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Abstract. We study two player single round rectilinear Voronoi games
in the plane for a finite set of clients where service paths are obstructed
by a rectilinear polygon. The players wish to maximize the net number of
their clients where a client is served by the nearest facility of players in L1

metric. We prove the tight bounds for the payoffs of both the players for
the class of games with simple, convex and orthogonal convex polygons.
We also generalize the results for L∞ metric in the plane.

1 Introduction

Motivation. A Voronoi game is a competitive facility location problem where
the goal is to maximize a service in the Voronoi cells of the players. Rectilinear
versions of such problems naturally arise in several applications that deal with
rectilinear paths, such as those related to city maps, electronic circuits, raster
graphics, warehousing, architecture, civil engineering, network flows, etc. The
motivation for the problem comes from real-life situations where an impassable
zone restricts every player in a competitive facility location problem. We prove
lower and upper bounds on the payoffs of such games in L1 and L∞.
Previous Results. The concept of Voronoi games was introduced by Ahn
et al. [1] for line segments and circles. Several variants of Voronoi games are
available in the literature [2–15]. Ahn et al. [1], Cheong et al. [10] and, Fekete
and Meijer [13] studied the versions where they tried to maximize the Voronoi
cells themselves. Briefly, they proved that Bob is guaranteed at least half of the
total payoff for their versions of Voronoi games. They also game suitable strate-
gies for both the players. Durr and Thang [12], Teramoto et al. [15], Bandy-
opadhyay et al. [2] and Sun et al. [14] studied intractability of Voronoi games
in graphs. Banik et al. [3] described a discrete vesion of the problem for line
segments. Banik et al. [4,5] and, later, Berg et al. [9] solved the single round
where two players can place a fixed number of facilities in a single round. Banik
et al. [8] introduced Voronoi games in the interior of simple polygons and devised
polynomial time optimal strategies for both Alice and Bob.
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Banik et al. [6,7] described the version of the problem that we study in this
paper. Banik et al. [6] and Das et al. [11] extended, generalized and improved
the solutions of the problem. They also proved several tight lower and upper
bounds on the payoffs of a similar nature as in this paper.
New Results. In this paper, we study the rectilinear Voronoi games with recti-
linear polygonal obstacles for players similar to the games mentioned in [6,7,11].
A notable difference is that we restrict the players outside of a fixed polygon.
We formally describe the rectilinear Voronoi game in Sect. 2.

We prove that the optimal payoff of Alice ≥ �n/3� and ≤ n/2 and that the
optimal payoff of Bob ≥ n/2 and ≤ �2n/3�, where the net number of served clients
is n. These bounds are tight. We also prove that these bounds hold irrespective
of whether we fix the class of polygonal obstacles as simple polygons, convex
polygons, or orthogonal convex polygons in contrast with the results of [6,7,11].
We then generalize these results for L∞ metric.
Organization. We present some preliminary definitions, concepts and observa-
tions in Sect. 2. In Sect. 3, we prove the bounds for rectilinear Voronoi games for
simple, convex and orthogonal convex polygonal obstacles. We show in Sect. 4
that the same bounds hold for extensions to L∞.

2 Preliminaries

B+(A)

P
∂(P)

Clients c ∈ C

Vorb(A, B+(A))
S+b (B) = 24

A
S+a (A) = 12
Vora(A, B+(A))

Fig. 1. A two player single round recti-
linear Voronoi game with an orthogonal
convex polygon obstacle in L1 metric in
R

2. Alice is at A and Bob wins with a
payoff of 24 by playing at B+(A).

P

(+-)

(--) (-+)

(++)

xy -monotonic path

Boundary ∂(P)

Fig. 2. An illustration for orthogonal
convex polygon with explanation of some
notation for quadrants.

We present some definitions, notations and conventions first. A Voronoi game is
a competitive game in which players compete to serve a set of clients by placing
their facilities. A facility serves the clients in its Voronoi cell and shares the
clients on its Voronoi cell boundary. The payoff of each player is determined by
the net number of clients they serve. The two players single round rectilinear
Voronoi game with a polygon obstacle P, denoted by GP,L1(C,P), is a single
round Voronoi game played between two players, conveniently named Alice and
Bob. They place a single facility each in a region containing a finite set of point
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clients C ⊂ R
2 with the open simple polygonal obstacle P in the L1 plane. Alice

places her facility first, followed by Bob. The facility locations of Alice and Bob
are denoted by A ∈ R

2 and B ∈ R
2, respectively. Effectively, A ∈ R

2 \ P and
B ∈ R

2 \ P, since A ∈ P and B ∈ P fetch exactly zero payoffs for Alice and Bob
respectively. The distance from a facility f to a client c, denoted by dP

L1
(f, c) is

measured as the L1-length of any shortest path from f to c that avoids interior of
P. The payoffs of Alice and Bob, denoted by Sa(A,B) and Sb(A,B), respectively,
are the net count of clients they serve. See Fig. 1 for an example. We note that
neither the shortest paths nor the best locations for Alice and Bob have to be
unique. Moreover, we allow overlapping of clients and facilities, and in some
cases, we also permit degenerate simple polygonal obstacles. Two problems arise
naturally for these Voronoi games that we describe subsequently.

Problem 1. Let Alice and Bob play a two player single round rectilinear Voronoi
game with a polygonal obstacle P. What is an optimal location of Alice that
maximizes her minimum payoff? What is an optimal location of Bob that max-
imizes his payoff for a fixed Alice’s facility location? �

An optimal location of Bob for a fixed location A for Alice’s facility is denoted
by B+(A) and the optimal payoff S+

b(A). The corresponding payoff of Alice is
denoted by S+

a(A). Then,

S+
a(A) = min

B∈R2
Sa(A,B) = Sa(A,B+(A))

S+
b(A) = max

B∈R2
Sb(A,B) = Sb(A,B+(A))

We can compute B+(A) by solving any one of the above equations. An optimal
locations of Alice and Bob are denoted by A* and B*, respectively, and the
optimal payoffs by S*

a and S*
b, respectively. B* = B+(A*). Then,

S*
a = max

A∈R2
min
B∈R2

Sa(A,B) = S+
a(A*) = Sa(A*,B*)

S*
b = min

A∈R2
max
B∈R2

Sb(A,B) = S+
b(A*) = Sb(A*,B*)

We can compute A* and then B* by solving for minA∈R2 maxB∈R2 Sb(A,B) =
maxB∈R2 Sb(A*,B) = Sb(A*,B*).

Next, we propose the problem of determining the upper and lower bounds of
Alice’s and Bob’s payoffs.

Problem 2. Let Alice and Bob play a two player single round rectilinear Voronoi
game with polygonal obstacle P. What are the upper and lower bounds on the
payoffs of Alice and Bob? �

The lower and upper bounds of Alice’s payoffs are mathematically deter-
mined by expressions minGP,L1 (C,P) S*

a and maxGP,L1 (C,P) S*
a respectively. Sim-

ilarly, the lower and upper bounds of Bob’s payoffs are minGP,L1 (C,P) S*
b and

maxGP,L1 (C,P) S*
b mathematically.

We can prove that the Voronoi game is a constant sum game. Hence
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Theorem 1. Sa(A,B) + Sb(A,B) = S+
a(A) + S+

b(A) = S*
a + S*

b = | C \ P |
Proof. We note that P is open, and any client in the (strict) interior of P is not
served. Other clients are either fully served by Alice or Bob or equally shared
by them. Thus the net total of the payoffs in any Voronoi game is always equal
to | C \ P |. 
�

We study the class of the rectilinear Voronoi games when the obstacles are
simple, convex or orthogonal convex polygons. We can also extend the Voronoi
games and related problems described above to L∞ metric. Instead of orthogonal
convex polygons, we look at polygons that are oblique orthogonal convex poly-
gons described later in Sect. 4.

We represent a simple polygon, and likewise, a simple polygonal region, P
by its boundary ∂(P) and assume that the polygon contains its open interiors.
The boundary ∂(P) is assumed to be represented by a non-crossing counter-
clockwise sequence of edges such that the interior of P is on the left. The simple
polygons are open and bounded. Likewise, both the interiors and exteriors are
open. Though simply connected, they may possibly be degenerate. An orthog-
onal convex polygon is an open rectilinear polygon such that every horizon-
tal and vertical line intersects the polygon no more than once in an interval.
See Fig. 2 for an example. Let S be any finite or infinite bounded set of points.
An orthogonal convex hull of S, possibly non-unique, is a minimal open orthogo-
nal convex polygon that contains S and is denoted by OCHull(S). The smallest
containing box of S is denoted by Box(S), i.e., Box(S) = { (qx, qy) | xmin(S) <
qx < xmax(S), ymin(S) < qy < ymax(S) } where xmin(S), xmax(S), ymin(S) and
ymax(S) are respectively the left, right, bottom and top extremes of the set S.

We implicitly use the Voronoi regions of Alice and Bob in the discussion. The
Voronoi regions of Alice and Bob are denoted by Vora(A,B) and Vorb(A,B)
respectively for their facility locations A and B respectively.

Vora(A,B) = { p ∈ R
2 \ P | dP

L1
(A, p) ≤ dP

L1
(B, p) },

Vorb(A,B) = { p ∈ R
2 \ P | dP

L1
(A, p) ≥ dP

L1
(B, p) }.

The clients c ∈ C for which dP
L1

(A, c) = dP
L1

(B, c) are shared equally between
Alice and Bob and contribute 1/2 to each of the payoffs.

3 Bounds for Rectilinear Voronoi Games with Polygonal
Obstacles

3.1 Unrestricted

Let S be a finite set of points in the polygonal region R. We define xy-median
of S in R to be a point cm, such that, any open horizontal and vertical chord of
R that avoids cm contain ≤ �|S|/2� points of S on the other side of cm. We can
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Fig. 3. Lemma 2: The lower bound of
Alice’s payoff for the unrestricted recti-
linear Voronoi game in plane.

Fig. 4. Theorem 3: An unrestricted
rectilinear Voronoi game proving tight
bounds for non-overlapping clients.

argue that it is always possible to compute xy-median for any set of clients S in
any bounded or unbounded simply connected region R. See Fig. 5.

Let GL1(C) be an unrestricted rectilinear Voronoi game with a finite set of
clients C in plane, where the service paths are not restricted by any obstacle.
Let | C | be n. We show that in an unrestricted rectilinear Voronoi game, Alice
and Bob have an optimal strategy so that the other player does not have an
advantage in their payoff. This is similar to the original result of [1].

Lemma 2. S*
a ≥ n/2 and S*

b ≥ n/2.

Proof. To prove Alice’s bound, we put Alice’s facility at the xy-median of C.
Then Alice is guaranteed a payoff of n/2. See Fig. 3 for the sketch of the proof.
In the figure, �n/2� − (n(0+) + n(0-) + n(00)) ≤ (n(++) + n(+-) + n(+0)) < �n/2�,
etc. where n(++), etc., denotes the number of clients in the (++) quadrant, etc.
We can show that Sa(A,B) > n/2 by formulating it is an integer linear program
while optimizing for the max-min payoff. To prove Bob’s bound, we put Bob’s
facility overlapping Alice’s facility. Bob is guaranteed a payoff of n/2 there. 
�

Moreover, as an immediate consequence of Lemma 2, we can show that the
lower and upper bounds of S*

a = S*
b = n/2 are indeed same, invariably constant,

and hence, tight for unrestricted case.

Theorem 3. Let GL1(C) be an unrestricted rectilinear Voronoi game in R
2 with

n clients. Then S*
a = S*

b = n/2.

Proof. We put Alice at an xy-median of C. Bob is forced to place his facility at
the same location to maximize his payoff. See Fig. 4 for an example unrestricted
rectilinear Voronoi game. 
�

The implicit technique employed above is used several times later with some
tight modifications for regions with obstacles.
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3.2 Simple Polygon Obstacle

Let GP,L1(C,P) be a Voronoi game in R
2 with a simple polygonal obstacle P and

clients C. Let n = |C \ P|. We note that Bob has a simple strategy to ensure a
payoff of at least n/2.

Lemma 4. Let A be fixed. Then S+
b(A) ≥ n/2 for any simple polygon P.

Proof. We fix B+(A) overlapping A. Due to the space limitations, we omit impor-
tant (and technical) details, as the formal proof requires several more definitions
and claims. We request the interested reader to see the full version of this paper.


�
The strategy for Alice to ensure at least a minimum payoff is non-trivial. We

show below a facility location where she can get a payoff of �n/3�. With the aid
of numerous figures, we sketch the main idea in our proof. We omit important
(and technical) details, as the formal proof requires several more definitions and
claims. It is impossible to provide all the necessary details within the page limit
of the conference submission.

∼ 1/2 clients

∼ 1/2 clients

∅

Anew
2

Aold
2 !?

∅

∅

∅

∅

Fig. 5. The median horizontal and ver-
tical chords for xy-median do not inter-
sect in R for a set of points. We show the
existence of another valid location for xy-
median.

P

(+-)

(--) (-+)

(++)

q(++)

q(--)

Q(++)

Box(P)

Fig. 6. The Q(++) extended quadrant
with respect to an orthogonal convex
polygon P. Naturally, Q(++) ∪ Q(--) =
R

2 \ P. Hence, C \ P ⊂ Q(++) ∪ Q(--).

We define the extended quadrants relative to P for the purpose of proofs
below. Let us consider the Voronoi diagram with obstacle P in L1 of the two
points q(++) = (xmax(P), ymax(P)) and q(--) = (xmin(P), ymin(P)). The closed
(++) extended quadrant, denoted by Q(++), is the set of points in the Voronoi
cell of q(++), i.e., { p ∈ R

2 \ P | dP
L1

(q(++), p) ≤ dP
L1

(q(--), p)}. Likewise, we define
Q(-+), Q(--) and Q(+-) closed extended quadrants. See Fig. 6 for an illustration
of the extended quadrant Q(++).

Before proving a lower bound of �n/3�, we show first that �n/4� is a weaker
lower bound for S*

a .
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Lemma 5. S*
a ≥ �n/4� for any orthogonal convex polygon P.

Proof. We observe that at least one of any pair of diametrically opposite
extended quadrants of P, for example one of Q(++) or Q(--), will contain ≥�n

2 �
clients because they cover R

2 \ P and hence C \ P. We can show that A on a
xy-median of the extended quadrant of the four that contains the most clients
will get ≥ �n/4� payoff. See Fig. 7. 
�

Later, in Theorem 10, we show that �n/3� is the tight bound of S*
a for even

orthogonal convex polygonal obstacles.

Lemma 6. S*
a ≥ �n/3� for any simple polygon P.

P

Q(++)
A

Fig. 7. A weak lower bound for Alice’s
payoff for rectilinear Voronoi game with
a simple orthogonal polygonal obstacle.
Q(++) quadrant contains ≥�n

2
� clients.

Alice gets at least half of the clients in
Q(++).

Box(P)

OChull(P)

A1

B1

Vorb(A1, B1)

Vora(A1, B1)

P

Fig. 8. Lower bound for Alice’s payoff
for rectilinear Voronoi game with a sim-
ple polygonal obstacle. Possible candi-
date location A1 in Lemma 6.

Proof. We consider two possible candidates for Alice’s facility location for our
claim. One of these will guarantee a payoff of �n/3�. The first candidate location,
denoted by A1, is a rightmost point of ∂(P). See Fig. 8. If S+

a(A1) ≥ �n/3� then
the proof is complete.

Otherwise, let B+(A1) = B1. We compute V = Vorb(A1,B1). Naturally C∩V
contains > �2n/3�, since, S+

a(A1) < �n/3� =⇒ S+
b(A1) > n − �n/3�. We fix A2 on

the xy-median of the clients in V, i.e., C ∩ V. We give a proof sketch below that
S+
a(A2) ≥ �n/3�. Let A2 = (ax, ay).

The following subcases arise.

Case 1. A2 ∈ R
2 \ Box(P).

If A2 is, without loss of generality, such that ax ≥ xmin(P) and ay ≥ ymax(P),
then clearly there are at least �n/3� clients above and �n/3� clients right of A2.
If A2 is, without loss of generality, such that ax ≥ xmin(P) and ymin(P) <
ay > ymax(P), then we can show that B2 either serves only shared clients of
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A2

≥ �n/3� clients

≥ �n/3� clients

Vorb(A1, B1)

Overall ≥ �2n/3� clients

P

Box(P)

Fig. 9. Lemma 6: Case 1. (a) Both the
median lines for A2 are unbounded.

≥ �n/3� ≥ �n/3�

Vorb(A1, B1)
≥ �2n/3� clients

P

Box(P)

A2

B2

≥ �n/3�
≥ �n/3�

Fig. 10. Lemma 6: Case 1. (b) One of
the median lines for A2 is semi-bounded
and the other one is unbounded.

C ∩ V in any diametrically opposite quadrants relative to A2 or serves clients
of C ∩ V in only one of the any diametrically opposite quadrants relative to
A2. So, in either situation, A2 will get a payoff of at least �n/3�. See Figs. 9
and 10.

P

Box(P)

B2

A2

Vorb(A1, B1)
≥ �2n/3� clients

≥ �n/3�
≥ �n/3�

≥ �n/3� ≥ �n/3�

OChull(P)

Fig. 11. Lemma 6: Case 2. (a) Both
A2 and B2 in the same quadrant with
respect to P.

P

Box(P)

B2

A2

Vorb(A1, B1)
≥ �2n/3� clients

≥ �n/3�
≥ �n/3�

≥ �n/3� ≥ �n/3�

OChull(P)

Fig. 12. Lemma 6: Case 2. (b) A2 and
B2 in different quadrants with respect to
P.

Case 2. A2 ∈ Box(P) \ OCHull(P).
If A2 is, without loss of generality, in Q(++), then we can show that B2 either
serves only shared clients of C ∩ V in any diametrically opposite quadrants
relative to A2 or serves clients of C∩V in only one of the diametrically opposite
quadrants relative to A2. Thus, A2 is guaranteed a payoff of at least �n/3�.
See Figs. 11 and 12.

Case 3. A2 ∈ OCHull(P) \ P.
If A2 is sufficiently deep in a pocket such that the horizontal and vertical
chords passing through A2 are also in the same pocket and, without loss of
generality, the opening to the exterior is towards (++) quadrant with respect
to A2 then, we can argue that since there are �n/3� clients in C ∩ V below the



Rectilinear Voronoi Games with a Simple Rectilinear Obstacle in Plane 97

P

Box(P)
Vorb(A1, B1)

≥ �2n/3� clients

OChull(P)

≥ �n/3�
≥ �n/3�

≥ �n/3� ≥ �n/3�

A2

B2

Fig. 13. Lemma 6: Case 3. (a) Both the
median chords for A2 are bounded.

P

Box(P)
Vorb(A1, B1)

≥ �2n/3� clients

OChull(P)

≥ �n/3� ≥ �n/3�

≥ �n/3�

≥ �n/3�

A2

B2

Fig. 14. Lemma 6: Case 3. (b) One of
the median chord for A2 is bounded and
the other semi-bounded.

horizontal chord and left of the vertical chord, Alice gets a payoff of at least
�n/3�. If A2 is shallow in a pocket, then too, we can show that B2 either serves
only shared clients of C∩V in any diametrically opposite quadrants relative to
A2 or serves clients of C∩V in only one of the diametrically opposite quadrants
relative to A2. Thus A2 ensures a payoff of at least �n/3�. See Figs. 13 and 14.

Case 4. A2 ∈ P
This case does not arise.

Consequently, in all the cases, S+
a(A2) ≥ �n/3�. 
�

Fig. 15. The lower bound for Alice’s
payoff for rectilinear Voronoi game with
a simple polygonal obstacle is tight.

Fig. 16. An oblique orthogonal convex
polygon P.

Theorem 7. Let GP,L1(C,P) be a Voronoi game in R
2 with a simple polygonal

obstacle P and n clients C. Then �n/3� ≤ S*
a ≤ n/2 and n/2 ≤ S*

b ≤ �2n/3�. The
bounds are tight.
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Proof. The bounds are consequences of Lemma 4 and Lemma 6. For tightness,
we construct two Voronoi games as follows. We fix P as a rectangular region
with three sets of about n/3 nearly overlapping clients totaling n clustered at
three equidistant locations. We can show that S+

a(A) = �n/3�. See Fig. 15 for the
construction. For the tightness of the upper bound of S+

a , we construct a Voronoi
game as before with a single cluster of n overlapping clients. The polygonal
obstacle does not matter. 
�

3.3 Convex Polygon Obstacle

In [6], Alice was guaranteed a share of payoff for convex polygon case compared
to the general case. In [11], both Alice and Bob were guaranteed a share of
payoff for convex polygon case. However, unlike [6,11], in rectilinear Voronoi
games with obstacles, there is no such advantage for either Alice or Bob, if we
specialize to the class of convex polygonal obstacles. The proofs, on the other
hand, are simplified. Also, we note that the convex polygons are special cases of
orthogonal convex polygons though the opposite is not true. Thus we have the
following theorem.

Theorem 8. Let GP,L1(C,P) be a Voronoi game in R
2 with a convex polygonal

obstacle P and n clients C. Then �n/3� ≤ S*
a ≤ n/2 and n/2 ≤ S*

b ≤ �2n/3�. The
bounds are tight.

Proof. The proof is similar to that of Theorem 7 though much simplified because
of the convexity of the polygonal obstacle. The tightness’s follow from the same
constructions. 
�

3.4 Orthogonal Simple Polygon Obstacle

Next, we consider the class of orthogonal simple polygonal obstacles, a subclass of
simple polygons. The class of such polygons includes degenerate polygons though
the paths should not cross the boundary edges. Again, we can conclusively show
that the bounds are the same and tight. Hence,

Theorem 9. Let GP,L1(C,P) be a Voronoi game in R
2 with a orthogonal simple

polygonal obstacle P and n clients C. Then �n/3� ≤ S*
a ≤ n/2 and n/2 ≤ S*

b ≤
�2n/3�. The bounds are tight.

3.5 Orthogonal Convex Polygon Obstacle

Lastly, we show the bounds for the class of orthogonal convex polygonal obsta-
cles. As mentioned earlier, since the convex polygons are special cases of orthog-
onal convex polygons, hence the bounds here are valid for the earlier section too.
Again this is unlike [11].

Theorem 10. Let GP,L1(C,P) be a Voronoi game in R
2 with a orthogonal simple

polygonal obstacle P and n clients C. Then �n/3� ≤ S*
a ≤ n/2 and n/2 ≤ S*

b ≤
�2n/3�. The bounds are tight.
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Proof. Case 3 of the proof of Lemma 6 does not arise because the orthogonal
convex polygonal obstacle will not have any pockets. Also, for the tightness, we
had deliberately constructed the Voronoi game so that the obstacle is at the
same time simple, convex, orthogonal simple and orthogonal convex. Hence the
same example game proves the tightness of each of these classes of obstacles. 
�

4 Bounds for L∞ Metric in Plane

Fig. 17. A Voronoi game GP,L∞(C,P) in
L∞ metric with the polygonal obstacle P
in plane.

Fig. 18. Tightness of the lower bound
for Alice’s payoff for the Voronoi game
GP,L∞(C,P) in L∞ metric with the con-
vex polygonal obstacle P in plane.

Let GP,L∞(C,P) be a Voronoi game in L∞ metric with the polygonal obstacle P
in plane with a set of clients C. We note that the L∞ metric is very similar to
L1. Though it is not apparent, we can easily extend the bounds to these Voronoi
games by modifying our proofs. Most of the arguments are valid if we choose an
oblique pair of reference axes, i.e., if we choose the lines x = y and x + y = 0 as
the x-axis and the y-axis, respectively. Moreover, an oblique orthogonal convex
polygon P, which is an extension of orthogonal convex polygons, has a property
that any lines parallel to the above two oblique axes will intersect the polygon P
in at most one interval. See Figs. 16 and 17 for examples of an oblique orthogonal
convex polygon and a Voronoi game GP,L∞(C,P) respectively (Fig. 18).

Theorem 11. Let GP,L∞(C,P) be a Voronoi game in R
2 with a simple polygonal

obstacle and n clients. Then �n/3� ≤ S*
a ≤ n/2 and n/2 ≤ S*

b ≤ �2n/3�.
Also, there exist Voronoi games with a convex polygonal obstacle and n clients

such that S*
a = �n/3� and S*

b = n/2.

Corollary 12. �n/3� ≤ S*
a ≤ n/2 and n/2 ≤ S*

b ≤ �2n/3� for subclasses of Voronoi
games in L∞ with convex polygonal obstacles, oblique orthogonal polygonal obsta-
cles and oblique orthogonal convex polygonal obstacles. The bounds are tight.
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