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Abstract. Since IoT devices supporting business processes (BPs) in sec-
tors like manufacturing, logistics or healthcare can collect data on the
execution of the processes, there is a growing awareness of the opportu-
nity to use IoT data for process mining (PM). However, several challenges
need to be addressed to enable IoT-enhanced PM, among which the need
for a standard IoT-enhanced event log model. In this paper, we identify
four main challenges for the integration of IoT data in event logs, from
which 10 requirements for an IoT-enhanced event log model are derived.
We then analyse the two main current event log models, the extensible
event stream (XES) and the object-centric event log (OCEL), and con-
front them with the requirements, showing that both present important
limitations to storing IoT-enhanced event logs. Based on this analysis, we
conclude that a comprehensive data model is required to develop more
advanced IoT-enhanced PM techniques.
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1 Introduction

As IoT devices, i.e., sensors and actuators, are more widely used to support
the execution of business processes (BPs), there is a growing awareness of the
opportunity to use the data collected by these devices for process mining (PM).
Currently available PM methods capable of incorporating IoT data are consis-
tent in terms of strategy: IoT data are preprocessed in such a way that they
can be integrated in a classical event log format. This necessitates abstraction
techniques, either data- or expert-driven. Although this is a good first step in
including IoT data in PM, given the fact that it allows for application of the
existing set of control-flow and data-aware methods, this approach does not use
IoT data to their full potential. Most of the time, the derived high-level event
log omits context information (i.e., properties that can influence the execution
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of the process, see [29]) that could be derived from the IoT data, or is lim-
ited in the extent to which context information can be incorporated. Moreover,
by separating the abstraction phase from the discovery/analysis phase, the real
potential of advanced algorithms to jointly optimise abstraction and model dis-
covery, cannot be exploited. For instance, developing an IoT-enhanced decision
mining algorithm would require direct access to lower-level IoT data in order
to learn the most relevant features directly on the source data, instead of an
error-prone and lossy event abstraction step.

This observation relates strongly to limitations of the most commonly used
event log standards, i.e. the extensible event stream (XES, see [13]) and the
object-centric event log (OCEL, see [12]). Accordingly, in this paper, we present
four concrete contributions to further research on IoT-enhanced process mining.
First, we motivate the problem by describing possible new techniques that would
use IoT data to their full potential and demonstrate the impossibility to apply
them to a typical event log. Second, we put forward four specific challenges that
pertain to the integration of IoT data in event logs for PM, and illustrate these
challenges with a running example. Third, based on these challenges, we present
10 key requirements that a suitable model for IoT-enhanced event logs should
fulfil. Finally, the fourth contribution of this work consists of an assessment of
XES and OCEL in function of the identified requirements, to determine their
suitability and shortcomings.

Thus, this paper is structured as follows. Section 2 provides the motivation.
Section 3 discusses related work, before the running example is introduced in
Sect. 4. The challenges and requirements are put forward in Sects. 5 and 6,
respectively. Section 6.1 analyses XES and OCEL before concluding the paper
in Sect. 7.

2 Motivation

Table 1 provides a high-level overview of methods and techniques in the PM
field. The table is structured vertically along the three main process mining task
types. In the horizontal dimension, the evolution from a classical control-flow
perspective to data-aware and IoT-enhanced approaches is depicted. The second
and third column cover the lion’s share of process mining research so far. How-
ever, an important gap is still present in terms of developing IoT-enhanced pro-
cess mining techniques. The most prominent existing stream of research relates
to activity mining, i.e. approaches to derive higher level process events from
low-level IoT data [10,17,21,28,34,36]. Nonetheless, as illustrated by an only
evocative set of so far unaddressed research opportunities, denoted in italics
in Table 1, the widespread and grounded development of IoT-enhanced process
mining techniques, covering all process mining tasks and possible applications,
is far from realised yet. This is mainly due to the fact that the very source of
the opportunities of IoT data is their fine granularity, which enables a deeper
understanding of the process and the detection of finer patterns. As illustrated
by a non-exhaustive set of examples in the table, there exist many potential new
techniques that could be developed to take advantage of IoT data. For example:
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– IoT context-aware trace clustering : cluster traces based on the values of IoT-
derived context parameters.

– IoT-driven root cause analysis: delve into IoT measurements to discover the
root cause of process deviations.

– IoT-enhanced decision mining : incorporate IoT-derived context parameters
in decision mining.

– IoT-enhanced resource mining : use IoT data (e.g., location, tags) to mine the
fine-grained behaviour of resources in a process.

– IoT-enhanced predictive process monitoring : use IoT sensor data measure-
ments to facilitate real-time predictive process monitoring.

A common denominator of these envisioned IoT-enhanced PM techniques
is the fact that simply abstracting fine grained IoT data into a classical XES
or OCEL event log considerably limits analysis possibilities. Accordingly, this
paper provides a foundation for the development of a new standard adapted to
IoT-enhanced event logs, which is intended to give enough flexibility to develop
new techniques taking advantage of the possibilities of IoT data.

Table 1. Positioning of IoT-enhanced techniques within the PM field, extending
control-flow and data-aware approaches for all three main PM task types.

Control-flow Data-aware IoT-enhanced

PM task types Discovery • Control-flow
discovery
[1,19,37]

• Data-aware
process discovery
[20,23]

• Activity mining
[10,17,21,27,28,
34,36]

• Trace clustering
[6,31]

• Multi-
perspective trace
clustering [14]

• IoT
context-aware
trace clustering

• Multi-
perspective
process discovery
[22]

• IoT-enhanced
data-aware
process discovery
[2]

Conformance
checking

• Control-flow
conformance
checking [9]

• Data-aware
conformance
checking [38]

• IoT-enhanced
deviation
detection [26]

• IoT-driven root
cause analysis

Extension • Decision mining
[3]

• IoT-enhanced
decision mining

• Resource
mining [24]

• IoT-enhanced
resource mining

• Predictive
process
monitoring [8]

• IoT-enhanced
predictive process
monitoring

• Performance
analysis [5]

• Real-time
predictive process
monitoring
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To further substantiate our motivation, let us consider a lifelike example
to illustrate the main limitations of current standards. This example consists
in a smart distribution centre (DC), which receives products from warehouses,
assesses their quality and distributes them to supermarkets (adapted from [35]).
In this process, several instances (e.g. shipments, crates) are processed in paral-
lel, several decisions are made at different points, involving data from multiple
sensors and following more complex rules than simple thresholds.

The process begins with the arrival of a container loaded with crates of prod-
ucts at the smart DC. The first activity is a manual check of the quality and
freshness (based on, e.g., firmness, colour, damages) of a sample of the products.
The results are entered in the system by the worker performing the check. After
this, information about the product (e.g., name, harvest or production date) is
retrieved by scanning the label (i.e., the QR code) of the shipment, together with
data on the transport conditions recorded by sensors (e.g. temperature, humid-
ity, shocks). Based on the worker’s assessment and the evaluation of the overall
transport conditions, each crate of products is judged proper for consumption or
not. If it is, the crate is registered and stored in a suitably acclimatised refrig-
erated area to maximise product conservation. Otherwise, the crate is rejected
and discarded.

After the first product quality check, a second one is performed over a sample
of the products at the laboratory. If bacteria are detected, an alarm is triggered
and the crate is discarded. Otherwise, the crate can be shipped. Depending on
the quality of the products (as determined by the worker, the transport and
storage conditions and the lab analysis), the crate will either be moved to the
non-priority shipment area (if the products are excellent), or the crate will be set
for priority shipment to be sold as fast as possible, at a discount (if the quality
is not excellent). Finally, pallets are registered as shipped when they have left
the DC to the supermarket.

It is known that the human evaluation of the freshness of the products is
highly correlated with the transport conditions tracked by sensor data. We would
like to discover a threshold value from the data (i.e., using IoT-enhanced deci-
sion mining), but without more domain knowledge, it is necessary to store the
whole time series sensor data in the process event log to look for relationships
(correlations) between temperature and humidity values and the decision. How-
ever, it is not possible to store both data types in a typical event log. Some
sort of aggregation or abstraction needs to be applied to the time series sensor
data first, which requires knowing the relationship between sensor data and the
process flow beforehand; but that is not the case here, as this relationship is
what we would like to mine.

3 Related Work

3.1 Existing Standards for Event Logs

XES [13], the current standard event log model, is an XML-based model that
mainly consists of the notions of event, case, and log. It proposes standard
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attribute types to contextualise the events, e.g. the resource executing an activ-
ity, the cost of an activity, etc. A standard activity lifecycle is defined together
with XES, based on which the status of an activity could be mapped with events
relating to this activity. XES also allows the definition of new data attribute
types through the notion of extensions, thereby increasing the flexibility of the
model. Several implementations coexist, the main one being OpenXES1, which
is used by many event logs described in the literature.

Recently, the uptake of new technologies and the gain in maturity of the PM
field have increased the urge to create alternative models. Multiple propositions
that relax some assumptions of XES and allow for more flexibility in event data
storage have been presented, e.g., in [12,25]. Among them, the OCEL [12] was
designed to be more suitable for storing event logs extracted from relational
databases and is widely considered as the main challenger of XES today. It
replaces the strict notion of case with the concept of object, which generalises it
by allowing one event to be linked with multiple objects instead of a single case.
This removes the necessity to “flatten” the event log by picking one case notion
from the several potential case notions that often coexist in real-life processes.
A second noticeable difference with XES is the explicit inclusion of the concept
of activity in OCEL, which is absent in XES.

3.2 Process Mining Using IoT Data

As mentioned in Sect. 2, the vast majority of the process mining literature involv-
ing IoT data has focused on mining high-level events of the process from low-level
IoT data to create XES event logs (so-called activity mining in Table 1). Tradi-
tional process mining techniques can then be applied to these event logs to, e.g.,
discover control-flow models of the processes.

Trzcionkowska and Brzychczy describe a framework to create an event log
from industrial IoT data in four steps: data preprocessing, clustering low-level
data, classification to derive events from clusters and creation of the final event
log [34]. The event log obtained is in XES format and contains no data attribute.
Also focusing on industrial applications, Seiger et al. propose to transform raw
IoT data into an XES event log using complex event processing (CEP) and event
detection and refinement techniques [28]. They apply this approach to a smart
manufacturing case to mine a production process in a follow-up paper [27]. In
Valencia-Parra et al., a domain-specific language is developed to extract different
XES event logs from IoT data by specifying the case and activity identifiers [36].
Koschmider et al. [18] propose a model to go from low-level events captured by
sensors to instances of the process, by aggregating low-level events into high-level
events using methods like CEP. In a further work, the authors showed a more
systematic and complete framework [17], which assumes a sensor event log as
input, and consists of three event log creation steps: (1) event correlation, (2)
activity discovery, (3) event abstraction. This approach generates an XES event
log, from which a process model can be mined, and was applied to a smart home
scenario by Janssen et al. [16].

1 https://www.xes-standard.org/openxes/start.

https://www.xes-standard.org/openxes/start
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Although most of the existing literature is in activity mining, some of the
other possible techniques have also been investigated. Banham et al. [2] proposes
to perform data-aware process discovery with IoT-based attributes. A data Petri
Net is discovered from two real-life event logs, and rules behind some decisions
are mined based on IoT-derived attributes. The framework proposed requires
abstracting the IoT data to integrate them in an XES event log. A second work
is proposed by Rodriguez-Fernandez et al. [26], who present an approach for
IoT-enhanced deviation detection. In their paper, they argue that traditional
conformance checking cannot take into account data that can change over time
independently of the events of the process (i.e., time series data). They propose
a method to detect patterns in the time series data directly (in a so-called time-
series log). Remark that these papers bumped into the limitations of traditional
event logs: Banham et al. [2] had to abstract the IoT data, which implied making
important assumptions, and Rodriguez-Fernandez et al. [26] only used the time
series data as input to their technique because they could not integrate them in
an event log.

4 Challenges

Using this running example as illustration, we pinpoint four key challenges of IoT
data that make it difficult to integrate them in a traditional event log without
having prior knowledge about the process or making non-trivial assumptions.
These challenges are established based on an in-depth analysis of the literature
(see Sect. 3) and based on the authors’ experience in a number of case studies [33].
Observe that the literature also mentions other challenges than the ones listed
here, e.g., data quality or data volume. However, we focused on the challenges
that 1) have a direct influence on the mining and 2) pertain to the format of the
event log.

C1: Granularity. The granularity of the sensor can be considered a topmost
challenge [4,10,17,28,30,39]. Process decisions are usually not made based on
the raw sensor values, but rather depend on aggregations of the value of a sensor
over a certain time or on combinations of the values of several sensors. E.g., the
first decision is based on the humidity and temperature inside the refrigerated
truck over the whole transport. Granularity is usually dealt with in the event
abstraction step, i.e. it is considered as preprocessing. However, without prior
knowledge, there is no way to know which aggregation or combination of sensor
data should be applied to retrieve the relevant high-level context parameter that
determines the decision, and the event abstraction is a mining step, which should
be done based on the event log.

C2: Perspective convolution. IoT data can relate to events of the control-flow
or to the context of the process, or to both [2,15,30]. E.g., accelerometer data
could tell that crates of a product are being shaken during transport (context)
or that the crates are being loaded in the truck (control-flow), a spike in fridge
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temperature can indicate that the fridge is opened to put in or take out crates
(control-flow), etc. However, in existing event log standards, it is required to
choose between using the IoT data as process events or attributes of a case or
an event.

C3: Scope of relevance. The relevance of the IoT data, especially when it relates
to the context of a process, may not always be limited to an event or a case, but
can relate to several events or several cases [10,15,17]. E.g., the temperature in
the truck does not necessarily impact only one crate of products, but usually
many crates of different types of products transported in the same truck. And
logging the value of temperature (and other variables) separately for each event
of each product or crate potentially leads to duplicating huge chunks of data.

C4: Dynamicity. IoT data are inherently dynamic and not always synchronised
with the process [26]. The dynamicity of context parameters is usually coped
with by allowing data attributes to be updated in process events. However,
and as also shown with the A-B-C process example, IoT data are often loosely
coupled with the process. In the motivating example, the temperature is sensed
at regular intervals during the transport of the products, and not only when
events happen in the process. Although there is no guarantee that the sensor
data will have relevant values when process events are logged, this is usually
the only point when context parameters can be updated. But without previous
knowledge, it is not possible to know which sensor measurement(s) is or are
relevant. E.g., the observation of temperature that impacts the decision to keep
a crate of fresh products or not can be made at any moment before the decision
point, and there is no way to log it without an event. But this event 1) would
not be linked with a process activity and 2) this requires prior knowledge on the
impact of temperature on the decision, which we assume we do not have, as it
is the sort of effects that we would like to discover with PM.

5 Requirements for an IoT-Enhanced Event Log Model

Based on the challenges identified previously, we put forward 10 requirements
that a suitable data model for IoT-enhanced event logs should meet.

– R1: Store high-level events
– R2: Store low-level events
– R3: Store intermediary/mixed-level events
– R4: Enable traceability between high-level and low-level events
– R5: Represent context at event level
– R6: Represent context at activity level
– R7: Represent context at case/object level
– R8: Represent context at process level
– R9: Update context parameters independently from process events
– R10: Update context parameters at a higher frequency
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R1-4 connect to the ability to store data at different granularity levels (to
meet C1). This means that data at either the typical low-level of raw IoT sensors,
or the traditional high level of the process, or in-between levels, should be able to
coexist in an IoT-enhanced event log. From this, it follows that the traceability of
the IoT data should be guaranteed, to keep track of which raw low-level IoT data
have been abstracted into which high-level process events or context parameters,
and of possible in-between steps, e.g., by defining links between events at different
levels. Meeting these requirements would enable process mining to leverage IoT
data to dig deeper into the working of the process.

Another effect of these requirements is that event abstraction is recognised
as a mining step, and not just as a preprocessing step, since the low-level events
are present in the event log itself. E.g., a process analyst can more easily test
different possibilities to derive high-level events from the IoT data and compare
the resulting process models.

R5-10: relate to having a suitable representation of the (physical) context
of the process. These requirements can be split in two subgroups. First, R5-
8 state that context parameters should have different scopes (event, activity,
case/object, and process; see C3). E.g., consider a process where many instances
and multiple process activities take place in the same environment (i.e., in the
same physical space). Some environmental phenomena are tracked by sensors
s1, s2, ..., sn. As such, these sensors may be collecting data that is relevant
for different processes, different instances of a process, different activities within
a process, etc. In a typical XES event log, the values of all the sensors (or
of a parameter derived by abstracting them) would be logged for each event
happening in this environment for each case (see Table 2). Better defining the
scope of the IoT data could simplify the event log and help focus on the more
relevant values of the sensors. Moreover, it could help to find links between
different instances of the process that occur simultaneously.

Table 2. Example XES event log with sensor data being duplicated.

Case ID Event ID Activity Timestamp Sensor 1 Sensor 2 ... Sensor n

1 1 A 12-01-22.09:28 42 0.2 ... 10

2 2 A 12-01-22.09:28 42 0.2 ... 10

1 3 B 12-01-22.09:30 42 0.3 ... 10

3 4 A 12-01-22.09:31 42 0.3 ... 10.1

3 5 B 12-01-22.09:31 42 0.3 ... 10.1

1 6 C 12-01-22.09:32 40 0.2 ... 10.1

2 7 B 12-01-22.09:34 40 0.2 ... 10.1

4 8 A 12-01-22.09:34 40 0.2 ... 10.1

... ... ... ... ... ... ... ...
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Second, R9-10 stipulate that context parameters should be able to evolve with
time at their own rhythm (C4), independently of control-flow events (C2). This
aims at catering for situations such as the one depicted by the A-B-C process
example, where sensor data that are relevant for a decision can be observed at
different moments during the execution of the process, i.e., typically at any point
within a certain time frame, and not only when events happen.

6 Assessment of Current Event Log Standards

6.1 Comparison of Existing Models

In this section, we confront existing event log models (XES and OCEL) with the
requirements listed in Sect. 5 to point out their limitations.

Table 3. Comparison of XES and OCEL with respect to the Requirements.

XES OCEL Source

Requirements R1: Store high-level events ✓ ✓ C1

R2: Store low-level events C1

R3: Store intermediary/mixed-level events C1

R4: Enable traceability between high-level and low-level events C1

R5: Represent context at event level ✓ ✓ C3

R6: Represent context at activity level C3

R7: Represent context at case/object level ✓ ✓ C3

R8: Represent context at process level ✓ C3

R9: Update context parameters independently from process events C2

R10: Update context parameters at a higher frequency C4

XES. So far, nearly all event logs used in IoT-based PM were XES logs. How-
ever, these event logs were already abstracted and most of the time IoT data
were only used to retrieve process events and not to add context information.

XES typically stores data at a high level of abstraction, as events or attributes
(fulfilling R1), which means that IoT data need to be abstracted into events or
attributes to be recorded in a XES log, potentially losing important bits of infor-
mation to the abstraction step. Moreover, abstracting the IoT data considerably
restricts the spectrum of analyses that can be performed with the IoT data. This
entails that XES cannot meet R2-4, which stipulate that it should be possible
to store data at different granularity levels in a same event log and allow for
traceability between them.

The elements that store all the information are the attributes. However,
attributes in XES are defined over an event, a trace or the log (R5,7,8; R6
is not fulfilled). This makes it difficult for an IoT context variable, which can
often impact several cases at the same time, to be related to all the cases it
applies to (R9). Moreover, this means that new or updated context information
cannot be recorded outside of a process event, while R10 stipulates that context
parameters (especially physical phenomena tracked by IoT devices) sometimes
have interesting values at arbitrary moments.
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OCEL. In line with XES, OCEL typically stores data at a high level of gran-
ularity (R1), which means that IoT data need to be abstracted into events or
attributes to be saved in an OCEL log too, incurring the same risk of losing
important information and restricting the possibilities of analysis of the IoT-
enhanced log. This contradicts R2-4.

Then, like in XES, all context information is represented by means of
attributes of events or objects (R5,7; R6 and R8 not fulfilled). Moreover, the
only way to log a new value of an attribute is with an event, which goes against
R9-10.

7 Conclusion

In this paper, we pleaded for a wider look at the possible uses of IoT data in
process mining. While the existing literature largely tackles the issue of extract-
ing process events from IoT data (so-called activity mining), other potential
uses of IoT data listed in Table 1 remain almost entirely unexplored. One of the
main hurdles complicating the development of new techniques is the restrictions
that are imposed by the current main standards for event logs, namely XES
and OCEL. All the data have to be stored as high-level events or attributes of
high-level events or cases (objects in the case of OCEL), leaving context as a
second-class citizen. This makes it necessary to abstract the low-level IoT data
to store them in event logs, thereby losing information and making important
assumptions on the influence of the phenomena tracked by IoT devices on the
process. Moreover, to make these assumptions, an extensive knowledge of the
working of the process is required, which may not be available when doing pro-
cess mining, as acquiring this deeper knowledge of the process is often the goal
of process mining itself.

To solve this issue, we listed requirements for a suitable model for IoT-
enhanced event logs. Then, we confronted XES and OCEL, the two main stan-
dards for event logs at the moment, with these requirements, and showed that
they are both currently unsuitable for the storage of IoT-enhanced event logs.
We therefore claim that a dedicated comprehensive event log model is needed to
develop more advanced IoT-enhanced PM techniques.

Note that some of the challenges are not only encountered when dealing
with IoT data. The representation of the context in XES and OCEL can be a
limitation to more traditional process mining as well, e.g., some non-IoT context
parameters can change outside of process events and a blurry definition of the
context can lead to complex process models (see [7]). Moreover, the issue of
granularity is found in many other processes and is discussed outside of the
literature on PM with IoT data (e.g., [11,32]).

In future works, we plan to define and formally implement a new model
for IoT-enhanced event logs. We also intend to investigate additional real-life
examples and use cases to show the use of a new standard. At a later stage,
we would like to develop algorithms that can be applied to such event logs
to realise the IoT-enhanced PM techniques evoked in Sect. 2. This may also
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require to examine the suitability of current modelling languages to represent
such IoT-enhanced processes, and propose new ones, e.g., combining BPMN with
ontologies to give semantics to the context of the process.
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