
Computer Science Education Research
in Israel

Michal Armoni and Judith Gal-Ezer

1 Introduction

This chapter is devoted to research on computer science (CS) education conducted
in Israel by Israeli CS educators and researchers. CS as an independent discipline
has been offered in Israeli universities since the 1960s. The first department of
CS in Israel was established in 1969 in the Technion, and the first program was
a graduate program. Very soon thereafter, in the middle of the 1970s, computers
were introduced into the K-12 arena, mainly in two tiers. The first was intended
to teach CS as an independent subject and the second was intended to exploit the
potential of computers to teach and learn other subjects, mainly scientific ones, such
as mathematics and physics (e.g., Refs. [36, 50]). Later, when computers became
more prevalent and the government came up with the goal and the slogan of “a
computer for every child”, which they were eager to achieve, a third tier was added,
independent of CS: using computer applications (e.g., for writing documents and
preparing presentations).

Gradually, CS departments, schools, or faculties were established in all the
universities and most of the colleges. Later on, most of them also started to offer
programs towards obtaining a CS teaching certificate. Obviously, over the years,
they have occasionally updated their CS programs. Similarly, the K-12 CS subject
has been updated a few times, but the first major change took place in the 1990s,
when the high-school CS curriculum was in fact developed again, from beginning to
end, resulting in a coherent curriculum, based on solid well-rationalized educational

M. Armoni (�)
Department of Science Teaching, Weizmann Institute of Science, Rehovot, Israel
e-mail: michal.armoni@weizmann.ac.il

J. Gal-Ezer
Mathematics and Computer Science Department, The Open University of Israel, Ra’anana, Israel
e-mail: galezer@cs.openu.ac.il

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Apiola et al. (eds.), Past, Present and Future of Computing Education Research,
https://doi.org/10.1007/978-3-031-25336-2_18

395

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25336-2protect T1	extunderscore 18&domain=pdf

 885 52970 a 885 52970
a
 
mailto:michal.armoni@weizmann.ac.il
mailto:michal.armoni@weizmann.ac.il
mailto:michal.armoni@weizmann.ac.il
mailto:michal.armoni@weizmann.ac.il

 885 56845 a 885 56845 a
 
mailto:galezer@cs.openu.ac.il
mailto:galezer@cs.openu.ac.il
mailto:galezer@cs.openu.ac.il
mailto:galezer@cs.openu.ac.il
https://doi.org/10.1007/978-3-031-25336-2_18
https://doi.org/10.1007/978-3-031-25336-2_18
https://doi.org/10.1007/978-3-031-25336-2_18
https://doi.org/10.1007/978-3-031-25336-2_18
https://doi.org/10.1007/978-3-031-25336-2_18
https://doi.org/10.1007/978-3-031-25336-2_18
https://doi.org/10.1007/978-3-031-25336-2_18
https://doi.org/10.1007/978-3-031-25336-2_18
https://doi.org/10.1007/978-3-031-25336-2_18
https://doi.org/10.1007/978-3-031-25336-2_18
https://doi.org/10.1007/978-3-031-25336-2_18


396 M. Armoni and J. Gal-Ezar

principles; it emphasized the fundamental and scientific concepts of the discipline,
rather than just programming or technology [47, 51].

CS educational research existed even before well-established curricula were
published and implemented, and just like the CS programs, it has evolved and
flourished, dealing with all educational levels, from young children to advanced
undergraduate and even graduate students.

Research on K-12 CS education occupies a large portion of computing education
research in Israel. It is independent of the educational system, but at the same
time, it has rich and fruitful connections with the educational system. For example,
as part of the development and implementation of the new curriculum in the
1990s, educational research teams in the universities were funded by the Ministry
of Education to develop different parts of the curriculum, including matching
textbooks. These teams (including university researchers as well as teachers)
performed research-based design and investigated the gradual implementation of
the curriculum in schools, in the classrooms of teachers who volunteered to pilot
the new courses. New research directions have often emerged from these research-
based design projects. In other cases, new research directions were initiated by the
researchers, and their outcomes have influenced decisions taken by the educational
system. Moreover, conducting research in schools requires permission from the
Ministry of Education, and this is usually granted (provided it meets required
standards and regulations). In addition, to prepare teachers for the new courses, the
development teams at the universities operated professional development courses
for in-service CS teachers, and universities also offered programs for prospective CS
teachers, towards obtaining a teaching certificate, thus opening up new directions of
research focusing on teachers.

Considering everything, in Israel there are four elements that interact, creating
a synergy that promotes K-12 CS education [86]: a well-established curriculum,
accompanied by research conducted at the universities, a mandatory formal teaching
license provided by the Ministry of Education, and teacher training programs
towards obtaining a teaching certificate offered by the universities.

Currently, CS education is a very active research area, with researchers who
reside in schools of education, science teaching departments or CS departments,
guiding students towards master’s or doctoral degrees in CS education.

Numerous papers on CS education research have been published since the 1970s,
dealing with teaching and learning of various CS areas. Some focus on students –
K-12, undergraduate, or even graduate students – and other focus on K-12 teachers,
in-service as well as prospective teachers. They deal with many aspects of teaching
and learning, such as instructional approaches, visualization, assessment, gender,
and affective factors, to name but a few. Obviously, it is impossible to mention here
all or even most of these publications, or even touch on all the topics and aspects
with which they deal.

Instead, we decided to tell the tale of Israeli computer science education research
through the perspective of the discipline itself. Like other academic disciplines, CS
is underlain by fundamental ideas and concepts [120] that define its nature; it is
a discipline that is more than programming and is concerned with computational



Computer Science Education Research in Israel 397

problems – understanding, analyzing, and solving them. These ideas and concepts
cut across the discipline, recurring in different fields and contexts, from basic to
advanced ones. They can and should be taught at various levels, to K-12 and
university students, revisited throughout the curriculum, because only a spiral
teaching of them [37] can help students perceive them and help them understand
the nature of our discipline. We chose to organize this chapter around such ideas,
which were often addressed by CS education research conducted in Israel.

To contextualize the research work reviewed in this chapter, we will start by
elaborating more on curricular issues, in Sect. 2. Section 3 will review research
conducted by Israeli researchers that deal with fundamental concepts and ideas of
CS. We will conclude and look forward to the future in Sect. 4.

2 Curricular Issues

As noted above, the history of CS as an independent discipline in Israeli universities
began in the 1960s, starting with a graduate program offered by the Technion; then
it was followed by other universities, and later by colleges. Today, universities in
Israel offer undergraduate CS programs and graduate CS programs towards master’s
and Ph.D. degrees. The first undergraduate programs were designed on the basis
of the first published ACM curriculum recommendations in 1968 [1] and have
been updated over the years as the discipline and its education have evolved. In
addition, as the computing field continued to evolve, the recommendations have
been updated to include new computing disciplines, reflecting the new reports for
the new disciplines written by the ACM and IEEE task forces. All the programs
offered today by Israeli universities and colleges are regulated by the Israeli Council
for Higher Education.

Research on CS education at higher education institutes has also evolved.
Some of the educational efforts were accompanied by educational research or took
advantage of the educational research results and many studies examined teaching
and learning processes taking place during undergraduate CS programs (e.g., Refs.
[2, 19, 105, 108, 116]).

In the middle of the 1970s, CS was introduced into high schools in Israel. The
K-12 system in Israel is centralized; it is under the responsibility and control of the
Ministry of Education, namely, all curricula for all subjects and for all age levels
are determined by the Ministry of Education, and every school must adhere to them.
The subject of CS was first taught in technological schools that offered practical
studies. Nevertheless, these programs also included theoretical subjects (e.g., finite
automata). These programs were updated to include Spreadsheet and the LOGO
programming language, and formed an intermediate curriculum. The content of the
curriculum was determined by a committee appointed by the Minister of Education,
as is customary in the Israeli educational system. The committee was advised by
the supervisor on CS education in the Ministry of Education. The implementation
of this intermediate program was accompanied by research, praising the features of



398 M. Armoni and J. Gal-Ezar

LOGO on the one hand, but also challenging the prevailing opinions, for example,
that meaningful learning through LOGO can take place without the assistance of
teachers or instructors (e.g., [95]).

At the beginning of the 1990s, the Minister of Education appointed a new
committee, composed of CS researchers and educators, officers from the Ministry
of Education, and CS high-school teachers. This committee was assigned the
task of designing a new high-school CS curriculum. Its goal was not to train
the students to become CS professionals. Rather, the goal was to introduce the
students to the discipline, so later they would be able to make an informed choice
regarding their path in higher education. This curriculum [51] opened a new area
of research in Israel, significantly expanding the Israeli CS education research
community. Although this curriculum has been updated over the years after its initial
implementation, the main principles that guided the designers still stand today.

A key criterion for defining the core subjects to be included in the curriculum was
longevity. As we know even better today, the technology changes rapidly, far more
than the basic ideas of CS, which have lasting and fundamental value. As a result
of this criterion, the program covered CS knowledge and skills that are independent
of specific computers or programming languages. The designers of the curriculum
followed nine underlying principles, the most important and relevant world-wide
are as follows:

• CS is a full-fledged scientific subject, the same as other sciences;
• The program should focus on the key concepts and foundations of the field;
• The program should include mandatory and elective courses (from which the

teachers can choose their preferable courses);
• Conceptual and experimental issues should be interwoven – The Zipper Princi-

ple;
• Two quite different problem-solving paradigms should be taught;
• New course material must be developed for both students and teachers;
• Teachers certified to teach the subject must have adequate formal CS education.

Most of these principles apply to every subject and in particular, every scientific
subject, but at that time, this was not clear regarding CS, and it is still not common
knowledge in all countries even today. Indeed, the program introduced both facets
of the discipline – the theoretical and the practical – and as the zipper principle
states, both were interwoven throughout the program. The teaching of different
problem-solving paradigms, namely, different approaches to problem solving, is
implemented by using programming languages of different paradigms in different
parts of the curriculum.

Requiring teachers, who are the corner stone of the implementation of any
curriculum whatsoever, to have a formal education in CS is a major challenge
for every country that implements or aims at implementing a new CS curriculum,
since it requires a sort of a bootstrapping process, starting to teach CS when there
are not enough certified teachers nor suitable programs for training pre-service
CS teachers. Fortunately, Israel succeeded in this challenge, since even before
the wide implementation of the curriculum, which followed the pilot phase, the



Computer Science Education Research in Israel 399

Ministry of Education invested massive efforts and funding to address this issue.
Professional development courses that focused on how to teach the new curriculum
were provided to all teachers. Those who did not have a CS background were
provided with hundreds of hours of training programs, introducing them to the
discipline.

After the design of the curriculum was completed, working teams were set up
in the Technion, the Hebrew University, the Weizmann Institute of Science, and the
Open University of Israel, sometimes two working groups in one institution. Each
group was assigned one or two of the program units. Each unit was reviewed by the
committee’s members, and then initially implemented in a small number of schools.
This implementation was accompanied by research for each of the units and the
entire program. Each team consisted of researchers, educators, as well as CS high-
school teachers, since their pedagogical knowledge and practical experience from
their classrooms were invaluable.

Not long after the program was implemented, universities and teacher colleges
started to offer complete programs towards obtaining a CS teaching certificate (e.g.,
Ref. [46]), thus ending the bootstrapping phase. In these programs the teachers
acquire pedagogical knowledge and pedagogical content knowledge. They learn
about instructional approaches and methods for teaching CS effectively, current
curricula, the history of the discipline and its nature, employing current technology
for teaching CS, and more. In addition, the “Machshava” center for computer
science teachers was established [90], offering teaching resources and professional
development activities (e.g., Ref. [91]). Today, professional development courses
for CS in-service teachers are regularly offered by the Ministry of Education and by
the universities. The massive and continuous efforts to educate, train, and support
the teachers in their daily mission has been widely researched (e.g., Refs. [26, 35,
81, 115]), thus paving the way to new pedagogies and teaching tools.

In 2011, the Ministry of Education initiated a technological leadership program
for excellent middle-school students, called the Science and Technology Excellence
Program (STEP). CS was included in this program [133, 134], alongside the
reinforcement of Mathematics and Physics. The goal was to expose students to the
principles of CS, teach them to think in a systemic fashion, draw logical conclusions,
and mainly develop abstraction and imagination abilities. The designers thought
that learning CS and internalizing the principles of the discipline may contribute
to success in other subjects learned in school. The curriculum introduced the
learners to concepts in algorithmic thinking (also referred to as computational
thinking), through unplugged and programming activities. After a few years, the
CS part of this program was replaced by a new curriculum. It follows a problem-
based and abstraction-based approach to algorithmic problem solving. The entire
process of problem solving is carried out by moving between the four abstraction
levels of algorithmic problem solving: the problem level, the algorithm level, the
program level, and the execution level. In the 7th grade, algorithmic solutions are
implemented in the event-driven language Scratch, whereas in the 8th and 9th grades
the students use Python.



400 M. Armoni and J. Gal-Ezar

As K-12 computer science became more prevalent in countries worldwide, with
some countries designing or adapting curricula that start from elementary school
(and sometimes even before that), Israel started debating whether the pipeline of CS
education can and should be extended down to elementary school [16]. In 2015, it
was decided to start teaching CS in elementary schools to 4th–6th grade students.
These grades were chosen because younger students are still coping with mother
tongue acquisition and basic mathematics. A curriculum called computer science
and robotics was designed by the Ministry of Education for a soft introduction to
computer science. Algorithms are implemented in Scratch.

This curriculum is currently taught in a few hundred schools; it is still in a pilot
phase, and it has already undergone some changes. However, its implementation
poses a considerable challenge. First, teaching CS to young children, without
reducing it only to programming (let alone coding), is a difficult educational task.
Second, once again, we are facing the bootstrapping process of training teachers
when training programs for prospective CS elementary teachers do not yet exist, and
although we have a nice cadre of high-school teachers (though not enough), there
are hardly any elementary school teachers who have the disciplinary knowledge
required to teach CS. The Ministry of Education and the Ministry of Finance
allocated funding for the purpose of teacher training and every teacher that plans
to teach this curriculum takes a training course of a few dozen hours. Research on
this issue is now taking place (e.g., Refs. [22, 43]).

3 Fundamental Ideas and Concepts of CS

There are many fundamental ideas and concepts of CS. Here we will focus on those
that are addressed by Israeli CS education researchers. This section is organized
into seven subsections, the first six of which deal with some CS fundamental
ideas and concepts, respectively, starting with abstraction (Sect. 3.1), followed by
problem-solving paradigm (Sect. 3.2), correctness and efficiency (Sect. 3.3), non-
determinism (Sect. 3.4), concurrency (Sect. 3.5), and Reduction (Sect. 3.6). The
seventh section will deal with research about problem-solving strategies.

3.1 Abstraction

Abstraction is the core of CS, its most fundamental idea. CS experts use abstraction
in different contexts and move freely between levels of abstraction. In fact, many
of the ideas described below in the following sections, are manifestations of
abstraction. Abstraction can be used for modeling, formalization, generalization,
ignoring details, transfer among domains, and more. Since abstraction is also
a central idea in the context of the mature discipline of mathematics, several



Computer Science Education Research in Israel 401

publications discussed the differences and similarities between these disciplines
regarding this idea (e.g., Refs. [3, 96]).

Haberman et al. examined the teaching and learning of logic programming as a
second problem-solving paradigm for high-school students (see Sect. 3.2). A major
focus of this research project was the concept of abstract data types (ADT), through
which the declarative and procedural aspects of logic programming can be taught.
ADTs ignore or hide the concrete organization of data as well as the implementation
details of manipulating the data. Haberman et al. introduced a didactic method for
teaching ADTs, which uses evolving boxes – black, white, and gray, and explored
its effectiveness and cognitive aspects [76, 79, 80]. This approach was shown to
be effective for many students, although some used it only partially or violated the
hiding of details in various ways.

The teaching and learning of ADTs was also studied in the context of the
procedural paradigm, for example, the cases of the ADTs of a binary tree and a
linked list in an advanced high school course [74, 75, 117]. Aharoni [2] studied
the teaching and learning of ADTs in the context of a data structures course for
undergraduate students. He showed the students’ tendency to reduce the level of
abstraction, working with ADTs from the perspective of a process rather than the
perspective of an object.

The duality of process-object in terms of abstraction is a known framework from
mathematics education [121]. Hazzan extended and generalized this framework,
demonstrating students’ tendency for reducing the level of abstraction when intro-
duced to a new concept. She employed this framework in mathematics as well as in
computer science [83], for undergraduate students in various curricular contexts. For
example, computability theory [84] and graph algorithms [85]. Ginat and Blau [68]
used Hazzan’s framework to show the tendency of senior undergraduate CS students
to reduce the levels of abstraction in the context of algorithmic problem solving.
Based on Hazzan’s framework, Armoni [11] introduced a didactic framework for
teaching procedural abstraction for novices, differentiating between four levels
of abstraction [111]: problem, algorithm (object), program, and execution. The
effectiveness of this framework was shown in the context of an introductory CS
course for middle-school students [124], indicating an even extended effect for girls
[123]. Ginat [66] relied on the same 4-level hierarchy to show that following an
intervention in which declarative observations were employed in an algorithmic
problem-solving course for undergraduate students, the students were able to work
at higher levels of abstraction.

Pattern-Oriented Instruction (POI) is an instructional approach for teaching
problem-solving, using algorithmic patterns, which by nature employ procedural
abstraction. Indeed, the integration of this approach in an introductory CS course
for high-school students was shown to improve students’ abstraction skills [104,
106]. Haberman and Muller [77] analyzed and compared the instructional approach
of POI with an ADT-oriented approach regarding abstraction. Ginat and Menashe
[69] utilized algorithmic patterns to define a taxonomy for assessing students’
learning outcomes regarding algorithmic problem solving. This taxonomy was built
on the SOLO taxonomy [34], which takes the perspective of abstraction. The



402 M. Armoni and J. Gal-Ezar

higher is the level reached by a student, the more abstract is the employment
of algorithmic patterns in the student’s algorithmic solution. Ginat and Menashe
used this taxonomy to assess high-school students’ solutions for several algorithmic
problems.

Students’ difficulties with abstraction were shown by several researchers, in
different levels and curricular contexts. For example, Omar et al. [107] in the
context of decomposition and reuse, with high-school students; Haberman et al.
[82] in the context of procedural abstraction and in particular the concept of an
algorithm, with high-school students; Lavy et al. [94, 108], in the context of an
undergraduate course on object-oriented programming; Ginat and Alankry [67]
in the context of concatenation of formal languages in a high-school course on
computational models; Ginat et al. [70] in the context of algorithmic problem
solving, with both undergraduate and high-school students; Ginat [64] in the context
of the abstract notions of ‘as-if’ and ‘don’t-care’ for solving algorithmic problems,
with undergraduate students.

In contrast, Alexandron et al. [6] found that a course on the scenario-based
paradigm had a positive effect on abstraction skills, of both graduate and high-
school students. In a very different context of a high-school course on computational
science, Taub et al. [128] found that when developing simulations of physics
phenomena, moving between levels of abstraction in the context of CS facilitates
moving between levels of abstraction in the context of physics.

In all these contexts, the level of programming in a high-level language was
a lower level of abstraction, below the levels of the problem and its algorithmic
solution. In contrast, Schocken and Nisan developed a course in which abstraction is
a major recurring context, and in which students move between even lower levels of
abstraction below the programming level. In a series of projects the students design
a computer system in a bottom-up manner. The students start from the very low
level of logic gates, and gradually move up through hardware and software levels
(e.g., computer architecture, machine language, assembly, compiler, and operating
systems) [118].

3.2 A Problem-Solving Paradigm

Problem solving lies at the heart of CS, and hence, a problem-solving paradigm is
an important CS idea. It expresses the expertise of computer scientists as problem
solvers, who among other things, are experts in choosing the appropriate, best fit
way of thinking by which they approach the problem at hand. In other words,
they choose the appropriate form of modeling the problem space, or yet in other
words – abstracting the problem space. Thus, every problem-solving paradigm has
its own abstraction method. Furthermore, other recurring CS ideas and concepts
(e.g., recursion) can be relevant to all or several paradigms but expressed in a
different form in each of them.



Computer Science Education Research in Israel 403

A more concrete perspective on problem-solving paradigms is expressed through
programming languages, where each problem-solving paradigm can be imple-
mented by different programming languages. Although this concrete perspective
is certainly important, the more abstract level of problem-solving paradigm is
necessary to understand this idea (rather than just using it).

In general, educational research on problem-solving paradigms can be divided
into a few types: how to teach a certain paradigm, what should be the first paradigm
taught, how does the first paradigm affect the teaching of other paradigms, students’
difficulties when learning a specific paradigm, comparing different paradigms
regarding different aspects, and the meta-type of learning the idea of a problem-
solving paradigm.

Typically, undergraduate CS programs include more than one problem-solving
paradigm, where the first is introduced in CS1 and additional ones are introduced in
more advanced courses. Several Israeli studies examined the idea of a problem-
solving paradigm in the context of higher education. Some dealt with students’
understanding of specific OO concepts [25, 94, 108]. Not surprisingly, some
dealt with the controversial issue of Object-first-vs-object-later, which extensively
occupied the international CS education community [53, 73, 132].

Alexandron et al. examined issues concerning the teaching of the scenario-based
paradigm in a graduate course, using the LSC (Live Sequence Charts) programming
language [39]. In the scenario-based approach, “a program consists of a set of multi-
modal scenarios. The execution mechanism follows all scenarios simultaneously,
adhering to them all, so that any run of the program is legal with relation to
the entire set of scenarios” [23]. They found that when using LSC, the students
tended to adopt an external and usability-oriented view, whereas when using another
paradigm of their choice to solve a programming challenge, they adopted an
internal and implementation-oriented view [5]. In their work they also referred to
the “mother tongue” issue. They found [4] that previous programming experience
can affect the learning of scenario-based programming, leading students to use
familiar programming patterns in a manner that interferes with the new concepts,
resulting in their poor usage and even unexpected behavior of the students’ artifacts.
The paradigm of scenario-based programming is also used for Plethora, a new
educational environment for teaching computational problem solving to elementary-
school students [23].

The issue of a problem-solving paradigm was widely examined in the context
of K-12 CS education. As mentioned in Sect. 2, one of the underlying principles
of the high-school CS curriculum [51] is that students should be exposed to more
than one programming paradigm, to “another language, of radically different nature,
that suggests alternative ways of algorithmic thinking” (p. 76). In line with this
principle, several courses dealing with different paradigms were developed, and
extensive research accompanied their development and enactment. For example,
several papers (e.g., [93]) reported on the learning of functional programming
(in Scheme), examining students’ conceptions of automated assignment [109] and
the functional evaluation process [92], and the conceptual conflict between the
procedural and the functional paradigms demonstrated by the students [92]. An



404 M. Armoni and J. Gal-Ezar

interesting paper examined phenomena known from mathematics education, in the
context of functional programming [110]. They found evidence of a clash between
the conception of functions as actions on objects and their formal conception,
a clash that occurred between the conception of a function as a change and its
conception as a mapping, as well as between the conception of a chain of actions and
the conception of composition of functions. Interestingly, this study led to further
examination of the conception of functions in a mathematical context [97].

Teaching and learning the logic paradigm (using Prolog) was also reported in
several papers, mainly through the perspective of abstract data types (see Sect. 3.1)
and their use for knowledge representation, as well as problem solving (e.g., Ref.
[80]). The concept of recursion was studied both in the context of the functional
paradigm [98] and the logic paradigm [75], thus nicely demonstrating the idea of a
problem-solving paradigm.

Numerous papers have dealt with the object-oriented (OO) paradigm, following
the gradual shift in the high-school CS introductory course, from the procedural to
the OO paradigm, which took place more than 15 years ago (e.g., Refs. [99, 112,
114, 122, 129]). These mostly focused on the learning of OO concepts and ideas.
Haberman and Ragonis [78] discussed the similarities and differences between the
OO paradigm and the logic paradigm and suggested establishing links between
the two courses in the high-school program, thus supporting the learning of each
paradigm, as well as promoting a coherent conception of the idea of a problem-
solving paradigm.

Alexandron et al. [8, 9] developed and implemented a high-school course on
scenario-based programming using LSC. They found that the course encouraged
abstract thinking [6] and provided a good context for learning the concept of non-
determinism [7].

Israeli middle-school students who study CS are introduced to the event-driven
paradigm by means of the Scratch environment. Their learning of CS concepts
in this course was reported by Meerbaum-Salant et al. [102]. A subsequent study
[21] examined the transition from the event-driven paradigm (9th grade) to the OO
paradigm (10th grade), by comparing the achievements of 10th-grade CS students
who studied CS in middle school with the achievements of those who did not.
They found that although some differences in understanding some CS1 concepts
could be identified throughout the school year, by the end of the school year there
were no significant differences. In another study, Meerbaum-Salant et al. [101]
identified patterns of programming used by the students, which were not consistent
with standard habits of programming (for example, modularization). Gordon et al.
[72] argued that these habits are consistent with the scenario-based paradigm, thus
hinting at its naturalness for the young students.

Finally, Stolin and Hazzan [127] reported on a course on programming
paradigms for pre-service teachers, which was organized around the theme of
abstraction and dealt with four paradigms (functional, procedural, OO, and
concurrent). Their study investigated the students’ understanding of the concept
of a programming paradigm, particularly their way of relating to this concept when
discussing the different paradigms.



Computer Science Education Research in Israel 405

3.3 Correctness and Efficiency

Correctness and efficiency are fundamental CS concepts when designing, analyzing,
or reasoning about algorithms. They are relevant for any algorithm for a computa-
tional problem, in any model of execution. These concepts can be learned at various
levels of rigor, for example, by using rigorous proofs of correctness and big-O
analyses of complexity, by using verbal arguments, or by using representative test
cases and loop-based estimated counts.

Ginat [55] argued for using assertions as a pedagogical tool for proving (or
justifying) correctness and measuring efficiency, as well as a tool for algorithmic
design (see Sect. 3.7). As a tool for establishing correctness, such assertions can be
used for tagging the algorithm, as is done in algorithmic verification [42, 87], for
example, as loop invariants or as entry and exit assertions for parts of an algorithm
(e.g., segments and solutions for sub-tasks). Tagging with loop invariants can serve
to analyze efficiency by establishing a worst-case bound of the number of rounds
until the invariant does not hold.

Ginat contended and illustrated that despite such assertions’ perceived formal
nature and difficulty, their use can be taught to students at a rather intuitive level.
This pedagogical tool was embedded in the textbook for the first introductory CS
course for 10th-grade students. It was developed during the implementation of the
1990s’ curriculum at the request of the Ministry of Education (the textbook used
the procedural paradigm and Pascal as a programming language. It has been out of
use, since the problem solving-paradigm used in the introductory courses and the
programming language were changed).

This book also included a chapter on efficiency, in terms of both time and
space. Ginat [54] argued that unlike the concept of complexity, which requires
formal mathematical tools, efficiency can be taught relatively early, after introducing
repeated execution. Students are introduced to problems with multiple solutions that
vary in their efficiency; they learn how to express the number of iterations in a loop
in terms of input size, and to examine the need to use arrays whose sizes depend
on the input size. This relatively gentle introduction can serve as the basis of the
spiral teaching of efficiency. Later, in a mandatory unit dealing with data structures,
the students are re-acquainted with efficiency, this time using the big-O-notations;
however, in line with spiral teaching, the learning of efficiency is suitable for the
age level of sophomore or senior high-school students.

Gal-Ezer and Zur [49] investigated students’ misconceptions of efficiency and
related achievements following the learning of this concept as introduced in the
textbook. They found that intuitive rules [125] often govern students’ conception
of efficiency. Specifically, they tend to think that the shorter a program, the more
efficient it is; the fewer variables in a program, the more time-efficient it is; two
programs that include the same statements (no matter the order) are equally efficient,
and two programs that accomplish the same task are also equally efficient.

Gal-Ezer et al. [52] also aimed at an early introduction of efficiency, in the context
of a CS1 course for undergraduate students. The introduction was gradual, but unlike



406 M. Armoni and J. Gal-Ezar

the introductory high-school course, it was more formal, also including the big-O
notations. The instructional approach employed by Gal-Ezer et al. was found to be
effective and students’ achievements improved (compared to previous semesters).

In a series of studies, Ben-David Kolikant et al. studied students’ conceptions of
correctness. Ben-David Kolikant and Pollack [32] found that high-school students
were tolerant regarding some errors in their programs and were satisfied with
programs that “worked in general” or “worked for many input examples”. Later,
Ben-David Kolikant [29] found that high-school students as well as college CS
graduates were satisfied with “relatively correct programs”. Ben-David Kolikant
and Mussai [31] took the perspective of incorrectness, and investigated high-school
students’ misconceptions and their connections to the students’ existing knowledge.
They found that students’ conception of incorrectness did not complement their
conception of correctness. Rather, they tended to assume a gray area in which
programs are partially incorrect, since they achieve part of their goals. This
conception stemmed from a summative grading scheme that was often used by
teachers to grade students’ assignments, according to which a program may get
a non-zero score if it achieves some of its goals or made some progress towards a
goal. For these students, incorrect programs were only those that deserved a score
of 0.

Ben-David Kolikant and Pollack [32] challenged the norm among high-school
students and their teachers, according to which it is sufficient to successfully run
a program in order to establish its correctness. Their instructional approach was
intended to establish a new norm, according to which incorrect programs cannot
be tolerated. Using mathematical problems, the students developed mathematically
oriented programming skills, realizing that correct algorithmic solutions can be
found by first analyzing the problem at hand and then concluding what the output
should be for all possible subsets of inputs. These subsets can later serve for
choosing representative test cases, thus achieving a high-coverage testing together
with explanatory proofs. To this end, they used class discussions, since social
contexts are known to be effective for acquiring norms.

The idea of correctness is especially challenging in the context of concurrent and
distributed computing, since a successful run of a specific test case is insufficient
even when arguing that a program is correct regarding this test case. All possible
interleavings should be considered. Indeed, several studies demonstrated students’
difficulties with this idea in a concurrent context (see Sect. 3.5).

3.4 Nondeterminism

Nondeterminism (ND) is a challenging abstract CS idea that is relevant in many
CS areas and has many facets. For example, ND is manifested in the context
of computational models through nondeterministic automata (NDA), as a way of
augmenting expressiveness. Similarly, in the context of programming, ND can
be manifested through nondeterministic algorithmic constructs, again augmenting
expressiveness. In this context it represents the notion of don’t care, since all



Computer Science Education Research in Israel 407

possible computations are considered equally good. In both these contexts, using
ND is a matter of choice. In contrast, in the contexts of concurrent or distributed
computing, ND represents unpredicted behaviors stemming from a set of possible
interleavings or timings, over which the designer has no control. Note that students
may face this kind of ND at a relatively early age, since even the block-based
language of Scratch, which is very popular in K-9 CS education, is inherently
concurrent. In all these manifestations of ND, ignoring details or being prepared
for unpredicted situations is inherent, hence the deep connection of ND with
abstraction.

In the Israeli high-school program, ND is included in the elective course on
computational models, through NDA. Armoni and Gal-Ezer [14] described the
rationale and underlying considerations as well as the guidelines for teaching ND
in high school as part of the computational models course. They also studied the
ways in which the students used ND. The findings indicated that many students
tended not to fully exploit the expression power of NDA and demonstrated several
patterns of partial use of ND. Following this study, they continued to study the
teaching and learning of ND at the undergraduate level in the same curricular
context – an undergraduate course on automata and formal languages [15]. They
analyzed students’ errors when using ND, their tendency to use ND and the quality
of their solutions regarding ND, and found various levels (sometimes unsatisfactory)
of their tendency to use ND and the quality of using it. This motivated further
exploration of the teaching and learning of this concept. In another study, Armoni,
Lewenstein, and Ben-Ari [20] found that undergraduate students do not perceive
NDA as unpredictable entities. However, a simple change in the teaching process
of the course proved highly efficient and led to students having better perceptions
of NDA and ND. These perceptions were the motivation for turning to explore
the development and treatment of ND throughout the history of CS and CS
education, in its various facets and manifestations [12]. It yielded a taxonomy of ND
manifestations as well as recommendations for the teaching of ND, at all curricular
levels.

The teaching and learning of ND at the high-school level was also studied
by Alexandron et al. [7], as part of their research on teaching scenario-based
programming in high school using LSC. LSC includes various forms of ND
[39]. As a scenario-based language, there are no assumptions regarding ordering
(unless explicitly stated otherwise, using the language constructs). In addition,
some of LSC’s constructs are nondeterminisic (for example, a weighted select
construct, which can be viewed as a probabilistic version of Dijkstra’s guarded
commands [40]). Alexandron et al.’s study demonstrated that high-school students
can perceive, understand, and effectively use these manifestations of ND.

Ginat [63] studied the computational notion of don’t care. This was done
in an algorithmic deterministic context, where students were expected to find
or understand efficient solutions in which certain aspects of the problem were
ignored. He pointed out several substantial difficulties students had regarding this
notion. Despite the deterministic context, Ginat linked this to ND, viewing the
notion of “don’t care” as universal, in the sense that its essence is the same in



408 M. Armoni and J. Gal-Ezar

both its deterministic and nondeterministic manifestations. In another study, Ginat
and Alankry [67] studied high-school students’ understanding and performance of
concatenation in the context of the computational models course, and specifically,
concatenation of formal languages. Concatenation of formal languages involves ND
thinking (expressed in the nondeterministic canonical construction that based on
two given automata, constructs a nondeterministic automaton for the concatenation
language).

A noted above, ND is strongly related to concurrency. Several studies explored
the teaching and learning of concurrency (see Sect. 3.5), but although the connection
was acknowledged, the learning and teaching of ND was not discussed in those
publications.

3.5 Concurrency

Concurrency is another abstract and challenging CS concept. As noted above, it is
strongly related to ND. Namely, ND is inherent in any model of computation in
which multiple interleavings are possible. Traditionally, concurrency is considered
an advanced idea, and it is usually addressed in advanced courses on concurrent and
distributed algorithms, computational models (e.g., through Petri nets), semantics
of programming languages (e.g., through constructs such as Dijkstra’s guarded
commands), and more. However, as noted in Sect. 3.4, nowadays concurrency may
be inherent even in computing environments such as Scratch, which are designated
for young children.

In Israel, concurrency at the K-12 level was addressed in two educational
research contexts:

1. The context of teaching concurrent and distributed computing.
2. The context of basic CS courses for young children using a concurrent language.

The 1990s’ high-school CS curriculum [47] included a 45-hour course on concur-
rent and distributed computing (CDC). It was an advanced course, taken at grade
11 or 12, following a chain of two introductory courses and a course presenting
a second paradigm, and in parallel with an advanced course on data structures
and software design. Several studies accompanied the iterative development of this
course. Ben-Ari and Ben-David Kolikant [24] described the course, the motivation
for teaching it, and the pedagogical considerations behind it, and investigated
the students’ learning. They found that the students had some difficulties, for
example, with considering multiple interleavings, or in general with the concept
of correctness in a concurrent model; however, students’ understanding evolved
throughout the course, and by the end of the course, most of them could solve
problems that required process coordination and they reached high achievements.
Moreover, they could discuss and explain concurrent and distributed systems using
concepts learned during the course. In another study, Ben-David Kolikant et al. [33]
investigated students’ mental models of semaphores. Because non-viable models



Computer Science Education Research in Israel 409

were detected, indicating misconceptions of semaphores, the course was updated
to avoid the development of these misconceptions. Ben-David Kolikant [27] has
also studied students’ preconceptions of concurrency. Students’ prior knowledge
on synchronization (computerized as well as human) was found to be rich, but
when thinking of human agents, students tended to assume capabilities that are
not viable in the context of computing. This includes, for example, being able
to determine when one can stop waiting, being able to spontaneously adapt to a
constant rate of actions, or being able to receive a message spontaneously, without
the need to perform an action, whereas sending a message required an explicit
action (as is the case with hearing and talking, respectively). In line with the theory
of constructivism, the course was then updated to address these preconceptions.
For example, the use of authentic settings from the world of computers was
preferred to the use of imagined settings (such as in the “dining philosophers”
problem). In another study, Ben-David Kolikant [28] analyzed the evolvement of
students’ understanding of synchronization. She found evidence of a pattern-based
technique, where a set of pattern problems and their solutions is acquired and used
to solve new given problems. Although this technique was efficient, it also limited
students’ performance when they faced a problem that did not meet a known pattern.
Later, Ben-David Kolikant and Ben-Ari [30] suggested that these difficulties and
perceptions stem from a cultural clash between the culture of computer users, from
which most of the students arrive, and the professional CS culture. Instructional
approaches aimed at resolving the clashes were shown to be effective. For example,
the students could handle abstract problems (such as the “dining philosophers”
problem), realizing that it represents a group of concrete problems.

Schwarz and Ben-Ari [119] examined the tendency of students who learned the
CDC course to use state diagrams as a tool for explaining concurrent solutions,
specifically for convincing others of or refuting their correctness. They found that in
general, students preferred verbal arguments rather than the use of state diagrams.
However, some of the students acknowledged the potential of state diagrams and
used them, and others used them only occasionally, when verbal arguments failed.
Schwarz and Ben-Ari conjectured that state diagrams facilitate the formation of
mental models, even if they are not used often as an argumentation tool; hence, they
recommended including them in the course.

The teaching and learning of concurrency was also studied in the context of
an introductory CS course for middle-school students; it used the block-based
Scratch environment [102]. As an event-driven language, concurrency is manifested
in Scratch in two ways: by several sprites executing scripts concurrently (Type-I
concurrency), and by a sprite executing more than one script simultaneously (Type-
II concurrency). Type-I concurrency was more intuitive for the students, but they
had difficulties with Type-II concurrency, probably due to a reduced perception of
the concept (i.e., identifying it with its specific aspect of synchronization or with a
concrete process such as the set of instructions for message passing). Meerbaum-
Salant et al. pointed out that although Scratch is perceived by educators as mostly
suitable for young children, because of its friendly colorful block-based interface
and the colorful animated artifacts, one should bear in mind that it also poses



410 M. Armoni and J. Gal-Ezar

complex learning challenges, such as the abstract concept of concurrency (which
cannot be avoided even in rather simple projects). Interestingly, when self-designing
projects, students exhibited habits of programming that preferred fragmentized
concurrency rather than sequential modularization [101], suggesting, as argued by
Gordon et al. [72], that thinking in scenarios (where concurrency is inherent) is
natural for the students.

3.6 Reduction

Reduction in CS education is mostly mentioned in the context of courses on the
theory of computer science, where it is used to prove non-decidability or difficulty of
problems. Reduction is also useful in algorithmic design, when reducing a problem
to be solved to another, already solved problem. From a generalized point of view,
solving a problem by reduction means transforming the problem at hand into other
problems (one or more), which are already solved or are easier to solve, and using
their solutions as black boxes for obtaining a solution to the problem at hand. Using
this perspective, reduction is a CS recurring concept, relevant in almost every area
of CS.

Gal-Ezer and Trakhtenbrot [48] studied the classic use of reduction in an under-
graduate course on the theory of computer science (computability and complexity).
They identified five misconceptions, indicating that even in this familiar context, the
teaching of reduction has yet to improve.

Armoni et al. [18] looked into other manifestations of reduction. They examined
high-school students’ use of reduction in the context of the course on computational
models. In this context, reduction can be used to classify formal languages
and design automata using closure properties or known construction algorithms.
According to the findings, many students neglected to employ reduction, even when
using reduction could lead to elegant and shorter solutions. They also found that
when reduction was employed, the solution’s level of reduction (in terms of the
cognitive distance between the problem at hand and the reduced-to problem) was
often relatively low.

The next step was to examine the same issue in the context of undergraduate
students [13]. Although the students’ employment of reduction was somewhat
better, it was not as good as one could hope, and in general, the findings indicated
an unsatisfactory level of reduction-related skills.

In a study that followed, Armoni et al. [19] extended the curricular perspective.
The study focused on first- and third-year undergraduate CS students and on CS
graduates who learned towards obtaining a CS teaching certificate, and examined
their use of reduction on CS1 questions as well as questions related to the algorithms
course or the computational models course. It was a qualitative interview-based
study. The findings indicated that the development of reduction-related skills
evolves over time. First-year students barely ever used reduction, whereas the more
mature students exhibited higher levels of awareness of the concept of reduction as



Computer Science Education Research in Israel 411

well as of its potential use in different problem-solving situations. However, even
they did not sufficiently exploit the power of reduction. For many students there
was a clash between the abstract nature of reduction (expressed by the use of black
boxes) and the tendency to work at lower levels of abstraction. They had difficulties
in connecting between problems, and their use of reduction was often limited to
certain curricular contexts and was not transferred to others. They doubted the
legitimacy of using reduction in some contexts and did not perceive it as a rewarding
problem-solving heuristic, whose use reflects high problem-solving skills. Often
they did not use reduction properly, tending to open the black box and confusing a
problem and its solution.

This was also studied in a quantitative study [10], focusing on the algorithms
course at the undergraduate level; the findings were consistent with previous ones:
often students’ solutions by reduction were of a low level of abstraction, lacking a
clear black-box component. The black box was corrupted, for example, by opening
it and referring to the inner details of the solution hidden in it. It also seemed that
students did not fully understand the nature of reduction, often failing to relate it to
problems.

Based on all the findings above, a framework for teaching reduction was
developed and investigated in an undergraduate algorithms course [44]. Integrating
this framework into the course had a positive effect on the students’ use and
understanding of reduction.

3.7 Problem-Solving Strategies

CS experts deal with computational problems. They analyze them, classify them,
and try to solve them if possible. Hence, computational problem solving constitutes
a major component of CS, and as such, it makes use of CS fundamental ideas
and concepts, among which are those that were covered in Sects. 3.1, 3.2, 3.3,
3.4, 3.5, and 3.6. In particular, some of them can also serve as problem-solving
strategies. For example, reduction (Sect. 3.6), and specifically the use of black-
box solutions to other problems, is an effective problem-solving strategy. Similarly,
each problem-solving paradigm (Sect. 3.2) also constitutes a high-level strategy for
problem-solving, since by choosing a paradigm we also choose how to address the
problem, and some choices may be better than others, depending on the problem’s
characteristics; they may induce an easier or more natural path to a solution.

Algorithmic patterns (APs) were mentioned in Sect. 3.1 as the core of the
beneficial instructional approach of POI, which has a positive effect on the
acquirement of abstraction skills. They also constitute a problem-solving strategy
that can be used to obtain elegant and efficient solutions to computational problems.
APs are algorithmic solutions for problems that are canonic (for example, searching,
finding the maximal element, and scanning of adjacent elements in a sequence), in
the sense that they can be used in the solutions of many other problems. Unlike
reduction, in which one also uses a solution to one problem to solve another, APs



412 M. Armoni and J. Gal-Ezar

are not closed in black boxes, and hence can be used in various ways, including
concatenation, interleaving, and nesting. The use of APs for problem solving was
studied, for example, by Ragonis [113] in the context of prospective teachers, and
by Muller [103], Ginat and Menashe [69] and Ginat et al. [71] in the context of
high-school students.

Embedding assertions was discussed in Sect. 3.3 as a means for justifying
correctness and measuring efficiency. It can also be used as a strategy for algorithmic
design, as declarative insights into the problem at hand, which can lead to elegant
algorithms. These are often more efficient than those based on operative thinking
to which students often tend [59]. Ginat discussed and studied students’ use of
declarative reasoning vs. operative reasoning in additional publications (e.g., Ref.
[66]).

Armoni and Ginat [17] identified and characterized the fundamental idea of
reversing, or thinking in reverse. Recursion is a private case of reversing, and there
are more, for example topological reversing, logical reversing, and mathematical
inversion. Each of these forms is a rewarding problem-solving strategy, which
requires the solvers to go beyond the natural forward thinking.

Ginat identified and reasoned about a rich variety of problem-solving strategies
(e.g., on-the-fly computations [62], inductive progress [65], and binary perspectives
[56]), although he did not always accompany his illuminating observations with
empirical investigations. One of these strategies is decomposition, which is strongly
connected to abstraction, expressing moving down the levels of abstraction. There
are various ways to use decomposition, for example, top-down task decomposition
or data decomposition (e.g., decomposing a range into two parts, as in divide-and-
conquer). Ginat [57, 58] discussed this strategy, introducing various (sometime
very sophisticated) forms of it. Ginat studied the ability of CS graduates, who
taught CS or math (in high-school or college) to solve a non-standard task whose
solution requires a sort of geometrical decomposition [61]. He found that most of the
graduates did not turn to this strategy and failed to reach a correct solution. Omar et
al. [107] studied high-school students’ use of decomposition (by means of functions)
when solving programming tasks. Similar to Ginat, they found unsatisfactory use of
this form of decomposition.

Besides failing to employ certain rewarding strategies, insufficient mastery of
problem-solving strategies may also be expressed by adopting ineffective strategies.
Ginat [60] found that excellent high-school CS students often turn to the design-by-
keyword strategy, in which their choice of solution is influenced by specific words
or phrases in the problem description, which often misguide them to non-efficient
or incorrect solutions.

4 Concluding Remarks

This chapter presented a review of Israeli research on computer science education.
It is by no means an exhaustive review, which could hardly be done in one chapter.



Computer Science Education Research in Israel 413

Our decision to focus on studies that deal with fundamental ideas and concepts
of computer science has led us to leave out of this chapter many other important
studies. For example, there is rich body of research on visualization in computer
science education, on teacher preparation and professional development, and more.
By focusing on computer science we also left out many interesting publications on
software engineering and in particular on project design. However, we see the issue
of the nature of CS as a major aspect of CS education, especially since research
worldwide indicates that there are many misconceptions regarding the nature of the
disciplines among the general public and hence also among our students who are
newcomers to CS. Addressing these misconceptions and the inaccurate image of CS
includes also stressing what CS is. Research on its fundamental ideas and concepts
is highly important for achieving this educational goal.

Israeli researchers cooperate with the international community of computing
education, leading to extensive research that was not represented in this chapter.
Specifically, Israeli researchers have been taking part in efforts initiated or motivated
by international groups. These include for example, working groups [88, 89,
100, 130] and international educational committees [38, 41, 45, 126, 131]. These
activities have had an impact worldwide and Israel became an influential factor
regarding the development of K-12 CS curricula, their implementation, and their
research. Some of these efforts examined the current K-12 CS curricula in the US
and Europe [126, 131], and then touched upon challenging issues such as designing
K-12 curricula, or at least an appropriate framework [38] that can serve all European
countries. The main concerns of the different teams were, and still are, as follows:
the nature of CS, and specifically, the confusion that still exists between CS and
other areas such as ICT and digital competencies [131], inclusion [38], and the
challenge of training knowledgeable teachers [41].

Future work is already underway. The Israeli CS education research community
explores a wide range of issues, elaborating on themes mentioned above as well as
others. CS education research has developed worldwide and is widely appreciated.
Hence, more aim at enrolling in graduate research programs in this area, and
more research is done. Additional computing areas have been developed and call
for research regarding their teaching and learning at all levels. Furthermore, older
curricula need to be updated and implemented, with research conducted in parallel.
New problems arise, and researchers find more challenges to address. The Israeli
CER community will broaden the connection with the World CER community and
hopefully will continue to contribute to the area of CS education and CS education
research.

References

1. ACM Curriculum Committee on Computer Science (1968). Curriculum 68: Recommen-
dations for academic programs in computer science. Communications of the ACM 11(3),
151–197.



414 M. Armoni and J. Gal-Ezar

2. Aharoni, D. (2000). Cogito, ergo sum! Cognitive processes of students dealing with data
structures, In Proceedings of the 31stSIGCSE Technical Symposium on Computer Science
Education, 26–30.

3. Aharoni, D., and Leron, U. (1997). Abstraction is hard in computer-science too. In Pro-
ceedings of the Conference of the International Group for the Psychology of Mathematics
Education (PME), 2:9–16.

4. Alexandron, G., Armoni, M., Gordon, G., and Harel, D. (2012). The effect of previous
programming experience on the learning of scenario-based programming. In Proceedings of
the 12th Koli Calling International Conference on Computing Education Research, 151–159.

5. Alexandron, G., Armoni, M., Gordon, G., and Harel, D. (2014). Scenario-based program-
ming, usability oriented perception. ACM Transactions on Computing Education 14(3),
21:1–23.

6. Alexandron, G., Armoni, M., Gordon, M., and Harel, D. (2014). Scenario-based program-
ming: reducing the cognitive load, fostering abstract thinking. In Proceedings of the 36th
International Conference on Software Engineering (ICSE), 311–320.

7. Alexandron, G., Armoni, M., Gordon, G., and Harel, D. (2016). Teaching nondeterminism
through programming. Informatics in Education 15(1), 1–23.

8. Alexandron, G., Armoni, M., Gordon, M., and Harel, D. (2017). Teaching scenario-based
programming: an additional paradigm for the high school computer science curriculum, Part
1. Computing in Science & Engineering 19(5), 58–67.

9. Alexandron, G., Armoni, M., Gordon, M., and Harel, D. (2017). Teaching scenario-based
programming: an additional paradigm for the high school computer science curriculum, Part
2. Computing in Science & Engineering 19(6), 64–71.

10. Armoni, M. (2009). Reduction in CS: a (mostly) quantitative analysis of reductive solutions
to algorithmic problems. Journal on Educational Resources in Computing 8(4), 11:1–30.

11. Armoni, M. (2013). On teaching abstraction in computer science to novices. Journal of
Computers in Mathematics and Science Teaching 32(3), 265–284.

12. Armoni, M., and Ben-Ari, M. (2009). The concept of nondeterminism: its development and
implications for education. Science & Education 18(8), 1005–1030.

13. Armoni, M., and Gal-Ezer, J. (2006). Reduction – an abstract thinking pattern: the case of
the computational models course. In Proceedings of the 37thSIGCSE Technical Symposium
on Computer Science Education, 389–393.

14. Armoni, M., and Gal-Ezer, J. (2006). Introducing non-determinism. Journal of Computers in
Mathematics and Science Teaching 25(4), 325–359.

15. Armoni, M., and Gal-Ezer, J. (2007). Non-determinism: an abstract concept in computer
science studies. Computer Science Education 17(4), 243–262.

16. Armoni, M., and Gal-Ezer, J. (2014). Early computing education –Why?What?When? How?
ACM Inroads 5(4), 54–59.

17. Armoni, M., and Ginat, D. (2008) Reversing: a fundamental idea in computer science.
Computer Science Education 18(3), 213–230.

18. Armoni, M., Gal-Ezer, J., and Tirosh, D. (2005). Solving problems reductively. Journal of
Educational Computing Research 32(2), 113–129

19. Armoni, M., Gal-Ezer, J., and Hazzan, O. (2006). Reductive thinking in computer science.
Computer Science Education 16(4), 281–301.

20. Armoni, M., Lewenstein, N., and Ben-Ari, M. (2008). Teaching students to think nondeter-
ministically. In Proceedings of the 39thSIGCSE Technical Symposium on Computer Science
Education, 4–8.

21. Armoni, M., Meerbaum-Salant, O., and Ben-Ari, M. (2015). From Scratch to “real” program-
ming. ACM Transactions on Computing Education 14(4), 25:1–15.

22. Armoni, M., Gal-Ezer, J., and Ulmer, C. Professional development of primary school teachers
participating in a pilot project on teaching computer science to fourth graders. In preparation.

23. Armoni, M., Gal-Ezer, J., Harel, D., Marelly, R., and Szekely, S. (In Press). Plethora of skills:
a game-based platform for introducing and practicing computational problem solving, to be
published in: H. Abelson & K. Siu-Cheung (Eds.) Computational Thinking Curricula in K-
12: International Implementations. MIT Press. Cambridge, MA.



Computer Science Education Research in Israel 415

24. Ben-Ari, M., and Ben-David Kolikant, Y. (1999). Thinking parallel: the process of learning
concurrency. In Proceedings of the 4th Annual SIGCSE/SIGCUE ITiCSE Conference on
Innovation and Technology in Computer Science Education, 13–16.

25. Benaya, T., and Zur, E. (2008). Understanding object oriented programming concepts in
an advanced programming course. In Proceedings of the 2ndInternational Conference on
Informatics in Secondary Schools: Evolution and Perspective (ISSEP), Lecture Notes in
Computer Science (LNCS 5090), 161–170.

26. Ben-Bassat Levy, R., and Ben-Ari, M. (2007). We work so hard and they don’t use it:
acceptance of software tools by teachers. In Proceedings of the 12th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education (ITiCSE), 246–
250.

27. Ben-David Kolikant, Y. (2001) Gardeners and cinema tickets: high school students’ precon-
ceptions of concurrency. Computer Science Education 11(3), 221–245.

28. Ben-David Kolikant, Y. (2004). Learning concurrency: evolution of students’ understanding
of synchronization. International Journal of Human-Computer Studies 60(2), 243–268.

29. Ben-David Kolikant, Y. (2005). Students’ alternative standards for correctness. In Proceed-
ings of the 1stInternational workshop on Computing Education Research (ICER), 37–43.

30. Ben-David Kolikant, Y., and Ben Ari, M. (2008). Fertile zones of cultural encounter in
computer science education. Journal of the Learning Science 18(1), 1–32.

31. Ben-David Kolikant, Y., and Mussai, M. (2008) “So my program doesn’t run!” Definition,
origins, and practical expressions of students’ (mis)conceptions of correctness. Computer
Science Education 18(2), 135–151,

32. Ben-David Kolikant, Y., and Pollack, S. (2004) Establishing computer science professional
norms among high-school students. Computer Science Education 14(1), 21–35.

33. Ben-David Kolikant, Y., Ben-Ari, M., and Pollack, S. (2000). The anthropology of
semaphores. In Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSE Conference on
Innovation and Technology in Computer Science Education, 21–24.

34. Biggs, J.B., and Collis, K.F. (1982). Evaluating the Quality of Learning: The SOLO Taxonomy
(Structure of the Observed Learning Outcome). Academic Press.

35. Brandes, O., and Armoni, M. (2019). Using action research to distill research-based segments
of pedagogical content knowledge of K-12 computer science teachers. In Proceedings of
the 2019 ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE), 485–491.

36. Breuer, S, Gal-Ezer, J., and Zwas, G. (1990). Microcomputer laboratories in mathematics
education. Computers and Mathematics 19(3), 13–34.

37. Bruner, J.S. (1960). The Process of Education. Harvard University Press. Boston, MA.
38. Caspersen, M., Diethelm, I., Gal-Ezer, J., McGettrick, A., Nardelli, E., Passey, D.,

Rovan, B., and Webb, M. (2022). Informatics References Framework for School. https:/
/www.informaticsforall.org/the-informatics-reference-framework-for-school-release-
february-2022/

39. Damm, W., and Harel, D. (2001). LSCs: Breathing life into message sequence charts. Formal
Methods in System Design 19(1), 45–80.

40. Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM 18(8), 453-457.

41. Ericson, B., Armoni, M., Gal-Ezer, J., Seehorn, D., Stephenson, C., and Tree, F. (2008).
Ensuring Exemplary Teaching in an Essential Discipline: Addressing the Crisis in Computer
Science Teacher Certification, Final Report of the CSTA Teacher Certification Task Force.
ACM. New York, NY.

42. Floyd, R. W. (1967). Assigning meaning to programs. In Proceedings of Symposia in Applied
Mathematics, American Mathematical Society 19, 19–32.

43. Friebroon-Yesharim, M., and Armoni, M. (2022). The tale of an intended CS curriculum for
4th graders, the case of abstraction. In Proceedings of the 27th ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE), pp. 623.

https://www.informaticsforall.org/the-informatics-reference-framework-for-school-release-february-2022/


416 M. Armoni and J. Gal-Ezar

44. Gaber, I., Armoni, M., and Statter, D. (2021). Teaching reduction as an algorithmic problem
solving strategy. In Proceedings of the 3rdInternational Conference on Computer Science and
Technology in Education (CSTE), 19–26.

45. Gagliardi, F., Hankin, C., Gal-Ezer, J., McGettrick, A., and Meitern, M. (2016).
Advancing Cybersecurity Research and Education in Europe: Major Drivers of
Growth in the Digital Landscape. https://www.acm.org/binaries/content/assets/publipolicy/
2016_euacm_cybersecurity_white_paper.pdf

46. Gal-Ezer, J., and Harel, D. (1998). What (else) should CS educators know?, Communications
of the ACM, 41(9), 77–84.

47. Gal-Ezer, J., and Harel, D. (1999). Curriculum and course syllabi for high-school computer
science program. Computer Science Education 9(2), 114–147.

48. Gal-Ezer, J., and Trakhtenbrot, M. (2016): Identification and addressing reduction-related
misconceptions, Computer Science Education 26(2–3), 80–103.

49. Gal-Ezer, J., and Zur, E. (2004). The efficiency of algorithms – misconceptions. Computers
and Education 42(3), 215–226.

50. Gal-Ezer, J., and Zwas, G. (1984). An Algorithmic Approach to Linear Systems. Interna-
tional. Journal of Mathematics Education in Science and Technology 15(4), 501–519.

51. Gal-Ezer, J., Beeri, C., Harel, D., and Yehudai, A. (1995). A high-school program in computer
science. Computer 28(10), 73–80.1

52. Gal-Ezer, J., Vilner, T., and Zur, E. (2004). Teaching efficiency at CS1 level: a different
approach. Computer Science Education 14(3), 235–248.

53. Gal-Ezer, J. Vilner, T., and Zur, E. (2009). Has the paradigm shift in CS1 a harmful effect
on data structures courses: a case study. In Proceedings of the 40th Technical Symposium on
Computer Science Education (SIGCSE), 126–130.

54. Ginat, D. (2001). Early algorithm efficiency with design patterns. Computer Science Educa-
tion 11(2), 89–109.

55. Ginat, D. (2001). Loop invariants, exploration of regularities, and mathematical games.
International Journal of Mathematical Education in Science and Technology 32(5), 635–651.

56. Ginat, D. (2002). Effective binary perspectives in algorithmic problem solving. Journal on
Educational Resources in Computing 2(2), 4–12.

57. Ginat, D. (2002). On various perspectives of problem decomposition. In Proceedings of the
33rdSIGCSE Technical Symposium on Computer Science Education, 331–335.

58. Ginat, D. (2003). Decomposition diversity in computer science—beyond the top-down icon.
Journal of Computers in Mathematics and Science Teaching 22(4), 365–379.

59. Ginat, D., (2003). Seeking or skipping regularities? Novice tendencies and the role of
invariants. Informatics in Education 2(2), 211–222.

60. Ginat, D. (2003). The novice programmers’ syndrome of design-by-keyword. In Proceedings
of the 8th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE), 154–157.

61. Ginat, D. (2008). Design Disciplines and Non-specific Transfer. In Proceedings of the
International Conference on Informatics in Secondary Schools: Evolution and Perspectives
(ISSEP), Lecture Notes in Computer Science (LNCS, 5090), 87–98.

62. Ginat, D. (2009). On the non-modular design of on-the-fly computations. Inroads – SIGCSE
bulletin 41(4), 35–39.

63. Ginat, D. (2009). The overlooked don’t-care notion in algorithmic problem solving. Informat-
ics in Education 8(2), 217–226.

64. Ginat, D. (2010). The baffling CS notions of “as-if” and “don’t-care”. In Proceedings of the
41st ACM Technical Symposium on Computer Science Education (SIGCSE), 385–389.

65. Ginat, D. (2014). On Inductive Progress in Algorithmic Problem Solving. Olympiads in
Informatics 8, 81–91.

66. Ginat, D. (2021). Abstraction, declarative observations and algorithmic problem solving.
Informatics in Education 20(4), 567–582.

67. Ginat, D., and Alankry R. (2012). Pseudo abstract composition: the case of language
concatenation. In Proceedings of the 17th ACM Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE), 28–33.

https://www.acm.org/binaries/content/assets/publipolicy/2016_euacm_cybersecurity_white_paper.pdf


Computer Science Education Research in Israel 417

68. Ginat, D., and Blau, Y. (2017). Multiple levels of abstraction in algorithmic problem solving.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. 237–242.

69. Ginat, D., and Menashe, E. (2015). SOLO taxonomy for assessing novices’ algorithmic
design. In Proceedings of the 46th ACM Technical Symposium on Computer Science
Education (SIGCSE). 452–457.

70. Ginat, D., Shifroni, E., and Menashe, E. (2011). Transfer, cognitive load, and program design
difficulties. In Proceedings of The 5th International Conference on Informatics in Secondary
Schools: Evolution and Perspective (ISSEP), Lecture Notes in Computer Science (LNCS
7013), 165–176.

71. Ginat, D., Menashe, E., and Taya, A. (2013). Novice Difficulties with Interleaved Pattern
Composition. In Proceedings of the 5th International Conference on Informatics in Schools:
Situation, Evolution and Perspective (ISSEP), Lecture Notes in Computer Science (LNCS
7780), 57–67.

72. Gordon, M., Marron, A., and Meerbaum-Salant, O. (2012). Spaghetti for the main course?:
observations on the naturalness of scenario-based programming. In Proceedings of the 17th
ACM Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE), 198–203.

73. Green, A., Armoni, M., and Ginat, D. Object-first vs. object-Second. In preparation.
74. Haberman, B. (2002). Frames and boxes – A pattern-based method for manipulating binary

trees. Inroads – SIGCSE Bulletin 34(4), 60–64.
75. Haberman, B. (2004). High-School students’ attitudes regarding procedural abstraction.

Education and Information Technologies 9(2), 131–145.
76. Haberman, B. (2008). Formal and practical aspects of implementing abstract data types in the

prolog instruction. Informatica 19(1), 17–30.
77. Haberman, B., and Muller, O. (2008). Teaching abstraction to novices: Pattern-based and

ADT-based problem-solving processes. In Proceedings of the 38th Annual Frontiers in
Education Conference (FIE), F1C:7–12.

78. Haberman, B., and Ragonis, N. (2010). So different though so similar? Or vice versa?
Exploration of the logic programming and the object-oriented programming paradigms.
Issues in Informing Science and Information Technology 7, 393–402.

79. Haberman, B., and Scherz, Z. (2009). Connectivity between abstraction layers in declarative
ADT-based problem-solving processes. Informatics in Education 8(1), 3–16.

80. Haberman, B., Shapiro, E., and Scherz, Z. (2002). Are black boxes transparent? High school
students’ strategies of using abstract data types. Journal of Educational Computing Research
27(4), 411–436.

81. Haberman, B., Lev, E., and Langley, D. (2003). Action research as a tool for promoting
teacher awareness of students; conceptual understanding. In Proceedings of the 8th Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE), 144–
148.

82. Haberman, B., Averbuch, H., and Ginat, D. (2005). Is it really an algorithm? The need for
explicit discourse. In Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (ITiCSE), 74–78.

83. Hazzan, O. (2003). How students attempt to reduce abstraction in the learning of mathematics
and in the learning of computer science. Computer Science Education 13(2), 95–122.

84. Hazzan, O. (2003). Reducing abstraction when learning computability theory. Journal of
Computers in Mathematics and Science Teaching 22(2), 95–117.

85. Hazzan, O., and Hadar, I. (2005). Reducing abstraction when learning Graph Theory. Journal
of Computers in Mathematics and Science Teaching 24(3), 255–272.

86. Hazzan, O., Gal-Ezer, J., and Blum, L. (2008). A model for high school computer science
education: the four key elements that make it! In Proceedings of the 39thSIGCSE Technical
Symposium on Computer Science Education, 281–285.

87. Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communications of
the ACM 12(10), 576–580.



418 M. Armoni and J. Gal-Ezar

88. Holz, H. J., Applin, A., Haberman, B., Joyce, D., Purchase, H., and Reed, C. (2006). Research
methods in computing: what are they, and how should we teach them? In Working Group
Reports from ITiCSE on Innovation and Technology in Computer Science Education (ITiCSE-
WGR), 96–114.

89. Hubwieser, P., Armoni, M., Brinda, T., Dagiene, V., Diethelm, I., Giannakos, M. N.,
Knobelsdorf, M., Magenheim, J., Mittermeir, R., and Schubert, S. (2011). Computer sci-
ence/informatics in secondary education. In Proceedings of the 16thAnnual Conference
Reports on Innovation and Technology in Computer Science Education – Working Group
Reports (ITiCSE-WGR), 19–38.

90. Israel National Center for Computer Science Teachers (2002). “Machshava”: the Israeli
National Center for high school computer science teachers, In Proceedings of the 7th Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE), pp 234.

91. Lapidot, T., and Aharoni, D. (2007). The Israeli summer seminars for CS leading teachers.
In Proceedings of the 12th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (ITiCSE), pp. 318.

92. Lapidot T., Levy D., and Paz T. (1999). Implementing constructivist ideas in a functional
programming course for secondary school. In Proceedings of the Workshop on Functional
and Declarative Programming in Education, 29–31.

93. Lapidot T., Levy D., and Paz T. (2000). Teaching functional programming to high school
students. In Proceedings of the International Conference on Mathematics/Science Education
and Technology (M/SET).

94. Lavy, I., Rashkovits, R., and Kouris, R. (2009). Coping with abstraction in object orientation
with a special focus on interface classes. Computer Science Education 19(3), 155–177.

95. Leron, U. (1985). Logo today: vision and reality. The Computing Teacher 12(5), 26-32.
96. Leron, U. (1987). Abstraction barriers in mathematics and computer-science. In Proceedings

of the Third International Conference on LOGO and Mathematics Education (LME).
97. Leron, U., and Paz, T. (2014). Functions via everyday actions: Support or obstacle? The

Journal of Mathematical Behavior 36, 126-134
98. Levy, D., Lapidot, T., and Paz, T. (2001). ‘It’s just like the whole picture, but smaller’:

Expressions of gradualism, selfsimilarity, and other pre-conceptions while classifying recur-
sive phenomena. In Proceedings of the 13th Workshop of the Psychology of Programming
Interest Group (PPIG), 249–262

99. Lieberman, N., Ben-David Kolikant, Y., and Beeri, C. (2011). Difficulties in learning
inheritance and polymorphism. ACM Transactions on Computing Education 11(1), 4:1–23.

100. McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Ben-David Kolikant, Y.,
Laxer, C., Thomas, L., Utting, I., and Wilusz, T. (2001). A multi-national, multi-institutional
study of assessment of programming skills of first-year CS students. In Working Group
Reports from ITiCSE on Innovation and Technology in Computer Science Education (ITiCSE-
WGR), 125–180.

101. Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M. (2011). Habits of programming in
Scratch. In Proceedings of the 16thAnnual Joint Conference on Innovation and Technology
in Computer Science Education (ITiCSE), 168–172.

102. Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M. (2013). Learning computer science
concepts with Scratch. Computer Science Education 23(3), 239–264.

103. Muller, O. (2005). Pattern oriented instruction and the enhancement of analogical reasoning.
In Proceedings of the 1st International workshop on Computing Education Research (ICER).
57–67.

104. Muller, O., and Haberman, B. (2008). Supporting abstraction processes in problem-solving
through pattern-oriented-instruction. Computer Science Education, 18(3), 187–212.

105. Muller, O., and Haberman, B. (2009). A course dedicated to developing algorithmic problem
solving skills – Design and experiment. In Proceedings of 21stAnnual Workshop of the
Psychology of Programming Interest Group (PPIG), 9:1–9.



Computer Science Education Research in Israel 419

106. Nakar, L., and Armoni, M. (2022). Pattern-oriented instruction and students’ abstraction
skills. In Proceedings of the 27th ACM Annual Conference on Innovation and Technology
in Computer Science Education (ITiCSE), pp. 613.

107. Omar, A., Hadar, I., and Leron, U. (2017). Investigating the under-usage of code decomposi-
tion and reuse among high school students: the case of functions. Lecture Notes in Business
Information Processing 286, 92–98.

108. Or-Bach, R., and Lavy, I. (2004). Cognitive activities of abstraction in object orientation: an
empirical study. Inroads – the SIGCSE Bulletin 36(2), 82–86.

109. Paz, T., and Lapidot, T. (2004). Emergence of automated assignment conceptions in a
functional programming course. In Proceedings of the 9th Annual SIGCSE Conference on
Innovations and Technology in Computer Science Education (ITiCSE), 181–185.

110. Paz, T., and Leron, U. (2009). The slippery road from actions on objects to functions and
variables. Journal for Research in Mathematics Education 40(1), 18–39.

111. Perrenet, J., Groot, J.F., and Kaasebrood, E. (2005). Exploring students’ understanding of
the concept of algorithm: levels of abstraction. In Proceedings of the 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education (ITiCSE), 64–68.

112. Ragonis, N. (2010). A pedagogical approach to discussing fundamental object-oriented
programming principles using the ADT SET. ACM Inroads 1(2), 42–52.

113. Ragonis, N. (2012). Integrating the teaching of algorithmic patterns into computer science
teacher preparation programs. In Proceedings of the 17th ACM Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE), 339–344.

114. Ragonis, N., and Ben-Ari, M. (2005). A long-term investigation of the comprehension of OOP
concepts by novices. Computer Science Education 15(3), 203–221.

115. Ragonis, N., and Hazzan, O. (2009). Integrating a tutoring model into the training of
prospective Computer Science teachers. The Journal of Computers in Mathematics and
Science Teaching 28(3), 309–339.

116. Rubinstein, A., and Chor, B. (2014). Computational thinking in life science education. PLOS
Computational Biology 10(11), 1–5.

117. Sakhnini, V., and Hazzan, O. (2008). Reducing abstraction in high school computer science
education: The case of definition, implementation and use of abstract data types. ACM Journal
on Educational Resources in Computing 8(2), 5:1–13.

118. Schocken, S., Nisan, N., and Armoni, M. (2009). A synthesis course in hardware architecture,
compilers, and software engineering. In Proceedings of the 40th ACM Technical Symposium
on Computer Science Education (SIGCSE), 443–447.

119. Schwarz, S., and Ben-Ari, M. (2006). Why don’t they do what we want them to do? In
Proceedings of the 18thAnnual Workshop of the Psychology of Programming Interest Group
(PPIG), 266–274.

120. Schwill, A. (1994). Fundamental ideas of computer science. Bulletin-European Association
for Theoretical Computer Science 53, 274–295.

121. Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes
and objects as different sides of the same coin. Educational Studies in Mathematics 22, 1–36.

122. Shmallo, R., and Ragonis, N. (2020). What is “this”? Difficulties and misconceptions regard
the “this” reference. Journal of Education and Information Technologies 26(1), 733–762.

123. Statter, D., and Armoni, M. (2017). Learning abstraction in computer science: a gender
perspective. In Proceedings of the 12th Workshop in Primary and Secondary Computing
Education (WiPSCE), 5–14.

124. Statter, D., and Armoni, M. (2020). Teaching Abstraction in Computer Science to 7th Grade
Students. ACM Transactions on Computing Education 20(1), 8:1–37.

125. Stavy, R., and Tirosh, D. (2000). How Students (mis-)Understand Science and Mathematics:
Intuitive Rules. Teachers College Press. New York, NY.

126. Stephenson, C., Gal-Ezer, J., Haberman, B., and Verno, A. (2005). The New Educational
Imperative: Improving High School Computer Science Education, Final report of the CSTA
Curriculum Improvement Task Force. ACM. New York, NY.



420 M. Armoni and J. Gal-Ezar

127. Stolin, Y., and Hazzan, O. (2007). Students’ understanding of computer science soft ideas: the
case of programming paradigm. Inroads – the SIGCSE Bulletin 39(2), 65–69.

128. Taub, R., Armoni, M., and Ben-Ari, M. (2014). Abstraction as a bridging concept between
computer science and physics. In Proceedings of the 9th Workshop in Primary and Secondary
Computing Education (WiPSCE), 16–19.

129. Teif, M., and Hazzan, O. (2006). Partonomy and taxonomy in object-oriented thinking: Junior
high school students’ perceptions of object-oriented basic concepts. Inroads – the SIGCSE
Bulletin 38(4), 55–60.

130. Utting, I., Tew, A. E., McCracken, M. E., Thomas, L., Bouvier, D., Frye, R., Paterson, J.,
Caspersen, M., Ben-David Kolikant, Y., Sorva, J., and Wilusz, T. (2013). A fresh look at
novice programmers’ performance and their teachers’ expectations. In Proceedings of the
ITiCSE Working Group Reports Conference on Innovation and Technology in Computer
Science Education – Working Group Reports (ITiCSE-WGR), 15–32.

131. Vahrenhold, J., Nardelli, E., Pereira, C., Berry, G., Caspersen, M. E., Gal-Ezer, J., Kölling,
M., McGettrick, A., and Westermeier, M. (2017). Informatics Education in Europe: Are We
All in the Same Boat? ACM. New York, NY.

132. Vilner, T., Zur, E., and Gal-Ezer, J. (2007). Fundamental concepts of CS1: procedural vs.
object oriented paradigm – a case study. In Proceedings of the 12th Annual ITiCSE Conference
on Innovation and Technology in Computer Science Education, 171–175.

133. Zur-Bargury, I., (2012). A new curriculum for junior-high in computer science. In Proceed-
ings of the 17th ACM Annual Conference on Innovation and Technology in Computer Science
Education (ITiCSE), 204–208.

134. Zur-Bargury, I., Pârv, B., and Lanzberg, D. (2013). A nationwide exam as a tool for improving
a new curriculum. In Proceedings of the 18th ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE), 267–272.


	Computer Science Education Research in Israel
	1 Introduction
	2 Curricular Issues
	3 Fundamental Ideas and Concepts of CS
	3.1 Abstraction
	3.2 A Problem-Solving Paradigm
	3.3 Correctness and Efficiency
	3.4 Nondeterminism
	3.5 Concurrency
	3.6 Reduction
	3.7 Problem-Solving Strategies

	4 Concluding Remarks
	References


