
Protecting FIDO Extensions Against
Man-in-the-Middle Attacks

Andre Büttner(B) and Nils Gruschka

University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
{andrbut,nilsgrus}@ifi.uio.no

Abstract. FIDO authentication has many advantages over password-
based authentication, since it relies on proof of possession of a security
key. It eliminates the need to remember long passwords and, in par-
ticular, is resistant to phishing attacks. Beyond that, the FIDO proto-
cols consider protocol extensions for more advanced use cases such as
online transactions. FIDO extensions, however, are not well protected
from Man-in-the-Middle (MitM) attacks. This is because the specifica-
tions require a secure transport between client and server, but there
exists no end-to-end protection between server and authenticator.

In this paper, we discuss MitM scenarios in which FIDO extensions may
be intercepted. We further propose an application-layer security protocol
based on the CBOR Object Signing and Encryption (COSE) standard to
mitigate these threats. This protocol was verified in a formal security eval-
uation using ProVerif and, finally, implemented in a proof-of-concept.

Keywords: Security · FIDO · WebAuthn · CTAP2 · COSE ·
Encryption

1 Introduction

In today’s digital era, almost everybody is used to log in to a website with a
password. Although passwords are easy to use, they have many disadvantages in
terms of security. They are often easy to guess or sometimes publicly disclosed
after a data breach. Furthermore, passwords are vulnerable to phishing attacks.
Therefore, many services already implement multi-factor authentication.

FIDO authentication is a relatively young technology that intends to over-
come the disadvantages of passwords. The basic idea behind it is to use an
authenticator device as a more secure authentication factor, either in addition
to or even as a replacement for passwords. A feature that is rarely used yet
but may become important soon are FIDO extensions. These allow for more
advanced functionality beyond simple authentication. FIDO authentication may,
for example, be used to confirm online purchases or banking transactions. Ini-
tially, a FIDO Transaction Confirmation extension was proposed, which includes
a human-readable text representation of a transaction as an extension [13]. This
extension, however, was never implemented and already became deprecated. It
c© Springer Nature Switzerland AG 2023
A. Saracino and P. Mori (Eds.): ETAA 2022, LNCS 13782, pp. 70–87, 2023.
https://doi.org/10.1007/978-3-031-25467-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25467-3_5&domain=pdf
http://orcid.org/0000-0002-0138-366X
http://orcid.org/0000-0001-7360-8314
https://doi.org/10.1007/978-3-031-25467-3_5

Protecting FIDO Extensions Against Man-in-the-Middle Attacks 71

is replaced by the more recent Secure Payment Confirmation [27]. We expect to
see more different kinds of extensions like this in the future.

However, the FIDO specifications do not provide any specific protection for
FIDO extensions. Since extensions can contain very sensitive information, it
should be ensured that attackers cannot intercept or manipulate this informa-
tion. There are several possibilities for attackers to act as Man-in-the-Middle
(MitM). The FIDO protocols only protect the integrity of messages from the
authenticator to the server. The integrity of messages from the server cannot be
checked by the authenticator. While this is not necessary for basic authentica-
tion, this may be crucial for certain extensions. Also, confidentiality cannot be
guaranteed as there is no encryption on the application layer.

To mitigate the risk of manipulation or disclosure of FIDO extensions, we
propose to apply authenticated encryption to FIDO extensions. In this paper,
we provide the following contributions:

1. An overview of different MitM attack scenarios against FIDO extensions.
2. A proposal for a security protocol to protect FIDO extensions.
3. A formal security verification of this protocol.
4. A proof-of-concept implementation.

The remainder of this paper is structured as follows. Section 2 gives an overview
of FIDO authentication and the COSE protocol. In Sect. 3 related literature on
FIDO is presented. The attack model addressed in this paper is explained in
Sect. 4. In Sect. 5 we specify our proposed security protocol, which is evaluated
in Sect. 6. In Sect. 7 we describe a proof-of-concept implementation. A discussion
of the proposed solution is provided in Sect. 8. Our findings are summarized in
Sect. 9 along with a brief outlook on future work.

2 Background

In this section we firstly provide some background information on FIDO authen-
tication. Afterwards the CBOR based COSE protocol is described.

2.1 FIDO Authentication

The Fast IDentity Online (FIDO) Alliance is publicly active since 2013 [16].
Today it includes members from several popular Internet companies. Their main
objective is to provide industry standards for using authenticators to authenti-
cate against web applications either as a single factor (password-less) or as an
additional factor (2FA/MFA). There are two different types of authenticators.
Roaming authenticators are external security tokens (for example a YubiKey)
that can be connected via USB, Bluetooth-Low-Energy (BLE) or Near-Field-
Communication (NFC). In contrast to this, platform authenticators are inte-
grated into client devices like computers and smartphones.

72 A. Büttner and N. Gruschka

Interaction

RegistrationResponse(credPublicKey,attestation,...,extensions)

RegistrationRequest(challenge,rpId,...,extensions)

Relying PartyAuthenticator Client

AssertionRequest(challenge,rpId,...,extensions)

AssertionResponse(signature,...,extensions)

Assertion:

Registration:

CTAP2 WebAuthn
User

Interaction

Fig. 1. FIDO authentication overview.

In this paper, we mainly focus on FIDO2, which consists of the Web
Authentication (WebAuthn) API and the Client-to-Authenticator-Protocol 2
(CTAP2) [15]. WebAuthn has become a W3C standard [22] and defines a
JavaScript API and data structures that can be used to create credentials and
get assertions from the authenticator. CTAP2 defines the protocol between the
client platform and the authenticator.

For FIDO authentication, security and trust are based on public key cryp-
tography. Figure 1 gives a brief overview of the different roles and messages that
are specified for FIDO2 authentication. At first, an authenticator (e.g. a secu-
rity token) needs to be registered at a web service, the so-called relying party
(RP). When a user registers at a RP, the RP firstly sends a registration request
to the authenticator which includes a random nonce (challenge), its identifier
(rpId), and further parameters. The authenticator creates a credential key pair
and shares its public key with the RP by sending a registration response. In
addition, the authenticator may include an attestation certificate that verifies
the origin of the authenticator by a certified manufacturer. For this purpose,
the FIDO Alliance provides a public service called Metadata Service [14], which
contains a list of vendors, their public keys and their certification levels. Dur-
ing authentication, the RP creates another challenge value and sends it to the
authenticator in an assertion request. This challenge is signed by the authenti-
cator, along with other parameters, using the private key of the credential that
was previously registered with the RP. Using the corresponding public key, the
RP can verify the signature of the assertion response. Both for registration and
authentication, the user needs to interact with the authenticator, e.g., by press-
ing a button. For more security, the user can enter a PIN or interact with a
biometric scanner, which provides an additional authentication factor.

The FIDO specifications leave room for additional features by using protocol
extensions. Extensions sent by the RP to the authenticator are called input exten-
sions and extensions from the authenticator to the RP output extensions. Fur-
thermore, it is distinguished between client extensions and authenticator exten-
sions. In this paper, we focus on authenticator extensions, i.e., those that are
processed by the authenticator. Several different types of extensions have been

Protecting FIDO Extensions Against Man-in-the-Middle Attacks 73

proposed (see e.g. [20]), however, almost none of these has been implemented
yet. The Secure Payment Confirmation [27] is a new W3C specification and
describes a payment extension for FIDO authentication. It is a good example of
more advanced applications of FIDO authentication. However, it must be kept
in mind that such an extension also requires high security standards.

2.2 COSE

The CBOR Object Signing and Encryption (COSE) [33] protocol aims to pro-
vide a standard for exchanging signed and encrypted data in the Concise Binary
Object Representation (CBOR) [6] format. CBOR is a binary data format that
is particularly useful for low-resource devices due to its lightweight and efficient
design. Among other things, it is used in the CTAP2 protocol. Data can be struc-
tured into maps and arrays of various types. Consequently, JSON objects can be
easily converted to CBOR objects, which makes it also usable from a developer’s
perspective. Furthermore CBOR provides features like tags and flexible map and
array lengths.

COSE is basically adapted from the JavaScript Object Signing and Encryp-
tion (JOSE) protocol. It defines data structures for exchanging data that is
signed, encrypted or authenticated (MAC). COSE objects carry the payload
together with additional information about the keys and algorithms that are
used. A COSE message is composed of a CBOR array that contains a protected
header, an unprotected header, the payload and depending on the type additional
values like the signature or the message authentication tag. A protected header is
a CBOR encoded map of certain header values. It is used as input in addition to
the actual payload for cryptographic functions, e.g., as additional authenticated
data (AAD) when using authenticated encryption or as input for the signature.
The unprotected header is a map that contains further header values, which in
contrast to the protected header are not cryptographically bound to the pay-
load or signature. COSE signature messages may contain one (COSE_Sign1) or
multiple signatures (COSE_Sign). Encryption messages can be intended for one
recipient (COSE_Encrypt0) or for multiple recipients (COSE_Encrypt). Respec-
tively, there are also two different COSE MAC structures.

The COSE protocol does not specify, how keys are negotiated by the different
parties. However, it defines a COSE Key structure which contains all necessary
information for a key. This can be useful, e.g., for storing the key or for sending
it to another party in a standardized manner. For example, the FIDO2 protocols
make use of the COSE Key format to send the public key from the authenticator
to the RP. There currently exists a draft for a COSE based Ephemeral Diffie-
Hellman Over COSE (EDHOC) protocol to provide additional features like key
negotiation [34], which, however, is not standardized yet.

3 Related Work

Since FIDO authentication is a fairly new topic, research on the subject is still
very limited. We therefore provide a brief overview of the related literature.

74 A. Büttner and N. Gruschka

There has been quite some research on the usability of FIDO authentica-
tion [28,29]. One of the major concerns by the users is the account recovery.
If the authenticator gets lost, there must be some way to regain access to the
account. At the same time, the recovery option should not reduce the security.
As a solution, an enhancement for the protocol was proposed that enables the
use of a backup key that only needs to be configured once in the beginning [17].
Furthermore, a study on different account recovery approaches was conducted
to compare them in terms of usability, deployability and security [23]. Other
researchers applied formal methods to analyse the security of the FIDO proto-
cols [3,11]. In particular, there still seems to be a lack of research that focuses
on the CTAP2 protocol.

There has also been done little research specifically on the security of FIDO
extensions. For example, it was proposed to use structured data formats for
FIDO Transaction Confirmation to facilitate the validation of transaction infor-
mation by the authenticator thereby making it more secure [8]. Furthermore,
some researchers have pointed out that the FIDO Transaction Confirmation
extension is vulnerable to manipulation. They propose to let an RP sign the
transaction information, which can be validated on the client-side in a trusted
environment [37,38]. However, they do not point out how the authenticity of the
public key is guaranteed. In addition to this, we see further risks. If FIDO exten-
sions can be manipulated, they can also be eavesdropped in similar attack sce-
narios. Therefore, confidentiality should be equally considered alongside integrity
and authenticity.

4 Attacker Model

The WebAuthn standard [22] requires a so-called secure context, which includes
the use of HTTP over TLS (HTTPS). This ensures that the client can verify the
authenticity of a web server. Yet, there are more components involved that can
interfere with FIDO messages beyond client and server. We therefore argue that
HTTPS does not provide sufficient protection for FIDO messages at all. FIDO
authentication can involve several different intermediaries between the RP and
the authenticator. These include (1) web proxies between the client and the RP,
(2) the client application, (3) intermediary processes on the client platform and
(4) hardware between a roaming authenticator and the client device. Thus, there
is a significantly large attack surface, as illustrated in Fig. 2.

Plain authentication—also referred to as entity authentication—without any
extensions is not likely at risk, because the protocol is designed not to con-
tain sensitive information. Also, it is resistant against manipulation through the
challenge-response protocol. However, authentication that involves extensions
exchanged between the RP and the authenticator may contain valuable infor-
mation, e.g., personal data, transaction details or other sensitive information.
Such information could be obtained or manipulated by an adversary. In the
following, we elaborate on the four different MitM scenarios in more detail.

Protecting FIDO Extensions Against Man-in-the-Middle Attacks 75

Relying Party

Web Proxy (1)

Client Device

Roaming
Authenticator

Platform Authenticator

System

Display

Malware
process (3)

Browser /
Client App (2)

MitM device (4)

HTTPS

Fig. 2. Attack surface: possible points of interception are highlighted.

4.1 Vulnerable Web Intermediaries

Distributed systems like web applications typically include intermediaries such
as content delivery networks (CDN), load balancers or web application firewalls
(WAF). The secure context requirement mentioned above can only be verified for
the connection between a browser and the next HTTP entity. As a consequence,
it cannot be guaranteed that intermediaries communicate with other intermedi-
aries or the server via HTTPS. Apart from that, HTTPS is only protecting on
the transport layer. Web intermediaries usually operate on the application layer
and therefore need to access HTTP messages including the body. Consequently,
they are able to read FIDO messages in clear text.

If a proxy behaves maliciously, this can have severe security implications.
A proxy could be misused to intentionally read FIDO messages and disclose
sensitive information. Beyond that, a malicious proxy could manipulate exten-
sions. There is no integrity check considered for FIDO messages from the RP
to the authenticator. Depending on the type or use of an extension, only a user
may notice the manipulation through manual inspection. For messages from the
authenticator to the RP, any manipulation will be detected by the RP, since the
authenticator data including extensions are signed. In any case, there is still the
risk of information disclosure.

Another concern with HTTP intermediaries is the possibility of attacks that
result from the semantic gap of the HTTP protocol [9]. In particular, cache
poisoning vulnerabilities could be exploited to disclose FIDO messages. This
can be realized by various techniques like request smuggling [26] or web cache
deception [18].

4.2 Compromised Client Application

The client application on the user’s device may be running in a browser as
a JavaScript application or a native mobile application. Both browser clients
and native mobile applications often use third-party libraries. If not checked
properly, such libraries can include malicious code [2,39]. Another possibility
to compromise the client application is to exploit cross site scripting (XSS)

76 A. Büttner and N. Gruschka

vulnerabilities in a JavaScript application to inject code that intercepts FIDO
messages and modifies extensions or forwards them to an untrustworthy third
party.

4.3 Malware on the Client Device

Malware can pose a further threat to FIDO extensions. An attacker may be able
to install malicious software on a user’s client device through an email attach-
ment or some other exploit. By intercepting inter-process communication (IPC)
or accessing memory of other processes, the malware could read or manipulate
FIDO messages. Moreover, it could bypass security measures by the browser and
system and send its own FIDO assertions to the authenticator. It was already
shown that this can cause a user to confirm a malicious transaction [7]. In addi-
tion, there may be specific types of viruses targeting browsers on client devices.
By this, a browser may be corrupted in a way that it can be controlled by an
attacker, which is also known as Man-in-the-Browser (MitB) attacks [10]. Beyond
that, platform authenticators are generally at risk of behaving unintentionally
when they are affected by malware. This can be mitigated with the use of trusted
platform modules (TPM), which make sure that secret keys are not disclosed.
Nevertheless, exploits against extensions remain a threat.

4.4 MitM Between Client Device and Authenticator

With respect to roaming authenticators, an attacker may try to intercept the
connection between the client device and the authenticator. This is certainly a
more difficult attack, since an attacker needs physical access to the user’s devices.
One could argue that the security of the FIDO device is completely compromised
in that case and other MitM countermeasures would be pointless. However, this
is only true for authenticators that just require a button press and not when the
authenticator uses a more secure verification method such as biometrics.

Even if an authenticator uses a verification method like biometrics, an
attacker may still be able to intercept the connection and eavesdrop or manip-
ulate extensions. For example, there are known MitM attacks against Blue-
tooth [24,35]. NFC is very unlikely to be intercepted without the owner’s aware-
ness. But still, a potential attack against NFC has been demonstrated [1].

5 Protocol Design

As shown in the previous section, FIDO messages can indeed be vulnerable to
several attacks. Extensions may include sensitive information and are at risk of
being modified by or disclosed to unauthorized parties. Considering the large
attack surface, we see the necessity to apply further measures. In this section,
we present our proposed protocol to protect FIDO extensions.

Protecting FIDO Extensions Against Man-in-the-Middle Attacks 77

5.1 Authenticated Encryption

Sensitive FIDO extensions should provide secure properties such as confiden-
tiality, integrity and authenticity. Messages sent from the authenticator to the
RP are already signed and, thus, do not require any additional authentication.
However, messages from the RP to the authenticator are neither signed, nor
authenticated by any means. Xu et al. [37] suggest that the relying party shall
sign extensions. In their approach the verification of the signature is done on the
client device and the public key for verifying the signature is given by the TLS
connection. We, however, want to enable the authenticator itself to validate the
authenticity of extensions from the RP.

Since signatures do only provide integrity and authenticity, but no confiden-
tiality, we propose to fulfill all these properties by using authenticated encryp-
tion (AE) instead. For this the RP and the authenticator must firstly agree upon
a shared secret during registration. After that they can derive key material from
the shared secret and use AE algorithms such as AES-GCM to encrypt and
authenticate extensions that are included in assertion messages.

There can be multiple authenticators registered with one user account on
the RP. However, there will be a different shared key between the RP and every
authenticator. The RP does not know which registered authenticator will be used
for the assertion. Therefore we need to apply key wrapping. This means that the
actual extension is encrypted with a newly created content encryption key. This
key is then encrypted with the shared key and appended to the message for each
authenticator. For encrypting the extensions in the assertion response by the
authenticator the shared key can be used directly, because the message is only
intended for the RP. This is formalized in our model in Sect. 6.2.

5.2 Key Exchange

Encrypting FIDO extensions requires the RP and the authenticator to exchange
keys in advance. Normally, a public-key infrastructure (PKI) is used to create
certificates which provide trust and authenticity for exchanged keys. Hardware
tokens, however, are very limited and likely not powerful enough in terms of
storage and computation to handle certificate chains. Since they operate offline,
there is also no possibility for them to directly interact with certificate authori-
ties over the network (e.g. to check on certificate revocations). This is different
for other types of authenticators with more computing resources and network-
ing capabilities. However, we want to address all types of authenticators with
our solution. Because of this, we consider the trust-on-first-use authentication
scheme [36]. This means that we trust the first connection between authenticator
and RP not being intercepted by an adversary.

To generate a shared secret, the RP and the authenticator perform a Diffie-
Hellman key exchange (DHKE) during the registration. The RP includes the first
part of the DHKE as registration input extension. The authenticator generates
and stores the shared secret from the DHKE and sends a registration response
to the RP, which includes the second part of the DHKE as registration output

78 A. Büttner and N. Gruschka

extension. Finally, the RP generates the shared secret from the DHKE and stores
it together with the newly registered credential.

The (unauthenticated) DHKE is known to be secure against eavesdropping,
but vulnerable to active MitM attacks. Authenticators use attestations that
should be validated by RPs to create a certain amount of trust. If properly
done, this can mitigate active MitM attacks. However, for higher security, it
is important that the authenticator includes both parts of the DHKE in its
attestation signature, as shown in Sect. 6.1.

5.3 Data Format

A further important aspect is the format used to exchange the encrypted data
along with required metadata like an input vector (IV) and the algorithm used.
FIDO authenticator extensions must be provided in the CBOR format. As
described in Sect. 2.2, the accompanying protocol for signature and encryption
is COSE. Since the public key from the authenticator is transmitted as a COSE
key, authenticators and RPs are both supporting parts of the COSE protocol
already. The COSE standard supports encryption for single and multiple recip-
ients, and thus provides all functionality needed for the proposed protocol. Our
suggestion is therefore to embed extensions in COSE structures. The COSE key
format can also be used to encode the DH public keys that are exchanged during
the registration to generate the shared secret.

5.4 Displaying User Information

When encrypting extensions, we still need to be able to display information,
such as transaction information, to the user in a secure manner. This is the
key aspect of the What-You-See-Is-What-You-Sign principle [25]. The different
possible architectures with FIDO authenticators are displayed in Fig. 3. Ideally,
an authenticator should provide a secure display (Fig. 3a). However, there are
no roaming authenticators with a display on the market yet. In most cases, the
client platform would be responsible for displaying the information to the user.
With our approach, the client will not be able to decrypt the extensions on
transit. Therefore, the authenticator firstly needs to decrypt the extensions and
then forward the user information to the client display on a secure path (Fig. 3b).
For this the platform should provide appropriate measures to ensure that there
is no interception possible when displaying the information to the user.

Platform authenticators are integrated into computers or smartphones. Since
these already have a display, platform authenticators can provide the decrypted
user information instantly to the platform without an intermediary connec-
tion (Fig. 3c). FIDO authentication is already supported by most platforms like
Windows [21], MacOS/iOS [30] and Android [19]. The platform itself must ensure
that the information that is displayed to the user has not been modified by
another malicious process. When the client device is responsible for displaying
the information, there are further risks like UI deception attacks [4,12], which,

Protecting FIDO Extensions Against Man-in-the-Middle Attacks 79

Fig. 3. Architectures for different types of authenticators.

however, must be taken care of by the operating system. The same applies when
a roaming authenticator without a secure display is used.

6 Security Evaluation

ProVerif [5] is a common protocol verifier that uses Horn-clause based repre-
sentations of a protocol and the applied π-calculus for process verification. A
formal model of the protocol and the security properties to be tested are defined
in input files. The output are the test results indicating whether the defined
security properties are met. If a test fails, a possible attack trace is provided.
This tool has been used to conduct a security evaluation of our protocol.

Formal models have been created for the key exchange during the registra-
tion of an authenticator and for the exchange of encrypted and authenticated
extensions. A basic description of the models, some code excerpts and the results
are given below. For more details, the sources and results of the evaluation can
be found in our Github repository1.

6.1 Key Exchange

In our protocol, a DHKE is performed to generate a shared secret on the relying
party and the authenticator. Even though a client can verify the TLS certificate
of a RP, we assume that an authenticator cannot validate the authenticity of a
RP. However, we consider that a RP requires attestation from the authenticator

1 https://github.com/Digital-Security-Lab/protecting-fido-extensions-proverif.

https://github.com/Digital-Security-Lab/protecting-fido-extensions-proverif

80 A. Büttner and N. Gruschka

and that it verifies the attestation signature with a known and trusted public
key. This serves to validate the authenticity of a DH key that is received by the
RP to compute the shared secret.

One obvious security requirement is that the shared secret is kept secret and
cannot be obtained by an attacker. This is defined by the following two queries:

query attacker (computeSecret (publicKey (dh_priv_AU) ,
dh_priv_RP)) .

query attacker (computeSecret (publicKey (dh_priv_RP) ,
dh_priv_AU)) .

Further, we check the authenticity by verifying that a key exchange is only
performed if both authenticator and RP have generated the same secret:

query x :G; inj−event (sharedSecretRP (x))
==>inj−event (sharedSecretAU (x)) .

For the key exchange, two different models of the protocol were created, because
the first model did not pass the verification.

Protocol Model 1. In this model, the authenticator creates an attestation
signature including the nonce, the credential public key and the output extension
containing its DH key:

sign ((nonce , credPubKey ,dh_pub_AU) , pr ivKeyAttes tat ion)

This signature is verified by the RP against the original nonce, the credential
public key and the extension with the DH key by the authenticator:

checksign ((nonce , credPubKey ,dh_pub_AU) , s i gnature ,
pubKeyAttestation)

When verifying this model with ProVerif, the authenticity test fails. The detailed
output of ProVerif contains a trace where an attacker intercepts a registration
request by the RP and replaces the DH key of the RP with its own key. Because
of this, the authenticator will compute a different shared secret than the RP.
As a consequence, the authenticator cannot authenticate or decrypt assertion
extensions from the RP, but from the attacker. However, the attacker cannot
gain much from this, except for causing a denial of service. Nonetheless, this
attack should be avoided.

Protocol Model 2. In the second model, the authenticator includes both DH
keys in the attestation signature, so the RP can verify that the same shared secret
is computed on both ends. From a theoretical perspective, it would be enough
to only modify the signature. However, in practice the protocol proposed here
should be compatible with the FIDO standards. Therefore the authenticator will
have to include both its own DH key and the DH key from the RP in the output
extensions, so both keys are implicitly included in the signature:

sign ((nonce , credPubKey ,dh_pub_AU,dh_pub_RP) ,
pr ivKeyAttes tat ion)

Protecting FIDO Extensions Against Man-in-the-Middle Attacks 81

The same is true when verifying the signature. In particular, the RP must check
the signature with its own generated DH key and the authenticator’s key:

checksign ((nonce , credPubKey ,dh_pub_AU,dh_pub_RP) , s i gnature
, pubKeyAttestation)

With this model all tests succeed and the secrecy of the shared secret is guar-
anteed as well as the authenticity of the public keys that were exchanged. We
therefore consider this model in our final solution.

6.2 Encrypted Assertion Extensions

The second critical part of the proposed protocol is the exchange of encrypted
and authenticated extensions between RP and authenticator during assertions.
We make the following assumptions. First, the authenticator is successfully reg-
istered with the RP. This means that the RP has the credential public key of
the authenticator to verify its signature and both authenticator and RP have
exchanged a shared secret and derived from it a shared key. Second, while replay
attacks against the RP are prevented by the nonce, replay attacks against the
authenticator are not.

A security requirement here is the secrecy of input and output extensions,
which is defined in the following two queries:

query attacker (Asse r t i onInputExtens ions) .
query attacker (Assert ionOutputExtens ions) .

In addition, the authenticator and the RP should both only accept authenticated
extensions. An attacker must not be able to forge or manipulate extensions in a
way that they are processed by either of them. As mentioned above, we assume
an attacker to be able to replay assertion messages to the authenticator, but
not to the RP. Therefore only events in connection with output extensions are
defined as injective events:

query x : b i t s t r i n g ; event (rece iveInputExtens ionsAU (x))
==>event (sendInputExtensionsRP (x)) .

query x : b i t s t r i n g ; inj−event (receiveOutputExtensionsRP (x))
==>inj−event (sendOutputExtensionsAU (x)) .

This time only one model had to be created. In this model, the RP uses key
wrapping to transmit a content encryption key together with the encrypted
input extensions:

new cek : key ;
let inputExtensions_enc = senc (Asser t ionInputExtens ions ,

cek) in
let cek_enc = senc (k ey2B i t s t r i ng (cek) , sharedKey) in
out (c , (nonceRP , cek_enc , inputExtensions_enc))

The authenticator, on the other hand, uses the shared key directly to encrypt
the output extensions:

82 A. Büttner and N. Gruschka

let outputExtensions_enc = senc (Assert ionOutputExtens ions ,
sharedKey) in

The evaluation of this model with ProVerif indicates that the expected secu-
rity requirements are met and no attacks have been found. Hence, with this
model, we can successfully exchange FIDO extensions while preserving their
confidentiality, integrity, and authenticity.

7 Implementation

A proof-of-concept (PoC) application has been developed to demonstrate how
to implement essential parts of the proposed protocol. The sources and further
instructions can be found in a Github repository2. Since FIDO keys can be, e.g.,
USB devices with very limited resources, it was decided to provide a test appli-
cation using the C programming language and libraries that are optimized for
embedded devices. To implement the protocol, a CBOR library is needed, which
is already included in each FIDO component, as it is required for implementing
the basic FIDO protocols. Moreover, a COSE library is needed. Since we could
not find a useful implementation, we developed an open-source COSE library3

based on the RFC 8152 standard [33]. At the time of writing, this library is
still a work in progress, but already provides everything needed for the proposed
protocol. Finally, additional crypto libraries may be needed to do certain oper-
ations such as generating private and public keys, to compute the shared secret
from the DHKE and to derive key material using e.g. a Hash Key Derivation
Function (HKDF).

The PoC application is meant to demonstrate the parts that have to be
implemented in addition to the FIDO protocols. Basic features such as creden-
tial creation, attestation and signature verification are therefore not included.
For the DHKE, elliptic curve key pairs were used. The authenticated encryption
is done using AES-GCM with a 128-bit key. In the example application, it is
firstly shown how the RP and the authenticator exchange a shared secret. The
RP creates the first part of the DHKE, which is encoded in a COSE Key structure
and transmitted to the authenticator. The authenticator then creates the second
part of the DHKE, computes the shared secret and derives from it a 128-bit key
using a HKDF with SHA-256 as underlying hash function. Subsequently, the RP
receives the second part of the DHKE (in a real world application together with
the first part of the DHKE as discussed in Sect. 6.1) and analogously computes
the shared secret and derives from it a key the same way as the authenticator. In
the second part of the application, the RP is provided with the credential iden-
tifier and the shared key of an authenticator. The RP creates an encoded COSE
Encrypt structure that contains an extension value encrypted with a content
encryption key. This key is then encrypted using the shared key and attached as
a recipient object. The credential id of the corresponding authenticator is used as

2 https://github.com/Digital-Security-Lab/protecting-fido-extensions-poc.
3 https://github.com/abuettner/cose-lib.

https://github.com/Digital-Security-Lab/protecting-fido-extensions-poc
https://github.com/abuettner/cose-lib

Protecting FIDO Extensions Against Man-in-the-Middle Attacks 83

key identifier. The authenticator receives this COSE Encrypt structure and iden-
tifies that a recipient is attached with its credential id. It can then decrypt the
content encryption key and finally the extension value. The authenticator then
creates an encoded COSE Encrypt0 structure that contains another extension
value, this time encrypted with the shared key. The RP receives this structure
and finally decrypts the extension value by the authenticator. Note that in a real
application, the RP can identify the shared key used by the credential id that is
part of the authenticator data.

Preliminary measurements on a Raspberry Pi Pico (264 kB SRAM, 2 MB
on-board flash memory) [31] show that the steps performed by an authenticator
during the registration take about 250 ms, while the steps during the assertion
take about 5 ms. The additional delay during registration is acceptable, since
this is performed only once per application. The additional runtime on assertions
would be unnoticeable by the user.

8 Discussion

In this section we discuss our proposed protocol for protecting FIDO extensions
with regard to several different aspects.

8.1 Security

There are several different ways to intercept FIDO messages in clear text as
described in Sect. 4. This allows an attacker to intercept FIDO extensions with
valuable information and either eavesdrop or manipulate them. As shown by the
evaluation the security of FIDO extensions can be significantly improved with
our proposed solution. However, the security of extensions also depends on a
secure key exchange. While RPs can verify the attestation to get information on
security properties provided by an authenticator to create trust, authenticators
cannot reliably verify the origin of a RP. In our formal models, the client between
the RP and the authenticator has not been considered. It could be argued that
the client adds security to some extent, e.g., by validating the TLS certificate of
the server. Yet, this is not sufficient and additional measures as proposed in this
paper are justified.

The security also depends on the strength of cryptographic algorithms. This
has not been evaluated within this work. We consider cryptographic algorithms
that are widely accepted and used e.g. in the most recent TLS 1.3 [32]. However,
the proposed protocol is meant to be generic, so cryptographic algorithms can
simply be replaced if necessary (e.g. with post-quantum cryptography).

8.2 Implementation

We provide an example on how our protocol can be implemented. Our protocol
is completely compatible with the FIDO standards. While the protocol is quite
complex, our implementation can be used to integrate it into FIDO applications

84 A. Büttner and N. Gruschka

with low effort. Since there are not too many COSE library implementations, a
further contribution of this work is such a COSE library which can be used by
any other C application.

At the time of writing, FIDO implementations are quite restricted to stan-
dardized extensions. Even though the WebAuthn standard [22] defines how arbi-
trary extensions should be forwarded to the authenticator, browsers have not
implemented this. This means that custom extensions are not passed to FIDO
devices. It is therefore challenging to implement a real-world example at this
stage. Our protocol should also be considered for extensions that will be stan-
dardized in the future, such as, the Secure Payment Confirmation [27] which is
clearly an extension with high security requirements.

8.3 Usability

Usability is an important aspect that can affect the user experience and accep-
tance. It is an essential criterion that will certainly determine how successful
FIDO authentication will become in the future. The usability for FIDO authen-
tication is, however, not affected by our proposed protocol. The protocol requires
a key exchange and subsequent encryption of FIDO extensions, which happens
autonomously and is therefore unnoticed by the user.

9 Conclusion and Outlook

The FIDO protocols are a promising way to prevent security risks that arise with
password authentication. However, we describe several MitM attacks which show
that FIDO extensions are vulnerable to disclosure and manipulation. In order to
mitigate such attacks, we propose a protocol that secures FIDO extensions by
authenticated encryption. While our methodology includes some challenges such
as the initial key exchange and displaying user information for authenticators
without a secure display, we see a considerable security gain and aim for a
standardized way to secure any kind of FIDO extension.

There are not many extensions used in practice yet. Nevertheless, the stan-
dardization process of the Secure Payment Confirmation indicates that we can
expect more extensions to appear in the near future. At the time of writing,
it is still under discussion if arbitrary extensions should be allowed or not. We
argue that it would be beneficial from a developer’s perspective to be able to
add extensions for different applications. This should, however, be done with
security in mind. The protocol presented in this paper could provide a way to
satisfy this requirement. In future work, we will test our approach in real world
scenarios. Furthermore, we are working on a lab environment that will facilitate
practical research with FIDO authentication.

Protecting FIDO Extensions Against Man-in-the-Middle Attacks 85

References

1. Akter, S., Chellappan, S., Chakraborty, T., Khan, T.A., Rahman, A., Al Islam,
A.A.: Man-in-the-middle attack on contactless payment over NFC communications:
design implementation, experiments and detection. IEEE Trans. Depend. Secur.
Comput. 18, 3012–3023 (2020)

2. Arshad, S., Kharraz, A., Robertson, W.: Include me out: in-browser detection of
malicious third-party content inclusions. In: Grossklags, J., Preneel, B. (eds.) FC
2016. LNCS, vol. 9603, pp. 441–459. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54970-4_26

3. Barbosa, M., Boldyreva, A., Chen, S., Warinschi, B.: Provable security analysis of
FIDO2. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp.
125–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_5

4. Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C., Vigna, G.:
What the app is that? Deception and countermeasures in the android user interface.
In: 2015 IEEE Symposium on Security and Privacy, pp. 931–948. IEEE (2015)

5. Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and ProVerif. Found. Trends R© Priv. Secur. 1(1–2), 1–135 (2016)

6. Bormann, C., Hoffman, P.E.: Concise Binary Object Representation (CBOR). RFC
8949, December 2020. https://doi.org/10.17487/RFC8949, https://rfc-editor.org/
rfc/rfc8949.txt

7. Bui, T., Rao, S.P., Antikainen, M., Bojan, V.M., Aura, T.: Man-in-the-machine:
exploiting ill-secured communication inside the computer. In: 27th USENIX Secu-
rity Symposium (USENIX Security 2018), pp. 1511–1525 (2018)

8. Büttner, A., Gruschka, N.: Enhancing FIDO Transaction Confirmation with Struc-
tured Data Formats. In: Norsk IKT-konferanse for forskning og utdanning. No. 3
(2021)

9. Büttner, A., Nguyen, H.V., Gruschka, N., Lo Iacono, L.: Less is often more:
header whitelisting as semantic gap mitigation in HTTP-based software systems.
In: Jøsang, A., Futcher, L., Hagen, J. (eds.) SEC 2021. IAICT, vol. 625, pp. 332–
347. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78120-0_22

10. Dougan, T., Curran, K.: Man in the browser attacks. Int. J. Amb. Comput. Intell.
(IJACI) 4(1), 29–39 (2012)

11. Feng, H., Li, H., Pan, X., Zhao, Z.: A formal analysis of the FIDO UAF protocol.
In: Proceedings of 28th Network And Distributed System Security Symposium
(NDSS) (2021)

12. Fernandes, E., et al.: Android UI deception revisited: attacks and defenses. In:
Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 41–59. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4_3

13. FIDO Alliance: FIDO Transaction Confirmation White Paper. Technical report,
August 2020. https://media.fidoalliance.org/wp-content/uploads/2020/08/FIDO-
Alliance-Transaction-Confirmation-White-Paper-08-18-DM.pdf

14. FIDO Alliance: Fido alliance metadata service (2021). https://fidoalliance.org/
metadata/

15. FIDO Alliance: Fido alliance specifications overview (2021). https://fidoalliance.
org/specifications/

16. FIDO Alliance: History of fido alliance (2021). https://fidoalliance.org/overview/
history/

https://doi.org/10.1007/978-3-662-54970-4_26
https://doi.org/10.1007/978-3-662-54970-4_26
https://doi.org/10.1007/978-3-030-84252-9_5
https://doi.org/10.17487/RFC8949
https://rfc-editor.org/rfc/rfc8949.txt
https://rfc-editor.org/rfc/rfc8949.txt
https://doi.org/10.1007/978-3-030-78120-0_22
https://doi.org/10.1007/978-3-662-54970-4_3
https://media.fidoalliance.org/wp-content/uploads/2020/08/FIDO-Alliance-Transaction-Confirmation-White-Paper-08-18-DM.pdf
https://media.fidoalliance.org/wp-content/uploads/2020/08/FIDO-Alliance-Transaction-Confirmation-White-Paper-08-18-DM.pdf
https://fidoalliance.org/metadata/
https://fidoalliance.org/metadata/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/overview/history/
https://fidoalliance.org/overview/history/

86 A. Büttner and N. Gruschka

17. Frymann, N., Gardham, D., Kiefer, F., Lundberg, E., Manulis, M., Nilsson, D.:
Asynchronous remote key generation: an analysis of Yubico’s proposal for W3C
WebAuthn. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pp. 939–954 (2020)

18. Gil, O.: Web cache deception attack. Black Hat USA 2017 (2017)
19. Google: Fido2 API for android (2020). https://developers.google.com/identity/

fido/android/native-apps
20. Group, W.W.A.W.: Web authentication (webauthn) (2020). https://www.iana.

org/assignments/webauthn/webauthn.xhtml
21. Jakkal, V.: The passwordless future is here for your microsoft account

(2021). https://www.microsoft.com/security/blog/2021/09/15/the-passwordless-
future-is-here-for-your-microsoft-account/

22. Kumar, A., Jones, J., Hodges, J., Jones, M., Lundberg, E.: Web authentication:
an API for accessing public key credentials - level 2. In: W3C recommendation,
W3C, April 2021. https://www.w3.org/TR/2021/REC-webauthn-2-20210408/

23. Kunke, J., Wiefling, S., Ullmann, M., Lo Iacono, L.: Evaluation of account recovery
strategies with fido2-based passwordless authentication. In: Roßnagel, H., Schunck,
C.H., Mödersheim, S. (eds.) Open Identity Summit 2021, pp. 59–70. Gesellschaft
für Informatik e.V, Bonn (2021)

24. Lahmadi, A., Duque, A., Heraief, N., Francq, J.: MitM attack detection in BLE
networks using reconstruction and classification machine learning techniques. In:
Koprinska, I., et al. (eds.) ECML PKDD 2020. CCIS, vol. 1323, pp. 149–164.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65965-3_10

25. Landrock, P., Pedersen, T.: WYSIWYS?-What you see is what you sign? Inf. Secur.
Techn. Rep. 3(2), 55–61 (1998)

26. Linhart, C., Klein, A., Heled, R., Steve, O.: HTTP Request Smuggling (2005).
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf

27. McGruer, S., Solomakhin, R.: Secure Payment Confirmation. In: W3C working
draft, W3C, August 2021. https://www.w3.org/TR/2021/WD-secure-payment-
confirmation-20210831/

28. Owens, K., Anise, O., Krauss, A., Ur, B.: user perceptions of the usability and secu-
rity of smartphones as FIDO2 roaming authenticators. In: Seventeenth Symposium
on Usable Privacy and Security (SOUPS 2021), pp. 57–76 (2021)

29. Pfeffer, K., et al.: On the usability of authenticity checks for hardware security
tokens. In: 30th USENIX Security Symposium (USENIX Security 2021) (2021)

30. Porter, J.: Safari to support password-less logins via face id and touch id later
this year (2020). https://www.theverge.com/2020/6/24/21301509/apple-safari-
14-browser-face-touch-id-logins-webauthn-fido2

31. Raspberry Pi Ltd: Raspberry Pi Documentation - Raspberry Pi Pico (2022).
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-
pico.html

32. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, August 2018. https://doi.org/10.17487/RFC8446, https://rfc-editor.org/rfc/
rfc8446.txt

33. Schaad, J.: CBOR Object Signing and Encryption (COSE). RFC 8152, July 2017.
https://doi.org/10.17487/RFC8152, https://rfc-editor.org/rfc/rfc8152.txt

34. Selander, G., Mattsson, J.P., Palombini, F.: Ephemeral Diffie-Hellman Over
COSE (EDHOC). Internet-Draft draft-ietf-lake-edhoc-12, Internet Engineering
Task Force, October 2021. https://datatracker.ietf.org/doc/html/draft-ietf-lake-
edhoc-12. (work in Progress)

https://developers.google.com/identity/fido/android/native-apps
https://developers.google.com/identity/fido/android/native-apps
https://www.iana.org/assignments/webauthn/webauthn.xhtml
https://www.iana.org/assignments/webauthn/webauthn.xhtml
https://www.microsoft.com/security/blog/2021/09/15/the-passwordless-future-is-here-for-your-microsoft-account/
https://www.microsoft.com/security/blog/2021/09/15/the-passwordless-future-is-here-for-your-microsoft-account/
https://www.w3.org/TR/2021/REC-webauthn-2-20210408/
https://doi.org/10.1007/978-3-030-65965-3_10
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.w3.org/TR/2021/WD-secure-payment-confirmation-20210831/
https://www.w3.org/TR/2021/WD-secure-payment-confirmation-20210831/
https://www.theverge.com/2020/6/24/21301509/apple-safari-14-browser-face-touch-id-logins-webauthn-fido2
https://www.theverge.com/2020/6/24/21301509/apple-safari-14-browser-face-touch-id-logins-webauthn-fido2
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://doi.org/10.17487/RFC8446
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.17487/RFC8152
https://rfc-editor.org/rfc/rfc8152.txt
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-12
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-12

Protecting FIDO Extensions Against Man-in-the-Middle Attacks 87

35. Sun, D.Z., Mu, Y., Susilo, W.: Man-in-the-middle attacks on secure simple pairing
in Bluetooth standard V5. 0 and its countermeasure. Pers. Ubiquit. Comput. 22(1),
55–67 (2018)

36. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: improving ssh-style host
authentication with multi-path probing. In: USENIX Annual Technical Conference,
vol. 8, pp. 321–334 (2008)

37. Xu, P., Sun, R., Wang, W., Chen, T., Zheng, Y., Jin, H.: SDD: a trusted display
of FIDO2 transaction confirmation without trusted execution environment. Future
Gener. Comput. Syst. 125, 32–40 (2021)

38. Zhang, Y., Wang, X., Zhao, Z., Li, H.: Secure display for FIDO transaction confir-
mation. In: Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, pp. 155–157 (2018)

39. Zhang, Z., Diao, W., Hu, C., Guo, S., Zuo, C., Li, L.: An empirical study of
potentially malicious third-party libraries in Android apps. In: Proceedings of the
13th ACM Conference on Security and Privacy in Wireless and Mobile Networks,
pp. 144–154 (2020)

	Protecting FIDO Extensions Against Man-in-the-Middle Attacks
	1 Introduction
	2 Background
	2.1 FIDO Authentication
	2.2 COSE

	3 Related Work
	4 Attacker Model
	4.1 Vulnerable Web Intermediaries
	4.2 Compromised Client Application
	4.3 Malware on the Client Device
	4.4 MitM Between Client Device and Authenticator

	5 Protocol Design
	5.1 Authenticated Encryption
	5.2 Key Exchange
	5.3 Data Format
	5.4 Displaying User Information

	6 Security Evaluation
	6.1 Key Exchange
	6.2 Encrypted Assertion Extensions

	7 Implementation
	8 Discussion
	8.1 Security
	8.2 Implementation
	8.3 Usability

	9 Conclusion and Outlook
	References

