
Situation-Aware eXplainability
for Business Processes Enabled

by Complex Events

Guy Amit, Fabiana Fournier, Lior Limonad(B), and Inna Skarbovsky

IBM Research – Haifa, Haifa, Israel
guy.amit@ibm.com, {fabiana,liorli,inna}@il.ibm.com

Abstract. Traditionally, the organizational IT landscape is split
between Business Process engines that are developed to handle process
execution workloads and Complex Event Processing engines designed to
search for event correlations in real time to derive actionable insights. For
the benefit of process trustworthiness, this work focuses on combining the
two engines, resulting in an enriched form of a process log that serves as
an input to recently developed eXplainable Artificial Intelligence frame-
works, yielding more adequate explanations for process execution out-
comes. A designated methodology and a test scheme were created to
systematically implement and evaluate our overall approach and its effec-
tiveness in gaining situation-aware explainability. Specifically, we demon-
strate our approach using a dataset populated for an illustrative process
example, replaying its trace log against the PROTON CEP engine and
feeding the result as an input for the SHAP explainer.

Keywords: eXplainable Artificial Intelligence · Complex Event
Processing · Business Processes Management · Situation-Aware
eXplainability

1 Introduction and Motivation

Augmented Business Process Management Systems (ABPMSs) [5] are a new
generation of business process management systems. The goal of ABPMSs is to
empower the execution of business processes with novel AI-based capabilities.
One of the main characteristics of ABPMSs is their enhanced trustworthiness,
shaped by an ability to explain and reason about processes executions. Find-
ing an adequate explanation is not easy, because it requires understanding the
situational conditions in which specific decisions were made during process enact-
ments. Frequently, explanations cannot be derived from “local” inference (i.e.,
current undergoing task or decision in a business process) but require reasoning
about situation-wide contextual conditions relevant to the current step as derived
from some actions in the past. The recent manifesto [5] calls for “Situation-Aware
eXplainability (SAX)” as one of the most prominent research challenges. SAX
entails ongoing tracking of reasoning assumptions and inferential associations
between subsequent enactments, as a basis for providing trustful explanations.
c© Springer Nature Switzerland AG 2023
C. Cabanillas et al. (Eds.): BPM 2022, LNBIP 460, pp. 45–57, 2023.
https://doi.org/10.1007/978-3-031-25383-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25383-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-25383-6_5

46 G. Amit et al.

Complex Event Processing (CEP) enables situation awareness by applying
temporal and contextual reasoning on incoming events to produce higher-level of
insights (‘complex events’ or ‘situations’). In this paper, we combine situations
derived by a CEP engine with traces of a business process executions and show
that the resulting “enriched” event log can produce better situation-aware expla-
nations. Our contribution in this work is the augmentation of the conventional
use of BPM and XAI with CEP to achieve more adequate explanations of pro-
cess execution outcomes. Respectively, our solution enables to hypothesize about
any plausible causal situation to be examined for its possible effect on process
execution outcomes, both in real-time and in retrospect. Our method is generic
and can be applied with any CEP and XAI tools. We henceforth elaborate on
the underlying fundamental concepts.

2 Background

A business process (BP) is a collection of tasks that execute in a specific sequence
to achieve some business goal [18]. The digital footprint that depicts a single
execution of a process as a concrete sequence of activities or events is termed a
‘trace’ [1]. A multi-set of traces is usually referred to as a trace-log or event-log.
We hereforth describe some basic concepts related to CEP, XAI, and replaying.
Event Stream Processing (ESP) or CEP is computing that is performed
on streaming data (sequence of events) for the purpose of stream analytics or
stream data integration. ESP is typically applied to data as it arrives (data
“in motion”). It enables situation awareness and near-real-time responses to
threats and opportunities as they emerge, or it stores data streams for use in
subsequent applications [4]. The results of ESP computation are complex events.
A complex event may be derived from just a few or from millions of base (input)
events from one or more event streams. Stream analytic applications provide
continuous intelligence to enhance situation awareness, enable sense-and-respond
behavior or just inform real-time decisions. Organizations are doing more stream
processing because of the need for continuous intelligence and better situation
awareness, as well as faster, more precise business decisions [15].

In our work, we use the PRoactive Technology ONline1 (PROTON) tool
as our CEP engine. PROTON follows the terminology and semantics presented
in [6]. Its programming model is based on the notion of an Event Processing Net-
work (EPN). An EPN comprises a collection of event processing agents (EPAs),
event producers, events, and event consumers. The network describes the flow of
events originating at event producers and flowing through various event process-
ing agents to eventually reach event consumers. An EPA is a software module
that processes input events and looks for matches between these events, using
an event processing pattern or some other kind of matching criterion. An event
pattern is a template specifying one or more combinations of events. Given any
collection of events, if it’s possible to find one or more subsets of those events
that match a particular pattern, it is said as satisfying the pattern. We denote
1 PROTON open source (Apache v2 licence): https://github.com/ishkin/Proton.

https://github.com/ishkin/Proton

SAX for BP Enabled by CEP 47

situations as the complex events emitted by a CEP engine. A PROTON CEP
application consists of a JSON file that defines the EPN that is matched against
a streaming of events in real-time to derive the defined situations.

eXplainable AI - Recent advancements in Machine-Learning (ML) [2,11,17]
have been achieved with increase in the complexity of models that require exter-
nal explanation frameworks, namely XAI. Such frameworks are predominately
developed for post-hoc interpretations of ML models [2,11]. Context-wise, they
can be divided into global, local, and hybrid explanations [2,8,13]. Global expla-
nations attempt to explain the ML model’s internal logic, local explanations try
to explain the ML model’s prediction for a single input instance, and hybrid
approaches vary (e.g., explaining the ML model’s internal logic for a subspace
of the input space). This paper adds to a series of recent efforts [3,16] that focus
on exploiting XAI frameworks that are compatible with tabular data for the
interpretation of BP execution results. We use process logs as the main data
input and train surrogate ML models with this data to represent real-world
business processes. As such, ML model faithfulness to the real BP may be lack-
ing, capturing only parts of the holistic situations in which decisions were made.
We show how with the use of CEP, the data input for the explainer could be
augmented with situation relevant enrichments that result with more adequate
explanations. The most commonly used ML-model-agnostic post-hoc local XAI
frameworks, compatible with tabular data, are LIME [14] and SHAP [10]. Both
rely on sampling data points by way of feature perturbations for derivation of
feature importance around the examined sample. To assess the effectiveness of
our method, we used SHAP, mostly due to its ability to accommodate inter-
feature dependencies. The approach for process explainability is based on the
training of a decision-tree to associate process execution variables with process
outcomes. Such training uses historical process execution logs that are enriched
by the CEP. An XAI tool is then employed to explain individual process exe-
cution cases by ranking the importance of the process variables with respect to
specific outcomes of interest.

Replaying Process Logs - The terms ‘play in’, ‘play out’ and ‘replay’ were
originally used in the work of Harel [9], and later adopted by van der Aalst [1].
‘Play out’ typically relates to conventional use of a BPM engine, and ‘play in’
refers to the core notion of process mining. Most relevant to our work, the notion
of process ‘replay’ combines the process event-log and the model as input for pur-
poses such as checking for execution conformance, predictions, and diagnostics.
In the context of process explainability, replay describes best the operation in
which historical traces are replayed for the elicitation of richer, situation rel-
evant events that may have previously promoted to internal process decisions
but have not been originally persisted by the BPM engine. The replay module
enables simulating the process execution as input to the CEP engine as if events
were occurring in real-time. More concisely, the events in the process log are
streamlined according to the original BP model sequencing as an input to the
CEP engine, having the latter derive situations that enrich the original event log
as an input to the explainer. This could be employed either in real-time or in a
simulated mode, for better explainability derived in retrospect.

48 G. Amit et al.

3 Methodology

3.1 Types of Events

We identify three types of situations as a function of the source of the events:

– Events source is internal to the BP. The situations are a combination
of process execution events along with the CEP defined patterns. These sit-
uations are tightly coupled with the BP execution.

– Events source is external to the BP. These situations are not coupled
with the BP execution. We note that although the event is external to the
BP it might influence its execution and the outcomes.

– Events source is a combination of internal and external circum-
stances. These situations are bi-coupled to external as well as internal to
the BP and are typically characterized by transient/ad-hoc events. The BP
model does not change but the (temporal) alteration of its flow affects the
possible explanation given to a specific execution instance.

3.2 Approach

Fig. 1. Sequence of our approach: (1) transform, (2) implement, (3) compress & replay,
(4) run CEP, (5) adjust, and (6) transform.

Our methodology includes the following steps (Fig. 1):

1. Transformation of the tabular dataset into an event log - The tabular
dataset contains rows indicating different states in the BP for each case, with
task execution and completion times denoted respectively. Given these times,
each row is transformed into a series of timestamped events, where each event
is assigned the original case-id and time corresponding to the original row.

2. Implementation of the CEP application - This stage unfolds the defini-
tion of the event patterns and situations to be detected by the CEP engine.
In the case of PROTON, this CEP application specification is implemented
as a JSON file consisting of the EPN for the specific application.

3. Compression of time windows for expedited replay of the event
log - CEP applications are meant to run and trigger situations in real-time.
However, when testing a CEP application, we cannot “wait” for events to

SAX for BP Enabled by CEP 49

happen at their original occurrence times and therefore aim at replaying the
events in shorter time windows. For this, we apply PROTON’s simulation
tool called Proton EvenT Injection and Time comprEssion (see footnote 1)
(PETITE) that compresses the original times into shorter intervals. The result
is a compressed event log that serves as input file for the CEP application
and a new JSON file with “compressed” times.

4. Running of the CEP application - Replay of the event log resulted from
step 3 as input to the CEP engine. The outcome of this execution is an
“enriched” event log, containing the original events interwoven with the sit-
uations detected by the CEP engine (timed events).

5. Adjustment for situation effects - According to each situation, deci-
sion variables (e.g., acceptance) are modified and post-situation events are
trimmed from the enriched file.

6. Transformation of the enriched log into an enriched tabular input
for the explainer - The enriched log is transformed back to the original
table format, where additional columns are added that represent features of
the new events and situations discovered.

Steps 1–6 apply when replaying the log in retrospect. In the case of running in
real-time, only steps 2, 4, and 6 are required. Steps 1 and 5 are strictly associated
with the case of data synthesis in which data is generated for testing purposes.

4 Illustrative Example

Figure 2 depicts a loan application model using BPMN [7] notation. Each loan
application goes through a set of predefined set of activities (e.g., verify amount
and credit check) and decisions junctions (e.g., amount >= 1000) resulting in
either acceptance or rejection of the loan application. For simplicity, we use a
process example ending with a binary decision. However, our approach is appli-
cable for any multi-class decision outcome explainability, occurring at any point
during process execution. Instantiation of the process can be encoded in a tab-
ular form as depicted in Table 1. Each process instance includes a column for
its initiation time, for each decision variable (e.g., amount), and for each task,
encoded in a Boolean column to depict whether it was executed or not and a
second column denoting its completion time in minutes.

Table 1. An example of an instance in the tabular dataset

case ID credit
score

risk done
receive loan

done
verify
ammount

done credit
check

done risk
assessment

done
skilled
agent

done
novice
agent

done accept

TVQR 1173.08 397.78 TRUE TRUE TRUE FALSE TRUE FALSE FALSE

...

arrival
time

post
received
time

post verify
amount
time

post credit
check time

post risk
assess-
ment
time

post skilled
agent review
time

post novice
agent review
time

post
decision
time

48 54 59 71 NaN 87 NaN 92

50 G. Amit et al.

Fig. 2. Loan application BP model in BPMN, with the potential deviation during
lockdown informally denoted by an annotation.

4.1 Applying the Methodology in Our Example

Henceforth, we exemplify the above methodology in our illustrative example:

1. Transformation of the tabular dataset into an event log. For exam-
ple, for a case ID=TVQR (Table 1) with done credit check = TRUE and
post credit check = 71 (mins), an event CreditCheck with “case ID = TVQR,
... , OccurenceTime = timestamp of streaming initiation + 71 mins” was
added to the event log. Similarly, events with the same case ID were added
for: Arrival, Received, VerifyAmount, SkilledAgentReview, and Decision.

2. Implementation of the CEP application - Let’s assume we would like
to derive the following complex events or situations:

– Derive a situation AgentOverflow that causes the rejection of new loan
applications when more than 4 applications pile-up on an agent’s table.
The rationale is that when there is a large workload, the tendency is to
reject to speed up the process while “being on the safe side”.

– Derive a situation DecisionTimeMoreThanTwoDays that determines an
application as rejected if it stays in the system more than 2 days. Again,
the rationale is that want to eliminate bottlenecks while not taking the
risk of accepting a somewhat risky application.

– Derive a situation LockDownNewGuideline that concludes an application
as rejected if it was submitted during Covid-19 lock-down period with an
amount greater than $1000.

We also have two input events that are part of the LockDownNewGuideline
situation: LockDownInitiator and LockDownTerminator that are employed
by the CEP engine to denote the beginning and end of a lockdown period.
The AgentOverflow and DecisionTimeMoreThanTwoDays situations are
examples of situations in which the event source is the BP in hand as they are
derived only as a result of BP instance’s state. On the other hand, the Lock-
DownNewGuideline situation is an example of a situation in which the event
sources are a combination of internal (e.g., the amount of the requested loan)

SAX for BP Enabled by CEP 51

and external to the BP (e.g., the lockdown). An EPN with the event pattern
definitions in a JSON file specifying these three situations was created.

3. Compression of time windows for expedited replay of the event log.
The event log produced in step 1 spans four days, the same as the time horizon
of the original dataset. By applying the PETITE simulator, we compressed
the 4 days elapsed time into 5 min.

4. Running of the CEP application - PROTON was applied using the JSON
file and the event log resulting from step 3. The output is an enriched log that
includes the input events as well as the situations derived by the CEP engine.

5. Adjustment for situation effects - We tweaked the log from ‘acceptance’
to ‘rejection’ where the situation was affecting the process result. Trimming
was not required here, since all situations related to final process outcomes.

6. Transformation of the enriched log to tabular input for the
explainer - The additional columns contain new features with time in min
from first instance initiation. For example, in the case of the detection of
the DecisionTimeMoreThanTwoDays situation, a non-null value represent-
ing the occurrence time is added to the TwoDaysWithoutDecision column.
Concretely, the value of these new features is either NaN to denote the non-
occurrence of the situation, or a value depicting the time from process initi-
ation. In our case, we further decoded the enrichment into a Boolean, trans-
lating a NaN value to ‘false’ and a time value to ‘True’.

5 Evaluation

Conforming to the tabular form in Table 1, we populated a dataset with 1000
instances with decision variables drawn at random from Gaussian distributions
and completion times drawn from Poisson distributions. Task execution columns
were computed based on the values of the decision variables as entailed from
process flow logic. As an input for training of the explainer ML model (i.e.,
SKLean’s [12] decision tree classifier), we split the data at random into training
(800 records) and test (200 records) sets. Our set of test cases for each of the
three situations included the following variations, where for each situation 4–5
instances were instantiated:

T1 Loan acceptance toggled into rejection - a set of test instances in which
prior to the enrichment, the original process execution decision was loan
‘acceptance’, and where the decision was altered into loan ‘rejection’ as a
result of the newly incurred situation. For any of these test instances, our
expectation was to have the explainer identify the corresponding enriched
situation manifest itself as a top importance feature in the explanation.

T2 Rejection overridden by a ‘new’ rejection reason - a set of test instances in
which the original process execution decision was loan ‘rejection’, and for
which the decision remained a ‘rejection’ as a result of the newly incurred
situation, and where the new situation becomes the prominent reason for
the rejection instead of the original one. For any of these test instances, our
expectation was to have the explainer identify the corresponding situation
manifest itself as a top importance feature in the explanation.

52 G. Amit et al.

T3 Rejection that persists itself - specific to the LockDown situation, some
of its corresponding test instances reflected process execution scenarios in
which the original decision to reject the loan was not affected by the occur-
rence of the Lockdown situation. For these particular instances, although
the result was a ‘rejection’, we did not expect the explainer to identify the
corresponding situation manifest itself as a top importance feature in the
explanation.

T4 Contrasting set - with respect to each type of enriched situation and our
overall dataset, we identified the subset of instances in which the situa-
tion did not apply. Our examination here was to ensure that none of these
instances happens to be incorrectly explained by an enriched situation.

The loan rejection toggled into acceptance and loan acceptance that remains
acceptance variations were dropped since they are symmetric to the above.

We present here the global model explanation of the enrichment, followed by
detailed examination of the local model explanations with respect to the test
cases, applied to corresponding situation instances. Our code is available at:
https://github.com/IBM/SAX/tree/main/AI4BPM.

6 Results

Global distribution of feature importance is illustrated in Table 2. The newly
added features play a role in about 5% of the explanations, reflective of the
proportion of instances that were tweaked to test for the effects of the newly
introduced situations. Furthermore, model accuracy in predicting eventual pro-
cess outcomes has also been fully mitigated by the enrichment.

Table 2. Global explainability with and without situational enrichment

Without enrichment With enrichment

Model accuracy (DT): 0.97 Model accuracy (DT): 1.00

0. amount : 0.4826136779898476
1. risk : 0.3426102769869956
2. credit score : 0.17477604502315672

0. risk : 0.7714530282992648
1. credit score : 0.15177506322470122
2. AgentOverflow : 0.04241708399719542
3. LockDownTerminated : 0.019477216063815347
4. TwoDaysWithoutDecision : 0.014877608415023355

For each of the enriched situations, we elaborate in a corresponding table
example cases that highlight test scenario results. Each table includes local fea-
ture importance in a descending order for test cases T1–T3 without and with the
enrichment, and a collective force-plot with all non incurred situation instances
that are graphically stacked horizontally corresponding to test case T4.

AgentOverflow situation: A sample of local test results for this situation is shown
in Table 3. With respect to [T1], case id ‘FSAN’ was manually tweaked from orig-
inally being accepted into being rejected due to overflow. As listed, prior to the

https://github.com/IBM/SAX/tree/main/AI4BPM

SAX for BP Enabled by CEP 53

enrichment, the original explanation incorrectly included ‘risk’ as the top impor-
tance feature in the explanation for the rejection, while after the enrichment, the
most important feature was correctly recognized as ‘agent-overflow’.

With respect to [T2], case id ‘BROG’, which originally concluded with a
loan rejection decision, was modified in the dataset to still be rejected, but in its
modified form was tweaked to ensure the reason for the rejection was an overflow
situation. As listed, the original incorrect explanation with ‘amount’ as the top
feature has been properly replaced by ‘agent-overflow’ as the top importance
feature in the enriched explanation.

[T3] doesn’t apply in the case of an agent overflow situation. This is since
whenever an overflow event occurs, it is inevitable for the decision to entail an
immediate rejection, overriding whatever was the original reason for the rejec-
tion, as already covered by [T2]. An exception for a situation that is relevant for
test case [T3] is elaborated in the context of the Lockdown Guidelines situation.

With respect to [T4], we examined all contrasting instances associated with
the non occurrence of an overflow situation to ensure none happens to incorrectly
include in its explanation the ‘agent-overflow’ feature. Horizontal stacking with
all relevant instances was plotted as illustrated. As desired, no instance in this
set was identified to include the ‘agent-overflow’ feature in its explanation.

Table 3. AgentOverflow situation - test results

Decision Time More Than Two Days Situation: As with the previous agent-
overflow situation, local test results for the situation of decision time greater
than two days are shown in Table 4. Case id ‘YMOJ’ was tweaked to match the
scenario of [T1]. Correspondingly, the top importance feature correctly changed
from ‘risk’ to ‘two-days-without-decision’ as a result of the enrichment. Adjust-
ment of case id ‘MJKQ’ for test [T2] resulted with proper alteration from ‘credit-
score’ to ‘two-days-without-decision’ as desired. [T3] was skipped for the same
reason as above. [T4] presented no undesired side effects in the explanation of
any of the contrasting set instances for the situation inspected.

54 G. Amit et al.

Table 4. Decision time > 2 days situation - test results

Test case Case ID Non enriched Enriched

T1: ‘accept’ to ‘reject’ YMOJ risk-,
credit-score-,
amount+

� two-days-without-decision-, risk+,
credit-score-, agent-overflow+

T2: overridden ‘reject’ MJKQ credit-score-,
amount-, risk+

� two-days-without-decision-, is-credit-,
credit-score-, risk+, agent-overflow+

T3: persisted ‘reject’ na

T4: contrasting set � No instance resulted with ‘two-days-without-decision’ in its explanation

Lockdown Guideline Situation: We repeated the same tests for the Lockdown
guideline situation as shown in Table 5. As with the two other situations, [T1]
demonstrated a remedy in the explanation due to the enrichment for case id
‘YMOJ’. With respect to [T2], the complexity of the situation lets us examine
two event encoding nuances: implicit and explicit encoding of the guideline as
an interaction between the external occurrence of a lockdown and loan amount
being greater than $1000. For the former implicit case, only ‘LockdownInitiated’
and ‘LockdownTerminated’ events were included in the enrichment examination.
For technical simplicity, both events were transformed in the dataset from their
original timestamped form into a single Boolean variable that was either ‘true’
in any instance that occurred between the two timestamps, or otherwise was
‘false’ (named ‘lockdown-terminated’). Our aim was to test the ability of the
explainer to reveal interactions among features. In our case, between the pro-
cess external occurrence of a lockdown and the process internal amount being
greater than $1000. First run of [T2] failed to recognize ‘amount’ and ’lockdown-
terminated’ as mutual top-importance features in the explanation. We realized
that the explainer might be incapable of handling an interaction between a
numeric variable (i.e., ‘amount’) and a boolean variable (’lockdown-terminated’),
and particularly discovering the conditional split of amount around $1000. To
test this, we added another Boolean variable ‘amount>1K’ to explicitly denote
this split and re run [T2]. As illustrated in Table 5, with the additional variable,
the SHAP explainer was able to correctly recognize the interaction as the top
two features.

For the latter explicit case, a ‘LockdownAndLargeAmount’ event was derived
by the CEP engine and was explicitly added as a Boolean variable in the dataset
to mark corresponding instances. As with the previous two situations, SHAP was
able to recognize such an explicit encoding as a top importance feature.

The uniqueness of the Lockdown guideline also allowed us to instantiate the
scenario of [T3] in which the external occurring of a lockdown may not force a
rejection i.e., when the amount is smaller than $1000, reflecting a situation where
the original reason for the loan rejection should persist. As demonstrated by case
id ‘LJLP’ in the results, in such a case, the ‘lockdown-terminated’ feature was
recognized as part of the explanation, but not as a top importance feature, and
also ‘amount>1K’ was detected as affecting the model towards loan acceptance.

SAX for BP Enabled by CEP 55

Table 5. Lockdown guideline situation - test results

Test case Case ID Non enriched Enriched

T1: ‘accept’ to ‘reject’ YVDN amount-, risk+, credit-score- � lockdown-and-large-amount-, risk+,
credit-score-, agent-overflow+

T2: overridden ‘reject’ NDZY credit-score-, amount-, risk+ � amount>1K-, lockdown-terminated-,
credit-score-, risk+, agent-overflow+

T3: persisted ‘reject’ LJLP risk-, amount+, credit-score- risk-, � amount>1K+,
lockdown-terminated-, credit-score-,
agent-overflow+

T4: contrasting set � No instance resulted with ‘lockdown-and-large-amount’ in its explanation

Collective Summary of Results: A handful of cases was adjusted to repeat the
tests in each situation. An overall summary of all test results is listed in Table 6.
Our results conclusively show that in all three situations, the enrichment of the
dataset promoted to a perfect feature correctness in the explanations, without
any loss in the correctness of all other instances that were not affected by the
newly incurred situations. For the first two situations, the enrichment also pro-
moted the ML model accuracy in predicting process decisions.

Table 6. Summary of test cases: # - num of test cases; T-EXP - % of feature correctness
in explanation; ACC - % of correct process result predictions; F-EXP - % of affected
cases with false explanation. Noteworthy improvements marked in bold.

Test: T1: ‘accept’ to ‘reject’ T2: ‘reject’ overridden T3: ‘reject’ persisted T4: affected

Not enriched Enriched Not enriched Enriched Not enriched Enriched Enriched

Situation # T-EXP ACC T-EXP ACC # T-EXP ACC T-EXP ACC # T-EXP ACC T-EXP ACC F-EXP

Agent- overflow 5 0% 60% 100% 100% 5 0% 100% 100% 100% na na na na na 0%

Decision > 2 days 4 0% 50% 100% 100% 4 0% 100% 100% 100% na na na na na 0%

Lockdown guideline 4 0% 100% 100% 100% 4 0% 100% 100% 100% 6 100% 100% 100% 100% 0%

7 Conclusions and Future Research

The enrichment of process events logs with situations derived by a CEP engine,
demonstrates that temporal contextual information can be leveraged to improve
the adequacy of explanations given for process execution instances. As also
demonstrated, with some tweaking of process outcomes, such enrichment can
also be employed in retrospect. The effect of the enrichment manifests itself not
just in properly adjusting the importance of factors that correctly correspond to
the outcome, but also promotes the accuracy of the surrogate ML model.

Our contribution is not only in showing the effect of situational enrichment in
attaining better explainability, but also in providing a core taxonomy for the dif-
ferent types of situational events, an overall methodological approach on how to
realize the enrichment, and a corresponding test scheme. All these elements have
been instantiated with respect to the illustrative example using PROTON and

56 G. Amit et al.

SHAP, highlighting some concrete caveats, such as the need to include Boolean
features for meaningful partitioning of quantitative ones to benefit from SHAP’s
capacity to identify feature inter-dependencies. Tasks duration as originally cap-
tured in timestamps may also unveil impactful interpretations that we haven’t
considered in this work, but could be an interesting direction to explore next.

The transposing of a process log into a tabular representation in which all
process execution attributes are flattened into a single immutable row may be
criticized for having a naive view of a process as a single processing step. We
acknowledge that, in reality, a process can better be seen as a sequence of subse-
quent real-time choices with casual relationships among its steps, some derived
from an “in-flight” incomplete view about overall process state. Our approach
can also be applied with respect to any sub-partitioning over the set of process
variables and with respect to any intermediary execution result as the target
variable for the explanation.

We foresee two fundamental directions that remain open for future work.
First is designing for an even tighter integration between the XAI framework
and the BP engine, one in which insights inferred by the former serve as feedback
for the conditional unfolding of the process execution in real-time. This may be
attained by extending process flow logic with execution decisions that rely on
the evolving ‘explainable state’ of the process’ instance.

A second and probably the most challenging direction is the development
of new aids to infer concrete situational enrichment that may be missing in a
given process. Reduced ML model accuracy may denote that some situational
condition is still missing. However, to date, it is mainly the responsibility of a
domain expert to specify such situations. Future work may also attend to the
effort of automatic identification of which concrete situations may be missing.

References

1. van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49851-4

2. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

3. Amit, G., Fournier, F., Gur, S., Limonad, L.: Model-informed LIME extension for
business process explainability. In: PMAI@IJCAI. Vienna (2022)

4. Benoit, L., et al.: Hype cycle for the internet of things (2021)
5. Dumas, M., et al.: Augmented business process management systems: a research

manifesto. arXiv preprint arXiv:2201.12855 (2022)
6. Etzion, O., Niblett, P.: Event Processing in Action. Manning (2010)
7. Grosskopf, A., Decker, G., Weske, M.: The Process: Business Process Modeling

Using BPMN. Meghan-Kiffer Press (2009)
8. Guidotti, R., et al.: A survey of methods for explaining black box models. ACM

Comput. Surv. 51(5), 1–42 (2018)
9. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs

and the Play-Engine. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-19029-2

https://doi.org/10.1007/978-3-662-49851-4
http://arxiv.org/abs/2201.12855
https://doi.org/10.1007/978-3-642-19029-2
https://doi.org/10.1007/978-3-642-19029-2

SAX for BP Enabled by CEP 57

10. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
Adv. Neural Inf. Process. Syst. 30 (2017)

11. Meske, C., Bunde, E., Schneider, J., Gersch, M.: Explainable artificial intelligence:
objectives, stakeholders, and future research opportunities. Inf. Syst. Manag. 39(1),
53–63 (2022)

12. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

13. Rehse, Jana-Rebecca., Mehdiyev, Nijat, Fettke, Peter: Towards explainable pro-
cess predictions for Industry 4.0 in the DFKI-smart-Lego-factory. KI - Künstliche
Intelligenz 33(2), 181–187 (2019). https://doi.org/10.1007/s13218-019-00586-1

14. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

15. Schulte, W.R., et al.: Market guide for event stream processing (2022)
16. Upadhyay, S., Isahagian, V., Muthusamy, V., Rizk, Y.: Extending LIME for busi-

ness process automation. arXiv preprint arXiv:2108.04371 (2021)
17. Verma, S., Lahiri, A., Dickerson, J.P., Lee, S.I.: Pitfalls of explainable ML: an

industry perspective. arXiv preprint arXiv:2106.07758 (2021)
18. Weske, M.: Business process management architectures. In: Business Process Man-

agement. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59432-
2 8

https://doi.org/10.1007/s13218-019-00586-1
http://arxiv.org/abs/2108.04371
http://arxiv.org/abs/2106.07758
https://doi.org/10.1007/978-3-662-59432-2_8
https://doi.org/10.1007/978-3-662-59432-2_8

	Situation-Aware eXplainability for Business Processes Enabled by Complex Events
	1 Introduction and Motivation
	2 Background
	3 Methodology
	3.1 Types of Events
	3.2 Approach

	4 Illustrative Example
	4.1 Applying the Methodology in Our Example

	5 Evaluation
	6 Results
	7 Conclusions and Future Research
	References

