20,000 curves with the same key were selected in DPA contest V4, 10,000
of which were subjected to the Welch’s t-test described in Sect. 3.2, and the remaining
10,000 were subjected to the same test. For a given sample point on the energy curve,
the sample point can only be considered a leakage point if the threshold is exceeded at
the same time in both experiments, because if it is chance that the t-statistic exceeds the
threshold at a given time, it is unlikely that this will be repeated at the same time in the
next repeat experiment.

Combining the content of Sect. 3.2, a flow for side channel leakage assessment using
the Welch’s t-test can be obtained as shown in the figure below (Fig. 2).

814 X. Duan et al.

Energy curves acquisition

Repeat tests to purify leakage points

Data analysis and comparison

Construction of groupings based on intermediate values

Welch’s t-test and leakage assessment

Fig. 2. Schematic of the flow of side-channel leakage assessment with Welch’s t-test

4 Experimental Results and Analysis

In DPA contest V4, select 20,000 energy curves with the same key, of which 10,000 are
subjected toWelch’s t-test according to the two grouping methods described in Sect. 3.2,
and the remaining 10,000 energy curves are repeated according to Sect. 3.3. The sample
pointswhich exceed the threshold in both experiments are leakage points, and the number
of leakage points detected by each grouping method is shown in Fig. 3. It can be seen
from the figure that each grouping method can detect a large number of leakage points.
But in comparison, the method that selects the Hamming weight output by the first round
of S-boxes for grouping can detect 1002 leakage points. It can detect the larger number
of leakage points. In the second method, that is, the method of grouping according to
the bit value of 0 or 1, the third bit and the seventh bit outperform the other 6 grouping
methods, and can detect 956 and 932 leakage points respectively.

Figure 4 shows the result of Welch’s t-test for the first group of 10,000 curves by
method I in Table 1, i.e., the Hamming weight model. The red dotted lines in the two
figures represent the threshold±4.5, and it can be found that the leakage points aremainly
distributed in four regions, i.e., the four peaks in the figures. In Fig. 5, the leakage points
obtained by grouping with the method II are also distributed in the same four main areas,
and the |t|max obtained by each grouping method in each area and the corresponding
sample time points are recorded in Table 2. It can be seen from the data in the table
that although the corresponding leakage time points of |t|max in the four main areas are
similar for each method, there is still a certain gap in the t-statistic. The t-statistic of
HW is generally larger in all four regions. The t-statistic of bit7 is larger in the other
three regions but smaller in region IV. Figure 6 zooms in on the three areas of the area
marked by the red square in Fig. 4 to obtain a local curve graph of the area. The figure
again confirms that the t-statistic obtained by the HWmethod at most sample points are
higher than those obtained by the other seven grouping methods.

Research on the Grouping Method of Side-Channel Leakage Detection 815

Fig. 3. The number of leakage points obtained by each grouping method

Fig. 4. T-statistic at different sample points obtained by method I

Table 2 only lists the distribution of the maximum t-statistic in the four regions. In
order to analyze the distribution of the magnitude of t-statistic at all leakage points under
different grouping methods, Fig. 7 divides the magnitude of t- statistic into six groups,
4.5≤ t< 10, 10≤ t< 20, 20≤ t< 30, 30≤ t< 40, 40≤ t< 50 and t≥ 50, respectively.
Although the maximum t-statistic of 156.625 obtained by grouping by bit7 values was
the highest of all results, the t-statistic of leakage points obtained by grouping by first
round S-box output Hamming weights of 0–4 or 5–8 were the most evenly distributed
in the six intervals, especially in the intervals 30 ≤ t < 40, 40 ≤ t < 50 and t ≥ 50,

816 X. Duan et al.

Fig. 5. T-statistic at different sample points obtained by bit0

Table 2. |t|max and its corresponding leakage point in four regions under different grouping
methods

Region I |t|max
(sample point)

Region II |t|max
(sample point)

Region III |t|max
(sample point)

Region IV |t|max
(sample point)

bit0 39.921(101577) 30.179(223980) 42.353(228894) 25.371(243104)

bit1 38.414(101575) 27.262(223779) 55.533(228414) 28.066(243666)

bit2 40.916(101577) 28.452(223977) 55.001(228416) 24.980(243110)

bit3 49.152(101580) 40.444(224106) 49.623(228395) 34.141(243112)

bit4 57.329(101435) 41.766(224108) 48.788(228590) 30.694(243108)

bit5 31.926(101590) 29.579(224107) 36.410(228470) 25.136(243668)

bit6 70.178(101578) 54.011(224110) 49.812(228392) 37.492(243665)

bit7 156.625(101571) 101.138(224112) 76.217(228593) 25.223(243668)

HW 94.485(101589) 64.570(223781) 108.256(228403) 63.697(243108)

where the number of leakage points was most prominent and much higher than those
obtained by other methods. The size of the t-statistic represents, to a certain extent, the
degree of leakage, i.e., the degree of correlation with the sensitive intermediate value.
When doing subsequent first-order DPA or CPA attacks, a portion of the leakage points
can be selected as feature points according to the number of feature points required,
using the size of the t-statistic as a reference standard. In summary, grouping by AES
first round S-box output Hamming weight of 0–4 or 5–8 works better than grouping by
S-box output of 0 or 1 for each bit value.

Research on the Grouping Method of Side-Channel Leakage Detection 817

Fig. 6. T-statistic at several sample points obtained by every grouping method for region III

Fig. 7. Distribution of the magnitude of t-statistic for all leakage points

5 Summary

This paper examines the choice of test positions in the process of side-channel informa-
tion leakage assessment using the Welch’s t-test, and proposes two grouping methods.
Experiments on the DPA contestV4 dataset lead to the conclusion that the method of
grouping by first-round S-box output Hamming weight of 0–4 or 5–8 is higher than the

818 X. Duan et al.

other groupingmethods in terms of both the number of leakage points and the proportion
of high t-statistic distribution.

The next step can be to use the side-channel leakage assessment method proposed
in this paper to compare it with other tests in the field of statistics such as the F-test and
the chi-square test. In addition, a study can be conducted to verify whether the higher
the t-statistic of the leakage point is chosen as the feature point, the higher the success
rate of the first-order side-channel attack will also be.

Acknowledgments. This research was supported by the College Students’ Innovation and
Entrepreneurship of china (No. 202210018009).

References

1. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart
Cards. Springer, Berlin (2007). https://doi.org/10.1007/978-0-387-38162-6

2. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48405-1_25

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28632-5_2

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, çK., Paar, C. (eds.)
CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36400-5_3

5. Bao, S.G.: Research on the Experimental Method and Technology of Smart Card Template
Attack. Shanghai Jiaotong University, Shanghai (2015)

6. Bhasin, S., Danger, J., Guilley, S., et al.: NICV: normalized interclass variance for detection
of side-channel leakage. In: Proceedings of the EMC 2014, Tokyo, Japan, pp. 310–313 (2014)

7. Chen, S., Rui, W., Wang, X.F., et al.: Side-channel leaks in web applications: a reality today,
a challenge tomorrow (2010)

8. Goodwill, G., Jun, B., Jaffe, J., et al.: A testing methodology for side-channel resistance
validation. In: Proceedings of the NIST NIAT 2011, Nara, Japan, pp. 115–136 (2011)

9. Becker, G., Cooper, J., Demulder, E., et al.: Test vector leakage assessment (TVLA) Method-
ology in Practice. http://pdfs.semanticscholar.org/a10f/31018c9ce38a5231b6481a8f9d4881
bca64c.pdf, Accessed 30 Apr 2020

10. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T., Handschuh,
H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48324-4_25

11. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak information? an
a priori statistical power analysis of leakage detection tests. In: Sako, Kazue, Sarkar, Palash
(eds.)Advances inCryptology -ASIACRYPT2013, pp. 486–505. SpringerBerlinHeidelberg,
Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_25

12. Chen, J., Li, H., Wang, Y., Wang, Y.: Evaluation side-channel information leakage in 3DES
using the t-test. J. Tsinghua Univ. (Nat. Sci. Ed.) 56(05), 499–503 (2016). https://doi.org/10.
16511/j.cnki.qhdxxb.2016.25.007

13. TELECOM ParisTech SEN research group. DPA Contest (4th edition) 2013–2014. http://
www.DPAcontest.org/v4/

https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36400-5_3
http://pdfs.semanticscholar.org/a10f/31018c9ce38a5231b6481a8f9d4881bca64c.pdf
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.16511/j.cnki.qhdxxb.2016.25.007
http://www.DPAcontest.org/v4/

PREFHE, PREFHE-AES
and PREFHE-SGX: Secure Multiparty

Computation Protocols from Fully
Homomorphic Encryption and Proxy

ReEncryption with AES and Intel SGX

Cavidan Yakupoglu(B) and Kurt Rohloff

New Jersey Institute of Technology, Newark, NJ 07102, USA
{cy267,rohloff}@njit.edu

Abstract. We build our secure multiparty computation (MPC) proto-
cols on top of the fully homomorphic encryption (FHE) scheme, BFVrns,
and augment it with Proxy Re-Encryption (PRE). We offer three dis-
tinct secure MPC protocols that make use of the Advanced Encryption
Standard (AES) and Intel Software Guardian Extension (SGX). The
PREFHE protocol is based on FHE and PRE that offers a reasonable
computational time of milliseconds or seconds, depending on the func-
tion computed jointly on the parties’ encrypted data. It offers 4 rounds
and a communication cost that only depends on the parties’ cipher-
text size. PREFHE-AES employs AES-128 encryption, which reduces
the cost of communication to bits rather than kilobytes or megabytes
while maintaining the same number of rounds as PREFHE. PREFHE-
SGX is another novel approach that reduces the number of rounds from
4 to 3 by utilizing only one untrusted server. Additionally, it delivers a
reasonable level of performance that is applicable to real-world use cases.
We pioneer the use of SGX and FHE in secure MPC protocols, resulting
in reduced number of rounds. In the protocols, after parties send their
encrypted data to the server, they are not required to be online that
improves practicality in the protocols. Additionally, the parties are not
required to collaborate on any computations during the encryption and
decryption phases that makes our protocols more efficient than other
proposed protocols.

Keywords: Multiparty computation · Homomorphic encryption ·
RLWE · Proxy reencryption · Intel SGX

1 Introduction

With the improvement of technology, new approaches have been proposed such
as cloud storage/computing or distributed computing. While these services offer
ease and practicality in real life, it comes at a price of privacy. When we store

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 819–837, 2023.

https://doi.org/10.1007/978-3-031-25538-0_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_43&domain=pdf
http://orcid.org/0000-0001-9048-814X
http://orcid.org/0000-0003-0389-5092
https://doi.org/10.1007/978-3-031-25538-0_43

820 C. Yakupoglu and K. Rohloff

our data in the cloud, the cloud or other cloud users may snoop our confidential
data. To protect this sensitive information, storing the data in encrypted way is
the first step to solve this problem. This idea leads to another problem of making
computations on this data. Homomorphic encryption (HE) enables computation
of some functions on the encrypted data while FHE allows any kind of compu-
tation. Secure MPC takes this approach to another level with computing on the
encrypted data collaboratively. It enables n parties computing a function F on
n encrypted inputs, such that each party learns the result of the function but
not any others’ input.

Secure MPC was first introduced by Yao in 1986 [48] for two-party case and
multiparty case by Goldreich, Micali and Wigderson [27]. For constructing secure
MPC two different approaches have been proposed in general. The first method
is based on secure secret sharing where there is an honest majority among the
parties [4,10]. The second approach uses binary circuit representation of the
function [27,48]. Secure MPC has progressed in terms of efficiency with the recent
studies. Based on HE, many MPC studies were proposed such as [5,14,17,18,38].
After the introduction of FHE, many MPC studies were proposed based on FHE
such as [33] and FHE variants such as threshold FHE [3] and multikey FHE [34].

FHE refers to a family of encryption methods that allows evaluation of arbi-
trary computation on encrypted data. FHE was first proposed by Rivest et
al. [41] in 1978. It was an open problem until Gentry proved that FHE is possi-
ble by using lattices in his work [25] in 2009. After Gentry’s breakthrough, many
variants of FHE were proposed in the literature [19,43]. FHE offers privacy for
data and efficiency on distributed computing on encrypted data and enables
powerful privacy-preserving applications. One of these important applications
is the family of secure MPC protocols. FHE allows constructing efficient secure
MPC schemes. Lattice-based cryptography is known for its quantum resistance,
so our secure MPC protocols are quantum-resistant as well. We propose three
secure MPC protocols with BFVrns [7,22,29] that is a ring-learning with error
(RLWE) based FHE scheme. We offer efficient secure MPC implementations
based on PALISADE lattice cryptography library1 [39].

Efficiency of secure MPC is measured based on three metrics such as rounds,
computation cost and communication cost. Rounds refers to total number of
communication between parties and servers and among servers. Communication
cost is used for the amount of data that is transferred during the execution
of the protocol. Computation cost is the amount of computation conducted in
each party and server to process the protocol. Some studies suggest some secure
MPC protocols that computational and communication complexities of all the
parties who participate in the protocol depend on the complexity of the function
[4,10,27,30]. This type of protocols may not be efficient in real-life application
due to the high complexity of the function. Some recent protocols require com-
munication at every gate and all parties to be online [5,16,18] which is not
very possible all the time. In some protocols, decryption is jointly computed [34]
which is not very practical in most of use cases. The protocol of [3] requires the

1 https://gitlab.com/palisade/palisade-release.

https://gitlab.com/palisade/palisade-release

PREFHE, PREFHE-AES and PREFHE-SGX 821

parties to generate a joint public key online which is not always achievable in
real life. The study in [28] suggests a secure MPC protocol for a small class of
functions that is not enough for most of the applications. To overcome these
challenges, we introduce our FHE and PRE-based secure MPC construction and
its two variants with AES and SGX.

We introduce a novel concept of secure MPC as a hybrid of FHE and PRE.
Our secure MPC constructions mainly depend on FHE approach. We make use
of its proxy-reencryption (PRE) capability for constructing the secure MPC
protocols. PRE allows us to conduct computation on encrypted data which are
encrypted under many different keys while FHE enables secure computation
for two parties. The recent Threshold FHE schemes have some pitfalls that
a third party should know all secret keys of the parties to create a common
multiparty operation key. We overcome this problem by using PRE. PRE allows
reencryption of the ciphertext under a common key to enable evaluation of the
function on the given ciphertexts by different parties. It also enables reencrytion
of the result of the function evaluation under individual keys of each party so
that each party can decrypt the result without exchanging any keys or partial
decrypted results.

Our protocols depend on honest-but-curious (semi-malicious) security model
that is a prevalent security model used in practical implementations of secure
MPC due to performance reasons [6,9,20,21,32]. We assume that two untrusted
servers in the protocols do not collude. The assumption of existence of two non-
colluding servers is widely used in many studies [9,11,15,21]. Furthermore, we
propose further improvements to enhance the security model to malicious model
with non-interactive zero knowledge (NIZK) proofs proving plaintext knowl-
edge as done in the work [34]. Our protocols can be easily used by the privacy-
preserving applications such as auctions, electronic voting or secure machine
algorithms can be good use cases for our secure MPC protocols.

In our main protocol PREFHE, we assume that we have two non-colluding
but untrusted servers. One of the server is responsible for creating FHE param-
eters and generating common key pair and reencryption keys for each part.
Another one conducts evaluation of the function on the ciphertexts and reen-
cryption of the result. In PREFHE, the parties are involved in the protocol
while uploading their encrypted data and decrypting the final result. In the rest
of the protocol, any party does not need any further communication with the
servers. The communication between the clients or servers does not depend on
the complexity of the function to be evaluated. Also, the computation of the
parties/clients does not depend on the complexity of the function F . All parties
are not expected to be online after sending their encrypted data to the server.
In the encryption or decryption phase, we do not require any joint computation
by the parties. The parties only send their encrypted data to the server and they
get the final result in encrypted at the end of the protocol.

In the AES variation of PREFHE, PREFHE-AES, the parties send their
data encrypted under AES-128 that enables less communication cost between
the parties and the server (S1). We adapt the idea of the work in [36] to our

822 C. Yakupoglu and K. Rohloff

secure MPC protocol. This adaption creates an extra computational cost on the
server (S1), but this can be handled with improvements such as parallelization
or including special hardware for AES encryption/decryption. We propose SGX
variation of PREFHE as PREFHE-SGX that combines PALISADE library (for
implementation of the FHE scheme), Intel SGX technology and secure MPC. We
use Gramine as a bridge between PALISADE and Intel SGX to avoid adjusting
the PALISADE code to SGX [31].

1.1 Our Contributions

PREFHE: PREFHE proposes the first combination of FHE and PRE approach
for secure MPC protocols. It enables practical secure MPC implementation for
real-life use cases. It requires 4 rounds including key exchange phase which is
not included as a round in many previous works. The parties in the PREFHE
protocol are not required to be online after they send their encrypted data to
the server. This makes the protocol a good fit for the applications that do not
allow online access all the time. The parties send their data encrypted under the
BFVrns scheme that may result in kilobytes sometimes megabytes. This may
cause some problems in low-bandwidth network or applications that have small
memory or network channel. To handle this problem, we propose AES version
of PREFHE.

PREFHE-AES: To reduce the communication cost of PREFHE, the parties
send their data encrypted in AES-128 which has smaller data size to be sent to
the server. We reduce communication cost, but it comes at a price of computation
cost on the server side. Computing decryption of AES-128 homomorphically
is a costly operation. For applications that require less communication cost,
PREFHE-AES is a good fit with the same number of rounds as PREFHE at a
reasonable computational time.

PREFHE-SGX: For the applications that allow only one server or have
constraints of local computation, PREFHE-SGX is a convenient approach with
3 rounds that has less than most of the state-of-the-art protocols. It also intro-
duces reasonable computational cost which only depends on the function to be
evaluated. We lead adapting SGX and FHE together in secure MPC protocols
that leads practical use of secure MPC protocols in real-life applications.

Performance In Practice: Our three protocols provide reasonable amount
of running time on the client and server side with milliseconds or seconds that
mainly depends on the function. Even if circuit depth is high, we use an efficient
FHE scheme, BFVrns, that takes advantages of Residue Number System (RNS)
and packing of plaintext in SIMD manner [24,42].

1.2 Related Works

The idea of using threshold homomorphic encryption in MPC protocols was
first presented by Cramer, Damgard, and Nielsen [14]. Somewhat homomorphic
encryption was used to boost implementation of MPC protocols in some studies

PREFHE, PREFHE-AES and PREFHE-SGX 823

such as [5,18]. In their protocols, all parties compute proportional to the com-
plexity of the function to be computed and interact at every gate. Choudhury et
al. proposed better communication at a computation cost [12]. Their work sug-
gested a kind of interactive bootstrapping protocol to refresh ciphertexts. Cloud
server idea came with the work by Kamara et al. [30]. They proposed server-
aided MPC idea by assigning large amount of works from the computation to
some parties. Halevi et al. suggested the idea of secure computation on the web
to minimize communication between parties in the computation [28]. After FHE
is proposed by Gentry [25], new approaches based on FHE were suggested by
Lopez et al. [33,34] using multikey FHE approach. Asharov et al. presented an
efficient threshold FHE based secure MPC scheme in terms of round, commu-
nication and computation costs [3]. TFHE schemes allow to jointly generate a
common FHE public key along with a secret key that is shared by them later.
For decryption, they conduct a collobarative decryption process on ciphertexts
to get the final plaintext without learning others’ inputs. Garg et al. achieved 2-
round MPC from indistinguishability obfuscation [23]. As an optimization they
suggested another 2-round MPC protocol from multikey FHE that is indepen-
dent of the circuit to be computed. [37] proposes a Intel SGX as TEE and
FHE-based multiparty computation that makes use of a certification authority
(CA) for aunthentication of the parties. [46] presents a multiparty construction
that uses partial HE and Intel SGX as TEE. The latest two constructions do
not use Gramine.

2 Background

2.1 Fully Homomorphic Encryption Scheme: BFVrns

We give a brief explanation of the BFVrns scheme referenced from [7,22,29] but
mainly from [29]. Fan and Vercauteren [22] present the RLWE version of work
proposed by Brakerski in [7]. Residue Number System (RNS) variant of the BFV
scheme is presented by Halevi et al. [29] for more efficient procedures for BFV
and it is implemented in PALISADE library. BFVrns provides improvements
on decryption and homomorphic multiplication by using Chinese Remainder
Theorem (CRT) representation. BFVrns utilizes some parameters such as m,
t, q ∈ Z. t stands for plaintext modulus, N stands for φ(m) = N , ciphertext
modulus is q =

∏k
i=1, qi for the same size qi, σ is the standard deviation of error

distribution χ. rw stands for the size of the relinearization window. Let rings be
R = Z[x]/Φm(x), Rq = R/qR, Rt = R/tR. We choose a uniform αi ∈ Rq and
ei ← χ, qi

∗ = q/qi, q′
i = [qi

∗−1]qi , βi = [q′
iqi

∗s2 − αis + ei]q for i = 0, 1, . . . , k.
The public key consists of pk and Wi := (βi, αi).

– KeyGeneration: Secret Key: Sample s ← χ, set sk = (1, s) ∈ R2.
Public Key: Sample a ← Rq, e ← χ, set pk = ([−(a · s + e)]q, a) ∈ R2

q.
– Encryption(m, pk): m ∈ Rt, u ← χ, e0, e1 ← χ, ct = [u · pk + (e0, e1) +

(Δm, 0)] where Δ = q/t. Output ct.

824 C. Yakupoglu and K. Rohloff

– Decryption(ct, sk): ct = (ct[0], ct[1]), x = [〈sk, ct〉]q = [c[0] + c[1]s]q and
output m := [�x · t/q�]t.

– Add(ct0, ct1): Output [ct0 + ct1]q.
– Mult(ct0, ct1): For ct0, ct1, tensoring and relinearization are computed as

follows:
• Tensoring: c[0] = ct0[0]ct1[0], c[1] = ([ct0[0]ct1[1]+ [ct0[1]ct1[0]]q), c[2] =

ct0[1]ct1[1] and c = (c[0], c[1], c[2]). Output c′[i] = [�t/q · c[i]�]q for i =0,
1, 2.

• Relinearization: Decompose c′[2] into its CRT components c′[2][i] =
[c′[2]]qi , set c′′[0] = [

∑k
i=1 βic

′[2][i]]q, c′′[1] = [
∑k

i=1 αic
′[2][i]]q, output

ctmult = [(c′[0] + c′′[0], c′[1] + c′′[1])]q.
– MultiPartyKeyGen(pk): pk = (p0, p1), a ← p1, s ← χ, b = −(e+(a · s))+

p0, set new key pk′ = (b, a) and sk = s.
– ReKeyGen(newpk, oldsk): For rw = 0, newpk = (p0, p1), e1i, e2i ← χ,

ui ← χ. For each element in oldsk; c0i = p0 · ui + e1i + fi where fi are
elements at index i in oldsk. c1i = p1 ·ui + e2i. Set evalKey = ({c0k}, {c1k)}
for 0 ≤ k < v where v is the number of elements in oldsk. Output evalKey.

– ReEncrypt(evalKey, ciphertext): Apply KeySwitch on ciphertext with
evalKey.

– KeySwitch(evalKey, ciphertext): evalKey = (b, a). Set digitsC1 as CRT-
Decompose of ciphertext[1] on base rw, c1 = digitsC1[0] · a[0], c0 = c0 +
digitsC1[0]·b[0]. Set c0 = c0+

∑k−1
i=1 (digitsC1[i]·b[i]), c1 =

∑k−1
i=1 (digitsC1[i]·

a[i]) where k is size of digitsC1. Output newCiphertext = (c0, c1).

2.2 Intel SGX

The Trusted Execution Environment (TEE) is an approach for secure compu-
tation that enables the processing of sensitive data within the main processor’s
secure area (enclave). TEE delivers memory in secure enclaves for isolated com-
putation in the presence of a malicious host. Other processes, such as user or
kernel level operations, cannot modify the code contained within the enclave.
SGX is a hardware-assisted version of TEE that is available on various Intel
processors. SGX enables code to execute in a protected enclave that can com-
municate with other applications through a dedicated channel, but other appli-
cations cannot access the enclave itself [13]. Enclave execution takes place in
the protected mode (at ring 3) and follows the address translation done by the
operating system kernel [13]. SGX has remote attestation to prove the integrity
of the code running in the enclave. When a malicious party attacks a system, it
cannot access the code running/stored in the enclave. This reduces the attack
surface of the system. SGX has also some disadvantages as follow.

– Paging cost: Data is encrypted and decrypted during exchanging the data
between the enclave and outer program. This step creates latency during the
paging process.

– Memory limit: SGX has physical memory limit of 128 MB while the practical
limit is 90 MB [13,26].

PREFHE, PREFHE-AES and PREFHE-SGX 825

– Lack of library support: Some C++ operations or libraries cannot be used in
SGX such as vector from standard library and system calls.

In our study, SGX helps us to execute sensitive data in an untrusted server. In
PREFHE, we have to use two servers to prevent disclosing of parties’ data. In
the PREFHE-SGX version, one server handles the tasks of two servers. When
the server in PREFHE-SGX runs the sensitive data that helps decrypting the
clients’ encrypted data. In the new version, creating the common key pair and
reencryption key that use the secret key of common key pair take place in the
SGX enclave which cannot be tampered by the host server or any other malicious
third parties.

Gramine: Gramine is an open-source, lightweight Lib OS(Library Oper-
ating System) project that supports Intel SGX and allows users to run their
existing applications on Intel SGX [31]. Intel Labs initiated Gramine (previously
called Graphene) to provide an open-source compatibility layer for Intel SGX.
Gramine bridges various kind of applications and Intel SGX without modifying
the application code. Gramine supports native Linux binaries on all platforms.
We use Gramine to integrate PALISADE homomorphic encryption library and
Intel SGX. Since Intel SGX does not allow usage of some libraries, Gramine
handles this problem for developers. PALISADE, Gramine and Intel SGX are
first used by Takeshita et al. [45] while we pioneer using this system for building
secure MPC protocols.

3 Secure MPC Protocols

In this section, we introduce our three secure MPC protocols in detail.

3.1 PREFHE: Secure MPC from Multikey FHE and PRE

We construct a secure MPC protocol based on the BFVrns scheme which is
a prominent lattice-based FHE scheme. Our protocol is constructed on two
untrusted servers and n clients who want to run secure MPC on their secret
data collabaratively. We utilize PRE approach to enable privacy of the inputs of
the clients and the result of secure multiparty computation. PRE allows reen-
crypting different ciphertext under the same secret key. Indirectly, it also allows
decrypting the same input under different secret keys. In the protocol, we utilize
the PRE method proposed in [40] as a building block to manage two untrusted
server setting. We assume that these two servers do not collude and the clients
and S1 use a secure channel to prevent S2 to access any ciphertext which is
encrypted under reencryption keys generated with the common key pair. We
summarize how this protocol works step by step. Also, we provide the security
analysis for semi-malicious model (a.k.a. honest-but-curious model).

1. The untrusted server S2 decides on the FHE parameter set which is generated
by the work [47] and verified by LWE Estimator [2] that is used in Homomor-
phic Encryption Standard [1]. S2 decides on the client index j who initiates

826 C. Yakupoglu and K. Rohloff

Key Generation and S2 creates the crytocontext cc and a common key pair
CKPair from cc to reencrypt the ciphertext under the same key pairs, pub-
lishes FHE parameters, CKPair.pk and j to the clients as in Fig. 1.

2. The clients can check the security of the parameter set with LWE Estimator
and if it does not provide necessary security limit (i.e. at least 128-bit security
level), they can ask for S2 to generate a new parameter set and publish it to
all parties.

3. The client j initiates the Key Generation process and broadcasts his public
key as pkj .

4. Other clients operate Multiparty Key Generation using pkj . Each party
encrypts their data under their individual public key.

5. All clients operate ReKey Generation process to generate new encryption
keys to enable S1 to eval the function on the data.

6. The clients reencrypt their ciphertext under their new individual reencryption
keys. They send these new ciphertexts cptxtCi to S1. S1 evaluates the function
to be computed on these ciphertexts as in Fig. 2. S1 does not know the secret
key of the common key pair CKPair, thus S1 cannot decrypt the ciphertexts
of the clients.

7. As seen in Fig. 3, S2 creates reencryption keys to allow the clients to decrypt
the result under their individual secret keys. S2 sends these keys REKeyi to
S1 allowing that noone can see the result in plaintext including S1 and S2.

8. S1 reencrypts the result under corresponding new reencryption keys of the
clients and sends all ri to corresponding public key holder clients where 1 ≤
i ≤ n.

9. Each client decrypts their reencrypted ciphertext ri under their individual
secret keys and learns the result of the multiparty computation.

Clients Server2

FHE parameters, index j

CKPair=cc→ KeyGen()

Key Generation

kpj = cc→ KeyGen()

Publish kpj .pk

kpk = cc→ MultipartyKeyGen(kpj .pk) (for k! = j)

FHE Parameters, j, CKPair.pk

Fig. 1. Key generation and exchange phases of the PREFHE protocol.

PREFHE, PREFHE-AES and PREFHE-SGX 827

Clients Server1

result= cc→ EvalF({cptxtCi})

Encryption (for 0 ≤ i < n)

cptxti = cc→ Encrypt(kpi.pk, ptxti)

ReEncryption (for 0 ≤ i < n)

REKeyCi = cc→ ReKeyGen(CKPair.pk, kpi.sk)

cptxtCi = cc→ ReEncrypt(REKeyCi, cptxti)
{cptxtCi}

Fig. 2. Reencryption phase of PREFHE and PREFHE-SGX protocol.

Clients Server1 Server2

Re Encryption (for 0 ≤ i < n)

ri= cc→ ReEncrypt(REKeyi, result)

Re Encryption KeyGen (for 0 ≤ i < n)

REKeyi = cc→ ReKeyGen(kpi.pk, CKPair.sk)

Decryption (for 0 ≤ i < n)

cc→ Decrypt(kpi.sk, ri, DecResulti)

{REKeyi}

{ri}

Fig. 3. Second reencryption and decryption of the PREFHE protocol.

3.2 PREFHE-AES: Secure MPC from Multikey FHE and PRE
with AES

We combine the first version of our secure MPC protocol with AES-128 encryp-
tion method to reduce communication cost between the servers and clients. In
the previous scheme, the clients need to send their ciphertexts that are encrypted
under the BFVrns scheme. The ciphertext size in the FHE schemes is large such
as 2N log q bits where N is the ring dimension, log q is ciphertext modulus.
To overcome this problem, the clients send their data encrypted under AES-
128 encryption that results in a far smaller ciphertext sizes than the BFVrns
encrypted one. The ciphertext size in AES-128 depends on the plaintext size,
mode of operation and padding. The steps of the protocol are explained as fol-
lows:

1. The protocol starts with the key generation and key distribution as in Fig. 4.
The FHE parameters are decided by S2 as in PREFHE and distributed to
the clients. At the same time, S2 creates a cryptocontext cc and generates a
common key pair CKPair from cc to let the clients create their reencryption
keys and reencrypt their ciphertexts.

828 C. Yakupoglu and K. Rohloff

2. The clients generate their public, private key pairs and encrypt their data
under their AES-128 key as ci as in Fig. 4.

3. The clients encrypt their AES key with their FHE public key as cki.
4. They create reencryption key from the common key pair as REKPi and send

REKPi, ci and cki to S1.
5. S1 encrypts the ciphertexts with their FHE public keys and unravels the

ciphertexts with homomorphic AES-128 decryption (AES−1) as in Fig. 6.
6. S1 reencrypts these ciphertexts again under their corresponding reencryption

keys and evaluates the necessary function on the FHE ciphertexts.
7. S2 generates the second reencryption key to enable the ciphertexts to be

decrypted under individual private keys of the clients and sends REKeyRCi

to S1 as in Fig. 5.
8. S1 reencrypts the result with their respective reencryption keys and conducts

dimension reduction as in [8] to reduce the size of the ciphertexts, then S1

sends these ciphertexts to the corresponding clients.
9. The clients decrypt their ciphertext with their private keys and get the result

in plaintext.

Clients Server2

FHE parameters, index j

CKPair=cc→ KeyGen()

Key Generation

kpj = cc→ KeyGen()

Publish kpj .pk

kpk = cc→ MultipartyKeyGen(kpj .pk) (for k! = j)

FHE Parameters, j, CKPair.pk

Fig. 4. Key generation and distribution of the PREFHE-AES protocol.

PREFHE, PREFHE-AES and PREFHE-SGX 829

Clients Server1 Server2

Re Encryption (for 0 ≤ i < n)

rci= cc→ ReEncrypt(REKeyRCi, result)

Dimension Reduction (rci)[8]

Re Encryption KeyGen (for 0 ≤ i < n)

REKeyRCi = cc→ ReKeyGen(kpi.pk, CKPair.sk)

Decryption (for 0 ≤ i < n)

cc→ Decrypt(kpi.sk, rci, DecResulti)

{REKeyRCi}

{rci}

Fig. 5. The second reencryption and decryption phase of the PREFHE-AES protocol.

Clients Server1

ci = cc→ Encrypt(kpi.pk, ci)

ci = AES−1(ci, cki)

ReEncryption (for 0 ≤ i < n)

ci = cc→ ReEncrypt(REKPi.pk, ci)

result= cc→ EvalF({ci})

Encryption (for 0 ≤ i < n)

ci = AES(ki, ci)

REKPi = cc→ ReKeyGen(CKPair.pk, kpi.sk)

cki = cc→ Encrypt(kpi.pk, ki)
{ci, cki, REKPi}

Fig. 6. The first reencryption and evaluation of function F phase of the PREFHE-AES
protocol.

3.3 PREFHE-SGX: Secure MPC from Multikey FHE and PRE
with SGX

In this section, we present PREFHE-SGX that enables constructing the
PREFHE protocol with one-server setting. Intel SGX enables calculation of sen-
sitive data in the SGX enclave by protecting the data from the outer applications
or adversaries. The difference between this protocol and PREFHE is calculating

830 C. Yakupoglu and K. Rohloff

common key pair and reencryption keys in the SGX enclave. In PREFHE, S2

conducts these operations separately to prevent the clients’ data to be seen in
plaintext by S1.

Clients Server1

FHE parameters, index j

IN SGX ENCLAVE

CKPair=cc→ KeyGen()

Key Generation

kpj = cc→ KeyGen()

Publish kpj .pk

kpk = cc→ MultipartyKeyGen(kpj .pk) (for k! = j)

FHE Parameters, j, CKPair.pk

Fig. 7. Key exchange phase of the PREFHE-SGX protocol. (Grey box represents the
SGX enclave.)

Clients Server1

Re Encryption (for 0 ≤ i < n)

ri= cc→ ReEncrypt(REKeyi, result)

IN SGX ENCLAVE

Re Encryption KeyGen (for 0 ≤ i < n)

REKeyi = cc→ ReKeyGen(kpi.pk, CKPair.sk)

Decryption (for 0 ≤ i < n)

cc→ Decrypt(kpi.sk, ri, DecResulti)

{ri}

Fig. 8. Second reencryption and decryption of the PREFHE-SGX protocol. (Grey box
represents the SGX enclave.)

PREFHE, PREFHE-AES and PREFHE-SGX 831

With SGX, the secret key of the common key pair is stored in the SGX
enclave. The operations which use this secret key also locate in the SGX enclave
so that the server cannot decrypt the clients’ encrypted data. We refer the reader
to the explanation of PREFHE for further details due to space limit. In this
protocol, Gramine allows us to run PALISADE code on the SGX enclave without
any adjustments on the code. Figure 7, 2 and 8 depict the steps of the protocol
in order.

3.4 Correctness

Correctness of the protocols mainly depends on the BFVrns scheme given in
Sect. 2.1. Halevi et al. provides correctness proof of the scheme in [29]. We present
the correctness of the PREFHE protocol in this section. Other two protocols
follow the same correctness proof.

At the beginning of the protocol, KeyGeneration step creates the public, pri-
vate key pair for the encryption step. After this step, we make use of PRE scheme
that proposed in [40]. In this step, PRE allows encrypting of all ciphertexts under
the same key pair to evaluate a function on them. PRE has ReKeyGen routine
that creates new evalKey for transforming the ciphertext to another one. The
second step of PRE is ReEncryption step which calls KeySwitch routine due
to being a PRE operation. KeySwitch changes the given input ciphertext to
another ciphertext that is encrypted under the new key given in ReKeyGen
step. KeySwitch method uses the algorithm given in [8] as digit decomposition
method. Correctness of PRE scheme is proved in [40]. In this step all ciphertexts
are transformed to be encrypted under the same public key. The corresponding
secret key of this public key is only known by S2. All ciphertext are sent to
S1 to evaluate the function which clients want to calculate. S1 evaluates the
function on the ciphertexts. S2 runs ReKeyGen routine to create new evalKey
set for reencrypting the result to be decrypted under each clients’ secret key. S1

runs ReEncryption and sends the results to corresponding clients. Correctness of
this step also depends on the PRE scheme. Clients decrypt these new individual
ciphertexts with their secret key and open the result in plaintext. Correctness of
this protocol mainly depends on PRE which is used two times as a subroutine.

The final decryption of ciphertext after reencryption can be represented as
follows where pk = (p0, p1) and b = p0 · u[i] + e1[i] + s[i] from ReKeyGen
procedure:

c0 − s · c1 = c0 +

k−1∑

i=1

(digitsC1[i] · b[i]) − s ·
k−1∑

i=1

(digitsC1[i] · a[i])

= c0 +

k−1∑

i=1

(digitsC1[i] · (p0 · u[i] + e1[i] + s[i])) − s ·
k−1∑

i=1

(digitsC1[i] · a[i]).

(1)

832 C. Yakupoglu and K. Rohloff

After scaling down by t/q;

�(c0−s∗c1)t/q� = �t/q(c0−s ·
k−1∑

i=1

(digitsC1[i] ·a[i])+
k−1∑

i=1

(digitsC1[i] ·(p0 ·u[i]+e1[i]+s[i])))�.

(2)
�∑k−1

i=1 (digitsC1[i] · ((−e − as) · u[i] + e1[i] + s[i]))t/q� is small enough due to
q 	 t. It can be seen that

�(c0 − s · c1)t/q� = m (mod t). (3)

3.5 Security Analysis

Security for the Semi-honest Model: The semi-honest model implies that
all parties follow the protocol description, but they still try to gather informa-
tion about other parties’ inputs, intermediate results or overall outputs just by
looking at the protocol’s transcripts.

Security of the PREFHE protocol mainly depends on underlying FHE scheme
of the protocol and BFVrns depends on RLWE assumption as follows.

Definition 1. (RLWE [44]): For security parameter λ, f(x) = xn + 1 where
n is power of 2. q is q ≥ 2. Let the ring R = Z[X]/f(x) and Rq = R/qR.
χ is a distribution over Rq. RLWEQ,χ,n problem concerns about distinguishing
following two distributions. The first distribution is uniformly generated samples
(ai, bi) ∈ R2

q. In the second distribution, samples s from Rq uniformly, (ai, bi) ∈
R2

q where ai ← Rq uniformly and ei ← χ, bi = ai · s + ei. Since SVP problem
can be reduced to RLWE [35], RLWE is considered a hard problem.

KeyGen/MultipartyKeyGen: This step creates random sk and pk pairs
for the clients and its security depends on RLWE assumption.

Encryption: The clients encrypt their inputs under their public key so noone
else can decrypt and see their input.

ReKeyGen + ReEncrypt: This step depends on PRE scheme proposed in
[40] which is proved as IND-CPA secure in [40]. The clients create new evalKey
to reencrypt their encrypted inputs to allow function evaluations on all of the
clients’ data. This step requires individual sk so that noone else can create
other evalkey from their sk. These reencrypted ciphertexts are sent to only S1

through a secure channel to prevent any decryption by S2. According to our
assumption on two non-colluding servers, S1 cannot decrypt ciphertexts sent
by the clients and result of function evaluation on ciphertexts because it has
no access to CKPair.sk. Also, S2 cannot decrypt or manipulate ciphertexts
because it cannot see clients’ ciphertexts or the final result. S1 cannot get any
additional information from intermediate outputs. ReKeyGen + ReEncrypt is
used in 2., 3. and 4. rounds to prevent leaking any additional information about
the ciphertexts and result.

When all rounds come together, the PREFHE protocol ensures security in
the semi-honest model. We can improve the security model to malicious model
with NIZK protocols to prove plaintext knowledge as in the work proposed in
[34].

PREFHE, PREFHE-AES and PREFHE-SGX 833

4 Software Implementation

4.1 Implementation on PALISADE

Experimental Setup. We run the experiments on the Microsoft Azure Stan-
dard DC2s v2 virtual machine that has 2 cores and 8 GB memory running
Ubuntu 20.04. We use PALISADE lattice cryptography library version 1.10.6
[39] and Gramine version 1.12.

4.2 Perfomance

In this section, we analyze our secure MPC protocols in terms of three metrics
such as rounds, communication and computation complexity and compare with
the state-of-the-art protocols. Due to the unavailability of their implementations,
it is not possible to compare running times with other suggested protocols. We
compare the protocols such as [3,33,34,38] which provide semi-malicious security
model version to provide a fair comparison.

Rounds: PREFHE and PREFHE-AES propose 4 rounds while PREFHE-
SGX has 3 rounds in total. Each round in our protocols requires less computation
than the rounds in [33,34]. Our protocols do not require the parties to be online
after they send their encrypted data to the server. On the other hand, some
cutting-edge protocols require communication at every gate and the presence
of all parties online [5,16,18] which is not feasible in real-life applications. In
some protocols, decryption is jointly computed [34] that increases the number
of rounds. In the work presented in [33], encryption key is jointly computed
while in our protocols, this is not required which means more practicality. In our
protocols, Table 1 suggests that PREFHE-SGX has the less number of rounds.
In PREFHE-SGX, one server handles two servers’ jobs, so it reduces the number
of total rounds.

Communication Complexity: The communication cost between clients
and the server is independent of the function to be computed. In PREFHE and
PREFHE-AES, the communication cost between two servers is also independent
of the complexity of the function. The works in the [3,33], communication cost
depends on the length of the input and outputs. They generally contain a set of
indices, ciphertexts and eval keys which is larger than a ciphertext size.

Computation Complexity: In our protocols, the computation complexity
on the server S1 is linear in the size of the circuit computing F . Since multiplica-
tion of two ciphertexts is considered the most costly operation, the multiplicative
depth of the function mainly determines the computation cost.

Performance Results: Table 2 suggests that PREFHE has the fastest client
and servers time with 2 untrusted server setting. Since homomorphic decryption
of AES-128 takes a long time, Server 1 computation time of PREFHE-AES is
around 45 s which is still practical for real life. For functions having larger num-
ber of multiplications, computation cost can be improved with better hardware

2 https://github.com/gramineproject/gramine.

https://github.com/gramineproject/gramine

834 C. Yakupoglu and K. Rohloff

Table 1. Performance comparison of main and our protocols. (Communication com-
plexity refers to the communication cost between a client/party and server that evalu-
ates the function F . ‖c‖ represents size of a ciphertext and ‖cAES‖ stands for AES-128
encrypted ciphertext size.)

[33] [38] [3] PREFHE PREFHE-AES PREFHE-SGX

Rounds 4 4 5 4 4 3

Communication Comp. ‖I/O‖ ‖c‖ ‖I/O‖ ‖c‖ ‖cAES‖ ‖c‖
Computation Comp. (Server) |F | |F | |F | |F | |F | |F |

Table 2. Performance results of the protocols for t = 32769, m = 16384, log qi = 55,
σ = 3, rw = 0, λ = 128. F has one multiplication as an example in this experiment.
Time unit is ms. Client time represents the total runtime of one client.

PREFHE PREFHE-AES PREFHE-SGX

Client time 24.931 12.276 26.354

Server 1 time 19.183 45142.833 25836.862

Server 2 time 27.701 29.975 NA

and parallelization techniques. The client side of PREFHE-AES has better per-
formance over other two protocols due to outsourcing the encryption of the data
to Server 1. PREFHE-SGX performs better than PREFHE-AES for Server 1
but worse than PREFHE. The reason is that Server 1 in PREFHE-SGX handles
two servers’ tasks and it utilizes SGX that has paging latency.

Trade-Off Between Protocols: According to the needs of the application,
the user may consider trade-off between client and server side computations or
rounds or communication cost. For applications that have network bandwidth
constraints, the user may prefer PREFHE-AES over others. For computational
constraints or time sensitivity, PREFHE is the best fit with the short latency.
For the systems that allow one server in the secure MPC setting, PREFHE-SGX
signifies the best round-efficient one in all secure MPC protocols.

5 Conclusion

We propose three distinct secure MPC protocols constructed from FHE, AES-
128, and Intel SGX. PREFHE is highly efficient in real-world applications,
whereas PREFHE-AES introduces a communication-efficient protocol that is
highly efficient in low-bandwidth networks. PREFHE-SGX proposes a single-
server setting with 3 rounds and is a pioneer in the use of FHE and SGX in secure
MPC protocols. Our protocols’ communication costs are function-independent.
Additionally, our protocols do not require parties to be online following the trans-
mission of encrypted data to Server 1. The decryption phase does not require
any collaboration on the part of the parties, which increases the protocols’ prac-
ticality. We present efficient and secure MPC protocols that are applicable to a
variety of use cases in real life.

PREFHE, PREFHE-AES and PREFHE-SGX 835

References

1. Albrecht, M., et al.: Homomorphic encryption security standard. Technical report,
HomomorphicEncryption.org, Toronto, Canada, November 2018

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Providing Sound Foun-
dations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp.
351–371 (2019)

5. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

6. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. Cryptology ePrint Archive, Report 2011/344 (2011). https://
eprint.iacr.org/2011/344

9. Catrina, O., Kerschbaum, F.: Fostering the uptake of secure multiparty compu-
tation in e-commerce. In: 2008 Third International Conference on Availability,
Reliability and Security, pp. 693–700. IEEE (2008)

10. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure proto-
cols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, pp. 11–19 (1988)

11. Choi, S.G., Elbaz, A., Juels, A., Malkin, T., Yung, M.: Two-party computing with
encrypted data. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
298–314. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2 18

12. Choudhury, A., Loftus, J., Orsini, E., Patra, A., Smart, N.P.: Between a rock and
a hard place: interpolating between MPC and FHE. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8270, pp. 221–240. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42045-0 12

13. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive (2016)
14. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold

homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

15. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://eprint.iacr.org/2011/344
https://eprint.iacr.org/2011/344
https://doi.org/10.1007/978-3-540-76900-2_18
https://doi.org/10.1007/978-3-540-76900-2_18
https://doi.org/10.1007/978-3-642-42045-0_12
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/11535218_23

836 C. Yakupoglu and K. Rohloff

16. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

17. Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest majority: from
passive to active security at low cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 558–576. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 30

18. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

19. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

20. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03168-7 14

21. Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Generating private recommenda-
tions efficiently using homomorphic encryption and data packing. IEEE Trans. Inf.
Forensics Secur. 7(3), 1053–1066 (2012)

22. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144

23. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation (2014)

24. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 28

25. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: Stoc, pp.
169–178 (2009)

26. Gjerdrum, A.T., Pettersen, R., Johansen, H.D., Johansen, D.: Performance of
trusted computing in cloud infrastructures with intel SGX. In: CLOSER, pp. 668–
675 (2017)

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pp. 307–328 (2019)

28. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

29. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 5

30. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
Cryptology ePrint Archive (2011)

31. Kuvaiskii, D., Kumar, G., Vij, M.: Computation offloading to hardware accelerators
in intel SGX and Gramine library OS. arXiv preprint arXiv:2203.01813 (2022)

https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-03168-7_14
https://doi.org/10.1007/978-3-642-03168-7_14
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-030-12612-4_5
http://arxiv.org/abs/2203.01813

PREFHE, PREFHE-AES and PREFHE-SGX 837

32. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

33. López-Alt, A., Tromer, E., Vaikuntanathan, V.: Cloud-assisted multiparty compu-
tation from fully homomorphic encryption. Cryptology ePrint Archive (2011)

34. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234
(2012)

35. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

36. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, pp. 113–124 (2011)

37. Natarajan, D., Dai, W., Dreslinski, R.: CHEX-MIX: combining homomorphic
encryption with trusted execution environments for two-party oblivious inference
in the cloud. Cryptology ePrint Archive, Paper 2021/1603 (2021). https://eprint.
iacr.org/2021/1603

38. Peter, A., Tews, E., Katzenbeisser, S.: Efficiently outsourcing multiparty compu-
tation under multiple keys. IEEE Trans. Inf. Forensics Secur. 8(12), 2046–2058
(2013)

39. Polyakov, Y., Rohloff, K., Ryan, G.W.: Palisade lattice cryptography library
(2018). https://palisade-crypto.org/

40. Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanathan, V.: Fast proxy re-encryption
for publish/subscribe systems. ACM Trans. Privacy Secur. (TOPS) 20(4), 1–31
(2017)

41. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

42. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71(1), 57–81 (2014)

43. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Proceedings of
ASIACRYPT 2010, pp. 377–394 (2010)

44. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

45. Takeshita, J., McKechney, C., Pajak, J., Papadimitriou, A., Karl, R., Jung, T.:
GPS: integration of graphene, palisade, and SGX for large-scale aggregations of
distributed data. Cryptology ePrint Archive (2021)

46. Wu, P., Ning, J., Shen, J., Wang, H., Chang, E.C.: Hybrid trust multi-party com-
putation with trusted execution environment. In: The Network and Distributed
System Security (NDSS) Symposium 2022 (2022)

47. Yakupoglu, C., Kurt, R.: Parameter selection for computationally efficient use of
the BFVRNS FHE scheme. Under review (2022)

48. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE (1986)

https://doi.org/10.1007/978-3-642-13190-5_1
https://eprint.iacr.org/2021/1603
https://eprint.iacr.org/2021/1603
https://palisade-crypto.org/
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

Author Index

Abazari, Farzaneh 173
Aghaei, Ehsan 39
Al Amin, Md Ali Reza 473
Al-Kadri, M. Omar 611
Al-Shaer, Ehab 39

Bagade, Priyanka 793
Bakas, Alexandros 353, 692
Bao, Yue 390
Bian, Jingfei 20
Branca, Enrico 173

Cai, Lijun 510
Cai, Miao 752
Cai, Quanwei 111
Cantaragiu, Robert 692
Cappos, Justin 450
Carmichael, Zachariah 331
Chantem, Thidapat 588
Chen, Bo 150, 431
Chen, Lingwei 710
Chen, Niusen 150, 431
Chen, Yige 212
Cheng, Mian 212
Curtmola, Reza 450

Davari, Maryam 3
De Carli, Lorenzo 770
Di Pietro, Roberto 130
Ding, Yu 212
Dong, Qiying 648
Du, Ruizhong 272
Duan, Xiaoyi 807

Fan, Shuqin 111
Fan, XiaoHong 807
Formicola, Valerio 473
Frimpong, Eugene 353, 692

Ganguly, Sirshendu 770
Gerdes, Ryan 588
Ghosh, Sarbajit 793
Gorbunov, Sergey 250

Guo, Juanjuan 371
Gurusamy, Mohan 529

Hajar, Muhammad Shadi 611
Hao, Xiantong 569
Hou, Xintian 390
Hu, Rose Qingyang 588
Hu, Yang 212
Huang, Cheng 89
Huang, Hao 752
Huang, Ye 807

Ibrahim, Omar Adel 130

Jia, Chunfu 648
Jia, Hanyu 390
Jiang, Bo 57
Jung, Taeho 331

Kakei, Shohei 290
Kalutarage, Harsha 611
Kapoor, Pranay 673
Karl, Ryan 331
Kumar, Rahul 793

Leith, Douglas J. 549
Leng, Tao 510
Li, Fenghua 630
Li, Hong 20
Li, Qiang 390
Li, Shuaigang 111
Li, Shuhao 192
Li, Wenyuan 371
Li, Xiangxue 390
Li, Xiaoting 710
Li, Yujin 807
Liang, Hongliang 569
Lin, Jingqiang 111, 371
Liu, Kunpeng 413
Liu, Mingchang 529
Liu, Qiang 413
Liu, Song 57
Liu, Yuling 57
Liu, Zhengyu 89

840 Author Index

Lu, Long 770
Lu, Zhigang 57
Luo, Bo 111

Ma, Dandan 569
Ma, Jianfeng 309
Ma, Jiangang 510
Ma, Ziqiang 111
Mahadevegowda, Spandan 588
Mannan, Mohammad 673
Meng, Dan 510
Michalas, Antonis 353, 692
Mishra, Ayushi 793
Misra, Manoj 491
Momeni, Peyman 250
Muneeswaran, Sivaanandh 529

Niu, Xi 39
Novikova, Evgeniya 173

Otto, Martin 473

Pagey, Rohan 673
Palanisamy, Balaji 231
Pan, Quanbo 212
Pan, Yuedong 510
Patil, Rajendra 529
Peng, Hongyi 529
Peng, Tingting 630

Qi, Zisen 212
Qiang, Qian 212

Rani, Nanda 793
Ren, Tongwei 770
Rohloff, Kurt 819

Sachidananda, Vinay 529
Saito, Shoichi 290
Sciancalepore, Savio 130
Shadid, Waseem 39
Shen, Yaosheng 648
Shetty, Sachin 473
Shi, Mengyao 630
Shi, Weisong 150
Shiraishi, Yoshiaki 290
Shuai, Mengjie 371
Shukla, Sandeep K. 793
Shukla, Sanjeev 491
Song, Qige 192
Stakhanova, Natalia 173

Su, Haochen 89
Su, YongHua 807
Sun, Limin 20

Takeshita, Jonathan 331
Tang, Junhua 72
Torres-Arias, Santiago 450

Vaidya, Sangat 450
Varshney, Gaurav 491

Wang, Cong 731
Wang, Ding 648
Wang, Fei 57
Wang, Jingzhe 231
Wang, Nannan 89
Wang, Qiang 20
Wang, Qiongxiao 371
Wang, Zhu 630
Williams, Ryan 770
Wu, Dinghao 710
Wu, Yue 72

Xian, Hequ 413
Xiao, Haitao 57
Xie, Wen 431

Yakupoglu, Cavidan 819
Yang, Li 309
Youssef, Amr 673
Yu, Aimin 510
Yu, Nan 20

Zang, Tianning 212
Zhai, Haochen 72
Zhang, Bohan 250
Zhang, Chen 57
Zhang, Diming 752
Zhang, Fan 111
Zhang, Jiancheng 413
Zhang, Kemin 309
Zhang, Tianhe 272
Zhang, Tianning 752
Zhang, Yongzheng 192
Zhao, Lixin 510
Zhao, Qingchuan 731
Zhou, Lu 309
Zhou, Zhengxiang 731
Zhu, Hongsong 20
Zou, Futai 72
Zulkernine, Mohammad 3

	 Preface
	 Conference Organization
	 Contents
	AI for Security
	Classification-Based Anomaly Prediction in XACML Policies
	1 Introduction
	2 Overview of XACML
	3 XACML Policy Anomaly Prediction
	3.1 XACML Policy Anomaly Definitions
	3.2 Rule Clustering and Analysis
	3.3 Policy Learning Procedure for Anomaly Prediction

	4 Experimental Evaluation
	4.1 Rule Sets and Settings
	4.2 Policy Analysis
	4.3 Anomaly Classification and Prediction

	5 Related Work
	6 Conclusion and Future Work
	References

	An Evolutionary Learning Approach Towards the Open Challenge of IoT Device Identification
	1 Introduction
	2 Proposed Method
	2.1 Motivation and Problem Definition
	2.2 Overall Framework
	2.3 Preprocessing
	2.4 Device Feature Representation Learning
	2.5 Device Inference
	2.6 Evolutionary Learning

	3 Experiments and Results
	3.1 Experimental Setups and Datasets
	3.2 Accuracy Evaluation (Q1)
	3.3 Anti-forgetting Evaluation (Q2)
	3.4 Sensitivity Analysis (Q3)

	4 Related Work
	4.1 Identification of Network Devices
	4.2 Class Incremental Learning

	5 Conclusion and Future Work
	References

	SecureBERT: A Domain-Specific Language Model for Cybersecurity
	1 Introduction
	2 Overview of BERT Language Model
	3 Data Collection
	4 Methodology
	4.1 Customized Tokenizer
	4.2 Weight Adjustments

	5 Evaluation
	5.1 Masked Language Model (MLM)
	5.2 Ablation Study
	5.3 Fine-Tuning Tasks

	6 Related Works
	7 Conclusions and Future Works
	References

	CapsITD: Malicious Insider Threat Detection Based on Capsule Neural Network
	1 Introduction
	2 Related Work
	2.1 Insider Threat Detection
	2.2 Graph Embedding
	2.3 Capsule Neural Network

	3 Methodology
	3.1 Feature Extraction Module
	3.2 Anomaly Detection Module

	4 Experiments and Results
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Experiment Setup
	4.4 Experimental Results

	5 Conclusion
	References

	Towards High Transferability on Neural Network for Black-Box Adversarial Attacks
	1 Introduction
	2 Related Work
	3 Method
	3.1 NES-Based Gradient Estimation Algorithm
	3.2 ADAM-Based Perturbation Update Rules
	3.3 Meta Attack Algorithm
	3.4 META-NES-ADAM Attack

	4 Experiments
	4.1 Settings and Evaluation Metrics
	4.2 Comparison
	4.3 Effects of Attack Methods under Different Parameters

	5 Conclusion
	References

	Coreference Resolution for Cybersecurity Entity: Towards Explicit, Comprehensive Cybersecurity Knowledge Graph with Low Redundancy
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Baseline
	3.2 Combining Lexical and Syntactic Features
	3.3 Explicit Contextual Modeling
	3.4 Entity Type Information

	4 Evaluation
	4.1 Dataset
	4.2 Evaluation Setup
	4.3 Coreference Results
	4.4 Ablations

	5 Analysis
	6 Conclusion and Future Work
	A Challenging Coreference Cases
	References

	Applied Cryptography
	Another Lattice Attack Against ECDSA with the wNAF to Recover More Bits per Signature
	1 Introduction
	2 Preliminaries
	2.1 The Elliptic Curve Digital Signature Algorithm
	2.2 The Scalar Multiplication Using wNAF Representation
	2.3 The Scalar Multiplication with Invert Function
	2.4 Cache Side Channel Attacks
	2.5 The (Extended) Hidden Number Problem and Lattice Attack

	3 Improving Cache Side Channel Attack on Invertible wNAF Representation
	3.1 Attacking Invertible wNAF Through the Cache Side Channel
	3.2 The Implementation of Flush+Flush Attack

	4 Recover the ECDSA Private Key with HNP
	4.1 Recovering Consecutive Bits
	4.2 Constructing the Lattice Attack with HNP
	4.3 Lattice Attack on Secp256k1

	5 Recover the ECDSA Private Key with EHNP
	5.1 Extracting More Information
	5.2 Find the Target Vector with New Lattice
	5.3 Attacking the Secp256k1

	6 Comparison with Other Lattice Attacks
	7 Conclusion
	References

	MAG-PUF: Magnetic Physical Unclonable Functions for Device Authentication in the IoT
	1 Introduction
	2 Scenario, Use-Cases, and Requirements
	2.1 Scenario and Assumptions
	2.2 Adversary Model
	2.3 Requirements

	3 Proposed Framework
	3.1 MAG-PUF in a Nutshell
	3.2 Actors
	3.3 Modules
	3.4 Phases of MAG-PUF

	4 Experimental Performance Assessment
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 PUF Robustness Evaluation
	4.4 Discussion and Limitations

	5 Related Work and Comparison
	6 Conclusions
	References

	A Cross-layer Plausibly Deniable Encryption System for Mobile Devices
	1 Introduction
	2 Background and Related Work
	2.1 Background Knowledge
	2.2 Related Work

	3 Model and Assumptions
	4 CrossPDE: A Cross-layer Mobile PDE System
	4.1 Design Rationale
	4.2 Design Details
	4.3 User Steps

	5 Analysis and Discussion
	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Evaluation

	7 Conclusion
	References

	Binary Analysis
	Language and Platform Independent Attribution of Heterogeneous Code
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Representation
	3.2 Spatial Analysis
	3.3 Attribution

	4 Data Corpus
	5 Experiments
	5.1 Authorship Attribution of Source Code
	5.2 Authorship Attribution of Binary Files
	5.3 Authorship Attribution of Obfuscated Source Code
	5.4 Comparison with the Existing Approaches

	6 Conclusion
	References

	Multi-relational Instruction Association Graph for Cross-Architecture Binary Similarity Comparison
	1 Introduction
	2 Overview
	2.1 Problem Statement
	2.2 System Workflow

	3 Instruction Vectorization Module
	4 Instruction Sequence Encoding Module
	5 Graph-Based Instruction Association Module
	5.1 Multi-relational Instruction Association Graph
	5.2 Relational Graph Convolutional Network

	6 Binary Similarity Comparison Module
	7 Evaluation
	7.1 Preliminary
	7.2 Basic Block-Level Experiments
	7.3 Function-Level Experiments
	7.4 Real-World IoT Malware Reuse Function Matching Experiments

	8 Related Work
	8.1 Traditional Binary Similarity Comparison Approaches
	8.2 Learning-Based Binary Similarity Comparison Approaches

	9 Conclusion
	References

	Cost-Effective Malware Classification Based on Deep Active Learning
	1 Introduction
	2 Related Works
	3 Cost-Effective Malware Classification
	3.1 Framework Overview
	3.2 Malware Visualization
	3.3 Model Initialization
	3.4 Model Training and Evaluation
	3.5 Informative Sample Selection

	4 Experiments
	4.1 Malware Dataset and Experimental Setup
	4.2 Oevrall Performance Comparison
	4.3 Family Perspective Performance
	4.4 Query Number Study
	4.5 Initialization Analysis

	5 Conclusion
	References

	Blockchain
	CTDRB: Controllable Timed Data Release Using Blockchains
	1 Introduction
	2 Preliminaries
	2.1 A Primer on the Ethereum Blockchain
	2.2 Cryptographic Primitives

	3 CTDRB: In a Nutshell
	3.1 Framework Overview
	3.2 Adversarial Model and Assumptions

	4 CTDRB: A Holistic View
	4.1 Service Initialization Protocol
	4.2 T2CS Setup Protocol
	4.3 T2CS Enforcement Protocol

	5 Security Analysis
	6 Evaluations
	6.1 Implementations and Environment
	6.2 Evaluations

	7 Related Work
	7.1 Timed Data Release Using Blockchains
	7.2 Temporal-Aware Data Control in Public Outsourced Environments

	8 Conclusion
	References

	FairBlock: Preventing Blockchain Front-Running with Minimal Overheads
	1 Introduction
	1.1 Our Contributions
	1.2 Paper Organization

	2 Related Works
	3 Background
	3.1 Cryptographic Preliminaries
	3.2 Blockchain Front-Running

	4 FairBlock
	4.1 Model
	4.2 Protocol
	4.3 Correctness
	4.4 Security

	5 Implementation
	5.1 Implementation Details
	5.2 Performance Evaluation

	6 Challenges and Future Work
	7 Conclusions
	A Front-Running Strategies
	B Correctness and Consistency
	B.1 Consistency of IBE Encryption and Decryption
	B.2 Correctness Proof for Distributed Private Key Extraction

	References

	Blockchain-Based Ciphertext Policy-Hiding Access Control Scheme
	1 Introduction
	2 Related Works
	2.1 Blockchain-Based Access Control Scheme
	2.2 Traditional Encryption Scheme

	3 Preliminaries
	3.1 Bilinear Operation
	3.2 Complexity Assumption
	3.3 Access Structure
	3.4 Viete's Formulas

	4 System Overview
	4.1 System Model
	4.2 Security Model
	4.3 Attribute Vector and Policy Vector Generation Algorithms
	4.4 Smart Contract Design
	4.5 Our Construction

	5 Security Proof
	5.1 Security Analysis of Blockchain Operations
	5.2 Security Analysis of Scheme

	6 Comparisons and Performance Analysis
	6.1 Implementation Details
	6.2 Comparison of Functional Characteristics
	6.3 Deployment Cost and Operating Cost
	6.4 Theoretical Results
	6.5 Experimental Results

	7 Conclusions
	References

	Granting Access Privileges Using OpenID Connect in Permissioned Distributed Ledgers
	1 Introduction
	2 Background and Related Works
	2.1 OpenID Connect
	2.2 Distributed Ledger Technology

	3 Access Control and Security Requirements for Distributed Ledgers
	3.1 Access Control for Distributed Ledgers
	3.2 Security Requirements for Access Control with JWT

	4 Proposed Method
	4.1 Structure of the Proposed Method
	4.2 Definition of Access Token and ID Token
	4.3 Processing Flow

	5 Evaluating the Security Requirements of the Proposed Method
	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Experimental Result

	7 Discussion
	7.1 Overhead of the Proposed Method
	7.2 Limitation of the Proposed Method
	7.3 Access Privileges in Permissionless DLT and Importance of Separating Access Privileges in Permissioned DLT

	8 Conclusion
	References

	Decentralized and Efficient Blockchain Rewriting with Bi-level Validity Verification
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Bilinear Mapping
	2.2 Multi-authority Ciphertext-Policy Attribute-Based Encryption (CP-ABE)
	2.3 Chameleon Hash (CH)
	2.4 Bnoeh-Lynn-Shacham (BLS) Signature

	3 Models and Definitions
	3.1 System Model
	3.2 Definition
	3.3 Security Model

	4 Instantiation
	4.1 Construction of Our Scheme
	4.2 Correctness Analysis
	4.3 Security Proof

	5 Performance Analysis
	6 Conclusion
	References

	Cryptography
	TERSE: Tiny Encryptions and Really Speedy Execution for Post-Quantum Private Stream Aggregation
	1 Introduction
	2 Related Work
	2.1 Pre-Quantum PSA
	2.2 Post-Quantum PSA
	2.3 PSA for IoT and Limited Devices

	3 Background
	3.1 Private Stream Aggregation
	3.2 Definition of Security
	3.3 Ring Learning with Errors
	3.4 The Random-Oracle Model

	4 Basic Construction
	4.1 Prior State-of-the-Art RLWE-Based PSA
	4.2 A More Performant Protocol: TERSE
	4.3 Proof of Security

	5 Extensions and Improvements
	5.1 Differential Privacy
	5.2 Network Faults or Disconnects
	5.3 Optimizing Ring Arithmetic

	6 Experimental Evaluation
	6.1 Implementation and Environment
	6.2 Parameters and Communication
	6.3 Results
	6.4 Comparison with Other Work

	7 Conclusion
	References

	Symmetrical Disguise: Realizing Homomorphic Encryption Services from Symmetric Primitives
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Architecture
	5 Symmetrical Disguise
	5.1 High-Level Overview
	5.2 Formal Construction

	6 Threat Model
	7 Security Analysis
	8 Evaluation
	8.1 Performance of Core Protocols
	8.2 Comparison with Plain BFV

	9 Conclusion
	References

	Replicated Additive Secret Sharing with the Optimized Number of Shares
	1 Introduction
	2 Preliminaries
	3 2-of-n Replicated Additive Secret Sharing
	3.1 2-of-n Replicated Share Generation
	3.2 2-of-n Replicated Secret Reconstruction

	4 t-of-n Replicated Additive Secret Sharing
	4.1 t-of-n Replicated Share Generation
	4.2 t-of-n Replicated Secret Reconstruction

	5 Related Work
	6 Evaluation
	6.1 Storage Cost
	6.2 Computational Cost

	7 Conclusion
	References

	Generic 2-Party PFE with Constant Rounds and Linear Active Security, and Efficient Instantiation
	1 Introduction
	1.1 Motivations
	1.2 Contributions

	2 Preliminaries
	3 Two-Party PFE with Linear Active Security
	3.1 High-Level Description
	3.2 Specification
	3.3 Heuristic Analysis
	3.4 Security

	4 Performance
	5 Conclusion
	References

	Data Security
	A Random Reversible Watermarking Scheme for Relational Data
	1 Introduction
	2 Related Work
	3 Scheme
	3.1 Preprocessing
	3.2 Watermark Embedding
	3.3 Watermark Integrity Detection
	3.4 Watermark Extraction
	3.5 Data Recovery

	4 Experimental Analysis
	4.1 Statistical Distortion Experiments
	4.2 Watermark Capacity Experiment
	4.3 Robustness Experiments

	5 Conclusion
	References

	Enabling Accurate Data Recovery for Mobile Devices Against Malware Attacks
	1 Introduction
	2 Background
	3 System and Adversarial Model
	4 MobiDR
	4.1 Design Rationale
	4.2 Design Details

	5 Security Analysis and Discussion
	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	References

	Bootstrapping Trust in Community Repository Projects
	1 Introduction
	2 Background on the ACME Protocol
	3 Existing Software Certification Mechanisms
	3.1 Code Signing
	3.2 Package Signatures

	4 System and Threat Model
	4.1 System Model
	4.2 Threat Model and Security Goals

	5 Software Certification Service
	5.1 Preliminaries
	5.2 Certification Protocol Description
	5.3 Identifier Authorization

	6 Deployments
	6.1 SCS Implementation Details
	6.2 Deployment to Community Repositories
	6.3 Automating Delegations in Community Repositories

	7 Related Work
	8 Conclusion
	A Security Analysis
	References

	Intrusion Detection
	Assessing the Quality of Differentially Private Synthetic Data for Intrusion Detection
	1 Motivation
	2 Related Work
	3 Privacy Preserving Framework
	3.1 Generation Using DG
	3.2 Applying Differential Privacy (DP)

	4 Use Case Scenario: Data Sharing for Algorithm Training
	4.1 Dataset Description
	4.2 Privacy Concerns for the Dataset
	4.3 Data Preprocessing

	5 Experimental Evaluation
	6 Conclusion
	References

	Forensic Analysis and Detection of Spoofing Based Email Attack Using Memory Forensics and Machine Learning
	1 Introduction
	1.1 Motivation
	1.2 Email Forensics
	1.3 Memory Forensics
	1.4 Contribution

	2 Literature Survey
	3 Proposed Approach
	3.1 System Architecture
	3.2 Detection Algorithm for Received Emails
	3.3 Detection Algorithm for Replied Emails

	4 Experimental Setup and Testing
	4.1 Assumption
	4.2 Experimental Setup

	5 Results and Discussion
	5.1 Results of URL Extractor
	5.2 Detection Algorithm
	5.3 Resource Utilization
	5.4 Comparison Points in the Benchmarks and Proposed Framework
	5.5 Commercial Applications and Limitations

	6 Conclusion and Future Work
	References

	AttackMiner: A Graph Neural Network Based Approach for Attack Detection from Audit Logs
	1 Introduction
	2 Related Work
	2.1 Log-Based Attack Analysis
	2.2 Provenance Graph-Based Attack Detection

	3 Motivation and Assumptions
	4 Approach Overview
	4.1 Overview
	4.2 Challenges and Solutions

	5 AttackMiner
	5.1 Log Window Sliding
	5.2 Provenance Graph Construction and Optimization
	5.3 Attack Provenance Graph Construction
	5.4 Deep Learning Model

	6 Evaluation
	6.1 Implementation
	6.2 Dataset
	6.3 Effectiveness of Graph Optimization Algorithms
	6.4 Comparison Analysis
	6.5 Influence of Log Window Size on Detection Effect
	6.6 The Effect of Changes in the Classifier on the Experiment

	7 Conclusion
	References

	Hiatus: Unsupervised Generative Approach for Detection of DoS and DDoS Attacks
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Approach Overview
	1.3 Results Overview

	2 Related Work
	3 Our Proposed Approach
	3.1 Variational Autoencoder
	3.2 Generative Adversarial Network

	4 Performance Evaluation
	4.1 Datasets
	4.2 Experiments

	5 Results and Comparison
	5.1 CICDDoS2019 Dataset
	5.2 CICIDS2017 Dataset
	5.3 UNSW-NB15 Dataset

	6 Discussion
	7 Conclusion
	References

	Mobile Security
	What Data Do the Google Dialer and Messages Apps on Android Send to Google?
	1 Introduction
	1.1 GDPR
	1.2 Lack of App-Specific Privacy Policy
	1.3 Response from Google

	2 Related Work
	3 The Challenge of Seeing What Data Is Sent
	3.1 Decrypting HTTPS Connections
	3.2 Google Play Services Telemetry
	3.3 Decoding Google Clearcut Logger Data
	3.4 Decoding Google/Checkin Message

	4 Experimental Setup
	4.1 Hardware and Software Used
	4.2 Device Settings
	4.3 Test Design

	5 Results: Google Messages
	5.1 Inserting SIM
	5.2 Sending/Receiving an SMS Message
	5.3 Interacting with Messages App
	5.4 Viewing App Privacy Policy

	6 Results: Google Dialer
	6.1 Making/Receiving a Phone Call
	6.2 Interacting with Dialer App

	7 Summary
	References

	Detection and Privacy Leakage Analysis of Third-Party Libraries in Android Apps
	1 Introduction
	2 Background
	2.1 Code Obfuscation
	2.2 Cluster Algorithm

	3 Design
	3.1 Overview
	3.2 TPL Detection
	3.3 Privacy Leakage Analysis

	4 Evaluation
	4.1 Dataset and Environment
	4.2 TPL Detection
	4.3 Privacy Leakage Analysis

	5 Discussion
	6 Related Work
	6.1 Third-Party Library Detection
	6.2 Privacy Leakage Analysis

	7 Conclusion
	References

	Secure CV2X Using COTS Smartphones over LTE Infrastructure
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 System and Threat Models
	4.1 System Model
	4.2 Threat Model

	5 Secure CV2X Framework
	5.1 Secure CV2X Architecture
	5.2 Modified BSM Data Packet
	5.3 CV2X TA Operation
	5.4 Security Analysis Under Attack Conditions

	6 Network Configuration and Topologies
	7 Evaluation and Analysis
	7.1 Hardware Setup
	7.2 Latency Evaluation and Analysis - Hardware POC
	7.3 Simulation Evaluation

	8 Future Work
	9 Conclusion
	References

	Network Security
	DQR: A Double Q Learning Multi Agent Routing Protocol for Wireless Medical Sensor Network
	1 Introduction
	2 Related Work
	3 Wireless Medical Sensor Network
	3.1 Network Model
	3.2 Threat Model

	4 Protocol Design
	4.1 Reinforcement Learning and Double Q-Learning
	4.2 Design Requirements
	4.3 DQR Protocol
	4.4 Synchronous and Asynchronous Updating
	4.5 Energy Model
	4.6 Trust Model

	5 Evaluation and Performance Results
	5.1 Experimental Setup
	5.2 Delivery Reliability Analysis
	5.3 Convergence
	5.4 Energy Efficiency
	5.5 Computational Overhead

	6 Conclusion and Future Work
	References

	Message Recovery Attack of Kyber Based on Information Leakage in Decoding Operation
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Outline

	2 Background
	2.1 Parameter Settings
	2.2 Module Learning with Errors Problem
	2.3 Kyber
	2.4 Message Recovery Attack

	3 Experimental Setup
	4 SPA of ARM-Specific Implementation
	4.1 Power Consumption Leakage in Computation
	4.2 Timing Leakage
	4.3 Incremental Leakage

	5 Analysis of Experimental Results
	5.1 Power Consumption Analysis
	5.2 Timing Leakage Analysis

	6 Conclusion
	References

	PII-PSM: A New Targeted Password Strength Meter Using Personally Identifiable Information
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Targeted Password Probabilistic Models
	2.2 Targeted Password Strength Meters

	3 Analysis of Real Password Data
	3.1 Our Datasets and Ethical Considerations
	3.2 High-Frequency Substrings (HFSs) and Popular Passwords
	3.3 Password Structures

	4 Methodology
	4.1 Improved Password Probabilistic Models
	4.2 Our Targeted PII-PSM

	5 Experiments
	5.1 Validation of the Improvements
	5.2 PSM Accuracy Evaluation

	6 Conclusion
	References

	Privacy
	Silver Surfers on the Tech Wave: Privacy Analysis of Android Apps for the Elderly
	1 Introduction
	2 Potential Privacy and Security Issues and Threat Model
	3 Analysis Methodology
	3.1 App Selection
	3.2 Dynamic Analysis of Traffic Flow
	3.3 Static Analysis: Library, App Code, and Firebase

	4 Results
	4.1 Improper Authentication Management
	4.2 Insecure Session Management
	4.3 PII Exposure, Data Sharing with Third-Parties and Trackers
	4.4 Improper Access Control
	4.5 Improper Input Validation
	4.6 Server-Side Security Misconfigurations
	4.7 Dangerous App Permissions
	4.8 Third-Party Libraries and Permissions
	4.9 Static Code Analysis
	4.10 Apps with an IoT Device
	4.11 Firebase Analysis

	5 Limitations
	6 Related Work
	7 Conclusion
	References

	MetaPriv: Acting in Favor of Privacy on Social Media Platforms
	1 Introduction
	2 Related Work
	3 System Model
	3.1 High-Level Overview
	3.2 Extending MetaPriv

	4 Measuring User Privacy on Facebook
	5 Implementation and Results
	5.1 Dummy Account Results
	5.2 Privacy Results
	5.3 Real Account Results

	6 Conclusion and Societal Impact
	References

	Adversary for Social Good: Leveraging Attribute-Obfuscating Attack to Protect User Privacy on Social Networks
	1 Introduction
	2 Background and Related Work
	2.1 Graph Neural Network for Attribute Inference
	2.2 Graph Adversarial Attack for Attribute Protection

	3 AttrOBF for User Privacy Protection
	3.1 Attack Goal and Challenges
	3.2 Test Attribute Value Prediction
	3.3 Surrogate Model
	3.4 Closed Form Solution
	3.5 Gumbel Estimator

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 Evaluation of AttrOBF
	4.3 Comparisons with Other Attack Baselines
	4.4 Transferability of AttrOBF

	5 Impact, Applicability and Limitation
	6 Conclusion
	References

	Software Security
	No-Fuzz: Efficient Anti-fuzzing Techniques
	1 Introduction
	2 Technical Background of Anti-fuzzing
	3 No-Fuzz Design
	3.1 Passive Detection Methods
	3.2 Active Methods: Minimum Fake Blocks

	4 Evaluation
	4.1 Reducing Code Coverage
	4.2 Preventing Fuzzers from Finding Bugs
	4.3 Performance and Storage Overhead of No-Fuzz
	4.4 Anti-fuzzing Efficacy

	5 Discussion
	6 Conclusion
	A Appendix
	References

	eSROP Attack: Leveraging Signal Handler to Implement Turing-Complete Attack Under CFI Defense
	1 Introduction
	2 Background and Assumptions
	2.1 ROP Attack
	2.2 SROP Attack
	2.3 Attack Assumptions

	3 eSROP Attack Method
	3.1 Invoke Arbitrary System Call
	3.2 Search and Execute DOP Gadgets
	3.3 Bypass Fine-Grained Label-Based CFI
	3.4 Attack Prevention and Defense

	4 Evaluation
	4.1 Experimental Setup
	4.2 ProFTPD
	4.3 Wu-ftp

	5 Related Work
	6 Conclusion
	References

	Breaking Embedded Software Homogeneity with Protocol Mutations
	1 Introduction
	2 Background
	2.1 Target Scenarios
	2.2 Software Diversity in SCDs
	2.3 Goals and Threat Model
	2.4 Possible Mutation Types
	2.5 One-Size-Fits-all Exploits

	3 Approach Overview
	3.1 PaCo: Identification of Relevant Program Components
	3.2 Aloja: Deployment of Mutations

	4 Evaluation
	4.1 Implementation and Dataset
	4.2 Structure Graph Generation
	4.3 Exploit Mitigation
	4.4 Correctness
	4.5 Impact of Mutation Filtering Heuristics
	4.6 Performance Impact of Mutations

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Security and Privacy-Preserving Solutions in the Internet of Things (S/P-IoT) Workshop
	A Generalized Unknown Malware Classification
	1 Introduction
	2 Related Work
	3 Background
	4 Proposed Methodology
	4.1 Dataset
	4.2 Limited Dataset
	4.3 Imbalanced Dataset
	4.4 Model Generalization

	5 Experiment and Results Discussion
	5.1 Limited Dataset Results
	5.2 Imbalanced Dataset Results
	5.3 Model Generalization Results

	6 Conclusions and Future Scope
	References

	Research on the Grouping Method of Side-Channel Leakage Detection
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Structure of This Paper

	2 Preliminaries
	2.1 AES
	2.2 Welch’s t-test
	2.3 Pass/Fail Criteria

	3 Leakage Detection with Welch’s t-test
	3.1 Dataset
	3.2 Welch’s t-test Grouping Construction
	3.3 Repeated Tests

	4 Experimental Results and Analysis
	5 Summary
	References

	PREFHE, PREFHE-AES and PREFHE-SGX: Secure Multiparty Computation Protocols from Fully Homomorphic Encryption and Proxy ReEncryption with AES and Intel SGX
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Background
	2.1 Fully Homomorphic Encryption Scheme: BFVrns
	2.2 Intel SGX

	3 Secure MPC Protocols
	3.1 PREFHE: Secure MPC from Multikey FHE and PRE
	3.2 PREFHE-AES: Secure MPC from Multikey FHE and PRE with AES
	3.3 PREFHE-SGX: Secure MPC from Multikey FHE and PRE with SGX
	3.4 Correctness
	3.5 Security Analysis

	4 Software Implementation
	4.1 Implementation on PALISADE
	4.2 Perfomance

	5 Conclusion
	References

	Author Index

