
Multivariate Time Series Anomaly
Detection Based on Reconstructed
Differences Using Graph Attention

Networks

Jung Mo Kang and Myoung Ho Kim(B)

Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
{qazec19,mhkim}@kaist.ac.kr

Abstract. Today, many real-world applications generate the amount of
multivariate time series data. Monitoring those data and detecting some
meaningful events early is important. As one of those tasks, interest
in anomaly detection has grown. In recent research, some authors con-
ducted anomaly detection in multivariate time series data by using graph
attention networks to capture relationships among series and times-
tamps respectively. And another author suggested some connections
between timestamps called Spatio-temporal connections. In this paper,
we combine two ideas jointly and propose another multivariate time
series anomaly detection method using series differences between adja-
cent timestamps. By using the proposed method, we conduct anomaly
detection on two public datasets and compare the performance with other
models. Also, to check for the possibility of operation on the edge envi-
ronment, we measure the throughput of our proposed method in the IoT
edge gateway that has restricted resources.

Keywords: Multivariate time series data · Anomaly detection ·
Graph attention networks · IoT edge gateway

1 Introduction

Today, several real-world applications or systems, e.g., sensors installed in the
smart factory, generate the amount of data. As the size of generated data has
grown more and more, it is one of the important interests how we utilize and
analyze this huge data. Although there are several ways to utilize collected data,
one of the important tasks is event detection. Event detection is a process of
finding the particular event or pattern of event that we have been interested in
among the numerous flow of the data. Meanwhile, the type of generated data
usually becomes time series data, i.e., multivariate time series data, because the
data is generated, collected, or observed periodically. Consequently, event detec-
tion is essentially relevant to the time series data domain. Although there exist
many types of valuable events in the time series data domain, one of the impor-
tant events is an anomaly. An anomaly is an event shown differently from the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Agapito et al. (Eds.): ICWE 2022 Workshops, CCIS 1668, pp. 58–69, 2023.
https://doi.org/10.1007/978-3-031-25380-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25380-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-25380-5_5

MTS AD Based on Reconstructed Differences Using GATs 59

general or expected event pattern. If we can detect anomalies early, we prevent
some disasters that will occur in the future and get some benefits. For exam-
ple, in terms of industrial, detecting anomalies in systems early can save money
and time. Moreover, these monitoring and detection can have more benefits in
the edge environment because of lower latency. On the other hand, apart from
the edge environment, research about anomaly detection in multivariate time
series data has been conducted because of the importance of anomaly detection
tasks. Especially, after the graph attention mechanism [10] was proposed, some
researchers used the graph attention mechanism to detect anomalies in the multi-
variate time series data. As one of those research, the authors of MTAD-GAT [13]
generated graph structure data in terms of series and timestamps respectively,
adapted the graph attention mechanism to each graph structure data, and uti-
lized the reconstruction-based method and forecasting-based method together.
Consequently, MTAD-GAT showed good performance on two public datasets. In
the forecasting field, the author of [14] suggested the Spatio-temporal connection
between adjacent timestamps. The author showed the connection can improve
the forecasting performance. So, in this paper, we combine these two ideas jointly
and suggest another multivariate time series anomaly detection method using
series differences between adjacent timestamps. Also, as we mentioned, because
monitoring anomaly is one of the valuable tasks in the edge environment, we
measured the possibility of the proposed method being executed in restricted
hardware resources of the edge environment.

2 Related Works

In this section, we describe some related works about anomaly detection in
the multivariate time series domain. At first, the outlier detection algorithm
like [1] had been used because the anomaly detection was started from the out-
lier detection problem. But those outlier detection algorithms couldn’t consider
both the temporal character of the time series and the complex inner relationship
between series. As the result, the forecasting-based method had been used based
on the statistical model such as ARIMA to consider the temporal dependency.
In recent, however, the deep learning-based method has been widely proposed
because of the good computation and inference performance as the universal
function approximator. One of the first deep learning-based methods was [5].
This method suggested the LSTM autoencoder architecture and compared the
forecasting-based method and reconstruction-based method for the multivariate
time series anomaly detection. Next, LSTM-NDT [3] used the forecasting-based
method with the LSTM autoencoder and suggested a non-parametric dynamic
threshold technique. OmniAnomaly [9] used the GRU autoencoder and varia-
tional inference and exploited a planar normalization flow to build a more com-
plex latent distribution from the simple normal distribution. Also, the author
adapted the extreme value theory introduced in [8] to set the threshold auto-
matically as possible. MSCRED [12] used the correlation to capture the rela-
tionship between series. The author also used the convolution LSTM to reflect
temporal property. However, the relationship between series couldn’t be perfectly

60 J. M. Kang and M. H. Kim

Fig. 1. An overview of the detection process conducted in our neural net model

represented by the linear correlation. So, to represent the relationship between
series more correctly, the graph structure data has been used. GDN [2] and
MTAD-GAT [13] used the graph attention network (GAT) [10] to consider the
relationship between series. Moreover, [13] showed good performance by using
the reconstruction-based method and the forecasting-based method together.
Inspired by [2,13], our proposed method also uses graph attention networks. But
differing from them, we combine the Spatio-temporal connection concept intro-
duced in STJGCN [14] as the temporal connection for improved performance.
We propose another reconstruction-based anomaly detection method using series
differences between adjacent timestamps. We also measure the execution possi-
bility in the restricted hardware resource assuming the edge environment, unlike
previous studies (Fig. 1).

3 Methods

3.1 Problem Definition

In this paper, we address the anomaly detection problem in multivariate time
series data. We assume the overlapping sliding windowed input Xt+1:t+w =
{xt+1, ... , xt+w} with a fixed length of w. Each xt+n,n=1,...,w is a k dimension
vector and we denote the i-th scalar element of the vector xt+n as xi

t+n. Our
purpose is to determine whether the given input Xt+1:t+w contains some anoma-
lous parts or not based on the anomaly score S(Xt+1:t+w). We will describe how
we compute the anomaly score in Sect. 3.6.

3.2 Encoder Architecture

Some research [6,13] used the entire series to generate graph structure data, but
we build the series relationship graph from the bottom, i.e., timestamp unit. To
generate i-th series’ embedding vector f i

t+n from xi
t+n scalar value, we use the

transpose convolution 1D 4 layers with a kernel size of 7 as an encoder. Also,
to capture the diverse range of series information, we use three additional sub-
encoders. Specifically, these three sub-encoders consist of convolution 1D [6, 3,
2] layers with the same kernel size of 7, and dilation size of [2, 2, 1] respectively.
The first sub-encoder can capture the long-range of series information because 6
layers have large reception fields. The second and third sub-encoders capture the

MTS AD Based on Reconstructed Differences Using GATs 61

Fig. 2. The process of encoding embedding vectors (The case of t = 0)

medium and short range of series information respectively in proportion to the
number of layers and dilation sizes. After being generated, embedding vectors
are given to MLP layers to compute mean and log variance because we adapt
the VAE [4] architecture (Fig. 2).

TransConv1D(xt+n) = ft+n, Conv1Dtype(Xt+1:t+w) = ftype (1)

μt+n = MLPμ(ft+n), log σ2
t+n = MLPlog σ2(ft+n) (2)

μtype = MLPμtype
(ftype), log σ2

type = MLPlog σ2
type

(ftype) (3)

zt+n = sample(N(μt+n, σ2
t+n)), ztype = sample(N(μtype, σ

2
type)) (4)

ztype1:w = repeat(ztype, w) (5)

ztotalt+n
= [zt+n || zlongn

|| zmediumn
|| zshortn], n = 1, ..., w (6)

In (1), the ft+n ∈ R
k×df and the ftype ∈ R

k×dtype are embedding vectors.
The type means each element of {long, medium, short}. The df and dtype mean
each series’ embedding vector dimensions respectively. The sample means sam-
pling and the repeat replicates ztype latent vector w times. The reason why we
need repeat is to match the number of ztype to the number of zt+n. Because
Conv1Dtype sub-encoders use the windowed input Xt+1:t+w, ftype and ztype vec-
tors are generated only once for each type. In contrast, the TransConv1D uses
each timestamp input and zt+n feature vectors are generated as the number of
timestamps, w. Consequently, we use repeat to resolve the inconsistency of the
length. Next, we use a concatenate operate [...||...] to combine zt+n and ztypen

along the series dimension axis. The ztotalt+1:t+w
∈ R

w×k×dtotal is a concatenated
feature and the value of dtotal = df + dlong + dmedium + dshort.

3.3 Graph Attention Mechanism Between Timestamps

As the previous research [2,13] showed, the graph attention network (GAT) can
capture the relation between time series. MTAD-GAT [13] generated two graph

62 J. M. Kang and M. H. Kim

Fig. 3. The process of GATs, vector & matrices multiplication, and differences decoding

structures to capture the series and timestamps relationship, but we combine
them as a single graph attention mechanism by using the concept of Spatio-
temporal connection [14]. If you see Fig. 3, you can see connections between
z2total1

, i.e., the 2nd series’ embedding vector of n = 1 timestamp space, and
the entire embedding vectors of n = 2 timestamp space. They were introduced
as Spatio-temporal connections in [14], but in our proposed method, we use
those connections as temporal connections between adjacent timestamps. After
assuming the temporal connection exists in every pair of vectors between adja-
cent timestamp space, we compute attention scores by (7) and (8).

ep,q,t+n = LeakyReLU([zp
totalt+n

W || zq
totalt+n+1

W]a) (7)

αp,q,t+n =
exp(ep,q,t+n)

∑k
r=1(exp(ep,r,t+n))

(8)

In (7), W ∈ R
dtotal×l is a weight matrix for the linear transform and a ∈ R

2l×1

is a shared attention mechanism. l is a linear transform dimension and exp means
a natural exponential function. αp,q,t+n is an attention coefficient corresponding
to the edge from the latent vector zp

totalt+n
to the latent vector zq

totalt+n+1
. Also,

the zp
totalt+n

∈ R
1×dtotal means a p-th series’ latent vector at (t+n)-th timestamp

space and zq
totalt+n+1

∈ R
1×dtotal indicates a q-th series’ latent vector at (t+n+1)-

th timestamp space. In this process, the graph attention layer may learn the
temporal property and series relationship simultaneously.

3.4 Vector and Matrices Multiplication

After getting attention score matrices for all connections between adjacent times-
tamps, we compute the linear transformed latent feature ẑt+1:t+w by multiplying
with attention matrices Attnt+1:t+w−1 iteratively. This process can be under-
stood as the consecutive implicit forecasting process because we start from the
first latent vector and compute the remaining vectors by considering the rela-
tionship between each series, i.e., multiplication with attention matrices. Also,
if anomalous data exist in some timestamps, the relationship between normal
preceding timestamps and trailing abnormal timestamps may cause incorrect

MTS AD Based on Reconstructed Differences Using GATs 63

graph attention scores in the previous step. As proceeding with this step, the
wrong attention scores may gradually amplify errors and the amplified error can
make the model detect an anomaly easier.

ẑt+n+1 = Attnt+n × ẑt+n, ẑt+1 = ztotalt+1 × W, n = 1, ..., w − 1

Attnt+n = {αp,q,t+n | p = 1, ..., k, q = 1, ..., k}, Attnt+n ∈ R
k×k

(9)

3.5 Decoder Architecture

Before we pass the computed latent features to the decoder layer, we first change
the dimension of each latent feature ẑt+n from R

k×l to R
k×dtotal . To do this, we

use a weight matrix W
′ ∈ R

l×dtotal . After each latent feature’s dimension comes
back, we pass the latent feature to the convolution decoder. Because this process
is a reverse version of Sect. 3.2, the convolution 1D 4 layers with kernel size 7
are used instead of transpose convolution. As one important thing in this phase,
we don’t reconstruct the original input time series data directly. Otherwise, the
model may memorize the data rather than learn it. To avoid that, we make the
model decode series differences between adjacent timestamps. After finishing
the reconstruction of differences, the model finally reconstructs input time series
values by adding differences to the first timestamp input value iteratively. And
then, we compute the loss function value following (12) and train our model to
reduce the loss value. The first term of (12) is a mean squared error between
input data and reconstructed data. The second and third terms reduce a gap
between the encoder’s recognition latent distribution and normal distribution.

z̃t+n = ẑt+n × W ′, d̂t+n = Conv1Ddec(z̃t+n) (10)

x̂t+n+1 = x̂t+n + d̂t+n, x̂t+1 = xt+1, n = 1, ..., w − 1 (11)

Loss = MSE(Xt+1:t+w, X̂t+1:t+w)

− 1
2

∑
types(1 + log σ2

type − μ2
type − σ2

type)

− 1
2

w∑

n=1

(1 + log σ2
t+n − μ2

t+n − σ2
t+n)

(12)

3.6 Criterion for Detection

We check whether the given windowed input Xt+1:t+w contains an anomaly or
not based on the last time series value xt+w because we reconstruct the input
data by adding reconstructed differences consecutively to the first input value
xt+1. If only normal time series data exist in the given windowed input, our
neural net model may reconstruct differences between adjacent timestamps with
a small error. In contrast, if some anomalous data exist in the given window, our
model cannot reconstruct differences well. So, the error will be accumulated and
the last time series value may show a huge error compared with the ground truth
value. To quantify how the windowed data Xt+1:t+w is anomalous, we compute

64 J. M. Kang and M. H. Kim

the anomaly score S(Xt+1:t+w) based on the reconstruction error of the last
time series value xt+w by using (13). If the computed anomaly score exceeds the
fixed threshold value τ , we regard the windowed data Xt+1:t+w to have some
anomalies. Otherwise, the windowed data Xt+1:t+w is regarded as the normal
data.

S(Xt+1:t+w) =
√

1
k

∑k
i=1(x

i
t+w − x̂i

t+w)2 (13)

3.7 Strategy for Setting Threshold Automatically

In this section, we describe how to select the threshold automatically. In the time
series domain, the threshold is a key criterion to decide the model’s performance.
However, the model can’t know future inputs. To address this issue, [8] proposed
a method to select threshold values automatically based on the Extreme Value
Theory (EVT). A summary of the EVT is that the probability distribution of
extreme values is similar to each other regardless of the original probability
distribution where extreme values are extracted. It means the probability dis-
tribution of the extreme score value corresponding anomaly is similar to each
other in the training dataset and testing dataset. Consequently, we can adapt
the extreme score distribution computed by the training dataset to the test
dataset. To use this method, we first set the criterion for peak values among
known data, i.e., training data. The author suggested τinit in (14) as a value of
0.98 quantiles [8]. Based on this initial threshold τinit, we can get peak values
from the known dataset. Next, we conduct the maximum likelihood estimation
over the Generalized Pareto Distribution (GPD) by using observed peak values.
The GPD is a generalized probability distribution of tail distributions and we
can get a real threshold value zq by setting the risk value q as desired value,
e.g., 10−4. The Eq. (14) is a result of maximum likelihood estimation. σ̂ and γ̂
are results from maximum likelihood estimation and Nt means the number of
observed peak values. n is the number of total observed values, and q is a risk
value. zq means the quantile value satisfying P (X > zq) < q. This zq will be
used as a fixed threshold τ in the test phase.

zq � τinit + σ̂
γ̂

((
qn
Nt

)−γ̂

− 1
)

(14)

4 Experiments

4.1 Datasets

In experiments, we used two public datasets in the multivariate time series
anomaly detection domain. One is the MSL (Mars Science Laboratory) dataset
and the other is the SMAP (Soil Moisture Active Passive) dataset. Both datasets
were used in [3] and collected by NASA. Please refer to Table 1 if you want to
know the details of these two datasets. Because original datasets don’t have
validation datasets, we used 30% of training datasets as validation datasets for

MTS AD Based on Reconstructed Differences Using GATs 65

Table 1. The details of datasets.

Name # of items Dimensions # of train
timestamps

of valid
timestamps

of test
timestamps

Ratio of
anomalies

MSL 27 55 40,822 17,495 73,728 10.72%

SMAP 55 25 94,629 40,554 427,617 13.13%

early stopping. We also used both training and validation datasets to select the
threshold τ automatically based on the EVT [8].

4.2 Experiment Settings

We implemented the proposed model by using PyTorch and used Adam opti-
mizer with a learning rate of 0.0003 for training. We trained our model during
20 epochs and adopted early stopping when the validation loss exceeds the aver-
age of the previous 5 validation losses. We also set the window size w = 100
following previous research [9,13] and batch size as 1 following [4]. All train-
ing processes were conducted under the Ubuntu 20.04 LTS OS with Intel(R)
Core(TM) i7-10700 CPU 2.90 GHz and NVIDIA RTX 3090 with 24 GB VRAM.
We also measured the possibility of whether our model can be executed on some
devices having restricted hardware resources. We tested our model in the IoT
gateway device based on the Odroid N2 model. The IoT gateway has the ARM
Cortex-A73 1.8 GHz and Dual-core Cortex-A53 1.9 GHz with 4 GB RAM. Lastly,
We empirically used the risk q = 0.005 and τinit = 0.95 quantiles for the SMAP
dataset and the risk q = 0.025 and τinit = 0.95 quantiles for the MSL dataset.

5 Results

5.1 The Performance Comparison

In this section, we compare the proposed method’s performance with other mul-
tivariate time series anomaly detection models. The metric is an f1-score used
widely in the anomaly detection domain. We also quote the [13]’s model perfor-
mance table because we used the same threshold selection method based on the
EVT [8]. The performance comparison result is like Table 2. As you can see, our
proposed method shows the best precision and the f1-score performance on the
SMAP dataset. However, the proposed method shows the third performance on
the MSL dataset. So, we should find the reason why the performance is lower in
the MSL dataset in future work. Although we’re not sure, we may infer two rea-
sons. According to [14], the author said the Spatio-temporal connection grows up
the forecasting performance. And [13] said the forecasting-based anomaly detec-
tion methods such as LSTM-NDT and DAGMM show better performance on
the SMAP dataset than the MSL dataset. In Sect. 3.4, we may understand that
the model implicitly forecasts differences between adjacent timestamps. Conse-
quently, our model may show a better performance on the SMAP data compared

66 J. M. Kang and M. H. Kim

Table 2. The performance comparison for each dataset.

Model SMAP MSL

Precision Recall F1-score Precision Recall F1-score

OmniAnomaly 0.7416 0.9776 0.8434 0.8867 0.9117 0.8989

KitNet 0.7725 0.8327 0.8014 0.6312 0.7936 0.7031

GAN-Li 0.6710 0.8706 0.7579 0.7102 0.8706 0.7823

MAD-GAN 0.8049 0.8214 0.8131 0.8517 0.8991 0.8747

LSTM-VAE 0.8551 0.6366 0.7298 0.5257 0.9546 0.6780

LSTM-NDT 0.8965 0.8846 0.8905 0.5934 0.5374 0.5640

DAGMM 0.5845 0.9058 0.7105 0.5412 0.9934 0.7007

MTAD-GAT 0.8906 0.9123 0.9013 0.8754 0.9440 0.9084

Proposed 0.9379 0.9257 0.9318 0.8316 0.9225 0.8747

with the MSL data because of the Spatio-temporal connection and the property
of the SMAP dataset. The other reason may be a property of differences. In the
time series data analysis, getting the difference between adjacent timestamps is
one way of transforming non-stationary time series into stationary time series.
In the stationary time series case, statistical indices such as mean and variance
don’t change over time. That makes sometimes the stationary time series be
looked like a random signal such as white noise. It makes also the stationary
time series hard to be forecasted in long term. So, we have a plan to conduct
a test such as KPSS to check for the stationary property of reconstructed dif-
ferences. Additionally, there may exist some other reasons that lower the model
performance in the MSL data set, e.g., incorrect graph structure generation
method, or absence of the neural net model to capture the temporal property.

5.2 The Throughput Measurement of the Proposed Model

As we mentioned in the introduction and abstract, in the monitoring system,
utilizing the edge environment may be useful. However, one of some problems
in the edge environment is the restricted device performance. So we measured
the throughput to check for the execution possibility of the proposed method
in the restricted hardware resources. Specifically, we checked the throughput of
our proposed model by using the tqdm library displaying batch iterations per
second or seconds per batch iteration. We used a single batch in both training
and testing and the single batch corresponds to a single-window data. Therefore
the iterations per second can be understood as the throughput of our proposed
method. As a result, in the IoT edge gateway described in Sect. 4.2, our proposed
method shows 2.24 iterations per second on the SMAP dataset. It means our
proposed method can conduct detection for 2.24 windows with a window length
w=100 per second. In the MSL dataset case, the tqdm library shows 1.07 itera-
tions per second. Because the MSL dataset consists of 55 series compared with

MTS AD Based on Reconstructed Differences Using GATs 67

Fig. 4. The entire process of training, detection, feedback, and refinements.

25 series of the SMAP data, the MSL data requires more computation and this
causes the lower throughput performance. So, if we deploy our anomaly detec-
tion model in the small IoT edge gateway, the proposed model can be operated
normally when the gap of taking raw data input is larger than 1 s without consid-
ering other overhead. That condition seems hard to be satisfied, but one solution
is to use a non-overlapping sliding window mechanism. When we suppose the
gap between every new raw input data is 1 s, the overlapping sliding window
mechanism has to process windowed input within every 1 s. However, in the
non-overlapping sliding window mechanism, the proposed model doesn’t need to
produce the detection output within every 1 s because the model can have spare
time about 100 s before getting the next windowed input. Fortunately, because
some recent research [7,11] also shows good performance in the non-overlapping
sliding window mechanism, we will consider the non-overlapping sliding window
mechanism in future work.

5.3 Feedback and Refinement Process

Although we used the reconstruction-based method to detect anomalies in this
paper, in fact, it is a drawback of the reconstruction-based method that the
model cannot correctly distinguish the input data not seen in the training phase.
In other words, in the test or detection phase, if the model encounters the data
that doesn’t appear during the training, the model may regard the data as an
anomaly. But the data also can be normal. To avoid this situation, we should
periodically collect those false alarm cases and retrain the model. This feedback
and refinement process can be represented in Fig. 4. First, the model is trained
on the collected multivariate time series data regarding as normal. Second, the
model conducts detection in the online or offline environment. The online envi-
ronment means real-time, and the offline means not real-time but collected data
during some periods. Third, whenever the model detects anomaly candidates,
the human expert may confirm whether candidates are real anomalies or not.
In Fig. 4, the model correctly detects the anomaly in the first input data but

68 J. M. Kang and M. H. Kim

makes a false alarm on the third input data. Lastly, we aggregate data that are
turned out as false alarms and give them to the model to improve the model
performance by retraining them. In this step, the model can learn the new nor-
mal data patterns and recognize them as normal. By repeating these feedback
and refinement steps, we can improve the model’s performance gradually.

6 Conclusion

In this paper, we proposed another multivariate time series anomaly detection
method using the difference between adjacent timestamps. We jointly combined
the graph attention concept and Spatio-temporal connection concept. We con-
ducted experiments on the two public datasets in the multivariate time series
anomaly detection domain and the proposed method showed better performance
than the baseline model [13] in one dataset. We also measured the proposed
method’s possibility that can be executed in the small restricted hardware
resources device such as the edge environment. And we suggested another direc-
tion to improve the throughput of the proposed method. Lastly, we suggested
the feedback and refinement process to improve and maintain the model’s per-
formance. However, as you have seen, there are some remaining issues in this
research. We will find the specific reason why the model’s performance is lower in
the MSL dataset, and we will measure the throughput of the proposed method
in the restricted hardware environment again after retraining the model in a
non-overlapping sliding window mechanism.

Acknowledgements. This research was supported by the MSIT (Ministry of Sci-
ence and ICT), Korea, under the ITRC (Information Technology Research Center)
support program (IITP-2020-0-01795) supervised by the IITP (Institute of Informa-
tion & Communications Technology Planning & Evaluation). This work was supported
by the Bio-Synergy Research Project (2013M3A9C4078137) of the MSIT (Ministry of
Science and ICT), Korea through the NRF. This work was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2020R1A2C1004032).

References

1. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-
based local outliers. SIGMOD Rec. 29(2), 93–104 (2000). https://doi.org/10.1145/
335191.335388

2. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate
time series. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 5, pp. 4027–4035 (2021). https://ojs.aaai.org/index.php/AAAI/article/
view/16523

3. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detect-
ing spacecraft anomalies using LSTMs and nonparametric dynamic thresholding.
In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery Data Mining. ACM (2018). https://doi.org/10.1145/3219819.3219845

https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://ojs.aaai.org/index.php/AAAI/article/view/16523
https://ojs.aaai.org/index.php/AAAI/article/view/16523
https://doi.org/10.1145/3219819.3219845

MTS AD Based on Reconstructed Differences Using GATs 69

4. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). https://doi.
org/10.48550/ARXIV.1312.6114

5. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.:
LSTM-based encoder-decoder for multi-sensor anomaly detection (2016). https://
doi.org/10.48550/ARXIV.1607.00148

6. Shang, C., Chen, J., Bi, J.: Discrete graph structure learning for forecasting mul-
tiple time series (2021). https://doi.org/10.48550/ARXIV.2101.06861

7. Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hier-
archical one-class network. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33,
pp. 13016–13026. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/
paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf

8. Siffer, A., Fouque, P.A., Termier, A., Largouet, C.: Anomaly detection in streams
with extreme value theory. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 1067–1075.
Association for Computing Machinery, New York (2017). https://doi.org/10.1145/
3097983.3098144

9. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In: Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
Data Mining, KDD 2019, p. 2828–2837. Association for Computing Machinery,
New York (2019). https://doi.org/10.1145/3292500.3330672

10. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks (2017). https://doi.org/10.48550/ARXIV.1710.10903

11. Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: time series anomaly
detection with association discrepancy (2021). https://doi.org/10.48550/ARXIV.
2110.02642

12. Zhang, C., et al.: A deep neural network for unsupervised anomaly detection and
diagnosis in multivariate time series data. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 33, no. 01, pp. 1409–1416 (2019). https://doi.
org/10.1609/aaai.v33i01.33011409. https://ojs.aaai.org/index.php/AAAI/article/
view/3942

13. Zhao, H., et al.: Multivariate time-series anomaly detection via graph attention
network (2020). https://doi.org/10.48550/ARXIV.2009.02040

14. Zheng, C., Fan, X., Pan, S., Wu, Z., Wang, C., Yu, P.S.: Spatio-temporal joint
graph convolutional networks for traffic forecasting (2021). https://doi.org/10.
48550/ARXIV.2111.13684

https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1607.00148
https://doi.org/10.48550/ARXIV.1607.00148
https://doi.org/10.48550/ARXIV.2101.06861
https://proceedings.neurips.cc/paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf
https://doi.org/10.1145/3097983.3098144
https://doi.org/10.1145/3097983.3098144
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.48550/ARXIV.1710.10903
https://doi.org/10.48550/ARXIV.2110.02642
https://doi.org/10.48550/ARXIV.2110.02642
https://doi.org/10.1609/aaai.v33i01.33011409
https://doi.org/10.1609/aaai.v33i01.33011409
https://ojs.aaai.org/index.php/AAAI/article/view/3942
https://ojs.aaai.org/index.php/AAAI/article/view/3942
https://doi.org/10.48550/ARXIV.2009.02040
https://doi.org/10.48550/ARXIV.2111.13684
https://doi.org/10.48550/ARXIV.2111.13684

	Multivariate Time Series Anomaly Detection Based on Reconstructed Differences Using Graph Attention Networks
	1 Introduction
	2 Related Works
	3 Methods
	3.1 Problem Definition
	3.2 Encoder Architecture
	3.3 Graph Attention Mechanism Between Timestamps
	3.4 Vector and Matrices Multiplication
	3.5 Decoder Architecture
	3.6 Criterion for Detection
	3.7 Strategy for Setting Threshold Automatically

	4 Experiments
	4.1 Datasets
	4.2 Experiment Settings

	5 Results
	5.1 The Performance Comparison
	5.2 The Throughput Measurement of the Proposed Model
	5.3 Feedback and Refinement Process

	6 Conclusion
	References

