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Abstract. We use Kremser and Blagoev’s [1] role-routine ecology to theorize
about the effects of concurrency in complex service organizations, such as out-
patient medical clinics. In a typical clinic, teams of specialized individuals serve
multiple clients at the same time. There can be concurrencywithin a patient visit (a
technician may be preparing for a procedure while the doctor talks to the patient)
and concurrency between patient visits (multiple patients being treated in the
clinic). Using data from electronic health records, we estimate the effects of con-
currency within and between patient visits on the duration of patient visits in a set
of dermatology clinics. As expected, we find that concurrency within patient visits
is associatedwith reduced duration,while concurrency between visits is associated
with increased duration. We discuss the implication of these findings for process
mining and discovery of process models in organizations where process instances
are not independent.

Keywords: Organizational routines · Role-routine ecology · Concurrency ·
Electronic health records

1 Introduction

A hallmark of process mining has been the focus on concurrency within a process. Van
der Aalst [2] places an emphasis on concurrency and objects as way to reveal the “true
fabric of business processes” [3]. At the same time, one of the on-going challenges in
process mining and process management concerns the execution of multiple, concurrent
process instances [4, 5]. For example, in an outpatient medical clinic, there is almost
always more than one patient in the clinic at a time. As a result, the patients in the clinic
are competing for the time and attention of the clinical staff. There is concurrency within
patient visits, but also between patient visits. Thus, the outpatient medical clinic is an
interesting context for theorizing about organizations where process instances are not
independent.

In this paper, we examine the effects of concurrency within and between process
instances using the role-routine ecology, a new conceptual framework from Kremser
and Blagoev [1]. In a role-routine ecology, work is organized by the competing needs of
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the routines (e.g., treating a patient) and the roles (e.g., being a physician in a clinic). In
organizations that have a complex role-routine ecology,wheremultiple roles are engaged
in multiple routines at the same time, the workflow is emergent. By emergent, we mean
that the “existence and nature” of the behavior “depend upon entities at a lower level, but
the behavior is neither reducible to, nor predictable from, properties of entities found at
the lower level” [6].We argue that the nature of the role-routine ecology has implications
for process mining and discovery of process models.

We begin by defining the role-routine ecology and the concept of concurrency within
and between process instances. Then we analyze electronic health record (EHR) data
from a set of outpatient dermatology clinics to demonstrate the effects of concurrency.
Finally, we discuss the implications of these findings in terms of the role-routine ecol-
ogy. In a complex role-routine ecology, workflow is an emergent product of competing
priorities, which raises challenges for conventional process mining and for the prospects
of more sophisticated models, such as Digital Twins of Organizations [7, 8].

2 Background

2.1 Role-Routine Ecology in Complex Service Organizations

Kremser and Blagoev [1] introduce the concept of a role-routine ecology as a way to
analyze the competing priorities that govern the work processes in a consulting organi-
zation. On one hand, actions are prioritized according to the needs of the routine: the
“repetitive, recognizable pattern[s] of interdependent actions, involving multiple actors”
[9] that are oriented toward the accomplishment of a “day-to-day operational task” [10].
On the other hand, actions are prioritized based on the needs of the role. Kremser and
Blagoev [1] argue that “a role performance is a sequence of actions…”. Like routines,
roles are not static; they are “continuously constructed and reconstructed as individuals
engage in… Interaction with incumbents of alter roles” [11].

Like routines, roles can be conceptualized as patterns of action, but the logic of their
enactment is different. Within a routine, the logic of enactment is analogous to control
flow in a business process, where one action triggers the next [12]. Sequential triggering
of actions within a routine gives rise to a recognizable pattern. To the extent that patient
treatment is routinized, it should have a recognizable pattern of actions.

Within a role, however, the logic of what to do next may have little to do with the
flow of the routine. For example, the office assistant who checks patient into the clinic
serves each patient as they arrive. They perform roughly the same actions for each patient
who arrives and they are not concerned with (or aware of) the rest of the process. The
clinical technician who brings the patient to the room and takes vital signs has a similarly
limited role. These specialized roles perform repetitive, recognizable patterns of actions,
but they are driven by the functional requirements of the role. They see every patient,
but they see only one part of the overall clinical routine.

Using data collected through participant observation, Kremser and Blagoev [1] ana-
lyze the patterns of action in an organization where consultants with specialized roles
work on several concurrent projects. Kremser and Blagoev [1] note that the needs of
each client workflow can change unexpectedly, as can the availability of the consultants.
Changes in one workflow can cascade through the other workflows. Such cascading
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interactions are common in outpatient clinics, where an unexpectedly difficult patient
can tie up the clinical staff and delay the treatment of other patients.

We can contrast the complex service organization studied by Kremser and Blagoev
[1] with other, less complex organizational forms, as in Fig. 1.
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Fig. 1. Four kinds of role-routine ecology

The horizontal axis of Fig. 1 refers to the number of distinct roles involved in provid-
ing the service. For example, in a typical clinical visit, there may be a nurse, a physician
and an office administrator, plus other roles. The vertical axis refers to the number of
concurrent process instances (e.g., patients in the clinic at the same time). Using these
two dimensions, four archetypal role-routine ecologies are easily identified.

• Artisan: One physician treats one patient at a time (e.g., sole practitioner).
• Dedicated team: a group of specialists treats one patient at a time (e.g., surgery).
• Multi-tasking: one nurse cares for several patients at the same time (e.g., in an in-
patient hospital ward).

• Complex service: a team of specialists treats several patients at the same time (e.g., a
typical outpatient clinic).

A wide variety of work processes fall into the category of complex service organi-
zations, such as restaurants [13], professional service firms [1], software development
teams [14], and the example we use here, outpatient medical clinics.

2.2 Concurrency in Complex Service Organizations

Concurrency is a pervasive aspect of the complex service organization. Concurrency
can be formally defined in terms of Petri nets [15] which are widely used to represent
business processes. In a Petri net, two events are concurrent if they occupy parallel paths
in the network. When two or more events are concurrent, the specific sequence of their
execution is irrelevant to the outcome of the process, as long as they are all completed.
For example, van der Aalst [2] uses a Petri net to model a medical process where “lab
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Fig. 2. Concurrency in a Petri net

tests” and “x-ray” occur concurrently with each other andwith a series of other activities,
as shown in Fig. 2.

In this paper, concurrency refers to actual overlap in time. As we use the term here,
two events are concurrent if one starts before the other finishes. For example, in an
outpatient clinic, two patient visits are concurrent if one patient arrives before the other
patient leaves. From the perspective of the whole days’ work at the clinic, those patients
could be seen in anyorder.However, the additional restriction of temporal overlap reflects
the reality of clinical work. Treating multiple patients at the same time adds complexity
to the clinical process because they are competing for resources [16].

2.3 Concurrency Within Process Instances

Traditional research on process management and process mining has emphasized the
importance of concurrency within process instances [2]. While dependencies between
multiple process instances is a recognized issue, mainstream theory and practice in
process management generally treat process instances as independent. Process mining
algorithms generally attempt to identify control flow within a process instance, rather
than dependencies between process instances [3, 17].

2.4 Concurrency Between Process Instances

At the same time, research on process management has long recognized that workflows
may be interdependent [18, 19]. When multiple instances of a process occur at the same
time, they may compete for the same resources. Multiple instance patterns are defined
to “describe situations where there are multiple threads of execution active in a process
model which relate to the same activity” [20]. Common activities may also involve
sharing common resources, such as a printer [16]. One approach to this general problem
has been to treat multiple, concurrent process instances as a single, complex workflow.
However, as Heinlein [19] notes, merging workflows (or messaging between workflows)
faces a combinatorial explosion. If providers are serving n concurrent workflows, then
“2n variations of eachworkflowwould be necessary in principle to describe its behaviour
in every possible combination with n other workflows”.

The challenge of handling multiple process instances continues to be an active area
of research in process management. Traganos, Spijkers, Grefen and Vanderfeesten [21]
note that BPMN (Business ProcessManagement Notation) lacks strong support for oper-
ations such as buffering, bundling, and unbundling physical objects in a manufacturing
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workflow (such as parts on a palette). These types of operations are needed to handle
multiple, concurrent process instances. Senderovich, Leemans, Harel, Gal,Mandelbaum
and van der Aalst [22] analyze the use of event logs to discover queues. Suriadi, Wynn,
Xu, van der Aalst and ter Hofstede [23] propose a method for discovering prioritization
from event logs. Fahland, Denisov and van der Aalst [5] note that queueing for shared
resources can introduce unexpected behavior in a process which is “particularly impor-
tant for distributed systems with shared resources, e.g., one case can block another case
competing for the same machine, leading to inter-case dependencies in performance.”
Klijn,Mannhardt and Fahland [4] have proposed a graph-based framework for analyzing
the inter-case dependencies involving actions and actors in digital trace data.

2.5 Competing Effects of Concurrency

Within a process instance, concurrency generally facilitates efficiency. When activities
can be performed in parallel, it tends to increase the capacity of a work system. And
when those activities can be performed in any sequence, it adds flexibility to a work
system.

However, when there is concurrency between process instances, the effects are not
so clear cut. The effects depend on the level of available resources and structure of the
work system. If resources are limited, concurrent instances will be in competition [16].
The nature of that competition will be defined, in part, by the structure of the role-
routine ecology in the organization. In an organization of artisans, each of whom works
independently on a single process instance, resource constraints should be manifest in
queuing [22]. In contrast, in a complex service organization, where multiple roles serve
multiple clients at the same time, the effects of concurrency will depend on how work
is coordinated, as well as resource constraints.

3 Research Context

To investigate this phenomenon, we analyze data from dermatology clinics at an aca-
demic medical center in the Northeastern U.S. We chose this setting because it provides
a clear example of a complex service organization with multiple roles and multiple
concurrent process instances (patient visits).

3.1 EHR Audit Trail Data

The EHR audit trail is an ideal resource for analyzing the clinical documentation process
because every action by each provider who touches the clinical record is time-stamped
and recorded. Providers include nurses, physicians, technicians, office assistants, insur-
ance specialists, administrators, and others. The audit trail is not the full patient medical
record; it is a separate database of who did what. It does not contain notes, test results,
medications, billing information, costs or any other information about the content or
outcomes of the medical services performed. For this study, we use audit trail data from
the EPIC EHR system. The data traces the clinical documentation process for patient
visits from three dermatology clinics from January 2016 through December 2017 for a
total of 21,785 patient visits.



154 B. T. Pentland et al.

3.2 Concurrency in the Clinic

Concurrency is built into the physical layout of the clinics. In each of the dermatology
clinics we studied, there were multiple exam rooms. Providers move between rooms,
from patient to patient, as they do their work. For example, after a technician records
pulse and blood pressure for one patient, they leave the room to perform some other tasks
and someone else continues the visit with that patient. The overall workflow depends on
which patient happens to be in the next room and what needs to be done. And of course,
whatever gets done needs to be documented. In this way, the EHR documentation work
is woven into the fabric of the medical work. The audit trail data provides a detailed
record that we can use to examine the temporal structure of this fabric. It allows us to
see two layers of concurrency in the clinic:

• Between patient visits, there is a great deal of concurrency. We can see this very
accurately in the EHR audit trail data.

• Within patient visits, there is also some concurrency. We measure this with the EHR
audit trail data, using the method described by Iqbal and Riek [24] but the measure is
not perfect because many actions are not directly recorded.

When we view the event log for a single patient visit, it is easy to overlook the fact
that there is more than one patient in the clinic at the same time. Idealized models of
a process often assume that concurrent instances are independent. That is clearly not
the case in medical practice. There are almost always multiple patients competing for
time and attention. In our data, the average number of concurrent patients was 6.35. The
maximum was 27.

4 Methods

We use the audit trail data to show how process duration is influenced by concurrency
within and between process instances. To do so, we control for everything that might
influence duration so we can more accurately estimate the effects of concurrency. To be
clear, the data we analyze here was collected as part of a larger study, so we are relying
on available metrics for this analysis.

4.1 Descriptive Statistics

Table 1 describes all the variables that we used in this analysisWe use a natural log trans-
formation for all variables except the dummy variables. Table 2 provides the correlation
for the main variables in the analysis.
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Table 1. Descriptive statistics of variables.

Variables Mean sd min max Description

Duration 8.32 0.53 0 10.15 Time between the first and last
activity

Concurrency WITHIN 0.45 0.20 0 1 Level of concurrency among
actors in the visit

Concurrency BETWEEN 1.88 0.51 0 3.34 Number of other visits that
overlap in time with this visit

NProviders 1.61 0.20 1.38 2.40 Number of providers in visit

NProcedures 0.79 0.42 0 4.49 Number of procedures
performed in visit

Newbies 0.07 0.26 0 1 Any new employees on this
visit? (0/1)

FirstVisit 0.55 0.50 0 1 Is this the first visit for this
patient? (0/1)

Diagnosis Complexity of diagnosis (3
levels)

CPT Code Billing code for level of
service (5 levels)

Clinic Which clinic? (3 levels)

Month Which month? (12 levels)

Table 2. Spearman correlation matrix for variables (n = 21,785)

(1) (2) (3) (4) (5) (6) (7)

1. Duration 1

2.WITHIN −0.522 1

3. BETWEEN 0.408 −0.399 1

4. NProcedures 0.082 −0.024 0.055 1

5. NProviders 0.261 −0.185 0.094 0.063 1

6. Newbies 0.025 −0.011 −0.036 0.002 0.023 1

7. FirstVisit −0.014 0.017 −0.018 0.062 −0.022 0.020 1
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5 Model Specification and Findings

To examine the effect of concurrency on duration of the patient visits, we used the main
empirical specification as follows:

Duration = β0 + β1(WITHIN ) + β2(BETWEEN ) + β3(NProcedures)

+ β4(NProvider) + β5(Newbies) + β6(Firstvisit) + α + λ + γ + δ

whereDuration is the log of duration of the patient visit, concurrencyWITHIN is the level
of overlap between actions within each visit and concurrency BETWEEN is the number
of other patients in the clinic. We control for a number of other variables, including
the number of providers (NProviders), the number of procedures performed during the
visit (NProcedures), the involvement of new workers (Newbies), and whether this was
the first visit for this patient (First_Visit). We further add fixed effects in the model to
account for heterogeneity due to the clinic (α), diagnosis complexity (λ), level of service
(γ ), and monthly seasonality (δ).

Table 3 reports the estimated effects of concurrency on duration in the patient visits.
In column (1), we use only the control variables and fixed effects. In columns (2) and (3),
we show to add the stepwise effects of concurrency within and between visits. In column
(4), we show the full model. These are standardized coefficients so we can compare their
relative magnitudes.

As expected, each aspect of concurrency is associated with a significant change
in the duration of patient visits. Concurrency within visits speeds up the work, while
concurrency between slows it down. Concurrency within visits is the largest effect,
roughly three times the size of concurrency between visits. However, when we take both
effects into account at the same time, as in column (4), their magnitudes are somewhat
reduced.

The control variables also provide some interesting insights. For example, the number
of providers involved in a visit increases the duration as much as concurrency between
visits. This is because each type of provider has a specialized role. In the simplest
(fastest) visits, the patient interacts with 1–2 clinical staff members. If a visit requires
the attention of more staff members, it is likely to involve a more elaborate and time-
consuming process. Interestingly, the number of procedures performed (e.g., freezing
a wart) has a comparatively small effect on duration. Likewise, the involvement of
individuals who are new to their jobs (newbies) has a small positive effect. However,
contrary to our expectations, first-time visits are not longer than follow-up visits.
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Table 3. OLS regression results (standardized coefficients)

(1) (2) (3) (4)

Variables Controls Within Between Both

WITHIN −1.5323*** −1.1912***

(0.0492) (0.0431)

BETWEEN 0.4394*** 0.3908***

(0.0096) (0.0089)

NProviders 0.5111*** 0.4666*** 0.4476*** 0.4200***

(0.0226) (0.0220) (0.0217) (0.0213)

NProcedures 0.0581*** 0.0640*** 0.0649*** 0.0688***

(0.0081) (0.0078) (0.0077) (0.0074)

Newbies 0.0550*** 0.0505*** 0.0722*** 0.0668***

(0.0128) (0.0124) (0.0121) (0.0118)

FirstVisit −0.0085 0.0026 −0.0072 0.0014

(0.0092) (0.0087) (0.0084) (0.0081)

Constant 7.1051*** 7.4038*** 6.5918*** 6.8808***

(0.1142) (0.1064) (0.1043) (0.0985)

Observations 21,800 21,800 21,800 21,800

R-squared 0.1400 0.2026 0.2501 0.2865

LOS fixed effects YES YES YES YES

Clinic fixed effects YES YES YES YES

YM dummies YES YES YES YES

Diagnosis effects YES YES YES YES

Robust standard errors in parentheses
*** p < 0.001, ** p < 0.01, * p < 0.05

6 Discussion

Without question, concurrency is crucial to the true fabric of organization, but concur-
rency occurs in layers, within and between processes. In terms of the fabric metaphor,
organizational fabric has multiple layers and they are loosely stitched together. In sim-
ple organizations, where processes and process instances are independent, it is relatively
easy to understand the effects of concurrency within a process. But in complex ser-
vice organizations, where multiple providers serve multiple concurrent clients, it is not
so easy, because concurrency within each process instance interacts with concurrency
between process instances. We can see in Table 2 that there is a strong negative corre-
lation (r = −0.399) of concurrency within and between. When there are more patients
in the clinic, the clinical staff are spread thin. They are less likely to be working on the
same patient at the same time. They are more likely to be working on different patients.



158 B. T. Pentland et al.

This relationship will be different in other kinds of organizations, but it points to the
possibility of multi-layer interactions.

6.1 What Controls the Flow?

An important insight from the role-routine ecology is that process flow can be controlled
by multiple, competing priorities or logics [25, 26]. The next action or event is not
necessarily triggered by actions or events in the same case (i.e., the same patient visit).
Rather, it could be triggered by a pattern of action implied by the roles of the clinical
staff.

Routines can be understood in terms of a sequential, control flow logic, where one
event triggers the next. For some roles, “control flow” works very differently. For the
office staff who check patients in, the work consists of checking in the next patient.
For the clinical technician, the work consists of getting vital signs for the next patient.
These specialized roles contribute the same steps to each patient visit. These roles just
take the next patient in the queue. Similarly, as the nurses and physicians work their
way around the exam rooms, from one patient to the next, they are executing role-based
patterns of action. The fact that patients can be seen in any order (the broad definition
of concurrency) adds flexibility to the workflow, but it also adds complexity to the event
log.

6.2 Emergent Complexity and Model Quality

In research on organizational routines, there has been growing interest in the antecedents
and consequences of complexity [27–29]. This research treats process complexity as the
emergent product of situated actions. In research on processmining, Augusto,Mendling,
Vidgof and Wurm [30] demonstrate that event log complexity can influence the quality
of models discovered through conventional process mining. Their analysis starts from
the complexity event log. Here, we are stepping back to consider why some event logs
are more complex than others.

In a simple role-routine ecology, role logic and routine logic are likely to be aligned.
For example, in a simple organization of artisans, where one individual performs one
process instance at a time, the event log for each process instance will be independent
of other instances. In this idealized case, the pattern of action for the role and the routine
should be the same. This is the best-case scenario for process mining and the discovery
of concurrency within the process. However, as we add multiple roles and concurrent
process instances, the best-case scenario breaks down. In a more complex role-routine
ecology, there is inevitably some conflict between roles and routines. To the extent
that the event log is an emergent product of these competing logics, playing out over
concurrent process instances, it will be more difficult to model.

7 Conclusion

As process mining capabilities become more mature, there is growing interest in more
sophisticated applications of process discovery, such as digital twins of organizations
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[7, 8]. Such models seem plausible for the best-case scenario when concurrency is lim-
ited to within process instances, and the control flow is governed by a single, uniform
logic. However, in more complex organizations, where there are interdependent pro-
cess instances (not to mention interdependent processes) and competing logics for each
of them, discovering and modeling the true fabric of organization is inherently more
difficult.
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