
Symbolic Regression with Fast Function
Extraction and Nonlinear Least Squares

Optimization

Lukas Kammerer1,2(B) , Gabriel Kronberger1 , and Michael Kommenda1

1 Josef Ressel Center for Symbolic Regression Heuristic and Evolutionary Algorithms
Laboratory, University of Applied Sciences Upper Austria, Hagenberg, Austria

lukas.kammerer@fh-hagenberg.at
2 Department of Computer Science, Johannes Kepler University, Linz, Austria

Abstract. Fast Function Extraction (FFX) is a deterministic algorithm
for solving symbolic regression problems. We improve the accuracy of
FFX by adding parameters to the arguments of nonlinear functions.
Instead of only optimizing linear parameters, we optimize these addi-
tional nonlinear parameters with separable nonlinear least squared opti-
mization using a variable projection algorithm. Both FFX and our new
algorithm is applied on the PennML benchmark suite. We show that
the proposed extensions of FFX leads to higher accuracy while provid-
ing models of similar length and with only a small increase in runtime
on the given data. Our results are compared to a large set of regression
methods that were already published for the given benchmark suite.

Keywords: Symbolic regression · Machine learning

1 Symbolic Regression and FFX

Symbolic regression is a machine learning task in which we try to identify mathe-
matical formulas that cover linear and nonlinear relations within given data. The
most common algorithm for solving symbolic regression is genetic programming
(GP), which optimizes a population of mathematical models using crossover
and mutation. GP is in theory capable of finding models of any syntactical
structure and complexity. However, disadvantages of GP are its stochasticity,
its long algorithm runtime for nontrivial problems and its complex hyperparam-
eter settings. These characteristics led to the development of non-evolutionary
algorithms which produce more restricted models but have advantages in deter-
minism, runtime or complexity of hyperparameters [3,6,9].

One of the first algorithms that was developed to tackle the shortages of GP is
Fast Function Extraction (FFX) [9]. FFX generates a large set of base functions
first, then it learns a regularized linear model using these base functions as terms.
The set of base functions is a combination of the original features with several

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Moreno-Díaz et al. (Eds.): EUROCAST 2022, LNCS 13789, pp. 139–146, 2022.
https://doi.org/10.1007/978-3-031-25312-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25312-6_16&domain=pdf
http://orcid.org/0000-0001-8236-4294
http://orcid.org/0000-0002-3012-3189
http://orcid.org/0000-0003-2049-723X
https://doi.org/10.1007/978-3-031-25312-6_16


140 L. Kammerer et al.

nonlinear functions such as exp(. . . ) or log(. . . ) and a predefined set of real-
valued exponent values. Examples of base functions for problems with features
{x1, x2} are x1, x2, x1

2, exp(x1), exp(x1
2), log(x1) or log(x2

0.5).
The structure of FFX models with n features {x1...xn} is outlined in Eq. 1.

Parameters {c0, c1, . . . , cm} are linear parameters of a model with m base func-
tions. They are learned with ElasticNet regression [4]. ElasticNet regression iden-
tifies only the most relevant base functions due to its regularization by setting
linear parameters ci of irrelevant base functions to zero (sparsification). There-
fore, learned models contain only a subset of the original base functions.

f̂(x) = c0 + c1 func1(x1
e1) + · · · + cm funcm(xn

em)
with func1, . . . , funcm ∈{abs(), log(), . . . } and e1, . . . , em ∈ {0.5, 1, 2} (1)

1.1 Motivation and Objectives

A disadvantage of FFX is that only linear parameters are optimized. Parameters
within nonlinear functions are not present. For example functions with feature x
and nonlinear parameters ki such as log(x + ki) or exp(kix) have to be approx-
imated by FFX with a linear model of several base functions. In this work, we
extend the capabilities of FFX by adding such a real-valued parameter k to each
generated base functions. Adding several nonlinear parameters to the possible
model structure should allow to fit additive models with fewer base functions,
as we have more degrees of freedom per base function.

The introduced nonlinear parameters are optimized in combination with the
linear parameters by separable nonlinear least squares optmization (NLS) using a
variable projection algorithm [2]. We call this new algorithm FFX with Nonlinear
Least Squares Optimization (FFX NLS). We test whether FFX NLS leads to
higher accuracy than the original implementation on the PennML benchmark
suite [10] and compare the complexity of the generated models. Given, that we
have more degrees of freedom to fit data with a single base function, we expect to
find that it produces models with a lower number of base functions and therefore
simpler models than the original FFX algorithm.

2 Algorithm Description

Similar to FFX, FFX NLS runs in several steps. First, base functions are gen-
erated. Then the most relevant base functions and the model’s parameters are
determined. In difference to FFX, the selection of relevant base function and the
optimization of parameters are separate steps. FFX NLS performs the following
four steps that are described in detail in the next sections:

1. Generate a list of all univariate base functions f (cf. Sect. 2.1).
2. Optimize all parameters k and l of a nonlinear model l0 +

∑
i lifi(k,x) that

consists of the base functions as terms. k is a vector of all nonlinear parame-
ters. l are linear parameters, x are features (cf. Sect. 2.2).



FFX NLS for Symbolic Regression 141

3. Select most important base functions of f with a regularized linear model
and the nonlinear parameters k from the previous step (cf. Sect. 2.3).

4. The final model is created by optimizing all parameters again with nonlinear
least squares optimization but only using the most important base function
(cf. Sect. 2.4).

2.1 Base Functions

In step 1, we generate all univariate base functions f with placeholders for
nonlinear parameters. For each feature xi we create base functions of structure
func(axp

i + b) with func ∈ {id, log, exp, sqrt}, p ∈ {1, 2} and two scaling values
a and b with id(x) = x. The scaling values a and b are placeholder for nonlin-
ear parameters that will be optimized later on. We also include bivariate base
functions, which are described in Sect. 2.4.

We utilize the linear structure in the final model as well as mathematical
identities of the used nonlinear functions to reduce the number of nonlinear
parameters. Due to mathematical identities such as log(axi) = log(a) + log(xi)
with a being a parameter that is trained later on, we can skip certain scaling
values. In the case of logarithm, we can just use log(xi+b) instead of log(axi+b)
as base function as we can rewrite it to log(c) log(xi + d). Then we can skip
log(a) as it is constant in the final model and therefore summed up by the final
model’s intercept. The same applies to the exp-function, in which we can skip
the multiplicative scaling value in the argument as we can rewrite exp(x+ a) =
exp(x) exp(a) and skip exp(a) in the final model.

2.2 Parameter Optimization with Variable Projection

The generated base functions f are combined to one large linear model Θ̂(x) =
l0 +

∑
i lifi(k,x) with l as vector of linear parameters and intercept and k as

vector of nonlinear parameters. We use NLS to find the values in l and k that
minimize the mean squared error (MSE) for given training data.

Since nonlinear least squares optimization is computationally expensive, we
use a variable projection (VP) algorithm initially developed by Golub and Pereya
[5] for optimizing all parameters l and k. The advantage of VP over plain NLS
optimization is that VP utilizes the generated model’s structure – a nonlinear
model with several linear parameters l. Golub and Pereya call the given model
structure a separable least squares problem. This setting is common in engineering
domains. VP optimizes nonlinear parameters in k iteratively, while optimal linear
parameters are solved exactly via ordinary least squares. Given the high number
of linear parameters in the model (due to the large number of base functions),
the use of VP is an important performance aspect of FFX NLS. We use the
efficient VP algorithm by Krogh [8].

2.3 Base Function Selection

As we generate a very large number of base functions, we need to select the most
relevant ones in order to create a both interpretable and well-generalizing model.



142 L. Kammerer et al.

The number of selected base functions is thereby a hyperparameter of FFX NLS.
In plain FFX, the selection of relevant base functions and the optimization of
parameters is done in one step with a ElasticNet regression [4], as only linear
parameters need to be optimized.

Since we also need to optimize nonlinear parameters, no simple way to com-
bine NLS optimization and regularization of linear parameters is available. The
VP algorithm by Chen et al. [2] uses Tikhonov regularization [4]. However, in
initial experiments this algorithm was not beneficial for FFX NLS to identify rel-
evant terms. Tikhonov regularization shrinks linear parameters, however, it did
not provide the necessary sparsification of linear parameters and the algorithm
in [2] is computationally more expensive. Alternatively, we use the already com-
puted vector of nonlinear parameters k of the previous step as fixed constants
and optimize the linear parameters l with a lasso regression [4]. Terms with a
linear parameter �= 0 are selected as most important base functions. We get the
desired number of base functions by iteratively increasing the lasso regression’s λ
value in order to shrink more parameters to zero. Although this method ignores
dependencies between linear and nonlinear parameters, it is still effective for
selecting base functions both regarding runtime and further modelling accuracy.

2.4 Training of Final Model and Bivariate Base Functions

Similar to the parameter optimization in Sect. 2.2, we combine base functions to
one single model and optimize all parameters again. In difference to the previous
NLS optimization step, we take in this step only the most relevant base functions
from Sect. 2.3. As parameters are not independent from each other, we repeat
this step to get optimal parameters for a subset of base functions.

To cover interactions between features, we also include bivariate base func-
tions. For this we take pairwise combinations of the previously generated univari-
ate base function and multiply them to get one new base function for each pair.
To prevent a combinatorial explosion of base functions and nonlinear parameters
in highly multidimensional problems, we only consider the ten most important
univariate base functions from Sect. 2.3 for to create bivariate base functions. We
take the resulting

(
10
2

)
= 45 bivariate functions and append them to our existing

list of univariate base functions. Then we repeat the steps described in Sect. 2.2
and 2.3 to determine the most important base functions across both univariate
and bivariate base function for the final model. We consider only ten univariate
base functions as a larger number did not provide any benefit in achieving our
objectives.

3 Experimental Setup

We use PennML benchmark suite [10] for all experiments. This benchmark con-
sist of over 90 regression problem and provides a performance overview of sev-
eral common regression algorithms. We apply both FFX and FFX NLS on these
problems to compare the algorithms’ accuracies with each other and with other



FFX NLS for Symbolic Regression 143

common regression algorithms. Thereby we take the experimental results from
[7] for a comprehensive comparison as this work shows the results of the cur-
rently most accurate regression algorithms like GP CoOp as implemented in [1]
for the PennML data.

We apply the same modelling workflow as in [10] in our experiments. For
every regression problem in the benchmark suite, we repeat the modelling ten
times. We shuffle the dataset in every repetition and take the first 75% of observa-
tions as training set and the remaining ones as test set. We perform a grid search
with a 5-fold cross validation for each shuffled dataset for hyperparameter tuning
and train one final model with these best hyperparameters. Eventually, we get
ten different models for each original regression problem. Hyperparameters for
all other algorithms are described in [7]. We use the following hyperparameter
sets for both FFX and FFX NLS:

– Max. number of base function in final model ∈ {3, 5, 10, 20, 30, 50}
– Use bivariate base functions ∈ {true, false}
– Use nonlinear functions ∈ {true, false}
– FFX only: L1 ratio ∈ {0, 0.5, 1}

4 Results

As in the original experiments for this benchmark suite [10], we first calculate the
median (mean squared) error of the ten models of each regression problem. Then

Fig. 1. Distribution of median rankings of the mean squared error on the training set.



144 L. Kammerer et al.

Fig. 2. Distribution of median rankings of the mean squared error on the test set.

we rank all regression methods by their median error for each problem. Figure 1
and 2 show the distribution of ranks for each algorithm for training and test
across all regression problems in the benchmark suite. E.g. in Figure 1, gradient
boosting was for most problems the most accurate algorithm in training.

Figure 1 and 2 show the distribution of rankings of each algorithm’s median
rank on the training set and test set. The optimization of nonlinear parameters
in FFX NLS provided to more accurate models than FFX both in training and
test. In comparison to other algorithms, FFX as well as FFX NLS perform better
than linear models, which are on the right of Figure 1 (like linear regression or
lasso regression). This is expected given both FFX methods can cover nonlinear
dependencies and interactions in the data in contrast to purely linear methods.
However, both algorithms perform worse than boosting methods or GP with
NLS (GP CoOp) by Kommenda et al. [7]. Also this is plausible, as both methods
have a more powerful search algorithm and a larger hypothesis space than FFX
methods with their restricted model structures.

To analyze the size of models, we count the number of syntactical symbols
in a model. E.g. the model c0 + log x1 + c2 has a complexity of six. We use this
measure because it takes the added scaling terms within function arguments in
FFX NLS into account. Figure 3a shows that both the size of models and the
number of base function within models produced by FFX NLS and FFX are
similar. FFX NLS models are just slightly shorter.

Figure 4 shows the median runtime across all pro per algorithm. While one
FFX run takes less than a second for most problems, the runtime of FFX NLS
ranges between one and a few seconds. Although the runtime increase is relatively
large, it is still feasible to perform large grid searches in reasonable amount of
time with FFX NLS. Both algorithms beat some GP-based algorithms and are
on a similar level as boosting algorithms.



FFX NLS for Symbolic Regression 145

Fig. 3. Distribution complexity of all models from FFX and FFX NLS.

Fig. 4. Median runtime of all algorithms.

5 Conclusion

We proposed an extension of the model structure of the FFX algorithm. We
added nonlinear scaling parameter which were optimized using the variable pro-
jection algorithm by Krogh [8] and separate base function selection, which we
called FFX NLS. We achieved a large improvement in test accuracy in compar-
ison to plain FFX on the PennML benchmark suite while providing models of
similar complexity. Although the runtime of FFX NLS is higher than the one of
FFX, it still finishes training within seconds.

However, FFX and FFX NLS still perform worse than many symbolic regres-
sion algorithms. Big advantages of FFX NLS towards GP-based algorithms are



146 L. Kammerer et al.

its short runtime, the low number of hyperparameters and the simple, compre-
hensible model structure. Compared to boosting algorithms, FFX NLS performs
worse in accuracy but similar in runtime. However, boosting algorithms are con-
sidered black box methods and allow no readability of its models.

To sum it up, FFX is a promising tool for quick data exploration. It identifies
interactions as well as nonlinear relations with simple hyperparameter configu-
ration and quick execution. However, further improvements regarding accuracy
are needed. Potential improvements are the combination of regularization and
parameter optimization, as this are separate steps right now that deliberately
ignore dependencies between linear and nonlinear parameters.

Acknowledgements. The authors gratefully acknowledge support by the Christian
Doppler Research Association and the Federal Ministry for Digital and Economic
Affairs within the Josef Ressel Center for Symbolic Regression.

References

1. Burlacu, B., Kronberger, G., Kommenda, M.: Operon C++ an efficient genetic pro-
gramming framework for symbolic regression. In: Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion, pp. 1562–1570 (2020)

2. Chen, G.Y., Gan, M., Chen, C.P., Li, H.X.: A regularized variable projection algo-
rithm for separable nonlinear least-squares problems. IEEE Trans. Autom. Control
64(2), 526–537 (2018)

3. de França, F.O.: A greedy search tree heuristic for symbolic regression. Inf. Sci.
442, 18–32 (2018)

4. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS,
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

5. Golub, G.H., Pereyra, V.: The differentiation of pseudo-inverses and nonlinear least
squares problems whose variables separate. SIAM J. Numer. Anal. 10(2), 413–432
(1973)

6. Kammerer, L., Kronberger, G., Burlacu, B., Winkler, S.M., Kommenda, M., Affen-
zeller, M.: Symbolic regression by exhaustive search: reducing the search space
using syntactical constraints and efficient semantic structure deduplication. Genet.
program. Theory Pract. 17, 79–99 (2020)

7. Kommenda, M., Burlacu, B., Kronberger, G., Affenzeller, M.: Parameter iden-
tification for symbolic regression using nonlinear least squares. Genet. Program
Evolvable Mach. 21(3), 471–501 (2020)

8. Krogh, F.T.: Efficient implementation of a variable projection algorithm for non-
linear least squares problems. Commun. ACM 17(3), 167–169 (1974)

9. McConaghy, T.: FFX: fast, scalable, deterministic symbolic regression technology.
In: Riolo, R., Vladislavleva, E., Moore, J. (eds.) Genetic Programming Theory
and Practice, vol. IX, pp. 235–260. Springer, New York (2011). https://doi.org/10.
1007/978-1-4614-1770-5_13

10. Orzechowski, P., La Cava, W., Moore, J.H.: Where are we now? a large benchmark
study of recent symbolic regression methods. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1183–1190 (2018)

https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-1-4614-1770-5_13
https://doi.org/10.1007/978-1-4614-1770-5_13

	Symbolic Regression with Fast Function Extraction and Nonlinear Least Squares Optimization
	1 Symbolic Regression and FFX
	1.1 Motivation and Objectives

	2 Algorithm Description
	2.1 Base Functions
	2.2 Parameter Optimization with Variable Projection
	2.3 Base Function Selection
	2.4 Training of Final Model and Bivariate Base Functions

	3 Experimental Setup
	4 Results
	5 Conclusion
	References




