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Abstract. With the onset of the Internet of Things (IoT) everyday
objects suddenly become data sources equipped with sensors measuring
the object’s properties and surroundings. However, the lack of process-
awareness in IoT environments (e.g., smart factories) prevents the adop-
tion of more sophisticated process analysis and optimization. One hurdle
is the differing abstraction level of low-level sensor data and process-level
activities. We propose a method to identify activities step-by-step from
raw JoT data using visualizations. By relying on minimal process knowl-
edge, we discover process activities from sensor events. These activities
are represented by specific sequences of sensor events—Activity Signa-
tures—that serve as a basis for finding similar activities. We demonstrate
the method’s validity with a proof of concept in a smart factory.
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1 Introduction

With the onset of the Internet of Things (IoT), more and more domains are per-
vaded with sensors and actuators controlled by software [22]. Physical objects
suddenly produce data about their state, surroundings and the processes they
are involved in [10]. However, process-awareness in the sense of Business Pro-
cess Management (BPM) is still very-low in IoT as there usually is no workflow
management system (WIMS) available to orchestrate or monitor processes [15].
The BPM-IoT Manifesto discusses various challenges and benefits of bringing
both domains together [6]. With this work, we investigate how process activity
executions in IoT can be linked to sensor data from the respective IoT devices
and vice versa. The goal is to discover activities from raw IoT sensor data,
thereby addressing the challenge of “Bridging the Gap Between Event-Based and
Process-Based Systems” [6]. Existing approaches like supervised machine learn-
ing (ML) rely on inputs from the WIMS (e.g., activity labels). Unsupervised ML
struggles with feature selection, especially with thousands of sensors as inputs.
We propose a novel visualization-based method to enable the identification of
activities from raw sensor data that serves as basis for future automation of
sensor data analysis. The following research questions guide our investigations:
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RQ1 What are reasonable assumptions and steps to analyze sensor data for
process activities in IoT?

RQ2 How can sensor data be associated with activity executions to poten-
tially automate the detection of activities from sensor data?

The paper is structured as follows: Sect.2 introduces relevant background.
Section 3 discusses related work. Section 4 introduces the new method for activity
detection from sensor data. Section 5 demonstrates and discusses the method’s
validity. Section 6 concludes this paper and gives an outlook on future work.

2 Basic Concepts and Context

This work is closely related to research at the intersection of BPM and IoT/CPS
(Cyber-physical Systems). We propose to adapt the “Ingredients of a busi-
ness process” [3] combined with the “UML representation of the IoT Domain
Model” [1] as basic conceptual model for bringing both fields together (cf. Fig. 1).

Business | : Event
Process

i

*| Decision
Point
N; involves J/.
i ‘ o 1 represented by
Resource Object Activity
lf performs ’T
[
Cyber-physical 1 * CPS 1 Q/* \1/* N
System Component s
Actuator Sensor [ produces ensor

Event
1 1 -

acts produces

Fig. 1. Meta-model with basic concepts from BPM and CPS used in this work.

2.1 Basic Concepts

Business Process Management: BPM is “[...] a well-established discipline that
deals with the identification, discovery, analysis, (re)design, implementation, exe-
cution, monitoring, and evolution of organizational procedures” [3]. Business
Processes are chains of events, activities and decisions to achieve a desired out-
come [3]. Activities can be both fine-grained or coarse-grained units of work [3].
Resource in the context of BPM is “[...] a generic term to refer to anyone or
anything involved in the performance of a process activity” [3].

Cyber-Physical Systems and Internet of Things: CPS integrate computation
and physical processes where both the digital and physical systems affect each
other [11]. In IoT, everyday objects are interconnected and work together to
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accomplish an objective [10]. While IoT focuses on interoperability and commu-
nication among devices, CPS put emphasis on control and automation relying on
ToT for connectivity. As this fits well with our research, we use the term Cyber-
physical System (CPS) throughout this paper. In Smart Factories, hardware/-
software components that are composed of sensors, actuators and controllers
work together in manufacturing cells to achieve a production outcome [15]. We
call these self-contained cells CPS Components of a smart factory represent-
ing CPS. We treat CPS components as resources that execute activities of a
production-related business process [12]. Our investigations focus on the relation
between sensor data and activity executions by the CPS components (cf. Fig. 1).

Sensors and Actuators: Sensors monitor a physical entity and provide informa-
tion about its physical and virtual properties [10]. They can be attached to, or
embedded in the entity’s structure or be placed in its environment [10]. Actua-
tors modify the entity’s physical state or influence other entities’ functionalities
(e.g., via motors or valves in the CPS components) [10]. They also produce data
(e.g., regarding their states) that we treat as sensor data. Thus, we refer to both,
data from sensors and actuators, as Sensor Data/Sensor Events in this paper.

2.2 Context: Fischertechnik Factory Model

Environment
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Fig. 2. Smart factory simulation model as a CPS representative [15].

Figure 2 shows the Fischertechnik smart factory model that represents CPS in
our work [15]. Each highlighted station is one CPS component (e.g., HBW,
VGR, SLD). The factory features realistic discrete manufacturing processes and
CPS components, each equipped with a multitude of sensors (e.g., light-barriers,
switches) and actuators (e.g., motors, valves) [12]. We rely on the software stack
presented in [14] for controlling the smart factory.
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{"UUID": "91c4£fd59-27d7-477b-ael8-2ef8b6£04cb5",

"timestamp": "2022-02-23 10:34:23.72",

"iv: o1, "...v, "in": o0,

"o 1": 0, "...", "o n": 0,

"m_1 speed": 0, "...", "m n_speed": ,

"target pos_x": ,"target _pos_y": 0,"target_pos_z": }

Fig. 3. Exemplary payload in JSON for one message in the VGR topic.

Sensor and Actuator Fvent Streams: An MQTT (Message Queuing Telemetry
Transport [19]) broker streams sensor events from the smart factory during its
operation. We use one Topic per CPS component, which is a message channel
for clients to subscribe to and receive messages. Figure 3 shows the payload of an
MQTT message including multiple attributes that represent individual sensor
and actuator events: unique identifier of the message (Line 1); timestamp when

the message is generated (Line 2); i_1 ... i.n for input values from sensors
(Line 3); o1 ... o.n for states of output devices, e.g., valves or compressors
(Line 4); m_1 ... m_n for motor speeds (Line 5); additional component-related

parameters, e.g., target positions (Line 6). We subscribe to all topics (= CPS
components from Fig. 2) and record the messages for offline analysis.

2.3 Process Awareness in Sensor Data

" Process (Instance) Process execution knowledge (called Process
4 Process (Type) Awareness) that can be associated with sen-
e Activity (Instance) sor data exists on a spectrum (cf. Fig.4) [2].
z Activity (Type) It ranges from only knowing the charac-
2 CPS Components as Resources teristics of individual sensors (as discussed,
n"g_’ CPS Topology e.g., in [8]) to being able to associate a con-

Sensor Characteristics crete activity and process instance with a

given sensor event (as discussed, e.g., in [13]).
Fig. 4. Bottom-up process aware- Our basic assumption is that a WIMS does
ness associated with sensor data. not always exist to coordinate and monitor

process executions in CPS [15]. Our goal is
to gradually increase process awareness in sensor data following a bottom-up
approach.

3 Related Work

CPS introduce new approaches, e.g., for condition monitoring or predictive main-
tenance based on recorded sensor data [5]. Massive amounts of data, different
data formats, sampling rates, and data quality are among the challenges that
come with using sensor data [9]. Existing works use different types of data for
the discovery of events and activities at different levels [2]. Koschmider et al.
provide a framework to discover processes from sensor data. Accordingly, we
focus on “Activity Discovery”, and “Event Abstraction”, where we relate events
to the start or completion of process activities [8].
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Going from sensor data to data suitable for process mining poses challenges
regarding event extraction, abstraction, and event correlation [2,6]. Identifying
relevant data for process mining and extracting it from different sources is part
of Event FExtraction [2]. This data often resides in traditional databases and
information systems in the form of Fvent Logs. Existing approaches identify this
data using, e.g., database schemas, process documents, domain models, event
models, and/or domain knowledge [2,7]. In our work, we use sensors and actua-
tors in CPS as data sources. Event abstraction in the context of BPM focuses on
the abstraction gap between the granularity at which the data is recorded and
at which it is analyzed [2,6,25]. When considering sensor data, the challenge
of mapping fine-grained sensor data to more abstract process activities becomes
more pronounced [6,24]. In literature [24], various approaches exist to bridge this
abstraction gap using, e.g., Complex Event Processing (CEP) [15, 18] or machine
learning (ML) [4,8,20].

Most works assume rather high levels of process knowledge when discovering
activities and processes from sensor data (cf. Fig.4), i.e., existing activity labels
only have to be connected to the raw events [2,13]. With almost no process
knowledge and limited CPS topology knowledge (lower end of the spectrum,
cf. Fig.4) most approaches are not applicable. Supervised ML needs activity
labels to learn. Unsupervised methods like clustering could find activities, yet the
amount of features (thousands of sensor) make it hard to gain valuable insights.
We exploit existing CPS topology knowledge and assume CPS components to
act as resources to then use data visualizations for building a Knowledge Base
(KB) of CPS-based activities which can be labeled by domain experts and be
used for further identification and labeling of activities in unknown datasets.

4 Method to Identify Activities from Sensor Events

The method to identify activities from sensor data is comprised of multiple steps
to visualize data, filter by CPS component, and incrementally refine activities
(cf. Fig.5). We base the method on the Visual Information Seeking Mantra:
“Overview first, zoom and filter, then details-on-demand” [17]. In the following,
we explain each step from a conceptual point and illustrate it with an example.

Repeat for all relevant CPS components

Refine 5. Determine and
save activity
i ig in KB }
. " " e 7. Visualize all
1. Visualize all 2. Identify " 4. Find first and " P e
sensor data over [~| relevant CPS [ O FIerby CPS ol Mooy ogges of Repeat 6. Find similar | |31 detected activities
" component ° " activities over time
time components r

segments

T

Fig. 5. Method to identify activities by visualizing sensor events.
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4.1 Visualize All Sensor Data Over Time

We plot all sensor data from a given dataset to provide an overview for the
analyst (Overview First [17]). The y-axis shows the concrete values of all sensors
and the x-axis shows the associated timestamps.

Example: Figure6 shows all sensor data from our smart factory over a
recorded timeframe. Each graph represents one sensor from a CPS component,
e.g., VGR_il refers to sensor il from VGR (cf. Sect.2.2). Even with this small
CPS setting, there is a plethora of graphs for all sensors that populate data
(cf. Fig. 3).

LRl
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!
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Fig. 6. Recorded sensor data from smart factory model.

4.2 Identify Relevant CPS Components

The relevant CPS components are identified. We assume that components rel-
evant for the activity identification show changes within their associated sensor
data when executing activities. However, not all CPS components that populate
sensor data are also executing activities. This step cannot be fully automated as
the relevance should be confirmed by the analyst.

Ezample: We identify the vacuum gripper crane (“VGR”) as relevant CPS com-
ponent since the values of its associated sensors change over time (cf. Fig.7).
An example for an “irrelevant” component is an environment sensor constantly
measuring temperature that may not be associated with a specific activity.

4.3 Filter by CPS Component

We filter the sensor data by the first relevant CPS component to only visualize
data related to one CPS component. Here we assume that one activity is exe-
cuted by one CPS component (cf. Fig. 1), i.e., only one CPS component shows
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changes in its sensor values that are relevant for activity detection. This is step
is repeated for all relevant CPS components.

Ezxample: Figure 7 shows the sensor data for component “VGR” which we iden-
tified as a relevant component in step 2. Still, the entire recorded timeframe is
shown.

®VGR_il
®VGR i2

: IMH | | NINATHINHTNET uM“muummuu D

®VGR m1
®VGR_m2
VGR_m3

VGR_target_pos_x

VGR_target_pos_y

@ VGR _target_pos_z

1645612500 1645612550 1645612600

Activity A

1645612450

VGR_m2: VGR_target_pos_y: Timestamp

. o VGR_08: End of activit
Begin of activity ~End of refined activity 0 nd of activity

Fig. 7. Identifying and refining activity boundaries for the VGR component based on
the first and last edges of segments.

4.4 Identify First and Last Edges of Segments

We search for first and last edges of segments that can be indications of activi-
ties. We assume that one CPS component executes only one activity at a time
(i.e., there is no batch processing, but only discrete manufacturing steps [21]).
By definition an actuator performs work. Thus, an actuator becoming “active”
or the occurrence of a “start pattern” (i.e., a combination/sequence of multiple
sensors/actuators becoming active) are good indications for an activity’s start.
The same holds for the end when an actuator stops or an “end pattern” occurs.
Times where CPS components are inactive can be short “breaks” that are part
of the execution of one activity or they can be an indicator for an activity’s end.
Additionally, we can factor in context to differentiate activities, e.g., the switch
to another CPS component is an indicator for an activity’s end rather than a
break. Since we may not be able to distinguish between the execution of two
activities by the same CPS component in sequence, we have to zoom in to the
identified activity and repeat this step to refine an activity. An indication for
these refinements could be that the set of the CPS component’s involved sen-
sors/actuators or the pattern of sensor data changes significantly. This strongly
relies on the visualization and analyst’s knowledge.



Method to Identify Process Activities by Visualizing Sensor Events 83

Ezxample: In Fig.7 we see the first raising and last falling edges of an activ-
ity block. With “VGR_m2”, an actuator (here: motor) of VGR is switched on
which indicates that an activity starts. The last edge shows “VGR-08” (here:
a compressor) switching off followed by a break which indicates the end of the
activity. Figure 8 shows this identified activity (black borders). This figure also
shows the result of refining the activity (red borders): the VGR executes trans-
port activities and the sensor “VGR _target_pos_y” provides context as to where
the crane moves. Since this value changes in the next segment we assume that
one transport activity stops and another starts. We now have identified a single
activity “Activity A” that does not need to be refined further. As stated before,
these refinement steps depend heavily on the knowledge of the analyst.

4.5 Determine and Save Activity Signature in Knowledge Base

(KB)
10
@GR i1
@®VGR_i2
®VGR_i3
®VGR_i4
®\GR_i7
®\GR_i8
VGR_o7
®VGR 08
f\ ,\ ®VGR_m1
R ®VGR m2
VGR.m3
@ VGR target_pos_x
VGR_target_pos_y
®VGR target_pos_z
0 5000 0000 15000 20000
tas: Begin of Activity A Timestamp tae: End of Activity A

Fig. 8. Activity signature of “Activity A” executed by CPS component “VGR”.

The Activity Signature of the identified activity is determined (details-on-
demand [17]). This signature refers to the distinct sequence of all sensor data for
the specified CPS component within the identified activity boundaries, i.e., its
start time ¢ 45 and its end time t4.. The determined activity signature is saved
in a KB with a label (e.g., “Activity A”) and the respective sensor data as multi-
variate time series for all timestamps t,,: tas < t, < ta.. Thereby, the absolute
event timestamps are replaced with relative timestamps starting at t45, = 0 for
the start of the activity until the end of the activity ta. to search for similar
activity signatures within the given dataset in the next step.
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Example: Figure8 shows the Activity Signature for “Activity A” executed by
the vacuum gripper crane (“VGR”). More specific activity labels have to be
provided by the analyst. This signature is stored in a time series database.

4.6 Find Similar Activities

We look for activities based on similarity with the determined signature. This
can be achieved by zooming out and visually finding the activity signature for
the specific CPS component within the dataset. Visual pattern matching quickly
becomes infeasible for determining similarity here since activity signatures can
easily grow in complexity, i.e., they may consist of a multitude of sensors and
actuators, and patterns within the sensor data over a longer period of time.
Moreover, our data shows that the same activities do not necessarily have iden-
tical activity signatures, e.g., due to minor variations in sensor and actuator
behavior or different process parameters. Thus we need a way to approximate
the similarity of the time-series data where the analyst can define a threshold for
when an activity is accepted as similar [16]. We are currently investigating the
use of Matriz Profiles in multi-variate time series as a novel way of calculating
these approximations to determine the similarity of signatures [23].

Example: Figure9 shows multiple identified activities along the entire timeline.
The activity signatures of activities “A”, “B”, “C” and “D” were determined in
the previous steps. We zoomed out and found similar segments in the dataset
that can also be marked as “A”, “B”, “C” or “D”.

4.7 Visualize All Detected Activities over Time

®VGR it

“ e

Timestamp

Fig. 9. All detected activities for the CPS component VGR over entire timeline.
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After repeating Steps 3-6 in Fig. 5 for relevant CPS components and repeating
Steps 4-6 identify new activities within unidentified segments, all detected activ-
ities are visualized for all CPS components over the entire timeline to identify
process instances. Recurring patterns of activity sequences might be an indica-
tion for the execution of different process instances of the same process. However,
we cannot fully say if these repeated sequences could also be part of the same
instance. Moreover, we limit our approach based on the assumption that only
one process instance can be executed at a time, which is reasonable for many
discrete manufacturing settings [21].

Example: Figure9 shows recurring sequences of activities “A”, “B”, “C” and
“D” for the VGR in chronological order. This might indicate that two instances
of the same process were executed in sequence. Unlabeled segments are either
parts that we were not able to identify or classified as noise or inactivity by the
analyst.

5 Proof of Concept and Discussion
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Fig. 10. Overlay of identified activities with event log data.

The software stack used for data recording also features a WfMS for process
execution and generating an Event Log [14]. When developing the method (cf.
Sect. 4), we assumed that the analyst does not have access to this event log. To
provide a proof of concept showing the validity of our proposed method in this
early development stage, we overlaid the event log data with the activities we
identified from the sensor data (cf. Fig.10). The red graph shows the mapped
activities with their actual labels as executed by the WfMS. Apart from minor
temporal delays resulting from different timestamp resolutions, we can see an
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almost exact match between the logged activities and the identified activities.
The example also nicely shows that activity signatures for the same type of
activity (cf. “Store Item in HBW?”) may differ as explained in Sect. 4.6.

Considering the research questions, we were able to answer RQ1 by propos-
ing a visualization-based method for analyzing sensor data to identify activity
executions while assuming minimal process knowledge and making reasonable
assumptions for the domain of discrete manufacturing. Regarding RQ2, we are
able to associate sensor data with identified activities based on the novel concept
of Activity Signatures that can be used to automate the detection of similar activ-
ities. However, not all steps of the method can be completely automated. Espe-
cially the identification of relevant CPS components and the refinement of iden-
tified activities rely on the expertise of the analyst. Our proposed method follows
a bottom-up approach to increase process awareness step-by-step (cf. Sect. 2.3).
It is suited to identify activities as part of the control flow perspective as well as
the process resources (i.e., CPS components) that performed them. We can only
provide abstract activity labels without relying on further domain knowledge.
Although it was not an explicit goal, we are able to make statements about the
correlation of detected activities with process instances based on the assumption
that no batch processing or parallel process execution is performed.

6 Conclusion and Future Work

In this work, we proposed a method to identify activities from sensor data fol-
lowing a bottom-up approach. Assuming a low degree of process awareness and
limited knowledge about CPS, we apply various steps of overview, filter and
zoom, and details on demand [17] to visually identify activity executions from
sensor data. We also provide first approaches towards automating steps within
the method (e.g., based on the new concept of activity signatures). A proof of
concept evaluation with actual event log data from a WfMS has shown promising
results regarding the applicability of our method in smart manufacturing.

In future work, we will relax some of the assumptions made for the initial ver-
sion of the method (e.g., to also allow for parallel process executions). A larger
case study with data from our smart factory will be next. With this, we will
investigate the feasibility of the method when working with larger datasets. In
this context, we will further develop the concept of Activity Signatures to auto-
matically detect activities in unknown datasets based on similarity with known
activities [16,23]. We will also investigate if we are able to generate stream
processing applications from activity signatures to enable online activity detec-
tion [15].
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