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Abstract. Multi-Vehicle routing to service consumers in dynamic and
unpredictable surroundings such as congested urban areas is a difficult
operation that needs robust and flexible planning. Value iteration net-
works hold promise for planning vehicle routing problems. Conventional
approaches aren’t usually constructed for real-life settings, and they are
too slow to be useful in real time. In comparison, the Vehicle Routing
Problem with Value Iteration Network (VRP-VIN) offers a neural net-
work model based on graphs that can execute multi-agent routing in a
highly dispersed but connected graph with constantly fluctuating traf-
fic conditions using learned value iteration. Furthermore, the model’s
communication module allows vehicles to work better in a cooperative
manner online and can easily adapt to changes. A virtual environment is
constructed to simulate real-world mapping by self-driving vehicles with
uncertain traffic circumstances and minimal edge coverage. This method
beats standard solutions based on overall cost and run time. Experi-
ments show that the model achieves a total cost difference of 3% when
compared with a state-of-art solver having global information. Also, after
being trained with only 2 agents on networks with 25 nodes, can easily
generalize to a scenario having additional agents (or nodes).

Keywords: Reinforcement learning · Vehicle routing problem · Value
iteration networks · Graph attention layer · Multi-agent communication

1 Introduction

As vehicles grow increasingly widespread, one of the most basic issues is under-
standing how to navigate a fleet of vehicles to perform a specified job. Also,
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the huge population densities in our cities today put all existing infrastructure,
especially urban transportation networks, under strain. With the progression of
services like e-commerce and vehicle sharing, these congested cities’ transporta-
tion demands have also gotten more complicated. So, it is very important to
route vehicles in way so as to reduce overall cost, time, and congestion. Different
methods [1] have been proposed to route vehicles. One of the classic methods
in which a single agent is entrusted with determining the shortest path between
a set of sites and destinations is known as Travelling Salesperson Problem. The
multi-agent approach to this problem is called the Vehicle Routing Problem
(VRP) [2]. In VRP, multiple agents try to find an optimal route by visiting a set
of locations exactly once. Even after having a huge number of solvers, they are
primarily built to perform planning offline and cannot modify solutions when
used online. They are, however, often evaluated on simple planar network bench-
marks with limited exploration in multi-agent environments. Furthermore, none
of these solutions were created for dynamic contexts where online communication
may be quite advantageous.

The Value Iteration Networks [3] have excellent planning capability and can
generalize better in a diverse set of tasks. Its purpose is to discover a policy
that optimizes expected returns. The value function peak at the goal, so the
high-value function mean the destination. In the attention mechanism, only a
subset of the input characteristics (value function) is meaningful for a specific
label prediction (action). It is also well known that attention improves learning
performance by lowering the effective number of network parameters used during
learning. We have given a fleet of cars in a multi-agent environment. We have
to determine the minimum total cost for mapping a given graph under traffic
conditions, such that all routes are traversed not less than a defined number, and
this number is not known prior. The Vehicle Routing Problem value iteration
network is a distributed neural network designed for managing multiple vehicles
intended to complete a specific task. Each agent has a value iteration module to
carry out its own planning with the help of communication between agents via
an attention mechanism. The dense adjacency matrix [4] is used for encoding
paired edge information to accelerate information sharing and allow for more
complex encoding since our focus is on sparse road graphs. Using actual traffic
flow simulation, we illustrate the usefulness of VRP-VIN on actual road maps
derived from eighteen different cities around the world. A random sub-graph of
those cities was used to produce training and evaluation examples comprising
real-world mapping difficulties, and then a random number is selected, which
determines how many times each node in each graph is covered [5,6]. The fleet
will be unaware of this knowledge until they reach this number. We use the
total time taken for traversal as our major evaluation criterion, demonstrating
that this technique outperforms both conventional VRP solvers and recently
suggested deep learning models. Moreover, VRP-VIN adapted effectively to the
graph size and agent count.

The paper is organized as follows: Sect. 2 gives us detailed literature on value
iteration networks. The proposed Model is presented in Sect. 3. An evaluation of
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the proposed model is available in Sect. 4. Finally, Sect. 5 represents the conclu-
sion and future work of the proposed work.

2 Related Work

In [8], Tamar et al. proposed a neural network incorporated with a planning
module. They can learn to plan and can anticipate planning-related outcomes,
such as reinforcement learning. They are based on a differential estimation of
the value-iteration algorithm using CNN. Value iteration is a technique based
on the Markov decision process. The MDP’s purpose is to discover a policy that
in turn optimizes our expected return. Vn (state value function at iteration n)
converges to V* (ideal state value function) using the value iteration technique
as n approaches infinity [6]. The VI module in the VIN takes advantage of the
fact that each iteration of VI can be visualized as previous Vn and the reward
function passes through a convolutional and max pooling layer. The Q function
for every channel in the convolution layer refers to a specific action. As a result,
K iterations of VI are equivalent to K times of applying a convolutional layer.

In [9], Lu et al. suggested a distributed cooperative routing method (DCR)
based on evolutionary game theory to coordinate vehicles. This solution combines
edge computing and intelligence to run on roadside units. Nash equilibrium is
achieved under DCR. No vehicle can find a path more suitable than the one
currently under Nash equilibrium [7].

In [10], Tang et al. proposed a reinforcement learning model with multi-
agents for a centralized vehicle routing in order to improve the spatial-temporal
coverage. Two reinforcement learning: proximal policy optimization and deep q-
learning have been used to create routing policies. A centralized routing method
is proposed for vehicular mobile crowd-sensing systems (VMCS) to expand their
range of sensing based on MARL. The author initiates by customizing an envi-
ronment for reinforcement learning in order to get the maximum feasible spatial-
temporal coverage based on user preferences for various regions. They designed
two MARL algorithms based on the Deep Q network [14] and Proximal Policy
Optimization (PPO) [15]. Then, they do comparisons and sensitivity analyses
to figure out how well the two methods work for VMCS problems.

In [11], Niu et al. Proposed a Multi-Agent Graph-attention Communication
(MAGIC). It is a novel multi-agent reinforcement learning algorithm with a
graph-attention communication protocol having a Scheduler to aid the challenge
of when and to whom messages should be sent, and a Message Processor employs
Graph Attention Networks (GATs) [12] comprising dynamic graphs for handling
communication signals. A combination of a graph attention encoder and a differ-
entiable attention mechanism [16] is used to develop the scheduler that provides
dynamic, differentiable graphs to the Message Processor, allowing the Scheduler
and Message Processor to be trained at the same time.



414 J. Singh et al.

3 System Model

In this section, the solution to the Vehicle Routing Problem with Value Itera-
tion Network has been discussed in detail. Vehicle Routing Problem with Value
Iteration Network (VRP-VIN) has two main components:

– Asynchronous communication module [17] saves messages sent by agents in
a temporary unit and retrieves information via agent-level attention method.
This information is received by the value iteration network for path planning
in the future.

– Value iteration network operates locally on each node repeatedly to calculate
the value of traveling to each node for its next route. After that, LSTM [20]
planning unit with attention mechanism repeatedly refines the node features
and produces a value function associated with each node. The next destination
will be selected on the basis of the value function, so the node with the highest
value function will become the next destination.

Figure 1 represents the flowchart of the proposed model VRP-VIN The pro-
posed VRP-VIN model is dynamic in nature. In order to do this, VRP-VIN
includes a communication module based on the attention mechanism, in which
attention is now focused on the agents as opposed to the street segment earlier in
the VI module. Whenever an agent acts, it outputs some communication vector:
y(i). It is subsequently transmitted to each agent using Z(K), the value iteration
module’s final encoding. The communication vector [18] is expressed as a set
of node attributes in order to obtain the topology of the street graph. At the
receiver end, each sender’s current communication vector is stored temporarily.
Every agent has an attention layer that compiles data from the receiver’s inbox,
whenever an agent wants to take a new action.

The Routing Path [19] can be represented as a strongly connected graph (G)
with edges (E) and vertices (V), where we want to generate a routing path for
D agents {R(i)}Di=1, and each vertex in the graph is traversed Dv time across
all agents. Until a specific number is reached, Dv is unknown to the agents,
and local traffic information [13] is the only thing that can be observed. Each
agent collects surrounding environment observation and information gathered
from other agents and then outputs the next step’s route.

A route is defined as a sequence of action R(i) = [si0, . . . .., s
N ], where si0

represents routing steps taken by agent ’i’ in time t, indicating the next node to
traverse, and each step represents an intermediary destination [20]. The strategy
of a single agent can be described as a function of the graph of the road network;
surrounding environment observation bit; the communication messages sent by
other agents yj

t ; and, the current status of an agent jit . The mathematical Eq. 1
are as follows:

sit, y
j
t = f(G, bit, {yj

t−1}Mj=1; j
i
t), (1)
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Fig. 1. Flowchart of proposed VRP-VIN Model

Consider a traffic model D determines how long it takes to travel a route, we
want our system to accomplish the following goal:

minR(i)
∑

X=1...L

D(Ri), (2)

subject to
∑

i

T (Ri, v) ≥ Tv, v (3)

where T (R, v) tells how many times a node v should be visited in path R.
It is worth noting that the model is resilient and failure-proof as the model

runs locally on all the agents, which allows it to scale better with the number of
agents.
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Symbol Representation

t Current timestamp

G Graph of road map

L No of Agents

n No of graph nodes

f Policy of Routing and Communication

π Routing Policy

F Time Cost given a route R

o Agent i’s observation at time t

s Agent i state at time t

a Agent i action at time t

m Message vector sent by agent ‘i’ at time t

Dv No of times node v needs to be visited

Zi At the kth value iteration, Agent i’s node feature

Yi Agent i’s input communication feature

The road network [21] is represented by a tightly linked graph G(V, E).
Each graph node represents a street segment, and each agent’s goal is to choose
a node to be its next destination. Initial node features are refined by passing
them through a graph neural network [22] for specific iterations. Then, these
features are turned into a value function, and the next destination is the node
with the highest value. Let Z = (z1, z2, ..., zn) represents a vector with initial
node features, where n denotes number of nodes, and Y = y1, y2, ..., yn denote
the node features of the input communication. A linear layer encodes node input
features to produce an initial feature for the value iteration module [2]:

Z0 = (Z||Y )Wenc + benc (4)

We conduct the following iterative update across neighboring nodes at each
planning iteration ‘z’ using an attention LSTM:

Z(k+1) = Z(k) + LSTM(Att(Z(k), A);H(k)) (5)

where K denotes the number of value iteration steps, hidden states H(t) in LSTM,
and adjacency matrix A. Floyd Warshall method [23] is employed to compute
dense distance matrix, which is then used as an input to this model, rather than
using the adjacency matrix as an input to the network. This ensures that our
model uses more useful information. The Floyd-Warshall algorithm generates a
matrix, Di,j = d(vi, vj), which represents the shortest path between any two
nodes in terms of pairwise distance. This matrix is then normalized to create a
dense adjacency matrix. A = (D − μ)/σ where μ is the mean of the elements of
D and σ is the standard deviation of the elements.

The graph attention layer(GAL) [24] is responsible for the exchange of infor-
mation within a graph. The attention module used in VRP-VIN is a transformer
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layer that receives adjacency matrix and node features, then outputs modified
features. First, the values of the key, query, and value function for each node are
calculated.

Q(k) = Z(k)Wq + bq, (6)

K(k) = Z(k)Wk + bk, (7)

V (k) = Z(k)Wv + bv (8)

The node feature vector is multiplied by the weight vector to calculate the key,
query, and value. Then we form an attention matrix Aatt by computing attention
between the node and each other nodes.

Aatt = Q(k).K(k)T (9)

To express edge features, we mix adjacency matrix A and attention matrix Aatt

in a multi-layer neural network g as shown below.

A(k) = softmax(g(A(k)
att, A)) (10)

The values of new nodes are calculated by merging the values generated by the
other nodes in the merged attention matrix according to the attention. The
output of GALs is sent into the LSTM module.

Z(k+1) = Z(k) + LSTM(A(k)V (k);H(k)) (11)

Before decoding, the entire procedure is performed for a fixed no. of iterations,
k = 1. . . ..K.

Each node feature is translated into a scalar value function on the graph after
iterating the attention LSTM module for K iterations. Then SoftMax function
is applied across the rest of the nodes to derive action probabilities, masking off
the value of any node that is not required to be visited anymore because they’re
fully traversed.

π(si; ji) = softmax(ZKWdec + bdec) (12)

Now, the node with the highest probability value is chosen as the next desti-
nation. With the help of the shortest path algorithm, a full path is constructed
by linking the latest node with the node chosen as the next destination. The
graph weight is calculated by dividing the length of a road segment by the aver-
age speed of the car driving it. It shows how long it is expected to take to drive
from one road segment to the next.

There are 22,814 directed road graphs in the collection, which were collected
from 18 cities on six continents. For testing, we pick a different location, and
for validation, we utilize 10% of the training set. We also include actual traffic
situations and mapping issues in this benchmark. Extra problems fall into three
groups: random revisits, realistic traffic, and asynchronous execution (Figs. 2, 3
and 4).
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4 Evaluation

A 3-layer MLP with 16 dimensions each, with ReLU activation is utilized to com-
bine the dot-product attention with the distance matrix. The encoding vectors
have a 16-dimensional size. Adam optimizer is used to set the model’s learning
rate during training to be 1e−3. The decay rate is set as 0.1 per 2000 epochs.
The model is trained for 5000 epochs. Each of the 50 graphs in our batch size has
a maximum of 25 nodes. We just use two agents to train our network and one to
nine agents to analyze it [25]. LKH3 is the best-performing iterative solver with
available data. First, the solver chooses the best route for precisely covering all
nodes exactly once. After that, the solver determines a new optimal route across
each of the nodes that still need to be traversed. Until every node has been
completely mapped, this is repeated. Basically, the solver does VRP traversals
until the required number of nodes has been visited. If an agent had been given
global knowledge of every hidden state, this is the best possible performance
that could have been obtained. By giving the LKH3 solver information about
every hidden variable and doing an optimal plan search, the solution is discov-
ered. By duplicating the nodes and raising the node’s edge weights affected by
traffic congestion, we alter the adjacency matrix. GATs [12] exchange complex
information between the nodes based on the attention mechanism. Normally,
GAT architectures, on the other hand, presume that all edges have equal weight
rather than encoding the information about the distance matrix, which restricts
their potential. Although GATs aren’t always made to address TSP or VRP
issues, they are still among the most cutting-edge options for graph and network
encoding (Tables 1 and 2).

Table 1. Total cost (runtime in hrs)

No of vehicles

No of nodes 1 2 3 4

20 1.1 1.1 1.4 1.9

30 1.2 1.4 1.8 2.2

40 1.4 1.6 2 2.6

50 2 2.2 2.6 3.2

60 2.1 2.3 2.7 3.3

70 2.2 2.4 2.8 3.5

80 2.6 2.9 3.2 4

90 2.9 3 3.6 4.2

100 3.5 3.8 4.3 5.1

The performance of VRP-VIN is the best over a range of agent counts and
graph sizes. Notably, this technique with 25 nodes and two agents using reinforce-
ment learning achieves a total cost of around 3% when compared with oracle.
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Table 2. Average traversal cost on real graphs; Time cost (hrs); Runtime (ms)

25 Nodes, 1 Vehicle

Method Cost Gap Runtime

Oracle 1.16 0.00% 71.3

LKH3 1.26 8.84% 71.2

GAT 1.53 32.50% 43

VRP-VIN(IL) 1.37 18.00% 62.8

VRP-VIN(RL) 1.25 8.17% 62.8

25 Nodes, 2 Vehicles

Method Cost Gap Runtime

Oracle 1.28 0.00% 438

LKH3 1.8 40.50% 438

GAT 1.56 21.60% 29.1

VRP-VIN(IL) 1.42 11.30% 66.6

VRP-VIN(RL) 1.32 2.87% 56.6

50 Nodes, 2 Vehicles

Method Cost Gap Runtime

Oracle 1.85 0.00% 902

LKH3 2.54 37.30% 902

GAT 2.58 39.70% 38

VRP-VIN(IL) 2.21 19.00% 71.5

VRP-VIN(RL) 2.12 14.50% 71.4

100 Nodes, 5 Vehicles

Method Cost Gap Runtime

Oracle 3.19 0.00% 2430

LKH3 6.14 92.50% 2430

GAT 5.43 70.20% 38.2

VRP-VIN(IL) 4.36 36.70% 72.8

VRP-VIN(RL) 4.62 44.90% 72.8

Fig. 2. Total cost graph

We discovered that the model that included imitation and reinforcement learn-
ing outperformed all rival models. The model’s overall generalization to multiple
agents and larger graph sizes is outstanding. Each traversal’s cost is distributed
across the agents in a fairly equal manner. The method performs significantly
better than the current state-of-the-art, LKH solver. The overall cost increases
marginally when the number of agents is increased, demonstrating high scala-
bility. When dealing with more agents, the models trained with reinforcement
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Fig. 3. Cost per agent (runtime in hrs)

Fig. 4. Oracle vs VRP-VIN (runtime in hrs)

learning have the excellent generalizing capability. Increasing the number of value
iterations further increases the performance.
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5 Conclusion

The proposed VRP-VIN model can easily route multiple vehicles online in a
real-world environment with dynamic obstacles. This model beats all current
approaches on real road graphs by leveraging the learned value iteration tran-
sitions and a communication protocol based on an attention mechanism. Also,
it can be scaled up or down to different numbers of agents and nodes without
requiring retraining. Communication is a key component in multi-agent systems
learning coordinated behavior. So, Future studies will involve a more in-depth
examination of the information stored in the communication and its semantic
value. There will also be further research into approaches that will allow this
system to operate on huge graphs.
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