
Representing Technical Standards
as Knowledge Graph to Guide the Design

of Industrial Systems

Jose Illescas , Georg Buchgeher(B) , Lisa Ehrlinger , David Gabauer ,
and Jorge Martinez-Gil

Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria
{Jose.Illescas,Georg.Buchgeher,Lisa.Ehrlinger,

David.Gabauer,Jorge.Martinez-Gil}@scch.at
http://www.scch.at

Abstract. Technical standards help software architects to identify rel-
evant requirements and to facilitate system certification, i.e., to system-
atically assess whether a system meets critical requirements in fields like
security, safety, or interoperability. Despite their usefulness, standards
typically remain vague on how requirements should be addressed via
solutions like patterns or reference architectures. Thus, software archi-
tecture design remains a time-consuming human-centered process.

In this work, we propose an approach on how to use knowledge graphs
for supporting software architects in the design of complex industrial
systems. We discuss how project-generic knowledge (e.g., technical stan-
dards) and project-specific knowledge like the description of a concrete
system can be modeled as knowledge graph. Making the architectural
knowledge, which is currently present in technical standards and other
resources, machine-readable, enables the support of the software archi-
tect through expert systems and therefore, improve the quality of the
overall system design. However, since architectural knowledge is cur-
rently presented in many different formats, the transformation to a uni-
form, machine-readable form is required. We demonstrate the applica-
bility of our approach with a representative example of an industrial
client-server architecture and outline research challenges for future work.

Keywords: Knowledge graph · Ontology · Technical standard ·
System architecture · Architecture design · Architecture evaluation

1 Introduction

The design of industrial hardware and software systems involves expert knowl-
edge of a broad spectrum of areas and fields, considering application domain
knowledge (over general software engineering activities), system kind-specific
application, and technology-specific expertise, among others. As systems evolve,
the importance of meeting their quality (and functional) requirements, such as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Moreno-Dı́az et al. (Eds.): EUROCAST 2022, LNCS 13789, pp. 603–610, 2022.
https://doi.org/10.1007/978-3-031-25312-6_71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25312-6_71&domain=pdf
http://orcid.org/0000-0001-6292-002X
http://orcid.org/0000-0002-8565-6257
http://orcid.org/0000-0001-5313-0368
http://orcid.org/0000-0003-2465-5741
http://orcid.org/0000-0002-5730-7965
https://doi.org/10.1007/978-3-031-25312-6_71


604 J. Illescas et al.

safety, security, integrity, maintainability, etc., increases because they determine
the foundation of the system [5]. Nevertheless, in practice, many of the funda-
mental quality requirements are not addressed due to the lack of knowledge,
time, or expertise [1].

Thus, software architects are confronted with more demanding activities
during the architecture design process as presented in [11] and have to work
with many kinds of knowledge. Architectural knowledge generalizes explicit and
implicit reusable knowledge, which can vary in form, type, degree of formal-
ity, etc., such as reference architectures, architectural styles, patterns, design
patterns, technical standards, or guidelines.

Technical standards, developed and maintained by networks of international
institutions (such as ISO, IEC, and ETSI) together with national organizations
(such as NIST, DIN, and ANSI), contain relevant knowledge to be considered
during the software architecture design as they reflect a global consensus of peo-
ple with expertise in their subject of matter and who know the needs of the
organizations they represent [2,13,14]. A technical standard contains a set of
requirements and recommendations that are relevant for specific kinds of sys-
tems in a domain or for certain processes. To claim conformance to a standard all
requirements defined by the standard must be fulfilled. Technical standards sup-
port software architects to identify relevant requirements and facilitate system
certification. However, the adherence to such standards can be challenging, e.g.,
due to the vagueness of how to address provisions, or the expected familiarity
with the standard that the architect requires to use it.

Recent advancements in artificial intelligence (AI) allow the development of
novel kinds of systems and the automation of knowledge-intensive activities that
previously had to be carried out manually by humans. Thus, the software engi-
neering community researches how software engineering can be supported with
AI-based technologies. Knowledge graphs (KGs) are an emerging technology for
the development of explainable AI applications. KGs are used for semantically
modelling a complex domain [9,19], and use reasoning- and AI-based methods
for the development of knowledge-based systems like question-answering (QA)
[15], decision support systems [18] and recommendation systems [7].

This work explores how KGs can be used to support software architects in
designing complex industrial systems. The remainder of the paper is distributed
as follows: we present our approach to build a KG for supporting software archi-
tects considering project-specific and generic knowledge in Sect. 2. Section 3
presents a representative example during the architecture design process sup-
ported by the KG and automated reasoning. Section 4 presents a short overview
of the related work. Finally, we present research challenges and conclusions.

2 Approach

Architecture design is an incremental and iterative process, which makes it an
exhaustive human-centered, resource-, time- and knowledge-intensive consuming
activity [8]. Since software architects have a great impact on the quality of the



A Standards Knowledge Graph 605

system [4], it is important to support them with relevant knowledge that needs to
be considered during architecture design and evaluation. Reusable architecture
knowledge is therefore used to validate if the requirements have been met.

Such automated support would improve not only the quality, but the access
of reusable knowledge gained by experience of the architect as well, two key
factors of the continuous software evolution and development phases.

Fig. 1. Approach of the system for assisting and validating design decisions.

Figure 1 illustrates our approach of building KGs based on existing project-
generic knowledge (such as technical standards) to support the software architec-
ture design phase. As mentioned in [6], a KG is built by two main components, a
knowledge base consisting of ontologies, describing the domain, and a reasoning
component, which is used to perform inference and exploit non-obvious rela-
tions and derive new knowledge. Thus, several base ontologies are defined in a
first step, e.g., a generic schema for technical standards which covers their main
structure, relationships and main characteristics.

Software architects work with many kinds of architectural knowledge and
tools which have different degrees of abstraction. The knowledge can be either
project-generic or specific, tacit or explicit, and so forth. Certain kind of knowl-
edge is also prone to the phenomena denoted vaporization of knowledge. Never-
theless, the implementation of such a KG, would support the main concept of
knowledge management by capturing, sharing, using and reusing it, which also
conforms greatly to the definition of an ontology.

On top of the KG, we intend to exploit reasoning and AI-based methods to
automate the design process to find recommendations, alternatives, disregarded
provisions that might be of great importance and be able to find and react to con-
flicting approaches, etc. Thus, enabling the KG to support the software architect



606 J. Illescas et al.

during the architecture design process by providing design guidance and auto-
mated architecture evaluation. As part of design guidance, context-dependent
relevant architecture knowledge is derived and proposed. During automated
architecture evaluation a candidate architecture solution structure is analyzed,
e.g., to identify not or incorrectly addressed requirements and to suggest poten-
tial improvements for an existing architecture design.

3 Exemplary Application to Industrial Control System

This chapter shows how to apply our approach from Sect. 2 to a client-server com-
munication in an industrial setting, i.e., an industrial control system (ICS) that
provides a remote maintenance API. The example considers only the security
context of the system’s communication, which can be evaluated to determine how
secure it is. A technical standard whose scope considers cyber-security require-
ments, could provide provisions that can be used to recommend and achieve a
more secure communication, thus improving the security of the system.

On the one hand, we are provided with a system component structure, on
the other hand we use a technical standard addressing cyber-security for com-
ponents of industrial automation and control systems IACS. The system com-
ponent structure, shown in Fig. 2, is comprised of two components, namely, the
ICS component acting as the server and the remote maintenance component,
which is a web application acting as the client. The ICS component provides a
service port for accessing maintenance data. The remote maintenance compo-
nent has a reference port for communicating with the port provided by the ICS
system component. Both ports use a dedicated API, i.e., the Remote Mainte-
nance API and support the communication protocols HTTP and HTTPS. The
two components communicate over HTTP.

Fig. 2. Representation of the initial setup of the application (GraphDB visualization).

The IEC 62443, a standard series that address cyber-security for operational
technology in automation and control systems, is considered. More specifically,



A Standards Knowledge Graph 607

in this example we refer to the IEC 62443-4-2 standard, titled Security for indus-
trial automation and control systems - Part 4–2: Technical security requirements
for IACS components, which will be further addressed as the base standard. The
base standard provides a set of cyber security requirements for the components
that compose an IACS. The document specifies security capabilities of those
components with regards to the ability of mitigating security threats without the
assistance of compensating countermeasures [12]. Among the relevant require-
ments we identified the following:

CR 3.1 Communication integrity. Capability to protect transmitted infor-
mation, as the data being transmitted is a common target of manipulation.

CR 3.1 (Enhancement) Communication authentication. Components
should be capable of verifying the authenticity of the received information.

CR 4.1 Information confidentiality. Components should be able to guaran-
tee protection of confidentiality of data at rest and/or in transit.

Despite the simplicity of the example, more specific information is needed to
answer questions like Is the system solution tamper-proof?, with respect to the
data being transmitted. This question will be referred to as the example question.
Notoriously, concepts such as Components, Ports, API, and their relationships,
among others are needed to define system solutions, technical standards and their
content. Those concepts and relationships are distributed in multiple ontologies
that cover project-generic and project-specific information. The ontologies are
classified as reusable solutions, system base, type specific instance ontologies,
etc. For this example, the following base ontologies of our KG are used and
further exploited by a reasoning engine that uses the OWL2 QL rule set:

Component Structures: Contains concepts relevant for component solution
structures such as components, referenced and provided ports, exposed API
and their respective attributes.

Standards Schema: A generic construct to define standards, provisions, their
categories, enhancements and other kinds of supplemental information.

IEC 62443 Instances: Concrete instantiation of the base standard.
Protocol Instances: Instances of protocols with complementary properties and

information.

We define an ontology based on the example description, mapping the
description entities to the KG concepts. Then the system can check whether
the proposed component solution has a partial conformance to the base stan-
dard. With partial conformance, we limit the scope to the three requirements
mentioned above with respect to the data in transit.

To demonstrate the approach, we consider two scenarios. First, HTTP is used
as communication protocol, which is not considered safe and does not conform to
the base standard. In the second scenario, HTTPS is used. HTTPS is transmitted
over TLS, which makes it a more secure, encrypted and robust variant of HTTP.
Hence, a better recommendation can be proposed. The connection, as stated
above, supports both protocols. This is a simple but relevant evaluation and



608 J. Illescas et al.

assessment achieved with the help of the KG. After considering the suggestion
of using HTTPS, the answer of the same example question shows a positive
result, see Table 1.

Table 1. Result of the automated security evaluation for the two scenarios

ReferencePort API Protocol isSafe

Maintenance data Remote maintenance API HTTP FALSE

Maintenance data Remote maintenance API HTTPS TRUE

The exemplary application in this section shows how a design decision can
be supported by requirements obtained from a technical standard and how it
can be complemented with more data.

4 Background and Related Work

There have been studies which expose the challenges that architects face due
to the heterogeneity of the knowledge, as shown in [16], which analyzes how
efficiently search engines can find AK to solve specific architectural tasks and
stress how challenging the process of finding the required AK is.

Moreover, due to the growing amount of technical standards as an effect of
Industry 4.0 (I4.0), the importance of technical KGs, based on technical con-
tent, to support engineering design activities is critical [10]. In [2] a KG, referred
to as I40KG, for I4.0 related standards, norms, and reference frameworks is
proposed. I40KG is intended to support newcomers, experts, and other stake-
holders in understanding how to implement I4.0 systems by providing a Linked
Data-conform collection of annotated, classified reference guidelines. The need to
make such relevant knowledge accessible to system stakeholders and the seman-
tic definition of standards and their relationships is considered. Nevertheless,
our approach goes a step beyond. Besides classifying them and making their
relationships clear, we want to use their content, especially the provisions and
complementary information, to provide guidance and assistance during archi-
tectural evaluation, where a given system solution can be further analyzed and
backed up by standards.

Furthermore, the application of AI methods in software engineering has been
an exciting topic, as shown in [3] where a systematic review is presented. The
different kinds and methods of AI applied at different stages of software engineer-
ing are reviewed with the conclusion that AI has successfully optimized many
tasks related to the development cycle of software engineering. In [2], AI was
used to create embeddings and find similarities between standards. However, we
want to analyze to which extent we can use AI methods to explore and make
more accessible the architectural knowledge silos within the KG.



A Standards Knowledge Graph 609

Finally, [17] proposed a KG for bug resolution, showing some interesting
results because the bug KG can provide more accurate and comprehensive infor-
mation related to a bug issue. Due to the highly explainable content, we consider
a KG for assisting software architects in a more complex process such as the
design of industrial systems.

5 Conclusion

In this paper, we explained the idea of modeling a KG that covers project-
generic knowledge, e.g., technical standards and project-specific knowledge for
supporting software architects. Making architectural knowledge present in tech-
nical standards and other sources accessible in a more automated fashion can
improve the quality of the industrial control systems as the architectural design
process would be less demanding for such critical stakeholders.

Most of the available architectural knowledge is presented in natural lan-
guage, thus, Natural Language Processing methods are required to automati-
cally transform this data to a machine-readable form (e.g., a KG). The benefit
of using KGs for representing architectural knowledge is the high expressiveness
in contrast to classic data models (e.g., relational data model) [9]. Therefore, the
highly explainable content of the KGs can support software architects during
human-centric tasks of the architectural design process. The use of explainable
AI like KGs is able to clarify the recommendations and analyses rather than
relying on purely abstract black-box models.

Tools that interact with KGs in a more natural way are needed. Then arbi-
trary system context-relevant questions can be placed without the need of a
query language like SPARQL. Such a demanding human-centered activity should
support a flexible query composition mechanism to make the retrieval of required
knowledge less demanding and more accessible.

Finally, defining a more robust and complete architectural knowledge domain
to improve systems quality is essential. However, full automation might not be
feasible. Manual curation, pre-, and post-preparation of the models and data are
still required to improve the results.

Acknowledgements. This work was supported in part by the Interreg Österreich-
Bayern 2014–2020 Programme funded under Grant (AB292) and in part by the FFG
BRIDGE project AK-Graph (grant no. 883718).

References

1. Assal, H., Chiasson, S.: Security in the software development lifecycle. In: Pro-
ceedings of the Fourteenth USENIX Conference on Usable Privacy and Security,
SOUPS 2018, pp. 281–296. USENIX Association, USA (2018)

2. Bader, S.R., Grangel-Gonzalez, I., Nanjappa, P., Vidal, M.-E., Maleshkova, M.: A
knowledge graph for industry 4.0. In: Harth, A., et al. (eds.) ESWC 2020. LNCS,
vol. 12123, pp. 465–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-49461-2 27

https://doi.org/10.1007/978-3-030-49461-2_27
https://doi.org/10.1007/978-3-030-49461-2_27


610 J. Illescas et al.

3. Barenkamp, M., Rebstadt, J., Thomas, O.: Applications of AI in classical software
engineering. AI Perspect. 2(1), 1–15 (2020). https://doi.org/10.1186/s42467-020-
00005-4

4. Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Babar, M.A.: 10 years of software
architecture knowledge management: practice and future. J. Syst. Softw. 116, 191–
205 (2016). https://doi.org/10.1016/j.jss.2015.08.054

5. Doukidis, G., Spinellis, D., Ebert, C.: Digital transformation - a primer for prac-
titioners. IEEE Softw. 37(05), 13–21 (2020). https://doi.org/10.1109/MS.2020.
2999969

6. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. In: SEMAN-
TiCS (Posters, Demos, SuCCESS) (2016)

7. Engleitner, N., Kreiner, W., Schwarz, N., Kopetzky, T., Ehrlinger, L.: Knowledge
graph embeddings for news article tag recommendation (2021). https://doi.org/
10.13140/RG.2.2.12602.52161

8. Farshidi, S., Jansen, S., van der Werf, J.M.: Capturing software architecture knowl-
edge for pattern-driven design. J. Syst. Softw. 169, 110714 (2020). https://doi.org/
10.1016/j.jss.2020.110714

9. Feilmayr, C., Wöß, W.: An analysis of ontologies and their success factors for
application to business. Data Knowl. Eng. 101, 1–23 (2016). https://doi.org/10.
1016/j.datak.2015.11.003

10. Han, J., Sarica, S., Shi, F., Luo, J.: Semantic networks for engineering design: state
of the art and future directions. J. Mech. Des. 144(2) (2021). https://doi.org/10.
1115/1.4052148

11. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: A gen-
eral model of software architecture design derived from five industrial approaches.
J. Syst. Softw. 80(1), 106–126 (2007). https://doi.org/10.1016/j.jss.2006.05.024

12. Security for industrial automation and control systems - part 4–2: Technical secu-
rity requirements for iacs components. Standard, International Electrotechnical
Commission (2019)

13. International Electrotechnical Commission: Understanding standards. https://iec.
ch/understanding-standards

14. International Organization for Standarization: Standards. https://www.iso.org/
standards.html

15. Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question
answering over knowledge graphs on word and character level. In: Proceedings of
the 26th International Conference on World Wide Web, pp. 1211–1220. Interna-
tional World Wide Web Conferences Steering Committee (2017). https://doi.org/
10.1145/3038912.3052675

16. Soliman, M., Wiese, M., Li, Y., Riebisch, M., Avgeriou, P.: Exploring web search
engines to find architectural knowledge (2021)

17. Wang, L., Sun, X., Wang, J., Duan, Y., Li, B.: Construct bug knowledge graph for
bug resolution. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), pp. 189–191 (2017). https://doi.org/10.1109/
ICSE-C.2017.102

18. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: Kgat: knowledge graph attention
network for recommendation. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 950–
958. Association for Computing Machinery, New York (2019). https://doi.org/10.
1145/3292500.3330989

19. Yahya, M., Breslin, J.G., Ali, M.I.: Semantic web and knowledge graphs for indus-
try 4.0. Appl. Sci. 11(11) (2021). https://doi.org/10.3390/app11115110

https://doi.org/10.1186/s42467-020-00005-4
https://doi.org/10.1186/s42467-020-00005-4
https://doi.org/10.1016/j.jss.2015.08.054
https://doi.org/10.1109/MS.2020.2999969
https://doi.org/10.1109/MS.2020.2999969
https://doi.org/10.13140/RG.2.2.12602.52161
https://doi.org/10.13140/RG.2.2.12602.52161
https://doi.org/10.1016/j.jss.2020.110714
https://doi.org/10.1016/j.jss.2020.110714
https://doi.org/10.1016/j.datak.2015.11.003
https://doi.org/10.1016/j.datak.2015.11.003
https://doi.org/10.1115/1.4052148
https://doi.org/10.1115/1.4052148
https://doi.org/10.1016/j.jss.2006.05.024
https://iec.ch/understanding-standards
https://iec.ch/understanding-standards
https://www.iso.org/standards.html
https://www.iso.org/standards.html
https://doi.org/10.1145/3038912.3052675
https://doi.org/10.1145/3038912.3052675
https://doi.org/10.1109/ICSE-C.2017.102
https://doi.org/10.1109/ICSE-C.2017.102
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.3390/app11115110

	Representing Technical Standards as Knowledge Graph to Guide the Design of Industrial Systems
	1 Introduction
	2 Approach
	3 Exemplary Application to Industrial Control System
	4 Background and Related Work
	5 Conclusion
	References




