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Abstract. In this study, we focus on the effectiveness of adversarial
attacks on the scene segmentation function of autonomous driving sys-
tems (ADS). We explore both offensive as well as defensive aspects of the
attacks in order to gain a comprehensive understanding of the effective-
ness of adversarial attacks with respect to semantic segmentation. More
specifically, in the offensive aspect, we improved the existing adversarial
attack methodology with the idea of momentum. The adversarial exam-
ples generated by the improved method show higher transferability in
both targeted as well as untargeted attacks. In the defensive aspect, we
implemented and analyzed five different mitigation techniques proven to
be effective in defending against adversarial attacks in image classifica-
tion tasks. The image transformation methods such as JPEG compres-
sion and low pass filtering showed good performance when used against
adversarial attacks in a white box setting.

Keywords: Security · Autonomous vehicles · Deep learning ·
Adversarial attacks · Semantic segmentation

1 Introduction

With the rapid development of deep learning, fully autonomous driving is grad-
ually becoming a reality. Deep Neural Networks (DNNs) show incredible per-
formance in solving computer vision tasks such as classification, detection, and
segmentation, and provide efficient solutions to Autonomous Driving Systems
(ADS) for the same. ADS use a wide range of sensors including cameras,
RADAR’s and LIDAR’s to monitor the environment around them and collect
visual, positioning and mapping data. This data is then used by the ADS to
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have a comprehensive understanding of the surrounding environment with the
help of DNNs where the techniques which are used for sensor fusion and scene
segmentation are fairly mature. However, ADS is extremely security critical, and
any safety and reliability issues can lead to severe and irreversible consequences.
In [14], authors divided the attacks on autonomous driving vehicles into three
categories. These are attacks on the physical sensors, control systems and con-
nection mechanisms. In this work, we focus on a specific attack technique called
the adversarial attack which is a technique that utilizes the vulnerabilities of the
DNN to mislead control systems into making wrong decisions.

In [8], authors demonstrated that DNNs are vulnerable to adversarial attacks.
These adversarial attacks can cause machine learning models to give an incor-
rect output with a high level of confidence by adding subtle perturbations to the
input samples. Therefore, adversarial attacks become a potential security threat
to autonomous vehicles that use DNN. In [11], authors mitigated the adversarial
attack by utilizing JPEG compression. However, most of these studies about
adversarial attacks and defence against them focus on image classification tasks,
which require less computational complexity compared to semantic segmenta-
tion. Semantic segmentation plays a key role in autonomous vehicles since it
helps the ADS to differentiate between various important regions in visual data.
In [1], authors evaluated the robustness of semantic segmentation models to
adversarial attacks. In [20], authors created a dense attack generation approach
to generate adversarial instances that challenge DNN-based scene segmentation
and object detection models at the same time. However, the required computa-
tional intensity demands harder optimization for training segmentation models
and thus adversarial attacks require much more effort.

In this paper, we propose a momentum based adversarial attack that specif-
ically addresses the semantic segmentation tasks in autonomous vehicles. The
proposed method utilizes momentum which is a technique used in deep learning
to achieve an efficient black-box attack, i.e., the attack can work well against
various segmentation models. Moreover, our methodology can launch effective
attacks in either targeted or untargeted scenarios, which gives flexibility for the
attacker’s objectives. We also implemented and analyzed five mitigation methods
based on image transformation. In summary, following are our contributions:

– We analyze the robustness of DNN based semantic segmentation models
against adversarial attacks in an autonomous vehicles scenario. To address
the computationally demanding nature of semantic segmentation models, we
propose to leverage the idea of momentum to the Iterative Fast Gradient
Sign Method (I-FGSM) adversarial attack algorithm which can reduce the
required computational effort and significantly increase the transferability.

– We validate adversarial attack methodology by attacking state-of-the-art
semantic segmentation models on a common real-world segmentation dataset
i.e. “Cityscapes”. Our experiments show that momentum based I-FGSM per-
forms significantly better than the original I-FGSM in a targeted setting.

– We verified the viability of using image transformations as a mitigation tech-
nique against adversarial attack in the context of semantic segmentation mod-
els. We add another preprocessing layer before sending data into the semantic
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segmentation model that can remove the effect of the adversarial perturba-
tion in the input image without modify the architecture of the model or the
training process. The results show that image transformation functions such
as low pass filtering and JPEG compression can mitigate adversarial attacks
in a white box setting against semantic scene segmentation models.

The remaining article organisation: Sect. 2 reviews prior work in adversarial
attack. Section 3 elaborates on the momentum based I-FGSM attack. Section 4
shows the experimental settings together with the results including both attack
and defence scenarios. Section 5 concludes the article.

2 Background

This section aims to provide an introduction to semantic segmentation (Sect. 2.1)
and adversarial attacks (Sect. 2.2).

2.1 Semantic Segmentation

Semantic segmentation is a pixel-level classification task. The semantic segmen-
tation model needs to assign each pixel of the input image to a class. It is an
important task in autonomous vehicles that is used to help the ADS understand
the input image and solve vision tasks such as discovering drivable/undrivable
areas. DNN-based semantic segmentation models have been widely employed by
ADS to help autonomous vehicles when it comes to performing tasks such as
scene perception. However, the safety of DNN when it comes to such tasks is
questionable at best, for example, DNN shows low reliability while facing mali-
cious attacks that use adversarial attack methodologies [8,18].

2.2 Adversarial Attack

The adversarial attack is a technique that can cause a malfunction in a DNN. It
can cause the DNN to give an incorrect output with a high level of confidence
by adding subtle disturbances to the input samples. In [18], authors showed that
adversarial examples have strange transferability. That is, the neural network is
statistically vulnerable to the adversarial examples generated by another neural
network. There are two types of adversarial attacks - white box attacks and black
box attacks. For white box attacks, the attacker has information about the archi-
tecture of the target neural network. For a black box attack, the architecture of
the target neural network is not available to the attacker. There are various ways
of generating adversarial examples. The Fast Gradient Sign Method (FGSM) [8]
utilizes the gradient of the loss function to generate adversarial examples. Carlini
& Wagner’s attack [4] utilizes optimization-based methods to launch an adver-
sarial attack. Jacobian-based Saliency Map attack [13] exploits saliency maps
and increases high-saliency pixels to lead to a misclassification by the deep neu-
ral network. In the following sub-section, we briefly introduce FGSM and its
variants.
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Fast Gradient Sign Method (FGSM). FGSM was one of the first effective
adversarial attacks introduced in [8]. FGSM generates adversarial perturbations
by maximizing the gradient of the loss for the input. Equation (1) shows the
detail of untargeted FGSM:

xadv = x + ε · sign (∇xL (x, y)) , (1)

where xadv is the adversarial example, x is the input without perturbation,
y is the label of the input, L is the loss function of the model, ∇x is the gradient
function and sign (∇xL (x, y)) is the direction that will maximise the loss. The
constant value ε is the magnitude of the perturbation. The attack calculates
(∇xL (x, y)) by back-propagating the gradient. Then it adjusts the input in the
direction of sign (∇xL (x, y)).

Iterative Fast Gradient Sign Method (I - FGSM). In [12], the author
raised an iterative version of FGSM (I-FGSM) that applied FGSM in a recur-
ring fashion with a smaller step size to increase the efficiency of the attack.
Equation (2) shows the detail of untargeted I-FGSM:

xt+1
adv = xt

adv + ε · α · sign
(∇xL

(
xt
adv, y

))
, (2)

where Eq. (2) is inherited from Eq. (1), α is the step size of I-FGSM and set
to ε/T to restrict the adversarial example in a bounded L2 norm where T is
the number of iterations. For a targeted attack, the aim is to minimize the loss
between the adversarial example and the target label y∗ such that the adversarial
example will be predicted as target label y∗. Equation (3) shows the detail of
targeted I-FGSM:

xt+1
adv = xt

adv + ε · α · sign
(∇xL

(
xt
adv, y

∗)) . (3)

The I-FGSM can generate finer adversarial examples that do not spoil the
visual content even with a greater attack magnitude [12].

3 Work Execution

Section 3.1 list the two main drawbacks of the original I-FGSM. Section 3.2 elabo-
rates our Momentum-based I-FGSM attack method. Section 3.3 shows the struc-
ture of mitigation methodologies.

3.1 Drawbacks of I-FGSM

As introduced in Sect. 2, I-FGSM can successfully cause an incorrect predic-
tion during image classification tasks. However, this method shows two draw-
backs when attacking semantic segmentation models. The first drawback being
that adversarial examples generated by I-FGSM show poor transferability, which
leads to deficient performance in a black box setting. The transferability of adver-
sarial examples occur because multiple machine learning models learn compa-
rable decision boundaries around a data point [7], making adversarial examples
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designed for one model effective against others. However, the I-FGSM is prone
to falling into a suboptimal local optimum which greatly reduces the transfer-
ability of the adversarial examples. The second drawback is that it is hard to
achieve convergence with I-FGSM. This disadvantage becomes more apparent
in the case of segmentation networks as they are more complex in nature than
classification models, with higher computational complexity, rendering the pro-
cess of searching for minute perturbations difficult. To improve I-FGSM and to
overcome these drawbacks, we integrate the idea of momentum into the original
I-FGSM algorithm.

3.2 Momentum-Based I-FGSM

The momentum based I-FGSM attack is inspired by the momentum technique
which is used to optimize the Stochastic Gradient Descent (SGD) algorithm in
DNN [15]. Figure 1 shows the details of the progression of our momentum based
adversarial attack algorithm.

Fig. 1. Workflow of momentum based I-FGSM adversarial attack. The segmentation
model used to generate adversarial examples is same with the target scene segmentation
model in white box settings and is different in black box settings

In DNN, SGD is widely used to modify the network parameters in minimizing
the difference between the prediction by the network and the real data. For each
iteration, the weights are updated, and the weight vector is moved towards the
direction of the negative gradient at the current position. However, there is a
certain probability that SGD is stuck in a local minimum or saddle instead
of the global minimum. Momentum is used to mitigate and optimize the SGD
algorithm in this aspect. In Gradient Descent with Momentum, the change in the
weight vector depends on both the current gradient and the previous sequence
of gradients. The Eqs. (4) and (5) show the Gradient Descent with Momentum:

Vt = βVt−1 + α∇wL(W,X, y), (4)
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where:
W = W − Vt, (5)

Here, L is the loss function, α is the learning rate, β is a hyperparameter that
is used to adjust the influence of the earlier gradients. Vt stands for the “current
descent velocity” which is based on the metaphor of velocity from physics. Vt is
updated depending on the current gradient and the previous velocity.

The idea of momentum can level out the variations and lead to faster con-
vergence when the direction of the gradient keeps changing. When in a ravine, it
is difficult to find the global minimum utilising pure SGD because the direction
of the gradient is almost perpendicular to the direction of the global minimum
hence the algorithm will oscillate in the ravine and make small actual progress in
the direction towards the global minimum. Momentum can be used to mitigate
this oscillatory behavior and accelerate the SGD. This is because the optimiza-
tion direction depends on both the current as well as the previous gradient
directions which leads to the oscillations being counteracted between them. The
technical background of the I-FGSM is introduced in Sect. 2.2. Here we try to
integrate momentum into the I-FGSM. In following section, the I-FGSM with
momentum for both targeted attack and untargeted attack will be introduced.

Reviewing the equations for I-FGSM:

xt+1
adv = xt

adv + ε · α · sign
(∇xL

(
xt
adv, y

))
. (6)

In I-FGSM for each iteration the adversarial example is updated along the
direction of the current gradient. In I-FGSM with momentum, for each iteration
the adversarial example is updated along the direction of momentum where
the momentum accumulates the direction vector for gradients in previous steps.
Equations (7) and (8) are the equations for I-FGSM with momentum:

xt+1
adv = xt

adv + α · sign (gt+1) , (7)

where:

gt+1 = μ · gt +
∇xL (xt

adv′ , y)
||∇xL (xt

adv′ , y)| |p , (8)

where μ is a hyperparameter called decay factor that is used to adjust the
influence of the earlier gradients, α is the learning rate, p denotes the order of the
norm which is normally set as 1 or 2 to represent L1 norm and L2 norm. Algo-
rithm1 shows the algorithm for momentum based I-FGSM untargeted attack
bounded by L2 norm.
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Algorithm 1: Momentum based I-FGSM

Input :
A semantic segmentation network f with loss function L;
Input image x;
Ground-truth label y;
The size of perturbation ε;
Iteration number T ;
Decay factor μ;

Output:
An adversarial example x∗ with ‖x∗ − x‖2 < ε

1 α = ε/T ;
2 g0 = 0;
3 x∗

0 = x;
4 for t = 0 to T − 1 do
5 Input x∗

t to f and calculate the gradient ∇xJ (x∗
t , y);

6 Update gt+1 by accumulating the velocity vector in the gradient
direction as:

7 gt+1 = μ · gt +
∇x J(x∗

t ,y)
‖∇x J(x∗

t ,y)‖2

;

8 Update x∗
t+1 by applying the sign gradient as

9 x∗
t+1 = x∗

t + α · sign
(
gt+1

)
;

10 end
11 return x∗ = x∗

T ;

In a targeted attack, the goal is to make the model misclassify with a specific
target in mind, i.e., the predicted class of input x to be a targeted class y∗ in
y. This kind of attack is a source target misclassification. When it comes to the
result, the predicted class of the input x will be changed from the original class
label to y∗.

Equations (9) and (10) are the details to targeted I-FGSM with momentum:

xt+1
adv = xt

adv − α · sign
(
g∗
t+1

)
, (9)

where:

g∗
t+1 = μ · gt − ∇xL (xt

adv, y
∗)

||∇xL (xt
adv, y

∗)| |p , (10)

Here Y ∗ is the target label. Unlike a nontargeted attack, a targeted attack
tries to drive the output towards a target classification. Hence it needs to mini-
mize the loss function. Algorithm 2 shows the algorithm for targeted I-FGSM
with momentum. Compared with algorithm 1, the ground truth label y is
replaced by the target label Y ∗ so that the adversarial example x will lead
the DNN to make the prediction as target label Y ∗.
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Algorithm 2: Momentum based I-FGSM for targeted attack

Input :
A semantic segmentation network f with loss function L;
Input image x;
Target label y∗;
The size of perturbation ε;
Iteration number T ;
Decay factor μ;

Output:
An adversarial example x∗ with ‖x∗ − x‖2 < ε

1 α = ε/T ;
2 g0 = 0;
3 x∗

0 = x;
4 for t = 0 to T − 1 do
5 Input x∗

t to f and calculate the gradient ∇xJ (x∗
t , y

∗);
6 Update gt+1 by accumulating the velocity vector in the gradient

direction as:

7 g∗
t+1 = μ · gt − ∇xL(xt

adv,y
∗)

|∇xL(xt
adv

,y∗)|2
;

8 Update x∗
t+1 by applying the sign gradient as

9 xt+1
adv = xt

adv − α · sign (g∗
t+1);

10 end
11 return x∗ = x∗

T ;

3.3 Mitigation

We studied five different image pre-processing mitigation techniques In this
experiment, we added another preprocessing layer before sending the data into
the semantic segmentation model. Using this layer, we evaluated five different
image transformation functions, these are: JPEG compression [6,11], bit-depth
reduction [21], total variance minimization [9], low pass filtering [16] and PCA
denoising [3]. Figure 2 shows the workflow of the mitigation methodology.

Fig. 2. Workflow of the preprocessing defence. We tested 5 different image transfor-
mation functions in the preprocessing layer including JPEG Compression, Bit-depth
Reduction, Total Variance Minimization, Low Pass Filter and PCA Denoising.

4 Experiments and Results

This section presents the setting and results for the experiments that demon-
strate the performance of I-FGSM with momentum.
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4.1 Experiment Settings

Dataset. In this study, we evaluate the proposed adversarial attack methodol-
ogy using the Cityscapes segmentation dataset. Cityscapes [5] is a widely used
segmentation dataset and entire dataset consists of street scenes from 50 differ-
ent cities. In this study, we generate adversarial examples against and evaluate
the performance of this validation data set.

Target Models. Dual Graph Convolutional Network (Dual-GCN) [22] uses a
graph neural network to capture object correlation and improve semantic link-
ages. On Cityscapes, Dual-GCN achieves SOTA performance of 76% mIoU. In
this exercise, Dual-GCN is used to generate adversarial examples against the
target model to evaluate the performance of the adversarial attacks in white box
setting. Image Cascade Network (ICNet) [23] is a real-time lightweight semantic
segmentation model that guarantees speed and accuracy. It uses a cascade of
image inputs to employ a cascade of feature fusion units and uses cascade label
guidance during training, which can refine semantic predictions with relatively
low computational cost. On Cityscapes, ICNet achieves 74% mIoU. In this study,
ICNet is used as the target model in a black box setting to test the transferability
of adversarial examples.

Experimental Setups. This work has been implemented using Pytorch on
Python 3.7. The experiments were run using Google Colab and The Bristol Blue
Crystal 4 supercomputer. Both platforms provided a single Nvidia Tesla P100
GPU with 16GB of memory as the main AI accelerator. In the experiments mean
Intersection over Union per class (mIoU) is utilised as a metric to assess the
performance of untargeted attacks while the class wise Intersection over Union
(IoU) utilized for the assessment of targeted attacks. The adversarial examples
in the experiments are generated by attacking the Dual-GCN. In a white box
attack setting the adversarial examples are tested against the same model that
they are generated from i.e. the Dual-GCN. In a black box attack setting the
adversarial examples are evaluated against ICNet.

Hyperparameter Configuration. We evaluate the relationship between
decay factor and the effects of momentum based I-FGSM. The decay factor con-
trols the size of impact of the earlier gradients as mentioned in Sect. 3.2. With a
larger decay factor the past gradients have a greater impact on the direction of
change of the weight vector. When the decay factor is equal to 0 the past gradi-
ents have no impact on the update direction and the momentum based I-FGSM
reverts to a normal I-FGSM. In this experiment the attack strength is set to 40
and the iteration number is set to 10. The decay factor is evaluated from 0 to 2
with an interval of 0.2. Both white box as well as black box attack scenarios are
evaluated.

Number of Iterations. We compare the effect of the number of iterations
between I-FGSM and momentum based I-FGSM. In this experiment the attack
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strength is set to 40 for both I-FGSM and momentum based I-FGSM. The decay
factor for momentum based I-FGSM is set to 1.0, based on the results detailed
in Sect. 4.2. Iterations ranging from 1 to 10 times are tested for both attack
methodologies. White box as well as black box attack testing is done for both
I-FGSM and momentum based I-FGSM to check the relationship between the
number of iterations and the transferability of adversarial examples.

Attack Strength. We evaluate the effectiveness of adversarial attacks with
differing attack strengths for I-FGSM as well as momentum based I-FGSM. The
number of iterations for both the attacks are set to 10. Same as the previous
experiment, the decay factor of the momentum based I-FGSM is set to 1.0. The
attack strength is evaluated from 5 to 40 in increments of 5. Both white box as
well as black box attacks are evaluated.

Target Attack. The study of targeted attacks is important for autonomous
vehicles since the detection accuracy of certain classes such as “person” and
“car” largely affects the safety of such ADS. Therefore, in this experiment we
evaluate the performance of a targeted attack using I-FGSM and momentum
based I-FGSM with varying attack strengths. Configurations for the target labels
are inspired by [10]. Two sets of targeted labels are generated by modifying the
original labels from the Cityscapes dataset. The details of the targeted sets are
as follows:

– Set 1: The labels of classes “person”, “rider”, “motorcycle” and “bicycle” are
replaced by the label “vegetation”.

– Set 2: The labels of classes “car”, “truck”, “bus” and “train” are changed to
“road”.

Defence. We also implement and evaluate five mitigation methodologies based
on different image transformation functions. All of the five mitigation methodolo-
gies are introduced in Sect. 3.3. Specifically, JPEG compression is performed with
a 75% quality ratio. For bit-depth reduction input image bit depth is reduced
to 5 bits. The scikit-image package [19] is used to implement the total variance
minimization and low pass filter. For total variance minimization the strength
is set to 2.5 and we have applied the low pass filter to each color channel with a
20% frequency cut of ratio. PCA was performed on each input image by select-
ing the 150 largest principal components. All the defence methods are tested
against both I-FGSM based as well as momentum based I-FGSM adversarial
attacks with different attack strengths in the range of 5 to 40. Testing is done
in both a white box as well as a black box setting for a comprehensive analysis.

4.2 Impact of Parameters

This sub-section shows the results of the experiments detailed in Sect. 4.1.
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Decay Factor. As mentioned in Sect. 3.2, the decay factor is an important
hyperparameter for momentum based I-FGSM. Figure 3 shows the mIoU of the
ICNet and Dual-GCN with the momentum based I-FGSM adversarial examples
generated from Dual-GCN. The Y axis shows the mIoU of the model. In this
experiment, smaller mIoU means better performance of the adversarial attack.
X axis shows the size of the decay factor. Larger the decay factor greater the
effect the previous gradients have on the updated direction of the adversarial
example. For a white box attack, the performance of the attack decreases with
an increase of the decay factor starting from 0.2.

Fig. 3. The mIoU (%) of the adversarial examples generated for Dual-GCN against
Dual-GCN (whitebox) and ICNet (blackbox), with a decay factor ranging from 0 to 2

These results show that the momentum based I-FGSM has the best per-
formance when the decay factor is equal to 0.2 for a white box attack setting.
However, for a black box attack, the performance of momentum based I-FGSM
increases with an increase of the decay factor and archives best performance
when the decay factor is equal to 1.0. Subsequently the performance slowly
decreases with an increase in the decay factor. When the decay factor is equal
to 1.0, the weight update for each iteration is simply represented by the sum of
all prior gradients.

Number of Iteration. The number of iterations influences the performance of
iterative adversarial attacks. Here are the results of the experiments that study
the effect of the number of iterations against momentum based I-FGSM and I-
FGSM. Figure 4(a) shows the result for a white box attack while Fig. 4(b) shows
the result for a black box attack. In these two figures the Y axis shows the mIoU
of the model and X axis shows the number of iterations.

Momentum based I-FGSM converged at around 4 iterations while I-FGSM
shows no evidence of convergence even at 10 iterations. When the number of
iterations is 10, the I-FGSM has a 4% reduction in the mIoU when compared
with the momentum based I-FGSM. The I-FGSM has a constant learning rate.
The reason I-FGSM has difficulty converging may be due to the direction of the
update being completely dependent on the current gradient, but the gradient
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(a) Dual-GCN (white box) (b) ICNet (black box)

Fig. 4. The mIoU (%) of the adversarial examples generated for Dual-GCN with
momentum based I-FGSM and I-FGSM against (a): Dual-GCN (white box) (b): ICNet
(black box), with the number of iterations ranging from 1 to 10.

will become exceedingly small when approaching the optimal value and because
of the constant learning rate, the I-FGSM will slow down, and might even fall
into a local optimum. From the result it is obvious that I-FGSM shows better
performance in a white box attack setting which proves that I-FGSM can very
easily overfit a specific model. Figure 4(b) shows that the momentum based I-
FGSM outperformed the I-FGSM in a black box attack setting. The momentum
based I-FGSM reduces the mIoU of the model by 5% compared to the I-FGSM
when the number of iterations equals 10. This also proves that the adversarial
examples generated from I-FGSM can easily overfit with the white box model
and have poor transferability.

Attack Strength. We then study the relationship between the attack strength
of adversarial examples and the accuracy of the semantic segmentation models.
Figure 5(a) shows the results of attacking Dual-GCN by Momentum based I-
FGSM and I-FGSM. Here the Y axis is the mIoU of the model and the X axis
is the attack strength. The lines for momentum based I-FGSM and I-FGSM
almost overlap when the attack strength is small in a white box setting and
the I-FGSM is shown to have an exceedingly small advantage when the attack
strength is larger than 35. Both the momentum based I-FGSM and I-FGSM
show good performance in a black box setting and the mIoU of the semantic
segmentation model decreases linearly with the strength of the attack.

Figure 5(b) shows the results for a black box setting. With an increase in the
attack strength, the momentum based I-FGSM leads to a faster decrease of the
mIoU of the semantic segmentation model compared with I-FGSM. When the
attack strength is 40 the momentum based I-FGSM leads to a 6% greater decrease
in mIoU compared with the original I-FGSM. In a black box attack, the momen-
tum based I-FGSM can reach the required effect with a smaller attack strength
which means it would be more difficult to detect such an attack manually.

Targeted Attack. In this section, we demonstrate the results of the targeted
adversarial attack. As introduced in Sect. 4.1. We designed two sets of tar-
get labels. Figure 6 shows two examples of momentum based I-FGSM targeted
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(a) Dual-GCN (white box) (b) ICNet (black box)

Fig. 5. The mIoU (%) of the adversarial examples generated for Dual-GCN with
momentum based I-FGSM and I-FGSM against (a): Dual-GCN (white box) (b): ICNet
(black box), with the attack strength ranging from 5 to 40.

Fig. 6. Two examples for targeted momentum based I-FGSM: The left image shows
an example from target label set 1 and where right image is from target label set 2.

attack. the left image shows an example from target label set 1 and the right
image shows an example from target label set 2. In the image on the left the
model cannot classify the pixels belonging to the class “person” correctly and in
the right image the network cannot correctly classify the pixels in proximity to
the car.

I: Targeted Attack with White-Box Setting. Table 1 shows the results of a tar-
geted adversarial attack with label set 1 and Table 2 shows the results of label
set 2. The details of the label set 1 and 2 are shown in Sect. 4.1. The results shows
that both momentum based I-FGSM and I-FGSM show good performance in a
white box attack. Both adversarial attack methods can reduce the targeted cate-
gories IoU to 0 with a small attack magnitude. It is worth noting that the mIoU
increases as the attack magnitude increases. A similar observation is made with
the untargeted attack, I-FGSM shows better performance with the same attack
magnitude. Adversarial examples generated from I-FGSM lead to a higher mIoU
while keeping the IoU of targeted classes at 0. In other words, the adversarial
examples generated by I-FGSM cause less damage to the other classes while
maintaining 100% attack success rate for targeted classes.
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Table 1. Black box targeted attacks set 1: misclassified person, rider, motorcycle, and
bicycle into the label of vegetation

Attack method Attack strength mIoU Categories IoU

Person Rider Motorcycle Bicycle

Momentum based I-FGSM 40 70.770 0 0 0 0

Momentum based I-FGSM 5 62.677 0 0 0 0

I-FGSM 40 74.028 0 0 0 0

I-FGSM 5 62.864 0 0 0 0

No attack 0 76.113 80.952 60.235 62.777 76.125

Table 2. White box targeted attacks set 2: misclassified car, truck, bus, and train into
the label of road

Attack method Attack strength mIoU Categories IoU

Car Truck Bus Train

Momentum based I-FGSM 40 73.600 0 0 0 0

Momentum based I-FGSM 5 49.882 0 0 0 0

I-FGSM 40 71.520 0 0 0 0

I-FGSM 5 59.203 0 0 0 0

No attack 0 76.113 94.178 74.254 83.002 67.480

II: Targeted Attack with Black-box Setting. Table 3 shows the results of a targeted
adversarial attack with label set 1 and Table 4 shows the results of label set 2 in a
black box setting. The momentum based I-FGSM performs better than I-FGSM
in a black box attack. The momentum based I-FGSM significantly reduces the
IoU for all the targeted classes with the same attack strength when compared
with I-FGSM. This proves that the addition of momentum helps to increase the
transferability of adversarial examples. From Table 3, it can be observed that the
effect of the attack varies for the various categories. The experimental results do
not clearly show a reason for such a difference.

Table 3. Black box targeted attacks set 1: misclassified person, rider, motorcycle, and
bicycle into the label of vegetation

Attack method Attack strength mIoU Categories IoU

Person Rider Motorcycle Bicycle

Momentum based I-FGSM 40 73.520 69.369 41.148 36.341 65.658

Momentum based I-FGSM 5 65.966 74.501 53.059 47.163 71.101

I-FGSM 40 68.970 73.332 49.496 43.461 70.015

I-FGSM 5 65.959 74.500 53.061 47.165 71.010

No attack 0 74.068 78.707 57.704 58.407 74.274
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Table 4. Black box targeted attacks set 2: misclassified car, truck, bus, and train into
the label of road

Attack method Attack strength mIoU Categories IoU

Car Truck Bus Train

Momentum based I-FGSM 40 67.916 88.322 36.989 53.580 49.906

Momentum based I-FGSM 5 65.934 93.037 49.303 62.108 56.909

I-FGSM 40 68.537 92.095 43.962 58.154 51.463

I-FGSM 5 65.924 93.037 49.260 62.064 56.909

No attack 0 74.068 94.159 76.607 81.329 60.075

4.3 Defence

This sub-section details the results for the various mitigation techniques when
used against adversarial attacks. The results are separated into white box and
black box scenarios. For both white box and black box setting the effect of the
five defence methodologies against the momentum based I-FGSM and I-FGSM
are tested at attack strengths ranging from 5 to 40. The impact of the defence
methodologies on the model with a clean input are shown in Table 5.

Table 5. mIoU of defence methods on Dual-GCN model with clean input

Defence No Defence JPEG Low Pass Filter Bit-depth Reduction TVM PCA

mIoU (%) 76.113 65.911 70.990 50.095 59.487 65.989

It is important to note that all of the defensive methodologies have a nega-
tive impact on the accuracy of the model. As it can be observed, the Bit-depth
Reduction and PCA Denoising yield the smallest decrease in the mIoU on clean
inputs, followed by JPEG. Low-pass filtering and Total Variance Minimization
lead to a more significant decrease in the performance of the semantic segmen-
tation model. The negative impact of these defensive methodologies may have
a worse effect on the network accuracy compared to adversarial attacks of a
smaller intensity.

I: Defence against White-box Attack Fig. 7 shows the performance of the various
defence methodologies performance in a white box setting. Figure 7(a) shows
the effectiveness of the 5 defence methodologies against an I-FGSM attack and
fig.7(b) shows the results of the defence methodologies against a momentum
based I-FGSM attack. Here the Y axis is the mIoU of the model and the X axis
is the attack strength.
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Fig. 7. The mIoU (%) of Dual-GCN with defence methods against (a): I-FGSM attack
and (b): momentum based I-FGSM attack (white box setting).

In a white box setting the five defence methodologies show a similar effect
when utilised against momentum based I-FGSM and I-FGSM. The low pass filter
is effective at all attack magnitudes and increases the accuracy of the model in
both the adversarial attack scenarios. The remaining four defence methodologies
do not perform very well when the intensity of the attack is low. However, JPEG
compression and PCA denoising show better performance compared to the other
three defence methods as the strength of the attack increases.

As mentioned above, JPEG compression shows the best defensive perfor-
mance under high intensity adversarial attacks and low pass filtering shows the
best performance among the five defences against adversarial attacks of a low
intensity. Both the JPEG compression and the low pass filtering remove the
high frequency information from the input image. Therefore, it is reasonable to
believe that the perturbation produced by the adversarial attack contain high
frequency components.

In [16] and [9], the results show that these basis transformation functions
are more effective when used against adversarial attacks in a classification task.
This may be due to the classification networks being more sensitive to adver-
sarial attacks and having a larger tolerance for image transformations. For the
dataset used in [16] and [9], each image contains only one object so the image
transformation functions such as blurring have a lesser effect on the accuracy of
the classification models compared to this experiment.

II: Defence Against Black-Box Attack. Figure 8 shows the performance of the
various defence methodologies in a black box setting. Figure 8(a) is the results
of five defence methods against I-FGSM attack and Fig. 8(b) shows the results
of defence methodologies against a momentum based I-FGSM attack.
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Fig. 8. The mIoU (%) of ICNet with defence methods against (a): I-FGSM attack and
(b): momentum based I-FGSM attack (black box setting).

Among the five defence methodologies, JPEG compression becomes effective
only when the attack strength is greater than 35 for I-FGSM and greater than 30
for momentum based I-FGSM. The bit depth reduction is effective for momen-
tum based I-FGSM when the attack strength reaches 40. PCA denoising, total
variation denoising and PCA denoising do not perform well against any of the
attacks at any given strength.

None of the tested defence methodologies are effective when used against
small perturbations in this setting. This is consistent with the result of basis
transformation defences when used against classification in [16]. Since the adver-
sarial examples with a small attack strength have a limited impact on the per-
formance of the network in a black box setting, the various image pre-processing
methodologies lead to negative impacts on the accuracy of the network which
are comparable to adversarial perturbations. Table 6 Shows the impact of the 5
image pre-processing methodologies on the ICNet network with a clean input.
The lowpass filter denoising and total variance denoising lead to a significant
reduction in the accuracy of the network. This largely impacts the effectiveness
of these two defensive methodologies to eliminate the adversarial perturbation
and mitigate the adversarial attack.

Table 6. mIoU of defence methods on ICNet model with clean input

Defence No defence JPEG Low pass filter Bit-depth reduction TVM PCA

mIoU (%) 74.068 69.499 71.232 54.318 54.879 67.170

4.4 Discussions

The Effectiveness of Adversarial Attacks on Scene Segmentation. The
experiment results show that adversarial attacks can significantly decrease the
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performance of semantic segmentation models based on DNN. In a white box
setting, the mIoU of SOTA semantic segmentation models can easily drop from
around 75% to about 12% with the adversarial examples generated from early
adversarial attack methods. The result from a targeted attack is also not opti-
mistic. Adversarial attacks can greatly decrease the models’ accuracy for cer-
tain classes while maintaining a high mIoU. This means such targeted attacks
are more difficult to detect since the model can still make a correct prediction
for the rest of the classes and function normally. In autonomous vehicles, this
deserves more attention since the accuracy for certain classes such as pedestrians
and traffic lights are naturally more important than the accuracy for some other
classes and hence average accuracy is not a good indicator of reliability. In a
black box setting, although the semantic segmentation model shows better resis-
tance to adversarial attacks, the adversarial examples still lead to about 25%
decrease in the mIoU. This shows that the adversarial examples are effective
against different models.

Momentum Based I-FGSM Shows Better Transferability. The results
show that the idea of momentum improves the transferability of I-FGSM in both
targeted as well as untargeted attacks which compensates for the drawbacks of
I-FGSM. The momentum based I-FGSM outperforms the original I-FGSM in
a black box setting and has similar performance in a white-box settings. The
transferability of adversarial examples is based on the fact that different DNNs
learn through similar decision boundaries [7]. The original I-FGSM adjusts the
adversarial examples by relying solely on the current gradient of the iteration
which has a high probability of falling into suboptimal local maximas. As a
result, the adversarial noise only interferes with a local decision boundary and the
adversarial examples have extremely poor transferability. The momentum based
I-FGSM solves this problem by changing the direction of adversarial examples
utilizing past gradients as well as the current gradient into a single gradient
which can level out the variations in the weight change direction and hence help
the adversarial examples in finding the global maxima. Therefore, the adversarial
examples generated by momentum based I-FGSM have better transferability.

The Performance of Defence Methods. In a black box setting all of these
image transformation methods show relatively poor effectiveness when used
against adversarial attacks with a small attack strength in semantic segmen-
tation tasks. This is in comparison to their performance in image classification
tasks detailed in prior research. Transformations such as low pass filter denois-
ing and total variance denoising lead to a large decrease in the accuracy of the
semantic segmentation model itself. The image transformation functions tested
in this study all have negative impacts on the quality of the images to some
extent. For example, the JPEG compression is a lossy compression that discards
some of the high frequency components of the image. This quality loss caused
by the transformation function leads to a greater impact on the model accuracy
compared to the impact of adversarial examples in the context of black box
testing.
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Related Works: In [25], the authors evaluated the adversarial attack against
semantic segmentation models. Unlike this work that uses the visual data col-
lected from camera, [25] the focus was on the data from LiDAR (Light Detec-
tion and Ranging) sensors. They showed that the LiDAR semantic segmenta-
tion models used in ADS are also vulnerable to adversarial attacks. Combined
with this work, the adversarial attack could still be a security threat to ADS
that utilise different sensors since semantic segmentation models utilising vari-
ous types of data are vulnerable to adversarial attacks. In [24] authors designed
a pre-processing model that exploits the invariant features. The pre-processing
model can disentangle the invariant features that represent sematic classifica-
tion informations from adversarial noise and then restore the examples with-
out adversarial perturbation by utilizing these invariant features. The authors
declared that this defence methodology presents superior effectiveness when used
against previously unseen adversarial attacks so it is effective when used against
a black box attack. However, like most of the prior studies, this study focused
on the image classification models so the effectiveness of this mitigating method
in semantic segmentation scenario is uncertain.

Recently many researches are also focusing on using model-specific strategies
to mitigate adversarial attacks. These strategies usually change the architecture
or the training procedures of the DNN and utilise the learning algorithms or
regularization method to enforce features such as invariance and smoothness [17].
[2] focused on utilizing adversarial training and defensive distillation to increase
the robustness of traffic sign classification models. The results showed that the
combination of these two defence techniques can achieve higher accuracy when
used against different kinds of adversarial attacks in traffic sign classification
tasks.

5 Conclusion

In this study, we focused on the adversarial attack and its mitigations in semantic
segmentation tasks. We first applied the I-FGSM adversarial attack methodology
to the task of semantic segmentation. Next, in order to enhance the transferabil-
ity of the adversarial examples, we integrated the idea of momentum into the
original I-FGSM algorithm. Extensive experiments were conducted to verify the
efficacy of this momentum based I-FGSM technique. The results showed that
momentum based I-FGSM has similar performance when compared to the origi-
nal I-FGSM in both targeted as well as untargeted attack in a white box settings
and outperformed the same in black box settings. From a mitigation standpoint,
we focused on image pre-processing, and applied and tested five different image
transformation functions. The results of the experiments showed that Low pass
filtering and JPEG compression have superior performance when used against
adversarial attacks in a white box setting. However, all five transformation meth-
ods showed limited performance when used against adversarial attacks in a black
box setting. In future work, we want to investigate the feasibility of combining
pre-processing defence methodologies with adversarial training to improve the
robustness of AV systems.



Adversarial Attacks and Mitigations on Scene Segmentation 65

Acknowledgment. This project is supported by the National Research Foundation,
Singapore and National University of Singapore through its National Satellite of Excel-
lence in Trustworthy Software Systems (NSOE-TSS) office under the Trustworthy Com-
puting for Secure Smart Nation Grant (TCSSNG) award no. NSOE-TSS2020-01. This
research was supported by grants from NVIDIA and utilised NVIDIA Quadro RTX
6000 GPUs.

References

1. Arnab, A., Miksik, O., Torr, P.H.: On the robustness of semantic segmentation
models to adversarial attacks. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 888–897 (2018)

2. Aung, A.M., Fadila, Y., Gondokaryono, R., Gonzalez, L.: Building robust deep
neural networks for road sign detection. arXiv preprint arXiv:1712.09327 (2017)

3. Bhagoji, A.N., Cullina, D., Sitawarin, C., Mittal, P.: Enhancing robustness of
machine learning systems via data transformations. In: 2018 52nd Annual Con-
ference on Information Sciences and Systems (CISS). pp. 1–5. IEEE (2018)

4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understand-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3213–3223 (2016)

6. Das, N., et al.: Keeping the bad guys out: protecting and vaccinating deep learning
with jpeg compression. arXiv preprint arXiv:1705.02900 (2017)

7. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9185–9193
(2018)

8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

9. Guo, C., Rana, M., Cisse, M., Van Der Maaten, L.: Countering adversarial images
using input transformations. arXiv preprint arXiv:1711.00117 (2017)

10. Kang, X., Song, B., Du, X., Guizani, M.: Adversarial attacks for image segmenta-
tion on multiple lightweight models. IEEE Access 8, 31359–31370 (2020)

11. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale.
arXiv preprint arXiv:1611.01236 (2016)

12. Kurakin, A., Goodfellow, I., Bengio, S., et al.: Adversarial examples in the physical
world (2016)

13. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European sym-
posium on security and privacy (EuroS&P), pp. 372–387. IEEE (2016)

14. Pham, M., Xiong, K.: A survey on security attacks and defense techniques for
connected and autonomous vehicles. Comput. Secur. 109, 102269 (2021)

15. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural
Netw. 12(1), 145–151 (1999)

16. Shaham, U., et al.: Defending against adversarial images using basis functions
transformations. arXiv preprint arXiv:1803.10840 (2018)

17. Shaham, U., Yamada, Y., Negahban, S.: Understanding adversarial training:
Increasing local stability of neural nets through robust optimization. arXiv (2015)

18. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv (2013)

http://arxiv.org/abs/1712.09327
http://arxiv.org/abs/1705.02900
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1711.00117
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1803.10840


66 Y. Zhu et al.

19. Van der Walt, S., et al.: scikit-image: image processing in python. PeerJ 2, e453
(2014)

20. Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples
for semantic segmentation and object detection. In: Proceedings of the IEEE inter-
national conference on computer vision. pp. 1369–1378 (2017)

21. Xu, W., Evans, D., Qi, Y.: Feature squeezing: Detecting adversarial examples in
deep neural networks. arXiv preprint arXiv:1704.01155 (2017)

22. Zhang, L., Li, X., Arnab, A., Yang, K., Tong, Y., Torr, P.H.: Dual graph convolu-
tional network for semantic segmentation. arXiv preprint arXiv:1909.06121 (2019)

23. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmen-
tation on high-resolution images. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 418–434. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01219-9 25

24. Zhou, D., Liu, T., Han, B., Wang, N., Peng, C., Gao, X.: Towards defending against
adversarial examples via attack-invariant features. In: International Conference on
Machine Learning, pp. 12835–12845. PMLR (2021)

25. Zhu, Y., Miao, C., Hajiaghajani, F., Huai, M., Su, L., Qiao, C.: Adversarial attacks
against lidar semantic segmentation in autonomous driving. In: Proceedings of
the 19th ACM Conference on Embedded Networked Sensor Systems, pp. 329–342
(2021)

http://arxiv.org/abs/1704.01155
http://arxiv.org/abs/1909.06121
https://doi.org/10.1007/978-3-030-01219-9_25

	Adversarial Attacks and Mitigations on Scene Segmentation of Autonomous Vehicles
	1 Introduction
	2 Background
	2.1 Semantic Segmentation
	2.2 Adversarial Attack

	3 Work Execution
	3.1 Drawbacks of I-FGSM
	3.2 Momentum-Based I-FGSM
	3.3 Mitigation

	4 Experiments and Results
	4.1 Experiment Settings
	4.2 Impact of Parameters
	4.3 Defence
	4.4 Discussions

	5 Conclusion
	References




