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Preface

This book contains the papers which were selected for presentation at the 5th Inter-
national Workshop on Emerging Technologies for Authorization and Authentication
(ETAA 2022), which was held in Darmstadt, Germany, on September 30, 2022,
co-located with the 27th European Symposium on Research in Computer Security,
(ESORICS 2022).

The workshop program included one invited paper and eight full papers concerning
the workshop topics, in particular new techniques for biometric and behavioral-based
authentication along with authentication and authorization in IoT and in distributed sys-
tems in general, including the Smart Home environment. All papers have been reviewed
through a single blind review process. Every paper has been reviewed by 2 or 3 reviewers.

We would like to express our thanks to the invited speaker, to the authors who
submitted their papers to the fifth edition of this workshop, thus contributing to making
it again a successful event. We acknowledge the sponsorship and advertisement done by
the EU-Funded H2020 SIFIS-Home project (GA number: 952652).

Last but not least, we would like to express our gratitude to the members of the
Technical ProgramCommittee for their valuablework in evaluating the submitted papers.

October 2022 Paolo Mori
Andrea Saracino
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An Ontology-Based Approach for Setting
Security Policies in Smart Homes

Alberto Monge Roffarello(B) and Luigi De Russis

Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
{alberto.monge,luigi.derussis}@polito.it

Abstract. To preserve the security and the integrity of smart home
environments, a smart home system should provide end users with mech-
anisms to define security-based policies on their devices and services
without the need to know (and specify) details that strongly depend on
the underlying technology. To this end, this paper presents an End-User
Development tool that allows users to a) define high-level security poli-
cies like “do not record any sound in the living room tonight,” b) check
and debug high-level security policies against inconsistencies and redun-
dancies, and c) translate high-level security policies into device-specific
policies that can be applied at run-time. The tool implements a trigger-
action programming paradigm, and it exploits a hybrid formalism based
on ontologies and Petri Networks.

Keywords: End-user development · Internet of Things ·
Trigger-action programming · High-level policies

1 Introduction

The Internet of Things (IoT) is the paradigm whereby everyday objects are no
longer disconnected from the virtual world, but they can be controlled remotely
and serve as an access point to the Internet [29]. The advent of the IoT already
helps society in many ways through applications ranging in scope from the indi-
vidual to the planet [16]. People, in particular, can nowadays interact with a mul-
titude of IoT devices in their homes: with lamps, thermostats, and many other
appliances, including fridges and ovens, that can be connected to the Internet,
homes are becoming “smart.” Besides physical devices, many different online
services, ranging from social networks to news and messaging apps, are greatly
used by almost everyone: the number of people using the Internet passed 4.5
billion marks in January 2020, with more than 3.8 billion people actively using
social media [33]. As a result, users can easily access a complex network of con-
nected entities, be they smart devices or online services, that can communicate
with each other, humans, and the environment.

The complexity of the IoT poses several security challenges, especially in the
smart home context. Errors in automated behaviors, for example, can lead to
unpredictable and dangerous behaviors [13]. While posting content on a social
c© Springer Nature Switzerland AG 2023
A. Saracino and P. Mori (Eds.): ETAA 2022, LNCS 13782, pp. 1–14, 2023.
https://doi.org/10.1007/978-3-031-25467-3_1
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network twice could be considered a trivial issue, wrong automation could unex-
pectedly unlock the main door of a house, thus generating a security threat.
To preserve the security and the integrity of smart home environments, a smart
home system should provide end users with mechanisms to define security-based
high-level policies on their devices and services, without the need to know (and
specify) details that strongly depend on the underlying technology. Following this
need, this work proposes the Policy Translation Point (PTP) system, an end-
user development tool that aims to support users to express high-level policies
like “Do not record sound in the living room tonight.” To this end, PTP uses an
ontological representation for end-user development and employs a trigger-action
programming paradigm through which high-level security policies are expressed
as abstract trigger-action rules. These policies ultimately ensure that the behav-
ior of the devices and applications involved in a given smart home adheres to the
latest underlying policy description. In particular, PTP can translate high-level
policies into device-level policies, when possible. Stemming from a high-level pol-
icy, for instance, the system could limit the features of a smart home device or
inhibit the operation of a non-reconfigurable device. In addition, it could ver-
ify whether a given home configuration is compatible with one or more active
(or suggested) policies. Besides empowering users to define and translate rules,
PTP is also able to detect potential conflicts between high-level policies, namely
redundancies (i.e., policies that produce equal or overlapping results) and incon-
sistencies (i.e., policies with contradictory actions).

2 Related Work

Smart home is an emerging application paradigm that has been gaining popu-
larity in the last few years. Most recently, the IoT has fostered a vision of smart
home systems, where users can install smart devices and applications that coop-
erate to manage home services and functionalities automatically. This emerging
market rapidly attracts software developers to produce novel applications and
services to provide additional smart home functionalities. However, noticeable
barriers and concerns are still present, mainly related to cyber-security and safety
within smart home systems, as well as to the privacy and integrity of produced
and consumed data, most of which are personal and sensitive. In our work, we
aim to design and implement a solution allowing end users to specify, debug, and
translate high-level security policies that can be applied in a given smart home.
This section contextualizes our work by discussing state-of-the-art literature on
End-User Development (EUD) and rules modeling and analysis.

2.1 End-User Development in the IoT

Lieberman et al. [28] define End-User Development (EUD) as “a set of meth-
ods, techniques, and tools that allow users of software systems, who are act-
ing as non-professional software developers, at some point to create, modify or
extend a software artifact.” With the technological advances we are confronting
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today, people are increasingly moving from passive consumers to active producers
of information, data, and software [31], and EUD approaches and methodolo-
gies have been extensively explored in different contexts, e.g., mobile environ-
ments [32], smart homes [12,36], and web mashups [20,34]. The explosion of the
IoT further increased the need to allow end users to customize the behavior of
their smart devices and online services. One of the most popular paradigms to
empower end users in directly programming their connected entities is trigger-
action programming [22,36]. Trigger-action programming offers a straightfor-
ward and easy-to-learn solution for creating end-user applications, according to
Barricelli and Valtolina [10]. It is not surprising that, in the last years, several
commercial trigger-action programming platforms were born to allow end-user
personalization of connected entities. Examples include IFTTT [2], Zapier [6],
Microsoft Flow [3], Mozzilla’s Thing Gateway [5], SmartRules [4], and many
others. In its basic form, trigger-action programming allows users to connect a
single event to a single action: by defining trigger-action (IF-THEN) rules, users
can connect a pair of devices or online services in such a way that, when an event
(the trigger) is detected on one of them, an action is automatically executed on
the latter. Although some behaviors would require greater expressiveness to be
defined in a single rule, e.g., through multiple actions or additional trigger con-
ditions, many of the most popular trigger-action programming platforms, e.g.,
IFTTT, Zapier, and Microsoft Flow, still continue to adopt the basic form of
the trigger-action programming paradigm [11].

Given its advantages and widespread adoption in EUD solutions for IoT
environments, including smart homes, we decided to adopt the trigger-action
programming paradigm to empower end users to define high-level security poli-
cies. Our approach is inspired by the work described in [19],in which the authors
proposed a method based on Semantic Web technologies to express abstract
(high-lelvel) trigger-action rules that adapt to different contextual situations,
e.g., “increase the home temperature when I’m coming home.”

2.2 Rule Modeling and Analysis

Despite the trigger-action programming paradigm can express most of the behav-
iors desired by potential users [10,36], and is adopted by the most common
EUD platforms [21], the definition of trigger-action rules can be difficult for
non-programmers. Multiple studies investigated different aspects of contempo-
rary platforms like IFTTT, ranging from empirical characterization of the perfor-
mance and usage of IFTTT [30] to human factors related to their adoption in the
smart home [36]. Large-scale analysis of publicly shared rules on IFTTT [35],
and changes to the underlying models are proposed as well [17,21]. In these
studies, in particular, conflicts and ambiguities among rules emerged as possible
challenges [36]. As a result, users frequently misinterpret the behavior of trigger-
action rules [13], often deviating from their actual semantics, and are prone to
introduce errors [24].

All the described problems naturally apply to the context of high-level secu-
rity policies expressed as trigger-action rules. Consequently, our work also aims
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to allow users to check and debug their policies. Many prior works face the
problem of formally or semi-formally verifying event-based rules with different
approaches, especially in the area of databases [23,27], expert systems [38], and
smart environments [8,37]. Rules, indeed, can interact with each other, and even
a small set of dependencies between them makes it hard (and often undecidable)
the problem of predicting their overall behavior [9]. Li et al. [27], for instance,
propose a Conditional Colored Petri Net (CCPN) formalism to model and sim-
ulate Event-Condition-Action (ECA) rules for active databases. Petri nets are
used by Yang et al. [38] to verify rules in expert systems, and by Jin et al. [26]
to dynamically verify ECA properties such as termination and confluence. In
the field of smart environments, Vannucchi et al. [37] adopt formal verification
methods for ECA rules, while Augusto and Hornos [8] propose a methodological
guide to use the Spin model checker to inform the development of more reliable,
intelligent environments.

Most of the works described above aim to check the consistency of a set of
fixed and already defined rules, not in real time, and employ predefined use cases
to validate the algorithms. The goal of the PTP system is different. Instead of
performing such an “off-line” verification of rules, PTP aims at assisting end
users during the definition of their own security policies. For this purpose, we
empower the PTP interface with a novel Petri net formalism, similar to CCPN
but enhanced with new elements and with semantic information.

3 The Policy Translation Point System

The Policy Translation Point (PTP) is a system that has three main goals:

1. supporting users to express high-level security policies like “Do not record
sound in the living room tonight”;

2. translating high-level security policies into device-level policies, when possible;
3. detecting potential conflicts between high-level security policies.

Figure 1 shows the client-server architecture of the PTP system. Through
the web-based PTP User Interface, users can compose new high-level security
policies. The PTP Server analyzes these policies taking into account the devices
and applications installed in the smart home, and produces alarms in case of
conflicts and/or translates the defined high-level policies into a set of device-
level policies expressed in the XACML formalism [7].

In this Section, we present the models and formalisms adopted in the PTP
system (Sect. 3.1), and we detail how users can compose and check high-level
security policies through the PTP User Interface (Sect. 3.2). Finally, Sect. 3.3
presents the implementation details.

3.1 Adopted Models and Formalisms

Concept Modeling and Translation: The SIFIS-Home Ontology. The
PTP system uses the SIFIS-Home ontology to model high-level security policies,
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Fig. 1. The architecture of the PTP system.

smart home devices/applications, and users. Figure 2 shows the architecture of
the SIFIS-Home ontology. We designed and implemented it by exploiting state-
of-the-art vocabularies like foaf [1] and EUPont [19]. EUPont, in particular, is a
high-level ontological representation of trigger-action programming that describes
smart devices and online services based on their categories and capabilities, i.e.,
their offered services. In detail, for each trigger or action, the ontology provides
information about the device or online service by which they are offered, and any
relationship with other triggers or actions, e.g., the fact that an action implicitly
activates a given trigger. Furthermore, triggers and actions are classified through
a tree of classes that represents the final behavior they monitor, in case of triggers,
or produce, in case of actions. Triggers or actions that are classified under the same
EUPont classes, in particular, are similar in terms of final functionality, while trig-
gers or actions that do not share any EUPont class are functionally contradictory.
For example, the two actions “set the Nest thermostat to Home mode” and “set 25
Celsius degree on the Nest thermostat” share the same final functionality, because
they are both classified under the same EUPont class, i.e., IncreaseTemperature-
Action. Compared to these actions, the action “set the Nest thermostat to Away
mode” is contradictory in terms of functionality, because it is classified under a
different EUPont class, i.e., DecreaseTemperatureAction.

In our work, we specialized the EUPont classes to the context of high-level
security policies in the smart home context. Each policy follows a simple trigger-
action programming paradigm, and is defined through an abstract trigger-action
rule composed of a single trigger and a single action. In the initial version of the
SIFIS-Home ontology, we included the following triggers and actions:

– Temporal triggers: events that fire every morning, afternoon, evening, or
night, respectively.

– Video actions: actions that allow or forbid video recording in a given location,
e.g., the bedroom.

– Audio actions: actions that allow or forbid audio recording in a given location,
e.g., the bedroom.
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Fig. 2. The architecture of the SIFIS-Home ontology.

Figure 3a shows how a policy is modeled inside the SIFIS-Home ontology. The
OWL class POLICY has two subclasses, i.e., TRIGGER andACTION. A set of OWL
restrictions have been added to specify that a policy must have a single trigger
and a single action. Following the EUPont model, the TRIGGER and ACTION classes
are in turn specialized in a hierarchy of OWL sub-classes representing events and
actions of different categories. These hierarchies of sub-classes are expressed at
different levels of abstraction: this potentially allows users to specify high-level
policies in different ways, by choosing to be more or less specific. Figure 3b exem-
plifies some video-related actions included in the initial version of the SIFIS-Home
ontology. For example, the SIFIS dont-record-video action is a RDFS instance
of the STOP VIDEO class, while the SIFIS record-video action is a RDFS instance
of the START VIDEO class.
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Fig. 3. Modeling of a policy inside the SIFIS-Home ontology.

As shown in Fig. 2, each trigger and action is directly linked with contextual
information, e.g., locations (SpatialThing) and users (Agent), and indirectly
linked with devices and applications installed in the smart home (Home Entity).
PTP uses this information to translate the defined high-level policies into the
corresponding set of device-level policies in the XACML formalism.

Conflicts Detection: Semantic Colored Petri Nets. To model and check
the behavior of high-level security policies at run-time, we defined a formalism
inspired by the Semantic Colored Petri Net (SCPN) approach defined in [18].
Petri nets are bipartite directed graphs, in which directed arcs connect places
and transitions. Places may hold tokens, which are used to study the dynamic
behavior of the net. They can naturally describe policies expressed as trigger-
action rules as well as their non-deterministic concurrent environment [26]. We
chose such an approach to allow users to simulate step-by-step the execution of
their policies: by firing a transition at a time, tokens move in the net by giving the
idea of a possible execution flow. As a member of Petri nets family, Colored Petri
Nets (CPNs) [25] combine the strengths of ordinary Petri nets with the strengths
of a high-level programming language. In particular, SCPN is a Colored Petri Net
similar to the Conditional Colored Petri Net (CCPN) formalism [27] proposed
to model ECA rules in active databases. Differently from such a formalism, we
do not consider conditions and use a semantic model to generate and analyze
the net. Furthermore, each token assumes different semantic “colors” by moving
in the net: places, in particular, are labeled with the corresponding OWL classes
extracted from the SIFIS-Home ontology. Such semantic information allows the
inference of more information from the simulation of the net, i.e., to discriminate
between problematic and safe policies.
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Fig. 4. The Semantic Colored Petri Net (SCPN) formalism adopted to model the run-
time behavior of high-level security policies.

Figure 4 summarizes the adopted approach. Specifically:

– High-level policies’ triggers and actions are modeled as places in the Petri
Net. When a trigger is in common between more than one policy, the associ-
ated places are duplicated and connected through a dedicated copy transition
(TCopy, Fig. 4a). When a token is in the original place, the copy transition
simply replicates the token in each copied place. Instead, action places can
be directly reused by policies that have the same action.

– Places can be connected each other through a policy transition (TPolicy,
Fig. 4a), i.e., a connection between the trigger and the action of the same
policy, or through an activate transition (TActivate, Fig. 4c), i.e., a connection
used when an action of a high-level policy triggers the event of another high-
level policy.

– Places, i.e., high-level policies’ triggers and actions, are labeled with the cor-
responding OWL classes extracted from the SIFIS-Home ontology (Fig. 4a).

Using the described model, PTP is able to detect two possible conflicts among
the currently available high-level policies: inconsistencies and redundancies.

Inconsistencies occur when policies that should be activated at (nearly) the
same time1 try to execute contradictory actions. In trigger-action rules, an incon-
sistency occurs when the execution order of rules may render different final states
in the system [15]. In this work, we generalized this concept to consider the entire
smart-home ecosystem, i.e., not only physical devices but also online services.
For this reason, we analyze the meaning of the actions executed by the involved
policies rather than their execution order. An example of a set of policies that
produces an inconsistency is:

– when in the morning, from 9 to 12 AM, then record video in the bedroom;

1 e.g., when policies share the same trigger or when some policies trigger other policies.
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– when in the morning, from 9 to 12 AM, then do not record any video in the
bedroom;

Here, the two policies are executed simultaneously because they share the same
trigger and produce two contradictory actions, i.e., allowing and prohibiting
video recording in the bedroom.

Redundancies, instead, occur when two or more policies that are activated
(nearly) at the same time have replicated functionality [15]. An example of a set
of policies that produce a redundancy is:

– when in the evening, from 6 to 9 PM, then do not record any audio in the
entire home;

– when in the evening, from 6 to 9 PM, then do not record any audio in the
living room.

Also in this case, the two policies are executed simultaneously because they share
the same trigger. Here, however, the action of the second policy is redundant
with the action of the first policy, as the living room is part of the entire home.

3.2 User Interface

The PTP user interface can be logically split into three parts: a) Policy Compo-
sition (Fig. 5), b) Problem Checking (Fig. 6a), and c) Step-by-Step Explanation
(Fig. 6b). The Problem Checking and the Step-by-Step Explanation interfaces
implement two well-known end-user debugging strategies: identification of rule
conflicts and simulation of the run-time behavior.

Fig. 5. The definition of a new high-level security policy in the PTP interface.
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To allow the composition of high-level security policies, we designed a user
interface based on the form-filling paradigm, an approach that has been found
to be effective and easy to use in trigger-action programming platforms by sev-
eral previous works, e.g., [14,21]. In addition, the form-filling procedure it adopts
helps users to avoid syntactical errors during the composition process. To compose
a policy, a user must first select which service they want to use as a trigger, e.g.,
“Temporal Triggers” (Fig. 5a). Once they select a service, they can choose the spe-
cific trigger to be used (e.g., “Every Morning,” Fig. 5b) and fill in any additional
information required by the trigger (e.g., the specific time interval, Fig. 5c). To
define the action part of the rule, the user has to repeat the same steps.

When a rule has been composed, PTP uses the mechanisms described in
Sect. 3.1 to find any possible conflicts with the policies that have been defined
in the past, highlighting a problem to the user if necessary. The Problem Check-
ing interface, in particular, shows the policy just defined by the user and any
problems that the policy may generate. In Fig. 6a, for instance, a possible incon-
sistency between two policies is highlighted. To better understand the problems
and to foresee the run-time behavior of the involved policies, the user can click
on the “Explanation” button to open the Step-by-Step Explanation interface
(Fig. 6b). In such an interface, the user can simulate step-by-step what happens
within their policies, to try to understand why the highlighted problems arise.

At the end of the composition procedure, if no problems are detected, the
user has the possibility to translate the defined high-level policy into a set of
XACML policies.

Fig. 6. The Problem Checking interface showing an inconsistency between an already
existent policy and the defined one (a), and the corresponding Step-by-Step Explana-
tion (b).
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3.3 Implementation

The implementation of the PTP system consists of two main components:

PTP Server It is built in Java with the Spring framework2. It is composed
of three modules: Policy Service, SCPN Service, and Policy Controller. The
Policy Service offers the features needed to manage collections of policies i.e.,
to create, read, update, and delete policies through the interaction with a
MySQL database. Once a user has completed a policy, the SCPN Service
generates and analyzes the SCPN by retrieving the defined policies from the
Policy Service, and by using the OWL API3 library to extract the needed
semantic information from the SIFIS-Home ontology. The same module is also
responsible for the step-by-step simulation of the involved policies. Finally,
the Policy Controller exposes a list of REST APIs to interact with the two
services.

PTP User Interface It is the web-based interface built with the Angular
framework4. It interacts with the PTP Server through the provided REST
APIs.

4 Conclusions

In this paper, we have presented the Policy Translation Point system, and End-
User Development tool that empowers users to define, translate, and debug high-
level security policies. The tool exploits a novel formalism based on Semantic
Web technologies and Petri Nets, and it implements a trigger-action program-
ming approach through which users can define policies as abstract trigger-action
rules that do not depend on any specific technology. Furthermore, it is able to
detect redundancies and inconsistencies between high-level security policies, and
it can translate a high-level policy into a set of XACML policies that can be
directly applied to the devices and applications installed in the smart home.

Acknowledgments. The work described in this paper is part of the SIFIS-Home
Project that is supported by funding under the Horizon 2020 Framework Program of
the European Commission SU-ICT-02-2020 GA 952652.
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Abstract. In this paper we propose a gesture-based user-friendly
smartwatch-based user authentication scheme called ClapAuth to
authenticate the users to gain physical access to a secure infrastructure.
In ClapAuth users are authenticated by performing clapping actions,
while wearing their smartwatch in one hand. ClapAuth, while users
perform clapping gestures, profiles them by collecting data from their
smartwatches’ built-in accelerometer and gyroscope sensors. We have
evaluated the proposed scheme on a publicly available dataset by using
state-of-the-art n-class machine learning classifiers, namely Random For-
est (RF), Artificial Neural Network (ANN), and K-Nearest Neighbors
(KNN). KNN outperformed other two classifiers and attained 93.3%
TAR at the cost of 0.22% FAR. ClapAuth could be widely accepted
as it utilizes users’ familiarity with a common action, such as clapping,
and users are not required to remember any secret code or gesture.

Keywords: Biometrics · Authentication and access control ·
Behavioral biometrics · Smartwatch

1 Introduction

Computer technology, and especially cyber technology involving Internet or
cyberspace, is not just limited to electronic and computing devices, it could
also be evaluated in securing access to secure facilities. The introduction of com-
puting and communication capabilities combined with machine learning is not
only making such facilities “smart” [1], but also secure. The main goal of this
paper is to control the access to a smart facility, i.e., an office building or smart
home. Existing approaches to secure access control mainly rely on some form
of physical device, i.e., locks, doors, or barriers, which must be reliable but also
acceptable for the users [2]. Needless to say, these physical access control sys-
tems are evolving in terms of technology but also in terms of user authentication
schemes.

Most of the lock manufactures, for example [3], offer PIN/password-based
schemes, device-pairing (with smartcards, smartphones), and physical biomet-
rics (using face, fingerprints), as it is depicted in Fig. 1. However, these schemes
c© Springer Nature Switzerland AG 2023
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have shown to be insecure, as they are vulnerable to various attacks [4], and
not usable [5,6]. Furthermore, a recent study [7] reports that 55% of the partic-
ipants prefer password-less access, 50% of them used to share their passwords
with others, and 62% of them consider second-factor authentication as annoy-
ing. Similarly, 65% of interviewed users consider biometrics as a better approach
(as they say it would increase the security), however, 30% of them had serious
privacy concerns in sharing their biometric data. These limitations motivate the
design of gesture-based usable metaphors for smartwatches and physical access
control systems using behavioral biometrics.

Fig. 1. User Authentication schemes on existing smart locks [28]

Smartwatches besides their traditional use (e.g., showing time, managing text
messages and phone calls), are now used to perform sensitive operations, i.e.,
opening the garage doors1 and accessing cars2, just to name a few. To this end,
we intend to use behavioral-biometric-powered smartwatch as a key to access
the secure infrastructure.

Behavioral biometric, e.g., swiping and touch-dynamics, seems a better option
for the development of gesture-based user authentication schemes mainly because:
(i) their data can be collected transparently, (ii) data collection does not require
any additional hardware, (iii) they are secure, and (iv) unlike physical biometrics,
they offer the possibility to easily revoking the compromised behavioral attributes.
Since, behavioral biometrics are dependent on the user actions and habits, it
makes them more suited to frictionless and unobtrusive user authentication [8].
Behavioral biometrics exploit continuously collected person-specific data, by com-
mon smartphone/smartwatch sensors, to profile users. Several unique behavioral
1 https://www.iphoneness.com/home-automation-2/apple-watch-garage-door-ope

ner/.
2 https://www.macworld.com/article/676033/bmw-to-use-iphones-u1-chip-for-digi

tal-car-keys.html.

https://www.iphoneness.com/home-automation-2/apple-watch-garage-door-opener/
https://www.iphoneness.com/home-automation-2/apple-watch-garage-door-opener/
https://www.macworld.com/article/676033/bmw-to-use-iphones-u1-chip-for-digital-car-keys.html
https://www.macworld.com/article/676033/bmw-to-use-iphones-u1-chip-for-digital-car-keys.html
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Fig. 2. Clapping gesture in 3D space

features (differently from static biometrics), e.g., swiping/typing speed, finger
size/pressure, etc., are collected to create a unique profile of the user. Addition-
ally, the inherent capability of liveness detection (without initiating any challenge)
makes behavioral biometrics preferable over their above mentioned counterparts.
As a result, researchers in the authentication domain started designing behavioral
biometric-based schemes, such as, swiping [9], typing [10–12], gait [13], and arm-
movements [14].

In this paper, we present a friction less and user-friendly hands-clapping
gesture-based user authentication scheme - ClapAuth, for smartwatch. Cla-
pAuth, while the user performs a clapping gesture (as depicted in Fig. 2), col-
lects arm movements data by means of the user’s smartwatch accelerometer
and gyroscope sensor, and it uses this data for user profiling. More specifically
ClapAuth collects the arm-movement generated data, from accelerometer and
gyroscope for the entire duration of the clapping gesture and executes identity
confirmation. ClapAuth, by using the proper Machine Learning classification
techniques decides if the smartwatch is worn by the legitimate user or by an
impostor. Access to the secure facility is granted in case the user is confirmed as
legitimate user, otherwise it is denied. ClapAuth neither requires any token,
password, nor any extra user-effort for authentication, thus, making it completely
friction less and usable for access to a secure facility. We framed the problem of
accessing secure facility as an n-class classification problem where the classifier
is trained on samples of several users, hosted on a centralized server. Here, the
decision is made on the server, and access to the facility is granted only when
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the user is authenticated. The obtained results prove ClapAuth as an effective
authentication solution. We report a TAR of 93.3% at FAR of 0.22%.

In conclusion, the main contributions of this paper are:

– The proposal of ClapAuth - a smartwatch-powered arm-motion-based user-
friendly user authentication scheme for physical access control. The pro-
posed scheme authenticates users based on the analysis of the captured arm-
movements generated during the clapping action.

– The investigation and evaluation of that novel hand-clapping gesture as
behavioral-biometric for user authentication.

– The proof of excellent performance of ClapAuth, which achieves a TAR of
93.3% at FAR of 0.22%.

Paper Organization. The rest of the paper is organized as follows: Sect. 2 sur-
veys the relevant research studies published for smartwatch unlocking. Section 3
presents a high-level explanation of our approach. In Sect. 4 we present the evalu-
ation strategy and analysis. In Sect. 5 we discuss our findings and the limitations
of our proposed scheme. We conclude this work with a summary of our findings
and by identifying future works in Sect. 6.

2 Related Work

2.1 Behavioral-Biometric-Based Smartwatch User Authentication

Knowledge-based one-time authentication schemes are not shown to be a pre-
ferred choice because of their well-known and its well documented security and
usability issues. Static biometric, e.g., face, fingerprint, could somehow address
these problems, however, as mentioned earlier, it also has security, usability, and
privacy concerns. Thus, the need for novel behavioral biometric-based schemes
is observed.

Smartwatches are now fitted with sensors that could detect wrist rotations,
arm movements, finger gestures, heart-rate, blood oxygen level, skin temperature
and conductance. This information can be utilized for implicit user authentica-
tion. Behavioral biometric-based user authentication on smartwatches is compar-
atively a less-explored area. Researchers have exploited taping [15], swiping [16],
motion-assisted [17–24] modalities for authentication.

Draw-a-pin [15] leverages the drawing behavior of a user and the correctness
of the drawn PIN, to authenticate the user. Authors achieved 4.84% average
error rate on their collected dataset of 30 participants, in two activities, i.e.,
sitting, walking, in-lab settings using Samsung Gear Live smartwatch.

Lewis et al [18] proposed a motion-based authentication solution for smart-
watch users. The system exploits the free-form arm-movement as behavioral bio-
metric modality for user authentication. By applying a Dynamic Time Warping
(DTW) classifier on their collected dataset of 5 users, authors achieved accuracy
up to 84.6%, depending on the experimental settings. Similarly, in another rel-
evant study, namely “VeriNET”, the authors take motion signals as password,
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and use a deep recurrent neural network to authenticate the users [19]. Authors
evaluated their scheme on 310 participants on 60k passcode entries and achieved
an Equal Error Rate (EER) of 7.17% on PINs and 6.09% on Android lock pat-
terns.

Kumar et al. [14] presents a motion-based user authentication solution for
smartwatches. The authors proposed four variants of continuous user authenti-
cation based on user’s arm movements while walking. The design incorporated
smartwatch’s accelerometer and gyroscope sensor data, individually as first and
second variants, and then, applied feature- and score-level fusion as the third
and fourth variant. The system was tested under three different environments,
i.e., intra-session (40 users dataset), inter-session (40 users dataset), and inter-
phase (12 users dataset) using four classifiers, namely, k nearest neighbors (k-
NN) with Euclidean distance, Logistic Regression, Multilayer Perceptrons, and
Random Forest, resulting in a total of sixteen authentication mechanisms. They
achieved mean dynamic false accept rate (DFAR) of 0% and dynamic false reject
rate (DFRR) of 0% for all of the twelve authentication mechanisms in the intra-
session environment. In the inter-session environment, k-NN performed best with
mean DFAR of 2.2% and DFRR of 4.2%, for a feature level fusion-based design.
Whereas, in the inter-phase environment, the DFAR and DFRR increased to
15.03% and 14.62% respectively for the same feature level fusion-based design
with the k-NN classifier.

We consider these motion assisted behavioral-biometric-based studies [20–22]
and [24] very relevant to our work. In [20] the authors propose finger-snapping
as behavioral modality for user authentication on smartwatches. This scheme
also profiles users’ arm movements by collecting sensory readings from built-in
accelerometer and gyroscope sensors while the user performs the finger-snapping
gesture. They reported TAR is 82.34% at an FAR of 34.25% on 15 training
samples, by using the Multilayer perceptron classifier (MLP). The study [22]
proposes hand-punch behavior as a behavioral modality for smartwatch user
authentication. Using one-class SVM as a classifiers on hand-punch gesture data
(profiled using accelerometer) of 20 users (with 25 samples from each user),
they reported an accuracy of 95.45%. Similarly, in [21] the authors propose
smartwatch-worn in-air-finger-writing as behavioral modality for user authenti-
cation. By using an MLP 1-class MLP as classifiers, the authors achieved a TAR
of 80.52% at 21.65% FAR on 15 training samples. In [24], authors propose to
gyroscope-powered in-the-air signing gesture to authenticate the users of smart-
watch. Using collected dataset (only gyroscope readings) of 11 volunteers and
Dynamic Time Warping (DTW) as classifier, authors achieved 90.1% accuracy.

2.2 Biometric-Based Access Control

The proposals for using physical biometric-based smart access using fingerprint
[25], face [26], iris [27] already exist. The study [25] presents a fingerprint-based
access control system that exploits simple fingerprint minutiae points (arch, loop,
whorl) as features and reports an accuracy of 95%. Similarly, the approach pre-
sented in [26] uses face recognition for access control. They implemented their
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system based on monitoring the eye and mouth state and achieved an over-
all accuracy of 98.3%. All these systems, besides their vulnerability to attacks,
require explicit user action, hence they lack usability. Additionally, users raised
serious privacy concerns in sharing their traits for their verification.

Behavioral biometrics is a less explored area. In [28] the authors present
“Smarthandle”, which exploits users’ hand-movement while they rotate the door
handle to unlock the door. By adding an IMU to the door handle, they profile
the users based on the user’s hand-movements in X, Y, and Z dimensions. By
using a Linear Discriminant Classifier (LDC) in an n-class settings, on the data
collected from 11 users, the authors report a TAR of 87.27% at an FAR of 1.39%.

The proposed approach, namely ClapAuth, is different from the previously
described authentication solutions in the following ways: (i) it leverages a novel
hand-clapping action that is easy to perform, (ii) the data collection is fully
unobtrusive making it suitable for user authentication design, (iii) it has a higher
accuracy by using very few training samples (only 9 training samples), (iv) may
support a large number of users and (v) it is here evaluated for securing physical
access control to a facility. Moreover, our solution could be utilized to transform
a smartwatch into a master-key to authenticate or authorize a user to all other
connected devices or to access a facility.

3 Approach

The proposed approach is based on the idea of utilizing the arm micro-
movements captured while performing clapping as a behavioral biometric modal-
ity. The flowchart of our proposed approach is illustrated in Fig. 3. We use n-class
classifiers (in Matching box) to authenticate the wearer to access the security
facility. It is worth noting that the classification (matching) is done on the server
for access control of the facility.

Fig. 3. Block diagram of our approach
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ClapAuth exploits arms’ micro-movements generated from the clapping
gesture. The approach starts with the generation of raw data when the user
claps. ClapAuth captures these movements for the entire period of clapping
action and extracts the statistical features from the collected tuples, i.e., (X, Y,
and Z dimensions of Accelerometer and gyroscope sensors (as shown in Fig. 3).
The dataset we used for this study contains 91 statistical features, i.e., mean,
standard deviation, etc., for each sensor. We append the features extracted from
the gyroscope sensor at the end of accelerometer sensor features to form a final
feature vector of 182 features. Then, this feature vector is transmitted to the
centralized server where it is fed to the feature selection module to fetch the
most useful (predictive) feature subset for user profiling. The selected feature
subset is stored as a template in the servers’ database for using it to match the
query sample, in order to accept or reject the user.

4 Experimental Validation

4.1 Dataset

The sensory readings corresponding to the clapping gesture are obtained from
a publicly available multi-activity dataset [29]. The “WISDM Smartphone and
Smartwatch Activity and Biometrics Dataset” was collected by 51 participants3.
Each participant was asked to perform 18 activities, such as walking, jogging,
sitting, standing, or clapping, while wearing a smartwatch in their dominant
hand and a smartphone in their pocket. All these activities are labeled from A
to S and the processed data (in terms of features) is stored as Attribute-Relation
File Format (ARFF) files. In general, the sensory data corresponding to these
activities was collected using accelerometer and gyroscope sensors of the smart-
phones and smartwatches. The type of smartwatch used in the study was an LG
G Watch running Android Wear 1.5. The sample rate of data collection was fixed
to 20 Hz (50 ms). Since we are interested only in smartwatch sensory readings
associated with the clapping gesture, we downloaded and used only the ARFF
files labeled with “R” as activity. These ARFF files contain 18 observations for
each user, but, for 4 users there are 45 observations.

4.2 Features

The “WISDM Smartphone and Smartwatch Activity and Biometrics Dataset”
uses the features depicted in Fig. 4. The first row “ACTIVITY” contains the
code of the performed activity, i.e., the code A, B, C, refer to the walking,
Jogging, and stairs activities, respectively. Clapping activity is coded with letter
R. The sensor data features start from row 2 of Fig. 4. More specifically, the first
30 features are the distribution of values over the X, Y and Z axes (shown in
2nd, 3rd, and 4th rows). Authors called this a binned distribution. For each of
the three axes, i.e., X, Y, and Z, they computed the range of values (max-min),

3 However, there are 50 ARFF files (ARFF file for class 1614 is missing) so, we used
the available data of 50 users.
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divided this range into 10 equal-sized bins, and recorded the fraction of values
in each bin. The reader is referred to [29] for better understanding these features
content. We exploited all the features of the accelerometer and gyroscope sensors
in this study.

Fig. 4. Layout of ARFF headers file [29]

4.3 Feature Fusion

In [30] the authors describe the levels at which collected data could be fused in
a biometric system: sensor level; feature; match score; rank and decision level.
Data fusion as early as possible is the preferred choice, however, fusion at the
sensory level does not typically yield good accuracy because of the presence
of noise during the data collection. Conversely, fusion at feature level provides
higher accuracy because here the feature representation contains more relevant
and accurate information. Therefore, we preferred this latter approach to extract
from sensor data the maximum amount of relevant information. The fusion (or
concatenation) of 91 available features from the original sensors’ signals, deter-
mines a new feature vector of 182 features; we call it the feature vector for clap
behavior.

4.4 Classifier Selection

We have considered a few simple, yet effective state-of-the-art machine learn-
ing classifiers. For our n-class classification task (accessing the secure facility
scenario), we relied on Weka [31] - an open-source GUI-based toolbox. In this
case we have chosen MLP-based ANN, Random Forest (RF) and IBK as n-class
classifiers. We chose these classifiers because of their simplicity, lightweighted-
ness, and effectiveness, as it was shown in similar researches [11,20]. We used
these classifiers along with their default settings. Better performances are likely
to be attainable with a proper optimizations of the models’ hyperparameters.
We leave this investigation as future work.
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4.5 Feature Selection

Feature selection or variable subset selection is the process of selecting the most
predictive feature subset from the original feature set. This step is performed
for three reasons. Firstly, this is important for discarding non-informative fea-
tures. Secondly, feature selection can decrease the computation cost of the full
authentication operation, since, processing smaller feature vectors requires less
computation as compared to the original feature vectors. Finally, a smaller fea-
ture vector is expected to reduce the complexity of the model and can result in
a higher generalization capability.

We relied on the CfsSubsetEval (CSE)4 algorithm to find best feature subset
for our task. CSE Evaluates the value of a subset of features by considering the
individual predictive ability of each feature along with the degree of redundancy
between them [32]. This algorithm applies Greedy Stepwise search in forward
direction and evaluates every subset. The best feature subset (with highest accu-
racy) is returned as the recommended subset. In our case the algorithm returns
a 44-feature long vector, with validation accuracy of 93.7%, for our analysis.
It is worth mentioning that we use only the training set for feature selection.
Later using these feature sets, we evaluated the classifier’s testing performance
(Table 1).

Table 1. List of selected CSE features

Position Features

1–6 Ac X1 Ac X9 Ac X20 Ac X21 Ac X26 Ac XAVG

7–12 Ac YAVG Ac ZAVG Ac ZPEAK Ac XYCOS Ac XZCOS Ac YZCOS

13–18 Gy XYCOS Gy XZCOS Gy YZCOS Gy X0 Gy X2 Gy X3

19–24 Gy X5 Gy X6 Gy X10 Gy X11 Gy X23 Gy X24

25–30 Gy X22 Gy X25 Gy X27 Gy X29 Gy XAVG Gy YAVG

31–36 Gy ZAVG Gy XPEAK Gy YPEAK Gy ZPEAK Gy XABSOLDEV Gy XMFCC0

37–42 Gy YMFCC0 Gy ZMFCC13 Gy XYCOS Gy XZCOS Gy YZCOS Gy XYCOR

43–44 Gy XZCOR Gy RESULTANT - - - -

4.6 Experimental Settings

We divide, for each user, the dataset into 3 parts: we use 50% of the samples
(9, in total) for training the classifiers. Then, we use 20% (5) of the samples for
validation and the remaining 30% (5) samples for testing. For the preliminary
analysis, i.e., feature selection, we use the validation samples for testing the
classifiers and to obtain the validation accuracy. The test set remains unseen by
the classifier and used only to obtain the test accuracy to quantify the classifier’s
performance.

4 https://weka.sourceforge.io/doc.dev/weka/attributeSelection/CfsSubsetEval.html.

https://weka.sourceforge.io/doc.dev/weka/attributeSelection/CfsSubsetEval.html
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4.7 Performance Evaluation

In this work, we use the following measures to assess the system performance:

– True Acceptance Rate (TAR): The rate of correct classification of legit-
imate attempts.

– False Acceptance Rate (FAR): The rate of incorrect classification of
adversarial attempts.

– False Rejection Rate (FRR): The rate of incorrect classification of legit-
imate attempts.

– True Rejection Rate (TRR): The rate of correct classification of adver-
sarial attempts.

– Accuracy: It is the ratio of correct classification to all the classification
attempts.

– Receiver Operating Characteristics (ROC): It is a graphical plot
between False Accept Rate (on x-axis) and True Accept Rate (on y-axis)
used to depict the classification ability of a classifier over the different thresh-
olds. The curve starts from coordinates (0,0) and ends at (1,1). The curve
closer to coordinates (0,1) shows higher quality.

4.8 Experimental Results

To compare the authentication performance of different classifiers, we use 9 sam-
ples for training, 4 for validation, and 5 for testing. The outcome for the intra-user
testing samples (training and testing on the samples of the same user) is either
true accept or false reject. Similarly, for inter-user (training on the samples of one
user and testing the other users’ samples) testing samples, the outcome is either
false accept or true reject. These results are added to the results and average
results (for all 50 users) are reported. We show the evaluation results in term of
TAR, FAR, and Accuracy. We do not report FRR and TRR because they can
be easily derived as FRR = 1 − TAR, and TRR = 1 − FAR.

In Table 2, we summarize the obtained results for the chosen classifiers, when
all the available features are used, i.e., before applying any feature selection
algorithm. We are able to obtain an accuracy of 86.0%, 89.3%, and 90.7% for
RF, ANN, and KNN, respectively. These results are already quite good, as only
very few (only 9) samples are used for training. The obtained results clearly
indicate that clapping gestures generate significantly different arm-movement
signatures that could be effectively used for designing a robust authentication
mechanism.

Figure 5 shows the results of the considered classifiers when features are
appropriately selected. The chosen classifiers trained on the CSE selected fea-
tures, yielded the results shown in Fig. 5. It is evident that KNN outperformed
other classifiers by attaining a maximum TAR of 93.3% at an FAR of just 0.22%.
It has an accuracy of 96.54% and outperforms its counterparts by a significant
margin. The obtained results prove the effectiveness of selected features.
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Table 2. Classifiers accuracy (%) by using all the features (averaged over 50 users)

n-class classification

Classifiers RF ANN KNN

Accuracy 86.0 89.3 90.7

We present the ROC curve of the best performing classifier - KNN, in Fig. 6.
The blue and red lines indicate the performance of KNN classifier on full and
CSE selected features, respectively, using varying thresholds. It is notable that
this classifier performed better on CSE selected features.

Fig. 5. Obtained results on selected features on Test set (averaged over 50 users)

The performance of the n-class classifier may depend on the number of users
that are distinguished. Hence, in order to check if ClapAuth is scalable in
the number of users, we evaluate the classifier performance for an increasing
number of users, from 10 to 40 (50 users results are those already shown). Since
we have at our disposal a data set of 50 users, we generate smaller sets of users by
discarding some of the available ones and repeat the training and test procedure,
which was used before on 50 users, on these smaller sets of users. Actually, since
the performance of the system may depend on the particular subset of users that
we choose, we repeat the experiment 10 times, for each considered number of
users. Hence, for instance, in order to assess the system performance when 20
users are considered we random sample 20 users from the available 50 users, 10
times, and perform the train and test procedure on these 10 samples of 20 users’
data. A similar computation was performed with samples of 10, 30 and 40 users.

The results of this analysis, only for the KNN classifier (the other classifiers
have similar behaviour), are shown in Table 3. Here, for each number of users
ranging from 10 to 40, we show TAR, FAR and Accuracy obtained in each one
of the 10 samples of users’ sets, and then we show in the last two rows the
average results and the standard deviation. It is evident from this table that
TAR, FAR, and accuracy remain quite stable across the different sizes of users
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Fig. 6. The comparison of ROC curves for KNN classifier on full and selected features

subsets. Actually the TAR and FAR that we have achieved for 50 users are even
better than those shown here for smaller subsets of users.

This gives a clear indication that with a growing number of users ClapAuth
could still ensure high TARs and low FARs.

5 Discussion

Smartwatches are the most personal devices worn on the arm. Due to the wide
adoption of smartwatches in IoT infrastructures, they could be transformed into
master-keys to authenticate or authorize users to gain access to secure facilities.

This work focuses on the exploitation of clapping gestures to authenticate the
wearer. We present a friction less, user-friendly, scalable and secure user authen-
tication scheme to authenticate the wearer hence helping servers in avoiding
trespassing and ensuring secure access to the secure facility.

This work exploits simple supervised classifiers, i.e., KNN, ANN, RF. It is
worth-mentioning that we applied these classifiers in default settings, however,
the accuracy could be further improved by optimizing these classifiers. We leave
this investigation as future work.

KNN outperform its counterparts and achieves 93.3%, at an FAR 0.22%
respectively. It should be noted that the classifiers are trained on few samples:
just 9, and in their default settings. We are sure that by increasing the num-
ber of training samples, adding additional effective features, and optimizing the
classifier’s parameters, the accuracy of ClapAuth could further be improved.
We leave this investigation as future work.

As the work exploits the clapping gesture, every one is familiar of, we believe
that ClapAuth could enjoy wide user acceptance and would not get affected
with ageing.

ClapAuth is a unimodal system - because it exploits just the one modality,
i.e., arm-movement captured while clapping. Multimodal systems have shown to
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Table 3. KNN results (%) on different subset sizes of users

Sr.# 10
Users

20
Users

30
Users

40
Users

TAR FAR Acc TAR FAR Acc TAR FAR Acc TAR FAR Acc

1 87.8 1.4 93.2 93.9 0.3 96.8 93.0 0.2 96.4 91.1 0.2 95.45

2 97.8 0.2 98.8 89.4 0.6 95.8 91.5 0.2 95.65 92.2 0.2 96

3 96.7 0.3 98.2 92.2 0.4 95.9 91.9 0.3 95.8 91.1 0.2 95.45

4 91.1 0.9 95.1 91.7 0.4 95.65 87.8 0.4 93.7 91.9 0.2 95.85

5 91.1 0.9 95.1 92.2 0.4 95.9 93.0 0.2 96.4 91.7 0.2 95.75

6 98.9 0.1 99.4 90.0 0.6 94.7 93.3 0.2 96.55 91.7 0.2 95.75

7 96.7 0.3 98.2 92.8 0.3 96.25 89.3 0.3 94.5 88.6 0.3 95.7

8 94.4 0.6 96.9 94.4 0.2 97.1 91.1 0.3 95.4 91.6 0.2 95.65

9 95.6 0.5 97.55 92.8 0.4 96.2 91.9 0.2 95.8 88.1 0.3 93.9

10 91.1 0.9 95.1 92.8 0.4 95.74 90.7 0.3 95.2 92.5 0.2 96.15

Avg 94.12 0.61 96.75 92.43 0.40 96.0 91.35 0.27 95.54 91.05 0.22 95.56

Std 3.64 0.40 2.02 1.20 0.124 0.657 1.737 0.067 0.89 1.22 0.042 0.624

be more accurate and more secure than their unimodal counterparts. However,
by combining multiple modalities, the developed system could become unob-
trusive. ClapAuth could be extremely useful in such a case: it could use the
electromyographic sensory information [33] collected unobtrusively, as a second
factor and use it for decision making. We leave this investigation for future work.

ClapAuth has however some limitations. Firstly, the user is required to use
both hands for performing clapping action, which might not be acceptable to
some of the users. Secondly, performing clapping action in public creates noise
and may not be suitable in some scenarios, i.e., in a meeting. Finally, our results
are still drawn from a limited number of users, i.e., 50 (most of them were
students), that could not be considered representatives of the entire population
of a real system. However, our scalability analysis has shown that increasing the
number of user should not pose a significant problem to the proposed approach.

6 Conclusion and Future Work

In this work, we exploit clapping as a behavioral modality to perform identity
verification to securing access to a secure facility. Our study on the clapping
gestures of 50 users demonstrated that ClapAuth is accurate (up to 96.54%
accuracy), user-friendly, and scalable. This implies that we could consider clap-
ping gestures to design an accurate and frictionless authentication mechanism.
Moreover, by considering more factors, e.g., electromyography, electrocardiogra-
phy, etc., we can design and develop a more robust multimodal authentication
scheme.

The reported accuracy in terms of TAR, FAR and accuracy is achieved
by using the chosen classifiers in default settings. As future work, we plan to
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investigate if by optimizing the classifiers one can further improve accuracy.
Additionally, we plan to check the effectiveness of ClapAuth in bi/multi modal
setting.

We are in the process of implementing a proof-of-the-concept Android appli-
cation based on the findings of this work. Then we plan to conduct unsupervised
in-the-wild experiments to validate the effectiveness of ClapAuth. We plan
to extend this work by reporting obtained results in terms of use of resources
(power processing and memory usage), robustness to attacks (random, mimic,
and engineered), and user acceptance using Software Usability Scale5(SUS).
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Abstract. Reliable and transparent user authentication on sensor-rich
devices, such as wearables, is a topical task today. Of special interest
are methods based on bioacoustic signals processing, such as on-body
active and passive acoustic sensing. These methods are attractive due
to the relatively small aging effect of the captured bioacoustic signals
and low battery consumption. This makes them promising candidates
for on-device user authentication.

Most recent researches in bioacoustic user authentication are aimed at
active acoustic sensing. Practical usage of such methods requires adding of
an additional electro acoustic transducer to wearables which is inappropri-
ate for already commercialized devices. Methods of passive acoustic sens-
ing allow for overcoming these limitations by capturing bioacoustic signals
produced during person’s movements, for example wrist rotations. How-
ever, practical application of these methods requires usage of microphones
with high sensitivity for capturing of weak acoustic signals. To overcome
this limitation we suggest to perform passive sensing near the place with
multiple joints, such as cervical vertebrae.

The results of performance analysis proved effectiveness of proposed
solutions, namely decreasing of False Rejection Rate (FRR) errors up to
ten times in comparison with state-of-the-art solutions while preserving
low False Acceptance Rate (FAR) values. Achieved values FAR = 0.12%
and FAR = 3.00% for proposed solution conforms to the requirements
for Secondary Tier of Android OS Tiered Authentication Model that
makes the solution an attractive candidate for user authentication on
the next-generation wearable devices.

Keywords: Wearable devices · User authentication · Bioacoustic

1 Introduction

Key drivers of mobile gadgets market in the recent years are smartwatches and
earbuds [6,9]. These devices allow for easy tracking of persons health-related
parameters, such as heartbeats, oxygenation level, and sleep duration. Also
mobile gadgets became essential for interaction with connected devices such as
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smartphones and TVs. Despite rich functionality, adoption of wearable devices
for new scenarios, such as sensitive data processing, is limited [6]. This is caused
by concerns about possible privacy issues, such as disclosure of personal health
data.

To overcome these limitations, methods for user authentication based on
biometrics (like gait, voice, heartbeat signals) and behavior (motions patterns,
usage patterns) data were proposed. These methods leverage built-in sensors
for wearable devices while preserving a relatively low computational complexity.
Especially promising are those based on processing of bioacoustic signals caused
by friction of neck bones near the joints. Uniqueness of such signals for each
person and slow degradation of signal parameters due to aging make bioacoustic
an attractive alternative for user authentication [11,13,19].

Proposed methods for user authentication by bioacoustic signals can be
divided into active and passive ones. The former are aimed at producing of
probe acoustic signals and estimate parameters of reflected signal. The latter
ones use off-the-shelf equipment for gathering acoustic signals caused by bones
frictions [19]. Despite wide range of proposed methods for active bioacoustic
sensing, the necessity to use special measurement equipment limits practical
application of such methods in commercial wearable devices.

The methods for passive sensing require advanced signal processing methods
for extraction of robust features from gathered mixture of weak (low magnitude)
bioacoustic signal and ambient noise. Therefore, the majority of such methods
are aimed at increasing signal-to-noise ratio by placing microphones as close to
a joint as possible. This limits the application of such methods for some types
of wearables like VR-headsets, headphones and earbuds where the applicability
of bioacoustic authentication is not deeply studied.

This paper is aimed at filling this gap by development of fast and accurate
user authentication by passive acoustic sensing for headset-like devices. The main
contribution of the paper may be summarized as follows:

1. To the best of our knowledge, this is the first research of bioacoustic signals
produced by big skeleton joints, like cervical vertebrae, for user authentication
on wearable devices. We checked the case of usage a neckband (neck-based
headset) with microphones placed as close as possible to a big joints in the
neck. This allows estimating baseline of achievable error level for other types
of audio equipment, such as earbuds, VR headsets to name a few.

2. We propose method for accurate non-continuous user authentication by bioa-
coustic signals gathered by headset devices at the backside of the neck. The
method is based on multistage processing of acoustic signals using spectral
features and Convolutional Neural Networks (CNN). This reduces values of
FAR and FAR to the levels that are applicable for reliable person authenti-
cation on modern smartphones [15].

3. The performance evaluation was done for state-of-the-art and proposed meth-
ods of user authentication via bioacoustic signals produced by various joints,
namely wrist and neck. Considered devices included a smartwatch as a
widespread and convenient for user wearable as well as neckband. Estimated
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error levels for mentioned cases is of special interest for next generation of
user authentication systems on wearable devices.

The rest of this paper is organized as follows. Notations and acronyms are
presented in Sects. 2–3. A review of modern solutions for bioacoustic user authen-
tication on wearable devices and purpose of the paper are presented in Sect. 4.
Proposed technology for bioacoustic user authentication is described in Sect. 5.
Results of performance evaluation are presented in Sect. 6. Section 7 summarizes
the paper.

2 Notations

By boldface we indicate high-dimensional arrays, matrices, and vectors. Their
individual elements will be denoted by the corresponding lower-case letters in
italic. Calligraphic font is reserved for sets. If nothing extra is specified, then
we assume that an element x from a set X is sampled according to uniform
distribution.

Biometric data (a sample) is presented as a vector of real numbers b ∈ R
n.

Threshold values are denoted as T with the corresponding indices.

3 Acronyms

ATAM Android Tiered Authentication Model
CNN Convolutional Neural Networks
CT Cepstral Transform
DWT Discrete Wavelet Transform
FAR False Acceptance Rate
FFT Fast Fourier Transform
FRR False Rejection Rate
MFCC Mel-frequency Cepstral Coefficient
MLP Multilayer Perceptron
SAR Spoofing Acceptance Rate
STFT Short Time Fourier Transform

4 Literature Review

The key factors for person authentication methods are password (something
users known), hardware tokens (something users have), biometric and behav-
ioral data (something that is specific for every individual). The first factor is
widely used for granting access to personal computers as well as network ser-
vices. Token-based authentication is used for corporate services, where reliable
person authentication is crucial. Despite low error levels, their practical usage
for mobile devices is limited due to the necessity of additional hardware and
limitations for password input.
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The biometric and behavior-related data can be captured by built-in sensors.
For example heartbeat signals – with electrocardiogram sensor, user’s gait – by
motion sensor. This makes possible to use such a data for continuous authen-
tication, namely liveness tracking by heartbeat signals by Keyble [5], Nymi [8]
and BSekur [14] solutions. Also, biometric and behavioral signals are highly
dependent on individual physiology which gives low Spoofing Acceptance Rate
(SAR). This is crucial for modern operating systems of mobile and wearable
devices. For example, requirements for FAR, FRR and SAR values for Android
OS is presented in the Table 1.

Table 1. Three classes from Secondary Tier (“What you are”) of ATAM [15]. Here
IdT is idle timeout period, InA is incorrect attempts number.

Class Requirements Capabilities Constraints

Device
unlock

Application
integration∗

Keystroke
integration∗∗

Fallback
timeout

More
constraints

Class 3
(Strong)

SAR: 0%–7%
FAR: 1/50K
FRR: 10%
Secure pipeline

+ + + 72 h −

Class 2
(Weak)

SAR: 7%–20%
FAR: 1/50K
FRR: 10%
Secure pipeline

+ + − 24 h IdT: 4 h
or
InA: 3 attempts

Class 1
(Convenience)

SAR: >20%
FAR: 1/50K
FRR: 10%
(In)secure pipeline

+ − − 24 h IdT: 4 h
or
InA: 3 attempts

(∗) App integration means exposing an API to apps (e.g., via integration with Biomet-
ricPrompt/BiometricManager, androidx.biometric, or FIDO2 APIs)
(∗∗) Keystore integration means integrating Keystore, e.g., to release app auth-bound
keys

The novel methods for user authentication on mobile and wearable devices
utilize heartbeat signals, such as B-Secur HeartKey [14] and Keyble solution by
FlyWallet [3]. However, effective suppression of context or aging related alter-
ations requires using several heartbeats [25]. This also engages computation-
intensive models which limits practical application of such approach on resource-
constrained wearables.

To overcome these obstacles, behavior-based approaches were proposed, such
as BehavioSec [1], BioCatch [2] and Digital Fingerprints [4]. They are based on
analysis of behavioral templates that provide reliable user authentication by
the cost of computation-intensive processing. Therefore, such solutions rely on
coordinated collaborative work of both wearable device (for signal tracking) and
a paired smartphone (for data processing and decision making).

The promising approach for biometric-based user authentication on wear-
ables is to leverage bioacoustic signals. These signals are produced by frictions
of person’s bones during natural body movements that can be tracked with
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built-in microphones. The domain of bioacoustic takes special interest today for
applications related to early detection of lungs [13] and bones [21] issues, hand
gesture recognition by wrist’s bones frictions [10], touch interaction in virtual
reality [23], person identification [11], to name a few.

Close connection of bioacoustic signals with persons physiology (for example,
joints parameters) and slow degradation due to aging effect make such signals
promising candidates for user authentication. Bioacoustic signals based methods
can be divided into active and passive acoustic sensing [26]. The former methods
are based on analysis of audio signals transmitted through person body area (for
example, a wrist) with usage of additional electro acoustic transducer [19,21,
31]. Parameters of these signals, like magnitude and shape, strictly dependent
on bones parameters that makes such methods attractive candidates for user
authentication even in presence of external acoustic noises.

Modern approaches to processing of bioacoustic signals captured with
active sensing actively use spectral transformations as well as CNN. The
former approach is based on Fast Fourier Transform (FFT) [26], Cepstral
Transform (CT) [31], mel-spectrograms and Mel-frequency Cepstral Coefficient
(MFCC) [21], VELODY features [20] and statistics for spectral coefficients [19].
The second group is based on feature extraction from raw signals with CNN [26]
as well as hybrid networks [28]. This allows to improve the accuracy of user
authentication by captured bioacoustic signals even in presence of external noise.

The methods for passive sensing are aimed at capturing weak acoustic signals
produced by bones frictions. This requires usage of special measurement equip-
ment, namely microphones with high sensitivity, for gathering of such signals.
Also, preserving high signal-to-noise ratio for captured signals requires usage of
wearable only in places with low ambient noise level that may be impractical.

Therefore, researchers are concentrated on development of advanced process-
ing methods for detection, extraction and analyzing low-magnitude bioacoustic
signals. The majority of such studies are focused on the case, where wearables
are put above or close to the wrist [21,26,31] that allows to increase the mag-
nitude of captured signals. Still, bioacoustic signals produced by other joints
in human body did not draw much attention. We proposed to analyze signals
produced in the neck’s backside during head motions. Several joints (vertebrae)
in this area can produce individual “cracks” during movements that increase
the total magnitude of bioacoustic signals. Such signals can be captured by
built-in microphones of modern headsets and in-ear headphones due to bones
conduction effect. Processing of such bioacoustic signals remains a non-trivial
task due to low signal magnitude level and requires special processing methods.
These methods are computationally-intensive which makes them inappropriate
for resource-limited wearable devices.

Thus, development of accurate and computationally-efficient methods for
user authentication by such signals is required. The paper is devoted to the
development of low-complexity methods for person authentication by bioacous-
tic signals produced by cervical vertebrae joints. Performance analysis is done
for state-of-the-art and proposed methods of processing of bioacoustic signals
generated by wrist and neck motions.



36 D. Progonov et al.

5 Proposed Solution

User authentication by bioacoustic is based on analysis of acoustic signals pro-
duced by frictions of bones during movements. The magnitude and shape of
produced sounds highly depend on negligible variations of bones shapes as well
as joints (cartilages) parameters for each person that makes it possible both user
identification and authentication.

For usability purposes, of special interest are bioacoustic signals captured by
wearables located near wrists, such as smartwatches and fitness trackers. This
makes it possible to reliably collect bioacoustic signals caused by hand motions,
but magnitude of signals remains relatively low. This is caused by features of
wrist physiology, namely connections of ensemble of bones with relatively small
size [22].

Therefore, relocation of microphones to bigger cartilages allows to increase
the magnitude of captured signals and to simplify theirs processing. The joints
located in the neck are good candidates: there are seven stacked bones called
cervical vertebrae (Fig. 1).

Fig. 1. Positions of bones (vertebrae C1–C7) and cartilages in the human neck area.
According to [7].

The head motions lead to friction of vertebrae known as “neck crepitus”
(bone-on-bone grinding)—adjacent vertebral bones can start rubbing against
each other, which may cause a grinding noise. This produces sound waves whose
parameters depend on motions magnitude, angles between vertebrae as well
as physiological parameters of connected bones. Note that head motions exert
high pressure on relatively small cervical vertebrae that leads to increasing of
bones grinding [22]. Therefore, acoustic signals produced by vertebrae during
head motions have much larger magnitude in comparison with wrist joints. Also,
these signals can be captured with microphones embedded into modern headset
devices, like virtual reality headset, headphones and earbuds. This makes cervical
vertebrae be an attractive candidate for capturing bioacoustic signals related to
user authentication tasks.



User Authentication on Headset-Like Devices by Bioacoustic Signals 37

Despite increasing of bioacoustic signals energy for cervical vertebrae in com-
parison with wrist joints, the magnitude of such signals remains relatively low.
Therefore, for feasibility checking we modified a headset included into the acces-
sory set of modern smartphones. It includes substitution of built-in microphone
with high sensitivity electret condenser microphone, and adding of low-noise
pre-amplifier. The general view of modified headset is presented in Fig. 2.

Fig. 2. Modified headset for capturing bioacoustic signals caused by neck bones grind-
ing

The captured signal of head motions consists of a mixture of low magni-
tude acoustic signals caused by bones grinding and ambient noises (for example,
friction of clothes and hairs with skin). Due to low energy of mentioned acous-
tic signals, the electret microphone with high sensitivity is used (Fig. 2c). The
low-noise pre-amplifier (Fig. 2b) is added to increase the magnitude of captured
bioacoustic signal while preserving low level of ambient noises.

The modified headset (Fig. 2) was used for capturing bioacoustic signals
from three volunteers for various head motions patterns. The tests signals were
obtained for two cases: for our custom hand-made headset and for Galaxy
Watch3 smartwatch. The former case allows us to compare sounds “neck crepi-
tus”, while the latter ones represent sounds of bone-on-bone grinding near the
wrist area. The examples of captured signals are presented in Fig. 3. Due to dif-
ferences in magnitude and duration of captured signals, they are pre-processed
to have equal duration and unit energy.

Note that shape and time locations of peaks of captured signals are specific for
each person (Fig. 3). Also, these parameters preserve if motion pattern changes.
This proves the hypothesis of the dependency of bioacoustic signals on small
differences in bones and joints structure.

The shape of signals captured on the backside of the neck includes several
pulses with relatively high duration (Fig. 3a–b). This is caused by friction of
huge areas of cervical vertebrae bones. To the contrary, impulses for bioacoustic



38 D. Progonov et al.

Fig. 3. Examples of bioacoustic signals captured by customized headset and Galaxy
Watch3 smartwatch with built-in microphone

signals captured with smartwatch are much shorter (Fig. 3c–d). This is due to
friction of several bones with much smaller area at the wrist joints.

Modern approaches for user authentication by bioacoustic signals are based
on applying spectral transformations, namely FFT [26] and CT [31]. This is
caused by two reasons: easy physical interpretation of obtained spectrum (which
simplifies noise and outliers removal), and the ability to obtain fixed length
spectrum for signals with varying duration. Still, feature selection from raw
spectrum for person verification remains a non-trivial task that is typically solved
by ad-hoc empirical methods.

The state-of-the-art methods for user authentication by bioacoustic signals
produced by neck’s bones frictions were proposed by Sim [26] and Watanabe [31].
The first method is based on applying CNN for feature extraction from Fourier
spectrum of signals. The structure of proposed CNN is shown at Fig. 4.

The proposed neural network (Fig. 4) consists of two parts: feature extraction
by a set of convolutions and full-connection (dense) layers, and further classifi-
cation by the last layer. The input data for the network is Fourier spectrum for
captured signal up to 3 kHz with the step 10 Hz (totally 300 harmonics):

Xk =
N−1∑

n=0

xn × e−i2πkn/N , k ∈ [0;N − 1],

where xn—samples of captured signal of length N samples; k—index of harmonic
in estimated Fourier spectrum.

The model proposed by Watanabe et al. is based on applying of CT for
separation of informative signal from ambient noises [31]:
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Fig. 4. Structure of CNN proposed by Sim et al. [26] for person authentication by
bioacoustic signals.

C =
∣∣F−1

{
log

(|F{f(t)}|2)}∣∣2 ,

where C—calculated cepstrum; F ,F−1—direct and inverse Fourier transforms
respectively; f(t)—input signal as function of time. Estimated ceptrum is used
as a feature vector for further processing with ensemble classifier.

The considered approaches are based on using spectral transformation that
produces short (compressed) representation of bioacoustic signals. Nevertheless,
applied FFT and CT use harmonic basis (sine and cosine functions) that are
inappropriate for decomposition of pulse-like signals due to Gibbs effect [24].
This leads to spreading of energy for such signals over a wide frequency range
that complicates noise suppression.

Alternative approach is based on applying signal processing pipelines
from audio processing domain, namely the use of MFCC [19] and mel-
spectrogram [21]. This makes it possible to apply advanced methods for noise
suppression of widespread types of distortions, such as microphone sensor noise
and reverberation to name a few. Still, these methods are aimed at detection
of high magnitude acoustic signals that may negatively impact low-energy bioa-
coustic signals processing.

We propose to apply special methods of weak acoustic signal processing to
overcome the described limitations of state-of-the-art methods. Our proposed
technology is based on two-stage processing of gathered acoustic signal x =
(x1, . . . , xN ) with usage of mel-spectrogram fMS and CNN:

fMS = M
(

+∞∑

n=−∞
xnω(n − m)e−jωn

)
, (1)
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fCNN = FCNN (fMS), (2)

where M(·)—be mel-scaling transformation; ω(·)—be a window function. Bioa-
coustic signal processing is performed in several stages. First, the mel-spectrogram
fMS (1) is computed by applying mel-scaling M(·) to Short Time Fourier Trans-
form (STFT) coefficients of signal x. Then, computed mel-spectrogram fMS is
represented as an image and is passed through CNN FCNN (·) (2).

Considered approach was proposed for processing weak acoustic signals in
sonar-related applications [30]. The multi-stage processing of gathered bioacous-
tic signals allows for extraction informative features for further classification by
reducing the influence of noises and interference.

The widespread architectures of CNN, such as MobileNet [17] and
ResNet [16], can be applied for feature extraction from spectral representation
of captured signal (2). The important feature of these CNN is low computation
complexity that makes proposed approach an attractive candidate for on-device
execution. The results of performance evaluation of state-of-the-art and proposed
methods are shown in the next section.

6 Experiments

Performance evaluation of considered methods for user authentication by bioa-
coustic signals was performed for cases of passive acoustic sensing near the wrist
and at the backside of a neck. The former case is related to the modern researches
of user authentication with wearables, such as commercial smartwatches, while
the latter one corresponds to the case of headset-like devices usage for user
verification, such as fitness headsets.

Let us note absence of publicly available open datasets for passive acous-
tic sensing on both smartwatches and headset-like devices. Thus, the in-house
dataset of bioacoustic signals was prepared with usage of Galaxy Watch3 smart-
watch and modified headset (Fig. 2). The gathered dataset includes signals for
seven presumably healthy persons (two males and five females) captured in a
room with low level of background (ambient) noise, such as traffic noise, alarms,
extraneous speech, electrical noise from air conditioning, power supplies, etc.
The volunteers were still sitting during signals collection to minimize influence
of impulse noises caused by friction of clothes and hairs with skins. The perfor-
mance evaluation did not include analysis of long-term changes of bioacoustic
signals due to COVID-19. Thus, we would like to cover cases of injures and dis-
eases, muscle tensions changes (training tiredness), habits alterations in future
works.

Signals gathering was performed by placing our customized headset on the
back of a neck, below the hairline, and wearing of Galaxy Watch3 at convenient
place near the wrist. The following motions templates were considered during
the dataset preparation:
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– Cervical vertebrae grinding sounds:
• Circular motions—a head is rotated clockwise with maximum magnitude;
• ZigZag motions—a head is rotated to left shoulder, then from left to right

shoulders, and finally from right shoulder to the normal position;
– Wrist grinding sounds:

• Rotation motion—a wrist is rotated clockwise with maximum magnitude
of rotation;

• Shake motions—a hand and wrist is moved up and down with forceful
and jerky movements;

• Grip motion—a hand takes and keeps a firm hold of an object placed in
front of a volunteer at the table.

Captured signals were re-sampled to standard sampling rate 44.1 kHz for
audio processing. Then, signals were split into tiles (intervals) for each mentioned
motion templates. Prepared signals were passed through low-pass filters (cutoff
frequency was 8 kHz), and then filtered by median (reduce impulse noise, 15
samples window size) and Wiener (reduce additive noise, 31 samples window
size) filters to remove external noises. Finally, signals were normalized by energy
and re-sampled to 1 second duration.

Features extraction from gathered signals were performed by the following
methods:

– Spectral features—are based on applying to captured signals the widespread
spectral transformations, like FFT and Discrete Wavelet Transform (DWT).
The one-level DWT with Haar wavelet and the corresponding scaling function
was used. The magnitude spectrum for FFT and approximation coefficients
for DWT were used as features.

– Acoustic-specific features—are related to widespread methods of statisti-
cal features extraction from audio signals. The case of mel-spectrogram
and MFCC with sampling frequency of 16 (kHz) was considered. The mel-
spectrogram (1) was estimated by usage of STFT with Blackman-Harris win-
dow. The obtained spectra were used as features.

– Proposed features—the mel-spectrograms were computed with STFT with
Blackman-Harris window. Then, obtained spectrograms were rescaled to 8-
bits range (grayscale image) and passed through a CNN. The output from
penultimate layer of a CNN was used as features. For feature extraction
according to proposed method, we considered CNN that are widely used
in on-device applications: MobileNet [17], ResNet [16], Inception [27], Xcep-
tion [12], DenseNet [18], NasNetLarge [32] and EfficientNet-B1 [29].

Also, proposed solution was compared with state-of-the-art methods pro-
posed by Sim et al. [26] and Watanabe et al. [31]. The former method is based
on applying the CNN to the Fourier spectrum of captured signal, while the latter
one uses CT for spectral features extraction.

The two types of classifier were used due to extensive size of extracted fea-
ture (up to 11, 136 features for mel-spectrogram)—ensemble classifier, namely
Random Forest, and Multilayer Perceptron (MLP). The former classifier allows
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for effective suppression of curse of dimensionality (insufficiency of the number
of collected signals in comparison with their size). The latter one relates to the
widespread case of applying neural networks for both features extraction and
classification. The Random Forest classifier was additionally adjusted to mini-
mize error level by varying the number of base learners from 100 to 1, 000 with
step 100.

Considered methods were evaluated by the standard cross-validation with
splitting of dataset into train (70%) and test (30%) subsets ten times. The FAR
and FRR were used as metrics for methods comparison. These indices were
estimated by averaging results for each person from collected dataset. To reduce
negative impact of low fraction of target user’s samples in comparison with other
user, the class weighting procedure was applied.

To evaluate proposed approach, we estimated FAR and FRR by usage of
spectral, acoustic-specific an proposed features for bioacoustic signals captured
by wearable and headset. Obtained results are presented in the Table 2.

Due to features of Sim et al. method [26], the estimated values of FAR and
FRR are presented for the MLP classifier (Table 2). Note that the estimated val-
ues of FAR and FRR are much higher for Random Forest classifier in comparison
of MLP. This can be explained by presence of cross-dependencies between fea-
ture’s elements, for example, by presence of harmonics of a base tone or by
narrow spectrum of signals components. These dependencies can be eliminated
by applying bagging technique in ensemble classifier. This effect is negligible for
MLP due to processing of the whole feature vector in layer-wise fashion.

The use of spectral and acoustic-specific features allows to minimize error
level for the case of Random Forest (Table 2). Applying of MLP leads to addi-
tional decrease of FAR and FRR values up to two times. Minimal error values
for MLP are achieved by proposed approach which proves its effectiveness in
comparison with the existing state-of-the-art methods.

The MLP helps to decreasing error levels considerably in comparison with
Random Forest based classifier (Table 2), as it was for the case of smartwatch
usage (Table 2). Note that obtained values of FAR and FRR for proposed app-
roach are close to the requirements for Secondary Tier for authentication systems
of Android OS (Table 1). This makes proposed approach to be a promising can-
didate for on-device user authentication.

Moreover, applying the novel CNN architectures including EfficientNet or
NasNet may be improve results even further. Comparative analysis of FAR and
FRR values for proposed solution for various CNN and bioacoustic signals is
presented in the Table 3.

Indeed, modern EfficientNet network allows for decreasing half total error
rate in comparison with considered earlier ResNet network up to three times
for all motion patterns (Table 3). Therefore, practical application of authentica-
tion systems based on processing bioacoustic signals produced by wrist motions
has considerable limitations. This is caused by insufficient accuracy for state-of-
the-art solutions as well as significant increase of FAR values (up to 2.5%) for
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Table 2. Estimated FAR (Pα) and FRR (Pβ) values by applying of spectral and
acoustic features for bioacoustic signal processing. Note that Sim et al. method is
based on usage of ad-hoc multilayer perceptron classifier. The minimal and maximum
values of half total error rate (half sum of FAR and FRR) for each motion pattern are
marked with green and red colors respectively.

Galaxy Watch3 smartwatch Modified headset

Rotation
motion

Shake
motion

Grip
motion

Circular
motion

ZigZag
motion

Pα, % Pβ , % Pα, % Pβ , % Pα, % Pβ , % Pα, % Pβ , % Pα, % Pβ , %

Random Forest classifier

Sim et al.
method

— — — — — — — — — —

Watanabe
et al. method

0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 96.80

Fourier
transform

1.70 64.56 0.88 82.36 1.29 76.88 0.94 39.80 3.88 42.40

DWT 0.04 99.86 0.60 93.58 0.14 99.39 0.24 99.60 0.00 98.80

Mel-spectro-
gram

1.08 74.48 2.01 54.08 1.34 86.31 3.53 40.00 1.88 27.80

MFCC 0.92 72.99 0.77 58.20 0.82 80.99 0.35 25.00 0.00 18.60

MobileNet 0.31 75.41 0.89 61.81 0.35 88.57 0.12 31.80 0.59 24.00

ResNet-50 0.12 75.07 0.14 64.25 0.11 89.37 0.12 37.20 0.71 35.40

Multilayer Perceptron classifier

Sim et al.
method

19.50 32.15 38.28 29.91 33.56 22.50 9.98 8.40 8.91 15.20

Watanabe
et al. method

6.93 90.59 5.29 83.77 6.45 85.14 12.73 83.20 14.19 72.80

Fourier
transform

2.72 45.58 2.72 71.87 3.16 64.30 4.24 21.40 3.04 35.60

DWT 30.17 66.00 28.87 63.95 26.26 66.12 31.73 72.40 28.66 56.80

Mel-spectro-
gram

17.66 81.43 12.64 87.00 16.63 83.01 13.29 84.00 16.71 78.00

MFCC 2.57 74.87 2.10 67.67 2.79 78.95 2.12 45.60 3.66 43.00

MobileNet 2.20 34.94 1.11 29.62 3.48 57.62 0.82 14.60 0.65 13.20

ResNet-50 1.80 43.68 1.30 27.54 1.27 52.90 0.12 9.00 0.71 16.20

proposed method. These limitations can be attributed to the decreasing mag-
nitude of bioacoustic signals due to permanent repetition of motion patterns
during signals gathering.

Note considerable decrease of error values for considered case in comparison
with the previous one (Table 3)—the FRR values are decreased up to 30% for
Random Forest classifier, and up to 12 times for MLP while preserving low values
of FAR (FAR ≤ 0.2%).

This can be explained by differences between magnitude of bioacoustic sig-
nals captured by smartwatch and neckband. The larger magnitude of signal for
neckband simplifies detection and extraction of informative features in compar-
ison with case of smartwatch usage. Therefore, we may conclude that proposed
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Table 3. Estimated FAR (Pα) and FRR (Pβ) values by applying of proposed method
for bioacoustic signal processing. The minimal and maximum values of half total error
rate (half sum of FAR and FRR) for each motion pattern are marked with green and
red colors respectively.

Galaxy Watch3 smartwatch Modified headset

Rotation
motion

Shake
motion

Grip
motion

Circular
motion

ZigZag
motion

Pα, % Pβ , % Pα, % Pβ , % Pα, % Pβ , % Pα, % Pβ , % Pα, % Pβ , %

Random Forest classifier

DenseNet-121 0.11 69.88 0.46 48.37 0.15 79.90 0.12 36.80 0.24 22.20

DenseNet-169 0.35 67.49 0.61 51.07 0.34 80.66 0.24 32.40 0.24 16.40

DenseNet-201 0.35 63.63 0.68 48.60 0.20 79.89 0.12 24.20 0.12 18.20

EfficientNet-B1 0.11 66.36 0.39 47.30 0.38 75.33 0.12 25.20 0.71 29.40

NasNet-Large 0.41 70.42 0.43 57.10 0.19 84.19 0.12 33.20 0.00 18.60

ResNet-101 0.34 76.49 0.18 64.32 0.00 88.32 0.00 40.40 0.47 38.80

ResNet-152 0.04 83.85 0.14 66.81 0.00 88.72 0.00 45.80 0.12 34.80

Xception 0.15 75.92 0.21 61.49 0.47 87.33 0.24 42.40 0.35 18.00

Inception 0.26 77.34 0.14 65.54 0.24 85.47 0.35 36.00 0.00 37.60

Multilayer Perceptron classifier

DenseNet-121 2.07 38.75 1.62 24.72 2.48 47.65 0.47 16.40 0.35 10.00

DenseNet-169 1.82 36.01 1.69 30.61 2.11 53.90 1.41 8.80 0.47 13.40

DenseNet-201 1.11 33.93 1.72 26.21 2.23 48.19 0.71 10.00 0.12 3.00

EfficientNet-B1 2.50 24.10 1.11 20.55 1.81 40.94 0.24 3.00 0.59 3.80

NasNet-Large 2.36 34.22 1.86 27.81 2.66 53.03 0.59 11.20 0.82 3.60

ResNet-101 2.32 40.92 1.37 25.93 1.93 58.22 0.59 16.00 1.53 13.40

ResNet-152 0.93 29.14 1.11 27.92 1.69 58.47 0.24 9.20 0.12 14.80

Xception 2.41 47.00 0.89 28.24 3.74 54.37 0.34 21.00 0.12 6.60

Inception 1.82 37.44 1.40 35.13 2.99 47.96 1.06 13.00 1.02 8.80

solution allows for considerable improvement of FAR and FRR values in compar-
ison with state-of-the-art solutions while preserving a relatively low computation
complexity.

7 Conclusion

Wearable devices, such as fitness trackers, smartwatches and headsets, are widely
used these days. They naturally blend into our daily routine by providing con-
venience features in a natural non-intrusive way. Typically, these devices are
equipped with rich set of sensors including embedded microphones reliably
placed close to the signal source. This makes it possible to use them for reli-
able on-body detection, identification and user authentication applications, such
as pay-by-watch, or using as 2nd authentication factor for various applications
on companion mobile phone.

In this paper we made performance evaluation of modern methods for user
authentication by bioacoustic signals gathered with off-the-shelf smartwatches.
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The results showed their limitation for practical usage in user authentication
tasks due to high error level (up to 2% FAR and 83% FRR). It can be explained
by high influence of external noises (such as friction of device and skin). To
overcome these limitations we proposed to capture bioacoustic signals near the
place of several bones joints, and to apply methods from sonar-related technolo-
gies. The former gives an opportunity to increase the magnitude of captured
bioacoustic signals by involving several vertebrates and cartilages into motions.
The latter one allows extraction the weak informative signal from a mixture
with noises. This makes possible effective suppression of the negative impact of
external noises while preserving informative features for further classification.

Estimated values of FAR and FRR proved the effectiveness of our proposed
solution, namely the decrease of FRR errors up to ten times while preserving low
FAR values. Let us note that these results were obtained by usage of neckband
(headset located at the neck), where built-in microphone was placed as close as
possible to the cervical vertebrae. Also, obtained results related to the case of
processing bioacoustic signals that did not altered with long-term alterations,
such as injures and diseases, muscle tensions (training tiredness), habits changes
to name a few. Therefore, of special interest is applicability of proposed solution
for other types of audio equipment, such as wireless headsets, earbuds and bone-
conductivity based earphones. We plan to make more research for these devices
as well as tracking long-term changes of bioacoustic signals in the future.
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Abstract. We explore a method to fingerprint a location in terms of
its measurable environment to create an authentication factor that is
nonintrusive in the sense that a user is not required to engage in the
authentication process actively. Exemplary, we describe the measurable
environment by beacon frames from the WiFi access points in the user’s
proximity. To use the measurable environment for authentication, mea-
surements must be sufficiently discriminating between locations and sim-
ilar at the same location. An authentication factor built from the mea-
surable environment allows us to describe a user’s location in terms of
measurable signals. Describing a location in terms of its measurable sig-
nals implies that we do not require an actual geographical mapping of
the user’s location; comparing the measured signals is sufficient to cre-
ate a location-based authentication factor. Only recognizing an earlier
observed environment distinguishes our approach from other location-
based authentication factors. We elaborate on using signals in the user’s
environment in the background without user involvement to create a
privacy-preserving but nonintrusive authentication factor suitable for
integration into existing multi-factor authentication schemes.

1 Introduction

Multi-factor authentication schemes are the de facto standard when it comes to
user authentication. Authentication is the ‘provision of assurance that a claimed
characteristic of an entity is correct’ [11]. Authentication factors are conceptually
grouped according to the characteristic claimed: knowledge, possession, biom-
etry, and location [2]. The standard in multi-factor authentication schemes in
2022 is two-factor authentication. When authenticating to a particular service,
the first factor is typically based on a username-password combination. Only the
legitimate user is assumed to know this combination (knowledge-based authen-
tication claim). The second authentication factor is usually a token sent to the
user’s registered device (SMS, Authenticator app) to strengthen the assurance
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that the user is who he claims to be. The user must retype or confirm this token
to the service to get authenticated (possession-based authentication claim). We
aim to extend this scheme by taking the user’s location into account. Extending
implies that the knowledge-based and possession-based authentication factors
remain parts of the scheme. We add location as a third authentication factor to
the two-factor scheme. Location as a claim characteristic might even replace the
second factor in certain situations.

The advantage of a location-based authentication claim is that the charac-
teristic claimed does not require the user’s active involvement. The location is
about the whereabouts of a user, not the user himself. To not require a user to be
actively involved in the authentication process is called nonintrusive authentica-
tion [16]. Nonintrusiveness allows the user to be undisturbed and the service to
adjust the remote trust [22] that the user is whom he claims to be. Nonintrusive-
ness also solves the problem of infrequent authentication [22], the shortcoming
that authentication only occurs at the beginning of a session. In other words,
using a user’s location as an authentication factor allows the service to probe
the user for his authentication claim at any time during the session.

The disadvantage of location as an authentication factor is twofold. On the
one hand, the claimed characteristic is not of the specific user but the user’s
environment. On the other hand, a user’s location is privacy-sensitive informa-
tion as it maps the whereabouts of the user when using traditional means to
describe the user’s location (e.g., GPS or IP subnet ranges).

We asked ourselves how far these disadvantages are necessary for location-
based authentication and how we can avoid them. These disadvantages provide
us also with an insight into privacy sensitivity. Intuitively, a service only needs
to validate a claimed characteristic of the location. Therefore, we do not need
to consider where a location is in terms of geographical mapping (like with GPS
or IP addresses). We only need to validate the claimed characteristic of the
location. To explore this further, we choose the measurable environment (ME)
as the claimed characteristic of a location.

The ME consists of electromagnetic signals in our surroundings. Appropriate
sensors can measure these signals. In the following, we investigate whether it is
possible to fingerprint a user’s measured environment. A successful fingerprinting
scheme of the ME allows us to compare MEs, distinguish different environments
and recognize similar environments. For the purpose of authentication, we com-
pare a measured environment of a location to an earlier observed measurement
of the location and compute the similarity of measurements.

We envision the ME as an authentication factor to extend the described stan-
dard two-factor authentication scheme to a three-factor authentication scheme
which assures knowledge, possession, and consistency of the ME. After the user-
name and password prompt, the service can decide to use the second factor and
the ME or even replace the second factor with the ME during the login phase.
The service checks whether it recognizes the newly observed ME of the user and
uses this claim to assure the user’s authenticity. Such an authentication factor
allows the service to assure consistency of the user’s ME, not just during the
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login time but continuously. The ME as an authentication factor is only lim-
ited by the ME’s availability, the user’s bandwidth, and the time it takes to
fingerprint a location in terms of its ME.

We choose WiFi to fingerprint the ME as it is a ubiquitous signal, and the
vast majority of devices have sensors to receive WiFi signals. We construct an
ambient WiFi fingerprint from beacon frames emitted by WiFi access points
(APs) to indicate their presence. We measure these emitted beacon frames for a
particular duration at a specific location to construct a fingerprint.

In the remainder of this paper, we discuss how an ME can be fingerprinted
and classified before presenting our WiFi instantiation. We continue evaluating
the performance of our classification of an ME in terms of WiFi beacon frames.
Having a working fingerprinting mechanism, we focus on integrating the WiFi
fingerprints into an authentication scheme and discuss the security of authenti-
cation based on the ME. We compare our results with results from the literature
and close with a discussion, including paths for future works and our conclusions.

2 The Measurable Environment (ME)

We assume the ME as a noisy source, conceptually similar to biometric features
of an individual [15] or unique hardware features [7] of devices. We further assume
that some ME will be present at most locations. Using a specific sensor, we can
pick up a measurement of the ME at a specific location and time. We will position
a sensor at certain locations to conduct measurements during specific times. We
use these fixed measurements to conduct and evaluate our classification.

2.1 Illustration of the ME

The signals and the sensor must be available for a measured environment to
be suitable for fingerprinting. If signals and sensors are available, the ME must
have two additional properties to be viable for fingerprinting: measurements of
different MEs must be different, and measurements of the same ME must be
similar over time. Both need to be evaluated on a per sensor and per signal
basis. In Fig. 1, we show three measured environments which we mapped to the
two-dimensional space for illustrative purposes only. Figure 1 shows by its visible
clusters that measurements of the same ME taken at different times are similar.
We also observe that the different locations have no overlap in their measured
MEs.
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Fig. 1. Illustration of measurements taken at three different MEs: at home, at work,
and in a coworking space. Each point represents a fingerprint of a specific ME of one
second. The distance between the points describes their similarity. The clusters of points
represent a template of an ME, and the boundaries surrounding the clusters represent
the threshold of this specific template. If a newly obtained fingerprint falls within the
boundaries, we classify the fingerprint as taken at the same ME associated with the
template. The figure further shows that the distance between some fingerprints of the
ME in the office and the home case fall outside their boundary. These outliers represent
false negatives in a classification.

2.2 Fingerprinting the ME

We assume a sensor s, which is capable of measuring the environment, taking
a measurement m. For this work, s is fixed at a specific location. Two measure-
ments m and m′ of the same ME are unlikely to be identical because physical-
environment data is measured, which is susceptible to interference. To get a more
detailed description of the ME, we take multiple measurements of the same ME
into account. We build a fingerprint F from a set of measurements by a single
sensor s during a time window of t seconds. The associated sensor is denoted
as s(F), and the duration of the set of measurements as t(F). To be capable of
recognizing a fingerprint, we construct a template F from a set of n fingerprints
measured by a single sensor s at the same ME. The associated sensor is denoted
as s(F). In Fig. 1 this correlates to taking a cluster of n points as the template.

2.3 Classifying Fingerprints of MEs

When measuring an environment, we want to check if we are dealing with an ME
we observed earlier. That means we require a similarity metric and a decision
rule to derive whether two fingerprints are sufficiently similar.

In Fig. 1, the distance of one point toward a cluster of points describes their
similarity. The elliptic boundary around a cluster of points forms the threshold
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for a decision rule. A new observation that falls within the boundary would clas-
sify as being at the same ME. In contrast, an observation outside this boundary
would classify as remote to that ME. We want to determine these boundaries
around a cluster to create a meaningful decision rule. To prevent overfitting, we
want to do this in such a way that the boundaries are neither too small (resulting
in too many false negatives) nor do we want too large boundaries (resulting in
too many false positives). Therefore, we base the threshold on data from within
the boundary and data from outside. Suppose the data from within is all we
have. As the outliers in Fig. 1 indicate, the boundary would easily be chosen as
too large. The boundary will be much tighter if we use data from outside, i.e.,
from other remote MEs. A tight boundary is essential as our use case of authenti-
cation can tolerate false negatives but no false positives. We call the similarities
corresponding to the data from within the local similarity and to the outside
data the remote similarity. The local similarity describes how similar the finger-
prints of a template are at least. We base the local similarity on the fingerprints
of one template we know. The remote similarity describes how similar remote
fingerprints and the template are. Ideally, we would have access to all possi-
ble fingerprints of MEs worldwide that are remote to the template in question.
However, getting remote fingerprints of all other MEs is infeasible. Therefore,
we approximate the remote similarity by sampling measurements from remote
MEs to construct a set of remote fingerprints.

We use our decision rule to decide whether an unlabeled fingerprint is suffi-
ciently similar to a template, based on whether the similarity of a fingerprint and
a template is greater or equal to a threshold. Using the local and remote simi-
larity, we compute a threshold per template. In Fig. 1, the threshold correlates
to the boundaries around a cluster. Knowing the local similarity of a template
allows us to check whether a new, unlabeled fingerprint is sufficiently similar to
a template to classify as being at the same ME. Knowing the remote-similarity
estimate, we can check whether a new, unlabeled fingerprint is sufficiently dis-
similar to classify as being remote to the ME. Combining both, the local and the
remote similarity, to the threshold of a template grants us the knowledge that at
least every fingerprint observed would be classified correctly. Our decision rule
is congruent with a binary classification of the fingerprint. We can phrase it as
asking whether the fingerprint belongs to the same ME as the template. If so,
we conclude that the ME is identical (i.e., the fingerprint was measured at the
template’s location). Otherwise, we classify a fingerprint as remote to the ME
of the template.

3 Instantiation Using WiFi Beacon Frames

We measure WiFi signals to describe the ME. We consider the availability of
the spectrum’s signals and the availability of the sensor itself. WiFi is a ubiq-
uitous signal in urban environments, with sensors being ubiquitous in consumer
devices. Most WiFi access points (APs) emit a beacon frame signal to indicate
their presence. A user measures these beacon frames sent by the APs in his
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surroundings to conduct a measurement. Measuring the beacon frames does not
require a user to connect to a WiFi AP. The user only records WiFi signals in
his proximity.

We use the composition of APs to build a fingerprint of a specific ME. In the
following, we refer to the WiFi receiver as sensor s. It measures the WiFi APs in
its proximity. A measurement m contains a representation of the beacon-frame
features received by the sensor s(m). The number of features of one beacon frame
depends on the AP and the sensor. The hardware capabilities determine the sen-
sor’s ability to receive beacon frames. The software determines which features of
the beacon frames are accessible to the user. We denote an access point repre-
sentation (APR) from a measurement m by APR(m). We build the APR from
the features provided by the AP. We distinguish the features between identify-
ing features and capability features. The identifying features of an AP’s beacon
frame determine the AP uniquely. These are the service set identifier (SSID)
and its media access control (MAC) address. However, both data are personally
identifiable information (PII). The EU classifies a MAC address belonging to a
user even in its hashed form as PII [27]. Because we ask a user to measure his
environment, we can not even distinguish whether an AP belongs to the user
or not. The SSID is most likely also PII as the SSID might contain names or
addresses but also, in the default state, describes the vendor and model of the
AP. Another problem with the SSID is that it is potentially volatile since the
user can rename it. A WiFi beacon frame also contains capability features. These
capability features are not PII as they encode the capabilities of the AP itself. In
our case, the maximum bandwidth to use, the security and capability flags, the
frequency used, and the mode of the AP. In our evaluations, we base an APR
on these capability features to omit the use of PII completely.

If we use the MAC address as APR, the APR becomes unique, and a finger-
print must match a template, assuming that a set of MAC addresses only occurs
at one ME (no involvement of spoofing). When using the capability features, the
APRs are not unique. However, we show that using only capability features, the
sets of APRs from a fingerprint are sufficiently distinguishable for different MEs.
Regarding the amount of information of an APR, the MAC address [9] consists
of 48 bits, the SSID of 256 bits, and the capability features are dependent on
the operating system (OS). We choose the Linux OS in which the specification
defines 63 bits [8]. These 63 bits are the maximum entropy possible but will
likely not represent the amount of information in real-world measurements. To
approximate a more realistic estimate of information per APR, we analyze our
data in Sect. 5.2 to derive a lower bound for the observed information. Further,
we found that privileged access on Linux (root space) and Windows allow for
more capability features, while OSX and mobile operating systems seem more
limited in accessing capability features.

Aside from the APR, we focus on the received signal-strength indicator
(RSSI), which shows the perceived signal strength of a sensor and is denoted
by RSSI(m). The unit of an RSSI value is decibel, often mapped to a per-
centage. We normalize it such that RSSI(m) ∈ [0, 1]. The RSSI is sensor and
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software dependent, which is no problem as we intend to fingerprint an ME on a
per-sensor basis. We expect that including the RSSI value allows us to increase
the fraction of relevant instances among the retrieved instances. We plot a mea-
surement in Fig. 2 to illustrate the relationship of the RSSI to its proximity to
the sensor while also showing the differences in the APRs.

Fig. 2. A measurement m plotted in its polar coordinates. We center the sensor and
have a decreasing radial coordinate r = 1 − RSSI(m) being the perceived signal

strength from the sensor and an angular coordinate ϕ(APR(m)) = APR(m)
max(APR)

∗ 2π
being the normalized APR mapped to the unit circle.

3.1 Dataset

Online available datasets of WiFi data are either not clustered according to
an ME or do not contain the beacon-frame features we focus on to build the
APR. Therefore, we create our own dataset by conducting WiFi measurements,
which we published.1 We use off-the-shelf WiFi receiver hardware in laptops
(e.g., [10]) as sensors and conduct our measurements with several such sensors.
We keep a sensor at a fixed location for a duration of four hours. We receive
60∗60∗4 = 14400 aggregated fingerprints of t = 1 s per ME. We consider twelve
MEs recorded by ten different sensors, nine representing a home environment and
three representing a work environment. We conducted all measurements at MEs
such that there is no physical overlap of the received WiFi APs. Additionally, we
consider a thirteenth set of fingerprints, the remote set. In total, we take 187,200
fingerprints of t = 1 s of the 12 MEs and the remote set into account.

3.2 Feasibility

We conduct preliminary estimates to assess whether there is a correlation
between the observed APs and the ME of a sensor. To estimate the APRs’
influence on the ME, we calculate the adjusted mutual information (AMI) [25].
Mutual information (MI) is the amount of information obtained about one ran-
dom variable by observing another. The definition of the AMI uses H to indicate

1 https://gitlab.com/WiFiFingerprinting/Data.

https://gitlab.com/WiFiFingerprinting/Data
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Shannon entropy [24] and the expected value E. The adjusted mutual informa-
tion corrects for chance and returns a nonmetrical value. A value close to 0
indicates that there is no correlation. A value of 1 indicates that knowing fea-
ture X fully determines the label Y. The authors of [25] state that the larger
the feature-to-label ratio becomes, the more the AMI approaches zero. If the
ratio is larger than 100, they assume an AMI fairly close to zero. Therefore, they
advise using the minimum entropy of X and Y as the normalization function
if the feature-to-label ratio becomes too large. We estimate that an APR has
about 10 bits (see Sect. 5.2), and we know that we have 12 MEs. We compute
the AMI with X being the APRs and Y being random labels assigned to the
specific MEs. We start by considering a single APR. In this case, the ratio of
values of X and the number of labels Y is about 100. Therefore, we define the
AMI to be:

AMI(X,Y ) =
MI(X,Y ) − E{MI(X,Y )}

min(H(X),H(Y )) − E{MI(X,Y )}
We are computing the AMI per APR, which results in an AMI of 0.78. We
perceive this value as too low for classification, especially for our application of
authentication. To further measure the impact of APRs on the ME, we computed
the AMI for tuples of APRs. Using tuples for X increases the feature-to-label
ratio by several orders of magnitude, making it even more relevant to choose
the minimum as the normalization function. In the 2-tuple case, we already get
an AMI of 0.95. It gets closer to 1 for each increment in tuple length. For a
4-tuple, we already get an AMI of 0.98. However, the space complexity grows
out of proportion. We observed between 1 and 42 single APRs per fingerprint.
Therefore, we have up to

(
42
k

)
k-tuples to consider.

This space complexity problem is also why classical machine learning
approaches requiring one-hot encoding of categorical values require consider-
able space complexity during training and a significantly increased load dur-
ing classification. One-hot encoding would introduce an unnecessary memory
requirement on the device conducting the classification. Therefore, we use a Jac-
card similarity-based approach. It does not have this space complexity problem
as there is no training phase except computing the threshold once per template
and our proposed mechanism only uses a list of single APRs with corresponding
RSSI values as the template. We always consider the maximum available APR
combinations by using the Jaccard similarity because we have seen that using
more APRs increases the AMI, which is achievable from a performance point of
view.

3.3 Fingerprinting the ME

We construct a fingerprint F of the ME in the WiFi instantiation from a set of
measurements of a single sensor s during a time interval of t seconds. We expect
that a fingerprint of a longer duration increased the hit rate. Additional to the
sensor s(F), and the duration t(F), we denote the identified set of APRs as
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APR(F). The number of times an AP has been measured during fingerprinting
F we denote as:

|F;AP | = |{m ∈ F|APR(m) = AP}|
We denote the received signal strength of a measured AP during fingerprinting
as RSSI(F;AP ), is defined as the average of the individual measurements:

RSSI(F;AP ) =

∑
m∈F,APR(m)=AP RSSI(m)

|F;AP |
The template F from one ME is represented by a set of n fingerprints received by
a single sensor s. Therefore, the template is constructed from t×n measurements
of a single, spatially fixed sensor s. Additional to the sensor s(F) we denote the
set of APRs from the template as APR(F).

3.4 Similarity of Fingerprints and Templates

The fingerprint F and the template F are sets of APRs with their corresponding
RSSI values. To compute their similarity, we apply a standard measurement for
set comparison, the Jaccard similarity [12], and create a variant that considers
the RSSI value. We choose the Jaccard similarity because it enables us to always
consider the maximum available APs while being lightweight in terms of com-
putational and space complexity. We denote the Jaccard similarity of a single
fingerprint F and a template F by:

JS(F;F) =
|APR(F) ∩ APR(F)|
|APR(F) ∪ APR(F)|

This version of the Jaccard similarity does not take the RSSI into account.
It takes only the APR into account and computes the ratio of APRs present
in the fingerprint and APRs present in the template to all APRs present in the
fingerprint and the template. Using the JS implies that only the APR determines
the similarity of a fingerprint and a template. Figure 3 shows a plot of this.

Fig. 3. Two segments of a fingerprint and a template. The template depicts a measure-
ment m and the fingerprint a measurement m′. We assume that APR(m) = APR(m′)
and that RSSI(m) �= RSSI(m′). When calculating their similarity with JS(F;F), m′

and m are assumed to be equal as it takes only the APR into consideration.
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We construct a specific Jaccard similarity that accounts for the requirement
that matching APRs have a similar RSSI value. Two RSSI values are similar if
they differ at most by a difference d(F). We denote the absolute difference, using
‖ to denote the absolute value, of the RSSI values of an AP occurring in two
fingerprints F and F′ by:

‖F;F′;AP‖ = ‖RSSI(F′;AP ) − RSSI(F;AP )‖

The similarity measure taking the RSSI into account works on a subset of
F. This subset is defined such that the RSSI values of a measurement with a
matching APR from a fingerprint F and a template F differ at most by d(F), for
d(F) ∈ [0, 1]. If d(F) = 0, the RSSI values of a measurement in a fingerprint F
and a template F have to be equal. The size of d(F) determines how many RSSI
values are accepted to be sufficiently similar. Thus, the closer d(F) becomes to
1, the more likely it is that the similarity taking the RSSI value into account
is equal to its counterpart that does not take the RSSI value into account. We
compute d(F) per template and define it as:

d(F) = max{‖F;F′;AP‖ | AP ∈ APR(F) ∩ APR(F′),F,F′ ∈ F,F �= F′}

Choosing d(F) to be a model parameter allows us to cover the difference of
the RSSI values measured from the same APR observed in a fingerprint F and
in a template F. We define the subset as:

{F;F} = {F′ ∈ F | (‖F;F′;AP‖ < d(F)) with AP ∈ APR(F) ∩ APR(F′)}

Assuming this subset, we can construct the similarity measure, which considers
the RSSI value. The Jaccard similarity with RSSI of a single fingerprint F and
a template F is defined as:

JSR(F;F) =
|APR({F;F})|

|APR(F) ∪ APR(F)|
Whether a measurement with APR(m) in a fingerprint F and in a template

F is assumed to be the same is dependent on the RSSI value. A measurement
m must fulfill two requirements to be an element of the intersection. First, the
APR(m) must occur in the fingerprint and the template. Second, the RSSI(m)
from the fingerprint and the template must differ at most by the fixed distance
d(F). Figure 4 depicts a plot of this.



58 P. Jakubeit et al.

Fig. 4. Three segments of a template (F) with a measurement m and its RSSI difference
d(F) = 0.1, and of the fingerprints F and F′. In a) the measurement is depicted by a
dot labeled m and the difference d(F) is depicted by a line with a length of 2d (added
and subtracted from the RSSI(m) of the measurement in the template). In segment
b) the measurement is depicted by m′ such that APR(m′) = APR(m). It shows an
RSSI value inside the boundary (i.e. RSSI(m′) > RSSI(m) − 0.1). In segment c) the
measurement is depicted by m′′ such that APR(m′′) = APR(m). It shows an RSSI
value outside the boundary (i.e. RSSI(m′′) > RSSI(m) + 0.1).

3.5 Determining the Similarity Threshold

We compute the threshold per template and per similarity measurement SIM ∈
{JS, JSR}. The local similarity is the lowest similarity observed between each
fingerprint that makes up a particular template and the template itself. This
guarantees that all fingerprints used to build the template are more similar than
the threshold and implies that a classifier based on this threshold would classify
all fingerprints used to build the template correctly. We define it as:

local(SIM ;F) = min({SIM(F,F) | F ∈ F})

We also use fingerprints from remote MEs as a reference to determine the
threshold. Such a fingerprint R is built from measurements that are not at the
ME of a template. We build a diverse set of fingerprints from these remote finger-
prints R. We cap the number of APRs per fingerprint R at the maximum number
of observed APRs in the template to allow for a similarity-based comparison.
The remote similarity is the largest similarity observed between each remote
fingerprint taken into account and the template itself. This guarantees that all
remote fingerprints from R have a similarity lower than the threshold. Implying
that a classifier based on this threshold would classify all remote fingerprints
correctly (not belonging to F). We define it as:

remote(SIM ;F;R) = max({SIM(R,F) | R ∈ R})

We compute the threshold T by taking the average of the local and the remote
similarity, using both balances the threshold by introducing some tolerance. We
expect a new fingerprint at the ME with a slightly lower similarity than observed
to have a higher similarity than the threshold. We also expect a new remote finger-
print with a slightly higher similarity than the similarities observed to have a lower
similarity than the threshold. Choosing the threshold to be the local and remote
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similarity average prevents the overfitting of the training data used to create the
threshold. Given a similarity measure SIM, a template F and a set of remote fin-
gerprints R we denote the threshold by:

T (SIM ;F;R) =
(local(SIM ;F), remote(SIM ;F;R))

2

3.6 Classifying Fingerprints

The necessary elements to define our decision rule as a classifier are the compo-
nents and tools for comparison we defined. Our components are: a measurement,
the fingerprint, and the template. Our tools for comparison are: the similarities
and a template-specific threshold. Our fingerprinting mechanism aims to classify
a fingerprint F by computing its similarity with a template F. If the similarity is
larger than the template-specific threshold, we classify the fingerprint as being
at the template’s ME. Otherwise, we classify the fingerprint as remote to the
template’s ME. The classifier returns this Boolean decision and we denote it by:

C(SIM ;F;F;R) = SIM(F;F) > T (SIM ;F;R)

The classifier C allows us to fingerprint the ME in terms of ubiquitous WiFi
beacon frames. It is limited only by the surrounding WiFi APs and the time
t(F) required to fingerprint a ME.

4 Performance

We distinguish two models for classification based on the similarity measure
used. We either only compare the APRs by applying the JS, or we also consider
the RSSI values and apply the JSR. We also vary the time t (in seconds) listened
in for a WiFi fingerprint. We started our experiments with t = 20 s and increased
it incrementally to one minute. Further, we vary the number of WiFi fingerprints
n to build a template. We take n to represent a template of the equivalent of
15 min, 30 min, one hour, and two hours (e.g., assuming t = 20, the two hours of
fingerprint data accumulate to n = 360 fingerprints used to build a template).
The model parameters are the threshold T (SIM,F,R) and the tolerated RSSI
difference d(F). We compute the RSSI distance d(F) from a template. In our
data set, we observe only a slight variation for the values for d(F) per template
(at most 0.08), which confirms our expectation that the RSSI increases the
uniqueness of measurements.

4.1 Classification

We classify a fingerprint F based on a template F and a threshold T (SIM,F,R).
We assume the template to be known for the classification step and derive
the threshold from the fingerprints used for building the template and the set
of remote fingerprints R. Per ME, we consider fingerprints taken for the total
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duration of four hours (t = 14400). We split the observed fingerprints in half.
The latter half, the second two hours, always form the test set. For the training
set, we vary the number of fingerprints used in the first half to represent 15 min,
30 min, one hour, and two hours. We compute the similarity of the fingerprint and
the template. If the fingerprint’s similarity to the template is larger or equal to the
threshold, we consider the fingerprint to be measured at the same ME as the tem-
plate.

To determine the performance of our classifier, we look at its precision
and recall. Both are defined in terms of the predicted conditions. The preci-
sion measures the true positives among all positives predicted. It is defined
as: precision = TP

TP+FP . The focus is on the false positives. In our context,
these translate to remote fingerprints, which classify as being at the ME. The
recall measures the true positives among all real positives. It is defined as:
recall = TP

TP+FN . The focus is on the false negatives. In our context, these
translate to fingerprints of the ME, which we classify as not being at the ME.
The accuracy measures correct predictions among the total number of cases
examined. It is defined as: accuracy = TP+TN

TP+TN+FP+FN . It combines the false
positives and the false negatives in one value.

4.2 Validation

We partition our data into two sets: fingerprints of the ME and remote finger-
prints. The fingerprints of the ME form the template and the input for computing
the local similarity per ME. The remote fingerprints form the input for comput-
ing the remote similarity, a limited collage of WiFi fingerprints of various MEs.
Both directly influence our threshold T .

We deal with a limited set of remote fingerprints, with different fingerprints
from different MEs. To verify the impact of different compositions of finger-
prints used to construct the remote similarity, we conduct a Monte Carlo cross-
validation (MCCV). Per ME, we randomly shuffle the remote fingerprints before
splitting them between the training and the test set. We chose MCCV due to
our limited remote fingerprints’ set size and our classification mechanism. We
deal with an equally partitioned set. Hence, folded cross-validation would not
provide a sufficient answer. Even though we deal with a time series, rolling
cross-validation is not required for the remote fingerprints. We apply the MCCV
v times and choose v = n, the training and test sets’ sizes. The MCCV allows us
to test for v compositions of the remote fingerprint data we consider. We present
the precision and recall as our results per MCCV iteration.

4.3 Results

We conduct classifications for all MEs’ fingerprints according to the structure
described in Sect. 4.1. We start with taking fingerprints of length t = 20 s into
account and compute a template from n ∈ {45, 90, 180, 360} fingerprints. Our
results show that building a template from more fingerprints, a larger n, pro-
vides more information about the ME, which is consistent with our expectations.
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However, we are aiming for higher precision and recall. The Jaccard similarity tak-
ing the RSSI into account produces a much more stable result. We continued with
taking fingerprints of length t = 30 s into account and compute a template from
n ∈ {30, 60, 120, 240} fingerprints. Again the Jaccard similarity taking the RSSI
into account produces a much more stable classification result. Still, we are aim-
ing for higher precision and recall. However, we observe a smoothing compared
to the t = 20 s case. This trend continues and provides near-perfect results when
we take fingerprints of length t = 60 s into account. We compute a template from
n ∈ {15, 30, 60, 120} fingerprints. All choices of n provide promising results. The
precision in the case of the JS is lower when most of the time, only a single AP
can be measured (e.g., the ME labeled L8). For the JS and the JSR, we show the
precision per MCCV iteration in Fig. 5. In the case of the JSR, all MEs have a
precision greater than 0.98.

Fig. 5. Precision for the case of JS (left) and JSR (right) with t = 60 and n = 120, for
v = 120 MCCV iterations.

The recall in the case of the JS is for all MEs greater than 0.99, except L8. It
has a recall very close to zero. It would never classify the location L8 correctly
because it mainly contains only a single AP. For the JSR, all other MEs have a
recall greater than 0.99. On the one hand, the recall of ME L8 becomes 0.975.
On the other hand, the recall of the ME L5 has a larger variation. We show the
JS’s and JSR’s recall per MCCV iteration in Fig. 6.

Fig. 6. Recall for the case of JS (left) and JSR (right) with t = 60 and n = 120, for
120 MCCV iterations.
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We observed that choosing a larger n, thus using more fingerprints to build
a template, lowers the number of false negatives, which is consistent with our
expectations. If we have a more detailed picture of the situation, we can map
a new observation more accurately. The consistent performance of the JSR in
contrast to the JS confirms our expectations that similar RSSI values allow us
to map a newly observed AP with higher precision. By performing better than
our AMI estimate (0.98 with only four APs) we also confirm our expectation
as we consider all APs. The ME labeled L8 even shows that MEs with too few
(e.g., one) APRs should not be used.

5 Use Case: Nonintrusive Authentication

We now propose to use the ME as a nonintrusive authentication factor. In this
setting, the fingerprint of an ME becomes the authentication claim validated
against a template. We focus on extending an existing two-factor authentication
scheme. Therefore, the presence of a first authentication factor (e.g., the pass-
word) and the presence of a second authentication factor (e.g., SMS token) are
a given. To conduct authentication, we distinguish between a user and a ser-
vice. We assume the user to have a WiFi-capable sensor with software capable
of conducting measurements and the service to be capable of registering and
authenticating a user. We distinguish three phases of authentication:

Registration: The service and the user agree upon t, the number of seconds
listened in to build a fingerprint, and n, the number of fingerprints used to build
a template. In the following, the user conducts n ∗ t stationary measurements
and combines them to a template F. This template is stored on the service side
after successfully authenticating with the previously mentioned first and second
factors. The server is further assumed to hold a remote set R.

Login: The user’s sensor conducts t stationary measurements and combines
them into a fingerprint F. The user then sends this fingerprint F to the service
after being authenticated with the mentioned first and second factors.

Verification: The service has a template of a registered user. To verify the
authentication request of a user, the service obtains the fingerprint F of the
login phase. It classifies whether the obtained fingerprint is sufficiently similar
to the user’s template by computing the threshold and decision rule specified in
Sect. 2.3.

5.1 Augmenting Existing Schemes

We present a way to augment any authentication scheme with our ME. The
service can invoke the second factor (e.g., a software token) either in parallel
or only if the fingerprint is not sufficiently similar. If used in parallel, the ME
becomes a third authentication factor granting nonintrusiveness and consistency
of the environment. If the second factor is used only in doubt, the ME becomes
the de facto second factor. It also grants nonintrusiveness and the consistency of
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the environment but in addition lifts the user’s burden to engage in the second
authentication factor actively. The service can request a fingerprint at any time.
Only the fingerprint’s length, t seconds, limits the interval to conduct authenti-
cation. Our results suggest that the service can attempt authentication at least
every minute (see Sect. 4.3).

5.2 Factor Strength

To determine the strength of our authentication factor, we compute the amount
of information in terms of Shannon entropy H [24]. The entropy in our scheme
resides in the APRs of a fingerprint. Each APR has a theoretical upper bound
of 63 bits according to the specifications [8]. However, the measurable entropy of
APRs will only be a fraction of these possibilities. Therefore, we calculate a min-
imum estimate based on the APRs of the 187, 200 fingerprints observed in our
data set. We get a minimum entropy of H(MAC) = 10.45 bits considering the
observed MAC addresses. We take the joint entropy of dependent variables into
account for the capability features before summing them together. This results in
H(Flags,WPA,RSN)+H(Frequency,Bitrate)+H(Mode) = 9.1 bits of min-
imum entropy per APR expressed in terms of its capability features. To estimate
a lower bound for the entropy provided in one fingerprint, we need to consider
the number of observed APs. In our data set, each fingerprint contains one to
forty-two APs. Therefore, each fingerprint F provides at least 9.1 × |APR(F)|
bits of entropy when using the capability features.

5.3 Adversary Model and Security Analysis

Masquerading is the main threat against any authentication scheme. For finger-
printing MEs this implies to get data that the service accepts as a valid fin-
gerprint. We look specifically at attacks of acquiring a fingerprint. We consider
the compromise of the user devices as an orthogonal problem and assume that
known device protection techniques are in place, such as the regular installation
of security updates. Furthermore, we assume that a public-key infrastructure
(PKI) is in place to guarantee that the service is eligible to query the user’s ME
and that the communication channel is TLS [6] protected.

Brute Force. An adversary can try to guess the fingerprint of the user. The
recommendations of the NIST has varying factor-strengths based on the factors
themselves; a user-chosen password requires a minimum of 48 bits, a key for
an attestation of a sensor-modality in the biometric context a minimum of 112
bits [19]. Fingerprinting the ME resides somewhere between. It is not arbitrarily
chosen by the user like a password, but can and will change unlike biometric
features. Assuming a minimum of six APs, an adversary has to brute force at
least 254 possibilities, which is larger than the entropy recommendations for
passwords. Even if the adversary can guess a fingerprint, the first and second
authentication factors are still in place.
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Compromise Template Confidentiality. An adversary can try to compromise the
user’s template by taking control of the service. What can be done is not to store
the user’s template F in plaintext. The only information required in plain text is
the RSSI value to compare its distance to a newly obtained RSSI value. However,
the RSSI value is not identifying. Storing a salted and hashed representation of
each APR, congruent to the password case, is insufficient. The entropy of an
individual APR is too low. Knowing the salt, the adversary could brute force
the hash. An alternative is the salted-challenge-response authentication mech-
anism (SCRAM). The crucial point is that SCRAM applies a password-based
key derivation function (PBKDF2), which uses a client-side salt to increase the
entropy. Using SCRAM solves the low entropy problem of a single APR. To not
further burden the user by requiring him to store a salt for each observed APR,
we assume the user will use his first AF password as salt input to each PBKDF2.
Note that this does not violate key separation as the reused password is used as
salt to the PBKDF2, while each observed APR is used as the ‘password’. The
guarantees provided by SCRAM can then be transferred to a set of APRs.

Compromise the Communication Channel. An adversary can also try to attack
the communication channel. In a successful attack, the confidentiality of the
exchanged information would be compromised. In the registration phase, this
exchanged information contains the user’s template; during the login phase, it
contains a fingerprint. First, the assumption of a TLS-protected communication
channel comes into mind. However, even if the TLS is broken or circumvented,
applying SCRAM stops an adversary from attacking the communication channel.
SCRAM exchanges several hashed messages between the user and the service
that are not susceptible to replay attacks. It authenticates the client to the
server and the server to the client.

On the Intrinsic Threat of Local Adversaries. Using location as an authentication
factor has the intrinsic property that everyone at the location classifies as being
at the location. Therefore, we assume that our authentication factor is only used
in conjunction with existing authentication factors. The authors of [3] claim to
define a location with an accuracy of 2 m based on the RSSI difference d(F) when
combining WiFi with Bluetooth data. We intend to investigate the boundaries of
an ME by WiFi with a suitable dataset in the future. However, being on location
is limited to a very restricted set of adversaries who also need to acquire the other
authentication factors.

Too Few APs in the ME. If a template contains too few (less than six) APs, the
service should advise against using the ME as an authentication factor because
the entropy is too low. Our experiments show that our classification works for
locations with only a single AP. However, the security guarantees are insufficient.
Our results show with a precision of 1 that we do not grant authentication in a
situation in which authentication should have been denied.
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6 Comparison with Related Work

Continuous authentication systems in the literature are based on the physical
activities [1] or biometric features of the user [17]. Behavioral biometrics also
include the routines of a user. Several works consider building such routine pro-
files of a user’s day from WiFi. The authors of [20] restrict their profile creation
to the SSID of only the AP to which the user is connected. They also use sev-
eral other sensor readings. The authors of [14] apply a similar approach to large
available datasets. The authors of [18] compare application usage, Bluetooth,
and WiFi signals. They report stable rates above 90% for WiFi over one week
using the combination of MAC, SSID, and RSSI, showing that our expectation of
the consistency of WiFi APs is valid. In Table 1, we compare our results with the
related literature (reporting the accuracy). This comparison shows two signifi-
cant differences compared to our approach. First, all works from the literature
use more sensors than just WiFi sensors. Second, all works using WiFi sensors
use the identifying features (MAC address or SSID), which are unique, but pri-
vacy sensitive. If at least six APs are available, our mechanism outperforms the
results reported in the literature with an accuracy of 0.996. We achieve this while
only taking capability features and no PII into account. All other works build
upon potentially privacy-invasive data. One explanation might be that we do not
focus on creating a user’s behavioral profile. Doing so is just one application of
using the ME as an authentication factor. Also, setting a minimum of observed
APs explains our slight edge in performance. The closest result reported [20]
takes only a single connected AP into account, and the second closest [3] focuses
only on the top-ranked network nodes (determined by the RSSI value).

Table 1. Comparison of our mechanism with results from the literature in location
fingerprinting in terms of the signals used, the type of features used, and the reported
accuracy.

Study Signal Feature Accuracy

Ours (#AP ≥ 6) WiFi Capability 0.996

[20] WiFi, BT, GPS, usage Identifying 0.994

[3] WiFi, BT Identifying 0.984

Ours WiFi Capability 0.984

[14] WiFi, App, various Identifying 0.983

[18] WiFi, BT, App Identifying 0.85

Several works in the literature propose to use APs and their beacon frames
to authenticate a user’s location. Despite pretty good results, all of these works
require a change of the beacon frame itself. Cho et al. [5] propose a protocol
to allow location-aware access control by defining a location area enclosed by
overlapping ranges of multiple APs. They derive a location key from the over-
lapping APs’ beacon frame information but require the APs to include a nonce
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into their beacon frames and communicate them via a secured channel among
themselves. Bao [4] proposes a solution assuming an additional key server next
to the user and APs. Saroiu et al. [23] go even one step further and suggest
adding two functionalities to the AP. Their AP must be capable of generating
a location certificate and engaging in an exchange protocol on the user’s behalf.
Pham et al. [21] observed this issue and suggested reducing its surface by relying
on a centrally coordinated distributed AP infrastructure by proposing to rely on
existing WiFi APs operated as hotspots owned by the WiFi network providing
company. Our solution differs from these, as we do not require the AP to send
content in the beacon frame that exceeds the beacon frame standard [9].

7 Discussion and Future Work

Changes in the ME. Signal availability is a problem for all radio communications.
However, the results of [18] suggest consistency of at least one week for WiFi
signals, and we expect that APs are far less frequently changed. We believe that
an AP is more likely to be exchanged by the user switching ISPs than reconfig-
uration, which occurs less than annually per AP. Even if some APs change, our
classifier construction allows for tolerance in the composition of signals. If the
ME changes too much, the user should update the template by re-enrolling an
ME. The first and second authentication factors provide the authenticity of the
user in this scenario.

Keeping the APRs Confidential. A fruitful future work might be to introduce
a user-specific secret S and not store the APRs in plain text but a cipher text
after encryption under S. Using a user-specific secret S has the downside that
this secret must be securely stored on the user’s device. However, it would serve
at least three purposes: Firstly, MAC addresses and other PII may be used
because they are unretrievable from a cipher text without knowing the secret S
but will most likely improve the classifier’s performance. Secondly, the problem
of local adversaries being capable of plainly conducting a measurement of the
user’s location becomes impossible as such an adversary would be required to
get hold of S. Thirdly, a chain of trust links a measured environment to a user.
The cipher text would be constructed from the measurement of the ME and the
user-specific secret S. This binds the measurement to the secret S. Assuming
that S is stored securely on the device, the cipher text is bound to the device. If
the device is bound to the user either by knowledge or biometry, there is a chain
of trust, from a measurement to a cipher text, from the cipher text to a device,
and from the device to the user.

Behavioral user Profiles. Another direction to look into is the user’s behavior.
When a user consistently uses a service by authenticating via the ME, it could
become possible to build a behavioral profile (e.g., between 09.00 and 10.00 AM,
the user recurringly logs in from the same ME during workdays). Creating a
behavioral profile is a double-edged sword. On the one hand, it could improve the
precision of an authentication claim, and the system could learn those behavioral
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patterns to increase the likelihood of authenticating the correct user. On the
other hand, there might be contexts where the service should not learn about
a user’s template correlation. A future direction to look into is building these
profiles or preventing the service from knowing which template a user’s claim
matches.

Further Directions. We envision further research in evaluating the perimeters
of MEs to understand how close a fingerprint must be to an ME to match
a template and, thus, how close an adversary must be to gather a matching
fingerprint. Moreover, we see interesting future work in using the entropy in an
ME’s fingerprint to harden an existing authentication factor.

8 Conclusion

We introduce a nonintrusive authentication factor based on the user’s measurable
environment (ME). We aim for simplicity and consistency while respecting the
privacy of the user. Simplicity is provided by lifting the burden for the user to
perform extra tasks for multi-factor authentication (e.g., retype SMS tokens on
every login). We respect the user’s privacy by conducting this authentication in
our instantiation only based on capability features and by only recognizing a
known ME instead of mapping the user to a geographical location.

We show that a WiFi fingerprint (not containing PII) can be classified with a
precision of 1 and a recall above 0.99 when observing multiple APs. A precision
of 1, no false positives, enables us to apply the concept of WiFi fingerprinting to
authentication since no wrongful authentication gets conducted. A recall above
0.99 implies that our mechanism correctly authenticates a valid user most of the
time, which is tolerable as we assume a first and second factor as a backup for
authentication. We rely on APs that are ubiquitously present in any WiFi envi-
ronment. We require only a few kilobytes of data to be transmitted, and the
classification requires only a low amount of complexity. We perform the classi-
fication of an ME by computing the JSR of a newly obtained fingerprint to a
known template and using it as a nonintrusive authentication factor.
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Abstract. FIDO authentication has many advantages over password-
based authentication, since it relies on proof of possession of a security
key. It eliminates the need to remember long passwords and, in par-
ticular, is resistant to phishing attacks. Beyond that, the FIDO proto-
cols consider protocol extensions for more advanced use cases such as
online transactions. FIDO extensions, however, are not well protected
from Man-in-the-Middle (MitM) attacks. This is because the specifica-
tions require a secure transport between client and server, but there
exists no end-to-end protection between server and authenticator.

In this paper, we discuss MitM scenarios in which FIDO extensions may
be intercepted. We further propose an application-layer security protocol
based on the CBOR Object Signing and Encryption (COSE) standard to
mitigate these threats. This protocol was verified in a formal security eval-
uation using ProVerif and, finally, implemented in a proof-of-concept.

Keywords: Security · FIDO · WebAuthn · CTAP2 · COSE ·
Encryption

1 Introduction

In today’s digital era, almost everybody is used to log in to a website with a
password. Although passwords are easy to use, they have many disadvantages in
terms of security. They are often easy to guess or sometimes publicly disclosed
after a data breach. Furthermore, passwords are vulnerable to phishing attacks.
Therefore, many services already implement multi-factor authentication.

FIDO authentication is a relatively young technology that intends to over-
come the disadvantages of passwords. The basic idea behind it is to use an
authenticator device as a more secure authentication factor, either in addition
to or even as a replacement for passwords. A feature that is rarely used yet
but may become important soon are FIDO extensions. These allow for more
advanced functionality beyond simple authentication. FIDO authentication may,
for example, be used to confirm online purchases or banking transactions. Ini-
tially, a FIDO Transaction Confirmation extension was proposed, which includes
a human-readable text representation of a transaction as an extension [13]. This
extension, however, was never implemented and already became deprecated. It
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is replaced by the more recent Secure Payment Confirmation [27]. We expect to
see more different kinds of extensions like this in the future.

However, the FIDO specifications do not provide any specific protection for
FIDO extensions. Since extensions can contain very sensitive information, it
should be ensured that attackers cannot intercept or manipulate this informa-
tion. There are several possibilities for attackers to act as Man-in-the-Middle
(MitM). The FIDO protocols only protect the integrity of messages from the
authenticator to the server. The integrity of messages from the server cannot be
checked by the authenticator. While this is not necessary for basic authentica-
tion, this may be crucial for certain extensions. Also, confidentiality cannot be
guaranteed as there is no encryption on the application layer.

To mitigate the risk of manipulation or disclosure of FIDO extensions, we
propose to apply authenticated encryption to FIDO extensions. In this paper,
we provide the following contributions:

1. An overview of different MitM attack scenarios against FIDO extensions.
2. A proposal for a security protocol to protect FIDO extensions.
3. A formal security verification of this protocol.
4. A proof-of-concept implementation.

The remainder of this paper is structured as follows. Section 2 gives an overview
of FIDO authentication and the COSE protocol. In Sect. 3 related literature on
FIDO is presented. The attack model addressed in this paper is explained in
Sect. 4. In Sect. 5 we specify our proposed security protocol, which is evaluated
in Sect. 6. In Sect. 7 we describe a proof-of-concept implementation. A discussion
of the proposed solution is provided in Sect. 8. Our findings are summarized in
Sect. 9 along with a brief outlook on future work.

2 Background

In this section we firstly provide some background information on FIDO authen-
tication. Afterwards the CBOR based COSE protocol is described.

2.1 FIDO Authentication

The Fast IDentity Online (FIDO) Alliance is publicly active since 2013 [16].
Today it includes members from several popular Internet companies. Their main
objective is to provide industry standards for using authenticators to authenti-
cate against web applications either as a single factor (password-less) or as an
additional factor (2FA/MFA). There are two different types of authenticators.
Roaming authenticators are external security tokens (for example a YubiKey)
that can be connected via USB, Bluetooth-Low-Energy (BLE) or Near-Field-
Communication (NFC). In contrast to this, platform authenticators are inte-
grated into client devices like computers and smartphones.
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Fig. 1. FIDO authentication overview.

In this paper, we mainly focus on FIDO2, which consists of the Web
Authentication (WebAuthn) API and the Client-to-Authenticator-Protocol 2
(CTAP2) [15]. WebAuthn has become a W3C standard [22] and defines a
JavaScript API and data structures that can be used to create credentials and
get assertions from the authenticator. CTAP2 defines the protocol between the
client platform and the authenticator.

For FIDO authentication, security and trust are based on public key cryp-
tography. Figure 1 gives a brief overview of the different roles and messages that
are specified for FIDO2 authentication. At first, an authenticator (e.g. a secu-
rity token) needs to be registered at a web service, the so-called relying party
(RP). When a user registers at a RP, the RP firstly sends a registration request
to the authenticator which includes a random nonce (challenge), its identifier
(rpId), and further parameters. The authenticator creates a credential key pair
and shares its public key with the RP by sending a registration response. In
addition, the authenticator may include an attestation certificate that verifies
the origin of the authenticator by a certified manufacturer. For this purpose,
the FIDO Alliance provides a public service called Metadata Service [14], which
contains a list of vendors, their public keys and their certification levels. Dur-
ing authentication, the RP creates another challenge value and sends it to the
authenticator in an assertion request. This challenge is signed by the authenti-
cator, along with other parameters, using the private key of the credential that
was previously registered with the RP. Using the corresponding public key, the
RP can verify the signature of the assertion response. Both for registration and
authentication, the user needs to interact with the authenticator, e.g., by press-
ing a button. For more security, the user can enter a PIN or interact with a
biometric scanner, which provides an additional authentication factor.

The FIDO specifications leave room for additional features by using protocol
extensions. Extensions sent by the RP to the authenticator are called input exten-
sions and extensions from the authenticator to the RP output extensions. Fur-
thermore, it is distinguished between client extensions and authenticator exten-
sions. In this paper, we focus on authenticator extensions, i.e., those that are
processed by the authenticator. Several different types of extensions have been
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proposed (see e.g. [20]), however, almost none of these has been implemented
yet. The Secure Payment Confirmation [27] is a new W3C specification and
describes a payment extension for FIDO authentication. It is a good example of
more advanced applications of FIDO authentication. However, it must be kept
in mind that such an extension also requires high security standards.

2.2 COSE

The CBOR Object Signing and Encryption (COSE) [33] protocol aims to pro-
vide a standard for exchanging signed and encrypted data in the Concise Binary
Object Representation (CBOR) [6] format. CBOR is a binary data format that
is particularly useful for low-resource devices due to its lightweight and efficient
design. Among other things, it is used in the CTAP2 protocol. Data can be struc-
tured into maps and arrays of various types. Consequently, JSON objects can be
easily converted to CBOR objects, which makes it also usable from a developer’s
perspective. Furthermore CBOR provides features like tags and flexible map and
array lengths.

COSE is basically adapted from the JavaScript Object Signing and Encryp-
tion (JOSE) protocol. It defines data structures for exchanging data that is
signed, encrypted or authenticated (MAC). COSE objects carry the payload
together with additional information about the keys and algorithms that are
used. A COSE message is composed of a CBOR array that contains a protected
header, an unprotected header, the payload and depending on the type additional
values like the signature or the message authentication tag. A protected header is
a CBOR encoded map of certain header values. It is used as input in addition to
the actual payload for cryptographic functions, e.g., as additional authenticated
data (AAD) when using authenticated encryption or as input for the signature.
The unprotected header is a map that contains further header values, which in
contrast to the protected header are not cryptographically bound to the pay-
load or signature. COSE signature messages may contain one (COSE_Sign1) or
multiple signatures (COSE_Sign). Encryption messages can be intended for one
recipient (COSE_Encrypt0) or for multiple recipients (COSE_Encrypt). Respec-
tively, there are also two different COSE MAC structures.

The COSE protocol does not specify, how keys are negotiated by the different
parties. However, it defines a COSE Key structure which contains all necessary
information for a key. This can be useful, e.g., for storing the key or for sending
it to another party in a standardized manner. For example, the FIDO2 protocols
make use of the COSE Key format to send the public key from the authenticator
to the RP. There currently exists a draft for a COSE based Ephemeral Diffie-
Hellman Over COSE (EDHOC) protocol to provide additional features like key
negotiation [34], which, however, is not standardized yet.

3 Related Work

Since FIDO authentication is a fairly new topic, research on the subject is still
very limited. We therefore provide a brief overview of the related literature.
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There has been quite some research on the usability of FIDO authentica-
tion [28,29]. One of the major concerns by the users is the account recovery.
If the authenticator gets lost, there must be some way to regain access to the
account. At the same time, the recovery option should not reduce the security.
As a solution, an enhancement for the protocol was proposed that enables the
use of a backup key that only needs to be configured once in the beginning [17].
Furthermore, a study on different account recovery approaches was conducted
to compare them in terms of usability, deployability and security [23]. Other
researchers applied formal methods to analyse the security of the FIDO proto-
cols [3,11]. In particular, there still seems to be a lack of research that focuses
on the CTAP2 protocol.

There has also been done little research specifically on the security of FIDO
extensions. For example, it was proposed to use structured data formats for
FIDO Transaction Confirmation to facilitate the validation of transaction infor-
mation by the authenticator thereby making it more secure [8]. Furthermore,
some researchers have pointed out that the FIDO Transaction Confirmation
extension is vulnerable to manipulation. They propose to let an RP sign the
transaction information, which can be validated on the client-side in a trusted
environment [37,38]. However, they do not point out how the authenticity of the
public key is guaranteed. In addition to this, we see further risks. If FIDO exten-
sions can be manipulated, they can also be eavesdropped in similar attack sce-
narios. Therefore, confidentiality should be equally considered alongside integrity
and authenticity.

4 Attacker Model

The WebAuthn standard [22] requires a so-called secure context, which includes
the use of HTTP over TLS (HTTPS). This ensures that the client can verify the
authenticity of a web server. Yet, there are more components involved that can
interfere with FIDO messages beyond client and server. We therefore argue that
HTTPS does not provide sufficient protection for FIDO messages at all. FIDO
authentication can involve several different intermediaries between the RP and
the authenticator. These include (1) web proxies between the client and the RP,
(2) the client application, (3) intermediary processes on the client platform and
(4) hardware between a roaming authenticator and the client device. Thus, there
is a significantly large attack surface, as illustrated in Fig. 2.

Plain authentication—also referred to as entity authentication—without any
extensions is not likely at risk, because the protocol is designed not to con-
tain sensitive information. Also, it is resistant against manipulation through the
challenge-response protocol. However, authentication that involves extensions
exchanged between the RP and the authenticator may contain valuable infor-
mation, e.g., personal data, transaction details or other sensitive information.
Such information could be obtained or manipulated by an adversary. In the
following, we elaborate on the four different MitM scenarios in more detail.
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Fig. 2. Attack surface: possible points of interception are highlighted.

4.1 Vulnerable Web Intermediaries

Distributed systems like web applications typically include intermediaries such
as content delivery networks (CDN), load balancers or web application firewalls
(WAF). The secure context requirement mentioned above can only be verified for
the connection between a browser and the next HTTP entity. As a consequence,
it cannot be guaranteed that intermediaries communicate with other intermedi-
aries or the server via HTTPS. Apart from that, HTTPS is only protecting on
the transport layer. Web intermediaries usually operate on the application layer
and therefore need to access HTTP messages including the body. Consequently,
they are able to read FIDO messages in clear text.

If a proxy behaves maliciously, this can have severe security implications.
A proxy could be misused to intentionally read FIDO messages and disclose
sensitive information. Beyond that, a malicious proxy could manipulate exten-
sions. There is no integrity check considered for FIDO messages from the RP
to the authenticator. Depending on the type or use of an extension, only a user
may notice the manipulation through manual inspection. For messages from the
authenticator to the RP, any manipulation will be detected by the RP, since the
authenticator data including extensions are signed. In any case, there is still the
risk of information disclosure.

Another concern with HTTP intermediaries is the possibility of attacks that
result from the semantic gap of the HTTP protocol [9]. In particular, cache
poisoning vulnerabilities could be exploited to disclose FIDO messages. This
can be realized by various techniques like request smuggling [26] or web cache
deception [18].

4.2 Compromised Client Application

The client application on the user’s device may be running in a browser as
a JavaScript application or a native mobile application. Both browser clients
and native mobile applications often use third-party libraries. If not checked
properly, such libraries can include malicious code [2,39]. Another possibility
to compromise the client application is to exploit cross site scripting (XSS)
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vulnerabilities in a JavaScript application to inject code that intercepts FIDO
messages and modifies extensions or forwards them to an untrustworthy third
party.

4.3 Malware on the Client Device

Malware can pose a further threat to FIDO extensions. An attacker may be able
to install malicious software on a user’s client device through an email attach-
ment or some other exploit. By intercepting inter-process communication (IPC)
or accessing memory of other processes, the malware could read or manipulate
FIDO messages. Moreover, it could bypass security measures by the browser and
system and send its own FIDO assertions to the authenticator. It was already
shown that this can cause a user to confirm a malicious transaction [7]. In addi-
tion, there may be specific types of viruses targeting browsers on client devices.
By this, a browser may be corrupted in a way that it can be controlled by an
attacker, which is also known as Man-in-the-Browser (MitB) attacks [10]. Beyond
that, platform authenticators are generally at risk of behaving unintentionally
when they are affected by malware. This can be mitigated with the use of trusted
platform modules (TPM), which make sure that secret keys are not disclosed.
Nevertheless, exploits against extensions remain a threat.

4.4 MitM Between Client Device and Authenticator

With respect to roaming authenticators, an attacker may try to intercept the
connection between the client device and the authenticator. This is certainly a
more difficult attack, since an attacker needs physical access to the user’s devices.
One could argue that the security of the FIDO device is completely compromised
in that case and other MitM countermeasures would be pointless. However, this
is only true for authenticators that just require a button press and not when the
authenticator uses a more secure verification method such as biometrics.

Even if an authenticator uses a verification method like biometrics, an
attacker may still be able to intercept the connection and eavesdrop or manip-
ulate extensions. For example, there are known MitM attacks against Blue-
tooth [24,35]. NFC is very unlikely to be intercepted without the owner’s aware-
ness. But still, a potential attack against NFC has been demonstrated [1].

5 Protocol Design

As shown in the previous section, FIDO messages can indeed be vulnerable to
several attacks. Extensions may include sensitive information and are at risk of
being modified by or disclosed to unauthorized parties. Considering the large
attack surface, we see the necessity to apply further measures. In this section,
we present our proposed protocol to protect FIDO extensions.
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5.1 Authenticated Encryption

Sensitive FIDO extensions should provide secure properties such as confiden-
tiality, integrity and authenticity. Messages sent from the authenticator to the
RP are already signed and, thus, do not require any additional authentication.
However, messages from the RP to the authenticator are neither signed, nor
authenticated by any means. Xu et al. [37] suggest that the relying party shall
sign extensions. In their approach the verification of the signature is done on the
client device and the public key for verifying the signature is given by the TLS
connection. We, however, want to enable the authenticator itself to validate the
authenticity of extensions from the RP.

Since signatures do only provide integrity and authenticity, but no confiden-
tiality, we propose to fulfill all these properties by using authenticated encryp-
tion (AE) instead. For this the RP and the authenticator must firstly agree upon
a shared secret during registration. After that they can derive key material from
the shared secret and use AE algorithms such as AES-GCM to encrypt and
authenticate extensions that are included in assertion messages.

There can be multiple authenticators registered with one user account on
the RP. However, there will be a different shared key between the RP and every
authenticator. The RP does not know which registered authenticator will be used
for the assertion. Therefore we need to apply key wrapping. This means that the
actual extension is encrypted with a newly created content encryption key. This
key is then encrypted with the shared key and appended to the message for each
authenticator. For encrypting the extensions in the assertion response by the
authenticator the shared key can be used directly, because the message is only
intended for the RP. This is formalized in our model in Sect. 6.2.

5.2 Key Exchange

Encrypting FIDO extensions requires the RP and the authenticator to exchange
keys in advance. Normally, a public-key infrastructure (PKI) is used to create
certificates which provide trust and authenticity for exchanged keys. Hardware
tokens, however, are very limited and likely not powerful enough in terms of
storage and computation to handle certificate chains. Since they operate offline,
there is also no possibility for them to directly interact with certificate authori-
ties over the network (e.g. to check on certificate revocations). This is different
for other types of authenticators with more computing resources and network-
ing capabilities. However, we want to address all types of authenticators with
our solution. Because of this, we consider the trust-on-first-use authentication
scheme [36]. This means that we trust the first connection between authenticator
and RP not being intercepted by an adversary.

To generate a shared secret, the RP and the authenticator perform a Diffie-
Hellman key exchange (DHKE) during the registration. The RP includes the first
part of the DHKE as registration input extension. The authenticator generates
and stores the shared secret from the DHKE and sends a registration response
to the RP, which includes the second part of the DHKE as registration output
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extension. Finally, the RP generates the shared secret from the DHKE and stores
it together with the newly registered credential.

The (unauthenticated) DHKE is known to be secure against eavesdropping,
but vulnerable to active MitM attacks. Authenticators use attestations that
should be validated by RPs to create a certain amount of trust. If properly
done, this can mitigate active MitM attacks. However, for higher security, it
is important that the authenticator includes both parts of the DHKE in its
attestation signature, as shown in Sect. 6.1.

5.3 Data Format

A further important aspect is the format used to exchange the encrypted data
along with required metadata like an input vector (IV) and the algorithm used.
FIDO authenticator extensions must be provided in the CBOR format. As
described in Sect. 2.2, the accompanying protocol for signature and encryption
is COSE. Since the public key from the authenticator is transmitted as a COSE
key, authenticators and RPs are both supporting parts of the COSE protocol
already. The COSE standard supports encryption for single and multiple recip-
ients, and thus provides all functionality needed for the proposed protocol. Our
suggestion is therefore to embed extensions in COSE structures. The COSE key
format can also be used to encode the DH public keys that are exchanged during
the registration to generate the shared secret.

5.4 Displaying User Information

When encrypting extensions, we still need to be able to display information,
such as transaction information, to the user in a secure manner. This is the
key aspect of the What-You-See-Is-What-You-Sign principle [25]. The different
possible architectures with FIDO authenticators are displayed in Fig. 3. Ideally,
an authenticator should provide a secure display (Fig. 3a). However, there are
no roaming authenticators with a display on the market yet. In most cases, the
client platform would be responsible for displaying the information to the user.
With our approach, the client will not be able to decrypt the extensions on
transit. Therefore, the authenticator firstly needs to decrypt the extensions and
then forward the user information to the client display on a secure path (Fig. 3b).
For this the platform should provide appropriate measures to ensure that there
is no interception possible when displaying the information to the user.

Platform authenticators are integrated into computers or smartphones. Since
these already have a display, platform authenticators can provide the decrypted
user information instantly to the platform without an intermediary connec-
tion (Fig. 3c). FIDO authentication is already supported by most platforms like
Windows [21], MacOS/iOS [30] and Android [19]. The platform itself must ensure
that the information that is displayed to the user has not been modified by
another malicious process. When the client device is responsible for displaying
the information, there are further risks like UI deception attacks [4,12], which,
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Fig. 3. Architectures for different types of authenticators.

however, must be taken care of by the operating system. The same applies when
a roaming authenticator without a secure display is used.

6 Security Evaluation

ProVerif [5] is a common protocol verifier that uses Horn-clause based repre-
sentations of a protocol and the applied π-calculus for process verification. A
formal model of the protocol and the security properties to be tested are defined
in input files. The output are the test results indicating whether the defined
security properties are met. If a test fails, a possible attack trace is provided.
This tool has been used to conduct a security evaluation of our protocol.

Formal models have been created for the key exchange during the registra-
tion of an authenticator and for the exchange of encrypted and authenticated
extensions. A basic description of the models, some code excerpts and the results
are given below. For more details, the sources and results of the evaluation can
be found in our Github repository1.

6.1 Key Exchange

In our protocol, a DHKE is performed to generate a shared secret on the relying
party and the authenticator. Even though a client can verify the TLS certificate
of a RP, we assume that an authenticator cannot validate the authenticity of a
RP. However, we consider that a RP requires attestation from the authenticator

1 https://github.com/Digital-Security-Lab/protecting-fido-extensions-proverif.

https://github.com/Digital-Security-Lab/protecting-fido-extensions-proverif
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and that it verifies the attestation signature with a known and trusted public
key. This serves to validate the authenticity of a DH key that is received by the
RP to compute the shared secret.

One obvious security requirement is that the shared secret is kept secret and
cannot be obtained by an attacker. This is defined by the following two queries:

query attacker ( computeSecret ( publicKey (dh_priv_AU) ,
dh_priv_RP) ) .

query attacker ( computeSecret ( publicKey (dh_priv_RP) ,
dh_priv_AU) ) .

Further, we check the authenticity by verifying that a key exchange is only
performed if both authenticator and RP have generated the same secret:

query x :G; inj−event ( sharedSecretRP (x ) )
==>inj−event ( sharedSecretAU (x ) ) .

For the key exchange, two different models of the protocol were created, because
the first model did not pass the verification.

Protocol Model 1. In this model, the authenticator creates an attestation
signature including the nonce, the credential public key and the output extension
containing its DH key:

sign ( ( nonce , credPubKey ,dh_pub_AU) , pr ivKeyAttes tat ion )

This signature is verified by the RP against the original nonce, the credential
public key and the extension with the DH key by the authenticator:

checksign ( ( nonce , credPubKey ,dh_pub_AU) , s i gnature ,
pubKeyAttestation )

When verifying this model with ProVerif, the authenticity test fails. The detailed
output of ProVerif contains a trace where an attacker intercepts a registration
request by the RP and replaces the DH key of the RP with its own key. Because
of this, the authenticator will compute a different shared secret than the RP.
As a consequence, the authenticator cannot authenticate or decrypt assertion
extensions from the RP, but from the attacker. However, the attacker cannot
gain much from this, except for causing a denial of service. Nonetheless, this
attack should be avoided.

Protocol Model 2. In the second model, the authenticator includes both DH
keys in the attestation signature, so the RP can verify that the same shared secret
is computed on both ends. From a theoretical perspective, it would be enough
to only modify the signature. However, in practice the protocol proposed here
should be compatible with the FIDO standards. Therefore the authenticator will
have to include both its own DH key and the DH key from the RP in the output
extensions, so both keys are implicitly included in the signature:

sign ( ( nonce , credPubKey ,dh_pub_AU,dh_pub_RP) ,
pr ivKeyAttes tat ion )
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The same is true when verifying the signature. In particular, the RP must check
the signature with its own generated DH key and the authenticator’s key:

checksign ( ( nonce , credPubKey ,dh_pub_AU,dh_pub_RP) , s i gnature
, pubKeyAttestation )

With this model all tests succeed and the secrecy of the shared secret is guar-
anteed as well as the authenticity of the public keys that were exchanged. We
therefore consider this model in our final solution.

6.2 Encrypted Assertion Extensions

The second critical part of the proposed protocol is the exchange of encrypted
and authenticated extensions between RP and authenticator during assertions.
We make the following assumptions. First, the authenticator is successfully reg-
istered with the RP. This means that the RP has the credential public key of
the authenticator to verify its signature and both authenticator and RP have
exchanged a shared secret and derived from it a shared key. Second, while replay
attacks against the RP are prevented by the nonce, replay attacks against the
authenticator are not.

A security requirement here is the secrecy of input and output extensions,
which is defined in the following two queries:

query attacker ( Asse r t i onInputExtens ions ) .
query attacker ( Assert ionOutputExtens ions ) .

In addition, the authenticator and the RP should both only accept authenticated
extensions. An attacker must not be able to forge or manipulate extensions in a
way that they are processed by either of them. As mentioned above, we assume
an attacker to be able to replay assertion messages to the authenticator, but
not to the RP. Therefore only events in connection with output extensions are
defined as injective events:

query x : b i t s t r i n g ; event ( rece iveInputExtens ionsAU (x ) )
==>event ( sendInputExtensionsRP (x ) ) .

query x : b i t s t r i n g ; inj−event ( receiveOutputExtensionsRP (x ) )
==>inj−event ( sendOutputExtensionsAU (x ) ) .

This time only one model had to be created. In this model, the RP uses key
wrapping to transmit a content encryption key together with the encrypted
input extensions:

new cek : key ;
let inputExtensions_enc = senc ( Asser t ionInputExtens ions ,

cek ) in
let cek_enc = senc ( k ey2B i t s t r i ng ( cek ) , sharedKey ) in
out ( c , ( nonceRP , cek_enc , inputExtensions_enc ) )

The authenticator, on the other hand, uses the shared key directly to encrypt
the output extensions:
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let outputExtensions_enc = senc ( Assert ionOutputExtens ions ,
sharedKey ) in

The evaluation of this model with ProVerif indicates that the expected secu-
rity requirements are met and no attacks have been found. Hence, with this
model, we can successfully exchange FIDO extensions while preserving their
confidentiality, integrity, and authenticity.

7 Implementation

A proof-of-concept (PoC) application has been developed to demonstrate how
to implement essential parts of the proposed protocol. The sources and further
instructions can be found in a Github repository2. Since FIDO keys can be, e.g.,
USB devices with very limited resources, it was decided to provide a test appli-
cation using the C programming language and libraries that are optimized for
embedded devices. To implement the protocol, a CBOR library is needed, which
is already included in each FIDO component, as it is required for implementing
the basic FIDO protocols. Moreover, a COSE library is needed. Since we could
not find a useful implementation, we developed an open-source COSE library3

based on the RFC 8152 standard [33]. At the time of writing, this library is
still a work in progress, but already provides everything needed for the proposed
protocol. Finally, additional crypto libraries may be needed to do certain oper-
ations such as generating private and public keys, to compute the shared secret
from the DHKE and to derive key material using e.g. a Hash Key Derivation
Function (HKDF).

The PoC application is meant to demonstrate the parts that have to be
implemented in addition to the FIDO protocols. Basic features such as creden-
tial creation, attestation and signature verification are therefore not included.
For the DHKE, elliptic curve key pairs were used. The authenticated encryption
is done using AES-GCM with a 128-bit key. In the example application, it is
firstly shown how the RP and the authenticator exchange a shared secret. The
RP creates the first part of the DHKE, which is encoded in a COSE Key structure
and transmitted to the authenticator. The authenticator then creates the second
part of the DHKE, computes the shared secret and derives from it a 128-bit key
using a HKDF with SHA-256 as underlying hash function. Subsequently, the RP
receives the second part of the DHKE (in a real world application together with
the first part of the DHKE as discussed in Sect. 6.1) and analogously computes
the shared secret and derives from it a key the same way as the authenticator. In
the second part of the application, the RP is provided with the credential iden-
tifier and the shared key of an authenticator. The RP creates an encoded COSE
Encrypt structure that contains an extension value encrypted with a content
encryption key. This key is then encrypted using the shared key and attached as
a recipient object. The credential id of the corresponding authenticator is used as

2 https://github.com/Digital-Security-Lab/protecting-fido-extensions-poc.
3 https://github.com/abuettner/cose-lib.

https://github.com/Digital-Security-Lab/protecting-fido-extensions-poc
https://github.com/abuettner/cose-lib


Protecting FIDO Extensions Against Man-in-the-Middle Attacks 83

key identifier. The authenticator receives this COSE Encrypt structure and iden-
tifies that a recipient is attached with its credential id. It can then decrypt the
content encryption key and finally the extension value. The authenticator then
creates an encoded COSE Encrypt0 structure that contains another extension
value, this time encrypted with the shared key. The RP receives this structure
and finally decrypts the extension value by the authenticator. Note that in a real
application, the RP can identify the shared key used by the credential id that is
part of the authenticator data.

Preliminary measurements on a Raspberry Pi Pico (264 kB SRAM, 2 MB
on-board flash memory) [31] show that the steps performed by an authenticator
during the registration take about 250 ms, while the steps during the assertion
take about 5 ms. The additional delay during registration is acceptable, since
this is performed only once per application. The additional runtime on assertions
would be unnoticeable by the user.

8 Discussion

In this section we discuss our proposed protocol for protecting FIDO extensions
with regard to several different aspects.

8.1 Security

There are several different ways to intercept FIDO messages in clear text as
described in Sect. 4. This allows an attacker to intercept FIDO extensions with
valuable information and either eavesdrop or manipulate them. As shown by the
evaluation the security of FIDO extensions can be significantly improved with
our proposed solution. However, the security of extensions also depends on a
secure key exchange. While RPs can verify the attestation to get information on
security properties provided by an authenticator to create trust, authenticators
cannot reliably verify the origin of a RP. In our formal models, the client between
the RP and the authenticator has not been considered. It could be argued that
the client adds security to some extent, e.g., by validating the TLS certificate of
the server. Yet, this is not sufficient and additional measures as proposed in this
paper are justified.

The security also depends on the strength of cryptographic algorithms. This
has not been evaluated within this work. We consider cryptographic algorithms
that are widely accepted and used e.g. in the most recent TLS 1.3 [32]. However,
the proposed protocol is meant to be generic, so cryptographic algorithms can
simply be replaced if necessary (e.g. with post-quantum cryptography).

8.2 Implementation

We provide an example on how our protocol can be implemented. Our protocol
is completely compatible with the FIDO standards. While the protocol is quite
complex, our implementation can be used to integrate it into FIDO applications
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with low effort. Since there are not too many COSE library implementations, a
further contribution of this work is such a COSE library which can be used by
any other C application.

At the time of writing, FIDO implementations are quite restricted to stan-
dardized extensions. Even though the WebAuthn standard [22] defines how arbi-
trary extensions should be forwarded to the authenticator, browsers have not
implemented this. This means that custom extensions are not passed to FIDO
devices. It is therefore challenging to implement a real-world example at this
stage. Our protocol should also be considered for extensions that will be stan-
dardized in the future, such as, the Secure Payment Confirmation [27] which is
clearly an extension with high security requirements.

8.3 Usability

Usability is an important aspect that can affect the user experience and accep-
tance. It is an essential criterion that will certainly determine how successful
FIDO authentication will become in the future. The usability for FIDO authen-
tication is, however, not affected by our proposed protocol. The protocol requires
a key exchange and subsequent encryption of FIDO extensions, which happens
autonomously and is therefore unnoticed by the user.

9 Conclusion and Outlook

The FIDO protocols are a promising way to prevent security risks that arise with
password authentication. However, we describe several MitM attacks which show
that FIDO extensions are vulnerable to disclosure and manipulation. In order to
mitigate such attacks, we propose a protocol that secures FIDO extensions by
authenticated encryption. While our methodology includes some challenges such
as the initial key exchange and displaying user information for authenticators
without a secure display, we see a considerable security gain and aim for a
standardized way to secure any kind of FIDO extension.

There are not many extensions used in practice yet. Nevertheless, the stan-
dardization process of the Secure Payment Confirmation indicates that we can
expect more extensions to appear in the near future. At the time of writing,
it is still under discussion if arbitrary extensions should be allowed or not. We
argue that it would be beneficial from a developer’s perspective to be able to
add extensions for different applications. This should, however, be done with
security in mind. The protocol presented in this paper could provide a way to
satisfy this requirement. In future work, we will test our approach in real world
scenarios. Furthermore, we are working on a lab environment that will facilitate
practical research with FIDO authentication.
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Abstract. As IoT becomes omnipresent vast amounts of data are gen-
erated, which can be used for building innovative applications. However,
interoperability issues and security concerns, prevent harvesting the full
potentials of these data. In this paper we consider the use case of data
generated by smart buildings. Buildings are becoming ever “smarter”
by integrating IoT devices that improve comfort through sensing and
automation. However, these devices and their data are usually siloed in
specific applications or manufacturers, even though they can be valu-
able for various interested stakeholders who provide different types of
“over the top” services, e.g., energy management. Most data sharing tech-
niques follow an “all or nothing” approach, creating significant security
and privacy threats, when even partially revealed, privacy-preserving,
data subsets can fuel innovative applications. With these in mind we
develop a platform that enables controlled, privacy-preserving sharing of
data items. Our system innovates in two directions: Firstly, it provides
a framework for allowing discovery and selective disclosure of IoT data
without violating their integrity. Secondly, it provides a user-friendly,
intuitive mechanisms allowing efficient, fine-grained access control over
the shared data. Our solution leverages recent advances in the areas
of Self-Sovereign Identities, Verifiable Credentials, and Zero-Knowledge
Proofs, and it integrates them in a platform that combines the industry-
standard authorization framework OAuth 2.0 and the Web of Things
specifications.

1 Introduction

IoT systems generate vast amounts of data nevertheless, their potential is lim-
ited by security and privacy concerns, as well as by the lack of interoperability.
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A striking example is the case of smart buildings. Smart buildings employ a
variety of IoT devices that generate data which support various applications,
such as energy management, automations, security and safety, etc. These appli-
cations are in most cases siloed and the generated data are only used for the
specific purposes of each application. Nevertheless, these data can be valuable for
a variety of stakeholders that are able to deliver value-added services for other
domains. Energy suppliers represent a key stakeholder that can significantly ben-
efit from both energy and non-energy data that can be collected, either directly
by smart building systems or even by legacy systems that are integrated with
smart IoT equipment. According to an Accenture study [11], energy utilities
will need to master data analytics in the near future, to continue developing
valuable, customer-focused products that go far beyond old business models and
plain commodity offerings. Data analytics can benefit energy utilities in multi-
ple ways: a) successful retention of customers through the delivery of innovative
personalized services, b) improved customer targeting and segmentation through
consumer profiling, c) improved energy market participation through demand
forecasting based on machine learning, d) improved energy savings for end users
through optimized demand management and many others.

On the other hand, end-users would be interested in securely making a subset
of the data generated by their IoT devices available to these 3rd parties, in a
stratified manner, to benefit from the added value of the provided services. Nev-
ertheless, several challenges have to be overcome: a) a uniform and standardized
way for advertising/discovering, requesting, and transmitting data should be in
place, b) sensitive information should be stripped from the shared data without
violating data integrity and provenance, c) an efficient, usable mechanism for
expressing and enforcing fine grained access control policies should be available,
d) data access rights should be expressed in a rich and verifiable manner. In
addition to overcoming these challenges, proposed solutions should encourage
interoperability and prevent vendor “lock-in”. With these in mind we designed,
implemented, and evaluated SelectShare: a platform for controlled sharing of IoT
data, focusing on smart buildings.

SelectShare is a system that makes available data from IoT systems located
in buildings, and facilitates fine-grained, privacy-preserving data access to con-
trolled subsets of these data, while at the same time ensuring data integrity,
provenance verification, authenticity, and interoperability with different types of
systems. This is achieved by integrating four components. First, an IoT gate-
way that exposes a data access API by following W3C’s Web of Things spec-
ifications [13] facilitating data discovery and data interoperability. Second, a
data transcoder that collects data from IoT devices, transcodes them into JSON
objects, and signs them using a digital signature scheme that enables selective
disclosure of the claims included in the JSON, providing at the same time Zero-
Knowledge Proofs (ZKPs) of their integrity. Third an OAuth 2.0 [9] based Veri-
fiable Credential (VC) [15] issuing mechanism for generating self-contained, fine-
grained access tokens. Finally, an HTTP-proxy that acts as a Policy Enforcement
Point (PEP), for controlling access to the IoT gateway, as well as for selectively
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hiding parts of the responses generated by the gateway. Using this approach,
SelectShare achieves fine-grained access control with minimal overhead and no
modification to the IoT devices.

The remainder of this paper is structured as follows. In Sect. 2, we introduce
our enabling mechanisms and we discuss related work in this area. In Sect. 3, we
detail the design of our architecture. In Sect. 4, we present the implementation
and evaluation of our solution. We conclude our paper in Sect. 5.

2 Background and Related Work

2.1 Verifiable Credentials

A Verifiable Credential (VC) [15] allows an issuer to assert some attributes about
an entity referred to as the VC subject. A VC includes information about the
issuer, the subject, the asserted attributes, as well as possible constraints (e.g.,
expiration date). Then, a VC holder (which is usually the same entity as the VC
subject) can prove to a verifier that it owns a VC with certain characteristics.
This is usually achieved by including in the VC an identifier (e.g., a public key),
owned by the holder that enables the holder to generate a proof of possession
(e.g., a digital signature with the corresponding private key). The VC verification
process does not require communication with the VC issuer.

The VC data model allows different VC types, which define the attributes
a VC should include. This provides great flexibility, since VC integrators can
define their own types that fit the purposes of their systems. Our system uses a
new VC type named CapabilitiesCredential that “describes” which portion of a
data item a user can access.

2.2 BBS+ Digital Signatures

BBS+ is a digital signature protocol which is used for signing an array of mes-
sages. It was first envisioned by [2] (from where it takes its name), touched
again in [1], re-visited in [3] and is currently under standardization [25]. BBS+
provide the ability to sign an array of individual messages, with only a single
constant size signature. The signature can be validated given the signer’s Public
Key (PK) and the entire array of signed messages; this is equivalent to validating
a “traditional” digital signature, if we consider the array of messages as a single
compound message.

BBS+ can be combined with Zero-Knowledge Proofs (ZKP) allowing an
entity to selectively hide elements of singed array of messages. In particular,
any entity that knows the signature and the original signed array of messages,
can create a proof of knowledge of the signature while selectively disclosing only
a sub-array of the signed messages. The proof size will be linear to the number of
un-revealed messages. The proof can be validated with only the signer’s public
key and the array of revealed messages.
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2.3 Related Work

Related systems are using “attribute-based access control” (ABAC) (e.g., [5,8])
for achieving similar goals. With ABAC, users own a “token” that includes their
attributes. Then, a “policy decision point” (PDP) decides whether a user can
perform a requested operation based on a list of pre-configured access control
policies. Our system follows an alternative approach: our proposed solution is
in essence a “capabilities-based access control” system where users own a token
that describes their capabilities. The main advantage of this approach is that it
removes the need for access control lists. On the other hand, we recognize that
ABAC is useful when access control decision involves user context; in this case the
policy decision process should receive as input attributes related to the context
of the user. Our proxy can be easily extended to include related mechanisms
(e.g., the system presented in [18]). Similarly our proxy can be extended to
accommodate aspects such as user behavior (e.g., the solution presented in [7]).

Many systems leverage the blockchain technology to achieve similar targets
(e.g., [19,20]). We postulate that blockchain overhead cannot be tolerated by
a system like ours and a trusted proxy that would mediate the communication
between the blockchain and our system would be required: this trusted proxy
would negate any decentralization advantages of the blockchain technology. It
should be highlighted that many VC systems rely on a blockchain to achieve their
security properties. However, VCs in our solution do not need any blockchain-
based system.

Kratos (initially described in [21] and then extended in [22]) is a system
that wants to achieve similar goals as our solution for home IoT environments,
where an IoT device may be owned by multiple users who may define different
access control policies. Our solution considers that each IoT device is owned by
a single entity, hence our approach is simpler. Additionally, Kratos proposes its
own, specific mechanisms for expressing policies and rights, whereas our system
relies on existing, open standards; hence our solution can be easily integrated in
existing deployments.

Our solution assumes that IoT devices produce correct data and it does not
consider any countermeasure against malicious IoT device owners. Our solution
can be complemented by existing solutions that incentivize IoT device owner to
provide correct data (e.g., [16]). Finally, in our solution, the used HTTP proxy
is trusted to disclose the appropriate information; other related works rely on
cryptographic constructions for not requiring this trust relationship (e.g., the
work in [23] relies on “Attribute-based encryption”). However, this comes with
the cost of additional computational overhead, as well as with the overhead of
managing encryption keys.

Our solution extends our previous work presented in [6]. In SelectShare, we
consider gateways that interconnect IoT devices that may be owned by different
entities. Additionally, SelectShare assumes that the data generated by the IoT
devices has been collected, singed, and stored in a storage node, prior being
requested. Finally, SelectShare leverages ZKPs in order to provide even finer-
grained access control.
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3 Architecture

SelectShare architecture (also illustrated in Fig. 1) considers collections of IoT
devices the belong to the corresponding IoT device owner (e.g., IoT devices of
a smart building). These devices produce measurements that the device owners
wish to share with 3rd party data clients (e.g., analytics services). Data sharing is
implemented through a single gateway, administrated by an independent service
provider that can be accessed by clients using a standardized API. This gateway
retrieves data from a storage node, which acts as a data repository, populated
by specialized data transcoders. The communication between a client and the
gateway is intercepted by a proxy which is responsible for validating client access
rights, as well as for hiding parts of the response generated by the gateway.
Clients’ access rights are expressed using a Verifiable Credential (VC) issued by
a VC issuer.

Fig. 1. Overview of the SelectShare architecture

SelectShare considers a setup phase during which: device owners configure VC
issuers with the corresponding access control policies, and the proxy is configured
with a list of trusted issuers per IoT device owner.

3.1 Data Encoding and Signing

In order to facilitate data sharing, SelectShare architecture considers an entity,
named transcoder, which transcodes the data produced by each IoT device based
on a predefined JSON schema. In our particular instantiation a generated JSON
file includes: i) an IoT device specific identifier and ii) a list of measurements,
where each measurement includes a device-unique measurement identifier (called
field) and a list of value-time pairs. The following listing is an example of a
generated JSON file.
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1 {
2 “deviceID’’:“monitor−1’’,
3 “measurements’’:[
4 {
5 “field’’:“temperature’’,
6 “values’’:[
7 “time’’:“1658162155’’,
8 “value’’:“30C’’
9 ]

10 },
11 {
12 “field’’:“humidity’’,
13 “values’’:[
14 “time’’:“1658162155’’,
15 “value’’:“50’’
16 ]
17 },
18 ]
19 }

Listing 1.1. A JSON file produced by a transcoder

It should be highlighted that depending on the requirements of a SelectShare
deployment, different schemas can be considered. A transcoder is owned and
managed by the corresponding IoT devices owner, i.e., a transcoder interacts
with the IoT devices of a specific owner. Additionally, each transcoder is con-
figured with a BBS+ signing key and each generated JSON file is singed using
BBS+ (by the transcoder). Finally, singed JSON files are stored in a storage
node, administrated by the service provider.

Specific fields of a JSON file can be accessed over HTTP, through Select-
Share’s gateway, which implements Web of Things (WoT) Things Description
(TD) [17] specifications. The WoT architecture attempts to structure well-known
web protocols and tools for connecting IoT devices to the Web. In the WoT
architecture communication model, IoT devices (real ones or virtual) are made
available through REST-based APIs. To improve the interoperability and usabil-
ity of IoT platforms, the WoT model uses a common format for describing IoT
devices referred to as the Thing Description (TD). TD is a JSON-LD encoded
file that includes metadata information about the IoT device (such as its id, a
title, security definitions, etc.), and defines API endpoints that can be used for
accessing/invoking a device’s properties, actions, and events.

3.2 Authentication and Authorization Request

The VC issuer is an OAuth 2.0 authorization server extended with VC issuing
capabilities. Issued VCs are encoded as JSON Web Tokens (JWT) and signed
using JSON Web Signatures (JWS) (based on Sect. 6.3 of [15]), improving com-
patibility and integration with existing tools. SelectShare considers VCs that
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describe which “measurements” of the IoT devices of a particular owner, a client
can access. These VCs are generated based on policies defined by the corre-
sponding IoT device owner. Additionally, a SelectShare VC issuer maintains a
VC revocation list by implementing [14]. In particular, an issuer maintains a
revocation list that concerns all non-expired VCs it has issued. This list is a
simple bitstring and each VC is associated with a position in the list. Revoking
a VC means setting the value of the bit corresponding to the VC equal to 1.
Furthermore, each generated VC includes a field named “revocationListIndex”
that specifies the position of the credential in the revocation list. Finally, a VC
issuer is configured with client credentials (a client identifier and a client secret
in our implementation), as well as with access control policies that map a client
identifier to the corresponding access rights.

A client requests from the issuer a VC. A VC request is in essence an OAuth
2.0 access token request using the client credentials grant (Sect. 4.4 of [9]), (in
our implementation the corresponding client identifier and secret are used as the
“credentials grant”). Additionally, the client generates a public-private key pair
and instructs the issuer to include the generated public key in the issued VC.
This is achieved using OAuth 2.0 Rich Authorization Requests [24]. In particular,
the corresponding OAuth 2.0 access token request, is extended to include the
generated public key (encoded as a JSON Web Key (JWK) [10]) and a digital
signature generated using the corresponding private key. The issuer authenticates
the client based on the included grant and generates a VC.

A VC is the base64url encoding of a JWT singed by the issuer, according
to the VC data model. The generated JWT includes a cnf field, as specified by
RFC 7800, that contains the public key generated by the client and included
in the corresponding request. The VCs used in SelectShare are of type “Capa-
bilitiesCredential”. This type includes an array, called “capabilities”, and each
element of this array is a map that maps an IoT device identifier to a list of mea-
surements the client can access. An example of a VC before encoding follows (the
signature part is omitted).

1 {
2 “jti’’: “https://issuer.com/credentials/1’’,
3 “iss’’: “https://issuer.com’’,
4 “aud’’: “owner−1’’
5 “iat’’: 1617559370,
6 “exp’’: 1618423370,
7 “cnf’’: {
8 “jwk’’: <client jwk>
9 },

10 “vc’’: {
11 “@context’’: [
12 “https://www.w3.org/2018/credentials/v1’’,
13 “https://mm.aueb.gr/contexts/capabilities/v1’’,
14 ],
15 “type’’: [“VerifiableCredential’’],
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16 “credentialSubject’’: {
17 “type’’: [“CapabilitiesCredential’’],
18 “capabilities’’: {
19 “monitor−1’’: [
20 “temperature’’,
21 ]
22 }
23 }
24 }
25 }

Listing 1.2. An example of a VC in our system

As it can be observed, a VC includes an identifier (the jti field), an identifier
for the issuer (the iss field), an identifier for the IoT device owner (the aud field),
an issuance and expiration time, the client public key, and the client’s “capabili-
ties”. In the VC included in this example, a client can access the “temperature”
measurement of “monitor-1” IoT device, owned by “owner-1”.

3.3 Data Access Request

A client application requests to access some measurements of an IoT device by
sending an appropriate HTTP request. This request includes the device identifier
as a query parameter and a list of requested “fields” in a HTTP POST body. The
HTTP request includes two HTTP headers: one that contains the JWT-encoded
VC, and another that contains a proof-of-possession of the public key included
in the VC; the latter proof is generated using OAuth 2.0 Demonstrating Proof-
of-Possession at the Application Layer (DPoP) [4]. A DPoP proof is essence a
JSON Web Signature (JWS) that can be verified using the public key included in
the corresponding VC. The payload of the JWS is constructed using a random
nonce, the HTTP request method, the HTTP request URI, and a timestamp
indicating the proof’s creation time.

A data access request is intercepted by SelectShare’s HTTP proxy. Select-
Share’s HTTP proxy includes a VC verifier : the VC verifier examines if the
request includes an appropriate VC and then it verifies the validity, the status,
and the ownership of a VC. A VC is appropriate if the “aud” claim includes
the identifier of the device owner and if contains the “fields” of the “deviceID”
included in the request.

The validity of a VC is verified by evaluating whether: a) the VC has not
expired, b) the signature of the VC is valid, c) the VC has been issued by an
issuer trusted by the device owner.

The status of the VC is verified by communicating with the VC issuer, and
using the validation process described in [14]. I.e., in a nutshell, the verifier
retrieves the revocation list (which is a bitstring), locates the bit that corresponds
to evaluated VC, and examines the value of that bit.

Finally, the ownership of a VC is validated using the DPoP proof, i.e., the
verifier verifies that the proof is adequately fresh, it includes a nonce not seen
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before, it includes the correct HTTP method and URI, and its signature can be
verified using the public key included in the VC.

3.4 Data Access Response

Upon receiving an authorized request, the proxy forwards to the gateway. The
gateway retrieves from a storage node a JSON file that includes among other
things the requested fields, and forwards to the proxy. Finally, the proxy applies
the selective disclosure process, in order to hide the fields not included in the
client request. The selective disclosure process involves two algorithms: framing
and canonicalization.

Framing. Framing refers to the derivation of a “sub-item” from an item, that
contains only part of the original one. Data framing is used to enable selective
disclosure of the data item’s information. More specifically, the framing algo-
rithm accepts the original item and a frame as input and returns a new item
that only contains the key-value pairs specified by the frame. The frame itself is
a JSON structure that specifies the parts of the original item that should appear
in the resulting one (and be disclosed in the end). For this purpose, the frame
contains the keys that lead to the values that the prover will want to reveal.
The framing algorithm used in SelectShare also includes special symbols that
can be used for selecting specific elements in an array. For example, considering
Listing 1.1 the following frame will reveal “the value of all measurements that
include the field temperature”:

1 {
2 “measurements’’: {
3 “∗’’:{
4 “field’’:“temperature’’,
5 “values’’:{
6 “∗’’:{
7 “value’’:“’’
8 }
9 }

10 }
11 }
12 }

Listing 1.3. An example of frame used in SelectShare

Applying this frame in Listing 1.1 will result in the following object:

1 {
2 “measurements’’:[
3 {
4 “field’’:“temperature’’,
5 “values’’:[
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6 “value’’:“30C’’
7 ]
8 }
9 ]

10 }
Listing 1.4. Output of framing operation

Canonicalization. As discussed previously, BBS+ signatures act on arrays of
messages and not on structured data formats like JSON. In order for a transcoder
to be able to sign a data item, as well as in order for the proxy to be able to derive
ZKPs, data items must be canonicalized. Various canonicalization algorithms
have been proposed by related efforts. A canonicalization algorithm serializes a
JSON-encoded item into an array of messages, which can then be signed by a
multi-message digital signature system like BBS+. There are various security
requirements that those algorithms must be conformant with, in order to not
compromise the security of the system. In this work, we are using the JCan
algorithm [12] which is a lightweight, provably secure, JSON canonicalization
proposal, designed to work with any data model.

Selective Disclosure. Any entity can generate a sub-item of a content item
based on a frame and provide a ZKP that proves its correctness as follows. Ini-
tially, that entity applies the framing algorithm to derive the sub-item. After
framing, the same entity canonicalizes the resulting sub-item, gets the array of
messages that correspond to the revealed information (from the security prop-
erties of the canonicalization algorithm, this array is guaranteed to be a subset
of the signed array that resulted from the canonicalization of the original item)
and uses that array to derive a ZKP using BBS+.

The function of selective disclosure is implemented in a distributed manner
by the transcoder and the ZKP module of the proxy. In particular, transcoders
are responsible for signing the generated JSON objects using BBS+ signatures.
The signed object is forwarded through the WoT gateway to the proxy. Then
the ZKP module of the proxy is responsible for framing the signed object and
for generating the corresponding ZKP. The framing operation is implemented
by taking into consideration the requested “fields” option included. It should
be highlighted that the proxy assumes that the user is authorized to access this
field: this is true since if the user was not authorized, the incoming request would
have been blocked during the VC verification process.

4 Implementation and Evaluation

We have implemented SelectShare’s issuer1 as .net core web application. Simi-
larly we have implemented SelectShare’s HTTP proxy as a Python 3 application2.
1 https://github.com/mmlab-aueb/vc-issuer.
2 https://github.com/mmlab-aueb/py-verifier.

https://github.com/mmlab-aueb/vc-issuer
https://github.com/mmlab-aueb/py-verifier
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Finally, we implemented SelectShare’s gateway based on Eclipse’s Thingweb
WoT gateway3.

SelectShare introduces minimal communication overhead. VCs can be long-
term (since they are bound to a public key owned by the client), hence client
authorization does not have to take place often. Similarly, by using DPoP, a
client can prove possession of its VC in a single message, i.e., there is no need for
additional roundtrips. Moreover, the size of a VC and the corresponding proof is
only few bytes. Finally, when it comes to VC status verification, a VC verifier can
retrieve the revocation list once and use it for multiple requests. It is reminded
that a revocation list is a bitstring that includes the status of non-expired VCs:
since each VC corresponds to single bit, a revocation list may include thousands
of VCs.

Similarly SelectShare introduces minimal computational overhead. VC veri-
fication process involves only the validation of two digital signatures as well as
a lookup in a JSON object. Both operations are lightweight. When it comes to
the overhead introduced to a proxy by the selective disclosure process we per-
formed the following experiment in an Ubuntu 18.04 machine equipped with an
intel i7-3770 CPU, 3.40 GHz and 16 GB of RAM. We constructed JSON mea-
surement file composed of 100 fields each of which includes a single value. We
calculate the time required to sign and verify sub-items that include form 1 to
99 values. Figure 2 show the signature and verification time, measured in ms. It
can be observed that as the number of items included in the sub-item increases,
the signature creation time decreases. This happens because for each hidden
item a proxy has to perform a number of multiplications. On the other hand,
the signature verification time remains almost stable. It should be noted that
these measurements are obtained without any “pre-calculation”, however, in a
real deployment a proxy can pre-calculate many of the computations required
to create a ZKP.

4.1 Security Properties

SelectShare considers the following trust relationships. An IoT device owner
trusts: the VC issuer to issue an appropriate VC and correctly maintain the
revocation list, the VC verifier module of the proxy to validate VCs and a proofs
correctly, and the ZKP module of the proxy to not reveal “extra fields”. A client
trusts: the VC issuer to correctly maintain the revocation list, and the proxy to
not perform “denial of service”.

SelectShare facilitates security management and decreases attacks’ surface.
In particular, in SelectShare all access control policies are managed in a single
point: the VC issuer. Adding, updating, or removing an access control policy
involves no communication with the verifiers or the gateway. This is achieved by
adopting the “capabilities-based access control” paradigm that removes the need
for maintaining access control lists (as opposed for example to Role/Attribute-
based access control). Similarly, the access control decision process is simple

3 https://projects.eclipse.org/projects/iot.thingweb.

https://projects.eclipse.org/projects/iot.thingweb
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Fig. 2. Time to calculate a ZKP as a function of the revealed items

and the most “advanced” and error prone task is examining if the requested
resources are included in the provided VCs. Related to that, by adopting the
JWT encoding for the VCs and by relying on existing standards, our solution
can leverage a plethora of existing tools that perform most of the tasks required
by the access control decision process.

By adopting the ZKP-based approach for implementing selective disclosure,
SelectShare provides fine-grained access control, preserving at the same time the
context of the output data. For example, in a solution where each “field” in a
JSON file is individually signed, additional measures must be considered in order
to prevent a proxy from creating fake items by “combining” fields from different
files.

5 Conclusions

In this paper we presented the design and implementation of SelectShare: an
access control solution that allows fine-grained access control for IoT data shar-
ing. SelectShare’s core components are built by leveraging already standardized
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solutions, which facilitates its integration with existing systems. Additionally,
many security mechanisms of SelectShare are implemented in a HTTP proxy,
hence, existing HTTP-based resources can be transparently protected. Select-
Share facilitates interoperability and improves security management.

Ongoing and future work in this area includes tighter integration of VC with
the WoT gateway, e.g., the Thing Description generated by the WoT gateway
can include “specifications” of the expected VCs. Additionally, our system can be
extended to support other means of client authentication (most notably Decen-
tralized Identifiers), selective disclosure of VCs (achieving this way the principle
of least privilege), as well as support for advanced trust relationships (e.g., del-
egation of access rights).
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Abstract. This paper proposes an approach to speaker verification and
speech recognition in environments that require authentication and pri-
vacy protection, while accuracy and data utility must remain high. Our
methodology aims at protecting audio files and users’ identities through
the use of encryption and hashing algorithms, while at the same time
providing accurate speaker’s identity prediction. In addition, for speech
recognition, we introduce a mechanism to anonymize the resulting tran-
script of the recognized spoken language using the Named Entity Recog-
nition method by removing sensitive entities from the text according to
the user’s preferences. Furthermore, a privacy-preserving version of the
original audio is obtained by performing a text-to-speech translation of
the anonymized transcript, which together, the anonymous audio and
transcript can be transmitted to third parties or service providers with-
out violating privacy restrictions. The proposed methodology has been
validated with a set of experiments on a well-known audio dataset, the
Librispeech dataset. A type of Time Delay Neural Networks, ECAPA-
TDNN was used for speaker verification, Deep Speech as a type of Recur-
rent Neural Networks was used for speech recognition, NER for entity
recognition, cryptography and hashing for privacy protection. The results
demonstrate the validity of our approach to protecting the privacy of user
data and biometric information while simultaneously performing data
analysis with a high degree of accuracy and similarity with the results
obtained with no privacy mechanisms in place, also considering the use
of several privacy mechanisms.

Keywords: Authentication · Data privacy · Privacy-preserving data
analysis · Speaker verification · Speech recognition

1 Introduction

Supported by the development and significant advances in Artificial Intelligence
(AI) technologies, great progress has been made in the field of speech data analy-
sis, such as the tasks of Automatic Speech Recognition (ASR), Speaker Verifica-
tion, and Speaker Identification. However, these methods require relatively large
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amounts of data for training and sample data to generate predictions. These
data usually contain sensitive personal information that must remain private
[22]. Privacy of individuals has become a major concern in smart environments
and data analytics systems, especially with the increased processing of users’
vital information. Speech data can reveal sensitive features such as the gender,
age, and emotion of the speaker, as well as spoken information [39,40]. Privacy
concerns vary depending on the specific task to analyze speech data, data used,
infrastructure, and context. In fact, performing data analysis locally is associ-
ated with fewer privacy risks than when performing data analysis remotely, since
in the second scenario the data will be transmitted to a remote server.

One of the main services provided by speech data analytics is user authenti-
cation using biometric data through the use of voice data to verify the speaker
[43]. This user authentication mechanism is becoming widely used for access
control, usage control, monitoring, and information retrieval applications. Voice
data are used for these purposes because it is more difficult to fake, more accu-
rate than traditional authentication mechanisms, and does not require the user
to remember PINs or words. Moreover, it is more secure because it is physically
connected to the user. However, biometric data analysis may be exposed to pri-
vacy leak challenges, as the user’s raw biometric data can be retrieved from data
stores if no protection mechanisms are in place.

Automatic speech recognition (ASR) is another example of speech data anal-
ysis and finding applications in a growing number of areas such as smart homes,
e-health, journalism, voice control systems, education, business, and law [25].
Digital assistants are among the most popular speech recognition applications
and are now enabled in most types of smart devices and have arrived at smart
homes, the environment in which we perform our most private actions. Thus,
privacy remains a major concern [7].

Privacy leakages might violate the EU proposed guidelines for the usage of
artificial intelligence1 and the GDPR regulations. Therefore, to address the pri-
vacy leakage issue, in this work, we consider a scenario in which users’ audio
files are either analyzed locally or transmitted to a remote server for analysis.
These audio files may be leaked if any local machine, remote server, or com-
munication medium was compromised. Therefore, we propose a framework in
which privacy-preserving mechanisms are implemented both locally and on the
server side so that the user can choose where to perform speech data analysis and
protect sensitive information in either case. As techniques for analyzing speech
data, we used both speaker verification and speech recognition models. To pro-
tect user privacy, we use encryption and hashing algorithms for identities, audio
files, and generated text files. Also, we use a data anonymization technique to
locate and remove sensitive information from the generated text and produce
an anonymized audio file from this private text with an anonymous voice. Fur-
thermore, we study the impact of privacy mechanisms on data utility and the
accuracy of the results predicted by speech data analysis models.

1 Proposal for a Regulation of the European Parliament and of the Council Laying
Down Harmonised Rules on Artificial Intelligence: https://bit.ly/3y5wf6e.

https://bit.ly/3y5wf6e
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The contributions of this paper are: (i) we propose a privacy-preserving
speaker verification and speech recognition method as combined and standalone
mechanisms relying on the protection of biometric Information Protection with
encryption and data anonymization for sensitive information aimed at preserv-
ing data privacy and maintaining data utility. (ii) We define the concept of data
utility using the similarity metric between original and anonymized data, then
we investigate the impact of the applied privacy mechanism on the data utility.
(iii) We validate our methodology through a set of experiments that include
one speaker verification model and one speech recognition model with identity
hashing and data encryption for biometric, text, and voice files. In addition to
anonymizing text and voice data. (iv) We show and discuss how privacy mecha-
nisms affect the accuracy and validity of the results for speaker verification and
speech recognition models.

The rest of this paper is organized as follows. In Sect. 2, related work about
speaker verification mechanisms, speech recognition mechanisms, and privacy-
preserving data analysis is reported. Section 3 describes the reference scenario
considered in this paper and the problem we are investigating. In Sect. 4 we
report the proposed methodology for privacy protection with several privacy
mechanisms and at different levels. Section 5 presents the experiments conducted,
while Sect. 6 briefly concludes the discussion and proposes some future work
directions.

2 Related Work

This section discusses some related work for speech recognition, speaker verifi-
cation, and privacy-preserving techniques for both areas.

Speech Recognition and Privacy-Preserving Mechanisms. Hidden
Markov Model (HMM) is one of the earliest and main models used for speech
recognition through the modeling of time-varying spectral vector sequences.
However, it does not consider the long-term relationships between data [19,41].
Then, Recurrent Neural Networks (RNNs) were used for speech recognition tasks
with higher accuracy and better performance than the previous model, consider-
ing the dependency relationships between data items [3,14]. Convolutional Neu-
ral Networks (CNNs) were also used for speech recognition [1,42]. But, RNNs
more suitable for handling temporal sequential data than CNNS, which makes
them a better option for speech recognition.

Approaches proposed in the literature to protect speech data privacy fall
under two categories; The first category uses cryptographic algorithms to develop
speech recognition systems with privacy by design, while the second category
focuses on data sanitization. On the one hand, Cryptographic methods use
algorithms like CryptoNets [13], Homomorphic Encryption (HE) [24,46], Secure
Multi-Party Computation (SMPC) [10,18]. On the other hand, sanitization meth-
ods anonymize speech data by modifying the emotion of the speaker’s voice using
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Generative Adversarial Networks (GANs) [2], random perturbation of spoken
data prior to speech recognition [45], and masking the voice of the speaker [35].

Speaker Verification and Privacy-Preserving Mechanisms. Like speech
recognition, several mechanisms have been used for the purposes of speaker ver-
ification, the most common of which are support Vector Machines (SVMs) [8],
Probabilistic Linear Discriminant Analysis (PLDA) [20], and Gaussian Backend
model [26]. But voice verification may entail concerns related to data privacy,
especially when used in sensitive environments and application areas. For this
reason and due to the recent legislation i.e., GDPR, several privacy mechanisms
have been proposed to overcome the privacy risks associated with the speaker
verification process. The main privacy methods used for privacy protection are
classified as cryptographic and salting algorithms or using Federated Learning
(FL) architectures [17]. Examples of cryptographic methods used with voice
verification models are Homomorphic Encryption (HE) [36], Secure Multi-Party
Computation (SMPC) [33], secure two-party computation (STPC) [44].

3 Reference Scenario

The reference scenario we consider in this paper is a combined approach for voice
verification and speech recognition, in which data analysis can be performed
locally or remotely on a trusted server but not secure for audio data recorded
by users. The system architecture for the privacy-preserving speaker verification
is presented in Fig. 1 and for the privacy-preserving speech recognition is shown
in Fig. 2. Both analytics can be performed together for the same audio data or
separately as stand-alone components. In both architectures, several stakeholders
might record audio streams and files with microphone-enabled smart devices
(Step 1). However, these stakeholders share either their personal audio data or
analytics results with a remote server, and this raises privacy concerns that are
solved by our proposed methodology.

For privacy-preserving speaker verification analytics in Fig. 1, on the one
hand, a high computational power server is used for audio data processing and
speaker verification tasks. Consequently, audio streams or files are transmitted
by the smart device to the server after being encrypted to protect sensitive user
information from being disclosed across the network (Step 2). On the server side,
each audio file is first decrypted to get the original content and then processed to
obtain speaker embedding for each person’s identity that is being verified (Step
3). Then, a computation of the cosine similarity between the two embeddings is
performed (Step 4), and the speaker verification model is used to predict whether
the two audio files belong to the same user identity or not (Step 5). Next, the
predicted results might be used to perform an action on the server side or to be
encrypted and shared with the stakeholder who requested the speaker verification
service (Step 6). On the other hand, if the user prefers to perform the speaker
verification locally, the same data processing and analysis process used on the
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server side is carried out on the user side with no need to share audio data, only
the encrypted identity is shared with the server if required.

Fig. 1. Privacy-preserving speaker verification reference scenario.

For privacy-preserving speech recognition analytics in Fig. 2, a central server
is also used to perform speech recognition, and audio files are transmitted with
this server if the recognition task is set to be performed remotely (Step 2). Conse-
quently, the server decrypts the received files and performs speech-to-text analy-
sis (Step 3). Then, to protect the privacy of the user, entity recognition is used to
identify sensitive entities within the recognized text (Step 4), these entities are
eliminated from the text for text anonymization (Step 5). The anonymized text
is then passed through the text-to-speech component to produce anonymized
audio with another voice that does not reveal the identity of the original speaker
(Step 6). Subsequently, the anonymized text and audio files are passed to be
encrypted (Step 7). Finally, they are stored on the server and shared back with
the user to be decrypted.

4 Proposed Methodology

This section discusses the methodology we defined to protect user data while per-
forming user authentication through speaker verification in addition to speech
recognition. The proposed methodology addresses the problem of protecting
the privacy of user-sensitive data in applications or environments where user
authentication is required and speech recognition is offered as a service. We pro-
pose a privacy-preserving approach based on Biometric Information Protection
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Fig. 2. Privacy-preserving speech recognition reference scenario.

with Cryptography. In addition to Identity Hashing, and Data Anonymization
through the elimination of sensitive information for privacy protection. More-
over, we compose a speaker verification mechanism that utilizes the ECAPA-
TDNN model and a speech recognition mechanism using the DeepSpeech model
as explained in Subsects. 4.2 and 4.3.

4.1 Privacy Mechanisms Enforcement

We use four methods together to protect user data: (i) Identity Hashing is used
to hide the named identity of the user, so that audio files or embeddings are
linked to hashed names. (ii) Cryptography is used to protect audio and data files
while they are being transferred over the network and in storage repositories.
Furthermore, (iii) Data Anonymization is used to anonymize the textual data
generated by the speech recognition model, and (iv) the original voice of the
audio file is replaced by another voice for the anonymized text.

Identity Hashing. Hashing is a security mechanism used to produce a secured
hashed output from the original input by performing some mathematical pro-
cessing on the input with additional parameters so that it becomes impossible
to reproduce the original input, especially since this processing is only one-way
hashing. The result of the hashing function is of fixed size depending on the used
hashing algorithm; for instance, using SHA-256 generates a hash or digest with
a size of 256 bits. In this work, we use identity hashing on speaker names as
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the hashing function converts the user name into a hashed value and stores this
value on the server or the local device, and only the hashed values are compared,
not the original names of the speaker when performing speech recognition, and
we use SHA-256 (Secure Hash Algorithm) for this purpose.

SHA-256 belongs to the SHA-2 algorithms family and its working mechanism
depends on some required features with relative values such as the input message
or text length that must be less than 254 bits, the digest or hash length to be
256 bits, and the resulting hash in addition to the hashing algorithm must be
irreversible. SHA-256 is executed in five steps, it starts with bits padding of the
original data, followed by padding the length of the data, initializing buffers to
be used during processing, compression, iterating over produced output till the
last block of data is produced as a final hash or digest of the same length as
input; 256 bits [5].

Cryptography. In our proposed methodology, Cryptography is used as a Bio-
metric Information Protection (BIP) mechanism to secure voice files locally and
while being transmitted over the network. Moreover, we use cryptography to
secure textual data files resulting from speech recognition, in addition to the pre-
diction made by the speaker verification model. Thus, avoiding privacy leakage
and also ensuring trust by preventing data manipulation and tampering, since
only users with the secret keys have access to the data. An audio file or a text
file must first be encrypted before being shared or stored in a local database and
decrypted after being delivered or when retrieved from the database. Encryp-
tion and decryption are performed using the keys generated by the encryption
mechanism.

In this work, we used Fernet encryption method to be implemented in the
architecture at both server and user ends with a secret, protected keys. We have
selected this method because it is a light mechanism and does not require exten-
sive computational power, so it works simply in environments with an infras-
tructure composed of simple devices like the IoT environments. In addition, it
provides Fernet Symmetric Encryption, which is based on Symmetric Encryption
provided by the most trusted encryption algorithm AES (Advanced Encryption
Standard) [12,16], and is offered in a CBC (Cipher Block Chaining) mode that
fulfills security requirement of encryption algorithms to ensure that every encryp-
tion of the same file or text should result with a different ciphertext by using an
initialization vector [6,30]. AES is used with a 128-bit key for encryption and
PKCS7 padding. The other advantage of Fernet method over other methods is
that it uses SHA-256 hash algorithm [5] and HMAC signatures [21] for authen-
tication so that attackers can not generate and publish bogus messages to the
server. Thus, offering a more secure way for encryption and decryption that is
provided by combining AES and Fernet in one method.

Data Anonymization. For data anonymization, we follow the mechanism
of sensitive data recognition and elimination from input data. To produce
anonymized text and anonymized audio, three steps are carried out: First, we
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identify sensitive data elements within the text that has been recognized by the
speech recognition component using the Named Entity Recognition model. Then,
these elements are removed from the text and replaced with the ”Private Data”
phrase. Furthermore, the anonymized text is converted to audio using a Text-to-
Speech model with one unique voice other than the original speaker’s voice and
it can be mapped to the speaker’s hashed identity. Thus, the privacy of the data
and the speaker is still preserved.

Named Entity Recognition (NER) is concerned with locating key phrases and
nouns in texts as entities, and these entities fall under several categories, i.e.,
names, locations, and addresses. The sensitivity of these entities depends on the
context where the data analysis is applied. For example, names of people and
locations are highly sensitive when performing data analysis and processing.
However, to protect the privacy of the user, these entities can be removed from
the text. Thus, still providing data valid for analysis, but without violating
privacy [27].

The process for Named Entity Recognition is shown in Fig. 3. It starts with
sentence segmentation, to split the text into sentences. Followed by tokenization,
to split each sentence resulting from the previous step into tokens which are
usually numbers, words, and punctuation marks. Next, each token is classified
according to its part-of-speech (POS) as in Table 1. Finally, it ends with entity
detection that classifies the word entities according to their type as an address,
a time, a location, a name, etc.

Fig. 3. Named entity recognition process.

4.2 Speaker Verification Model

For speaker verification, We use ECAPA-TDNN Model with the architecture
shown in Fig. 4. This model was proposed in [11] and developed in SpeechBrain
AI toolkit based on PyTorch [32,37]. ECAPA-TDNN model employs ECAPA
Time Delay Neural Networks (TDNNs) derived embeddings, and it consists of an
input layer, followed by a convolutional block with ReLU activation and batch
normalization. Then, a sequence of three Squeeze-and-Excitation and residual
blocks. Next, a convolutional block with ReLU activation. Followed by a layer
that applies statistics pooling to project variable-length utterances into fixed-
length speaker characterizing embeddings with batch normalization. Then a fully
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Table 1. Part of speech description.

Part of speech Description

NN Singular or plural noun

DT Determiner

VB Verb, base form

VBD Past tense verb

IN Preposition or subordinating conjunction

VBZ Verb, third-person singular present

NNP Singular proper noun

“TO” Word “TO”

JJ Adjective

connected dense layer with batch normalization, and an Additive Angular Mar-
gin (AAM) Softmax layer. Finally, an output layer to classify the inputs as yes
or no for verification results.

Fig. 4. ECAPA-TDNN model for
speaker verification.

Fig. 5. Recurrent neural network structure
of deepspeech model (https://deepspeech.
readthedocs.io/en/r0.9/DeepSpeech.html).

4.3 Speech Recognition Model

We use Deepspeech model originally proposed by the Silicon Valley AI Lab and
developed and maintained by Mozilla to convert spoken language into texts.

https://deepspeech.readthedocs.io/en/r0.9/DeepSpeech.html
https://deepspeech.readthedocs.io/en/r0.9/DeepSpeech.html
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DeepSpeech is an end-to-end speech recognition model that utilizes Recurrent
Neural Networks (RNN) as a type Deep Neural Networks (DNN). It also employs
multi-GPU computation with optimization criteria, in addition to data synthesis
mechanisms. DeepSpeech model architecture is shown in Fig. 5, it consists of
a sequence of an input layer for features extraction and takes spectrograms as
inputs, three hidden layers with ReLU activation, an LSTM hidden layer, another
hidden layer with ReLU activation, and a final softmax output layer to generate
English text transcriptions [4,15]. Since this work is focused on investigating the
privacy aspect and the effect of combining privacy mechanisms with available
techniques related to speaker verification and speech recognition, we don’t give
further details concerning the model architecture.

4.4 Text to Speech Model

To convert anonymized text resulting from the speech recognition and sensitive
entities elimination into audio files, we use Google Text-to-Speech (gTTS) tool2,
which is a Python library used to interface with Google Translate’s text-to-
speech API. It takes a text with various and unlimited lengths as inputs and
converts them into voice outputs with human-like reading and intonation, in
addition to precise pronunciation corrections. gTTS uses a wide range of voices,
so that the voice of the original speaker can be replaced with any of these voices
to keep the identity of the speaker anonymous.

5 Experiments

This section reports the speaker verification and speech recognition experiments
performed on the Librispeech dataset3 [31] using the privacy-preserving mecha-
nisms described in Subsect. 4.1. The experiments are conducted to measure data
utility after applying the privacy mechanisms represented by the similarity of the
data analysis results obtained with the privacy mechanisms enforced compared
to the results with no privacy enforcement and how much change is resulting
from the privacy mechanisms. We are considering a use case in which local or
remote data analysis can be performed with all discussed privacy mechanisms
applied at the stakeholder’s and server’s sides depending on the shared data,
and with all identified sensitive entities to be removed from the data.

The Librispeech dataset is a well-known dataset of audio files collected from
the LibriVox project audio books. It is split into three parts for training, devel-
opment, and test sets. We used the clean test set of 2, 620 audio files in our
experiments to validate two pre-trained speaker verification and speech recog-
nition models. We used 10, 000 audio files of 5, 000 pairs for matched speaker
verification and 10, 000 audio files of 5, 000 pairs for mismatched speaker verifica-
tion. Also, we used 2, 620 audio files from the test dataset for speech recognition.

2 https://gtts.readthedocs.io/en/latest/.
3 http://wwwopenslr.org!12/.

https://gtts.readthedocs.io/en/latest/
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The speaker verification model is implemented using the SpeechBrain Frame-
work4 [32,37], specifically the ECAPA-TDNN Model. The speech recognition
model is implemented using the Deepspeech Framework5 based on the approach
proposed in [4,15] by Mozilla. Considering the privacy perspective, a Python
Cryptography library6 [23] is used for data encryption and decryption using Fer-
net, AES encryption algorithm, SHA-256, and HMAC. Also, a Python Hashlib
library is used for identity hashing7. Moreover, spaCy Python library8 is used
for Named Entity Recognition, and a Google python library gTTS9 for Text-to-
Speech is used to convert anonymized text into anonymized audio files.

5.1 Speaker Verification Experiments

We conducted the experiments for speaker verification using ECAPA-TDNN
Model with PLDA by SpeechBrain framework. We used the weights of the pre-
trained ECAPA-TDNN model, that has been trained on the VoxCeleb2 standard
dataset [9] and evaluated on the VoxCeleb1 test sets [28]. The performance of
the model10 was measured by the Equal Error Rate (EER), which corresponds
to the error rate value when the false acceptance error rate is equal to the false
rejection error rate. The false acceptance error rate is the rate of incorrectly
accepted speaker speech segments to the total number of speech segments, while
the false rejection error rate is the rate of incorrectly rejected speaker speech
segments to the total number of speech segments. For our model, the EER value
is equal to 0.80% which represents a higher accuracy, since the error rate is very
low [32].

Referring back to the speaker verification reference scenario shown in Fig. 1,
the pipeline starts first by encrypting the audio files that must be compared
to verify the speaker in both files using an encryption key generated with the
Python Cryptography. Then the encrypted files are passed to the speaker verifi-
cation model, either locally or transmitted to the remote server. Trying to access
the audio file without having the key fails and an error message is returned.

Moreover, speakers’ identities are hashed to better protect the privacy of the
users as presented in Table 2, and real user identities are removed.

Table 2. User identity protection with hashing algorithms.

Speaker ID Speaker name Hash

5152 Liam Neely 38c70d00164e016d42a8ba7769d07e43a4fddfceea96408ce7821081a4996fda

5132 David Stryker 5ba237d82cbbc02b959cfb31263b4ba6f8301456ae1707fc3d2524ba62bda467

4 https://github.com/speechbrain/speechbrain.
5 https://github.com/mozilla/DeepSpeech.
6 https://cryptography.io/en/latest/.
7 https://docs.python.org/3.5/library/hashlib.html.
8 https://spacy.io/.
9 https://gtts.readthedocs.io/en/latest/l.

10 https://github.com/speechbrain/speechbrain.

https://github.com/speechbrain/speechbrain
https://github.com/mozilla/DeepSpeech
https://cryptography.io/en/latest/
https://docs.python.org/3.5/library/hashlib.html
https://spacy.io/
https://gtts.readthedocs.io/en/latest/l
https://github.com/speechbrain/speechbrain
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Finally, the speaker verification is performed on the audio files after being
decrypted and considering hashed identities instead of the real names of the
speakers. Sample speaker verification results are shown in Table 4 for two audio
files with different speakers and Table 3 for two audio files for the same speaker.

Table 3. Audio files with matched speaker verification.

Fields Speaker ID Audio file Score Prediction

First speaker 51e862a18e2b7961382dfabd39cb41b154dead150a80e86eb63de85232e38bbc 5142-33396-0019.flac 0.709996581 True

Second speaker 51e862a18e2b7961382dfabd39cb41b154dead150a80e86eb63de85232e38bbc 5142-33396-0022.flac

Table 4. Audio files with mismatched speaker verification.

Fields Speaker ID Audio file Score Prediction

First speaker 5ba237d82cbbc02b959cfb31263b4ba6f8301456ae1707fc3d2524ba62bda467 1995-1836-0007.flac −0.01122827 False

Second speaker 5ba237d82cbbc02b959cfb31263b4ba6f8301456ae1707fc3d2524ba62bda467 7176-88083-0006.flac

We validated the speaker verification model with the use of privacy mech-
anisms on 10, 000 audio files of 5, 000 pairs for matched speaker verification,
and 10, 000 audio files of 5, 000 pairs for mismatched speakers verification. The
results of matched speaker verification show that the model has predicted 99.3%
of the pairs correctly with a total number of 4, 964 pairs. For mismatched speak-
ers verification, the model has predicted 96.4% of the pairs correctly as different
speakers with a total number of 4, 820 pairs.

5.2 Speech Recognition Experiments

We conducted the experiments for speech recognition using Deepspeech Frame-
work based on the RNN model proposed in [4,15]. We used the weights of the
pre-trained model11, that has been trained on the LibriSpeech train set achieves
an 7.06% Word Error Rate (WER) on the LibriSpeech clean test set [4,15]. WER
uses the Levenshtein distance metric to measure the speech recognition accuracy
by comparing the original and predicted transcriptions [34].

Considering the speech recognition reference scenario shown in Fig. 2, the
pipeline starts first by encrypting the audio file that must be recognized. Similar
to the encryption performed in the speaker verification scenario, an encryption
key is generated and the file is then passed to the speech recognition model,
either locally or transmitted to a remote server. Then, the speech recognition
model identifies spoken words and converts them into written transcripts. We
used the Librispeech clean test set of 2, 620 audio files for speech recognition
model validation, and we used the cosine similarity metric shown in Eq. 1 to
measure the similarity between the original speech data and the recognized text
to quantify the data utility of the texts, where W and M are the two multidi-
mensional representation vectors of n total number of vector items, with output
11 https://github.com/mozilla/DeepSpeech.

https://github.com/mozilla/DeepSpeech
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similarity value in the range [−1,+1] [29]. Figure 6 shows the similarity percent-
age categorized in 11 categories in the legend box, and for each category, the
percentage of the audio files that fall under this category out of the total number
of files. According to the figure, 27.2% of the files were fully correctly recognized
by the model, 75% of the audio files were recognized with more than 90% sim-
ilarity with the speech data, and 89.2% of the audio files were recognized with
more than 80% similarity with the speech data.

cos(W,M) =
∑n

i=0 WiMi∑n
i=0 W

2
i

∑n
i=0 M

2
i

(1)

Fig. 6. Original speech to recognized
speech similarity percentage.

Fig. 7. Removed sensitive phrases count-
percentage.

We used the spaCy python library to perform entity recognition on the text
recognized from the previous step. For this, we have defined the presented entities
in Table 5 as the sensitive entities to be removed from the text, and this list of
entities can be edited based on the user’s privacy preference. Once these entities
are identified in the text, our method removes and replaces them with the phrase
“Private Data” like in the sample shown in Table 6.

For the whole test set with 2, 620 audio files, only 635 files included sensitive
private entities. Figure 7 shows the count of sensitive entities removed from the
text added to the legend and the percentage of modified files per modifications
count plotted. It can be observed from the figure that 75% of the modified files
had only one private entity removed from the text, and 18.4% had two private
entities removed. We can conclude from this, that the dataset does not include
highly sensitive and private attributes.

Figure 8 shows the similarity percentage categorized in 10 categories in the
legend box, and for each category, the percentage of the audio files that fall under
this category out of the total number of files. According to the figure, 54.8% of the
audio files were anonymized with more than 90% similarity with the recognized
data, 80.5% of the audio files were anonymized with more than 80% similarity
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Table 5. Names and description of sensitive entities detected by spaCy [38]

Entity Description

PERSON People, including fictional

NORP Nationalities or religious or political groups

FAC Buildings, airports, highways, bridges, etc.

ORG Companies, agencies, institutions, etc.

GPE Countries, cities, states

LOC Non-GPE locations, mountain ranges, bodies of water

PRODUCT Objects, vehicles, foods, etc. (Not services.)

EVENT Named hurricanes, battles, wars, sports events, etc.

WORK OF ART Titles of books, songs, etc.

LAW Named documents made into laws

LANGUAGE Any named language

DATE Absolute or relative dates or periods

TIME Times smaller than a day

PERCENT Percentage, including “%”

MONEY Monetary values, including unit

QUANTITY Measurements, as of weight or distance

ORDINAL “first”, “second”, etc.

CARDINAL Numerals that do not fall under another type

Table 6. Recognition and anonymization sample

Speech data ruth sat quite still for a time with face intent and flushed it was out now

Recognized text ruth sat quite still for a time with face intent and flushed it was out now

Anonymized text Private Data sat quite still for a time with face intent and flushed it was out now

with the recognized data, and 90.2% of the audio files were anonymized with
more than 70% similarity with the recognized data.

After generating anonymous texts, we use gTTS library to anonymize the
original speaker’s voice and produce a new audio file using the anonymous text
with an anonymous voice, so that the identity of the speaker and sensitive infor-
mation remains confidential. Finally, the anonymous text and the anonymous
audio file are encrypted with the shared key and stored locally if the analysis is
performed on the user side or shared again with the user if it is done remotely.

5.3 Results Discussion

We investigated the effect of applying privacy mechanisms for data encryp-
tion, hashing, and anonymization on the Data Utility and Results Accuracy for
Speaker Verification and Speech Recognition in two architectures for local and
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Fig. 8. Recognized speech to anonymized speech similarity percentage.

remote data analysis. In the first classification scenario investigated in our exper-
iments, which is the privacy-preserving speaker verification, we applied identity
hashing in addition to file encryption privacy mechanisms without modifying
the original files. We found out that the accuracy of the results was very high in
the case of matched speaker verification with 99.3% accuracy and in the case of
mismatched speaker verification with 96.4% accuracy.

Moreover, we have studied the impact of the privacy mechanism on the second
scenario, where privacy-preserving speech recognition is performed. We used
encryption, hashing, anonymization, and speaker voice replacement to protect
the privacy of individuals. Encryption and hashing have no impact on the data
utility like in the previous scenario. However, data anonymization has a limited
impact on the similarity of the produced text by the speech recognition model
with more than 90% of the anonymized data being similar with at least 70%
and more the 54% with more than 90% similarity. Therefore, Data Utility is
minimally affected by the adoption of the anonymization privacy mechanism
that can be controlled by the sensitive entities the user select.

However, our methodology provides a mechanism for continuous speaker veri-
fication and speech recognition together for related contexts such as online exam-
ination or conversational systems, in which user identity must be verified and the
data must be recognized and remain private, and can also be used as separate
solutions where the user identity, biometric information, and data are protected
with a limited impact on the results accuracy and data utility.

6 Conclusion and Future Work

Concerns related to users’ privacy are arising in recent years, especially with the
great advances in smart environments and biometric data analysis techniques
with the possibility to perform these analysis operations remotely. In this paper,
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we have proposed an approach for a secure and privacy-preserving implementa-
tion of speaker verification and speech recognition Deep Learning models, i.e.,
without violating the privacy of users in local remote data analysis and consid-
ering also the results accuracy. We have ensured a privacy-preserving approach
by the usage of cryptography algorithms and data anonymization.

We proposed, thus, a methodology based on two deep learning-based
approaches for audio datasets analysis, which preserves data privacy and archives
accurate data analysis results. The experiments demonstrated the validity of
our approach and how it is possible to get accurate data analysis results with
no privacy violation. As a future extension to this work, we plan to extend the
application of the privacy mechanisms to Speaker Diarization models, in which
several speakers are included in the same audio file. Besides, we also plan to
consider voice datasets with high sensitivity and longer audio times, so that the
privacy gain and anonymization be more effective in such contexts.
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Abstract. Wepropose an pseudo-anonymous e-voting platform based on
the blockchain of Ethereum and a coin-mixer, that is Tornado Cash. After
an online authentication and authorization phase, the user receives a fun-
gible (i.e., pseudo-anonymous) voting token that can be deposited to a
coin pool belonging to Tornado Cash (TC), together with an amount of
Ether (ETH) A that will be used to pay successive fees. TC uses a smart
contract that accepts token deposits that can be later withdrawn by a dif-
ferent address. In order to preserve privacy, a relayer contract can then
be used to withdraw to a fresh ETH address (thus pseudo-anonymous)
using A to pay fees. Relayers solve “fee payment dilemma”, that is pay-
ing withdrawal fees by maintaining pseudo-anonymity. Finally, a further
smart contract collects preferences and, after the closure of the elections,
it automatically performs the counting of votes. All the front-end has been
developed in a Web browser, by using Javascript and avoiding the voter
to perform any command-line operation to prepare transactions.

Keywords: E-voting · Ethereum · Anonymity

1 Introduction

The right to vote is one of the most important forms of manifestation of per-
sonal freedom and democratic expression. Thanks to the right to vote, citizens
have the opportunity to intervene in important decisions for the collectivity:
it is therefore important that this right is exercised freely, secretly and with a
wide opportunity of choice. E-voting (or electronic voting) refers to the use of
electronic and computer technologies during the voting or counting process. As
a first important observation, we would like to remark that the e-voting system
we propose in this paper is not anyway considered as a substitute of traditional
voting systems based on paper ballots, in election scenarios that support rep-
resentative democracy in local, regional or national governments. We instead
support the use of e-voting systems in case the application is less sensitive and
attracts less interest in being massively attacked, thus invalidating the electoral
process and causing disorder. For example, we think of elections concerning the
administrative councils and boards of organizations and companies, especially
those ones decentralized around the world.
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Our favourite scenario for the e-voting system we propose consists of
tens/hundreds voters (but not millions) who want/need to remain pseudo-
anonymous, who can spend a few euro to vote, who cannot meet in presence,
but need strong guarantees on the security and privacy of the elections result.
Such warrants are in this case offered by a blockchain-based system, which we
will explain in the following of the paper.

Some issues associated with “traditional” voting systems that uses paper
ballots are represented by: their high cost derived from the use of equipment
(for voting operations, tellers, polling chairmen); the time (in days) that can pass
from the time the voting operation is completed to the time the count results
are published; the low accessibility: statistically, having to physically reach the
seat of the polling station is one of the major causes of voting abstention. The
use of e-voting can mitigate these drawbacks, since the cost is in general lower,
the voting operation results in an immediate counting (with no human error),
a mobile device is enough to cast a preference vote from anywhere and, finally,
filling in the ballot is guided through mouse clicks, thus eliminating null votes
due to errors in filling in the ballot paper.

The purpose of this study is the implementation of an electronic voting sys-
tem based on blockchain technology, which satisfies some classical properties
of an e-voting system (see Sect. 2.3). For the implementation of such a system
the following objectives have been identified: i) the distribution of a fungible
ERC20 token dedicated to voting: we implemented the entire system within the
Ethereum blockchain, creating a token that is distributed to an authorized user
after identification. ii) User pseudo-anonymization: we implemented (readapt-
ing it from an existing solution, not oriented to e-voting) a coin-mixing service
that allows a user to carry out deposit and withdrawal of the voting token in
a decentralized and privacy-oriented manner. Finally, iii) the system is offered
through a decentralized application (or dApp) dedicated to voting: we designed
a dApp that allows the user to cast his vote by spending his voting token.

The application we propose in this paper elaborates on the Tornado Cash
smart contract, which improves transaction privacy by breaking the on-chain link
between source and destination addresses. This contract accepts ETH deposits
that can be withdrawn by a different address. In order to preserve privacy, a
relayer can be used to withdraw to an address with no ETH balance (i.e., a
fresh address). Whenever ETH is withdrawn by the new address, there is no
way to link the withdrawal to the deposit, ensuring complete privacy. Tornado
Cash originally proposes itself as a coin-mixer service: these tools are intended
to mix digital money with that of other users in order to obfuscate the source
and destination of crypto assets. It is here used as a way to preserve pseudo-
anonymity of preference votes.

The front-end of the application has been developed in Javascript, so that the
user can easily perform all the operations by using a plain Web-browser, without
interacting with the Ethereum blockchain with (more complicated) command-
line tools.
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The paper is organized as follows. Section 2 contains an overview of
Ethereum, ERC20 Tornado Cash and e-voting system. Our e-voting model is
presented in Sect. 3. Section 4 compares our proposal with other works in the lit-
erature and Sect. 5 draws some conclusions and discusses possible future work.

2 Background

In this section we partition the necessary background information to later
describe how our e-voting proposal based on the blockchain of Ethereum works.
First of all, Sect. 2.1 briefly introduces Ethereum, while Sect. 2.2 presents the
main token standard in Ethereum, i.e., ERC20. Then we list the most impor-
tant properties that a voting system should satisfy in Sect. 2.3. Finally, Tornado
Cash is presented in Sect. 2.4.

2.1 Ethereum

Ethereum is a blockchain protocol created by Vitalik Buterin [5], which imple-
ments different features respect to the Bitcoin protocol. The main feature, which
made it popular and second only to Bitcoin in terms of volume, is the possibility
to create decentralized apps (dApps) via smart contracts.

Smart contracts are programs based on rule sets and deployed on the
Ethereum blockchain, which allows functions to be executed if certain conditions
are met.1 Ethereum smart contracts can be written using several programming
Turing-equivalent languages, but the most popular is Solidity created by Gavin
Wood, one of Ethereum’s co-founders. These contracts can execute transactions
automatically, so there is no need for a third-party entity to take action.

dApps are in general applications that connects a smart contract with a
front-end user interface.2 To be defined as dApp, an application needs to be:

– Decentralized : operating within the blockchain, where no entity has control.
– Deterministic: a certain input always correspond to the same output.
– Turing-complete: every action can be performed with the required resource.
– Isolated : executing on a virtual environment called Ethereum Virtual Machine

(EVM), so, in case of failure, the blockchain network will not be affected.

2.2 The ERC20 Standard

ERC-20 is the technical standard for fungible tokens created using the Ethereum
blockchain. A fungible token is interchangeable with another token, while the
well-known non-fungible tokens (NFTs) are not interchangeable.3 ERC-20 offers
1 Smart contracts: https://github.com/ethereum/ethereum-org-website/blob/dev/sr
c/content/developers/docs/smart-contracts/index.md.

2 dApps: https://github.com/ethereum/ethereum-org-website/blob/dev/src/conten
t/developers/docs/dapps/index.md.

3 https://www.investopedia.com/news/what-erc20-and-what-does-it-mean-ether
eum/.
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several functions and events that a token must implement. The minimum of
functions and information needed in an ERC-20 compliant token is:

– TotalSupply : the total number of tokens that will ever be issued.
– BalanceOf : the account balance of a token owner’s account.
– Transfer : automatically executes transfers of a specified number of tokens to

a specified address for transactions using the token.
– TransferFrom: automatically executes transfers of a specified number of

tokens from a specified address using the token.
– Approve: allows a spender to withdraw a set number of tokens from a specified

account, up to a specific amount.
– Allowance: returns the remaining number of tokens that spender will be

allowed to spend on behalf of owner.
– Transfer : an event triggered when a transfer is successful.
– Approval : a log of an approved event.

2.3 Important Voting Properties

A good voting (and also e-voting) system has to satisfy the following proper-
ties [6,10,14], in particular:

– Verifiability : it is possible to verify that the counting of votes has been per-
formed correctly.

– Uniqueness: a user is not allowed to vote more than once.
– Integrity : no one can change or delete a vote without revealing it.
– Privacy : it is not possible to determine the vote of a user.
– Counting : the vote count has to be verifiable by everyone.
– Authentication: only users who have correctly identified themselves can vote.
– Confidentiality : intermediate results cannot be obtained during the proceed-

ings.
– Lack of evidence: users cannot prove for whom they voted.
– Reliability : the voting system must be reliable and stable.

2.4 Tornado Cash

Tornado Cash is an open-source, fully decentralized non-custodial4 protocol
implemented within the Ethereum blockchain. It improves transaction privacy
by breaking the on-chain link between source and destination addresses. It uses
a smart contract that accepts ether and other ERC20 tokens deposits from
one address and enables their withdrawal from a different address. Tornado
Cash smart contracts are implemented on the Ethereum blockchain, so they can

4 Non-custodial wallet services are platforms that allow users to possess their private
keys.
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neither be modified nor tampered with. Mining smart contracts and adminis-
tration smart contracts are implemented by the community in a decentralized
way: any user can propose a smart contract and anyone can vote for or against
it by locking TORN s (i.e., Tornado Cash tokens). After 5 days, if a minimum
of 25000 TORNs has been reached and the proposal is voted by the majority of
votes, it is approved. Hence, it changes the mining and the administration smart
contracts.

Tornado Cash is currently operating with several different cryptocurrencies
and layer-2 networks:

– Ethereum Blockchain: ETH (Ethereum), DAI (Dai), cDAI (Compound Dai),
USDC (USD Coin), USDT (Tether) & WBTC (Wrapped Bitcoin),

– Binance Smart Chain: BNB (Binance Coin),
– Polygon Network: MATIC (Polygon),
– Gnosis Chain (former xDAI Chain): xDAI (xDai),
– Avalanche Mainnet: AVAX (Avalanche),
– Optimism, as a Layer-2 for ETH (Ethereum),
– Arbitrum One, as a Layer-2 ETH (Ethereum).

The user who wants to make a deposit5 in the pool, will have to randomly
generate a secret k and a nullifier r with k, r ∈ B

248, and its hash called com-
mitment C, such that C = H1(k||r).6 Along with N tokens are then sent to the
smart contract C interpreting C as a 256-bit unsigned integer. The contract will
then accept the deposit of the N token and add C as a leaf of a tree, in case the
tree is not full.7

To withdraw (Fig. 1), the user must select the recipient’s address A with a
transaction fee f such that f ≤ N . Then, the user should provide proof that
he/she possesses a secret to an unspent commitment from the smart contract’s
list of deposits. The zkSnark8 technology allows doing that without revealing
which exact deposit corresponds to this secret. The smart contract will check
the proof, and transfer deposited funds to the address specified for withdrawal.
An external observer will be unable to determine which deposit this withdrawal
comes from.

To perform the withdrawal, two different options are available:

– The user links their wallet (Metamask or WalletConnect) to the Tornado Cash
website, and they pay for the gas needed to withdraw the amount deposited.

– The user use a relayer to make the withdrawal to any Ethereum address
without needing to make the wallet connection on the Tornado Cash website.

5 Web-connection of Tornado Cash to Metamask or a private wallet: https://tor
nadocash.eth.limo/.

6 With || that stands for concatenation.
7 https://tornado-cash.medium.com/introducing-private-transactions-on-ethereum-
now-42ee915babe0.

8 zk-SNARK: https://z.cash/technology/zksnarks/.

https://tornadocash.eth.limo/
https://tornadocash.eth.limo/
https://tornado-cash.medium.com/introducing-private-transactions-on-ethereum-now-42ee915babe0
https://tornado-cash.medium.com/introducing-private-transactions-on-ethereum-now-42ee915babe0
https://z.cash/technology/zksnarks/
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Fig. 1. Sequence diagram: deposit and withdrawal operations.

Since the relayer is in charge of paying for the transaction gas, it will receive
a small portion of the deposit.

The user’s deposit and withdrawal actions are performed by interacting with
the smart contract of the Tornado Cash Proxy.9

3 The E-Voting Model

We aim to design an e-voting model that satisfies the properties described in
Sect. 2.3. Moreover, we want to achieve three other goals: the token distribution,
the user pseudo-anonymization and the voting dApp distribution. To better
understand our model, in this section we refer to the various actors as follows:

– Account1 : Ethereum account with ether and possibly other tokens. Not
anonymous, linked to a voter.

9 Goerli Testnet Network: https://goerli.etherscan.io/address/0x454d870a72e29d5e
5697f635128d18077bd04c60.

https://goerli.etherscan.io/address/0x454d870a72e29d5e5697f635128d18077bd04c60
https://goerli.etherscan.io/address/0x454d870a72e29d5e5697f635128d18077bd04c60
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– Account2: Ethereum account without any related transaction, and for this
reason not linkable to the identity of the voter.

– Admin: The organizer of the election.
– SCP : Smart contract pool.

The first step is a smart contract distribution of an ERC20 token (DVT10)
by the Admin. The DVT will use to allow users to vote. Then the Admin sets
a date by which users who want to vote will have to identify themselves (and
consequently receive 1 DVT). The smart contract of the DVT token will be
owned by the Ethereum account that issued it, and only this is authorized to
mint and distribute new tokens. Listing 1.1 shows the contract of such a token.

Listing 1.1. The smart contract describing the DVT Token

pragma s o l i d i t y ˆ 0 . 8 . 0 ;
import ”@openzeppel in / con t r a c t s / token/ERC20/ERC20 . s o l ” ;
import ”@openzeppel in / con t r a c t s / a c c e s s /Ownable . s o l ” ;
cont rac t DevToken i s ERC20 , Ownable{

con s t ruc to r ( ) ERC20(”DevToken” , ”DVT”){}
f unc t i on issueToken ( address r e c e i v e r ) pub l i c onlyOwner{

mint ( r e c e i v e r , 1∗10∗∗18) ; }
}

The users also need to deposit 0.0015 ETH (currently equivalent to e1.5) and
1 DVT to the corresponding SCP, without withdrawing the token before the set
date. Once the date expires, users who want to vote can proceed to withdraw the
deposited tokens. The withdrawal of 0.0015 ETH is made via relayer to a new
Ethereum wallet (Account2). This is to avoid in/out transactions and, therefore,
to pseudo-anonymize the user. The user withdraws 1 DTV on the same wallet
(Account2). Finally, the Admin makes public the dApp websites allowing users
to vote by sending the DVT token to the smart contract dedicated to voting.

Figure 2 shows how the distribution of a token works. The Admin creates
a smart contract. The smart contract implementation of a new ERC20 token
(DVT) is used to secure voting rights. It is deployed on the Goerli test network
(or briefly testnet) via the Hardhat11 development environment. The smart con-
tract is owned by the Ethereum account that released it (Admin), and only that
account will be able to generate new tokens. It is possible to control from the
smart contract the number of tokens in circulation and the Ethereum accounts
that own them. Admin also authenticates the user and then gives one DTV token
to them. To authenticate users, Admin creates a web page with a form. The user
fills this form with their personal data. Admin checks that the data are valid
and the user did not already receive the DTV token. If everything is correct, the
user is authenticated and receives 1 DTV token. Due to its decentralized nature,
it is possible to control from the smart contract the number of coined tokens
and the Ethereum accounts that own them.

10 DevToken.
11 https://hardhat.org/.

https://hardhat.org/
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Fig. 2. Use case diagram: distribution of a vote token.

To ensure the pseudo-anonymization of users we extend in our Smart Con-
tract the Tornado Cash protocol. In particular, we implement the deposit and
withdrawal of ETH and DTV via relayer. Figure 3 and Fig. 4 describe the
Sequence diagram of the tokens distribution via relayer. By executing the instruc-
tions in these figures, the SCP distributes: i) the smart contract hasher, which
calculates the hash when a deposit is made (2 deploy hasher.js), ii) the smart
contract verifier, which verifies that the withdrawal proof is valid (running
3 deploy verifier.js), iii) the ETH or DTV SCP using 4 deploy eth tornado.js
and 5 deploy erc20 tornado.js respectively. The Admin distributes SCP to
deposit and withdraw ETH and DTV. Moreover, the SCP allows the users to
deposit from Account1 and withdraw in Account2. So the user has to use SCP
for deposit and withdraw operations before voting to remain pseudo-anonymous.

The user, after finalizing the deposit, receives in output a private note that
they necessarily have to memorize in order to later withdraw the deposit. As
has already been described, Admin sets an expiration date for making deposits.
Once this date expired, the voter withdraws ETH from Account2. To pay the
fee for this transaction they can not use Account1 (if the user does so, this
would create a correlation between Account1 and Account2, and thus pseudo-
anonymity would be lost) nor Account2 (this one does not have any ether). An
Ethereum account called relayer, configured by the Admin, is necessary to pay
the fee for an ETH withdrawal transaction. To configure the relayer, we refer
to Tornado Cash’s tornado-relayer repository on GitHub12. In particular, we
12 https://github.com/tornadocash/tornado-relayer/tree/c838316436a9f87f8655087c3

4764b46e4b1491b.

https://github.com/tornadocash/tornado-relayer/tree/c838316436a9f87f8655087c34764b46e4b1491b
https://github.com/tornadocash/tornado-relayer/tree/c838316436a9f87f8655087c34764b46e4b1491b
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Fig. 3. Sequence diagram: distribution smart contract pool ETH.

extend it with the possibility of operating in Goerli with our SCP and to modify
the transaction gas and fee value.

Figure 5 shows what a user can do with our SCP. The user can deposit either
ETH or DTV from a wallet and get it in a relayer wallet in order to break their
connection with the coin, i.e. with the purpose to pseudo-anonymize the user.
The withdrawal function:

withdraw (bytes proof, bytes32 root,
bytes32 nullifierHash, address recipient, address relayer,
uint256 fee, uint256 refund)

Where we have the recipient’s address (parameter recipient), a transaction fee
(parameter fee), the proof (parameter proof) to make a withdrawal, a root
(parameter root) selected from those stored on the contract and the hash of the
nullifier (parameter nullifierHash).

Having performed the withdrawal transaction, the user has 0.0015 ETH and
1 DTV in their Account2. ETH value is for pay transaction fees and the DVT,
instead, is for voting. At this point, the admin creates a web dApp based on
smart contract. The contract can be created using the constructor:
constructor(string[] memory proposalNames, uint256 tokenQuan-
tity , address token)
The smart contract constructor uses:
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Fig. 4. Sequence diagram: distribution smart contract pool (ERC20).

– the proposalNames parameter to set up a dynamic array that will contain
the names of the candidates on the ballots;

– the tokenQuantity parameter to set the amount of tokens needed for each
user to be able to vote;

– the token parameter to indicate the address of the ERC20 token that will
be required to vote.

Instead, to handle voting in the smart contract, function vote(uint pro-
posal) is used. The proposal parameter indicates the candidate selected by
the voting user.

Finally, the Admin implements a web application that interacts with the
smart contract of voting (Fig. 6). The user who wants to vote has to log in
to their Metamask account (connected to Account2) from its extension on a
browser. Then the user can access the dedicated voting web page indicated by the
administrator. When this page loads, Metamask will ask the user for the smart
contract permission to receive 1 DVT token from the user’s wallet (getvotes()
function in Fig. 6). Notice that it is possible only if the token is present in the
user’s wallet (Account2) and the user wants to vote. Finally, the user needs to
wait a few seconds for the transaction to be mined on the Blockchain. Afterwards,
the user can select the candidate they wish to vote for from the drop-down menu.
After clicking on the button that says “Vote”, Metamask will prompt the user for
confirmation to call the vote(uint proposal) function of the smart contract.
Once this transaction is mined, the vote count received by the selected candidate
will be increased.
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Fig. 5. Sequence diagram: interaction via command line tool.

3.1 Satisfied Properties

The proposed model satisfy the properties presented in Sect. 2.3 except for Con-
fidentiality and Lack of evidence.

Verifiability: Transactions in the Ethereum blockchain are public, so it is always
possible to verify that the counting of votes has been performed correctly.

Uniqueness: Double-voting is prevented by the fact that double-spending is
not possible with the blockchain technology [5].

Integrity: When a transaction is in a confirmed block, to modify that block is
computationally hard by design [5], since it is required to also modify all the
successive blocks. Moreover, it is not possible to change or delete a transaction
(vote) without revealing it.

Privacy: Voters’ Account2 cannot be associated with their identity because the
Token Distribution is implemented via relayer using the Tornado Cash proto-
col. In this way, the users have an Ethereum account without any transaction;
therefore, it is not possible to identify the voter.
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Fig. 6. Sequence diagram: user voting.

Counting: Each valid transaction is permanently stored in the blockchain,
where it is possible to repeat the counting phase when needed. Any Ethereum
node can repeat this phase as needed.

Authentication: This is accomplished by the authentication phase, when the
Admin distributes the DTV tokens to the authenticated users.

Confidentiality: Unfortunately, this property is not satisfied by our imple-
mentation: in fact, by checking the candidates’ accounts it is possible to read
intermediate results.

Lack of evidence: Users, revealing the possess of their Account2, can prove for
whom they voted. This means we cannot satisfy this property.

Reliability: Clearly, the reliability properties depends on many factors and it
is not easy to be measured (e.g., with a simulation). However, Ethereum already
proves to be a reliable and largely used infrastructure. Indeed, it is required to
use transactions with a high fee in order not to lose votes; nevertheless, a voter
can check if their votes has been included in the blockchain. Clearly, the size of
the peer-to-peer network and the number of miners mitigate such problems.

3.2 Cost Estimation

In this section, we provide an estimation of the costs needed to cast a vote on the
Mainnet of Ethereum. Alternatively, a public testnet can be used where ETH
has no real value; the testnet used in this paper, for example, i.e., Goerli, is a
proof-of-authority (PoA) Ethereum testnet.13 However, a project with a mainnet

13 The PoA is a consensus method that gives a small and designated number of
blockchain actors the power to validate transactions or interactions with the net-
work and to update its registry. Goerli is said to switch to proof-of-stake soon.
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has undoubtedly more credibility than a project without one, since transactions
are not simulated. Moreover, the number of miners is higher in a mainnet and the
stake is real, thus reducing the chance of an attack. A third possibility would be
to run an ad-hoc e-voting blockchain based on Ethereum, but still, the reduced
number of nodes in the network would offer fewer security guarantees.

To calculate the average fee cost of each type of transaction in ETH, the
values reported following a test phase are considered. The average fees cost of
all the needed transaction is:

– 0.0010805 ETH for the deposit of 0.0015 ETH from the Account1 to the SCP.
– 0.001291 ETH for the deposit of 1 DTV from the Account1 to the SCP.
– 0.000448857 ETH for the withdrawal of 1 DTV from the SCP to the Account2.
– 0.000063152 ETH the permission for the voting smart contract to spend 1

DVT in the Account2.
– 0.000107894 ETH the sending of 1 DTV to the voting smart contract from

the Account2 to execute the voting.

To sum up, the Account1 spend in mean 0.0023715 ETH, the Account2,
instead 0.000512009 ETH. The total result is 0.0028835 ETH, around e4.20 at
the time of writing.14

4 Related Work

Nowadays, the most spread voting schemes consists in paper-based elections.
However, paper-based systems are not completely secure and they may suffer
from frauds, even in today’s democratic countries,15 where controversies are
very frequent.16 Estonia became the first nation to hold general elections over
the Internet with a pilot project for the municipal elections in 2005. The e-
voting system withstood the test of reality and was declared a success by Esto-
nian election officials [2]. Despite this, e-voting systems have not experienced a
breakthrough in Europe, since most of the diffidence resides in the general level
of trust in government, but also the level of trust in the corporations that supply
the machines use in the electoral process [8].

Some proposals have been already opened in the direction outlined by this
paper. The most noticeable reference is the Bitcongress.org project,17 which
already offers a voting platform based on Bitcoin. However, the software is
offered as a broker between the voter and Bitcoin. An evidence is the presence of
a “Smart Contract Blockchain”: quoting the project white-paper, “A vote token
is sent by a legislation creation tool with combined cryptocurrency wallet. The
vote is sent to a smart contract based election holding yay, nay and candidate
addresses”. On the contrary, in our implementation a vote is directly sent to the

14 Using gas price to compute fees on 23rd of July 2022.
15 http://news.bbc.co.uk/2/hi/uk news/4410743.stm.
16 http://news.bbc.co.uk/2/hi/europe/4904294.stm.
17 Web-site of the Bitcongress.org project: http://www.bitcongress.org.

http://news.bbc.co.uk/2/hi/uk_news/4410743.stm
http://news.bbc.co.uk/2/hi/europe/4904294.stm
http://www.bitcongress.org
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address of a candidate, without any intermediary. Moreover, still quoting the
white-paper, “The election logs then changes, the vote count is recorded and dis-
played within Axiomity (a decentralised application) using Bitcongress onto the
Smart Contract Blockchain”. In our solution the counting is directly performed
in the blockchain. Other commercial systems are Follow my vote18 and TIVI 19.

Envisioning the use of blockchains for voting purposes has been already pro-
posed in [11,12,16] for example. In the following we present related scientific
works. All of them propose solutions without the help of coloured coins or per-
missioned ledgers, which have been use to respectively simplify the counting
process and satisfy further properties, as shown in Sect. 2.3: properties as data
confidentiality and uncoercibility seem not be addressed in all such proposals;
with MultiChain,20 or in general permissioned ledgers, it is possible instead.
The proposal in [3] simply consists in an electronic voting system based on the
Bitcoin block-chain technology.

In [1,7] the author propose an e-voting scheme, which is then implemented
in the Ethereum blockchain. The implementation and related performance mea-
surements are given in the paper along with the challenges presented by the
blockchain platform to develop a complex application like e-voting. In gen-
eral, special attention must be paid to the debugging and verification steps on
(Ethereum) smart-contracts. In [13] the authors show as a blockchain-based e-
voting system with Ethereum and Metamask can serve as a solution to security
and trust issues in the e-voting system.

Even the execution of the protocol in [9] is enforced by using the consen-
sus mechanism that also secures the Ethereum blockchain. However, by using
a permissionless blockchain, public verifiability does not provide any coercion
resistance.

5 Conclusion

This study describes the process of creating an e-voting system based on the
Ethereum blockchain, using the protocol implemented by the Tornado Cash
coin-mixer to ensure the privacy of the voter and via smart contracts to ensure
the transparency of the entire process.

First, we developed a Web application authenticating the user and subse-
quently distributing an ERC20 token which represents a vote. Following this, by
referring to the Tornado Cash protocol: i) we developed smart contract pools
with the purpose to allow the deposit and withdrawal of the voting tokens (DVT)
and ETH, ii) we implemented an application through which the user can interact
with the aforementioned smart contracts, and iii) we used a relayer for with-
drawing ETH on behalf of the authorized user. Finally, iv) a dApp was developed
to collect votes.

18 FollowMyVote.com: https://followmyvote.com.
19 TIVI: https://tivi.io.
20 MultiChain is a bridging platform for cryptocurrencies and NFTs across blockchains.

https://followmyvote.com
https://tivi.io
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Possible future developments of what described in this paper concern the
improvement of some of already incorporated functionalities: For instance, we
would like to implement a Web dApp, which allows a user to connect their Meta-
Mask account and then interact with the smart contract pools by performing
deposits and withdrawals. In addition, we would like to enforce more properties
from those presented in Sect. 2.3 Confidentiality and Lack of evidence, for exam-
ple by implementing the project through the use of a permissioned blockchain,
where the right to read the blockchain is granted only to certain users at certain
times, so that they can count the votes once the voting is over [4]. Since we are
not die-hard supporters of permissioned ledgers, one more option could be to
obfuscate sensitive data, as the variables representing the number of currents
votes for each candidate are [15].

Moreover, we plan to integrate the application with stronger schemes of
authentication and authorization, such as OAuth and OpenID protocols. Finally,
while on-chain confidentiality is ensured by Tornado Cash itself, before and after
transactions are executed, the privacy of a voter may not be ensured when trans-
actions are sent over the Internet. For this reason, we plan to extend the appli-
cation by running it in an overlay network such as TOR.21
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Abstract. An access control model called Zero Trust Architecture
(ZTA) has attracted attention. ZTA uses information of users and
devices, called context, to verify access requests. Zero Trust Federation
(ZTF) has been proposed as a framework for extending an idea of identity
federation to support ZTA. ZTF defines CAP as the entity that collects
context and provides it to each organization (Relying Party; RP) that
needs context for verification based on ZTA. For precise verification,
CAPs need to collect context from various data sources. However, ZTF
did not provide a method for collecting context from data sources other
than RP. In this research, as a general model for collecting context in
ZTF, we propose a method of linking identifiers between the data source
and CAP. This method provides a way to collect context from some
of such data sources in ZTF. Then, we implemented our method using
RADIUS and MDM as data sources and confirmed that their contexts
could be collected and used.

Keywords: Access control · Context · Zero trust

1 Introduction

In Zero Trust Architecture (ZTA) [7], an organization always verifies the origin
of access using data called context and authorizes access using the verification
results. Context includes continuously changing information such as the location
of the user or device, access history, as well as the surrounding conditions of
the accessing source. Context should be collected from various data sources for
precise verification.

To extend ZTA for Identity Federation(IdF), Zero Trust Federation (ZTF) [2]
is proposed as a model to extend ZTA to make authorization decisions using the
context of multiple organizations in IdF. The ZTF introduces Context Attribute
Provider (CAP) as an entity to share context in the federation. CAP collects
context independently of the organizations and provides context to each organi-
zation (Relying Party; RP) with the user’s authorization. However, ZTF did not
provide the method of CAPs collecting context from sources other than RPs.
To make more precise authorization decisions in ZTF, it needs to collect diverse
contexts from more data sources, including those other than RPs.
c© Springer Nature Switzerland AG 2023
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The data sources that can provide context are diverse. For the data source to
work as CAP, a huge amount of additional implementations are required, includ-
ing communication with an authorization server to obtain the user’s authoriza-
tion status and sending the context to the RP. These implementations are not
always possible for some data sources. Designing for each case would increase
the cost of implementation, making it difficult to collect context from various
data sources.

This study discusses the methods of collecting context to show the desirable
architecture as a CAP, and proposes design for data sources that are difficult to
make additional implementaion, which requires particular consideration.

The relationship between data source and CAP was unclear although CAP
was proposed to collect and provide context in [2]. Therefore, we transfer CAP’s
role of collecting context to data sources and define the data sources as Context
Collector (CtxC). This leaves the CAP’s role only to provide contexts, and what
we should discuss is how to send context from CtxC to the CAP. Contexts
collected by CtxC usually contain the CtxC’s unique user or device identifier
(CtxC-id). For the CAP to provide the context received from CtxC to each RP,
the CAP must determine to which user or device in CAP the context should
be mapped. Thus, the problem is how to map the CtxC-id in the context to an
identifier in the CAP(CAP-id). This study refers to this as linking context.

In this study, we propose a design for CtxC to perform the linking context in
three cases: (1) a case where CtxC is easy to be extended for pseudonymous ID
sharing with CAP, which was proposed in the previous ZTF; (2) a case where the
administrator of CtxC and CAP is the same, which does not require additional
implementation but trusts the administrators of both CtxC and CAP; (3) a case
where CtxC uses certificates to authenticate devices or users, which does not
require to trust the administrator links contexts properly. In (1), the CtxC and
CAP share a pseudonymous ID for each user or device in advance, and the CtxC
includes the pseudonymous ID in the context before sending it to the CAP so
that the CAP can link the context to CAP-id. In (2), the administrator confirms
the correspondence between identifiers in CtxC and CAP directly and places
the correspondence table of the identifiers in CAP. In (3), CAP requests the
certificate used in CtxC from the user or device and links identifiers which are
related to the same certificates.

Furthermore, as a specific design for case (3), this study presents implemen-
tations for authentication and authorization by verifying factors such as which
LAN the device is connected to and whether the device’s OS has been compro-
mised. As in CtxC, one implementation uses a RADIUS server using EAP-TLS
and the other uses MDM. Through these implementations, we show the way of
linking contexts using certificates.

2 Related Research

ZTA [7] is a new access control model in contrast to the traditional access con-
trol method, the perimeter model. ZTA controls access by continuously verify-
ing access requests. To verify access, ZTA uses context, which includes static
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information as well as dynamic information such as the situation surrounding
the user or device.

ZTF [2] is a framework for IdFs to federate the context to authenticate and
authorize users like ZTA. ZTA typically has a single organization centrally col-
lecting context [3]. However, in IdFs, contexts are dispersed across multiple RPs
and cannot be aggregated. Therefore, ZTF defines Context Attribute Provider
(CAP), which collects and provides context across IdFs. CAP is proposed as an
entity that enables authentication and authorization using sufficient types and
amounts of context, even for IdFs accessed infrequently.

As a method for CAP to provide context to the RP, ZTF proposes using
CAEP [9] for continuous authentication and authorization and UMA [4] to
authorize access under user’s authorization.

However, it was unclear in the ZTF how to collect context from sources
other than RPs. Collecting various contexts from sources including non-RP will
improve authorization quality and will be required. For example, by using records
of entering and leaving a room as context, it is possible to know where users
are. On the other hand, the system of collecting such records does not provide
a way of authenticating users directly via network. If the system is designed
with different authentication requirements, it is too difficult to implement such
authentication features. Therefore, the same protocols cannot be used as RPs
when sharing a context with the RP.

3 The Method of Linking Context

3.1 Definition of Context Collector(CtxC)

Context is collected by RPs and CAPs in ZTF, but there are important data
sources that belong neither to RP nor CAP. In order for such data source to be
a CAP, the data source must manage the context based on the user’s authoriza-
tion to provide the context to the RP. However, these features are not imple-
mentable for all data sources, such as embedded systems. Therefore, to pursue
a more desirable architecture, we define a data source as a Context Collector
(CtxC). This means that we separate CAP’s roles into collection and provision
of context, and transfer the collection role to CtxC. In other words, CtxC is
responsible for collecting the context, and CAP is responsible for verifying the
user’s authorization and providing the context to the RP. We redefine the CAP
as always collecting context indirectly from the CtxC.

This change in ZTF is illustrated in Fig. 1. CAP2 receives the context indi-
rectly from CtxC1. Also, RP2 is regarded as CtxC because it collects context
directly from the user. A single CAP handles one or more CtxCs.

The Reason Why Linking Context is Necessary
When CtxC collects contexts, a user or a device that the contexts express is
usually identified with CtxC’s user/device identifier (CtxC-id). In contrast to
CtxC-id, we call the identifier of the user in CAP as CAP-id. CAP must check
the mapping between CtxC-id and CAP-id to manage user’s authorization of
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Fig. 1. ZTF organized by defining CtxC

RPs. Once CAP obtains that mapping, it can manage authorization status using
such protocols as OAuth2.0 and UMA. Thus, to provide the context for RPs
properly, CAP needs a method of mapping between the CtxC-id and the CAP-
id. We call this mapping as linking context, and discuss the method of linking
context. Since it is difficult to link context without making any assumptions
about CtxC or CtxC-id, we considered three cases based on real use cases. We
propose solutions for each of the cases below. One is the case where CtxC is easily
extensible to share IDs using some protocols as in web applications. Another is
the case where CtxC and the CAP administrator are the same. This case will
be applicable for the entry/exit record system in a company. The other is the
case where CtxC authenticates with client certificates. This case can apply to
Radius server using EAP-TLS [8].

3.2 Linking Context

Fig. 2. The case where CtxC is easily extensible

When CtxC is Easily Extensible. In this case, we assume CtxC is so exten-
sible that it can share pseudonymous ID. This is applicable for web applications.
OpenID Connect (OIDC) [6] and SAML [5] are known as protocols for use of
pseudonymous IDs.

The way of linking contexts is explained in Fig. 2. First, CAP issues a
pseudonymous identifier (pseudo-ID) to CtxC. At this time, CAP stores the cor-
respondence between the pseudo-ID and a CAP-id, and CtxC stores the corre-
spondence between the pseudo-ID and a CtxC-id. The issue of pseudo-IDs can
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be implemented, for example, using OpenID Connect ID tokens [6]. CtxC then
replaces the CtxC-id in the context with the pseudo-ID and sends it to CAP. This
procedure allows the CAP to receive contexts with pseudo-IDs and to link contexts
easily. Also, in this procedure, CtxC and CAP are exchangeable so that CtxC may
issue pseudo-ID.

When CtxC is Not Easily Extensible. In this and subsequent sections, we
will discuss methods of linking contexts in consideration of cases where CtxC is
not easily extensible. In this case, we assume that no additional implementation
to current implementation, such as embedded systems, can be made. For CtxC
and CAP to share a pseudo-ID, CtxC must authenticate the user via a browser
or native application to map the pseudo-ID and CtxC-id. Doing this would
require additional implementation on CtxC’s authentication for users or devices.
However, this additional implementation is not realistic for this case.

Therefore, in this study, we have designed the CtxC to implement addition-
ally only a feature of transmitting context to CAP, which is independent of the
existing CtxC’s implementation.

Fig. 3. Administrator associates the CtxC-id with the CAP-id.

When CtxC and CAP Have the Same Administrator. As shown in Fig. 3,
in this case, the administrator knows the correspondence between a CtxC-id and
a CAP-id so they can create the correspondence table in the CAP. CAP uses
this table to link contexts.

For example, suppose that a company operates CAP and that the company
would manage an entrance control system using IC cards as CtxC. When regis-
tering an IC card at the time of joining the company, the administrator creates a
correspondence between the IC card identifier and the employee ID and registers
it in the CAP, so that the CAP can easily link the context.

With this approach, it is only necessary to transmit the context from CtxC
to CAP in some way, and little additional implementation is required. However,
in this method, the CAP must trust that the administrator will maintain the
correspondence table constantly.
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When CtxC Authenticates Using Certificates. The method above requires
implicit trust that the administrator will not link wrong context. Therefore, we
propose a method of linking contexts without implicitly trusting the adminis-
trator. In this case, we assume the CtxC uses certificates for authentication and
can send the correspondence between a certificate and CtxC-id to CAP with
context. We also assume that the CA issues certificates correctly. Examples of
certificates available in this proposal are X.509 certificates and certificates stored
in IC cards that control entering/exiting rooms.

Fig. 4. Overview of authentication by certificate

In this assumption, CAP should verify the user/device has the private key of
the certificate that the user/device uses for authentication in CtxC. The method
is illustrated in Fig. 4.

We provide an overview in Fig. 4. As shown by the green arrow, CtxC requests
a certificate from the user/device and authenticates using it. Then, CtxC sends
the certificate and context to CAP. The CAP then requests the same certificate
from the user/device used in CtxC to verify that the user/device has the certifi-
cate’s private key. It also verifies that the certificate has not been modified by
validating the certificate chain. This procedure allows the CAP to link contexts
corresponding to certificates.

In this design, little additional implementation in CtxC is required. Only the
feature of sending contexts to the CAP is needed. Also, we explained that the
context is sent from CtxC to CAP, our method is applicable for a case where
CtxC prepares an API and CAP obtains the context from it.

4 An Example of CtxC and CAP Implementation

As example implementations to collect context from CtxC, this section shows
how CAP links context with the certificates, using 802.1X [1] RADIUS server
and a MDM service. This implementation is published on GitHub1.

In this scenario, we consider the RADIUS server and MDM as CtxC. The
RADIUS server can collect connection logs in LAN and MDM can collect devices’
1 https://github.com/laft2/cap-demo.

https://github.com/laft2/cap-demo
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states. The connection logs have the information such as which access point the
device connects, and are useful to locate the device. Also, the devices’ states have
the information such as whether the device’s OS has no known vulnerabilities.
The RP can use these pieces of information as context to control access precisely.

We implemented the method of using certificates, which is explained in
Sect. 3. In our implementation, the Radius server authenticates devices using
802.1X EAP-TLS [8] and the MDM manages device certificates. These satisfy
the assumptions as CtxCs in that method. Each CtxC sends a correspondence
between context and certificate to the CAP, and the CAP links contexts by the
certificate.

Fig. 5. Overview of implement

Figure 5 shows an overview of our implementation. As CtxCs, the Radius
server sends connection logs to CAP-Radius and the MDM sends devices’ states
to CAP-MDM. They also send certificates with the context to CAPs. The CAP
then requests the device with certificate used in CtxC to link the context. After-
ward, the CAP associates the certificate with the CAP-id of the device. These
procedures allow the CAP to provide the RP with the context obtained from
CtxC.

In this implementation, we used the FreeRADIUS server in our laboratory
as CtxC. Also, we used a Wi-Fi access point in the laboratory as an 802.1X
authenticator. The Radius server controls access for the Wi-Fi access point to use
EAP-TLS as an authentication protocol. For the CAP-Radius implementation,
we used the Go and Echo, a web framework for Go.

We monitored and sent two files, one is the RADIUS authentication log, and
the other is the accounting log. We have used fields of TLS-Client-Cert-Serial
and TLS-Client-Cert-Issuer in the authentication logs. The CAP-Radius can
authenticate the device and link the context using these pieces of information.
From the accounting logs, we have used the field of Acct-Status-Type, which
has the change of device’s connectivity status as context. We also have used the
fields of Acct-Input-Octets and Acct-Output-Octets, which express the device’s
traffic. We implemented CAP-Radius to turn these contexts into useful states
such as whether the device is connected now.
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We designed the CAP-Intune to gain context by periodically accessing
Microsoft Intune’s Managed Device API2. Intune is Microsoft’s MDM service.
We have used the fields of osVersion, complianceState, lostModeState, and jail-
Broken to confirm that the device is securely maintained. For example, we can
use the OS version to know if the device is known as a non-compromised OS.
We implemented the ZTF using this information as a context.

5 Concluding Remarks

Zero Trust Federation (ZTF) [2] is a framework for authentication and autho-
rization in ZTA under IdF. To clarify the relationship between CAP and the
data source, we separate CAP’s roles into the collection and provision of con-
text, and transfer the collection role to other entity we define as CtxC. This
separate leaves the CAP’s role only to provide context. We clarifies that the
problem for CAP to obtain the context from CtxC is that the CAP must obtain
a correspondence between the CtxC-id and CAP-id. It is difficult to achieve
this without making any assumptions. Therefore, we addressed this problem in
three cases based on use cases: when additional implementation is easy like web
applications, when the administrators of the CtxC and the CAP are the same
like recorders of enter/exit the rooms, and when the CtxC authenticates with
a certificate like Radius servers using EAP-TLS. Furthermore, we implemented
the proposed method for the case where the RADIUS server and Intune are
CtxC. This implementation specifically shows the method of linking contexts
when CtxC uses certificates for authentication.

The only context available by the proposed method is for cases where CtxC
satisfies certain assumptions. The availability of more diverse contexts is essential
for making precise authorization decisions to more robustly protect resources.
Therefore, in future work, further methods should be devised to allow RPs to
use CtxC contexts with a wider range of conditions.
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