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Abstract. We consider a tourist trip design problem with time win-
dows and recommended occupancy levels at the points of interest. A
3-objective optimization model is formulated where the objectives are to
maximize the total score and minimize total over occupancy and time
gap. The multiobjective optimization problem is modeled as a mixed
integer linear mathematical program. A GRASP is proposed to solve the
problem.

Keywords: Tourist trip design problem · Occupancy · Mathematical
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1 Introduction

In tourist routing problems and at certain points of interest (POIs) crowds of
visitors can occur. The satisfaction experienced by the tourist and the image
projected by the POI can be negatively impacted in such situations.

We study a problem of designing a tourist route with time windows where,
in addition to maximizing tourist satisfaction and given recommended levels of
occupancy at the POIs, the aim is to minimize both over occupancy and lost
time in the route. Lost time occurs when the amount of time used to do the route
is higher than the length of the route, defined as the minimum time required to
do the route (travel time plus visit time in the best conditions). Lost time can be
interpreted as waiting time. We formulate a mixed integer linear programming
model to solve a TTDP with time windows and recommended occupancy levels
for POIs.

The background to address the problem is the research that has been con-
ducted on the Tourist Trip Design Problem (TTDP) found in the literature.
Some surveys of the TTDP can be found in [4,6,7]. A review of algorithms
proposed to solve the TTDP can be found in [3,6].
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The construction of algorithms that provide solutions in a very short time
is especially relevant. Some articles in this respect include [1,2]. Proposals to
balance the visits to the POIs and avoid congestion are presented in several
works found in the literature [5,8] but, dislike our work, recommended occupancy
levels for the POIs are not explicitly considered in the model.

2 Problem Statement and Mathematical Model

Consider a network N(V,E) where V = {v1, ..., vn} is the set of nodes and
E ⊆ V × V is the set of edges. The travel time between nodes vi and vj is
denoted t̄ij , it is the length of the shortest path (faster path) from vi to vj . A
route is a sequence of nodes, v1, vi1, ..., vir, vn, nodes v1 and vn are the initial
and final points in the route. For a route, the initial and final points can be the
same. Each node vi, 1 < i < n, is a point of interest (POI) and it has a score
si > 0 which represents its attractiveness as a point to be visited. The POI vi
has opening and closing times Li and Ui respectively, ti is the duration of the
visit and capi is the capacity of POI vi. The recommended occupancy at POI vi
is ci, it is desirable that at most ci visitors enter point vi at time τ (ci = αi×capi
where 0 ≤ αi ≤ 1). And ρi is the contribution of a new visit to occupancy at
POI vi.

The length of a route, denoted Tr, is the summation of the total travel time
and the total visit time. The time budget or available amount of time to do the
route is Tmax. Moreover, initial and final times, TI and TF , are given, so that the
route should be done in the time interval [TI , TF ]. We have that Tmax ≤ TF −TI ,
and τ1, τn represent the starting route time and ending route time respectively.
The lost time or gap is the difference between the duration of the route, given
by Tr, and the time used to do it, Tu = τn − τ1.

The function γi(τ) represents the occupancy level at instant τ . In order to
define the occupancy function for a POI vi in the interval [Li, Ui], we consider
that the occupancy for a discrete set of instants L = τ1 < τ2 <, ..., τ q = U
are known. The occupancy function is given by a piecewise linear function built
from the known occupancy values.

We want to find the route from the initial point v1 to the final point vn
which maximizes the total score, minimizes the total over occupancy, minimizes
the lost time, and satisfies the time limitations constraints.

2.1 The Model

To state the model we use the following sets, and variables.

Index sets:
I = 1, ..., n: index set corresponding to node set V .
I1 = I \ {1, n}: index set I excluding initial and final nodes in the route.
K = {1, ..., q}: index set for time partition.
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Variables:
xij = 1 if in the route we go from point vi to point vj , otherwise xij = 0.
τi: instant at which POI vi is reached.
γi(τ): occupancy at vi in time τ .
ui: variables introduced in order to avoid subtours.
zi: over occupancy at vi.
aik: variable used to define the occupancy function, for vi and k ∈ K.
yik: binary variable for the occupancy function, for vi and k = 1, ..., q − 1.
Then the problem is stated as follows:

min
(

−
∑

(i,j)∈I1×I

sixij ,
∑
i∈I1

zi, (τn − τ1) −
∑
i,j∈I

(ti + tij)xij

)
(1)

∑
j �=1

x1j = 1
∑
i�=n

xin = 1 (2)

∑
i�=n

xik =
∑
j �=1

xkj , ∀k �= 1, n (3)

∑
i�=n

xik ≤ 1, ∀k �= 1, n (4)

τn − τ1 ≤ Tmax (5)

Li ≤ τi ≤ Ui, ∀i �= 1, n TI ≤ τi ≤ TF , ∀i (6)

τi + ti + tij ≤ τj + M(1 − xij), ∀i, j (7)

τi =
q∑

k=1

aikτk, ∀i (8)

ai1 ≤ yi1, ∀i aik ≤ yi,k−1 + yik, ∀i, k = 2, ..., q − 1 aiq ≤ yi,q−1, ∀i (9)

q∑
k=1

aik = 1, ∀i

q−1∑
k=1

yik = 1; ∀i γi =
q∑

k=1

aikγi(τk), ∀i (10)

zi ≥ (−ci + γi + ρi) − M
(
1 −

∑
j∈I

xij

)
, ∀i �= 1, n (11)

ui − uj ≤ (n − 1)(1 − xij) − 1, i, j �= 1, i �= j (12)

2 ≤ ui ≤ n, ∀i �= 1 (13)

xij ∈ {0, 1}, ∀i, j; 0 ≤ zi ≤ capi − ci, ∀i �= 1, n,
aik ≥ 0, ∀i, k ∈ {1, ..., q}, γi ≥ 0,∀i
yik ∈ {0, 1}, ∀i, k ∈ {1, ..., q − 1}.

(14)
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Algorithm 1. Construction phase

Set μ with 0 < μ < 1
R = [1, n]
I1(R) = {1}
τ1 = τn = TI

Tu = Tr = 0
while a new POI can be inserted do

CL = ∅
for i ∈ I1 \ I1(R) do

CL = CL ∪ {(j(i), i)}
end
if CL = ∅ then

a new insertion is not possible. Break While
end
Set p∗ = max

{i:∃(j,i)∈CL}
pi

Construct the Restricted Candidate List RCL as follows:
RCL =

{
(j, i) ∈ CL : pi ≥ μ × p∗

}

while an insertion is not done and RCL �= ∅ do
Select at random an element (j, i) from RCL
if insertion of i is feasible then

Update route R by insertion of i after node j, and
I1(R) = I1(R) ∪ {i}

else
RCL = RCL \ {(j, i)}

end

end

end

If the initial and final points coincide, in the formulation vn represents node
v1 considered as the final point in the route. Expression (1) represents the objec-
tives: maximizing the total score, minimizing over occupancy, and minimizing
the lost time or gap. Constraints (2) indicate that v1 and vn are the initial and
final points, respectively. Expression (3) represents the flow conservation con-
ditions. Constraints (4) indicate that a POI is visited at most once. The time
budget limitation is included in constraint (5) and the time windows restrictions
are constraints (6). The conditions on the sequence of times are incorporated
in expression (7). Constraints (8) to (10) define the occupancy function, and
constraints (11) define zi as the over occupancy at point vi, with M represent-
ing a large number. Constraints (12) and (13) are included to avoid subtours.
Expressions (14) are the domain constraints.
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Algorithm 2. Insertion procedure
Insertion of node i between j and k in route R which includes arc (j, k)

τ ′
i = max{τj + tj + t̄ji, Li}, ΔTu = (τ ′

i + ti + t̄ik) − τk
T ′
r = Tr + ti + t̄ji + t̄ik − t̄jk, T ′

u = Tu + ΔTu

if T ′
r > Tmax then

infeasible insertion. Stop Algorithm 2
end
for k1 in route R do

if τk1 ≤ τj then
τ ′
k1 = τk1

else
τ ′
k1 = τk1 + ΔTu

if τ ′
k1 > min{Uk1, TF } then
infeasible insertion. Stop Algorithm 2

end

end

end
Set R′ the route R with insertion of i between j and k and times τ ′

for POI k1 from position(i) to position(n) in route R’ do
Calculate γ(τ ′

k1) = γk1(τ
′
k1) + ρk1

if γ(τ ′
k1) > ck1 then

calculate τ∗ = min{τ : τ > τ ′
k1 and γ(τ) = ck1}

if τ∗ > min{Uk1, TF } then
infeasible insertion. Stop Algorithm 2

end
ΔTu = τ∗ − τ ′

k1

τ ′
k1 = τ∗

T ′
u = T ′

u + ΔTu

for POI k2 from position(k1)+1 to position(n) do
τ ′
k2 = τ ′

k2 + ΔTu

if τ ′
k2 > min{Uk2, TF } then
infeasible insertion. Stop Algorithm 2

end

end

end

end
insertion of i between j and k is feasible
τk = τ ′

k, ∀k, Tr = T ′
r, Tu = T ′

u

2.2 Problem Resolution

To solve the 3-objective optimization problem we apply a constraint method.
We maximize the total score constrained to over occupancy and gap limitations
and fix an upper bound for both over occupancy and the gap. The problem is
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max
∑

(i,j)∈I1×I

sixij

subject to (2) − (14), zi ≤ ζi, (τF − τI) − ∑
i,j

(ti + tij)xij ≤ β
(15)

where ζi is the highest over occupancy value admitted for POI i and β is the
upper bound for the gap.

3 A Heuristic Algorithm to Solve the Problem

In this section we present a GRASP to solve the problem posed in Sect. 2. We
consider that a solution to the problem can be represented by a list

R = [(v1, τ1), (vi1 , τi1), (vi2 , τi2), ..., (viq , τiq ), (vn, τn)] (16)

where the nodes are pairwise different except perhaps the initial and final points
which can be the same and τ1 < τi1 < τi2 < ... < τiq < τn. We use notations
(vi, τi) and (i, τi) indistinctly. For simplicity, we can omit times in (16).

Algorithm 3. Pushing algorithm
Pushing operation for route
R = [(v1, τ1), (vi1 , τi1), (vi2 , τi2), ..., (viq , τiq ), (vn, τn)]

for position i = n − 1 to i = 2 do
δ = ti−1 + t̄i−1,i

if τi − τi−1 > δ then
Calculate τ∗ = max{τ : τi−1 ≤ τ ≤ τi − δ, and γi−1(τ) ≤ ci−1}
τi−1 = τ∗

end

end

For the route R, we denote I1(R) the set made of the POIs in R and the initial
node (v1). That is, I1(R) = {1, i1, i2, ..., iq}. The score of the route is S(R) =∑
i∈I1(R)

si and the gap is Tu − Tr = (τn − τ1) − Tr. For i ∈ I1 \ I1(R) we define

the unit profit of i for R as pi = max
j∈I1(R)

si
ΔTij

, where ΔTij = −t̄jk + t̄ji + t̄ik + ti

and j and k are consecutive points in the route R, that is, we go from node j to
node k. Let j(i) = arg{pi}, which is equivalent to j(i) = arg{ min

j∈I1(R)
ΔTij}.

Fixed the parameter values, a route is built by application of a sequence of
insertions. Once a route where no other POI can be inserted is built, an improve-
ment procedure is applied. The construction phase is described in Algorithm 1.
The insertion of a node in a route has to be done taking into account the occu-
pancy limitations. If a node i is inserted between nodes j and k, times τ from



118 D. R. Santos-Peñate et al.

node k to the final point of the route increase in at least ΔTij units. Due to occu-
pancy limitations for some POIs, this increase could be bigger and the insertion
could be unfeasible.

Algorithm 2 contains the insertion algorithm. For the initial and final points
in the route, we consider t1 = 0 and Un = TF . In order to avoid the algorithm
stops too early giving very short routes, the gap time constraint in (15) is relaxed.
The solution obtained is improved by application of several procedures such as
the insertion of POIs at the end of the route, reduction of the gap with Algorithm
3, where a pushing operation is executed, and an exchange algorithm.

Table 1. Computational example

n TI TF Tmax Score Tr Tu Tvisit Gap Time1 Time2

(min) (min) (min) (min) (min) (min) (min) (s) (s)

25 600 900 240 130 234 234 150 0 0.01 0.05

129 234 234 150 0 0.01 0.08

96 218 218 150 0 0.01 0.05

50 600 900 240 167 212 212 150 0 0.02 0.14

135 208 208 120 0 0.02 0.10

185 214 214 120 0 0.02 0.10

75 600 900 240 166 204 204 150 0 0.03 0.19

183 188 188 150 0 0.04 0.15

177 196 196 120 0 0.04 0.16

100 600 900 240 161 208 208 120 0 0.06 0.21

148 218 218 120 0 0.04 0.21

164 224 224 180 0 0.05 0.24

25 600 1080 480 274 442 442 270 0 0.04 0.05

276 468 468 300 0 0.04 0.04

246 460 460 240 0 0.04 0.04

50 600 1080 480 312 432 432 300 0 0.08 0.11

364 464 464 300 0 0.09 0.09

370 452 452 300 0 0.12 0.08

75 600 1080 480 335 458 458 330 0 0.14 0.14

334 396 437 300 41 0.13 0.14

337 432 432 330 0 0.16 0.13

100 600 1080 480 352 392 433.33 300 41.33 0.21 0.19

315 468 468 330 0 0.16 0.19

378 466 466.82 390 0.82 0.21 0.19
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4 Computational Example

We solve the TTDP for n POIs randomly generated in a [0, 100] × [0, 100]
square, for n = 25, 50, 75, 100 and the metric L1. For each n we generate three
instances. The scores are randomly generated in [1, 100]. Times (in minutes) are
(TI , TF , Tmax) = (600, 900, 240) and (TI , TF , Tmax) = (600, 1080, 420). The max-
imum capacity is 100 and α ∈ {0.8, 0.9, 1}. The break instants in the occupancy
function γ go from 540 to 1080 by steps of 60, and the values are integer numbers
randomly generated between 30 and 100. The contribution value is ρ = 1 and
β = 45. The initial and final points in the route are the same. The algorithm
is executed 3 times for each of the 24 instances. Table 1 shows the best solution
(route with maximum score) for each scenario (n, TI , TF , Tmax, instance). The
last two columns contain the computational times (in seconds) required to find
the solution, the time before the improvement and the time consumed by the
improvement procedure, respectively. The rest of times presented in the table
are given in minutes.

5 Conclusions

Tourist route design is an important issue in the tourist management field. The
problem modelled in this paper is to find a tourist route taking into consider-
ation time windows and occupancy constraints, and 3-objectives. We maximize
the total score while the other two objectives are incorporated as constraints.
We propose a GRASP to solve the problem heuristically and present some pre-
liminary computational results. Although a deeper study of the problem and the
proposed heuristic is required, with a more extensive computational analysis, the
results obtained seem promising.
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