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Abstract. We propose two surrogate-based strategies for increasing the
convergence speed of multi-objective evolutionary algorithms (MOEAs)
by stimulating the creation of high-quality individuals early in the
run. Both offspring generation strategies are designed to leverage the
fitness approximation capabilities of light-weight interpolation-based
models constructed using an inverse distance weighting function. Our
results indicate that for the two solvers we tested with, NSGA-II and
DECMO2++, the application of the proposed strategies delivers a sub-
stantial improvement of early convergence speed across a test set con-
sisting of 31 well-known benchmark problems.

Keywords: Surrogate modelling · Multi-objective continuous
optimisation · Evolutionary algorithms · Run-time convergence analysis

1 Introduction and Motivation

A multi-objective optimisation problem (MOOP) over a multi-dimensional space
(i.e., x ∈ V d ⊂ R

d) can be defined as:

minimize F (x) = (f1(x), . . . , fm(x))T , (1)

with the understanding that the m ∈ {2, 3} real-valued objectives of F (x) need
to be minimized simultaneously. The general solution of a MOOP is given by
a Pareto optimal set (PS) that collects all solutions x∗ ∈ V d that are not fully
dominated – i.e., �y ∈ V d : fi(y) ≤ fi(x∗),∀i ∈ {1, . . . , m} and F (y) �= F (x∗).
The true Pareto front (PF) is the objective space projection of the PS.

Multi-objective evolutionary algorithms (MOEAs) have emerged as very pop-
ular MOOP solvers due to their ability to discover high-quality PS approxi-
mations called Pareto non-dominated sets (PNs) after single optimisation runs
[1,19]. The successful application of MOEAs to increasingly complex indus-
trial MOOPs ranging from product design [10] to calibration [6] and quality
assurance [16] has also helped to highlight that when the process of evaluating
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F (x) is computationally-intensive1, the effectiveness of the solver can be severely
impacted as far fewer candidate solutions/individuals x ∈ V d can be evaluated
during the optimisation run. One of the most promising approaches for allevi-
ating the effect of expensive F (x) formulations is to replace the original fitness
functions with an easy to evaluate surrogate formulation [9,11]. However, the
task of constructing accurate (non-linear) surrogate models is non-trivial and
can itself be computationally intensive, especially when performed on-the-fly
(i.e., during the optimisation process) [14].

The present work aims to contribute to on-the-fly surrogate construction
by exploring the lightweight modelling2 capabilities of the recently introduced
multi-objective interpolated continuous optimisation problem (MO-ICOP) for-
mulation [15] based on inverse distance weighting.

2 Research Focus and Approach

2.1 Lightweight Interpolation-Based Surrogate Model

Let us denote with e(x, y) the Euclidean distance between two individuals x and
y and with X = {x1, ..., xN} the set containing all the N individuals evaluated
by a MOEA till a given stage of its execution. Using Shepard’s inverse distance
weighting function [12], we can estimate the fitness of any new solution candidate
y ∈ V d across each individual objective fi from Eq. 1 as:

gX,fi,k(y) =

⎧
⎪⎨

⎪⎩

∑N
j=1

fi(xj)

e(y,xj)
k

∑N
j=1

1
e(y,xj)

k

if e (y, xj) �= 0 for all j

fi(xj), if e (y, xj) = 0 for some j

,∀1 ≤ i ≤ n (2)

where k is a positive real number called the power parameter. The final
lightweight multi-objective surrogate for F (x) is obtained by simply aggregating
the individual interpolation-based models:

gX,F,k(y) = (gX,f1,k(y), ..., gX,fm,k(y))T ,∀2 ≤ m ≤ 3. (3)

We propose two offspring generation strategies that leverage the lightweight
interpolation-based surrogate model from Eq. 3 to discover high-quality individ-
uals during the MOEA evolutionary cycle and thus reduce the number of fitness
evaluations necessary for producing high-quality PN approximations. This will
translate directly into a reduction of the prohibitive run-times observed when
applying MOEAs on MOOPs with computationally-intensive fitness evaluations.

It is noteworthy that across all the optimisation runs we carried out, both
subsequently described strategies were mostly beneficial in the early and middle
stages of convergence. Therefore, our recommendation is to only apply them
during the first gTh% generations, where gTh is a control parameter.

1 As it is based on numerical simulation(s) or even human-in-the-loop experiment(s).
2 Modelling that requires virtually no training.
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2.2 Offspring Generation Strategy 1: Pre-emptive Evaluation (PE)

The first strategy aims to improve any MOEA-specific approach of generating a
new individual (i.e., EvolveNextOffspring) by using a (very fast) surrogate-
based pre-emptive evaluation of fitness to stimulate the creation of offspring
that have high quality - i.e., a very high likelihood of improving the current PN
stored by the MOEA. If a new offspring does not pass the high-quality test,
it will generally be disregarded. However, if the number of failed consecutive
attempts to generate a high-quality offspring exceeds a certain threshold (i.e.,
|solverPop| · gTh

100 ), a default acceptance criterion is triggered. In order to pass
the high-quality test (lines 9 to 24 in Algorithm 1), when comparing with at least
one member of the parent population, the new offspring must simultaneously:

– be better by at least minImprTh% on at least one objective;
– not be worse by more than simTh% on any objective;

Algorithm 1. The pre-emptive evaluation (PE) strategy
1: function PreEvalOffspring(solverPop, GX,F,k, simTh, minImprTh, gTh)
2: passed ← false ∧ rejections ← 0
3: while ¬passed and rejections < |solverPop| · gTh

100
do

4: rejections ← rejections + 1
5: offspring ← EvolveNextOffspring(solverPop)
6: for i = 0 to m do
7: offspring.obj(i) ← gX,fi,k(offspring)
8: end for
9: for all p in solverPop do

10: simObj ← 0
11: domObj ← 0
12: for i = 0 to m do
13: if p.obj(i) ·(1 + simTh) > offspring.obj(i) then
14: simObj ← simObj + 1
15: end if
16: if p.obj(i) ·(1 − minImprTh) > offspring.obj(i) then
17: domObj ← domObj + 1
18: end if
19: end for
20: if domObj ≥ 1 and simObj = m then
21: passed ← true
22: rejections ← rejections − 1
23: break
24: end if
25: end for
26: end while
27: return 〈offspring, passed〉
28: end function

The result of calling the PreEvalOffspring function is an ordered pair con-
taining a newly generated offspring and a Boolean flag indicating if it has
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passed the high-quality test (or, conversely, has been accepted by default). The
Boolean data is used to dynamically adjust the evolutionary pressure exerted by
the pre-emptive evalution strategy. Thus, whenever observing more than gTh
default accepts / generation, the required objective improvement threshold for
subsequent offspring is reduced using the formula:

minImprTh = minImprTh ·
(

1 − gTh

100

)

(4)

We highlight that successive reductions of minImprTh using Eq. 4 can rapidly
lead to a situation where minImprTh < simTh. This signals that the evolu-
tionary search is at a stage where the lightweight interpolation-based surrogates
cannot easily identify offspring that are likely to bring major improvements to
the current PN stored by the MOEA. As such, we opted to reduce our applica-
tion of both surrogate strategies during the first gTh% generations to instances
where minImprTh ≥ simTh.

2.3 Offspring Generation Strategy 2: Speculative Exploration (SE)

Algorithm 2 describes our second approach for providing any (generational)
MOEA with a simple means of creating high-quality offspring.

Here, the idea is to construct a (surrogate) multi-objective interpolated con-
tinuous optimisation problem (MO − ICOP ) that mirrors the definition of the
original problem to be solved (line 3 in Algorithm 2). The only difference is
that the surrogate MO-ICOP uses the model from Eq. 3 as its fitness function
(instead of the original from Eq. 1). An internal solver is then applied on the sur-
rogate MO-ICOP and an elite subset of individuals, randomly extracted from
the final population of the internal solver, will form the final result of the spec-
ulative exploration of the search space using the surrogate models. Finally, the
|solverPop|· gTh

100 surrogate-based elites returned by the SpecExploreOffspring
function will be subsequently treated like regular offspring inside the evolution-
ary cycle of the main MOEA.

Algorithm 2. The speculative exploration (SE) strategy
1: function SpecExploreOffspring(solverPop, gTh, problem, GX,F,k)
2: eliteSetSize ← |solverPop| · gTh

100

3: MO − ICOP ← CreateSurrogateProblem(problem,GX,F,k)
4: offspringPop ← InternalSolver(MO − ICOP )
5: offspringPop ← RandomFilter(offspringPop, eliteSetSize)
6: return offspringPop
7: end function



Lightweight Interpolation-Based Surrogate Modelling for MOEAs 57

2.4 Tentative Parameterisation of Proposed Strategies

In order to control the two proposed surrogate-based offspring creation strate-
gies, one needs to parameterise three thresholds (gTh, simTh, minImprTh) and
k – the power parameter from Eq. 2.

gTh can be seen as a general control parameter for surrogate usage and
current experiments indicate that the setting gTh = 10 produces good results
for all tested MOEAs across a wide range of problems.

Given that an ideal characteristic of any PN is to provide a well-spread
approximation of the true PF, a reasonable setting for the similarity threshold
is simTh = 1

|solverPop| . In order to increase the chances that the PE strat-
egy identifies high-quality offspring despite the high uncertainty associated with
light-weight surrogate estimations (especially in the first few generations), the
value of the minimal improvement threshold should be a multiple of simTh. We
recommend the setting minImprTh = gTh · simTh + ε as it generally yields
competitive results and reduces the parameterisation overload.

Higher values of k produce interpolation models with wider attraction basins
around the seed points (i.e., X in Eq. 2). Our experiments indicate that surrogate
fitness landscapes obtained with the setting k ≥ 10 work better than those
generated by 1 ≤ k < 10 across both offspring generation strategies. All the
results from Sect. 4 were obtained with the setting k = 20.

3 Exprimental Setup

We’ve integrated and tested the PE and SE strategies with two solvers. The
first one is the well-known NSGA-II [2] - a multi-objective evolutionary algo-
rithm that relies on a highly Pareto elitist two-tier selection for survival (i.e.,
filtering) operator to obtain the population of generation t + 1 from the popula-
tion of generation t and the offspring generated at generation t. The first filtering
criterion aims to retain Pareto non-dominated individuals whilst the second one
(used for tie-breaking) aims to avoid overcrowding in objective space.

The second solver we experimented with is DECMO2++ [17]. It’s main char-
acteristic is the ability to converge fast across a wide range of MOOPs when using
a fixed parameterisation. This is achieved by integrating and pivoting between
three different multi-objective evolutionary paradigms (Pareto elitism, differen-
tial evolution [13], and decomposition [5,18]) via coevolved sub-populations. It
is noteworthy to mention that the PE and SE strategies were independently
integrated in each of the three sub-populations.

Across all3 experiments, we fixed |solverPop| = 200 and used the standard
/ literature recommended parameterisation for both MOEAs. As a stopping
criterion, we fixed the total number of fitness evaluations (nfe) per run to 50.000.

3 Given that results from [15] indicate that NSGA-II has a competitive advantage on
MO-ICOP instances where k ≥ 6, NSGA-II was also used as the internal solver of
the speculative exploration strategy (i.e., line 4 in Algorithm 2).
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We performed experiments on a comprehensive test set containing 31 bench-
mark problems: all4 the DTLZ[3], LZ09 [8], WFG[4] and ZDT[20] problems plus
KSW10 – Kursawe’s function [7] with 10 variables and 2 objectives. We carried
out 50 independent optimisation runs for each MOEA-MOOP combination.

As a performance measure, we use the normalised hyervolume [21] to track
the quality of the PN stored by the solvers at each stage of the optimisation. The
normalised hypervolume indicates the size of a PN-dominated objective space
relative to the size of the objective space dominated by the PF.

4 Results - Comparative Performance

In Fig. 1 we plot the average convergence performance of the two baseline
MOEAs and their surrogate-enhanced versions across the benchmark test set.
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Fig. 1. Comparative convergence performance of the surrogate-enhanced and standard
versions of NSGA-II and DECMO2++.

The results indicate that the usage of the pre-emptive evaluation (PE)
and the speculative exploration (SE) strategies for creating (up to) the first
5000 offspring is successful in increasing the converge speed of both NSGA-
II and DECMO2++. While in the case of NSGA-II, the two strategies that
use lightweight interpolation-based surrogates have a compounding effect, only
the pre-emptive evaluation strategy benefits DECMO2++. Furthermore, the
increased selection pressure at the start of the optimisation runs prompted by
the use of these strategies seems to only have a minor impact on middle and late
stage MOEA performance.

The achieved improvements in terms of early convergence are noteworthy for
both solvers. For example, in the case of NSGA-II, a benchmark-wide average
4 Except ZDT5 which is not real-valued.
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relative hypervolume of 60% can be reached with ≈ 50% fewer fitness evaluations
when using both the SE and PE strategies. In the case of DECMO2, when using
the PE strategy, a benchmark-wide average relative hypervolume of 70% can be
reached with ≈ 33% fewer fitness evaluations.

5 Conclusions and Future Work

The present work shows how surrogate models can be easily derived from well-
known interpolation functions and subsequently used inside two complementary
offspring generation strategies to substantially improve the early convergence
speed of MOEAs. The main advantage of the proposed interpolation-based app-
roach is that it can be easily deployed in MOEA application scenarios where
on-the-fly surrogate modelling is required.

Future work will revolve around extending the testing to more solvers, experi-
menting with different interpolation functions, and limiting the parameterisation
requirements of the surrogate-based offspring generation strategies.
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