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Abstract. Beam search (BS) is a well-known graph search algorithm
frequently used to heuristically find good or near-optimal solutions to
combinatorial optimization problems. Its most crucial component is a
heuristic function that estimates the best achievable length-to-go from
any state to a goal state. This function usually needs to be devel-
oped specificially for a problem at hand, which is a manual and time-
consuming process. Building on previous work, we propose a Relative
Value Function Based Learning Beam Search (RV-LBS) to automate
this task at least partially by using a multilayer perceptron (MLP) as
heuristic function, which is trained in a reinforcement learning man-
ner on many randomly created problem instances. This MLP predicts
the difference of the expected solution length from a given state to the
expected average solution length of all states at a current BS level. To
support the training of the MLP on the longest common subsequence
(LCS) problem, a compact fixed-size encoding of the distribution of dif-
ferences of remaining string lengths to the average string length at the
current level is presented. Tests show that a MLP trained by RV-LBS
on randomly created small-size problem instances is able to guide BS
well also on larger established LCS benchmark instances. The obtained
results are highly competitive to the state-of-the-art.

Keywords: Longest common subsequence problem · Beam search ·
Machine learning

1 Introduction

Beam search (BS) is a prominent incomplete tree search frequently applied to
find heuristic solutions to hard combinatorial optimization problems, e.g., pack-
ing [1], and string-related problems [2,4]. Starting from an initial state r, BS
traverses a state graph in a breadth-first-search manner seeking a best path from
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r to a goal state t. To keep the computational effort within limits, BS selects
at each level only up to β most promising states to pursue further and discards
the others. The selected subset of states is called the beam and parameter β
the beam width. To do this selection, each state v obtained at a level is usually
evaluated by a function f(v) = g(v) + h(v), where function g(v) represents the
length of the path from the root state to state v and h(v), called the heuristic
function, is an estimate of the best achievable length-to-go from state v to the
goal state. The β states with the best values according to this evaluation then
form the beam.

Clearly, the quality of the solution BS obtains in general depending funda-
mentally on the heuristic function h. This function is typically developed in a
manual, highly problem-specific way, frequently involving many computational
experiments and comparisons of different options.

In a previous work [4], we presented a Learning Beam Search (LBS) frame-
work to automate this task at least partially by using a machine learning (ML)
model as heuristic function, which is trained offline on a large number of rep-
resentative randomly generated problem instances in a reinforcement learning
manner to approximate the expected length-to-go from a state to the target
state. This approach was investigated on the well-known longest common subse-
quence (LCS) problem and a constrained variant thereof and yielded new state-
of-the-art results for some benchmark instances.

The overall approach is inspired by the way Silver et al. [7] mastered chess,
shogi, and Go with AlphaZero. In their approach, a neural network is trained to
predict the outcome of a game state, called value, as well as to provide a policy
for the next action to perform, and this network is used within a Monte Carlo
Tree Search as guidance. Training samples are obtained by means of self-play.
Regarding literature related to the guidance of BS by a ML model, besides our
work, we are only aware of the work by Negrinho et al. [6], who examined this
topic purely from a theoretical point of view.

Despite the success of our former LBS, we also recognized some weaknesses:
(1) For instances with different numbers of input strings m and input string
lengths n, individual ML models need to be trained. (2) Absolute values of the
lengths-to-go of the candidate states in one level are actually not that relevant,
but rather the differences among them as they already determine an ordering and
therefore the beam selection. Note that absolute values may be relatively large
in comparison to the differences, and a ML model trained to predict the absolute
values may therefore make stronger errors in respect to small differences.

In this work, we address these weaknesses of the former approach regarding
the LCS problem by proposing the Relative Value Function Based Learning Beam
Search (RV-LBS). In it, a MLP is trained to predict a relative value indicating
the difference of the expected solution length from a given state represented by a
feature vector to the expected average solution length from all nodes at the cur-
rent level. To support the training of the MLP, we also provide different features
as input, among which is a compact fixed-size encoding of the distribution of
differences of remaining string lengths to the average string length at the current
level, making the approach in principle independent of the number of strings m.



Relative Value Function Based Learning Beam Search 89

2 Longest Common Subsequence Problem

We define a string s as a finite sequence of symbols from a finite alphabet Σ.
Each string that can be obtained from s by deleting zero or more symbols from
that string without changing the order of the remaining symbols is called subse-
quence. A common subsequence of a set of m non-empty strings S = {s1, . . . , sm}
is a subsequence that occurs in all of these strings. The longest common sub-
sequence (LCS) problem aims at finding a common subsequence of maximum
length for S. For example, the LCS of strings AGACT, GTAAC, and GTACT is GAC.
The problem is well-studied and has several applications, for example, in com-
putational biology, where it is used to detect similarities between DNA, RNA, or
protein sequences in order to derive relationships. For a fixed number m of input
strings the LCS problem is polynomially solvable by dynamic programming in
time O(nm) [3], where n denotes the length of the longest input string, while for
general m it is NP-hard [5]. Dynamic programming becomes rapidly impractical
when m grows. Therefore, many approaches have been proposed to heuristically
solve the general LCS problem. The current state-of-the-art heuristic approaches
for large m and n are based on BS with a theoretically derived function EX that
approximates the expected length of the result of random strings from a partial
solution by Djukanovic et al. [2] and also on our LBS [4].

Notations. We denote the length of a string s by |s|, and the maximum input
string length of a set of m non-empty strings S by n. The j-th letter of a string
s is s[j], where j = 1, . . . , |s|. We use s[j, j′] to denote the substring of s starting
with s[j] and ending with s[j′] if j ≤ j′ or the empty string ε otherwise. The
number of occurrences of letter a ∈ Σ in string s is |s|a. To ensure an efficient
“forward stepping” in the strings, we use the following data structure prepared
in preprocessing. For each i = 1, . . . , m, j = 1, . . . , |si|, and a ∈ Σ, succ[i, j, a]
stores the minimal position j′ such that j′ ≥ j ∧ si[j′] = a or 0 if a does not
occur in si from position j onward.

3 State Graph

In the context of the LCS problem, the state graph is a directed acyclic graph
G = (V,A) with nodes V and arcs A. Each state (node) v ∈ V is represented
by a position vector pv = (pv

i )i=1,...,m with pv
i ∈ 1, . . . , |si| + 1, indicating the

remaining relevant substrings si[pv
i , |si|], i = 1, . . . , m of the input strings. These

substrings form a LCS subproblem instance I(v) induced by state v. The root
node r ∈ V has position vector pr = (1, . . . , 1), and thus, strings si[pr, |si|] =
si, i = 1, . . . , m. An arc (u, v) ∈ A refers to transitioning from state u to state
v by appending a valid letter a ∈ Σ to a partial solution, and thus, arc (u, v)
is labeled by this letter, i.e., �(u, v) = a. Appending letter a ∈ Σ to a partial
solution at state u is only feasible if succ[i, pv

i , a] > 0 for i = 1, . . . , m, and yields
in this case state v with pv

i = succ[i, pv
i , a] + 1, i = 1, . . . , m. As with each arc

always exactly one letter is appended to a partial solution, the length (cost)
of each arc (u, v) ∈ A is one. States for which no feasible letter exist that can
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be appended to a partial solution are jointly represented by the single terminal
state t ∈ V with pt = (|si| + 1)i=1,...,m. As the objective of the LCS problem is
to find a maximum length string, g(v) corresponds to the number of arcs of the
longest identified r–v path. Filtering and dominance checks are applied in our
BS exactly as explained in [2].

4 Relative Value Function Based Learning Beam Search

As RV-LBS is build upon LBS and the main LBS procedure is similar, we first
describe the LBS.

The main LBS procedure starts with a randomly initialized MLP (for struc-
ture details see [4]), and an initially empty replay buffer R, which is realized as
a first-in first-out (FIFO) queue of maximum size ρ and will contain the train-
ing data. The input provided to the MLP is a feature vector composed of the
remaining string lengths qv

i = |si| − pv
i + 1, i = 1, . . . , m, sorted according to

non-decreasing values to reduce symmetries, and the minimum letter appear-
ances ov

a = mini=1,...,m |si[pv
i , |si|]|a, a ∈ Σ derived from a given node v. After

initialization, a certain number z of iterations is performed. In each iteration,
a new independent random problem instance is created and a BS with training
data generation is applied. If the buffer R contains at least γ samples, the heuris-
tic function h represented by the MLP is (re-)trained with random mini-batches
from R.

The BS framework with training data generation receives as input parameters
a problem instance I, heuristic function h, beam width β, and the replay buffer R
to which new samples will be added. Initially, the beam B contains just the root
state r created for the problem instance I. An outer while-loop performs the BS
level by level until the beam B becomes empty. In each iteration, each node in
the beam B is expanded by considering all feasible letters for the states the nodes
represent and the set of successor nodes Vext is created. Dominance checks and
filtering are applied to reduce Vext to only meaningful nodes. From each node in
v ∈ Vext a training sample is produced with a certain small probability. To obtain
a training sample, the subproblem instance I(v) to which state v corresponds is
determined, and an independent Nested Beam Search (NBS) call is performed
for this subproblem with beam width β. This NBS returns the target node t′ of
a longest identified path from node v onward, and thus g(t′) will typically be a
better approximation to the real maximum path length than h(v). State v and
value g(t′) are therefore together added as training sample and respective label
(target value) to the replay buffer.

Although the MLP in the above-mentioned LBS approach approximates the
expected LCS length from some nodes relatively well, it may also make stronger
errors with respect to small differences among the nodes in Vext to be evaluated,
as the absolute values may be relatively large in comparison to the differences.
We address this issue with our RV-LBS by re-defining the approximation goal of
the heuristic function h(v) as the difference of the expected solution length from
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a given node represented by a feature vector to the expected average solution
length from all successor nodes of the current beam. Formally:

h(v) ≈ LCSexp(v) − 1
|Vext|

∑

v′∈Vext

LCSexp(v′), (1)

where LCSexp(v) denotes the expected solution length from node v represented
by its feature vector. By evaluating solutions in relation to other states at a
current BS level we expect to obtain a more precise differentiation ranking of
the states.

For obtaining training samples, we utilize NBS again to get a reasonable
approximation of LCSexp(v) and therefore target values

t′v = NBSg(v) − 1
|Vext|

∑

v′∈Vext

NBSg(v′), (2)

where NBSg(v) corresponds to the length-to-go approximation obtained from
NBS for the subproblem instance induced by node v. To reduce the computa-
tional effort, we select only one level of each BS run uniformly at random, from
which training samples are created for all nodes in Vext.

To remain consistentce to the approximation goal as well as to get rid of the
absolute remaining string lengths we perform an input feature encoding at each
BS level by exploiting the following observation:

If all remaining string lengths qv
i , i = 1, . . . , m of the nodes v ∈ Vext are

large, the reduction of all qv
i by the same cut-off value b ≥ 0 does usually

not make a significant difference for the choice of which nodes should be
further pursued in the BS and consequently also our approximation goal.

For small string lengths, however, it may still be important to consider absolute
lengths. We therefore calculate this cut-off value in dependence of qext and a
parameter λ as bsl = max(0, qext − λ|Σ|), where

qext =
1

m |Vext|
m∑

i=1

∑

v∈Vext

qv
i (3)

is the average length of all remaining input strings for all nodes in Vext.
Similar to the way for determining the cut-off value for the remaining string

lengths, we calculate a cut-off value for the minimum numbers of letter occur-
rences. Let

oext =
1

|Σ| |Vext|
∑

a∈Σ

∑

v∈Vext

ov
a (4)

be the average number of minimum letter occurrences for all nodes in Vext and all
letters. The cut-off value in dependence of oext and the parameter λ is determined
by bmlo = max(0, oext − λ). The ultimate input features we provide to the MLP
model for calculating h(v) are:

(i) q̂v
i = qv

i − bsl, ∀v ∈ Vext, i = 1, . . . , m, (ii) bsl,

(iii) ôv
a = ov

a − bmlo, ∀v ∈ Vext, a ∈ Σ, (iv) bmlo, (v) m.
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Note that each cut remaining string length vector q̂v
i in (i) is sorted according

to non-decreasing values to reduce symmetries.

Downsampling. In order to enable RV-LBS to deal with different numbers of
input strings, we compress the information of a remaining string lengths vector
q = (q1, . . . , qm) into a smaller vector of constant size m′ < m. As the smallest
and thus the first values have higher impact and q1 in particular also represents
an upper bound on the length of the LCS on its own we directly keep q1, . . . , qk

as features q′
1, . . . , q

′
k, for a small k. In our experiments, k = 3 turned out to be

a reasonable choice. The remaining qk+1, . . . , qm are sampled down into m′ − k
values q′

k+1, . . . , m
′. For this purpose, the original values are binned into m′ − k

bins, rounding to the respective bin is done by the nearest integer, and the
arithmetic mean values of each bin is determined.

A pseudocode for the BS with training data generation for RV-LBS is shown
in Algorithm 1. Remember that this BS is called by the main (RV-)LBS pro-
cedure for many random instances. As the framework structure for generating
training samples is very similar to that of LBS, we only describe the differences.
In line 8 each node v ∈ Vext is augmented with the set of features obtained
by applying the feature encoding- and downsampling approach with parameters
λ and m′ to each node v in relation to Vext. If the buffer is provided and the
current level is determined to create training samples, then target values for
each node v ∈ Vext are calculated by Equation (2) and added together with the
corresponding nodes v as training samples to the replay buffer.

Algorithm 1. Beam Search with optional training data generation for RV-LBS
1: Input: problem inst. I, heuristic function h, beam width β
2: only for training data generation: replay buffer R
3: Output: best found target node t
4: B ← {r} with r being a root node for problem instance I
5: t ← none // so far best target node
6: while B �= ∅ do
7: Vext ← expand all nodes v ∈ B by considering all valid letters
8: augment each v ∈ Vext with set features determined from v in relation to Vext

9: update t if a terminal node v with a new largest g(v) value is reached
10: if R given ∧ level selected then // generate training samples?
11: for v ∈ Vext do
12: t′

v ← NBSg(v) // NBS call
13: end for
14: t′ ← ∑

v∈Vext
t′
v/|Vext|

15: for v ∈ Vext do
16: add training sample (v, t′

v − t′) to R
17: end for
18: end if
19: B ← select (up to) β nodes with largest f -values from Vexp

20: end while
21: return t
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5 Experimental Evaluation

The RV-LBS algorithm for the LCS problem was implemented in Julia 1.7 using
the Flux package for the MLP. All tests were performed on a cluster of machines
with AMD EPYC 7402 processor with 2.80 GHz in single-threaded mode with a
memory limit of 32 GB per run. We applied the proposed algorithm on the bench-
mark set virus, which was already used in [2]. The set consists of single instances
with number of input strings m ∈ {10, 15, 20, 25, 40, 60, 80, 100, 150, 200} and the
length of the input strings n = 600. The alphabet size |Σ| = 4 for all instances.

Preliminary tests of RV-LBS on randomly created problem instances of size
m ∈ {10, 100}, n = 100, |Σ| = 4 led to the following configuration: no. of LBS
iterations z = 500000, min. buffer size for learning γ = 45000, beam width
β = 50, max. buffer size ρ = 50000, cut-off parameter λ = 1, downsampling
parameter m′ = 7. Figure 1 shows on the left-hand side the impact of the down-
sampling parameter m′ on the LCS solution length and the right-hand side illus-
trates exemplary box plots for final LCS lengths obtained with different values
for the cut-off parameter λ. LBS is used as baseline.

Fig. 1. Parameter calibration on randomly generated problem instances of size n = 100,
|Σ| = 4, with m = 100 in the left and m = 10 in the right figure.

Finally, we trained 30 MLPs with RV-LBS, each on randomly generated prob-
lem instances of size m = 10, n = 100, |Σ| = 4, and used the best performing
one thereafter in BS for solving the instances in the benchmark set virus. While
all training with RV-LBS was done with β = 50, we followed [2] regarding test
settings and applied BS on all benachmark instances with β = 50 to aim at
low (computation) time and β = 600 to aim at high-quality solutions. Table 1
shows the obtained results. Column |sRV−LBS| and tRV−LBS present the respec-
tive solution qualities and runtimes obtained by a BS with the trained MLP and
column |slit−best| and tlit−best those from the literature [2]. Although only small-
size instances were used for the training of the MLP, a BS with the trained MLP
yields competitive results on the benchmark instances to the state-of-the-art.



94 M. Huber and G. R. Raidl

Table 1. LCS results on benchmark set virus.

Set |Σ| m n Low times (β = 50) High-quality (β = 600)

|sRV−LBS| tRV−LBS [s] |slit-best| tlit−best [s] |sRV−LBS| tRV−LBS [s] |slit-best| tlit−best [s]

Virus 4 10 600 222.0 0.19 225.0 0.04 222.0 3.60 227.0 2.88

Virus 4 15 600 194.0 0.33 201.0 0.23 200.0 3.58 205.0 2.24

Virus 4 20 600 184.0 0.20 188.0 0.18 189.0 3.50 192.0 2.69

Virus 4 25 600 191.0 0.25 191.0 0.06 194.0 4.08 194.0 2.20

Virus 4 40 600 167.0 0.26 167.0 0.17 169.0 4.08 170.0 2.24

Virus 4 60 600 161.0 0.30 163.0 0.04 163.0 4.15 166.0 2.38

Virus 4 80 600 156.0 0.32 158.0 0.19 160.0 4.59 163.0 2.70

Virus 4 100 600 153.0 0.39 156.0 0.19 156.0 5.48 158.0 0.90

Virus 4 150 600 152.0 0.50 154.0 0.06 155.0 6.90 156.0 0.66

Virus 4 200 600 151.0 0.63 153.0 0.09 153.0 7.90 155.0 1.22

6 Conclusions and Future Work

We presented a RV-LBS framework in which a MLP was trained to predict a
relative value of a state and used this model thereafter in a BS. Moreover, we
provided new features as input to the MLP to get rid of the absolute number
of input strings and the string lengths. Training was done in a reinforcement
learning manner by performing many BS runs on randomly created instances
and calling a nested beam search to approximate the expected LCS length from
a node. Although a MLP trained by RV-LBS on small-size instances was able to
guide BS well on larger-size benchmark instances, we observed that the distribu-
tion of the encoded remaining string lengths at different BS levels obtained from
larger-size instances has a larger standard deviation than smaller ones. Further
normalization of features could be a promising direction.
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