
A Holistic Framework for IoT-Aware
Business Processes

Yusuf Kirikkayis(B), Florian Gallik, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Ulm, Germany
{yusuf.kirikkayis,florian-1.gallik,manfred.reichert}@uni-ulm.de

Abstract. The Internet of Things (IoT) enables a variety of smart appli-
cations, including smart home, smart factory, and smart health. As Busi-
ness Process Management (BPM) can also benefit from IoT technologies,
the combined use of BPM and IoT has attracted considerable research
works. Providing integrated lifecycle support for modeling, executing,
and monitoring IoT-aware business processes constitutes a challenge.
Existing process modeling and execution languages such as BPMN 2.0
are unable to fully meet the requirements of IoT-aware processes. In
this paper, we present an extension of BPMN 2.0 for modeling, execut-
ing, and monitoring IoT-aware business processes. We introduce specific
artifacts and events that enable IoT awareness during the execution and
monitoring of IoT-driven business processes. The resulting framework is
illustrated along a real-world scenario.

Keywords: BPMN · IoT · IoT-aware BPM · Execution engine ·
BPMS

1 Introduction

The interest and relevance of the Internet of Things (IoT) has been increasing
continuously during the recent years and IoT has becomes one of the most rele-
vant technologies to realize digital twins of the physical world [1]. The electronic
components of IoT devices are becoming smaller, cheaper, and more powerful. As
a result, IoT technology is experiencing an upswing [2]. IoT devices are equipped
with sensors, actuators, software, protocols, and various network interfaces. This
enables IoT devices to capture, collect, and exchange data as well as to physically
respond to events [3]. While sensors are used to collect and capture data about
the physical world (e.g., humidity, air quality, and temperature), actuators are
used to control the latter (e.g., watering systems, light control, air conditioner,
and security systems) [4]. While IoT enables the collection and exchange of data
about the physical world, BPM enables modeling, implementing, executing, mon-
itoring, and analyzing business processes [5]. Incorporating IoT capabilities into
BPM systems, therefore, offers promising perspectives for process automation
including automated decision making that takes the state of the physical world
into account as well. Moreover, IoT devices can be used to automate various
c© Springer Nature Switzerland AG 2023
C. Cabanillas et al. (Eds.): BPM 2022, LNBIP 460, pp. 89–100, 2023.
https://doi.org/10.1007/978-3-031-25383-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25383-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-25383-6_8


90 Y. Kirikkayis et al.

types of physical tasks (e.g. opening a window) or digital tasks (e.g. transfer-
ring data) [5]. To be able to provide lifecycle support for IoT-aware processes
their modeling requires specific elements that allow capturing the physical pro-
cess context appropriately. Amongst others modeling IoT-aware processes shall
foster the understanding of how these processes operate as well as enable the
detection and avoidance of problems. Moreover, it should be possible to detect
and handle errors and exceptions (e.g., faulty sensors) during process enactment.
Existing standards such as BPMN 2.0 do not provide sufficient expressiveness
for modeling IoT-aware processes [3].

In this paper, we enhance BPMN 2.0 with IoT-specific artifacts and events,
which enable the modeling, execution, and monitoring of IoT-aware processes.
The functions and benefits of these artifacts and events are illustrated along a
real-world manufacturing process in a smart factory. The remainder of this paper
is structured as follows. In Sect. 2, we summarize the problems that emerge when
modeling IoT-aware processes with the standard BPMN 2.0 language. Section 3
describes the proposed extension, i.e., specific artifacts and events. In Sect. 4
we present our approach for modeling, executing, and monitoring IoT-aware
business processes, which is then applied in the context of a case study in Sect. 5.
Section 6 discusses related work. Finally, Sect. 7 summarizes the approach and
provides an outlook on future work.

2 Problem Statement

Though BPMN 2.0 does not provide explicit support for capturing and modeling
IoT capabilities, it offers various ways to represent IoT aspects such as tasks,
events, and resources [6]. However, following such a straightforward approach,
no distinction between IoT-related process model elements and regular elements
can be made [14]. Consequently, it does not become apparent whether or not a
process includes IoT aspects. Instead, the process model needs to be read and
understood based on the chosen element (e.g. task) labels.

Figure 1 illustrates a process with IoT aspects modeled in terms of BPMN
2.0. Along this example, we want to demonstrate characteristic problems. The
depicted production process involves multiple actuators as well as sensors. The
process starts every ten seconds and then checks whether the High-Bay Ware-
house (HBW) light barrier is interrupted. If the latter applies, the Vacuum Grip-
per Robot (VGR) starts moving, otherwise the process terminates. However, the
VGR is moved until reaching the pick-up station whose light barrier check is
embedded within a loop. After the VGR has reached the pick-up station, a QR
code is generated. Subsequently, the status of the HBW is checked. If the status
is OK, the workpiece is stored in HBW, otherwise it is transported to HBW 2.
Finally, the process terminates.

When using BPMN 2.0 for modeling the IoT-related tasks (cf. Fig. 1), it is
unclear, which tasks involve IoT devices and which do not. It is further unclear
that business rule tasks shall represent sensors and service tasks shall represent
actuators. Instead, the process model reader needs to interpret the task labels



A Holistic Framework for IoT-Aware Business Processes 91

correctly to properly understand the process model. Moreover, no visual distinc-
tion can be made between an IoT-related service task (cf. Tasks 2, 6, and 7 in
Fig. 1) and a service task not involving IoT devices (cf. Task 4), or between an
IoT-related business rule task (cf. Tasks 1 and 3) and a normal one (cf. Task 5).
Note that this aggravates both the readability and the comprehensibility of the
process model.

VGR = Vacuum 
Gripper Robot

HBW = High-bay
Warehouse

Check if HBW 
light barrier is 

triggered

Move VGR to 
pick-up position

triggered?
no

Check if VGR 
has reached 

pick-up station
Every 10
seconds

yes

no

Generate QR 
code

Check HBW 
status

Transport 
workpiece to 

HBW 2

Store workpiece
in HBW

triggered?

yes
status

Full

Ok
1 2 3 4 5

6

7

Fig. 1. IoT-aware business process modeled in terms of BPMN 2.0.

3 Solution Proposal

The goal of this paper is to provide a BPMN 2.0 extension that enables the
modeling and enactment of IoT-aware processes. Moreover, the behavior of these
elements needs to be mapped to a process execution engine, which constitutes
the core architecture component of our approach. Taking the problem statement
set out in Sect. 2, we extended BPMN with the artifacts and events shown in
Fig. 2. In the following, each of these elements is shortly described. Note that all
elements are decorated with a WLAN icon and labeled as “IoT”. In addition, the
letter in the upper left corner indicates the artifact type (i.e., “A” for actuator
and “S” for sensor).

Sensor
Artifact

Actuator 
Artifact

Actuator Group
Artifact

A

+
Sensor

Group Artifact
Catch
Artifact

Catch Group
Artifact

IoT Start
Event

IoT End
Event

IoT Intermediate 
Catch Event

IoT Intermediate
Throw Event:

Object
Artifact

IoT Boundary
Event

S

+

S A S S

+

Fig. 2. Extending BPMN 2.0 with IoT-specific elements

Sensor Artifact: A sensor artifact (Fig. 2) can represent various sensors in
a business process model (e.g., measuring temperature, speed, or GPS), and
enables the collection of data from the physical environment and process con-
text. When connecting a sensor artifact to a task, the corresponding sensor may



92 Y. Kirikkayis et al.

be queried by the task during its execution. All necessary information about the
sensor is captured by the sensor artifact. The task connected to it can only be
successfully completed after having received a positive response from the sensor.
Note that the explicit representation of sensors as artifacts allows linking any
number of sensors to a task (Fig. 3a), and a sensor artifact may be arbitrarily
combined with other artifacts (Fig. 3b). In such a case, the sensors are concur-
rently queried during task execution. Note that the representation of the artifact
is generic allowing for the representation of arbitrary sensor types. Moreover, text
annotations may be used, for example, to designate artifacts and events.

Sensor Group Artifact: A sensor group artifact is represented by a collapsed
sensor artifact (cf. Fig. 2) and shows the same behavior as a sensor artifact. As
depicted in Fig. 3a, individual sensor artifacts may be aggregated to a sensor
group artifact in order to increase the abstraction level. More precisely, a sensor
group artifact combines multiple sensor artifacts (n ě 2, with n being number of
sensor artifacts).

Actuator Artifact: An actuator artifact (cf. Fig. 3(b)) allows modeling actua-
tors (e.g., electric motor, relay, light, and microphone). This enables the process
to react to situations, e.g., by opening a window as soon as a certain temperature
threshold is exceeded. An actuator is controlled by the task associated with the
corresponding actuator artifact. All necessary information about the actuator
is captured by the actuator artifact. The corresponding task is completed suc-
cessfully once it has received a positive response from the actuator. Note that
the representation of the artifact is generic, allowing for the representation of
arbitrary actuator types.

Actuator Group Artifact: An actuator group artifact is represented by a col-
lapsed actuator artifact (cf. Fig. 3b) and shows the same behavior as an actuator
artifact. More precisely, an actuator group artifact combines multiple actuator
artifacts (n ě 2, with n being number of actuator artifacts). Figure 3b shows an
example combining both sensor and actuator artifacts.

Query sensors

S
SS

Query sensors

S

+

Temp
sensor 1

Temp
sensor 2 Temp

sensor 3

Temperature 
sensors

(a) Usage of sensor artifact and sensor
group artifact

Set dimming 
level according 

to intensity

Set dimming 
level according 

to intensity

A
A

S
A

+

S

Intensity
sensor

Lamp 2
Lamp 1

Lamps
Intensity
sensor

(b) Usage of actuator artifact and
actuator group artifact

Fig. 3. Using extended IoT elements in BPMN 2.0.



A Holistic Framework for IoT-Aware Business Processes 93

Catch Artifact: A catch artifact (cf. Fig. 4a) allows checking a condition during
task processing in combination with a boundary timer event. Immediately after
starting the task, the respective condition is continuously checked. All necessary
information about the condition is provided by the catch artifact. The task
may be completed successfully only when meeting the specified condition. If the
condition is not satisfied within the time period specified by the boundary timer
event, the sequence flow attached to the latter is executed (cf. Fig. 4a). If other
artifacts are attached to the task, their execution and verification run in parallel.

Catch Group Artifact: A catch group artifact is represented by a collapsed
catch artifact. It shows the same behavior as a catch artifact (cf. Fig. 2). As
depicted in Fig. 4a, the group artifact aggregates multiple catch artifacts to
increase the abstraction level (n ě 2, with n being number of catch artifacts).

Object Artifact: An object artifact (cf. Fig. 2) enables the modeling of physi-
cal objects (e.g., service robot, machine, or smart factory) of the environment, in
which the business process is executed. As illustrated in Fig. 4b An object arti-
fact may contain both sensors and actuators. On one hand, this allows hiding
unnecessary information from domain experts. On the other, modeling becomes
more accurate when using an object artifact.

Check if patient 
arrived

Set dimming 
level according 

to intensity

S S S

+

Light
barrier

Motion
detector

Motion detector /
Light barrier

5 min. 5 min.

(a) Usage of IoT intermediate catch
and group artifact

Control Smart 
Home

Control Smart 
Home

S
A

+

A

A
Temperature

sensor

Living room
lights Living room

blind

Smart Home

(b) Usage of IoT Object artifact

Fig. 4. Using extended IoT elements in BPMN 2.0.

IoT Boundary Event: An IoT boundary event (cf. Fig. 5a) may be used to
define a condition and redirect the sequence flow accordingly if this condition
becomes fulfilled during task execution. After starting the task, the condition
is continuously checked. This condition checking terminates either upon task
completion or when meeting the condition. Note that all events use sequence
flow as connection type.

IoT Start Event: To enable the start of an IoT-aware process based on
IoT sensors, the IoT start event (cf. Fig. 5a) can be used. It trigger a process
instance when meeting the specified start condition (e.g., temperature ě 20 ◦C
or “motion detected”).



94 Y. Kirikkayis et al.

IoT End Event: An IoT end event (cf. Fig. 5a) triggers the execution and/or
control of an actuator and terminates the corresponding process instance. Unlike
the IoT start event, the end event has a thicker border.

Weight
workpiece

Weight >
1000 kg

Workpiece 
arrived

Start alarm

(a) Usage of IoT Boundary,
start, and end Event

Transport 
box to 

warehouse

Box arrived at
warehouse

(b) Usage of IoT
intermediate catch and

throw event

Fig. 5. Using extended IoT elements in BPMN 2.0.

IoT Intermediate Catch Event: An IoT intermediate catch event (cf. Fig. 5b)
is linked to an IoT sensor. It enables the process to check a physical condition
along the sequence flow (e.g. volume > 60 decibels). More precisely, when reach-
ing an IoT intermediate catch event the sequence flow does not continue until
its corresponding condition is met. Note that an artifact (e.g., sensor or actuator
artifact) must not be linked to an IoT intermediate catch event.

IoT Intermediate Throw Event: To control an actuator along a sequence
flow, the IoT intermediate throw event (cf. Fig. 5b) may be used. Semantically,
such events corresponds to a task with a linked actuator artifact. However, only
one actuator may be controlled at the same time in the context of an IoT interme-
diate throw event. The latter is successfully completed upon receipt of a positive
response from the actuator. Only then, the sequence flow continues.

4 Business Process Management System for IoT

To execute and monitor IoT-aware processes based on the the described BPMN
2.0 extension, an appropriate software architecture is needed that implements the
behavior of the various elements. A coarse-grained view on such an architecture
is shown in Fig. 6. It consists of three main components, i.e., BPM system,
MQTT broker, and IoT services. An IoT service controls or queries IoT devices
and offers corresponding functions via its interface (e.g. REST API), while at
the same time hiding technical peculiarities of the IoT devices from the calling
environment (e.g. the IoT-aware process engine). For example, an IoT service
may provide an endpoint to allow querying the room temperature, which can
then be fetched with a GET request.



A Holistic Framework for IoT-Aware Business Processes 95

BPM
System

IoT Services

response

query

response

control

REST /
SOAP /

...

GET / POST

Response

IoT Representatives

(Sensors, ...)

IoT Representatives

(Actuators, ...)

Backend

MQTT

MQTT
Broker

subscribe
publish

publish
XML

Modeling Tool

+ IoT ExtensionBPMN.iO

Status Update

Execution

+ IoT Extension

Monitoring

+ IoT ExtensionBPMN.iO

Bpmn-Engine

Fig. 6. Architecture of the BPM System.

The MQTT broker (cf. Fig. 6) is used to reduce the network load and to react
to occurring IoT events. IoT devices publish their data to the broker, which,
in turn, distributes these data to all subscribers. Thus, it becomes possible to
react to IoT events in real-time during process execution. The BPM system
consists of three main components, i.e., its modeling tool, execution engine, and
monitoring system. The modeling tool is based on bpmn.io1, extended with the
elements described in Sect. 3. The latter are therefore available for modeling
IoT-aware processes and can be configured for the respective execution context.
A complete process model contains all information necessary to execute the
IoT-aware process. The corresponding process model information is encoded in
an XML file. The corresponding XML format is machine-readable and, thus,
executable. The open source javascript workflow engine2 serves as the basis for
executing the IoT-aware processes. We extend the engine with the elements and
implement their behavior (e.g., to react to IoT events by subscribing to MQTT
topics, to query sensors, or to control actuators using GET/POST requests)
Sect. 3. If a new process instance is created the engine reads the XML file and
then starts process execution. The monitoring component, in turn, uses bpmn.io
with the IoT extension as a basis, just like the modeling tool. However, the
process model can only be viewed and not edited. The execution engine ensures
that the state and the data of the process instance become updated in real time,
i.e., users can always view the current state of the running IoT-aware process.
Corresponding color markings indicate to them how far the execution of the
IoT-aware process has progressed and where errors have occurred.

5 Smart Factory Scenario Process

In the following, we illustrate the modeling, execution, and monitoring of an IoT-
aware process along a sophisticated smart factory scenario. Using the scenario
we want to investigate whether the framework enables the generic integration of
business processes with IoT capabilities. Note that we also applied the frame-
work to IoT-aware processes from other domains such as smart home, smart
healthcare, and smart logistics.
1 https://bpmn.io.
2 https://github.com/paed01/bpmn-engine.

https://bpmn.io
https://github.com/paed01/bpmn-engine


96 Y. Kirikkayis et al.

We use physical simulation models developed by Fischertechnik R©(FT)3 to
emulate the smart factory. These models simulate a complete production line as
shown in Fig. 7. The smart factory consists of 5 stations, i.e. high-bay warehouse,
vacuum gripper robot, oven, milling machine, and sorting machine.

Smart Factory

High-Bay Warehouse

EC01

LM01LM04 LM03 LM02

LB02 LB01

Oven

Milling Machine

Vacuum Gripper Robot

EC03

10
EC02

CR01

LM05

LM06

LM07

Milling Machine

LB04

LB03 LM09

LM10

Sorting Machine

LB07 LB06 LB05

10

EC04

CL01 CR03

TS02 CR02

LM08

Oven

VR01 VR02 BN01 BN02

HD01 HD02 AQ01 AQ02

Sorting Machine

High-Bay Warehouse

Vacuum Gripper Robot

Fig. 7. Overview of sensors in the smart factory.

The smart factory is equipped with six different types of IoT sensors (cf.
Fig. 7).

– Limit switch sensors (represented by red circles and labeled as LM ).
– Light barrier sensors (represented by yellow circles and labeled as LB).
– Pressure sensors (represented by blue circles and labeled as CR).
– Temperature sensors (represented by orange circles and labeled as TS ).
– Encoder sensors (represented by cyan circles and labeled as EC ).
– Color sensors (represented by purple circles and labeled as CL).

In addition to the sensors installed in the smart factory, the scenario comprises
sensors that measure the environment:

– Vibration sensors (represented by pink circles and labeled as VR).
– Brightness sensors (represented by green circles and labeled as BN ).
– Humidity sensors (represented by neon green circles and labeled as HD).
– Air quality sensors (represented by dark red circles and labeled as AQ).

In total, the smart factory is equipped with 34 sensors (cf. Fig. 7), i.e. 7 light
barrier sensors that detect the interruption of a light beam and display it as an
electrical signal, 10 limit switch sensors actuated by the movement of a machine

3 https://www.fischertechnik.de/en/simulating/industry-4-0.

https://www.fischertechnik.de/en/simulating/industry-4-0


A Holistic Framework for IoT-Aware Business Processes 97

part or the presence of an object, 3 pressure sensors that measure the overpres-
sure of the suction, 1 temperature sensor that measures the temperature in the
oven, 4 encoder sensors that return the current position of the motors, and 1
color sensor to recognize the workpiece color in the sorting machine. In order to
be able to assess the workpiece quality, 2 vibration sensors, 2 brightness sensors,
2 humidity sensors, and 2 air quality sensors are additionally used as well.

Custom 
IoT Elements

Selected 
Catch Artifact

Properties
Panel

Object Artifact

Property Setting Of
Selected Catch Artifact

IoT
Intermediate
Catch Event

Fig. 8. Modeling and configuring IoT-aware process with the modeling tool.

Figure 8 shows an example of a manufacturing process of the smart factory
that we can model, configure, execute, and monitor with our approach. First,
a white workpiece (WP) is taken from the high-bay warehouse to the transfer
point. In parallel, the vacuum gripper moves to the transfer point and waits
there until the workpiece arrives. Waiting is realized with a catch artifact (cf.
Sect. 3), which is attached to a task. This artifact checks for the triggering of
a light barrier. If the condition is not met within 120 s, the process terminates.
As soon as the workpiece has arrived at the transfer point, the vacuum gripper
transports it to the oven. The transport is realized by an object artifact (cf.
Sect. 3). In parallel, the oven waits until the workpiece arrives. Upon arrival, the
workpiece is burned and then transported to the turntable where it is milled.
Afterwards the workpiece is moved on a conveyor belt to the sorting machine.
Once the light barrier is triggered, the color of the workpiece is detected and the
workpiece is sorted according to color. Then, the process terminates.

The smart factory is controlled with the Business Process Management Sys-
tem (BPMS) presented in Sect. 4. First of all, the IoT-aware process needs to be
modeled, including the configuration of the involved IoT devices. Figure 8 shows
the modeling component of the BPMS that provides all standard BPMN 2.0
elements as well as the newly introduced IoT-specific elements (cf. Sect. 4). The
process model shown in Fig. 8 comprises an object artifact, an IoT intermediate
catch event, and a sensor catch artifact. In the properties panel (cf. Fig. 8), the
IoT condition (cf. Sect. 4) is configured using properties. Figure 8 shows the con-
figuration of the selected sensor catch artifact. For all group artifacts as well as
for the object artifact, one may use the plus symbol of the Add Property label
to add another condition. The following properties need to be set for the catch



98 Y. Kirikkayis et al.

artifact: (i) an endpoint, (ii) an attribute to be accessed from the response, and
(iii) the condition that needs to be statisfied in order to continue process execu-
tion. Since a boundary timer event is attached to task Wait until WP arrived at
transfer point, the condition is checked for correctness only as long as the spec-
ified timeout has not been triggered yet. If the timeout is reached, however, the
corresponding sequence flow is executed and process execution then terminates.
After modeling, the process can be exported as a machine-readable XML file.
This XML file contains all the information required to execute the IoT-driven
process.

The modeled and configured IoT-aware process is then deployed to the exe-
cution engine of the BPM system, and new process instances may be created
and started. Figure 9 shows the execution of one such instance. All elements
colored in green have been successfully executed; their actual execution time is
attached as a yellow colored overlay. The elements colored in orange are currently
executed. In case of an error (e.g., network error or timeout during execution),
the corresponding elements are colored in red. On the right side an execution
log is displayed, which shows relevant events (e.g., current progress and error
messages).

Task in
Execution

Object Artifact in
Execution

Successfully
Executed Task

Successfully
Executed

Object Artifact

Fig. 9. IoT-aware smart factory process in execution. (Color figure online)

6 Related Work

There exist several works that introduce BPMN notations and extensions for
capturing IoT aspects of business processes [12]. [7] enhances BPMN with a sen-
sor task that covers the following aspects: (i) sensor service, (ii) sensor handler,
and (iii) sensor device. For representing physical entities (e.g. a bottle of milk)
a collapsed pool is used in [8]. In addition, two task types for sensing and actu-
ation are introduced. [9] introduces a wireless sensor network (WSN) task and a
WSN pool. The WSN task has an actionType (e.g. sensing (?) or actuation (!)).
In [10], an Industry 4.0 process modeling language (I4PML) based on BPMN
2.0 is presented. I4PML comprises the following elements: (i) cloud app, (ii)
IoT device, (iii) device data, (iv) actuation task, (v) sensing task, (vi) human
computer interface, and (vii) mobility aspect. uBPMN [11], in turn, introduces
additional elements for camera, collector, sensor, and microphone. Each of these
elements is represented by its own task and event types.



A Holistic Framework for IoT-Aware Business Processes 99

The existing approaches enable modeling IoT aspects in BPMN. However,
the approaches are either too specific or cannot fully represent the behavior of
IoT devices. For example, none of the approaches enables the modeling of an
IoT boundary event. Another scenario that cannot be modeled with existing
approaches concerns the verification of an IoT condition when processing a task.

None of the described approaches allows modeling IoT-aware processes at dif-
ferent levels of abstraction as our approach does (cf. Sect. 4). Note that different
abstraction levels enable different process views for the various stakeholders (e.g.,
process expert, IoT expert, or domain expert). Moreover, existing approaches
do not support the execution and monitoring of the elements they introduced.
Table 1 summarizes the approaches (with ✗ expressing missing support and ✓
indicating support of the respective feature). As can be easily seen, none of
the existing approaches encompasses IoT-enabled processes with the necessary
treatment.

Table 1. Comparison of related work.

Sensor Actuator Combining
sensor and
actuator

Start
event

End
event

React to IoT
within a task

Intermediate
event

Condition
element

Physical
entity

IoT
data
object

Abstraction
level

Multiinstance Execution
engine

Score

Cheng et al. [7] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 1/12

Meyer et al. [8] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 3/12

Sungur et al. [9] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 3/12

I4PML [10] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ 4/12

uBPMN [11] ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ 5/12

This work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 11/12

7 Conclusions and Outlook

This paper presented a BPMN 2.0 extension to enable the modeling, execu-
tion, and monitoring of IoT-aware business processes. Taking the given problem
statement as well as the insights we gained from our literature review, we were
able to identified fundamental challenges regarding the modeling, execution, and
monitoring of IoT-aware business processes. We extended BPMN 2.0 with IoT
artifacts and events that address the identified gaps. The added elements allow
collecting, capturing, and exchanging data about the physical world over the
Internet with the sensor artifact as well as controlling actuators with the actua-
tor artifact. In addition, IoT conditions may be validated during task processing
by the IoT intermediate catch artifacts as well as along the sequence flow with
the IoT intermediate events. Furthermore, process start may be triggered by an
IoT condition associated with an IoT start event and a process end may execute
an actuator with the IoT end event. Finally, the IoT boundary event allows redi-
recting the sequence flow based on an IoT condition. In addition to the BPMN
2.0 IoT-related extensions, we presented an architecture to execute and monitor
the modeled IoT-aware processes. The architecture allows for the execution and
monitoring of IoT-aware processes in real time. Moreover, we applied our app-
roach to a smart factory case to demonstrate that the framework is beneficial
for modeling, executing, and monitoring IoT-aware business processes.



100 Y. Kirikkayis et al.

In future work, we want to make our framework multi-instance capable. In
addition, we would like to generate IoT-enhanced logs and exploit them for an
advanced process support treatment (e.g. to discover deviation between digital
processes and their counterparts in the physical world or to improve process
analytics). Moreover, we will conduct additional case studies of different domains
to validate the domain independence.

References

1. Chang, C., Srirama, S.N., Buyya, R.: Mobile cloud business process management
systems for the internet of things: a survey. ACM Comput. Surv. 49, 1–42 (2016)

2. Ashton, K.: That ‘internet of things’ thing. RFID J. 22, 97–114 (2009)
3. Kirikkayis, Y., Gallik, F., Reichert, M.: Towards a comprehensive BPMN extension

for modeling IoT-aware processes in business process models. In: Guizzardi, R.,
Ralyté, J., Franch, X. (eds.) RCIS 2022. LNBIP, vol. 446, pp. 711–718. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-05760-1 47

4. Valderas, P., Torres, V., Serral, E.: Modelling and executing IoT-enhanced business
processes through BPMN and microservices. J. Syst. Softw. 184, 111139 (2022)

5. Janiesch, C., et al.: The internet of things meets business process management: a
manifesto. Syst. Man Cybern. Mag. 6, 34–44 (2020)

6. Hasić, F., Serral, E.: Executing IoT processes in BPMN 2.0: current support and
remaining challenges. In: RCIS (2019)

7. Cheng, Y., et al.: Modeling and deploying iot-aware business process applications
in sensor networks (2019)

8. Meyer, S., Ruppe, A., Hilty, L.: The things of the internet of things in BPMN. In:
Conference in Advanced Information Systems Engineering Workshops (2015)

9. Sungur, C.T., et al.: Extending BPMN for wireless sensor networks. In: Business
Informatics (2013)

10. Petrasch, R., Hentschke, R.: Process modeling for industry 4.0 applications towards
an industry 4.0 process modeling language and method. In: Computer Science and
Software Engineering (2016)

11. Alaaeddine, et al.: uBPMN: a BPMN extension for modeling ubiquitous business
processes. Inf. Softw. Technol. 74, 55–68 (2016)

12. Torres, V., Serral, E., Valderas, P., Pelechano, V., Grefen, V.: Modeling of IoT
devices in business processes: a systematic mapping study. In: CBI (2020)

13. Marrella, A., Mecella, M., Sardina, S.: SmartPM: an adaptive process management
system through situation calculus, IndiGolog, and classical planning. In: Principles
of Knowledge Representation and Reasoning (2014)

14. Kirikkayis, Y., Gallik, F., Reichert, M.: Modeling, executing and monitoring IoT-
driven business rules with BPMN and DMN: current support and challenges. In:
Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M.,
Fonseca, C.M. (eds.) EDOC 2022. LNCS, vol. 13585, pp. 111–127. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17604-3 7

https://doi.org/10.1007/978-3-031-05760-1_47
https://doi.org/10.1007/978-3-031-17604-3_7

	A Holistic Framework for IoT-Aware Business Processes
	1 Introduction
	2 Problem Statement
	3 Solution Proposal
	4 Business Process Management System for IoT
	5 Smart Factory Scenario Process
	6 Related Work
	7 Conclusions and Outlook
	References




