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1 Introduction

State-of-the-art hand prostheses differ from those of previous generations, in that
more hand positions and programmable gestures are available [4]. As an example,
consider multi-finger prostheses like the i-limbTM ultra from Touch Bionics or
the BebionicTM Hand from RSL Steeper. Both prosthetic effectors are primarely
controlled by myoelectric signals, derived with two or more cutaneously applied
sensors, placed atop residual muscles. After preprocessing and classification of
these signals, three to five different movement states or hand positions can be
accurately distinguished. Zardoshti-Kermani et al. [5] show that the classification
becomes increasingly difficult as the number of gestures grows, because decision
spaces and feature clusters overlap [3]. Since static separation becomes increas-
ingly difficult, Hudgins et al. [3] and Attenberger [1] used time-dependencies
inherent to electromyographic (EMG) signals to improve classification.

In this contribution, we bring forward a method to classify, for example, EMG
signals before a motion or gesture is finished, by using continuously normalized
EMG feature trains. Building on previous work [2], in which we classified EMG
signal traces after the completion of a movement sequence, we here depart from
established approaches.

2 Method

With previous solutions, recordings of an EMG signal are divided into individ-
ual independent sections, then preprocessed and finally classified. This leads to
the loss of temporal dependence within a signal path. This procedure is called
the standard method in the following. In previous work we showed that by time
normalization for each gesture, signal-trains are formed, which are similar for
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(a) Feature-trains of 15 repetitions of the
gesture cocontraction.

(b) Body of normalized Gestures: Flexa-
tion, Extension and Fist

Fig. 1. Signal paths become enveloping bodies.

one gesture, but can be clearly distinguished from other gestures [2]. It was also
explained that this improves the classification quality for a variety of classifiers.
Figure 1(a), depicts 15 normalized RMS signal-trains, derived from two sensors
for a hand-flexion, which obviously look very similar. If one combines several
such EMG-feature-trains of a motion sequence into an enveloped body, the simi-
larity of the individual signal courses become even more obvious. When building
enveloped bodys, outlier points are detected by calculating a probability density
function or by the Mahalanobis distance followed by select point removal. For
the gestures: Extension, Flexation and Fist the enveloped bodys are pictured in
Fig. 1(b). The three envelopes are clearly separated from each other for a large
part. The strongest overlap occurs towards the end of the signal when it becomes
weaker and the different envelopes start to merge. When a new signal-train is
generated during the use-phase of the prosthesis, it is then very easy to deter-
mine whether it belongs to a certain body or not. The body represents hereby
the training data and a single signal-train within relates to a single motion.

In previous work when only normalization was employed, the signal trains
as well as the bodies could only be calculated on completion of a movement.
This posed the main drawback. To take advantage of normalization before a
gesture is finalized, we switched to building a body in discrete time-intervals for
the classification. To achieve this, recorded samples are added at each time step
until the gesture is complete. For each time step, the envelope can be formed
analogously to the normalization. Therefore, classification can also be done after
each time step. In the following examination, a time step is 100 ms long, thus
the first envelope is formed during this time and a corresponding signal train
can also be classified for the first time in this period. After further 100 ms the
now newly recorded data are added. By this a data basis for the envelope of
200 ms and a signal train of the same length is created. These steps are repeated
until a threshold value indicates the end of the movement of a gesture. This
leads to the fact that the last envelope formed is identical with the envelope
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Fig. 2. Continuously forming body of a gesture. Shown in the frames is a body at the
beginning of the gesture, after about 20% and 60% of the time, and at the end of the
movement.

generated by the normalization as shown in Fig. 1(b) for, e.g., flexion-, extension-
and fist-gestures. We call this second method continuous normalization. It is
expected that the classification quality decreases with continuous normalization
when compared to the initially used normalization method. Figure 2 presents four
resulting envelopes of the gesture flexion at different times-steps. The first frame
in the upper left corner shows the enveloped body after 100 ms. No clear structure
has been established. The second frame in the upper right corner depicts the
envelope after a just over 20% of the average movements. The first characteristic
of a particular body can be identified. Like the clear bending and deflection in
the direction of RMS1. The third frame shows the envelope after about 60%. It
is loosing intensity and approaches low values. A characteristic body has been
formed already at this point. The last frame shows the body after completion of
the movement which is identical to the body created by the normalization.

Which shows that at the beginning of a movement, individual envelopes of
gestures are very similar and differ only with increasing data volume, so that
these are better distinguishable. An exception are envelopes of gestures, which
are basically easy to discern, such as flexion and extension. These should be
clearly separable at an early stage even with continuous normalization. During
the use-phase of the prosthetic device, a continuous signal-train is generated
from sensor-data, normalized and matched to the body envelopes of the train-
ing phase. In this research, all experiments were performed with a DELSYS®

Bagnoli-4 EMG system and a National Instruments Ni USB-6229 16-bit data
acquisition systemTM with two Sensors.

For the study five probands performed nine different gestures. Each gesture
was repeated 15 times in one day. Data was collected on six days spread over
three weeks. Thus, each gesture was repeated 90 times. Hence, 810 repetitions
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per person were performed. The evaluation thus covers a total of 4050 recorded
movements. The following nine hand gestures were performed:

1. Cocontraction of the hand (Cocon-
traction).

2. Extension of the wrist (Extension).
3. Fist (Fist)
4. Flexation of the wrist (Flexation).
5. Extension of the indexfinger while

flexing all other fingers (Index).
6. Performing an “OK” sign, by exten-

sion of the three fingers: pinky, ring

finger and middle finger, while flex-
ing the thumb and ring finger (OK).

7. Flexation of the four fingers, pinky,
ring finger, middle finger and index
finger while extending the thumb
(Thumb Up).

8. Pronation of the wrist (Pronation).
9. Supination of the wrist (Supina-

tion).

For each execution of a gesture, four features were calculated for the EMG
signal to enable classification:

1. Root mean Square (RMS).
2. Zero Crossing (ZC).
3. Approximate Entropy (ApEn).

4. Autoregressive coefficients of
fourth-order (AR).

In order to investigate whether continuous normalization leads to an overall
improvement in classification quality, 22 different classifiers were considered. The
classifiers hereby belong to the four main groups: discriminant analytics, decision
trees, support vector machines (SVM) and nearest neighbor algorithms (KNN).
The F1 score is used as the classification metric and to assess of the methods,
because the armonic mean of the precision and recall is more informative than the
accuracy (ACC) measure, especially when there are many classes to distinguish.
A comparison is made between the results of the standard method and the two
normalization methods.

3 Results

The average F1 score is shown in Fig. 3 achieved by the different classifiers across
all days, subjects and gestures, as a box plot. Clearly, the Normalized Method
leads to an improvement in the F1 score, compared to the Standard Method for
each classifier. This is because, the quantile 25 as well as the quantile 75 and
the median are higher than the corresponding counterpart. When comparing the
continuous normalization and the standard method, the F1 score is improved for
18 out of 22 classifiers compared to normalization. Note, that not every classifier
improves. Three out of 22 classifiers deteriorate significantly due to continuous
normalization. These are LinearDiscriminant, QuadraticDiscriminant and Sup-
scpace Discriminant. This shows that the methods which use a discriminant to
distinguish the gestures are not suitable for continuous normalization. In con-
trast, BaggedTree, SubSpaceKNN and SVMFineGaussian achieve significantly
better results. The latter is particularly noteworthy, as it manages to increase the
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median F1 score of the standard method from 40% with normalization to 54%
and to 70% with continuous normalization. The three classifiers which achieved
the best F1 score are the BaggedTree, the SVMCubic and the SVMQuadratic,
see Fig. 1. Further evaluations are performed with these three classifiers. The
achieved quantiles of the classifiers are shown in Table 1. Here, we can see once
again how all three quantiles improve when normalization methods are used. It
is interesting to note, that this also applies to continuous normalization. Which
improves the median by 13 percentage points (p.p.). The quantile 75 even reaches
an average value of 94%. Therefore, it can be seen that these three classifiers not
only succeed in achieving a higher F1 score than the standard method, but also
perform better than normalization.

Table 1. The 25, 50, and 75 quantiles of the F1 score of the best three classifiers
BaggedTree, SVMCubic and SVMQuadratic across all subjects, gestures, and days.

Method Q25 Q50 Q75

Standard 62% 74% 86%

Normalization 75% 84% 92%

Continuous normalization 80% 87% 94%

When considering individual gestures, F1 scores, as depicted in Fig. 4, result
in an improved classification for eight out of nine gestures across all subjects. The
sole exception is Extension, as the median remains almost unchanged, between
94% for normalization and 92% for continuous normalization. The Q75 is 96%
for continuous normalization and reaches its maximum with normalization at
98%. The part that deteriorates the most for this gesture is Q25. It falls from
the standard of 85% to the minimum of 82% for continuous normalization and
85% for normalization only.

In conclusion, for an Extension the standard method is marginally better
than continuous normalization method. The achieved values of the F1 score
are on a quite high level with a median of 92%, Table 2. The gestures that
benefited most from the new normalization method are Cocontraction, Index
and Thumb-Up. Cocontraction’s Q50 was improved by 27 percentage points.
The improvement of the gesture is so significant that the Q25 of the continuous
normalization at 82% is 10 p.p. higher than the Q75 of the standard method.
Likewise, the Index gesture which improves by 22 p.p. at its median. The Q25

of the continuous normalization is also 74% and therefore 6 p.p. higher than the
Q75 of the standard method, which reaches a value of 68%. The third strongest
improvement is found in the Thumb-Up gesture. Which increases by 17 p.p.
on median compared to the standard method. The Q25 of the continuous nor-
malization is equal to the Q75 of the standard method at 76%, while the Q75

of the continuous normalization reaches a value of 91% and thereby is 15 p.p.
higher than the counterpart of the standard method. Also worth mentioning are
the improvements for the OK, Fist and Pronation gestures, as listed in Table 2.
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Legend Standard Normalized Continuous Normalization

Fig. 3. Box plot of the average F1 score achieved across all subjects, days, and gestures,
for the three methods standard, normalized, and continuous normalization.
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Fig. 4. Box plot of the F1 score of the three best classifiers for nine different gestures
averaged over all subjects and recording days.
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Table 2. Median F1 score of the best three classifiers comparing the standard and
continuous Normalization method. Averaged across all subjects and days.

Method Gesture F1-Score in % Δ in p.p.

Standard Cocontraction 66 –

Standard Extension 93 –

Standard Fist 73 –

Standard Flexion 86 –

Standard Index 59 –

Standard OK 74 –

Standard Pronation 74 –

Standard Supination 83 –

Standard Thumb-Up 65 –

Continuous normalization Cocontraction 93 27

Continuous normalization Extension 92 –1

Continuous normalization Fist 87 14

Continuous normalization Flexion 93 7

Continuous normalization Index 81 22

Continuous normalization OK 89 15

Continuous normalization Pronation 86 12

Continuous normalization Supination 86 3

Continuous normalization Thumb-Up 82 17

These range from 15 to 12 p.p. while, the median F1 score improves by more
than 10 p.p. for six out of nine gestures. Which are in the range of 82% and
93%. This is a significant increase compared to the standard method.

4 Conclusions

In this work, it is demonstrated that the method for normalization of EMG
signals can be improved by modification such that a classification is already pos-
sible before the movement is completed. With the new method of continuous
normalization it is possible to greatly-improve the classification quality similar
to the method of normalization and to separate numerous gestures in distinct
classes. By the continuous normalization it comes to an increase of the dimen-
sionality within the data. This leads to the situation that not all classification
methods yield better results. Especially classifiers which use a discriminant are
not suitable for this method. Decision trees, KNNs and SVMs have proven to
be useful and achieve a considerably better classification quality with contin-
uous normalization compared to the standard method. This study shows that
the three classifiers which yield the best results for continuous normalization are
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BaggedTree, SVMCubic and SVMQuadratic. For each of the nine gestures exam-
ined, on average, a higher F1 score resulted when continuous normalization is
employed. This is particularly noteworthy since this method results in a median
above 80% for each gesture. Three gestures even manage a median above 90%.
The standard method manages this with only one gesture. The lowest median
amounts to only 59% showing that continuous normalization can classify sig-
nificantly more gestures with a higher accuracy in comparison to the standard
method. Since this is now also possible during the movement of a gesture, the
results clearly show that this method is suitable for the use in modern pros-
theses to appropriately control the large number of possible gestures a modern
prosthesis can perform.

This research is funded by dtec.bw - Digitalization and Technology Research
Center of the Bundeswehr - project VITAL-SENSE.
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