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Abstract. Dynamic optimization problems pose a big challenge for clas-
sic optimization algorithms. They could simply be viewed as a series of
related optimization problems. In particular the aspect of time-linkage
has not been well studied yet. In this work we are analyzing an artifi-
cial problem based on real-world data to elucidate the potential of fit-
ness landscape analysis methods to discover problem difficulty and follow
along the changes of dynamic problems and how these changes can be
measures and might be exploited by enabling algorithm introspection.
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1 Introduction

The suitability of automatic fitness landscape analysis (FLA) for the comparison
of static optimization problem instances [14] and for the characterization of static
problem classes [15,16] has been demonstrated in the past. Moreover, it has been
used to help with algorithm selection and parameter tuning. However, for static
optimization problems the usual approach is to determine (with or without FLA)
a suitable algorithm and suitable parameters for the given problem class and use
it solve new problems as well. Dynamic optimization problems (DOPs) [1] pose
an additional challenge: The problems can and do change over time, and therefore
also the suitability of optimization methods. In this paper we are analyzing the
extent to which such dynamic changes are reflected in fitness landscape analysis
measurements.

Dynamic optimization problems themselves have already been researched
previously [1,4,10] and even their fitness landscape characteristics have been
analyzed [17]. Mostly, the aspect of time-linkage, however, has not been explic-
itly studied [10]. Therefore, this paper will study a problem with time-linkage,
i.e. where previous decision have an impact on the later development of the
problem and, hence on the available choices later during the optimization. Many
real-world applications exhibit similar characteristics and this paves the way for
transfer of theoretical knowledge towards more practical examples.
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The Dynamic Vehicle Routing Problem (DVRP) is a well studied optimiza-
tion problem [6] and makes for an excellent benchmark problem, as it is both
flexible and simple [9]. Additionally, we have added an aspect of time linkage
in our application scenario: The simulation assumes fixed locations that have to
be serviced, and once serviced will need servicing again, drawing from a known
but random distribution. In this case the mean time between failures (MTBF)
is a tunable, than can be used to simulate scenarios of varying difficulties to
study the effect on various fitness landscape measures. Time-linkage is achieved
by linking subsequent service requirements to the previous service time, so that
locations that have been serviced sooner, will also require re-servicing sooner,
on average.

In this work we are aiming to establish a base-line of what can be seen with
the help of generic fitness landscape analysis on these dynamic problems. In
particular, we are going to examine the effect of difficulty on these measures as
this has been an important intention for the design of many FLA measures. This
information could in the future be used to give algorithms some more leverage
for introspection and determine whether they are still well tuned to the current
situation or need to change parameters or switch to another algorithm entirely.

2 State of the Art

2.1 Fitness Landscape Analysis

Fitness Landscape Analysis takes a very generic view on optimization problems.
Only the bare minimum, that any optimization problem has to have, is used [5].
The fitness landscape F can be defined as a triple consisting of the following:

– solution space S
– fitness function, e.g. f : S → R

– neighborhood, e.g. N : S → P(S) or distance, e.g. d : S × S → R

Surprisingly, a large number of possible measurements can be taken with
this simple formulation [15] and allow deep insights into problem classes and
also allow comparison of instances. Several studies have been performed to com-
pletely understand the fitness landscape, most notably, e.g. in [18], and in [2]
by elementary decomposition, or in [3] by exhaustively determining local optima
and analyzing their structure. On the other hand, quick and even superficial
analysis can also be a good source of information, supporting algorithm and
parameter decisions by offering a glimpse into the landscape and its character-
istics pertaining to optimization algorithms as detailed e.g. in [5] or [15]. These
methods usually sample only a tiny fraction of the solution space, most often
using trajectory based sampling in the form of different “walks”. Best-known is
the random walk that selects a random neighbor and provides an unbiased view
of what a trajectory-based algorithm might observe. However, most algorithms
do not “walk” randomly and therefore other walk types have been devised, such
as an up-down walk, that alternatively maximizes towards a local maximum and
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(a) Random Walk (b) Up-Down Walk (c) Neutral Walk

Fig. 1. Different walk types (based on [13])

then minimized towards a local minimum (ideally avoiding going back and forth)
or a neutral walk that tries to stay within an equal or similar fitness range to
estimate the size of (quasi) plateaus. Figure 1 illustrates some examples. Based
on the obtained samples different measures have been defined. Mostly with the
aim to quantify aspects of a problem’s “difficulty”. Most prominently, the auto-
correlation [22] tries to capture the self-similarity of consecutive samples in a
walk and is used to measure a trajectory’s ruggedness. A more complex app-
roach introduced in [20] describes several measures for a trajectory’s entropy,
or more informally, its “interestingness” by calculating different combinations
of consecutive slope frequencies. Using other walk types other aspects can be
described, such as, measures for a problem instance’s basin size using up-down
walk lengths or frequencies of plateaus using neutral walk lengths and neutral
neighbor fractions, i.e. the average number of neighbors with the same (or simi-
lar) fitness.

2.2 Dynamic Vehicle Routing Problems

A dynamic optimization problem [1] is defined as a problem that can change over
time. In its simplest interpretation, this can be seen as series of problems over
time. It a more complex view, the previous optimization decisions can have an
influence on future problem states (time-linkage). On the other hand, this series
of problems often does have a correlation to previous problem states which can
be exploited by algorithms that have a long-term state, such as e.g. a population.

In this work, we selected a well studied dynamic optimization problem, the
Dynamic Vehicle Routing Problem (DVRP) [6] to test the applicability of fit-
ness landscape analysis and elucidate the potential for dynamic control on opti-
mization algorithms. In its simplest formulation, the Vehicle Routing Problem
(VRP) [19], can be defined as the problem to find the shortest path for l vehi-
cles, to service n locations {v1, . . . vn} starting from a depot location v0, given a
distance matrix D with driving times between all locations. Many other variants
exist, e.g. adding capacity restrictions to the vehicles or a time window to the
visit time at each location [7]. The Dynamic Vehicle Routing Problem (DVRP)
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as a simple extension can be seen as a series of VRPs where each VRP has a cer-
tain lifetime before being replaced with the next instance. In realistic scenarios
these consecutive VRPs are often closely related differing, e.g. only in a single
location that has been added or removed.

3 Materials and Methods

3.1 Dynamic Servicing of Power Grid Facilities

We chose to implement a variant of the uncapacitated DVRP, modeling the
servicing of power grid facilities which adds an interesting aspect to DVRP that
gives rise to time-linkage between consecutive states influenced by the choices of
the algorithm and allows efficient pre-calculation of travel cost between locations:
Fig. 2 shows the distribution of power grid facilities in Upper Austria. In our
simulation, these locations are activated and re-activated based on their own
normal distribution, each of these normal distributions is, in turn, parameterized
by a discrete distribution to allow different characteristics between locations
but giving rise to clustering as the parameters are drawn from a limited set of
possibilities. The range of these parameters can be manually tuned to give a
predictable amount of difficulty. The influence of difficulty on the distribution
of failure probabilities is calculated as µeff = µ/difficulty, effectively elongating
the times between failures for lower difficulties.

Fig. 2. Power grid facilities in Upper Austria

The sooner locations are re-activated, the harder it will be to service them in
a timely manner or at all. Moreover, each location has a certain service time the
vehicle needs to remain at rest. The quality is then defined as the cumulative
waiting time between the need of service and the completion of service over
all locations. The evaluation budget is determined by the driving time between
locations. Only when a vehicle becomes available, the new situation has to be
considered, so the time in between can be seen as the evaluation budget.



82 E. Pitzer et al.

The interesting aspect arising here is that previous choices indirectly influence
the future service demand, as the time between failures is relative to the previous
service time. Moreover, the evaluation budget for the algorithm is also indirectly
influenced by the past choices, depending on the driving times of all vehicles.

This scenario was selected as an artificial problem with real data to examine
the propensities of FLA in the context of dynamic optimization problems. In
particular, we were interested in knowing a-priori a relative difficulty of the
scenarios and wanted to see whether this is reflected in the measurements and
how it changes over time.

3.2 Experimental Setup

To obtain realistic data we retrieved power grid facilities from Open Street Map1

using the Overpass API [11] for querying public data. We created several different
scenarios with different distributions: once in Upper Austria (query shown in
Listing 1) and once in and around Vienna. We limited the locations to the 200
largest facilities (by area) in the respective regions. We used a local instance of
the Openrouteservice2 to calculate the distance matrix using a snapshot of Open
Street Maps provided by geofabrik.de3. The simulation was implemented inside
HeuristicLab [21] and is described in more detail in a second publication in this
series.

area[name="Oberösterreich"]->.a;
(way(area.a)[power=station];
way(area.a)[power=substation];
way(area.a)[power=generator];
way(area.a)[power=plant]; );

Listing 1: Overpass Query for Power Grid Facilities in Upper Austria

After each change in the dynamic problem, a “snapshot” of the current state
was created with the help of persistent data structures [12] to limit the required
memory. These snapshots were then subjected to a whole array of fitness land-
scape analysis methods. The obtained measurements where then further ana-
lyzed and visualized using Jupyter and Pandas [8]. Here, an additional “smooth-
ing” step was introduced, in particular to facilitate later clustering as the indi-
vidual time series had noticeable variation due to different evaluation points in
time. Therefore, each time series has been smoothed using neighbor regression
with a fixed radius.

1 https://openstreetmap.org.
2 https://openrouteservice.org by HeiGIT.
3 https://geofabrik.de.

https://openstreetmap.org
https://openrouteservice.org
https://geofabrik.de
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4 Results and Analysis

While the snapshots of the runs with different difficulties occur at different times,
we have plotted them on a homogeneous time scale which coincidentally also
represents the current evaluation budget. Figure 3 shows the results of some
very basic FLA measures. The horizontal axis contains the various difficulties
while the vertical axis shows time and evaluation budget. Points in between the
actual snapshots are simply filled in with the value of the previous snapshot.
Furthermore, as stated earlier, the values have been smoothed along the vertical
axis using a fixed-radius neighbor regression to account for small variations. It is
important to note that this smoothing can also be applied during an active run as
the required information is limited to data available in a single execution. As can
be seen in Fig. 3, however, the classic auto correlation and its derived correlation
length [22] show hardly any systematic difference over time and neither over
varying difficulty levels.

(a) Auto Correlation (b) Correlation Length

Fig. 3. Basic FLA values

When turning to the analysis of neutrality and theoretic analysis the picture
changes. Figure 4 shows several promising insights into the fitness landscape
that could be obtained. Figure 4a shows the neutral neighbor fractions, i.e. the
number of neighbors at any sample point that have the same fitness. This clearly
shows the areas where optimization does hardly make any difference, which in
this case indicates areas of little interest because they are “too easy” or not
worth optimizing. On the other hand, Fig. 4b shows the quality delta at which
the information content is maximized, or in other words at which scale “interest-
ing” changes occur. Here interesting changes can only be observed at very large
scale which can indicate that the problem becomes hard. Finally, Fig. 4c show
the information content of random walks at minimum scale and, therefore, the
“interestingness” for an optimization algorithm. Which coincidentally is also the
area where an optimization makes most sense and has most potential. The area
to the left is too easy to make a difference, while the area to the upper right is
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too difficult, so new locations need servicing while all vehicles are still occupied
and the number of requests keeps increasing.

(a) Average Neutral Neigh-
bor Fraction

(b) Peak Information Con-
tent Quality Delta

(c) Information Content

Fig. 4. FLA values characterizing optimization potential

5 Conclusions and Future Work

While the level of these experiments is still very basic, knowing what to mea-
sure and being able to observe the development over time seem to be possible
given the right FLA techniques. It should be noted, however, that for differ-
ent problems, other measures could be necessary as the problem characteristics
change. We could observe that with simple FLA measures we were able to see
boundaries between situations where optimization is appropriate. This seems a
promising perspective for further algorithm introspection which is important for
dynamic problems. It could enable an algorithm to make more informed deci-
sions about evaluation budget, or an outcry for help if it is able to detect that
the problem is becoming increasingly more difficult and optimization alone will
not be able to handle the situation. In the future we will focus on more complex
dynamic effects such as varying failure probabilities over time and determin-
ing whether this effect remains observable by FLA. Moreover, a more complex
interplay between failures will be studied, e.g. one power outage could lead to
another. Finally, more advanced FLA measures can be applied such as measuring
isotropy or distribution of FLA values over the landscape.
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