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Abstract. Due to the growing use of machine learning models in many
critical domains, ambitions to make the models and their predictions
explainable have increased recently significantly as new research interest.
In this paper, we present an extension to the machine learning based
data mining technique of variable interaction networks, to improve their
structural stability, which enables more meaningful analysis. To verify
the feasibility of our approach and it’s capability to provide human-
interpretable insights, we discuss the results of experiments with a set of
challenging benchmark instances, as well as with real-world data from
energy network monitoring.
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1 Background and Motivation

With the progressing digital transformation of all areas of life, more and more
continuous data (i.e. data streams) is being recorded and subsequently evaluated
with machine learned models in real-time. Prominent examples for this trend
can be found in today’s fast changing production industry (e.g. predictive main-
tenance), social media (e.g. opinion mining), the financial sector (e.g. real-time
stock trading), or the energy sector (e.g. blackout prediction), to name just a few.
In the research field of machine learning, speeding up training algorithms and
improving the accuracy of resulting models represent ongoing and presumably
infinite endeavors. However, especially when employed in critical domains, not
just accurate, but interpretable models are necessary to enable trustworthy pre-
dictions. Making the models themselves, as well as their predictions explainable
has been increasingly studied in the past few years [2]. However, recent efforts
in producing interpretable machine learning models mostly consider batch pro-
cessed data, whereas analyzing real-time data streams explicitly, has not gained
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the same attention yet. Moreover, interpretable machine learning is mostly con-
cerned with a set of dedicated input variables and one prediction target, which
does not provide a comprehensive system insight.

In [6] these issues are addressed by using Variable Interaction Networks (VIN)
[4] in order to analyze streaming data holistically and improve the understand-
ing of system dynamics (e.g. potential concept drifts). While the results of this
work show the applicability of VINs to detect changing system behavior quite
accurately, they also depict structural instability of the continuously re-created
networks, while analyzing the streaming data. Although this does not hamper
the accuracy of change detection too much, as most network alterations are
small, each alteration certainly impairs the networks’ functionality for system
interpretation by domain experts.

In the following Sect. 2, we describe the conventional approach to model and
evaluate variable interaction networks on streaming data. After that, we present
an extension to this, with the aim to decrease structural instability to support
better interpretability. In Sect. 3 we show the feasibility of our extended approach
by testing it on two data sets and we conclude briefly in Sect. 4.

2 Variable Interaction Networks

2.1 Modeling and Evaluation

Variable Interaction Networks (VIN) [4] are directed graphs, in which system
variables are represented as nodes and their impact on each other as directed,
weighted edges. The algorithm to create such models is as follows: For each
independent system variable a model is trained, using the variable as target
and all others as input. For this purpose, arbitrary machine learning methods
may be employed. In a second step, for each model, the impact of each input
variable for the respective target variable is calculated. This calculation is based
on the permutation feature importance (PFI) [1], for example – the model error
increase, which results from removing the information of a certain variable from
the data set by shuffling its values. In a final step, the graph is constructed
by adding a node for each variable and adding weighted, directed edges based
on the calculated impacts. The resulting model structure provides a holistic
system depiction as a clear-box since it is human-readable. It has proven to be
successful, not only to model stable system states, but also to analyze system
dynamics when evaluating data streams in a sliding window fashion (see [6] and
Fig. 1). To this end, raw data is processed within a sliding window (Fig. 1a)
by re-computing the VIN and comparing it to an initial version (Fig. 1b) using
the Normalized Discounted Cumulative Gain (NDCG) or the Spearman’s rank
correlation, as proposed in [6]. This results in network similarity trend lines
(Fig. 1c), which can be compared to the real system drift by using Pearson’s R
correlation coefficient, in case it is known. We define drift limits as noDrift = 1
and fullDrift = 0, to get a positive scale for correlation scores. Benchmark tests
[6] show the effectiveness of VIN based drift detection, however, also report that
these networks currently lack of structural stability. Reasons for this are that
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feature impact calculation using PFI is non-deterministic and heavily depends
on the underlying models’ estimation error. This instability compromises the
interpretability of VINs and thus, motivated us to look for improvements.

Fig. 1. Symbolic illustration of the VIN based data stream analysis approach on a
set of time series data with manually introduced (i.e. known) drift. The edge design
in 1b encodes the following states: black=unchanged, yellow=changed, green=new,
dashed=vanished variable impact. (Color figure online)

2.2 Shapley Value Based Networks

To mitigate the issue of network instability, we extend the work in [6] and intro-
duce a new variable impact calculation routine using the Shapley Value method
[5], to replace the former Permutation Feature Importance (PFI) based one. The
Shapley Value (SV) of a variable is the average gain to the mean model predic-
tion, resulting from adding the variable, to all possible coalitions of the remain-
ing variables. It is a solid mathematical concept from coalition game theory and
enables local, i.e. observation-wise model interpretation: Variable impacts are
evaluated for each data point individually, which has the potential to show effects
of changing system behavior instantaneously. For comparability we adapted the
calculation as follows: We scale the resulting absolute numbers to unit length
within the interval [0, 1], which was also performed for the PFI outcome. Mea-
suring the effect of adding a variable was done in a reversed fashion: calculating
the current impact, then removing the variable information by picking a random
value from the variable’s recordings and finally, re-calculating the impact. To
reduce variance, we repeat this process 10 times and average the outcome, as
we did for the shuffling routine of PFI. Eventually, we collect and average the
observation-wise calculations to get a global mean for each variable impact.

3 Experiments

In the scope of this work and the focus of this section, we tested the effectiveness
of the proposed Shapley Value (SV) extension to the variable interaction network
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approach compared to Permutation Feature Importance (PFI). Therein, we use
different underlying learning algorithms, a varying sliding window size and two
problem instances: a synthetically constructed benchmark problem describing
dynamically changing communicating vessels over time and a real-world problem
from the field of photovoltaic energy production.

3.1 Problem Instances

Benchmark Problem “Communicating Vessels (ComVes)”: For this
problem we designed a differential equation system to simulate data streams,
which drift over time, first introduced and detailed in [6]. The system consists of
two vessels, each continuously filled by an inlet, drained by an outlet and con-
nected by a communication path. The system is designed to maintain a stable
state, however, by manipulating the equation for the flow rate of the vessel con-
nection, a concept drift can be introduced: a gradually clogging communication
path, e.g. representing a maintenance problem.

Real-World Problem “Resilient Energy Networks (ResiNet)”: The
ResiNet-project is concerned with analyzing energy networks with regard to their
resilience. As part of this, we developed prediction models for power production
and consumption based on data from ca. 200 households from the region of Upper
Austria, all equipped with roof-top mounted photovoltaic modules and battery
packs. The measurements include data from 2016–2019 and were further linked
to several geographic information and weather data from the Austrian weather
forecasting system INCA [3]. To investigate network resilience and to test our
extended VIN approach, we designed following what-if scenario: What if... a
small community of 3 systems is sharing its batteries by charging them together
for higher network-independence? Can we detect a failing battery pack in such
a scenario with our approach? (cf. illustrated in Fig. 2a). For this purpose, we
used the measured real-world system data, but re-calculated battery states and
grid input/output differences, to simulate that the systems are connected and
sharing their surplus energy produced. For instance, if the consumption of a sys-
tem can be covered with the current energy production and the system’s battery
is already filled, surplus energy is shared equally amongst the other community
members and only after that, left over energy is passed to the public grid. This
way, a small virtual energy community is simulated, which should provide more
grid independence. In order to enable more reasonable analysis, we used our
domain knowledge and pre-selected input features for the modeling process in
the case of this problem instance, instead of alternating all available features (cf.
Figure 2b). For each of the experiment runs, we introduced rapid degradation of
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the charge/discharge rate of a random battery at a random point of time, using
the data stream generation tool from [7]. By this means, we aim to simulate a
probable, but not directly observable maintenance problem, which could impede
the gained network independence, but potentially remains undetected due to the
compensatory behavior of the interconnected energy community.

Fig. 2. Depiction of the ResiNet problem instance: In 2b the herein described what-if -
scenario concerning a simulated, virtual energy community under changing conditions,
is illustrated (cf. energy sharing in green, battery fault in red). In 2b the respectively
modeled and subsequently evaluated VIN is displayed.

3.2 Results

To compile the foundation of the variable interaction networks (VIN), we trained
regression models using multiple linear regression (LR), symbolic regression (SR)
and random forest regression (RFR) with the configuration as in [6]. We defined
a maximum normalized mean squared error (NMSE) of 0.5 for each model and
a minimum variable impact of 0.1 as thresholds to take part within the network
creation routine. Further on, we compare different sliding window sizes and both
impact calculation methods – Permutation Feature Importance (PFI) and Shap-
ley Values (SV) – for which we provide the calculated differences on each result
plot. For the sake of brevity, we elaborate on results in the respective plot’s
caption and provide a brief discussion at the end of this subsection.
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Fig. 3. Standard Deviation (SD) of changes, representing the mean magnitude of net-
work changes during sliding window evaluation. The lower the deviation, the better for
model interpretability.

We set up two experiment types, each consisting of 10 runs with randomly
sampled time series with a length of 1000 consecutive events originating from
the described problem instances: one for testing network stability and one for
drift detection. All models were trained on data partitions where systems were
stable. To evaluate the stability of the created networks over time, we tested
on time series data, which was again sampled from stable system states. In
Fig. 4 the ratio of sliding window movements without resulting network change
is illustrated. In Fig. 3 the magnitude of detected changes is given by reference
to their standard deviation (SD) during the runs. To evaluate the drift detection
capability of the approach, we tested on unseen data for which a concept drift
has been introduced at a random point, after a fixed burn-in phase of 250 events
– see details in Fig. 5.
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Fig. 4. Stability ratio test results, representing the ratio of sliding window movements
without network change. Thus, a high ratio is desirable to increase model interpretabil-
ity.

We want to highlight the superiority of the new SV over PFI based VINs
in all test cases regarding network stability ratio when analyzing stable systems
(Fig. 4). This also applies for the standard deviation of weight changes, as they
are lower for SV based VINs in most cases (Fig. 3). Furthermore, in this analysis
we see a pronounced improvement of using the NDCG over the Spearman scores.
As shown in Fig. 5 both methods, SV and PFI, generate comparably good results
in terms of drift detection performance. To this end, the SR based VINs for
the benchmark data and the RFR based VINs for the real-world data perform
best, as the high Pearson R correlation scores show. In summary, these results
suggest that SV based VINs are superior to PFI based ones, since performance
on stable systems is noticeably improved without losing the ability to detect
system changes.
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Fig. 5. Concept drift detection performance, represented by Pearson’s R (PR) corre-
lation coefficient of the network similarity and the known drift over time.

4 Conclusion and Outlook

With this work we presented an extension to the variable interaction network
modeling and evaluation technique for data stream analysis, giving it more sta-
bility and thus, improving it’s interpretation potential. Therefore, we propose a
customized form of Shapley Values as alternative to the conventional permuta-
tion feature importance for computing network edge weights. The effectiveness
of this extension has been shown for a benchmark and a real-world problem data
set, both dealing with stable and changing system behavior.

Future work may consider other variable impact (i.e. feature importance)
estimation measures to further improve the characteristics of variable interac-
tion networks and broaden its application scope. Another promising lead is to
investigate the potential of VINs for root-cause analysis, e.g. by analyzing those
network paths with the highest change sum within a VIN, which is evaluated on
data with concept drifts.
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