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Abstract. In manufacturing industry, product failure is costly, as it
results in financial and time losses. Understanding the causes of product
failure is critical for reducing the occurrence of failure and optimising
the manufacturing process. As a result, a number of studies utilising
data-driven approaches such as machine learning have been conducted
to reduce the occurrence of this failure and to improve the manufacturing
process. While these data-driven approaches enable pattern recognition,
they lack the advantages associated with knowledge-driven approaches,
such as knowledge representation and deductive reasoning. Similarly,
knowledge-driven approaches lack the pattern-learning capabilities inher-
ent in data-driven approaches such as machine learning. Therefore, in this
paper, leveraging the advantages of both data-driven and knowledge-
driven approaches, we present a strategy with a prototype implemen-
tation to reduce manufacturing product failure. The proposed strategy
combines a data-driven technique, Bayesian structural learning, with a
knowledge-based technique, knowledge graphs.

Keywords: Manufacturing product failure · Bayesian structural
learning · Knowledge graphs · Structure learning

1 Introduction

Small and medium-sized enterprises (SMEs) as significant contributors in the
manufacturing and production industry require ensuring a low failure rate of
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products to have a healthy production line [8]. Product failure leads to a loss of
market share with the increasing competition and customer expectations in the
current era of Industry 4.0. Thus, understanding the causes of product failure
is essential in order to eliminate the failures or reduce their effects and optimise
the manufacturing process.

While manufacturers have made efforts to reduce the occurrence of product
failure in SMEs, analysis of the causes by manual inspections is becoming less effi-
cient, expensive, time-consuming and difficult [7]. To address failures occurring
at manufacturing with complex processes, diverse techniques can be employed,
including data-driven and knowledge-based (or semantic-based) approaches.

In recent years, data-driven approaches have made progress using machine
learning (ML) for monitoring, fault diagnosis, optimisation and control. As a
data-driven technique, Bayesian networks (BNs) are widely used to access a
comprehensive and accurate analysis of complex systems. BNs are probabilistic
graphical models to characterise and analyse uncertainty problems through a
directed acyclic graph (DAG). The task of learning the dependency graph from
data is called structure learning [11]. Although the state-of-the-art solutions
(e.g., using continuous optimisation) have achieved learning the structure of a
BN with many variables, they are not easily interpretable and informative about
dependencies between the variables. In contrast, semantic-based techniques (e.g.,
using knowledge graphs (KGs)) allow to define the basic concepts and primary
semantic relationships in a domain and provide deductive reasoning.

In this paper, we propose and develop a hybrid model for evaluating and
predicting product quality in SMEs’ production lines and consequently reducing
the failure rates. We utilise structure learning to find and represent probabilistic
dependency relationships among the variables and then use KGs to enrich seman-
tic interoperability and exchange information between humans or machines. The
main contributions of our paper are summarised as follows: (i) we take advan-
tage of structure learning in BNs to reflect the dependencies among variables
in SMEs’ manufacturing processes through identifying DAGs; (ii) to overcome
the lack of semantic interoperability in the extracted DAGs, we employ the idea
of KGs; (iii) we generate and annotate an OWL ontology based on the DAG
obtained through the Bayesian structure learning process to create a KG.

The paper is organised as follows. Section 2 provides an overview on the
related works. The methodology is discussed in Sect. 3, and Sect. 4 provides a
detailed explanation about the implementation. The evaluation is discussed in
Sect. 5. Section 6 concludes the paper and gives directions for future research.

2 Related Works

A number of studies, such as [3], [4] and [10], have been conducted on the use
of semantic technologies and BNs, demonstrating the advantages of combining
the two. Existing research focuses on either integrating BNs into existing ontolo-
gies or using ontologies to model BNs. For example, Riali et al. [10] extended
the ontology (i.e., fuzzy ontology) with BNs to incorporate probabilistic knowl-
edge present in real-world applications. On the other hand, Chen et al. [4] use
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ontology to model BNs to represent causal relationships between additive man-
ufacturing. Cao et al. [4], similarly, use ontology and BN to investigate dynamic
risk propagation on supply chains. A risk propagation ontology is created (or
customised) according to the domain and then it is transformed into a BN.

In summary, the work described above presumes ontology to be existing,
which can be viewed as a limitation given the dynamic nature of the settings.
In an ontology, for instance, all concepts are predefined, and if there is a change
in manufacturing steps, such as the addition or subtraction of certain steps,
the ontology must be modified accordingly. Our proposed work can account for
these dynamic circumstances, automatically generating the ontology and KG,
thus helping industry, especially SMEs that are often limited in resources.

3 Methodology

In this paper, we describe our approach to manufacturing process optimisation
in detail. Figure 1 summarises the approach taken in our study, with details
provided in the following subsections.

Fig. 1. Proposed methodology

3.1 Data Layer

The data layer is the first component to interact with the data. The data layer
reads and preprocesses the input data. Preprocessing is used to ensure the data
quality. For example, the input data for some features may be incomplete (i.e., it
may contain missing values). Additionally, the data may include values on vari-
ous scales. This is because missing values and inputs with varying scales result
in suboptimal performance. The data layer’s preprocessing performs imputation
to fill in missing input and scaling values in different ranges to a common range.

3.2 Bayesian Layer

The Bayesian layer provides two major functionalities: learning the dependency
graph of a BN from data, which is referred to as structure learning; and inte-
grating expert inputs (or domain knowledge), a feature of BN [6]. The Bayesian
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layer yields the DAG as shown in Fig. 1 after performing the structure learning,
which represents the learned relationships between the features. The Bayesian
structure learning is based on [13] and [14], which perform structure learning by
formulating combinatorial structure learning problem as continuous optimisation
problems, thereby eliminating the combinatorial overhead.

3.3 Semantic Layer

The semantic layer enables capabilities such as reasoning and data enrichment
inherent in semantic technology. Reasoning makes use of relationships and the
deductive power of logic to generate new inferences (i.e., meaningfulness from
the data). Additionally, the use of KG also enables interoperability, which is
important when integrating with other external systems. To leverage semantic
technology, the semantic layer converts the learned DAG to the corresponding
semantic representation, specifically an ontology and a KG. Furthermore, the
semantic layer provides reasoning via SPARQL queries.

Algorithm 1: OWL Ontology generator from DAG
Input: DAG graph G as an adjacency list
Result: OWL ontology O, ontology class mapper Cm, ontology object property mapper

Om, ontology data property mapper Dm

1 OWL Ontology ← initialise namespace;
2 for each unique nodes in G do
3 create an OWL class as subclass of owl:Thing
4 end
5 for each subgraph g in G do
6 if g has child nodes then
7 create an OWL ObjectProperty class with relation R ;
8 assign parent node as domain;
9 assign child node(s) as range;

10 end
11 for each node n in child nodes do
12 create OWL DataProperty class;
13 assign n as domain ;
14 assign data type as range ;

15 end

16 end
17 Return O, Cm, Om, Dm;

Algorithm 1 (and Algorithm 2) generates (and annotates) an OWL ontology
based on the DAG obtained through Bayesian structure learning, in contrast
to studies such as [12], which merge the BN into the existing ontology. This is
especially advantageous when there is no ontology, which is frequently the case
with SMEs. Additionally, this provides benefits, as one can take advantage of
semantic technology’s benefits without having any prior knowledge of it. Algo-
rithm 1 takes the learned DAG graph G in an adjacency list format as an input.
After creating the OWL class as a subclass of the owl:Thing, the object property
is created, taking into account the connectivity of the nodes in G. In our study,
the object property is defined as isInfluencedByNode. The Node in the object
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Algorithm 2: Ontology Annotation
Input: DAG graph G as an adjacency list, OWL ontology O, ontology class mapper Cm,

ontology object property mapper Om, ontology data property mapper Dm

Result: Annotated OWL ontology
1 for each subgraph g in G do
2 if g has child nodes then
3 for each nodes n in child nodes do
4 create an instance i for node n;
5 create ObjectProperty restriction mapping Om to Cm in O for instance i;
6 insert value to Dm for instance i;

7 end

8 end

9 end
10 Return Annotated OWL ontology;

property isInfluencedByNode represents the name of the influencing node (or
parent node). Our study consists of the two data properties, namely, isOrigi-
natedFromNode and hasInfluenceFactorOfNode. isOriginatedFromNode is a data
property of type xsd:string that contains information about how the relationship
was discovered (i.e., based on expert input or learned via structure learning). The
hasInfluenceFactorOfNode property specifies the degree to which the child node
is influenced and is of type xsd:decimal. When the relationship is defined by a
domain expert, the hasInfluenceFactorOfNode has a weight of 1. Algorithm 2
uses ontology information such as class, object properties and data properties,
as well as the ontology itself and the graph G, to annotate the ontology and
create the KG.

Fig. 2. Automatically generated OWL ontology based on DAG learned from Bayesian
structure learning.
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Figure 2 shows the ontology generated using Algorithm 1. Each of the algo-
rithms for annotation and ontology generation has a time complexity of O(n2).
The ontology and KG instances that were generated are based on the power
transformer dataset [1]. We can see in Fig. 2 (i.e., ontology) that some classes
are not connected. The reason for this is, that structured learning was unable to
establish a connection between those disjointed classes. This also demonstrates
the inherent uncertainty of structure learning.

3.4 Visualisation

The visualisation component provides the user interface for interaction. For
example, the visualisation component interactively displays the results of the
semantic reasoning, assisting both experts and non-experts in comprehending
the variables’ relationships. Figure 3 shows the visualisation of the results of the
semantic reasoning performed via SPARQL. The semantic reasoning in Fig. 3a
shows all the KG instances having an influence factor (or weight) greater than
or equal to 0.37 and Fig. 3b shows the nodes that are being influenced by Co2
nodes. Moreover, the visualisation also provides an interface that allows one to
set the hyperparameters, such as DAG filter threshold, L1 and L2 regularisation,
for the structure learning.

Fig. 3. (a) Visualisation of semantic reasoning results according to influencing factor
(or weights). (b) Visualisation of the outcomes of semantic reasoning according to their
influencing nodes (or class).

4 Implementation

Python version 3.7 and Streamlit version 1.7.0 were used for the implementation
of the proposed work. For the implementation of the Bayesian structure learning
algorithms discussed in Sect. 3.2, we use CausalNex [2] version 0.11.0. CausalNex
is a Python library for Bayesian Networks and causal reasoning. Owlready2
version 0.37 [9] was used for ontology generation and annotation as discussed in
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Sect. 3.3. Similarly, RDFLib version 6.1.1 was used for SPARQL queries in order
to interact with the KG, and Streamlit agraph was used for the visualisation if
the KG and the DAG. The other libraries scikit-learn version 1.1.1, NetworkX
version 2.7.1 and pandas version 1.4.1 were used for handling data such as data
preprocessing. The source code is available openly on GitHub1.

5 Evaluation

When investigating a product failure, investigators would typically want to know
the interdependence of the various manufacturing steps, as well as their relation-
ships and effects on other steps. And since our work is focused on minimising
product failure, we evaluated our work by evaluating if the generated KG would
answer the question that would arise during the failure analysis. Table 1 presents
the questions of interest for product failure analysis and their respective answers
(i.e., how KG answers the raised questions).

Table 1. Competency questions pertaining to product failure analysis and the corre-
sponding answers.

Questions Answer

What are the interdependencies between the
various manufacturing steps (or what are the
interdependencies with step X)?

Interdependencies between various
manufacturing steps are answered
by the object property
isInfluencedByNode

How does manufacturing step X influence
manufacturing step Y, or what is the effect of
manufacturing step X on step Y?

The effect of manufacturing step
X on step Y data property
isInfluencedByNode

How are the interdependencies between the
various stages of production determined? Is it
based on expert knowledge or independent
data-driven learning?

The data property
isOriginatedFromNode provides
an answer to how the
interdependencies were deduced

In addition, it is essential that the generated ontology is consistent and error-
free. This is due to the fact that inconsistent ontology can lead to problems, such
as erroneous inferences. We ran the Hermit2 reasoner to evaluate the consistency
of the generated ontology, which confirmed that the generated ontology had no
consistency. The duration of the reasoner was roughly 60 ms.

6 Conclusion and Future Work

In this paper, we presented our work on manufacturing process optimisation
using KG and BN, which, to the best of our knowledge, is among the first attempt
1 Code: https://github.com/tekrajchhetri/ki-net.
2 http://www.hermit-reasoner.com.

https://github.com/tekrajchhetri/ki-net
http://www.hermit-reasoner.com
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to bridge the gap in the industrial sector’s usage of KGs in manufacturing. The
use of the KG provides the interoperability, semantics (or meaning) of data and
further allows for reasoning, which can be extremely beneficial when analysing
failures in sectors such as manufacturing. In addition, the application of KG
permits interpretability, a benefit that techniques such as deep learning lack.

Future work would consist of applying the proposed method to other domains
or deploying it in industrial environments. In addition, one could extend the work
by incorporating additional domain knowledge and applying machine learning
to KG for improved results, as we demonstrated in our previous study [5].

Acknowledgements. The research reported in this paper has been funded by Euro-
pean Interreg Austria-Bavaria project KI-Net3 (grant number: AB292). We would also
like to thank Oleksandra Roche-Newton for her assistance in the manuscript prepara-
tion and Simon Außerlechner, system engineer at STI Innsbruck, for facilitating servers
for experimentation(3 https://ki-net.eu).

References

1. Arias, R.: Data for: Root cause analysis improved with machine learning for failure
analysis in power transformers (2020). https://doi.org/10.17632/RZ75W3FKXY.
1

2. Beaumont, P., et al.: CausalNex (2021). https://github.com/quantumblacklabs/
causalnex. Last Accessed 25 Apr 2022

3. Cao, S., Bryceson, K., Hine, D.: An ontology-based bayesian network modelling
for supply chain risk propagation. Indus. Manage. Data Syst. 119(8), 1691–1711
(2019). https://doi.org/10.1108/IMDS-01-2019-0032

4. Chen, R., Lu, Y., Witherell, P., Simpson, T.W., Kumara, S., Yang, H.: Ontology-
driven learning of bayesian network for causal inference and quality assurance
in additive manufacturing. IEEE Robot. Autom. Lett. 6(3), 6032–6038 (2021).
https://doi.org/10.1109/LRA.2021.3090020

5. Chhetri, T.R., Kurteva, A., Adigun, J.G., Fensel, A.: Knowledge graph based hard
drive failure prediction. Sensors 22(3) (2022). https://doi.org/10.3390/s22030985

6. Heckerman, D.: A tutorial on learning with bayesian networks (2020). https://doi.
org/10.48550/ARXIV.2002.00269

7. Kang, S., Kim, E., Shim, J., Chang, W., Cho, S.: Product failure prediction with
missing data. Int. J. Prod. Res. 56(14), 4849–4859 (2018)

8. Kang, Z., Catal, C., Tekinerdogan, B.: Product failure detection for production
lines using a data-driven model. Expert Syst. Appl. 202, 117398 (2022). https://
doi.org/10.1016/j.eswa.2022.117398

9. Lamy, J.B.: Owlready: ontology-oriented programming in python with automatic
classification and high level constructs for biomedical ontologies. Artif. Intell. Med.
80, 11–28 (2017). https://doi.org/10.1016/j.artmed.2017.07.002

10. Riali, I., Fareh, M., Bouarfa, H.: A semantic approach for handling probabilistic
knowledge of fuzzy ontologies. In: ICEIS (1), pp. 407–414 (2019)

11. Scanagatta, M., Salmerón, A., Stella, F.: A survey on bayesian network structure
learning from data. Prog. Artif. Intell. 8(4), 425–439 (2019)

12. Setiawan, F.A., Budiardjo, E.K., Wibowo, W.C.: Bynowlife: A novel framework
for owl and bayesian network integration. Information 10(3), 95 (2019). https://
doi.org/10.3390/info10030095

https://ki-net.eu
https://doi.org/10.17632/RZ75W3FKXY.1
https://doi.org/10.17632/RZ75W3FKXY.1
https://github.com/quantumblacklabs/causalnex
https://github.com/quantumblacklabs/causalnex
https://doi.org/10.1108/IMDS-01-2019-0032
https://doi.org/10.1109/LRA.2021.3090020
https://doi.org/10.3390/s22030985
https://doi.org/10.48550/ARXIV.2002.00269
https://doi.org/10.48550/ARXIV.2002.00269
https://doi.org/10.1016/j.eswa.2022.117398
https://doi.org/10.1016/j.eswa.2022.117398
https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/10.3390/info10030095
https://doi.org/10.3390/info10030095


602 T. R. Chhetri et al.

13. Zheng, X., Aragam, B., Ravikumar, P., Xing, E.P.: DAGs with NO TEARS: Con-
tinuous Optimization for Structure Learning. In: Advances in Neural Information
Processing Systems (2018)

14. Zheng, X., Dan, C., Aragam, B., Ravikumar, P., Xing, E.P.: Learning sparse non-
parametric DAGs. In: International Conference on Artificial Intelligence and Statis-
tics (2020)


	Optimising Manufacturing Process with Bayesian Structure Learning and Knowledge Graphs
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Data Layer
	3.2 Bayesian Layer
	3.3 Semantic Layer
	3.4 Visualisation

	4 Implementation
	5 Evaluation
	6 Conclusion and Future Work
	References




